1
|
Yue Y, Zhang W, Yang R, Wang Y, Bian X, Qu C, Yue S, Li S, Shi W, Li Y, Zhou H, Zhang Y. Lead Derivative-Based Precursor Engineering Enables Halogen-Uniform Perovskite Solar Cells with Enhanced Stability and Mechanical Tolerance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502277. [PMID: 40270296 DOI: 10.1002/adma.202502277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/20/2025] [Indexed: 04/25/2025]
Abstract
Perovskite solar cells (PSCs) with supreme opto-electrical properties and solution-processability have attracted tremendous interest. To realize state-of-the-art efficiencies in PSCs, delicate control of bandgap (E g) is required, which generally involves using mixed halogens. This, however, can result in unfavorable phase segregation to negatively influence on the target efficiency and long-term stability. Herein, a viable precursor method is demonstrated for preparing halide-uniform perovskites based on lead derivatives of nPbI2:1PbXA. It is found that nPbI2:1PbXA enables tuning the bonding preference and strength between PbI2 and PbBr2 in the precursor, leading to generating stable -I-Br-I-Br- fragments, which eventually minimizes halide segregation in the perovskite. The precursor approach have been applied to a series of wide-bandgap mixed halide perovskites, achieving boosted efficiencies of 21.3% and 20.3% in CsPbI2.8Br0.2 (bandgap of 1.74 eV) and Cs0.2FA0.8I1.9Br1.1 (bandgap of 1.77 eV) based solar cells. Interestingly, the connection between the modified halide homogeneity and mechanical tolerance is found: the better the uniformity in the halide distribution, the higher the mechanical resistance of the perovskite to compressive or bending forces. The solar cells with modified halogen uniformity exhibit impressive long-term stability, with the retention of >90% of the initial efficiencies after 1500 h of continuous illumination under maximum power point tracking.
Collapse
Affiliation(s)
- Yaochang Yue
- State Key Laboratory of Bioinspired Interfacial Materials Science, Bioinspired Science Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, P. R. China
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, Shandong, 100191, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Weichao Zhang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Bioinspired Science Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, P. R. China
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, Shandong, 100191, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Rongshen Yang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, Shandong, 100191, China
| | - Yongqing Wang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, Shandong, 100191, China
| | - Xin Bian
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, Shandong, 100191, China
| | - Chao Qu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, Shandong, 100191, China
| | - Shengli Yue
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, Shandong, 100191, China
| | - Shilin Li
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, Shandong, 100191, China
| | - Wanfei Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Science, China University of Geosciences Beijing, Beijing, Shandong, 100083, China
| | - Yanxun Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Huiqiong Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuan Zhang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Bioinspired Science Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, P. R. China
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, Shandong, 100191, China
| |
Collapse
|
2
|
Yao Q, Li Q, Jiang S, Yang J, Xu X, Li X. Enhancing the Photovoltaic Performance of Directional-Growing Two-Dimensional Perovskites by Out-of-Plane Polarization. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24252-24261. [PMID: 40230263 DOI: 10.1021/acsami.5c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Two-dimensional (2D) perovskites have great application potential in the photovoltaic field, but the carriers can only be transmitted in-plane due to the limitation of the quantum well structure. It is usually necessary to induce a vertical orientation in photovoltaic devices to overcome this limitation. Here we find that the carrier limitation of 2D perovskites can be overcome by out-of-plane polarization. 4-(Aminomethyl)piperidiniumPbI4 (4-AMPI) is a low-band-gap 2D perovskite ferroelectric with out-of-plane polarization. In this work, 4-AMPI was annealed at different temperatures to fabricate photovoltaic devices growing along different crystal planes. Under the irradiation of AM 1.5G, the parallel-grown 4-AMPI films exhibit a photocurrent density comparable to that of vertically grown films, indicating that out-of-plane polarization can help carriers overcome quantum well constraints. Compared with the nonferroelectric 3-(aminomethyl)piperidiniumPbI4 (3-AMPI), the photocurrent density of 4-AMPI with out-of-plane polarization is significantly higher, which is attributed to the advantage of out-of-plane polarization for the generation and transport of carriers. This work suggests that 2D molecular ferroelectrics with out-of-plane polarization are potential candidates for the fabrication of photovoltaic devices.
Collapse
Affiliation(s)
- Qifu Yao
- Jiangsu Provincial Engineering Research Center of Low Dimensional Physics and New Energy, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, PR China
| | - Qishuo Li
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Shaojie Jiang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Jianping Yang
- Jiangsu Provincial Engineering Research Center of Low Dimensional Physics and New Energy, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, PR China
| | - Xingliang Xu
- Department of Applied Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xing'ao Li
- Jiangsu Provincial Engineering Research Center of Low Dimensional Physics and New Energy, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, PR China
- Department of Applied Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
3
|
Yao W, Lan S, Wang Y, Feng Q, Yang Z, Nan G, Xiong Q, Li D. Crystal-Phase-Engineered Rashba Indirect Exciton Emission in CsPbBr 3 Single Crystals. J Phys Chem Lett 2025; 16:3799-3808. [PMID: 40194893 DOI: 10.1021/acs.jpclett.5c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
All-inorganic metal halide perovskites are promising candidates for light-emitting devices due to their stability, spectral tunability, and high quantum efficiency. However, dual-peak emission has been widely reported in these all-inorganic metal halide perovskites, which influences the monochromaticity and the quantum efficiency of light-emitting devices. To this end, it is important to reveal the underlying mechanism of the dual-peak emission and to further control the dual-peak emission. Here, we report on crystal phase engineered dual-peak emission in cubic and monoclinic CsPbBr3 single crystals. The presence of the dual-peak emission would affect the absolute emission quantum yield and can be attributed to the occurrence of the Rashba effect induced by the surface effect and the thermally assisted structural distortion. Especially, the crystal phase-dependent emission profile might originate from the different effective phonon energy and carrier-phonon interaction strength as well as the intrinsic band structure and transition matrix difference between the cubic and monoclinic CsPbBr3. Our studies establish a relationship among the crystal phase, the Rashba effect, and the emission properties of the CsPbBr3 and provide insights for controlling the Rashba effect and designing the materials for applications in light-emitting and light-harvesting optoelectronics.
Collapse
Affiliation(s)
- Wendian Yao
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shangui Lan
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yubin Wang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Qingjie Feng
- Department of Physics, Zhejiang Normal University, Jinhua 321004, China
| | - Zidi Yang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangjun Nan
- Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- Frontier Science Center for Quantum Information, Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Dehui Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Optical Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Asensio Y, Olano-Vegas L, Mattioni S, Gobbi M, Casanova F, Hueso LE, Martín-García B. Engineering magnetism in hybrid organic-inorganic metal halide perovskites. MATERIALS HORIZONS 2025; 12:2414-2435. [PMID: 40066591 DOI: 10.1039/d4mh01762e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The chemical and structural flexibility of hybrid organic-inorganic metal halide perovskites (HOIPs) provides an ideal platform for engineering not only their well-studied optical properties, but also their magnetic ones. In this review we present HOIPs from a new perspective, turning the attention to their magnetic properties and their potential as a new class of on-demand low-dimensional magnetic materials. Focusing on HOIPs containing transition metals, we comprehensively present the progress that has been made in preparing, understanding and exploring magnetic HOIPs. First, we briefly introduce HOIPs in terms of composition and crystal structure and examine the synthesis protocols commonly used to prepare those showing magnetic properties. Then, we present their rich magnetic behavior and phenomenology; discuss their origin and guidelines for tuning them by changing the perovskite phase, chemical composition and dimensionality; and showcase their potential application in magneto-optoelectronics and spintronics. Finally, we describe the current challenges in the field, such as their integration into devices, as well as the emerging possibilities of moving from magnetic doping to pure transition metal-based HOIPs, which will motivate further studies in the future.
Collapse
Affiliation(s)
- Yaiza Asensio
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Basque Country, Spain.
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, 20018, Spain
| | - Lucía Olano-Vegas
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Basque Country, Spain.
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, 20018, Spain
| | - Samuele Mattioni
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Basque Country, Spain.
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, 20018, Spain
| | - Marco Gobbi
- Materials Physics Center CSIC-UPV/EHU, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Fèlix Casanova
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Basque Country, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Luis E Hueso
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Basque Country, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Beatriz Martín-García
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Basque Country, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
5
|
Li Y, Chen Q, Lv Y, Wang Y, Qaid SMH, Jiang Y, Li F, Zhuang X, Yuan M. Order-Disorder Transition Induced Dynamic Rashba Effect in 2D Halide Perovskites. NANO LETTERS 2025; 25:5812-5820. [PMID: 40136058 DOI: 10.1021/acs.nanolett.5c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Two-dimensional (2D) hybrid organic-inorganic perovskites exhibit pronounced Rashba splitting, positioning them as promising candidates for spintronic applications. However, the underlying mechanism of inversion symmetry breaking and its impact on excitonic optical properties remains elusive. In this study, we investigate a series of 2D Ruddlesden-Popper perovskites and reveal that the order-disorder transition induced by phenyl-based cations triggers a dynamic Rashba effect. At the critical temperature, we observe a reduction in exciton recombination lifetime, an increase in circularly polarized photoluminescence, and a 3-fold enhancement in polarization by constructing a van der Waals heterostructure. Theoretical calculations indicate that local inversion symmetry breaking, driven by the slight displacement of Pb atoms, is the key mechanism underlying the dynamic Rashba effect. These findings establish the dynamic Rashba effect as a critical mechanism governing exciton dynamics, offering valuable insights into advancing spintronic and optoelectronic technologies based on 2D perovskites.
Collapse
Affiliation(s)
- Yang Li
- School of Physics and Electronics, and College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, Hunan 410082, P. R. China
| | - Quanlin Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yawei Lv
- School of Physics and Electronics, and College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yufan Wang
- School of Physics and Electronics, and College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, Hunan 410082, P. R. China
| | - Saif M H Qaid
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ying Jiang
- School of Physics and Electronics, and College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, Hunan 410082, P. R. China
| | - Fuxiang Li
- School of Physics and Electronics, and College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, Hunan 410082, P. R. China
| | - Xiujuan Zhuang
- School of Physics and Electronics, and College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, Hunan 410082, P. R. China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
6
|
Jeong BH, Prayogo JA, Lee J, Lee SW, Whang DR, Chang DW, Park HJ. Molecular Interlayer for High-Performance and Stable 2D Tin Halide Perovskite Transistor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2409088. [PMID: 40205691 DOI: 10.1002/advs.202409088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/31/2024] [Indexed: 04/11/2025]
Abstract
Tin (Sn) halide perovskites present considerable potential for the advancement of high-performance p-channel field-effect transistors (FETs), attributable to their low hole effective mass and reduced carrier scattering. However, their intrinsic instability has impeded their ability to achieve the anticipated performance benchmarks. In this study, molecular interlayers are designed that not only passivate surface defects in Sn perovskites through their functional groups, leading to improved film formation and consequently enhanced performance and stability but also reduce the energy barrier at the source and drain interfaces through their strong dipole moments, thereby enhancing carrier transport. These synergistic effects result in FET devices exhibiting remarkable performance metrics, including effective mobility exceeding 11 cm2 V-1 s-1 and an on/off ratio greater than 1.3 × 107 while securing exceptional durability and reproducibility. Furthermore, the hydrophobic characteristics of the surface interlayer confer superior storage stability.
Collapse
Affiliation(s)
- Bum Ho Jeong
- Department of Organic and Nano Engineering & Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Juan Anthony Prayogo
- Department of Industrial Chemistry and CECS Research Institute, Pukyong University, Busan, 48513, Republic of Korea
| | - Jongmin Lee
- Department of Organic and Nano Engineering & Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seok Woo Lee
- Department of Industrial Chemistry and CECS Research Institute, Pukyong University, Busan, 48513, Republic of Korea
| | - Dong Ryeol Whang
- Department of Advanced Materials, Hannam University, Daejeon, 34054, Republic of Korea
| | - Dong Wook Chang
- Department of Industrial Chemistry and CECS Research Institute, Pukyong University, Busan, 48513, Republic of Korea
| | - Hui Joon Park
- Department of Organic and Nano Engineering & Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Semiconductor Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
7
|
Liu X, Guo J, Hong J, Jiang Y. An apparatus for preparing frozen solution samples in ultrahigh vacuum experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2025; 96:033706. [PMID: 40152653 DOI: 10.1063/5.0253060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/08/2025] [Indexed: 03/29/2025]
Abstract
Here, we develop an apparatus for preparing frozen solution samples, which can be characterized by surface science techniques under ultrahigh vacuum (UHV) conditions. When a temperature-controlled substrate makes contact with a frozen solution at 77 K, the surface of the frozen solution is locally melted and then refreezes together with the substrate. By detaching the substrate from the frozen solution in situ in a high vacuum, the frozen solution is cleaved and transferred onto the substrate. Applying this method, we demonstrate transferring NaCl and LiNO3 frozen solutions onto an Au substrate and directly imaging the crystallization of NaCl and LiNO3 with atomic resolution using atomic force microscopy (AFM) in UHV at 5 K. This apparatus provides a new approach to transfer solution samples in their glassy states into the UHV environment while maintaining the cleanliness of the samples, laying the foundation for further research related to the solution environment in real life, such as crystallization, hydration, chemical reaction, materials synthesis, and bioimaging.
Collapse
Affiliation(s)
- Xinmeng Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Jiadong Guo
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Jiani Hong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
- New Cornerstone Science Laboratory, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Zhang X, Zhang L, Zhu J, Qin T, Huang H, Xiang B, Liu H, Xiong Q. Ultrafast chirality-dependent dynamics from helicity-resolved transient absorption spectroscopy. NANOSCALE 2025; 17:4175-4194. [PMID: 39815723 DOI: 10.1039/d4nr03682d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Chirality, a pervasive phenomenon in nature, is widely studied across diverse fields including the origins of life, chemical catalysis, drug discovery, and physical optoelectronics. The investigations of natural chiral materials have been constrained by their intrinsically weak chiral effects. Recently, significant progress has been made in the fabrication and assembly of low-dimensional micro and nanoscale chiral materials and their architectures, leading to the discovery of novel optoelectronic phenomena such as circularly polarized light emission, spin and charge flip, advocating great potential for applications in quantum information, quantum computing, and biosensing. Despite these advancements, the fundamental mechanisms underlying the generation, propagation, and amplification of chirality in low-dimensional chiral materials and architectures remain largely unexplored. To tackle these challenges, we focus on employing ultrafast spectroscopy to investigate the dynamics of chirality evolution, with the aim of attaining a more profound understanding of the microscopic mechanisms governing chirality generation and amplification. This review thus provides a comprehensive overview of the chiral micro-/nano-materials, including two-dimensional transition metal dichalcogenides (TMDs), chiral halide perovskites, and chiral metasurfaces, with a particular emphasis on the physical mechanism. This review further explores the advancements made by ultrafast chiral spectroscopy research, thereby paving the way for innovative devices in chiral photonics and optoelectronics.
Collapse
Affiliation(s)
- Xiu Zhang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lu Zhang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.
| | - Junzhi Zhu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.
| | - Tingxiao Qin
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.
| | - Haiyun Huang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.
| | - Baixu Xiang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China.
| | - Haiyun Liu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China.
- Frontier Science Center for Quantum Information, Beijing 100084, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, P.R. China
| |
Collapse
|
9
|
Wang S, Wei Z, Hong H, Guo X, Wang Y, Chen Z, Zhang D, Zhang X, Yang X, Zhi C. A tellurium iodide perovskite structure enabling eleven-electron transfer in zinc ion batteries. Nat Commun 2025; 16:511. [PMID: 39779662 PMCID: PMC11711384 DOI: 10.1038/s41467-024-55385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The growing potential of low-dimensional metal-halide perovskites as conversion-type cathode materials is limited by electrochemically inert B-site cations, diminishing the battery capacity and energy density. Here, we design a benzyltriethylammonium tellurium iodide perovskite, (BzTEA)2TeI6, as the cathode material, enabling X- and B-site elements with highly reversible chalcogen- and halogen-related redox reactions, respectively. The engineered perovskite can confine active elements, alleviate the shuttle effect and promote the transfer of Cl- on its surface. This allows for the utilization of inert high-valent tellurium cations, eventually realizing a special eleven-electron transfer mode (Te6+/Te4+/Te2-, I+/I0/I-, and Cl0/Cl-) in suitable electrolytes. The Zn||(BzTEA)2TeI6 battery exhibited a high capacity of up to 473 mAh g-1Te/I and a large energy density of 577 Wh kg-1 Te/I at 0.5 A g-1, with capacity retention up to 82% after 500 cycles at 3 A g-1. The work sheds light on the design of high-energy batteries utilizing chalcogen-halide perovskite cathodes.
Collapse
Affiliation(s)
- Shixun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Zhiquan Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Xun Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Yiqiao Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Ze Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Dechao Zhang
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong SAR, China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education Shanghai University, Shanghai, China.
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong SAR, China.
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
10
|
Choo S, Varshney S, Liu H, Sharma S, James RD, Jalan B. From oxide epitaxy to freestanding membranes: Opportunities and challenges. SCIENCE ADVANCES 2024; 10:eadq8561. [PMID: 39661695 PMCID: PMC11633760 DOI: 10.1126/sciadv.adq8561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Motivated by the growing demand to integrate functional oxides with dissimilar materials, numerous studies have been undertaken to detach a functional oxide film from its original substrate, effectively forming a membrane, which can then be affixed to the desired host material. This review article is centered on the synthesis of functional oxide membranes, encompassing various approaches to their synthesis, exfoliation, and transfer techniques. First, we explore the characteristics of thin-film growth techniques with emphasis on molecular beam epitaxy. We then examine the fundamental principles and pivotal factors underlying three key approaches of creating membranes: (i) chemical lift-off, (ii) the two-dimensional layer-assisted lift-off, and (iii) spalling. We review the methods of exfoliation and transfer for each approach. Last, we provide an outlook into the future of oxide membranes, highlighting their applications and emerging properties.
Collapse
Affiliation(s)
- Sooho Choo
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shivasheesh Varshney
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huan Liu
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shivam Sharma
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Richard D. James
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bharat Jalan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Lee S, de Sousa DJP, Jalan B, Low T. Moiré polar vortex, flat bands, and Lieb lattice in twisted bilayer BaTiO 3. SCIENCE ADVANCES 2024; 10:eadq0293. [PMID: 39565843 PMCID: PMC11578177 DOI: 10.1126/sciadv.adq0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Through first-principles calculations based on density functional theory, we investigate the crystal and electronic structures of twisted bilayer BaTiO3. Our findings reveal that large stacking fault energy leads to a chiral in-plane vortex pattern that was recently observed in experiments. We also found nonzero out-of-plane local dipole moments, indicating that the strong interlayer interaction might offer a promising strategy to stabilize ferroelectric order in the two-dimensional limit. The vortex pattern in the twisted BaTiO3 bilayer supports localized electronic states with quasi-flat bands, associated with the interlayer hybridization of oxygen pz orbitals. We found that the associated bandwidth reaches a minimum at ∼19∘ twisting, configuring the largest magic angle in moiré systems reported so far. Further, the moiré vortex pattern bears a notable resemblance to two interpenetrating Lieb lattices and the corresponding tight-binding model provides a comprehensive description of the evolution the moiré bands with twist angle and reveals the topological nature.
Collapse
Affiliation(s)
- Seungjun Lee
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - D. J. P. de Sousa
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bharat Jalan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Physics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Li H, Li Q, Sun T, Zhou Y, Han ST. Recent advances in artificial neuromorphic applications based on perovskite composites. MATERIALS HORIZONS 2024; 11:5499-5532. [PMID: 39140168 DOI: 10.1039/d4mh00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
High-performance perovskite materials with excellent physical, electronic, and optical properties play a significant role in artificial neuromorphic devices. However, the development of perovskites in microelectronics is inevitably hindered by their intrinsic non-ideal properties, such as high defect density, environmental sensitivity, and toxicity. By leveraging materials engineering, integrating various materials with perovskites to leverage their mutual strengths presents great potential to enhance ion migration, energy level alignment, photoresponsivity, and surface passivation, thereby advancing optoelectronic and neuromorphic device development. This review initially provides an overview of perovskite materials across different dimensions, highlighting their physical properties and detailing their applications and metrics in two- and three-terminal devices. Subsequently, we comprehensively summarize the application of perovskites in combination with other materials, including organics, nanomaterials, oxides, ferroelectrics, and crystalline porous materials (CPMs), to develop advanced devices such as memristors, transistors, photodetectors, sensors, light-emitting diodes (LEDs), and artificial neuromorphic systems. Lastly, we outline the challenges and future research directions in synthesizing perovskite composites for neuromorphic devices. Through the review and analysis, we aim to broaden the utilization of perovskites and their composites in neuromorphic research, offering new insights and approaches for grasping the intricate physical working mechanisms and functionalities of perovskites.
Collapse
Affiliation(s)
- Huaxin Li
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qingxiu Li
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Tao Sun
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China.
| |
Collapse
|
13
|
Deng M, Li Z, Liu S, Fang X, Wu L. Wafer-scale integration of two-dimensional perovskite oxides towards motion recognition. Nat Commun 2024; 15:8789. [PMID: 39389947 PMCID: PMC11467426 DOI: 10.1038/s41467-024-52840-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Two-dimensional semiconductors have shown great potential for the development of advanced intelligent optoelectronic systems. Among them, two-dimensional perovskite oxides with compelling optoelectronic performance have been thriving in high-performance photodetection. However, harsh synthesis and defect chemistry severely limit their overall performance and further large-scale heterogeneous integration. Here, we report the wafer-scale integration of highly oriented nanosheets by introducing a charge-assisted oriented assembly film-formation process and confirm its universality and scalability. The shallow-trap dominance induced by structural optimization endows the device with a distinguished performance balance, including high photosensitivity close to that of single nanosheet units and fast response speed. An integrated ultra-flexible 256-pixel device demonstrates the versatility of material-to-substrate integration and conformal imaging functionality. Moreover, the device achieves efficient recognition of multidirectional motion trajectories with an accuracy of over 99.8%. Our work provides prescient insights into the large-area fabrication and utilization of 2D perovskite oxides in advanced optoelectronics.
Collapse
Affiliation(s)
- Ming Deng
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P. R. China
| | - Ziqing Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, P. R. China.
| | - Shiyuan Liu
- Optical Fiber Research Center, Department of Materials Science, Fudan University, Shanghai, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P. R. China.
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, P. R. China.
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P. R. China.
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China.
| |
Collapse
|
14
|
Zhang S, Ma K, Yuan B, Yang J, Lu Y, Sun D, Park JY, Wei Z, Mannodi-Kanakkithodi A, Yu Y, Huang L, Pennycook TJ, Dou L. Deterministic Synthesis of a Two-Dimensional MAPbI 3 Nanosheet and Twisted Structure with Moiré Superlattice. J Am Chem Soc 2024; 146:27861-27870. [PMID: 39327910 DOI: 10.1021/jacs.4c10298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The synthesis of extremely thin 2D halide perovskites and the exploration of their interlayer interactions have garnered significant attention in current research. A recent advancement we have made involves the development of a successful technique for generating ultrathin MAPbI3 nanosheets with controlled thickness and an exposed intrinsic surface. This innovative method relies on utilizing the Ruddlesden-Popper (RP) phase perovskite (BA2MAn-1PbnI3n+1) as a template. However, the precise reaction mechanism remains incompletely understood. In this work, we systematically examined the dynamic evolution of the phase conversion process, with a specific focus on the influence of inorganic slab (composed of [PbI6]4- octahedrons) numbers on regulating the thickness and quality of the resulting MAPbI3 nanosheets. Additionally, the atomic structure is directly visualized using the transmission electron microscopy (TEM) method, confirming its exceptional quality. To illustrate interfacial interactions in ultrathin structures, artificial moiré superlattices are constructed through a physical transfer approach, revealing multiple localized high-symmetry stacks within a distinctive square moiré pattern. These findings establish a novel framework for investigating the physics of interfacial interactions in ionic semiconducting crystals.
Collapse
Affiliation(s)
- Shuchen Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Biao Yuan
- Electron Microscopy for Materials Science, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiaqi Yang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dewei Sun
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zitang Wei
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Timothy J Pennycook
- Electron Microscopy for Materials Science, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Min L, Zhou Y, Sun H, Guo L, Wang M, Cao F, Tian W, Li L. Carrier dynamic identification enables wavelength and intensity sensitivity in perovskite photodetectors. LIGHT, SCIENCE & APPLICATIONS 2024; 13:280. [PMID: 39343785 PMCID: PMC11439907 DOI: 10.1038/s41377-024-01636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Deciphering the composite information within a light field through a single photodetector, without optical and mechanical structures, is challenging. The difficulty lies in extracting multi-dimensional optical information from a single dimension of photocurrent. Emerging photodetectors based on information reconstruction have potential, yet they only extract information contained in the photoresponse current amplitude (responsivity matrix), neglecting the hidden information in response edges driven by carrier dynamics. Herein, by adjusting the thickness of the absorption layer and the interface electric field strength in the perovskite photodiode, we extend the transport and relaxation time of carriers excited by photons of different wavelengths, maximizing the spectrum richness of the edge waveform in the light-dark transition process. For the first time, without the need for extra optical and electrical components, the reconstruction of two-dimensional information of light intensity and wavelength has been achieved. With the integration of machine learning algorithms into waveform data analysis, a wide operation spectrum range of 350-750 nm is available with a 100% accuracy rate. The restoration error has been lowered to less than 0.1% for light intensity. This work offers valuable insights for advancing perovskite applications in areas such as wavelength identification and spectrum imaging.
Collapse
Affiliation(s)
- Liangliang Min
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, China
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, China
| | - Yicheng Zhou
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, China
| | - Haoxuan Sun
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, China.
| | - Linqi Guo
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, China
| | - Meng Wang
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, China
| | - Fengren Cao
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, China
| | - Wei Tian
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, China.
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Zhou K, Tang L, Zhu C, Tang J, Su H, Luo L, Chen L, Zeng D. Recent Advances in Structure Design and Application of Metal Halide Perovskite-Based Gas Sensor. ACS Sens 2024; 9:4425-4449. [PMID: 39185676 DOI: 10.1021/acssensors.4c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Metal halide perovskites (MHPs) are emerging gas-sensing materials and have attracted considerable attention in gas sensors due to their unique bandgap structure and tunable optoelectronic properties. The past decade has witnessed significant developments in the gas-sensing field; however, their intrinsic structural instability and ambiguous gas-sensing mechanisms hamper their practical applications. Herein, we summarize the recent advances in MHP-based gas sensors. The physicochemical properties of MHPs are discussed at first. The structure design, including dimension design and engineering design, is overviewed as well as their fabrication methods, and we put forward our insights into the gas-sensing mechanism of MHPs. It is believed that enhanced understanding of gas-sensing mechanisms of MHPs are helpful for their application as gas-sensing materials, and structure design can enhance their stability, sensing sensitivity, and selectivity to target gases as gas sensors. Subsequently, the latest developments in MHP-based gas sensors are summarized according to their different application scenarios. Finally, we conclude with the current status and challenges in this field and propose future perspectives.
Collapse
Affiliation(s)
- Kechen Zhou
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Lu Tang
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Chaoqi Zhu
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Jiahong Tang
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Huiyu Su
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Lingfei Luo
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Liyan Chen
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Dawen Zeng
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| |
Collapse
|
17
|
Yang W, Dang P, Zhang G, Liu D, Wang Y, Wei Y, Lian H, Li G, Lin J. Multimode Luminescence Tailoring in PMA 4Na(In,Sb)Cl 8 Organic-inorganic Hybrid Metal Halide via Rigid Benzene Ring Induced Local Lattice Distortion. Angew Chem Int Ed Engl 2024:e202411136. [PMID: 39147700 DOI: 10.1002/anie.202411136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Low dimensional organic-inorganic hybrid metal halide materials have attracted extensive attention due to their superior optoelectronic properties. However, low photoluminescence quantum yields (PLQYs) caused by parity-forbidden transition hinder their further application in optoelectronic devices. Herein, a novel yellow-emitting PMA4Na(In,Sb)Cl8 (C7H10N+, PMA+) low-dimensional OIMHs single crystal with a PLQY as high as 88 % was successfully designed and synthesized, originating from the fact that the doping of Sb3+ effectively relaxes the parity-forbidden transition by strong spin-orbit (SO) coupling and Jahn-Teller (JT) interaction. The as-prepared crystal shows an efficient dual emission peaking 495 and 560 nm at low temperature, which are ascribed to different levels of 3P1→1S0 transitions of Sb3+ in [SbCl6]3- octahedral caused by JT deformation. Moreover, wide-range luminescence tailoring from cyan to orange can be achieved through adjusting excitation energy and temperature because of flexible [SbCl6]3- octahedral in the PNIC lattice. Based on a relative stiff lattice environment, the 560 nm yellow emission under 350 nm light excitation exhibits abnormal anti-thermal quenching from 8 to 400 K owing to the suppression of non-radiative transition. The multimode luminescence regulation enriches PMA4Na(In,Sb)Cl8 great potential in the field of optoelectronics such as temperature sensing, low temperature anti-counterfeiting and WLED applications.
Collapse
Affiliation(s)
- Wei Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Peipei Dang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Guodong Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dongjie Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yingsheng Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yi Wei
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Hongzhou Lian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Guogang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
18
|
Liu Y, Liu S, Xu L, Ma M, Zhang X, Chen X, Wei F, Song B, Cheng T, Yuan J, Shen B. Atomic Imaging of Multi-Dimensional Ruddlesden-Popper Interfaces in Lead-Halide Perovskites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400013. [PMID: 38433394 DOI: 10.1002/smll.202400013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Ruddlesden-Popper (RP) interface with defined stacking structure will fundamentally influence the optoelectronic performances of lead-halide perovskite (LHP) materials and devices. However, it remains challenging to observe the atomic local structures in LHPs, especially for multi-dimensional RP interface hidden inside the nanocrystal. In this work, the advantages of two imaging modes in scanning transmission electron microscopy (STEM), including high-angle annular dark field (HAADF) and integrated differential phase contrast (iDPC) STEM, are successfully combined to study the bulk and local structures of inorganic and organic/inorganic hybrid LHP nanocrystals. Then, the multi-dimensional RP interfaces in these LHPs are atomically resolved with clear gap and blurred transition region, respectively. In particular, the complex interface by the RP stacking in 3D directions can be analyzed in 2D projected image. Finally, the phase transition, ion missing, and electronic structures related to this interface are investigated. These results provide real-space evidence for observing and analyzing atomic multi-dimensional RP interfaces, which may help to better understand the structure-property relation of LHPs, especially their complex local structures.
Collapse
Affiliation(s)
- Yusheng Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Suya Liu
- Shanghai Nanoport, Thermo Fisher Scientific, Building A, No.2537, Jinke Road. Pudong District, Shanghai, China
| | - Liang Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Mengmeng Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xuliang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Bin Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Boyuan Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
19
|
Huang X, Tang X, Wen X, Lu YC, Yang F. Dual Light Emission of CsSnI 3-Based Powders Synthesized via a Mechanochemical Process. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3577. [PMID: 39063868 PMCID: PMC11279061 DOI: 10.3390/ma17143577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Lead toxicity has hindered the wide applications of lead halide perovskites in optoelectronics and bioimaging. A significant amount of effort has been made to synthesize lead-free halide perovskites as alternatives to lead halide perovskites. In this work, we demonstrate the feasibility of synthesizing CsSnI3-based powders mechanochemically with dual light emissions under ambient conditions from CsI and SnI2 powders. The formed CsSnI3-based powders are divided into CsSnI3-dominated powders and CsSnI3-contained powders. Under the excitation of ultraviolet light of 365 nm in wavelength, the CsSnI3-dominated powders emit green light with a wavelength centered at 540 nm, and the CsSnI3-contained powders emit orange light with a wavelength centered at 608 nm. Both the CsSnI3-dominated and CsSnI3-contained powders exhibit infrared emission with the peak emission wavelengths centered at 916 nm and 925 nm, respectively, under a laser of 785 nm in wavelength. From the absorbance spectra, we obtain bandgaps of 2.32 eV and 2.08 eV for the CsSnI3-dominated and CsSnI3-contained powders, respectively. The CsSnI3-contained powders exhibit the characteristics of thermal quenching and photoelectrical response under white light.
Collapse
Affiliation(s)
- Xuan Huang
- Laboratory of Functional Materials, University of Kentucky, Lexington, KY 40506, USA; (X.H.); (X.T.)
- Department of Mechanical and Aerospace Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Xiaobing Tang
- Laboratory of Functional Materials, University of Kentucky, Lexington, KY 40506, USA; (X.H.); (X.T.)
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiyu Wen
- Center for Aluminium Technology, University of Kentucky, Lexington, KY 40506, USA;
| | - Yuebin Charles Lu
- Laboratory of Functional Materials, University of Kentucky, Lexington, KY 40506, USA; (X.H.); (X.T.)
- Department of Mechanical and Aerospace Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Fuqian Yang
- Laboratory of Functional Materials, University of Kentucky, Lexington, KY 40506, USA; (X.H.); (X.T.)
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
20
|
Hong E, Li Z, Zhang X, Fan X, Fang X. Deterministic Fabrication and Quantum-Well Modulation of Phase-Pure 2D Perovskite Heterostructures for Encrypted Light Communication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400365. [PMID: 38752379 DOI: 10.1002/adma.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/10/2024] [Indexed: 05/24/2024]
Abstract
Deterministic integration of phase-pure Ruddlesden-Popper (RP) perovskites has great significance for realizing functional optoelectronic devices. However, precise fabrications of artificial perovskite heterostructures with pristine interfaces and rational design over electronic structure configurations remain a challenge. Here, the controllable synthesis of large-area ultrathin single-crystalline RP perovskite nanosheets and the deterministic fabrication of arbitrary 2D vertical perovskite heterostructures are reported. The 2D heterostructures exhibit intriguing dual-peak emission phenomenon and dual-band photoresponse characteristic. Importantly, the interlayer energy transfer behaviors from wide-bandgap component to narrow-bandgap component modulated by comprising quantum wells are thoroughly revealed. Functional nanoscale photodetectors are further constructed based on the 2D heterostructures. Moreover, by combining the modulated dual-band photoresponse characteristic with double-beam irradiation modes, and introducing an encryption algorithm mechanism, a light communication system with high security and reliability is achieved. This work can greatly promote the development of heterogeneous integration technologies of 2D perovskites, and could provide a competitive candidate for advanced integrated optoelectronics.
Collapse
Affiliation(s)
- Enliu Hong
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Ziqing Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Xinyu Zhang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xueshuo Fan
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
21
|
Zhong J, Zhou D, Bai Q, Liu C, Fan X, Zhang H, Li C, Jiang R, Zhao P, Yuan J, Li X, Zhan G, Yang H, Liu J, Song X, Zhang J, Huang X, Zhu C, Zhu C, Wang L. Growth of millimeter-sized 2D metal iodide crystals induced by ion-specific preference at water-air interfaces. Nat Commun 2024; 15:3185. [PMID: 38609368 PMCID: PMC11014996 DOI: 10.1038/s41467-024-47241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Conventional liquid-phase methods lack precise control in synthesizing and processing materials with macroscopic sizes and atomic thicknesses. Water interfaces are ubiquitous and unique in catalyzing many chemical reactions. However, investigations on two-dimensional (2D) materials related to water interfaces remain limited. Here we report the growth of millimeter-sized 2D PbI2 single crystals at the water-air interface. The growth mechanism is based on an inherent ion-specific preference, i.e. iodine and lead ions tend to remain at the water-air interface and in bulk water, respectively. The spontaneous accumulation and in-plane arrangement within the 2D crystal of iodide ions at the water-air interface leads to the unique crystallization of PbI2 as well as other metal iodides. In particular, PbI2 crystals can be customized to specific thicknesses and further transformed into millimeter-sized mono- to few-layer perovskites. Additionally, we have developed water-based techniques, including water-soaking, spin-coating, water-etching, and water-flow-assisted transfer to recycle, thin, pattern, and position PbI2, and subsequently, perovskites. Our water-interface mediated synthesis and processing methods represents a significant advancement in achieving simple, cost-effective, and energy-efficient production of functional materials and their integrated devices.
Collapse
Affiliation(s)
- Jingxian Zhong
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Qi Bai
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Chao Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Xinlian Fan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Hehe Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Congzhou Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Ran Jiang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Peiyi Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiaxiao Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiaojiao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Hongyu Yang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jing Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xuefen Song
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Junran Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiao Huang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China.
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China.
| |
Collapse
|
22
|
Gu K, Wang T, Yang G, Yu N, Du C, Wang J. Inorganic-Organic Hybrid Layered Semiconductor AgSePh: Quasi-Solution Synthesis, Optical Properties, and Thermolysis Behavior. Inorg Chem 2024; 63:6465-6473. [PMID: 38528435 DOI: 10.1021/acs.inorgchem.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Two-dimensional inorganic-organic hybrid layered semiconductors are actively studied because of their naturally formed multiquantum well (MQW) structures and associated optical, photoelectric, and quantum optics characteristics. Silver benzeneselenolate (AgSePh, Ph = C6H5) is a new member of such hybrid layered materials, but has not fully been exploited. Herein, we present a quasi-solution method to prepare high quality free-standing AgSePh flake-like microcrystals by reacting diphenyl diselenide (Ph2Se2) with silver nanoparticles. The resultant AgSePh microflakes exhibit room-temperature (RT) resolvable MQW-induced quasi-particle quantization and interesting optical properties, such as three distinct excitonic resonance absorptions X1 (2.67 eV), X2 (2.71 eV), and X3 (2.83 eV) in the visible region, strong narrow-line width blue photoluminescence at ∼2.64 eV (470 nm) from the radiative recombination of the X1 exciton state, and a large exciton binding energy (∼0.35 eV). Furthermore, AgSePh microcrystals show high stability under water, oxygen, and heat environments, while above 220 °C, they will thermally decompose to silver and Ph2Se2 as evidenced by a combination of thermogravimetry and differential scanning calorimetry and pyrolysis-coupled gas chromatography-mass spectrometry studies. Finally, a comparison is extended between AgSePh and other metal benzeneselenolates, benzenethiolates, and alkanethiolates to clarify differences in their solubility, decomposition/melting temperature, and pyrolytic products.
Collapse
Affiliation(s)
- Kewei Gu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Tingting Wang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Guowei Yang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Nan Yu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chengchao Du
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Junli Wang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
23
|
Wang XM, Feng K, Shan L, Zou J, Lu B. Crystal structural effects on up/down-conversion luminescence properties of GdInO 3:Tm,Yb perovskite phosphors for effective dual-mode anti-counterfeit applications. OPTICS EXPRESS 2024; 32:14018-14032. [PMID: 38859359 DOI: 10.1364/oe.518016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 06/12/2024]
Abstract
Developing advanced luminescent materials that are recognizable under specified conditions provides better opportunity for reliable optical anti-counterfeiting techniques. In this work, to the best of our knowledge, novel GdInO3:Tm,Yb perovskite phosphors with ultrafine sizes and rounded morphologies were successfully synthesized by a facile chemical precipitation route. Two-type perovskites with orthorhombic and hexagonal structures could be obtained by calcining the precursor at 850 and 1100 °C, respectively. Under 980 nm excitation, the two phosphors exhibited cyan-bluish emission at ∼460-565 nm, red emission at 645-680 nm, and near-infrared emission at 770-825 nm arising from 1G4 + 1D2→3H5,6, 3F2,3→3H6, and 3H4→3H6 transitions of Tm3+, respectively, where the hexagonal perovskite phosphor had relatively strong and sharp red emission as well as red-shifted cyan-bluish emission via successive cross relaxations. The Yb3+ sensitizer enhanced the upconversion luminescence via effective Yb3+→Tm3+ energy transfer and the optimal Yb3+ concentrations were 10 at.% for orthorhombic perovskite and 5 at.% for hexagonal one. The upconversion mechanism mainly ascribed to two-photon processes while three-photon was also present. Upon excitation at 254 nm, their down-conversion spectra exhibited broad multibands in the wavelength range of 400-500 nm deriving from combined effects of the defect-induced emission of GdInO3 and the 1D2→3F4 + 4G4→3H6 emissions of Tm3+. The energy transfer from GdInO3 defect level to Tm3+ excitation state was observed for the first time. The unclonable security codes prepared by screen printing from those dual-mode emitting perovskite phosphors were almost invisible under natural light, which had promising potential for anti-counterfeiting application.
Collapse
|
24
|
Jia W, Zhao Q, Zhuang Y, Wei Y, Tian J, Wang C, Qiao J, Shi G, Shang J, Cheng Q, Pang S, Wang K, Rong ZQ, Huang W. Interfacial Rivet to Fill Structural Defects: A Spacer Engineering Gift for 3D Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310444. [PMID: 38100278 DOI: 10.1002/adma.202310444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/03/2023] [Indexed: 12/17/2023]
Abstract
The combination of 2D and 3D perovskites to passivate surfaces or interfaces with a high concentration of defects shows great promise for improving the efficiency of perovskite solar cells (PSCs). Constructing high-quality perovskite film systems by precisely modulating 2D perovskites with good morphologies and growth sites on 3D perovskite films remains a formidable challenge due to the complexity of spacer-engineered surface reactions. In this study, phase-pure 2D (HA)2(MA)n-1PbnI3n+1 perovskites with a controlled number of layers (n) are separated on a large scale and exploited as interface rivets to optimize 3D perovskite films, resulting in tunable film structural defects and grain boundaries. The optimized PSCs system benefits from a reduction in non-radiative recombination, resulting in improved optical performance, higher mobility, and lower trap density. The corresponding device achieves a champion power conversion efficiency (PCE) of more than 25%, especially for voltage (VOC) and fill factor (FF). The quality and uniformity of the perovskite films are further confirmed using large-area devices with an active area of 14 cm2, which exhibits a PCE of more than 21.24%. The high-quality thin-film system based on the 2D perovskites presented herein provides a new perspective for improving the efficiency and stability of PSCs.
Collapse
Affiliation(s)
- Wei Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Qiangqiang Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Yan Zhuang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yulin Wei
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Juanhua Tian
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, Xi'an, 710004, China
| | - Chenyun Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Jingyuan Qiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Guangchao Shi
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Jingzhi Shang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Qi Cheng
- NCO School, Army Medical University, Shijiazhuang, 050000, China
| | - Shuping Pang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Kai Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
25
|
Cheng Y, Guo X, Shi Y, Pan L. Recent advance of high-quality perovskite nanostructure and its application in flexible photodetectors. NANOTECHNOLOGY 2024; 35:242001. [PMID: 38467065 DOI: 10.1088/1361-6528/ad3251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Flexible photodetectors (PDs) have garnered increasing attention for their potential applications in diverse fields, including weather monitoring, smart robotics, smart textiles, electronic eyes, wearable biomedical monitoring devices, and so on. Notably, perovskite nanostructures have emerged as a promising material for flexible PDs due to their distinctive features, such as a large optical absorption coefficient, tunable band gap, extended photoluminescence decay time, high carrier mobility, low defect density, long exciton diffusion lengths, strong self-trapped effect, good mechanical flexibility, and facile synthesis methods. In this review, we first introduce various synthesis methods for perovskite nanostructures and elucidate their corresponding optical and electrical properties, encompassing quantum dots, nanocrystals, nanowires, nanobelts, nanosheets, single-crystal thin films, polycrystalline thin films, and nanostructured arrays. Furthermore, the working mechanism and key performance parameters of optoelectronic devices are summarized. The review also systematically compiles recent advancements in flexible PDs based on various nanostructured perovskites. Finally, we present the current challenges and prospects for the development of perovskite nanostructures-based flexible PDs.
Collapse
Affiliation(s)
- Yan Cheng
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Xin Guo
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Yi Shi
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Lijia Pan
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| |
Collapse
|
26
|
Chen X, Ding X, Gou G, Zeng XC. Strong Sliding Ferroelectricity and Interlayer Sliding Controllable Spintronic Effect in Two-Dimensional HgI 2 Layers. NANO LETTERS 2024; 24:3089-3096. [PMID: 38426455 DOI: 10.1021/acs.nanolett.3c04869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Exploration of two-dimensional (2D) sliding ferroelectric (FE) materials with experimentally detectable ferroelectricity and value-added novel functionalities is highly sought for the development of 2D "slidetronics". Herein, based on first-principles calculations, we identify the synthesizable van der Waals (vdW) layered crystals HgX2 (X = Br and I) as a new class of 2D sliding ferroelectrics. Both HgBr2 and HgI2 in 2D multilayered forms adopt the preferential stacking sequence, leading to room temperature stable out-of-plane (vertical) ferroelectricity that can be reversed via the sliding of adjacent monolayers. Owing to strong interlayer coupling and interfacial charge rearrangement, 2D HgI2 layers possess strong sliding ferroelectricity up to 0.16 μC/cm2, readily detectable in experiment. Moreover, robust sliding ferroelectricity and interlayer sliding controllable Rashba spin texture of FE-HgI2 layers enable potential applications as 2D spintronic devices such that the electric control of electron spin detection can be realized at the 2D regime.
Collapse
Affiliation(s)
- Xinfeng Chen
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xinkai Ding
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Energy Materials & Chemical Engineering, Hefei University, Hefei 230601, People's Republic of China
| | - Gaoyang Gou
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, People's Republic of China
| |
Collapse
|
27
|
Li X, Zhang S, Zhang X, Vardeny ZV, Liu F. Topological Nodal-Point Superconductivity in Two-Dimensional Ferroelectric Hybrid Perovskites. NANO LETTERS 2024; 24:2705-2711. [PMID: 38240732 DOI: 10.1021/acs.nanolett.3c04085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) with enhanced stability, high tunability, and strong spin-orbit coupling have shown great potential in vast applications. Here, we extend the already rich functionality of 2D HOIPs to a new territory, realizing topological superconductivity and Majorana modes for fault-tolerant quantum computation. Especially, we predict that room-temperature ferroelectric BA2PbCl4 (BA for benzylammonium) exhibits topological nodal-point superconductivity (NSC) and gapless Majorana modes on selected edges and ferroelectric domain walls when proximity-coupled to an s-wave superconductor and an in-plane Zeeman field, attractive for experimental verification and application. Since NSC is protected by spatial symmetry of 2D HOIPs, we envision more exotic topological superconducting states to be found in this class of materials due to their diverse noncentrosymmetric space groups, which may open a new avenue in the fields of HOIPs and topological superconductivity.
Collapse
Affiliation(s)
- Xiaoyin Li
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shunhong Zhang
- International Center for Quantum Design of Functional Materials (ICQD), University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xiaoming Zhang
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
| | - Zeev Valy Vardeny
- Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah 84112, United States
| | - Feng Liu
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
28
|
Ji H, Wang S, Zhou G, Zhou X, Dou J, Kang P, Chen J, Xu X. Highly efficient and fast modulation of magnetic coupling interaction in the SrCoO 2.5/La 0.7Ca 0.3MnO 3 heterostructure. Phys Chem Chem Phys 2024; 26:5907-5913. [PMID: 38318861 DOI: 10.1039/d3cp05487j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Effective manipulation of magnetic properties in transition-metal oxides is one of the crucial issues for the application of materials. Up to now, most investigations have focused on electrolyte-based ionic control, which is limited by the slow speed. In this work, the interfacial coupling of the SrCoO2.5/La0.7Ca0.3MnO3 (LCMO) bilayer is effectively modulated with fast response time. After being treated with diluted acetic acid, the bilayer changes from antiferromagnetic/ferromagnetic (AFM/FM) coupling to FM/FM coupling and the Curie temperature is also effectively increased. Meanwhile, the corresponding electric transport properties are modulated within a very short time. Combined with the structure characterization and X-ray absorption measurements, we find that the top SrCoO2.5 layer is changed from the antiferromagnetic insulator to the ferromagnetic metal phase, which is attributed to the formation of the active oxygen species due to the reaction between the protons in the acid and the SrCoO2.5 layer. The bottom LCMO layer remains unchanged during this process. The response time of the bilayer with the acid treatment method is more than an order of magnitude faster than other methods. It is expected that this acid treatment method may open more possibilities for manipulating the magnetic and electric properties in oxide-based devices.
Collapse
Affiliation(s)
- Huihui Ji
- College of Physics, Chongqing University, Chongqing 401331, China
- NUS (Chongqing) Research Institute, Chongqing 401123, China
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 03000, China.
| | - Siqi Wang
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 03000, China.
| | - Guowei Zhou
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 03000, China.
| | - Xuanchi Zhou
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 03000, China.
| | - Jiarui Dou
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 03000, China.
| | - Penghua Kang
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 03000, China.
| | - Jingsheng Chen
- NUS (Chongqing) Research Institute, Chongqing 401123, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore.
| | - Xiaohong Xu
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 03000, China.
| |
Collapse
|
29
|
Li XK, Ma JX, Li XY, Hu JJ, Ding CY, Han FK, Guo XM, Tan X, Jin XM. High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit. Nat Commun 2024; 15:1044. [PMID: 38316815 PMCID: PMC10844654 DOI: 10.1038/s41467-024-45305-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Reinforcement learning (RL) stands as one of the three fundamental paradigms within machine learning and has made a substantial leap to build general-purpose learning systems. However, using traditional electrical computers to simulate agent-environment interactions in RL models consumes tremendous computing resources, posing a significant challenge to the efficiency of RL. Here, we propose a universal framework that utilizes a photonic integrated circuit (PIC) to simulate the interactions in RL for improving the algorithm efficiency. High parallelism and precision on-chip optical interaction calculations are implemented with the assistance of link calibration in the hybrid architecture PIC. By introducing similarity information into the reward function of the RL model, PIC-RL successfully accomplishes perovskite materials synthesis task within a 3472-dimensional state space, resulting in a notable 56% improvement in efficiency. Our results validate the effectiveness of simulating RL algorithm interactions on the PIC platform, highlighting its potential to boost computing power in large-scale and sophisticated RL tasks.
Collapse
Affiliation(s)
- Xuan-Kun Li
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Jian-Xu Ma
- TuringQ Co., Ltd., Shanghai, 200240, China
| | | | - Jun-Jie Hu
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Chuan-Yang Ding
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Feng-Kai Han
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China
- Hefei National Laboratory, Hefei, 230088, China
| | | | - Xi Tan
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Xian-Min Jin
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Hefei National Laboratory, Hefei, 230088, China.
- TuringQ Co., Ltd., Shanghai, 200240, China.
- Chip Hub for Integrated Photonics Xplore (CHIPX), Shanghai Jiao Tong University, Wuxi, 214000, China.
| |
Collapse
|
30
|
Park JY, Song R, Liang J, Jin L, Wang K, Li S, Shi E, Gao Y, Zeller M, Teat SJ, Guo P, Huang L, Zhao YS, Blum V, Dou L. Thickness control of organic semiconductor-incorporated perovskites. Nat Chem 2023; 15:1745-1753. [PMID: 37653228 DOI: 10.1038/s41557-023-01311-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/31/2023] [Indexed: 09/02/2023]
Abstract
Two-dimensional organic semiconductor-incorporated perovskites are a promising family of hybrid materials for optoelectronic applications, owing in part to their inherent quantum well architecture. Tuning their structures and properties for specific properties, however, has remained challenging. Here we report a general method to tune the dimensionality of phase-pure organic semiconductor-incorporated perovskite single crystals during their synthesis, by judicious choice of solvent. The length of the conjugated semiconducting organic cations and the dimensionality (n value) of the inorganic layers can be manipulated at the same time. The energy band offsets and exciton dynamics at the organic-inorganic interfaces can therefore be precisely controlled. Furthermore, we show that longer and more planar π-conjugated organic cations induce a more rigid inorganic crystal lattice, which leads to suppressed exciton-phonon interactions and better optoelectronic properties as compared to conventional two-dimensional perovskites. As a demonstration, optically driven lasing behaviour with substantially lower lasing thresholds was realized.
Collapse
Affiliation(s)
- Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Ruyi Song
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Jie Liang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Linrui Jin
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Kang Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Shunran Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
| | - Enzheng Shi
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, China
| | - Yao Gao
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Volker Blum
- Department of Chemistry, Duke University, Durham, NC, USA.
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
31
|
Feng Y, Zhang J, Cao W, Zhang J, Shreeve JM. A promising perovskite primary explosive. Nat Commun 2023; 14:7765. [PMID: 38012175 PMCID: PMC10681991 DOI: 10.1038/s41467-023-43320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
A primary explosive is an ideal chemical substance for performing ignition in military and commercial applications. For over 150 years, nearly all of the developed primary explosives have suffered from various issues, such as troublesome syntheses, high toxicity, poor stability or/and weak ignition performance. Now we report an interesting example of a primary explosive with double perovskite framework, {(C6H14N2)2[Na(NH4)(IO4)6]}n (DPPE-1), which was synthesized using a simple green one-pot method in an aqueous solution at room temperature. DPPE-1 is free of heavy metals, toxic organic components, and doesn't involve any explosive precursors. It exhibits good stability towards air, moisture, sunlight, and heat and has acceptable mechanical sensitivities. It affords ignition performance on par with the most powerful primary explosives reported to date. DPPE-1 promises to meet the challenges existing with current primary explosives, and this work could trigger more extensive applications of perovskite.
Collapse
Affiliation(s)
- Yongan Feng
- School of Environment and Safety Engineering, North University of China, 030051, Taiyuan, China.
| | - Jichuan Zhang
- Department of Chemistry, University of Idaho, Moscow, ID, 83844-2343, USA
| | - Weiguo Cao
- School of Environment and Safety Engineering, North University of China, 030051, Taiyuan, China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, 518055, Shenzhen, China.
| | - Jean'ne M Shreeve
- Department of Chemistry, University of Idaho, Moscow, ID, 83844-2343, USA.
| |
Collapse
|
32
|
Qiu X, Xia J, Liu Y, Chen PA, Huang L, Wei H, Ding J, Gong Z, Zeng X, Peng C, Chen C, Wang X, Jiang L, Liao L, Hu Y. Ambient-Stable 2D Dion-Jacobson Phase Tin Halide Perovskite Field-Effect Transistors with Mobility over 1.6 Cm 2 V -1 s -1. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305648. [PMID: 37603829 DOI: 10.1002/adma.202305648] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Solution-processed metal halide perovskites hold immense potential for the advancement of next-generation field-effect transistors (FETs). However, the instability of perovskite-based transistors has impeded their progress and practical applications. Here, ambient-stable high-performance FETs based on 2D Dion-Jacobson phase tin halide perovskite BDASnI4 , which has high film quality and excellent electrical properties, are reported. The perovskite channels are established by engineering the film crystallization process via the employment of ammonium salt interlayers and the incorporation of NH4 SCN additives within the precursor solution. The refined FETs demonstrate field-effect hole mobilities up to 1.61 cm2 V-1 s-1 and an on/off ratio surpassing 106 . Moreover, the devices show impressive operational and environmental stability and retain their functional performance even after being exposed to ambient conditions with a temperature of 45 °C and humidity of 45% for over 150 h.
Collapse
Affiliation(s)
- Xincan Qiu
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Key Laboratory of Hunan Province for 3D Scene Visualization and Intelligence Education (2023TP1038), School of Electronic Information, Hunan First Normal University, Changsha, 410205, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jiangnan Xia
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Yu Liu
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ping-An Chen
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Lanyu Huang
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Huan Wei
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jiaqi Ding
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Zhenqi Gong
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Xi Zeng
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Chengyuan Peng
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Chen Chen
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410000, China
| | - Xiao Wang
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Liao
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Yuanyuan Hu
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| |
Collapse
|
33
|
Guo L, Qi Y, Wu Z, Yang X, Yan G, Cong R, Zhao L, Zhang W, Wang S, Pan C, Yang Z. A Self-Powered UV Photodetector With Ultrahigh Responsivity Based on 2D Perovskite Ferroelectric Films With Mixed Spacer Cations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301705. [PMID: 37683840 DOI: 10.1002/adma.202301705] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/30/2023] [Indexed: 09/10/2023]
Abstract
Self-powered photodetectors (PDs) have the advantages of no external power requirement, wireless operation, and long life. Spontaneous ferroelectric polarizations can significantly increase built-in electric field intensity, showing great potential in self-powered photodetection. Moreover, ferroelectrics possess pyroelectric and piezoelectric properties, beneficial for enhancing self-powered PDs. 2D metal halide perovskites (MHPs), which have ferroelectric properties, are suitable for fabricating high-performance self-powered PDs. However, the research on 2D metal halide perovskites ferroelectrics focuses on growing bulk crystals. Herein, 2D ferroelectric perovskite films with mixed spacer cations for self-powered PDs are demonstrated by mixing Ruddlesden-Popper (RP)-type and Dion-Jacobson (DJ)-type perovskite. The (BDA0.7 (BA2 )0.3 )(EA)2 Pb3 Br10 film possesses, overall, the best film qualities with the best crystalline quality, lowest trap density, good phase purity, and obvious ferroelectricity. Based on the ferro-pyro-phototronic effect, the PD at 360 nm exhibits excellent photoelectric properties, with an ultrahigh peak responsivity greater than 93 A W-1 and a detectivity of 2.5 × 1015 Jones, together with excellent reproducibility and stability. The maximum responsivities can be modulated by piezo-phototronic effect with an effective enhancement ratio of 480%. This work will open up a new route of designing MHP ferroelectric films for high-performance PDs and offers the opportunity to utilize it for various optoelectronics applications.
Collapse
Affiliation(s)
- Linjuan Guo
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Yaqian Qi
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Zihao Wu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Xiaoran Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Guoying Yan
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Ridong Cong
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Lei Zhao
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Wei Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Shufang Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Zheng Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| |
Collapse
|
34
|
Ouahrani T, Boufatah RM, Bendaoudi L, Bedrane Z, Morales-García Á, Errandonea D. Theoretical study of electrocatalytic properties of low-dimensional freestanding PbTiO 3 for hydrogen evolution reactions. Phys Chem Chem Phys 2023; 25:27457-27467. [PMID: 37796450 DOI: 10.1039/d3cp04241c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The discovery of novel materials for catalytic purposes that are highly stable is one of the main challenges nowadays for reducing our dependence on fossil fuels. Here, low-dimensional PbTiO3 is introduced as an electrocatalyst using first-principles calculations. Density-functional theory calculations indicate that 2D-PbTiO3 is dynamically and thermodynamically stable. Our results show that a single oxygen defect vacancy in 2D-PbTiO3 can play a key role in enhancing the hydrogen evolution reaction (HER), together with the Ti atoms. Our study concludes that the Volmer-Heyrovsky mechanism is a more favorable route to achieve HER than the Volmer-Tafel mechanism, including solvation and vacuum conditions.
Collapse
Affiliation(s)
- Tarik Ouahrani
- École supérieure en sciences appliquées, ESSA-Tlemcen, BB 165 RP Bel Horizon, Tlemcen 13000, Algeria
- Laboratoire de Physique Théorique, Université de Tlemcen 1300, Algeria.
| | - Reda M Boufatah
- Laboratoire de Physique Théorique, Université de Tlemcen 1300, Algeria.
| | - Loubna Bendaoudi
- Laboratory of Materials Discovery, Unit of Research Materials and Renewable Energies, LEPM-URMER. Université de Tlemcen 13000, Algeria
| | - Zeyneb Bedrane
- Laboratoire de Physique Théorique, Université de Tlemcen 1300, Algeria.
| | - Ángel Morales-García
- Departament de Ciéncia de Materials i Química Física & Institut de Química Teórica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Daniel Errandonea
- Departamento de Física Aplicada-Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, Burjassot, 46100, Valencia, Spain.
| |
Collapse
|
35
|
Kim M, Ma KY, Kim H, Lee Y, Park JH, Shin HS. 2D Materials in the Display Industry: Status and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205520. [PMID: 36539122 DOI: 10.1002/adma.202205520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
With advances in flexible electronics, innovative foldable, rollable, and stretchable displays have been developed to maintain their performance under various deformations. These flexible devices can develop more innovative designs than conventional devices due to their light weight, high space efficiency, and practical convenience. However, developing flexible devices requires material innovation because the devices must be flexible and exhibit desirable electrical insulating/semiconducting/metallic properties. Recently, emerging 2D materials such as graphene, hexagonal boron nitride, and transition metal dichalcogenides have attracted considerable research attention because of their outstanding electrical, optical, and mechanical properties, which are ideal for flexible electronics. The recent progress and challenges of 2D material growth and display applications are reviewed and perspectives for exploring 2D materials for display applications are discussed.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Kyung Yeol Ma
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Hyeongjoon Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Yeonju Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | | | - Hyeon Suk Shin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
- Low-Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| |
Collapse
|
36
|
Meng Y, Zhong H, Xu Z, He T, Kim JS, Han S, Kim S, Park S, Shen Y, Gong M, Xiao Q, Bae SH. Functionalizing nanophotonic structures with 2D van der Waals materials. NANOSCALE HORIZONS 2023; 8:1345-1365. [PMID: 37608742 DOI: 10.1039/d3nh00246b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The integration of two-dimensional (2D) van der Waals materials with nanostructures has triggered a wide spectrum of optical and optoelectronic applications. Photonic structures of conventional materials typically lack efficient reconfigurability or multifunctionality. Atomically thin 2D materials can thus generate new functionality and reconfigurability for a well-established library of photonic structures such as integrated waveguides, optical fibers, photonic crystals, and metasurfaces, to name a few. Meanwhile, the interaction between light and van der Waals materials can be drastically enhanced as well by leveraging micro-cavities or resonators with high optical confinement. The unique van der Waals surfaces of the 2D materials enable handiness in transfer and mixing with various prefabricated photonic templates with high degrees of freedom, functionalizing as the optical gain, modulation, sensing, or plasmonic media for diverse applications. Here, we review recent advances in synergizing 2D materials to nanophotonic structures for prototyping novel functionality or performance enhancements. Challenges in scalable 2D materials preparations and transfer, as well as emerging opportunities in integrating van der Waals building blocks beyond 2D materials are also discussed.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Hongkun Zhong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Zhihao Xu
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tiantian He
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Justin S Kim
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Sangmoon Han
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Sunok Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Seoungwoong Park
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yijie Shen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- Optoelectronics Research Centre, University of Southampton, Southampton, UK
| | - Mali Gong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
37
|
Li Y, Wan Q, Xu N. Recent Advances in Moiré Superlattice Systems by Angle-Resolved Photoemission Spectroscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305175. [PMID: 37689836 DOI: 10.1002/adma.202305175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Indexed: 09/11/2023]
Abstract
The last decade has witnessed a flourish in 2D materials including graphene and transition metal dichalcogenides (TMDs) as atomic-scale Legos. Artificial moiré superlattices via stacking 2D materials with a twist angle and/or a lattice mismatch have recently become a fertile playground exhibiting a plethora of emergent properties beyond their building blocks. These rich quantum phenomena stem from their nontrivial electronic structures that are effectively tuned by the moiré periodicity. Modern angle-resolved photoemission spectroscopy (ARPES) can directly visualize electronic structures with decent momentum, energy, and spatial resolution, thus can provide enlightening insights into fundamental physics in moiré superlattice systems and guides for designing novel devices. In this review, first, a brief introduction is given on advanced ARPES techniques and basic ideas of band structures in a moiré superlattice system. Then ARPES research results of various moiré superlattice systems are highlighted, including graphene on substrates with small lattice mismatches, twisted graphene/TMD moiré systems, and high-order moiré superlattice systems. Finally, it discusses important questions that remain open, challenges in current experimental investigations, and presents an outlook on this field of research.
Collapse
Affiliation(s)
- Yiwei Li
- Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Qiang Wan
- Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Nan Xu
- Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| |
Collapse
|
38
|
Liu X, Jiang X, Zhang J, Li C, Guo X. Multiple-ion Management of Perovskites by Regulating Spatial Distribution of Hydroxyls in Oligosaccharides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301437. [PMID: 37086137 DOI: 10.1002/smll.202301437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Suppressing migrations of intrinsic and extrinsic ions (e.g., Pb2+ , I- , FA+ /MA+ , and Li+ ) in organic-inorganic hybrid perovskites is critical for alleviating the hysteresis and degradation of perovskite solar cells (PSCs). However, various additives reported for that purpose usually interact with one or two types of those ions, not inhibiting multiple-ion migrations simultaneously. Two oligosaccharides (β-cyclodextrin (β-CD) and maltotetraose (G4)), containing 14 hydroxyls (-OH) with different spatial distributions, for the suppression of multiple-ion migrations in PSCs is herein employed. Compared to linear arrangement of -OH in G4, annular distribution of -OH around wide and narrow rims of β-CD can form supramolecular multi-site interactions in a focal manner with various ions, more effectively capturing and immobilizing these migrated ions. With this multiple-ion management strategy, β-CD-based PSCs exhibit an impressive efficiency of 24.22% with negligible hysteresis and excellent device stability. This work highlights the significances of multi-site interactions and molecular configuration of the additive for inhibiting multi-ion migrations in PSCs.
Collapse
Affiliation(s)
- Xiaotao Liu
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin, 300350, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Xiaoqing Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Jiafeng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Xin Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| |
Collapse
|
39
|
Zhang H, Li QL, Tan YH, Tang YZ, Fan XW, Luo JL, Wang FX, Wan MY. High-Temperature Ferroelasticity and Photoluminescence in a 2D Monolayer Perovskite Compound: (C 5NH 8Br) 2PbBr 4. Inorg Chem 2023. [PMID: 37366025 DOI: 10.1021/acs.inorgchem.3c01552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Hybrid organic-inorganic perovskites (HOIPs) have attracted much attention due to their excellent properties and easy synthesis. As far as we know, most documented ferroelastics mainly focus on the 3D (three-dimensional) perovskites, the 2D monolayer perovskite ferroelastics are rarely reported before. In this work, we synthesized a 2D lead-based perovskite (C5NH13Br)2PbBr4 (1) (C5NH13Br = 5-bromoamylamine cation) by introducing flexible chain organic cations. The evolution of ferroelastic domains observed by a polarized light microscope confirms that compound 1 undergoes a ferroelastic phase transition at 392/384 K. In addition, its direct band gap is 2.877 eV. Interestingly, the material emits an attractive blue light (quantum yield 5.06%) under UV light. Three structural descriptors are introduced to quantitatively analyze the relationship between structural distortion and the shape of emission peak. This work provides a way to design multifunctional perovskite-type materials.
Collapse
Affiliation(s)
- Hao Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Ganzhou, Jiangxi 341000, China
| | - Qing-Lian Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Ganzhou, Jiangxi 341000, China
| | - Yu-Hui Tan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Ganzhou, Jiangxi 341000, China
| | - Yun-Zhi Tang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Ganzhou, Jiangxi 341000, China
| | - Xiao-Wei Fan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Ganzhou, Jiangxi 341000, China
| | - Jin-Lin Luo
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Ganzhou, Jiangxi 341000, China
| | - Fang-Xin Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Ganzhou, Jiangxi 341000, China
| | - Ming-Yang Wan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
40
|
Guan M, Xie Y, Zhang Y, Gu Z, Qiu L, He Z, Ye B, Suwardi A, Dai Z, Li G, Hu G. Moisture-Tailored 2D Dion-Jacobson Perovskites for Reconfigurable Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210611. [PMID: 37058138 DOI: 10.1002/adma.202210611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/01/2023] [Indexed: 06/02/2023]
Abstract
Humidity- and moisture-induced degradation has been a longstanding problem in perovskite materials, affecting their long-term stability during applications. Counterintuitively, the moisture is leveraged to tailor the reversible hydrochromic behaviors of a new series of 2D Dion-Jacobson (DJ) perovskites for reconfigurable optoelectronics. In particular, the hydrogen bonds between organic cations and water molecules can be dynamically modulated via moisture removal/exposure. Remarkably, such modulation confines the movement of the organic cations close to the original position, preventing their escape from crystal lattices. Furthermore, this mechanism is elucidated by theoretical analysis using first-principles calculations and confirmed with the experimental characterizations. The reversible fluorescent transition 2D DJ perovskites show excellent cyclical properties, presenting untapped opportunities for reconfigurable optoelectronic applications. As a proof-of-concept demonstration, an anti-counterfeiting display is shown based on patterned reversible 2D DJ perovskites. The results represent a new avenue of reconfigurable optoelectronic application with 2D DJ perovskites for humidity detection, anti-counterfeiting, sensing, and other emerging photoelectric intelligent technologies.
Collapse
Affiliation(s)
- Mengyu Guan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Yunlong Xie
- Institute for Advanced Materials, Hubei Normal University, Huangshi, 435002, P. R. China
| | - Yang Zhang
- School of Materials Science and Engineering, Center of Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zixin Gu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Lei Qiu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Zhuojie He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Bingkun Ye
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Ady Suwardi
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Zhigao Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
- Shenzhen Research Institute, China University of Geosciences, Shenzhen, 518063, P. R. China
| | - Guogang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
- Zhejiang Institute China University of Geosciences, Hangzhou, 311305, P. R. China
| | - Guangwei Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
41
|
Li L, Gao B, Xu S, Xu Q. Strong Ferromagnetic Manipulation of SrTiO 3 from CO 2 -Straining Effect on Electronic Structure Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300765. [PMID: 36919262 DOI: 10.1002/smll.202300765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/21/2023] [Indexed: 06/15/2023]
Abstract
2D magnetic materials are ideal to fabricate magneto-optical, magneto-electric, and data storage devices, which are proposed to be critical to the next generation of information technologies. Benefited from their labile structures, 2D perovskites are amenable for magnetic manipulation through structural optimization. In this work, 2D room-temperature ferromagnetic SrTiO3 is achieved through straining effect induced by supercritical carbon dioxide (SC CO2 ). According to experimental results, the cubic phase of SrTiO3 is converted to tetragonal with exposure of (110), (200), (111), and (211) planes over the SC CO2 treatment, leading to significant ferromagnetic enhancement. Theoretical calculations illustrate that over the conversion from cubic to tetragonal, the electronic structure of SrTiO3 is significantly modulated. Specifically, the spin density of planes of (200), (111), and (211) is enhanced, presumably due to the stabilization of the highest occupied molecular orbital over straining by SC CO2 , leading to magnetic optimizations. This work suggests that magnetic optimization can be achieved from SC CO2 -induced electronic structure modulation.
Collapse
Affiliation(s)
- Lianyu Li
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Bo Gao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Song Xu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, P. R. China
| | - Qun Xu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, P. R. China
| |
Collapse
|
42
|
Barelli M, Vidal C, Fiorito S, Myslovska A, Cielecki D, Aglieri V, Moreels I, Sapienza R, Di Stasio F. Single-Photon Emitting Arrays by Capillary Assembly of Colloidal Semiconductor CdSe/CdS/SiO 2 Nanocrystals. ACS PHOTONICS 2023; 10:1662-1670. [PMID: 37215316 PMCID: PMC10197167 DOI: 10.1021/acsphotonics.3c00351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 05/24/2023]
Abstract
The controlled placement of colloidal semiconductor nanocrystals (NCs) onto planar surfaces is crucial for scalable fabrication of single-photon emitters on-chip, which are critical elements of optical quantum computing, communication, and encryption. The positioning of colloidal semiconductor NCs such as metal chalcogenides or perovskites is still challenging, as it requires a nonaggressive fabrication process to preserve the optical properties of the NCs. In this work, periodic arrays of 2500 nanoholes are patterned by electron beam lithography in a poly(methyl methacrylate) (PMMA) thin film on indium tin oxide/glass substrates. Colloidal core/shell CdSe/CdS NCs, functionalized with a SiO2 capping layer to increase their size and facilitate deposition into 100 nm holes, are trapped with a close to optimal Poisson distribution into the PMMA nanoholes via a capillary assembly method. The resulting arrays of NCs contain hundreds of single-photon emitters each. We believe this work paves the way to an affordable, fast, and practical method for the fabrication of nanodevices, such as single-photon-emitting light-emitting diodes based on colloidal semiconductor NCs.
Collapse
Affiliation(s)
- Matteo Barelli
- Photonic
Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Cynthia Vidal
- The
Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, U.K
| | - Sergio Fiorito
- Photonic
Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Alina Myslovska
- Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Dimitrie Cielecki
- The
Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, U.K
| | - Vincenzo Aglieri
- Photonic
Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Iwan Moreels
- Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Riccardo Sapienza
- The
Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, U.K
| | - Francesco Di Stasio
- Photonic
Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
43
|
Zhou K, Shang G, Hsu HH, Han ST, Roy VAL, Zhou Y. Emerging 2D Metal Oxides: From Synthesis to Device Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207774. [PMID: 36333890 DOI: 10.1002/adma.202207774] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/26/2022] [Indexed: 05/26/2023]
Abstract
2D metal oxides have aroused increasing attention in the field of electronics and optoelectronics due to their intriguing physical properties. In this review, an overview of recent advances on synthesis of 2D metal oxides and their electronic applications is presented. First, the tunable physical properties of 2D metal oxides that relate to the structure (various oxidation-state forms, polymorphism, etc.), crystallinity and defects (anisotropy, point defects, and grain boundary), and thickness (quantum confinement effect, interfacial effect, etc.) are discussed. Then, advanced synthesis methods for 2D metal oxides besides mechanical exfoliation are introduced and classified into solution process, vapor-phase deposition, and native oxidation on a metal source. Later, the various roles of 2D metal oxides in widespread applications, i.e., transistors, inverters, photodetectors, piezotronics, memristors, and potential applications (solar cell, spintronics, and superconducting devices) are discussed. Finally, an outlook of existing challenges and future opportunities in 2D metal oxides is proposed.
Collapse
Affiliation(s)
- Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gang Shang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hsiao-Hsuan Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
44
|
Chao IH, Yang YT, Yu MH, Chen CH, Liao CH, Lin BH, Ni IC, Chen WC, Ho-Baillie AWY, Chueh CC. Performance Enhancement of Lead-Free 2D Tin Halide Perovskite Transistors by Surface Passivation and Its Impact on Non-Volatile Photomemory Characteristics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207734. [PMID: 36794296 DOI: 10.1002/smll.202207734] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/29/2023] [Indexed: 05/18/2023]
Abstract
Two-dimensional (2D) tin (Sn)-based perovskites have recently received increasing research attention for perovskite transistor application. Although some progress is made, Sn-based perovskites have long suffered from easy oxidation from Sn2+ to Sn4+ , leading to undesirable p-doping and instability. In this study, it is demonstrated that surface passivation by phenethylammonium iodide (PEAI) and 4-fluorophenethylammonium iodide (FPEAI) effectively passivates surface defects in 2D phenethylammonium tin iodide (PEA2 SnI4 ) films, increases the grain size by surface recrystallization, and p-dopes the PEA2 SnI4 film to form a better energy-level alignment with the electrodes and promote charge transport properties. As a result, the passivated devices exhibit better ambient and gate bias stability, improved photo-response, and higher mobility, for example, 2.96 cm2 V-1 s-1 for the FPEAI-passivated films-four times higher than the control film (0.76 cm2 V-1 s-1 ). In addition, these perovskite transistors display non-volatile photomemory characteristics and are used as perovskite-transistor-based memories. Although the reduction of surface defects in perovskite films results in reduced charge retention time due to lower trap density, these passivated devices with better photoresponse and air stability show promise for future photomemory applications.
Collapse
Affiliation(s)
- I-Hsiang Chao
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Ting Yang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ming-Hsuan Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chiung-Han Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chwen-Haw Liao
- School of Physics and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Bi-Hsuan Lin
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - I-Chih Ni
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Anita W Y Ho-Baillie
- School of Physics and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
45
|
Yan Y, Li Z, Li L, Lou Z. Stereopsis-Inspired 3D Visual Imaging System Based on 2D Ruddlesden-Popper Perovskite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300831. [PMID: 37035967 DOI: 10.1002/smll.202300831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Stereopsis is of great important functions for humans to perceive and interact with the world. To realize the function of stereoscopic imaging, optoelectronic sensors shall possess good photoresponsive performance, multidirectional sensing, and 3D building capabilities. However, the current imaging sensors are mainly focused on 2D imaging, limiting their practical application scenarios. In this study, a stereopsis-inspired flexible 3D visual imaging system (VIS) based on 2D Ruddlesden-Popper perovskite is demonstrated. The 3D-VIS consists of 800 device units, each of which demonstrates excellent photoresponse performance, mechanical characteristics, and environmental stability. In addition to the capability of detecting 2D reflective images, the 3D-VIS realizes the function of detecting the depth of field and fusing object projections of two directions to invert the 3D image by utilizing voxels to rebuild the spatial structure of the object. In the future, the 3D-VIS will have broad application prospects in medical imaging, virtual reality, industrial automation, and other fields.
Collapse
Affiliation(s)
- Yongxu Yan
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100083, P.R. China
| | - Zhexin Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100083, P.R. China
| | - Linlin Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100083, P.R. China
| | - Zheng Lou
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100083, P.R. China
| |
Collapse
|
46
|
Hu S, Li J, Zeng Y, Pu J, Chi B. A mini review of the recent progress of electrode materials for low-temperature solid oxide fuel cells. Phys Chem Chem Phys 2023; 25:5926-5941. [PMID: 36786529 DOI: 10.1039/d2cp05133h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lowering the operating temperature (450-650 °C) of solid oxide fuel cells (SOFCs) faces the intrinsic challenge of sluggish electrode reaction kinetics in the low temperature (LT) range. To accelerate the electrode reaction rate, many efforts have been put into the optimization of electrode composition and morphology. In this review, we have summarized recent developments of LT-SOFC electrodes, including anode and cathode materials. For anode performance improvement, the internal structure design, fine anode structure, reforming layer addition, and in situ exsolution techniques are introduced and their related functionalities are also explained, respectively. While for the cathode, we focus on the perovskite-type materials because of their superior catalytic performance and relatively good stability. The optimization of perovskite composition, including A site alkali or alkali-earth metal doping and B site variable-valence transition metal doping, is discussed in detail based on their effects on oxygen reduction reaction (ORR). Besides, nanostructure assembly and 3D morphology design are also recent hotspots for cathode research. Finally, we also propose several research directions in this field, hoping to provide guidelines for future research.
Collapse
Affiliation(s)
- Shiming Hu
- Center for Fuel Cell Innovation, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, MOE Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yu Zeng
- Center for Fuel Cell Innovation, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jian Pu
- Center for Fuel Cell Innovation, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Bo Chi
- Center for Fuel Cell Innovation, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
47
|
Song X, Jian Y, Wang X, Chen J, Shan Q, Zhang S, Chen Z, Chen X, Zeng H. Hybrid mixed-dimensional WTe 2/CsPbI 3perovskite heterojunction for high-performance photodetectors. NANOTECHNOLOGY 2023; 34:195201. [PMID: 36753757 DOI: 10.1088/1361-6528/acba1c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Perovskites have showed significant potential for the application in photodetectors due to their outstanding electrical and optical properties. Integrating two-dimensional (2D) materials with perovskites can make full use of the high carrier mobility of 2D materials and strong light absorption of perovskite to realize excellent optoelectrical properties. Here, we demonstrate a photodetector based on the WTe2/CsPbI3heterostructure. The quenching and the shortened lifetime of photoluminescence (PL) for CsPbI3perovskite confirms the efficient charge transfer at the WTe2/CsPbI3heterojunction. After coupled with WTe2, the photoresponsivity of the CsPbI3photodetector is improved by almost two orders of magnitude due to the high-gain photogating effect. The WTe2/CsPbI3heterojunction photodetector reveals a large responsivity of 1157 A W-1and a high detectivity of 2.1 × 1013Jones. The results pave the way for the development of high-performance optoelectronic devices based on 2D materials/perovskite heterojunctions.
Collapse
Affiliation(s)
- Xiufeng Song
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Yuxuan Jian
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Xusheng Wang
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Jiawei Chen
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Qingsong Shan
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Zhanyang Chen
- Shangdong Gemei Tungsten & Molybdenum Material Co. LTD, Weihai 265222, People's Republic of China
| | - Xiang Chen
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
48
|
Lee M, Seung H, Kwon JI, Choi MK, Kim DH, Choi C. Nanomaterial-Based Synaptic Optoelectronic Devices for In-Sensor Preprocessing of Image Data. ACS OMEGA 2023; 8:5209-5224. [PMID: 36816688 PMCID: PMC9933102 DOI: 10.1021/acsomega.3c00440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
With the advance in information technologies involving machine vision applications, the demand for energy- and time-efficient acquisition, transfer, and processing of a large amount of image data has rapidly increased. However, current architectures of the machine vision system have inherent limitations in terms of power consumption and data latency owing to the physical isolation of image sensors and processors. Meanwhile, synaptic optoelectronic devices that exhibit photoresponse similar to the behaviors of the human synapse enable in-sensor preprocessing, which makes the front-end part of the image recognition process more efficient. Herein, we review recent progress in the development of synaptic optoelectronic devices using functional nanomaterials and their unique interfacial characteristics. First, we provide an overview of representative functional nanomaterials and device configurations for the synaptic optoelectronic devices. Then, we discuss the underlying physics of each nanomaterial in the synaptic optoelectronic device and explain related device characteristics that allow for the in-sensor preprocessing. We also discuss advantages achieved by the application of the synaptic optoelectronic devices to image preprocessing, such as contrast enhancement and image filtering. Finally, we conclude this review and present a short prospect.
Collapse
Affiliation(s)
- Minkyung Lee
- Center
for Optoelectronic Materials and Devices, Post-silicon Semiconductor
Institute, Korea Institute of Science and
Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyojin Seung
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic
of Korea
| | - Jong Ik Kwon
- School
of Materials Science and Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Moon Kee Choi
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Materials Science and Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dae-Hyeong Kim
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic
of Korea
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic of Korea
| | - Changsoon Choi
- Center
for Optoelectronic Materials and Devices, Post-silicon Semiconductor
Institute, Korea Institute of Science and
Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|
49
|
Reuveni G, Diskin-Posner Y, Gehrmann C, Godse S, Gkikas GG, Buchine I, Aharon S, Korobko R, Stoumpos CC, Egger DA, Yaffe O. Static and Dynamic Disorder in Formamidinium Lead Bromide Single Crystals. J Phys Chem Lett 2023; 14:1288-1293. [PMID: 36722023 PMCID: PMC9923750 DOI: 10.1021/acs.jpclett.2c03337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/06/2023] [Indexed: 05/28/2023]
Abstract
We show that formamidinium-based crystals are distinct from methylammonium-based halide perovskite crystals because their inorganic sublattice exhibits intrinsic local static disorder that coexists with a well-defined average crystal structure. Our study combines terahertz-range Raman scattering with single-crystal X-ray diffraction and first-principles calculations to probe the evolution of inorganic sublattice dynamics with temperature in the range of 10-300 K. The temperature evolution of the Raman spectra shows that low-temperature, local static disorder strongly affects the crystal structural dynamics and phase transitions at higher temperatures.
Collapse
Affiliation(s)
- Guy Reuveni
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| | - Yael Diskin-Posner
- Chemical
Research Support, Weizmann Institute of
Science, Rehovot76100, Israel
| | - Christian Gehrmann
- Department
of Physics, Technical University of Munich, 85748Garching, Germany
| | - Shravan Godse
- Department
of Physics, Technical University of Munich, 85748Garching, Germany
| | - Giannis G. Gkikas
- Department
of Materials Science and Technology, University
of Crete, Voutes Campus, Heraklion, GR70013, Greece
| | - Isaac Buchine
- Department
of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan5290002, Israel
| | - Sigalit Aharon
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| | - Roman Korobko
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| | - Constantinos C. Stoumpos
- Department
of Materials Science and Technology, University
of Crete, Voutes Campus, Heraklion, GR70013, Greece
| | - David A. Egger
- Department
of Physics, Technical University of Munich, 85748Garching, Germany
| | - Omer Yaffe
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| |
Collapse
|
50
|
Kirstein E, Zhukov EA, Yakovlev DR, Kopteva NE, Harkort C, Kudlacik D, Hordiichuk O, Kovalenko MV, Bayer M. Coherent Spin Dynamics of Electrons in Two-Dimensional (PEA) 2PbI 4 Perovskites. NANO LETTERS 2023; 23:205-212. [PMID: 36574606 DOI: 10.1021/acs.nanolett.2c03975] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The versatile potential of lead halide perovskites and two-dimensional materials is merged in the Ruddlesden-Popper perovskites having outstanding optical properties. Here, the coherent spin dynamics in Ruddlesden-Popper (PEA)2PbI4 perovskites is investigated by picosecond pump-probe Kerr rotation in an external magnetic field. The Larmor spin precession of resident electrons with a spin dephasing time of 190 ps is identified. The longitudinal spin relaxation time in weak magnetic fields measured by the spin inertia method is as long as 25 μs. A significant anisotropy of the electron g-factor with the in-plane value of +2.45 and out-of-plane value of +2.05 is found. The exciton out-of-plane g-factor of +1.6 is measured by magneto-reflectivity. This work contributes to the understanding of the spin-dependent properties of two-dimensional perovskites and their spin dynamics.
Collapse
Affiliation(s)
- Erik Kirstein
- Experimental Physics 2, Department of Physics, TU Dortmund, 44227 Dortmund, Germany
| | - Evgeny A Zhukov
- Experimental Physics 2, Department of Physics, TU Dortmund, 44227 Dortmund, Germany
- Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
| | - Dmitri R Yakovlev
- Experimental Physics 2, Department of Physics, TU Dortmund, 44227 Dortmund, Germany
- Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
| | - Nataliia E Kopteva
- Experimental Physics 2, Department of Physics, TU Dortmund, 44227 Dortmund, Germany
| | - Carolin Harkort
- Experimental Physics 2, Department of Physics, TU Dortmund, 44227 Dortmund, Germany
| | - Dennis Kudlacik
- Experimental Physics 2, Department of Physics, TU Dortmund, 44227 Dortmund, Germany
| | - Oleh Hordiichuk
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- EMPA-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Maksym V Kovalenko
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- EMPA-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Manfred Bayer
- Experimental Physics 2, Department of Physics, TU Dortmund, 44227 Dortmund, Germany
| |
Collapse
|