1
|
Kiiru S, Kasiano P, Maina J, Mwaniki JN, Songoro E, Kariuki S. Molecular characterization of multidrug-resistant E. coli recovered from diarrheagenic children under 5 years from Mukuru Informal Settlement, Nairobi, Kenya, based on whole-genome sequencing analysis. Microbiol Spectr 2025:e0142024. [PMID: 40372033 DOI: 10.1128/spectrum.01420-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 03/29/2025] [Indexed: 05/16/2025] Open
Abstract
High genomic plasticity within Escherichia coli enables it to acquire and accumulate genetic material through horizontal gene transfer. In this study, we sought to investigate the virulence genes, phylogroups, antibiotic resistance genes, plasmid replicons, multilocus sequence types (MLST), and core genome MLST of multidrug-resistant E. coli recovered from diarrheagenic children under 5 years from Mukuru Informal Settlement in Nairobi, Kenya. A total of 39 multidrug-resistant (MDR) strains had their DNA extracted, and whole-genome sequencing was done using the Illumina HiSeq 2000 platform. Twenty-six E. coli assemblies were analyzed using web-based bioinformatics tools available at the Centre for Genomic Epidemiology and EnteroBase. The isolates were categorized into four main phylogroups, where 10/26 (38.5%) belonged to the B2 phylogroup, 4/26 (15.4%) belonged to D, 3/26 (11.5%) belonged to A, 1/26 (3.8%) belonged to B1, while 8/26 (30.8%) were not determined. FimH30 was predominantly found in the most frequent phylogroup B2 and sequence type (ST) 131. The most common beta-lactam resistance genes were bla TEM-1B and blaCTXM 15, followed by three fluoroquinolone resistance genes [qnrS1 6/26 (23.1%), qnrB4 2/26 (7.7%), and aac(6')-Ib-cr, 8/26 (30.8%)]. Of 26 isolates, 15 had at least one amino acid substitution in the housekeeping genes gyrA (p.S83L), gyrA (p.D87N), parC (p.S80I), parC (p.E84V), parC (p.S57T), and parE (p.I529L), associated with resistance to fluoroquinolones. A total of 40 diverse virulence genes were detected among the isolates. Thirteen different STs were isolated from the E. coli genomes, which included ST 131, ST 3036, ST 38, ST 10, ST 12569, ST 15271, ST 2076, ST 311, ST 3572, ST 394, ST 453, ST 46, and ST 1722. Only two isolates (2/26, 7.7%) from the Municipal City Council clinic were genetically related. Additionally, the most abundant plasmid replicon identified belonged to the IncF family, IncFII(pRSB107), in particular, followed by the Col family. The study highlighted the first E. coli ST46 to harbor the bla NDM5 gene encoded in Col(BS512), IncFII(pRSB107), and IncFIB(AP001918) plasmid replicons in Kenya. We further demonstrated the diversity of MDR E. coli associated with diarrhea in an endemic setting in Kenya. IMPORTANCE This study investigated the molecular characterization of multidrug-resistant Escherichia coli isolated from diarrheagenic children under 5 years of age in Mukuru Informal Settlement in Nairobi, Kenya. This is an important addition to the genomic analysis data of multi-drug resistant diarrheal Escherichia coli in Kenya. The use of whole-genome sequencing to identify and characterize these isolates is valuable and provides valuable insights into the molecular epidemiology of E. coli in the region.
Collapse
Affiliation(s)
- Susan Kiiru
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
- Jomo Kenyatta University of Agriculture and Technology, JKUAT, Nairobi, Kenya
| | - Purity Kasiano
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
- Jomo Kenyatta University of Agriculture and Technology, JKUAT, Nairobi, Kenya
| | - John Maina
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - John Njeru Mwaniki
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Edinah Songoro
- Jomo Kenyatta University of Agriculture and Technology, JKUAT, Nairobi, Kenya
| | - Samuel Kariuki
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
- Drugs for Neglected Diseases initiative, Eastern Africa, Nairobi, Kenya
| |
Collapse
|
2
|
Kim DD, Swarthout JM, Worby CJ, Chieng B, Mboya J, Earl AM, Njenga SM, Pickering AJ. Contaminated drinking water facilitates Escherichia coli strain-sharing within households in urban informal settlements. Nat Microbiol 2025; 10:1198-1209. [PMID: 40312516 PMCID: PMC12055605 DOI: 10.1038/s41564-025-01986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/18/2025] [Indexed: 05/03/2025]
Abstract
Identifying bacterial transmission pathways is crucial to inform strategies that limit the spread of pathogenic and antibiotic-resistant bacteria. Here we assessed Escherichia coli strain-sharing and overlap of antibiotic resistance genes (ARGs) across humans, poultry, canines, soil, and drinking water within and between households in urban informal settlements in Nairobi, Kenya. We collected 321 samples from 50 households with half having access to chlorinated water. We performed Pooling Isolated Colonies-seq, which sequences pools of up to five E. coli colonies per sample to capture strain diversity. Pooling Isolated Colonies-seq captured 1,516 colonies and identified 154 strain-sharing events, overcoming limitations of single-isolate sequencing and metagenomics. Within households, strain-sharing rates and resistome similarities across sample types were strongly correlated, suggesting clonal transmission of ARGs. E. coli isolated from the environment carried clinically relevant ARGs. Strain-sharing was rare between animals and humans but frequent between humans and drinking water. E. coli-contaminated stored drinking water was associated with higher human-human strain-sharing within households. These results suggest that contaminated drinking water facilitates human to human strain-sharing, and water treatment can disrupt transmission.
Collapse
Affiliation(s)
- Daehyun D Kim
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Jenna M Swarthout
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| | - Colin J Worby
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA
| | | | - John Mboya
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA
| | | | - Amy J Pickering
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
- Blum Center for Developing Economies, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
3
|
Monge-Olivares L, Peñalva G, Pulido MR, Garrudo L, Ángel Doval M, Ballesta S, Merchante N, Rasero P, Cuberos L, Carpes G, López-Cerero L. Quantitative study of ESBL and carbapenemase producers in wastewater treatment plants in Seville, Spain: a culture-based detection analysis of raw and treated water. WATER RESEARCH 2025; 281:123706. [PMID: 40311350 DOI: 10.1016/j.watres.2025.123706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
Antibiotics can modify populations of multidrug-resistant microorganism (MDRO) in urban wastewater. Our objectives were to quantify the differences in MDR Gram-negative bacteria between influents and effluents of WWTPs of a Spanish city and to evaluate the influence of human antibiotic prescriptions, as well as the persistence of these bacteria after treatment and their genetic relatedness to clinical isolates. The mean count of ESBL producers and carbapenemase producers were 3.77 and 2.74 log 10 CFU/ml, respectively. The reduction achieved by water treatment of ESBL-producing organisms was 1.4-log (96.11 %), whereas a 1.8-log reduction (98.36 %) was obtained regarding carbapenemase producing organisms. Aeromonas spp. predominated among MDROs and blaKPC-2 was the main carbapenemase detected in the influent wastewater samples. Among Escherichia coli and Klebsiella pneumoniae influent isolates, 44 % and 30 %, respectively, belonged to high-risk clones. Regarding Enterobacteriaceae, 10.6 % matched clinical isolates and one strain from an ongoing hospital outbreak was identified among raw samples. New MDROs and persistence of certain strains were detected in effluent samples. Quinolone and third-generation cephalosporin prescriptions, flow rate and population density were associated with higher OXA-48 producer counts. Despite reductions, additional technologies should be implemented in WWTPs receiving hospital discharges. Given the prevalence of environmental species, culture-based and metagenomic approaches should be combined to distinguish between human and sewage sources for antibiotic resistance monitoring. Overall, this study shows that WWTPs with secondary treatment are effective at removing MDRO, and antibiotic stewardship is a potential strategy to reduce the release of MDROs.
Collapse
Affiliation(s)
- Laura Monge-Olivares
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, SE, 41009, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, SE, 41009, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, MA, 28220, Spain
| | - Germán Peñalva
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, MA, 28220, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, SE, 41013, Spain
| | - Marina R Pulido
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, SE, 41009, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, SE, 41009, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, MA, 28220, Spain
| | - Lara Garrudo
- Servicio de Farmacia, Distrito Sanitario Sevilla, Servicio Andaluz de Salud, Seville, SE, 41008, Spain
| | - Miguel Ángel Doval
- Empresa Metropolitana de Abastecimiento y Saneamiento de Aguas de Sevilla (EMASESA), Seville, SE, 41003, Spain
| | - Sofía Ballesta
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, SE, 41009, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, SE, 41009, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, MA, 28220, Spain
| | - Nicolás Merchante
- Unidad de Enfermedades Infecciosas y Microbiología. Hospital Universitario de Valme. Instituto de Biomedicina de Sevilla (IBiS), Universidad de Sevilla, Sevilla, SE, 41014, Spain
| | - Pablo Rasero
- Empresa Metropolitana de Abastecimiento y Saneamiento de Aguas de Sevilla (EMASESA), Seville, SE, 41003, Spain
| | - Lucila Cuberos
- Empresa Metropolitana de Abastecimiento y Saneamiento de Aguas de Sevilla (EMASESA), Seville, SE, 41003, Spain
| | - Graciano Carpes
- Empresa Metropolitana de Abastecimiento y Saneamiento de Aguas de Sevilla (EMASESA), Seville, SE, 41003, Spain
| | - Lorena López-Cerero
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, SE, 41009, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, SE, 41009, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, MA, 28220, Spain; Unidad de Microbiología y Enfermedades Infecciosas, Hospital Universitario Virgen, Macarena, Seville, SE, 41009, Spain.
| |
Collapse
|
4
|
Sayed AE, Hafez A, Ateya A, Darwish A, Tahoun A. Single nucleotide polymorphisms, gene expression and evaluation of immunological, antioxidant, and pathological parameters associated with bacterial pneumonia in Barki sheep. Ir Vet J 2025; 78:11. [PMID: 40221769 PMCID: PMC11992743 DOI: 10.1186/s13620-025-00296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND In sheep, pneumonia is a major concern because of its high morbidity, mortality, and economic impact. It results from various infectious agents, including bacteria, viruses, and environmental stressors, that weaken the immune system. OBJECTIVE The objective of this study was to monitor nucleotide sequence variations, gene expression, and serum biomarkers of inflammation and oxidative stress in sheep with pneumonia. Additionally, this study aimed to identify various bacterial strains and virulent gene combinations in pneumonic sheep, as confirmed by PCR. METHODOLOGY The enrolled animals were categorized as follows: 50 apparently healthy ewes, considered the control group, and 150 infected ewes with pneumonia. The infected ewes included 100 sporadic cases from the Center for Sustainable Development of Matrouh Resources, Desert Research Center, Matrouh, Egypt, and 50 ewes from the slaughterhouse, all exhibiting respiratory symptoms such as coughing, serous to mucopurulent nasal discharge, fever, and abnormal lung sounds. Blood samples were collected to assess various biochemical parameters, detect SNPs, and analyse the expression of specific immunological and antioxidant-related genes. Nasopharyngeal and lung swabs were taken from the affected ewes for bacteriological analysis, and lung samples were collected for histological examination. RESULTS Phenotypic characterization and identification revealed the presence of Klebsiella pneumoniae, Pasteurella multocida, Mannheimia haemolytica, Pseudomonas spp., Mycoplasma, Streptococcus, and Escherichia coli, with frequencies of 40%, 28.6%, 34%, 18%, 44%, 29.3%, and 20%, respectively. Additionally, virulence genes for Klebsiella pneumoniae, iutA and fimH, were detected at rates of 39% and 68%, respectively, whereas the toxA gene for Pseudomonas spp. was present in 59.2% of the cases. Nucleotide sequence variations in immunity- and antioxidant-related genes were observed between healthy and pneumonic ewes. The genes encoding IL-1α, IL1B, IL6, TNF-α, LFA-1, CR2, IL17, IL13, DEFB123, SCART1, ICAM1, NOS, and HMOX1 were significantly upregulated in pneumonia-affected ewes compared with resistant ewes. Conversely, the genes encoding IL10, SOD1, CAT, GPX1, and NQO1 were downregulated. Further analysis of the serum profile revealed a significant (P < 0.05) increase in IL-1α, IL-1β, IL-6, TNF-α, NO and MDA along with a significant (P < 0.05) decrease in the serum levels of C3, C4, CAT, GPx, GR and IL-10 in diseased ewes compared with healthy ewes. Histopathological examination revealed that the infected sheep exhibited broncho-interstitial pneumonia and purulent to fibrino-purulent bronchopneumonia. CONCLUSIONS This study revealed the significant presence of various pathogens and virulence factors in infected sheep, along with distinct immunological and antioxidant gene expression patterns. The altered serum profile and gene regulation in pneumonia-affected ewes underscore the complex immune response and potential biomarkers for disease susceptibility and resistance.
Collapse
Affiliation(s)
- Ahmed El Sayed
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt.
| | - Amani Hafez
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Ahmed Ateya
- Department of Development of Animal, of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - Asmaa Darwish
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Amin Tahoun
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelshkh University, Kafr El Sheikh, 33516, Egypt
- Departments of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
5
|
VanAcker MC, Ergunay K, Webala PW, Kamau M, Mutura J, Lebunge R, Ochola GO, Bourke BP, McDermott EG, Achee NL, Jiang L, Grieco JP, Keter E, Musanga A, Murray S, Stabach JA, Craft ME, Fèvre EM, Linton YM, Hassell J. A Novel Nobecovirus in an Epomophorus wahlbergi Bat from Nairobi, Kenya. Viruses 2025; 17:557. [PMID: 40285000 PMCID: PMC12031378 DOI: 10.3390/v17040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Most human emerging infectious diseases are zoonotic, originating in animal hosts prior to spillover to humans. Prioritizing the surveillance of wildlife that overlaps with humans and human activities can increase the likelihood of detecting viruses with a high potential for human infection. Here, we obtained fecal swabs from two fruit bat species-Eidolon helvum (n = 6) and Epomophorus wahlbergi (n = 43) (family Pteropodidae)-in peridomestic habitats in Nairobi, Kenya, and used metagenome sequencing to detect microorganisms. A near-complete genome of a novel virus assigned taxonomically to the Coronaviridae family Betacoronavirus genus and Nobecovirus subclade was characterized from E. wahlbergi. Phylogenetic analysis indicates this unique Nobecovirus clade shares a common ancestor with Eidolon/Rousettus Nobecovirus subclades isolated from Madagascar, Kenya, and Cameroon. Recombination was detected across open reading frames, except the spike protein, in all BOOTSCAN analyses, indicating intra-host coinfection and genetic exchange between genome regions. Although Nobecoviruses are currently bat-specific and are not known to be zoonotic, the propensity of coronaviruses to undergo frequent recombination events and the location of the virus alongside high human and livestock densities in one of East Africa's most rapidly developing cities justifies continued surveillance of animal viruses in high-risk urban landscapes.
Collapse
Affiliation(s)
- Meredith C. VanAcker
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
- Global Health Program, Smithsonian Institution, National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| | - Koray Ergunay
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD 20746, USA; (K.E.)
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History (NMNH), Washington, DC 20560, USA
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Paul W. Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok 20500, Kenya;
| | - Maureen Kamau
- Mpala Research Centre (MRC), Nanyuki 10400, Kenya; (M.K.); (J.M.); (R.L.)
| | - Janerose Mutura
- Mpala Research Centre (MRC), Nanyuki 10400, Kenya; (M.K.); (J.M.); (R.L.)
| | - Rashid Lebunge
- Mpala Research Centre (MRC), Nanyuki 10400, Kenya; (M.K.); (J.M.); (R.L.)
| | | | - Brian P. Bourke
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD 20746, USA; (K.E.)
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History (NMNH), Washington, DC 20560, USA
| | - Emily G. McDermott
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Nicole L. Achee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA; (N.L.A.)
| | - Le Jiang
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - John P. Grieco
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA; (N.L.A.)
| | - Erick Keter
- Department of Wildlife Management, University of Eldoret, Eldoret 30100, Kenya;
| | - Audrey Musanga
- College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi 00100, Kenya
| | - Suzan Murray
- Global Health Program, Smithsonian Institution, National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| | - Jared A. Stabach
- Conservation Ecology Center, Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA 22630, USA;
| | - Meggan E. Craft
- Department of Ecology, Evolution and Behavior, College of Biological Sciences, University of Minnesota, St. Paul, MN 55108, USA;
| | - Eric M. Fèvre
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD 20746, USA; (K.E.)
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History (NMNH), Washington, DC 20560, USA
| | - James Hassell
- Global Health Program, Smithsonian Institution, National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| |
Collapse
|
6
|
Nurisyah S, Iyori M, Hasyim AA, Amru K, Itani K, Nakamura K, Zainal KH, Halik H, Djaharuddin I, Bukhari A, Asih PBS, Syafruddin D, Yoshida S, Idris I, Yusuf Y. Evaluation of an E. coli-expressed spike protein-based in-house ELISA system for assessment of antibody responses after COVID-19 infection and vaccination. NARRA J 2025; 5:e1250. [PMID: 40352206 PMCID: PMC12059849 DOI: 10.52225/narra.v5i1.1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/18/2025] [Indexed: 05/14/2025]
Abstract
Evaluating long-term immunity after COVID-19 infection and vaccination is critical for managing potential outbreaks. The aim of this study was to develop a cost-effective in-house enzyme-linked immunosorbent assay (ELISA) based on Escherichia coli-expressed SARS-CoV-2 spike protein (E-S1) for antibody detection and to evaluate its performance. The system was validated by comparing the in-house ELISA results with those obtained using a commercial ELISA with HEK293-expressed spike protein (H-S1). Recombinant SARS-CoV-2 spike protein was produced in E. coli, purified, and validated for antigenicity via ELISA. Indirect ELISAs with both E-S1 and H-S1 antigens were performed on 386 serum samples from COVID-19 survivors, vaccinated individuals, and pre-pandemic controls collected at different time points. The E-S1 ELISA showed a statistically significant but weak correlation with H-S1 ELISA across all samples (r=0.205; p=0.0001). Stronger correlations were observed among vaccinated individuals with prior infection on day 90 (r=0.6017; p<0.001) and in naïve vaccine recipients on day 30 (r=0.5361; p=0.0003). Pre-pandemic sera from a rural population in Sumba Island exhibited high background reactivity in E-S1 ELISA, likely due to anti-E. coli antibodies, while urban pre-pandemic sera from Jakarta showed a stronger correlation with H-S1 ELISA. This suggests potential regional or immune background differences influencing assay performance. Although E-S1 retained antigenic properties, its diagnostic utility is limited by non-specific reactivity and reduced sensitivity compared to H-S1. In conclusion, E. coli expression systems may not be ideal for producing spike protein-based ELISA antigens specific to SARS-CoV-2. Alternative expression systems, such as human or baculovirus, could enhance diagnostic accuracy and specificity for COVID-19 antibody detection.
Collapse
Affiliation(s)
- Sitti Nurisyah
- Department of Pulmonology and Respiratory Medicine, Universitas Hasanuddin, Makassar, Indonesia
- Dr. Tadjuddin Chalid Hospital, Makassar, Indonesia
| | - Mitsuhiro Iyori
- Research Institute of Pharmaceutical Science, Musashino University, Nishitokyo, Japan
| | - Ammar A. Hasyim
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Ishikawa, Japan
| | - Khaeriah Amru
- Dr. Tadjuddin Chalid Hospital, Makassar, Indonesia
- Department of Medical Education, Universitas Hasanuddin, Makassar, Indonesia
| | - Kei Itani
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Ishikawa, Japan
| | - Kurumi Nakamura
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Ishikawa, Japan
| | - Kartika H. Zainal
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Ishikawa, Japan
| | | | - Irawaty Djaharuddin
- Department of Pulmonology and Respiratory Medicine, Universitas Hasanuddin, Makassar, Indonesia
- Dr. Wahidin Soedirohusodo Hospital, Makassar, Indonesia
| | - Agussalim Bukhari
- Department of Clinical Nutrition, Universitas Hasanuddin, Makassar, Indonesia
| | - Puji BS. Asih
- National Research and Innovation Agency, Jakarta, Indonesia
| | - Din Syafruddin
- Department of Parasitology, Universitas Hasanuddin, Makassar, Indonesia
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Ishikawa, Japan
| | - Irfan Idris
- Department of Physiology, Universitas Hasanuddin, Makassar, Indonesia
| | - Yenni Yusuf
- Department of Parasitology, Universitas Hasanuddin, Makassar, Indonesia
| |
Collapse
|
7
|
Heidrich V, Valles-Colomer M, Segata N. Human microbiome acquisition and transmission. Nat Rev Microbiol 2025:10.1038/s41579-025-01166-x. [PMID: 40119155 DOI: 10.1038/s41579-025-01166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2025] [Indexed: 03/24/2025]
Abstract
As humans, we host personal microbiomes intricately connected to our biology and health. Far from being isolated entities, our microbiomes are dynamically shaped by microbial exchange with the surroundings, in lifelong microbiome acquisition and transmission processes. In this Review, we explore recent studies on how our microbiomes are transmitted, beginning at birth and during interactions with other humans and the environment. We also describe the key methodological aspects of transmission inference, based on the uniqueness of the building blocks of the microbiome - single microbial strains. A better understanding of human microbiome transmission will have implications for studies of microbial host regulation, of microbiome-associated diseases, and for effective microbiome-targeting strategies. Besides exchanging strains with other humans, there is also preliminary evidence we acquire microorganisms from animals and food, and thus a complete understanding of microbiome acquisition and transmission can only be attained by adopting a One Health perspective.
Collapse
Affiliation(s)
| | | | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
8
|
Elmarghani ED, Pettersson JHO, Atterby C, Hickman RA, Seng S, San S, Osbjer K, Magnusson U, Mourkas E, Järhult JD. Genomic insights into extended-spectrum β-lactamase- and plasmid-borne AmpC-producing Escherichia coli transmission between humans and livestock in rural Cambodia. J Med Microbiol 2025; 74:001988. [PMID: 40079731 PMCID: PMC11915462 DOI: 10.1099/jmm.0.001988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Introduction. The global spread of extended-spectrum cephalosporinase-producing Escherichia coli (producing extended-spectrum β-lactamase or plasmid-borne AmpC, hereafter ESC-Ec) is a major public health concern. Whilst extensively studied in high-income countries, the transmission pathways between humans and animals in low- and middle-income countries (LMICs) remain unclear. In rural Cambodia, the asymptomatic carriage and transmission dynamics of ESC-Ec between humans and animals living in close proximity are poorly understood, highlighting the need for targeted research in this area.Gap statement. An enhanced understanding of the genetic epidemiology of ESC-Ec can enable mitigation strategies to reduce the burden of disease and drug-resistant infections in LMIC settings.Aim. This study aimed to investigate the genetic relatedness and genotypic antibiotic resistance profiles of ESC-Ec strains from humans and livestock in rural Cambodia and to identify patterns of antimicrobial resistance (AMR) gene transmission between hosts and across households and villages.Methodology. Faecal samples were collected from 307 humans and 285 livestock in 100 households in or near Kampong Cham Province in rural Cambodia. From these samples, 108 ESC-Ec strains were subjected to whole-genome sequencing. Core genome MLST (cgMLST) and phylogenetic analysis determined genetic relationships between strains. All strains were screened for the presence of antibiotic resistance genes and plasmids.Results. Human and livestock isolates were assigned to six phylogroups, with phylogroup A being the most common (56.5%). MLST identified 50 sequence types (STs), 17 of which were shared between humans and animals, with ST155 being the most prevalent. cgMLST revealed 97 distinct cgMLST sequence types (cgST), indicating strain sharing between humans and animals. Additionally, AMR gene analysis showed widespread resistance, with genes from the bla CTX-M group detected in 84.2% of isolates. Notably, AMR genes such as aph(3'')-Ib-sul2 co-occurred in 50% of isolates. Finally, plasmid analysis identified IncF plasmids in 75.9% of isolates, likely facilitating AMR gene transmission across hosts.Conclusions. Our findings demonstrate that ESC-Ec strains and their AMR genes are transmitted between humans and livestock in rural Cambodia, likely driven by both clonal spread and plasmid-mediated horizontal gene transfer. These results highlight the urgent need for antimicrobial stewardship and infection control strategies to mitigate the spread of multidrug-resistant pathogens in both human and animal populations.
Collapse
Affiliation(s)
- Ebraheem D. Elmarghani
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - John H.-O. Pettersson
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Clinical Microbiology and Hospital Hygiene, Uppsala University Hospital, Uppsala, Sweden
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, Swedish Veterinary Agency, Uppsala, Sweden
| | - Clara Atterby
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Internal Medicine, Visby Hospital, Visby, Sweden
| | - Rachel A. Hickman
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Clinical Microbiology and Hospital Hygiene, Uppsala University Hospital, Uppsala, Sweden
| | - Sokerya Seng
- Food and Agriculture Organization of the United Nations, Phnom Penh, Cambodia
| | - Sorn San
- General Directorate of Animal Health and Production, Phnom Penh, Cambodia
| | - Kristina Osbjer
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- International Centre for Antimicrobial Resistance Solutions, Copenhagen, Denmark
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ulf Magnusson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Evangelos Mourkas
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Josef D. Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Piper KR, Souza SSR, Ikhimiukor OO, Workman AA, Martin IW, Andam CP. Lineage-specific variation in frequency and hotspots of recombination in invasive Escherichia coli. BMC Genomics 2025; 26:190. [PMID: 39994515 PMCID: PMC11853335 DOI: 10.1186/s12864-025-11367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The opportunistic bacterium Escherichia coli can invade normally sterile sites in the human body, potentially leading to life-threatening organ dysfunction and even death. However, our understanding of the evolutionary processes that shape its genetic diversity in this sterile environment remains limited. Here, we aim to quantify the frequency and characteristics of homologous recombination in E. coli from bloodstream infections. RESULTS Analysis of 557 short-read genome sequences revealed that the propensity to exchange DNA by homologous recombination varies within a distinct population (bloodstream) at narrow geographic (Dartmouth Hitchcock Medical Center, New Hampshire, USA) and temporal (years 2016 - 2022) scope. We identified the four largest monophyletic sequence clusters in the core genome phylogeny that are represented by prominent sequence types (ST): BAPS1 (mainly ST95), BAPS4 (mainly ST73), BAPS10 (mainly ST131), BAPS14 (mainly ST58). We show that the four dominant clusters vary in different characteristics of recombination: number of single nucleotide polymorphisms due to recombination, number of recombination blocks, cumulative bases in recombination blocks, ratio of probabilities that a given site was altered through recombination and mutation (r/m), and ratio of rates at which recombination and mutation occurred (ρ/θ). Each sequence cluster contains a unique set of antimicrobial resistance (AMR) and virulence genes that have experienced recombination. Common among the four sequence clusters were the recombined virulence genes with functions associated with the Curli secretion channel (csgG) and ferric enterobactin transport (entEF, fepEG). We did not identify any one recombined AMR gene that was present in all four sequence clusters. However, AMR genes mdtABC, baeSR, emrKY and tolC had experienced recombination in sequence clusters BAPS4, BAPS10, and BAPS14. These differences lie in part on the contributions of vertically inherited ancestral recombination and contemporary branch-specific recombination, with some genomes having relatively higher proportions of recombined DNA. CONCLUSIONS Our results highlight the variation in the propensity to exchange DNA via homologous recombination within a distinct population at narrow geographic and temporal ranges. Understanding the sources of the genetic variation in invasive E. coli will help inform the implementation of effective strategies to reduce the burden of disease and AMR.
Collapse
Affiliation(s)
- Kathryn R Piper
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Stephanie S R Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Odion O Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Adrienne A Workman
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH, USA
| | - Isabella W Martin
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH, USA.
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
10
|
Zhuang Y, Liu S, Xiao J, Chen T, Gao D, Xu Y, Jiang W, Wang J, Hou G, Li S, Zhao X, Huang Y, Li S, Zhang S, Li M, Wang W, Li S, Cao Z. Metagenomics reveals the characteristics and potential spread of microbiomes and virulence factor genes in the dairy cattle production system. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136005. [PMID: 39369676 DOI: 10.1016/j.jhazmat.2024.136005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Virulence factor genes (VFGs) pose a potential threat to ecological security and animal health, and have attracted increasing attention in the livestock industry. As one of the primary livestock types, dairy cattle may be an important source of VFG transmission. However, the distribution, transmission, and evolution of VFGs in the gastrointestinal tract and surrounding environment of dairy cattle remain unclear. In the present study, a total of 263 samples were collected from cows, calves, colostrum, farm wastewater, and soil. Metagenomics was conducted to analyze changes in the microbiome and VFGs characteristics in these ecological niches. The VFGs of the cows showed distinct differences between the rumen and feces, and were influenced by the region. The dominant VFG hosts was regulated by their microbial structure. Colostrum administration of cows increased VFG abundance in their newborn calf feces sharply and Enterobacteriaceae became the primary host. While diet was the primary driving force for the temporal variation in calf VFGs. For samples of the surrounding environment, water and soil had higher VFG concentrations and were more structurally stable. Moreover, extensive interactions between the mobile genetic elements and VFGs and gene mobile analysis map based on metagenomic binning both displayed the potential horizontal transfer ability of VFGs in the cows and environment. Our study revealed the prevalence, diffusion, and regulatory factors of VFGs in dairy cattle production systems, providing novel insights into reducing livestock VFGs and limiting their spread.
Collapse
Affiliation(s)
- Yimin Zhuang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Duo Gao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yiming Xu
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region 830052, China
| | - Wen Jiang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region 830052, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guobin Hou
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Sumin Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinjie Zhao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanting Huang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shangru Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siyuan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region 830052, China
| | - Mengmeng Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Woolhouse M. One Health approaches to tackling antimicrobial resistance. SCIENCE IN ONE HEALTH 2024; 3:100082. [PMID: 39559453 PMCID: PMC11570326 DOI: 10.1016/j.soh.2024.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024]
Abstract
Antimicrobial resistance (AMR) is a significant and growing threat to human health. A recent United Nations General Assembly declaration highlights that those in need must have sustained access to effective treatments. In the absence of a reliable supply of new drugs, pressure on existing drugs can be reduced by minimising demand. Routes to reducing demand include: promotion of WASH (access to clean water, sanitation and hygiene) and Universal Health Coverage (UHC); improved infection control in health care settings; and continued efforts to curtail drug use in agriculture. This is a One Health strategy, requiring coordinated action across the human, livestock and environmental sectors.
Collapse
Affiliation(s)
- M.E.J. Woolhouse
- Usher Institute, University of Edinburgh, Charlotte Auerbach Rd, Edinburgh EH9 3FL, UK
| |
Collapse
|
12
|
Musicha P, Morse T, Cocker D, Mugisha L, Jewell CP, Feasey NA. Time to define One Health approaches to tackling antimicrobial resistance. Nat Commun 2024; 15:8782. [PMID: 39389965 PMCID: PMC11467174 DOI: 10.1038/s41467-024-53057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Antimicrobial resistance is a One Health problem that impacts humans, animals, and the environment. In this Comment, the authors discuss evidence for antimicrobial resistance transmission to humans, highlighting contrasting pictures between high- and low/middle-income settings.
Collapse
Affiliation(s)
- Patrick Musicha
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi.
- Liverpool School of Tropical Medicine, Liverpool, UK.
| | | | - Derek Cocker
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- University of Liverpool, Liverpool, UK
| | - Lawrence Mugisha
- Makerere University, College of Veterinary Medicine, Animal Resources and Biosecurity, Kampala, Uganda
| | | | - Nicholas A Feasey
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
- University of St. Andrews, St. Andrews, UK
| |
Collapse
|
13
|
Fuhrmeister ER, Kim S, Mairal SA, McCormack C, Chieng B, Swarthout JM, Harvey Paulos A, Njenga SM, Pickering AJ. Context-Seq: CRISPR-Cas9 Targeted Nanopore Sequencing for Transmission Dynamics of Antimicrobial Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612745. [PMID: 39314343 PMCID: PMC11419053 DOI: 10.1101/2024.09.12.612745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Antimicrobial resistance (AMR) aligns with a One Health framework in that resistant bacteria and antibiotic resistance genes (ARGs) can be transmitted between humans, animals, and the environment. However, there is a critical need to more precisely understand how and to what extent AMR is exchanged between animals and humans. Metagenomic sequencing has low detection for rare targets such as ARGs, while whole genome sequencing of isolates is burdensome and misses exchange between uncultured bacterial species. We developed a novel, targeted sequencing assay using CRISPR-Cas9 to selectively sequence ARGs and their genomic context with long-read sequencing. Using this method, termed Context-Seq, we investigated overlapping AMR elements containing the ARGs bla CTX-M and bla TEM between adults, children, poultry, and dogs in animal-owning households in Nairobi, Kenya. We identified 22 genetically distinct clusters (> 80%ID over ≥ 3000 bp) containing bla TEM and one cluster containing bla CTX-M that were shared within and between households. Half of the clusters were shared between humans and animals, while the other half were shared only between animals (poultry-poultry, dog-dog, and dog-poultry). We identified potentially pathogenic hosts of ARGs including Escherichia coli, Klebsiella pneumonia, and Haemophilus influenzae across sample types. Context-Seq complements conventional methods to obtain an additional view of bacterial and mammalian hosts in the proliferation of AMR.
Collapse
Affiliation(s)
- Erica R. Fuhrmeister
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Sooyeol Kim
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Shruteek A. Mairal
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Caroline McCormack
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Benard Chieng
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya
| | - Jenna M. Swarthout
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| | - Abigail Harvey Paulos
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Sammy M. Njenga
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya
| | - Amy J. Pickering
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- Blum Center for Developing Economies, University of California, Berkeley, CA, USA
| |
Collapse
|
14
|
Mourkas E, Valdebenito JO, Marsh H, Hitchings MD, Cooper KK, Parker CT, Székely T, Johansson H, Ellström P, Pascoe B, Waldenström J, Sheppard SK. Proximity to humans is associated with antimicrobial-resistant enteric pathogens in wild bird microbiomes. Curr Biol 2024; 34:3955-3965.e4. [PMID: 39142288 DOI: 10.1016/j.cub.2024.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/21/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
Humans are radically altering global ecology, and one of the most apparent human-induced effects is urbanization, where high-density human habitats disrupt long-established ecotones. Changes to these transitional areas between organisms, especially enhanced contact among humans and wild animals, provide new opportunities for the spread of zoonotic pathogens. This poses a serious threat to global public health, but little is known about how habitat disruption impacts cross-species pathogen spread. Here, we investigated variation in the zoonotic enteric pathogen Campylobacter jejuni. The ubiquity of C. jejuni in wild bird gut microbiomes makes it an ideal organism for understanding how host behavior and ecology influence pathogen transition and spread. We analyzed 700 C. jejuni isolate genomes from 30 bird species in eight countries using a scalable generalized linear model approach. Comparing multiple behavioral and ecological traits showed that proximity to human habitation promotes lineage diversity and is associated with antimicrobial-resistant (AMR) strains in natural populations. Specifically, wild birds from urban areas harbored up to three times more C. jejuni genotypes and AMR genes. This study provides novel methodology and much-needed quantitative evidence linking urbanization to gene pool spread and zoonoses.
Collapse
Affiliation(s)
- Evangelos Mourkas
- Ineos Oxford Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK; Zoonosis Science Centre, Department of Medical Sciences, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - José O Valdebenito
- Bird Ecology Lab, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Independencia 631, 5110566 Valdivia, Chile; Centro de Humedales Río Cruces (CEHUM), Universidad Austral de Chile, Camino Cabo Blanco Alto s/n, 5090000 Valdivia, Chile; HUN-REN-DE Reproductive Strategies Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, 8320000 Santiago, Chile
| | - Hannah Marsh
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Matthew D Hitchings
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, SA2 8PP Swansea, Wales
| | - Kerry K Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA
| | - Craig T Parker
- Produce Safety and Microbiology Unit, Western Region Research Center, USDA, Agricultural Research Service, Albany, CA 94710, USA
| | - Tamás Székely
- HUN-REN-DE Reproductive Strategies Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Håkan Johansson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Stuvaregatan 2, 392 31 Kalmar, Sweden
| | - Patrik Ellström
- Zoonosis Science Centre, Department of Medical Sciences, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Ben Pascoe
- Ineos Oxford Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Stuvaregatan 2, 392 31 Kalmar, Sweden
| | - Samuel K Sheppard
- Ineos Oxford Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| |
Collapse
|
15
|
Rahbé E, Glaser P, Opatowski L. Modeling the transmission of antibiotic-resistant Enterobacterales in the community: A systematic review. Epidemics 2024; 48:100783. [PMID: 38944024 DOI: 10.1016/j.epidem.2024.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/19/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Antibiotic-resistant Enterobacterales (ARE) are a public health threat worldwide. Dissemination of these opportunistic pathogens has been largely studied in hospitals. Despite high prevalence of asymptomatic colonization in the community in some regions of the world, less is known about ARE acquisition and spread in this setting. As explaining the community ARE dynamics has not been straightforward, mathematical models can be key to explore underlying phenomena and further evaluate the impact of interventions to curb ARE circulation outside of hospitals. METHODS We conducted a systematic review of mathematical modeling studies focusing on the transmission of AR-E in the community, excluding models only specific to hospitals. We extracted model features (population, setting), formalism (compartmental, individual-based), biological hypotheses (transmission, infection, antibiotic impact, resistant strain specificities) and main findings. We discussed additional mechanisms to be considered, open scientific questions, and most pressing data needs. RESULTS We identified 18 modeling studies focusing on the human transmission of ARE in the community (n=11) or in both community and hospital (n=7). Models aimed at (i) understanding mechanisms driving resistance dynamics; (ii) identifying and quantifying transmission routes; or (iii) evaluating public health interventions to reduce resistance. To overcome the difficulty of reproducing observed ARE dynamics in the community using the classical two-strains competition model, studies proposed to include mechanisms such as within-host strain competition or a strong host population structure. Studies inferring model parameters from longitudinal carriage data were mostly based on models considering the ARE strain only. They showed differences in ARE carriage duration depending on the acquisition mode: returning travelers have a significantly shorter carriage duration than discharged hospitalized patient or healthy individuals. Interestingly, predictions across models regarding the success of public health interventions to reduce ARE rates depended on pathogens, settings, and antibiotic resistance mechanisms. For E. coli, reducing person-to-person transmission in the community had a stronger effect than reducing antibiotic use in the community. For Klebsiella pneumoniae, reducing antibiotic use in hospitals was more efficient than reducing community use. CONCLUSIONS This study raises the limited number of modeling studies specifically addressing the transmission of ARE in the community. It highlights the need for model development and community-based data collection especially in low- and middle-income countries to better understand acquisition routes and their relative contribution to observed ARE levels. Such modeling will be critical to correctly design and evaluate public health interventions to control ARE transmission in the community and further reduce the associated infection burden.
Collapse
Affiliation(s)
- Eve Rahbé
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antimicrobials Evasion research unit, Paris, France; Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology research team, Montigny-Le-Bretonneux, France.
| | - Philippe Glaser
- Institut Pasteur, Ecology and Evolution of Antibiotic Resistance research unit, Université Paris Cité, Paris, France
| | - Lulla Opatowski
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antimicrobials Evasion research unit, Paris, France; Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology research team, Montigny-Le-Bretonneux, France.
| |
Collapse
|
16
|
Fu Y, Nawrocki EM, M’ikanatha NM, Dudley EG. Host species shapes genotype, antimicrobial resistance, and virulence profiles of enterotoxigenic Escherichia coli (ETEC) from livestock in the United States. Appl Environ Microbiol 2024; 90:e0074924. [PMID: 39082811 PMCID: PMC11337801 DOI: 10.1128/aem.00749-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are significant pathogen in both cattle and pigs, causing diarrhea in these animals and leading to economic losses in the livestock industry. Understanding the dissimilarity in genotype, antimicrobial resistance (AMR), and virulence between bovine and swine ETEC is crucial for development of targeted preventive and therapeutic approaches for livestock. However, a comprehensive study on this area remains lacking. Here, we performed whole-genome sequencing-based analyses of bovine (n = 554) and swine (n = 623) ETEC collected in the United States over a 53-year period. We identified distinct ETEC genotypes (fimH type, O antigen, H antigen, sequence type) in cattle and pigs. Furthermore, specific AMR and virulence profiles were associated with bovine and swine ETEC. Compared to swine ETEC, bovine ETEC were less diverse in genotypes and had a significantly (P < 0.001) lower number of AMR genes per isolate but higher co-occurrence of Shiga toxin and enterotoxin genes. Our results provide an overview of the key genomic differences between bovine and swine ETEC in the United States, which might be attributed to host adaptation and antibiotic usage practice. Ongoing surveillance and research are essential to monitor the genetic diversity and AMR patterns of ETEC in different host species. IMPORTANCE Enterotoxigenic Escherichia coli (ETEC)-associated diarrhea represent one of the most economically important diseases in the livestock industry. By analyzing over a thousand livestock-derived ETEC samples in the United States, our study unveiled a clear distinction in ETEC's genetic traits (i.e., genotypes, antimicrobial resistance [AMR], and virulence profiles) that might be tied to the different use of antibiotics in cattle and pigs, and the bacteria's adaptation to their specific animal hosts. This understanding is crucial for tailoring preventive and therapeutic strategies. It also highlights the significance of ongoing surveillance and research into the evolution of bacterial pathogens like ETEC in livestock by using advanced techniques such as whole-genome sequencing.
Collapse
Affiliation(s)
- Yezhi Fu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Erin M. Nawrocki
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Edward G. Dudley
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- E. coli Reference Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
17
|
Kim DD, Swarthout JM, Worby CJ, Chieng B, Mboya J, Earl AM, Njenga SM, Pickering AJ. Bacterial strain sharing between humans, animals, and the environment among urban households. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.05.24311509. [PMID: 39148836 PMCID: PMC11326342 DOI: 10.1101/2024.08.05.24311509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Identifying bacterial transmission pathways is crucial to inform strategies aimed at curbing the spread of pathogenic and antibiotic-resistant bacteria, especially in rapidly urbanizing low- and middle-income countries. In this study, we assessed bacterial strain-sharing and dissemination of antibiotic resistance across humans, domesticated poultry, canines, household soil, and drinking water in urban informal settlements in Nairobi, Kenya. We collected 321 samples from 50 households and performed Pooling Isolated Colonies-seq (PIC-seq) by sequencing pools of up to five Escherichia coli colonies per sample to capture strain diversity, strain-sharing patterns, and overlap of antibiotic-resistant genes (ARGs). Bacterial strains isolated from the household environment carried clinically relevant ARGs, reinforcing the role of the environment in antibiotic resistance dissemination. Strain-sharing rates and resistome similarities across sample types were strongly correlated within households, suggesting clonal spread of bacteria is a main driver of dissemination of ARGs in the domestic urban environment. Within households, E. coli strain-sharing was rare between humans and animals but more frequent between humans and drinking water. E. coli contamination in stored drinking water was also associated with higher strain-sharing between humans in the same household. Our study demonstrates that contaminated drinking water facilitates human to human strain sharing and water treatment can disrupt transmission.
Collapse
Affiliation(s)
- Daehyun D. Kim
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Jenna M. Swarthout
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| | - Colin J. Worby
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, USA
| | | | - John Mboya
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Ashlee M. Earl
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, USA
| | | | - Amy J. Pickering
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub – San Francisco
- Blum Center for Developing Economies, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
18
|
Karakaya E, Abay S, Aydin F. The phylogroups and antibiotic susceptibilities of Escherichia coli isolates from the feces of Anatolian Ground Squirrels (Spermophilus xanthoprymnus). Microb Pathog 2024; 193:106783. [PMID: 38969188 DOI: 10.1016/j.micpath.2024.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The current study was conducted to determine the phylogroups and antibiotic susceptibilities of Escherichia coli isolates recovered from fecal samples of Anatolian Ground Squirrels (Spermophilus xanthoprymnus) and to examine the relationship between them. Eighty-two E. coli isolates obtained from 150 fecal samples were investigated. The quadruplex polymerase chain reaction (PCR), phylogroup C-, and E-specific mPCR were subjected to phylogenetic typing of the isolates. The susceptibilities to fifteen antibiotics of the isolates were detected by the disk diffusion method. In the result of phylogenetic typing, phylogroup B2 was most predominant (58.6 %), followed by B1 (25.6 %), E (8.5 %), C (4.9 %), and D (2.4 %). The phylogroup A, F, and Escherichia clades were not detected. The antibiotic susceptibility test revealed that 59.8 % (49/82) and 19.5 % (16/82) of E. coli isolates were resistant to at least one antibiotic and multidrug-resistant (MDR), respectively. Twenty-six (31.7 %), 19 (23.2 %), 11 (13.4 %), and 10 (12.2 %) of the isolates were found to be resistant to gentamicin, tetracycline, amoxicillin-clavulanic acid, and cefoxitin. Of the 49 E. coli isolates that were found to be resistant to any antibiotic analyzed, 30, 13, 4, and 2 were located in phylogroup B2, B1, E, and D, respectively. MDR isolates were mostly located in both phylogroup B1 (31.3 %) and B2 (31.3 %). In conclusion, data from the current study suggest that the isolates may potentially have pathogenic properties, since the majority (69.5 %) of E. coli isolates from fecal samples of Spermophilus xanthoprymnus were located in the pathogenic phylogroup and resistance to various antibiotics was detected.
Collapse
Affiliation(s)
- Emre Karakaya
- Erciyes University, Faculty of Veterinary Medicine, Department of Microbiology, Kayseri, Türkiye.
| | - Seçil Abay
- Erciyes University, Faculty of Veterinary Medicine, Department of Microbiology, Kayseri, Türkiye
| | - Fuat Aydin
- Erciyes University, Faculty of Veterinary Medicine, Department of Microbiology, Kayseri, Türkiye
| |
Collapse
|
19
|
Li X, Hu H, Zhu Y, Wang T, Lu Y, Wang X, Peng Z, Sun M, Chen H, Zheng J, Tan C. Population structure and antibiotic resistance of swine extraintestinal pathogenic Escherichia coli from China. Nat Commun 2024; 15:5811. [PMID: 38987310 PMCID: PMC11237156 DOI: 10.1038/s41467-024-50268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Extraintestinal Pathogenic Escherichia coli (ExPEC) pose a significant threat to human and animal health. However, the diversity and antibiotic resistance of animal ExPEC, and their connection to human infections, remain largely unexplored. The study performs large-scale genome sequencing and antibiotic resistance testing of 499 swine-derived ExPEC isolates from China. Results show swine ExPEC are phylogenetically diverse, with over 80% belonging to phylogroups B1 and A. Importantly, 15 swine ExPEC isolates exhibit genetic relatedness to human-origin E. coli strains. Additionally, 49 strains harbor toxins typical of enteric E. coli pathotypes, implying hybrid pathotypes. Notably, 97% of the total strains are multidrug resistant, including resistance to critical human drugs like third- and fourth-generation cephalosporins. Correspondingly, genomic analysis unveils prevalent antibiotic resistance genes (ARGs), often associated with co-transfer mechanisms. Furthermore, analysis of 20 complete genomes illuminates the transmission pathways of ARGs within swine ExPEC and to human pathogens. For example, the transmission of plasmids co-harboring fosA3, blaCTX-M-14, and mcr-1 genes between swine ExPEC and human-origin Salmonella enterica is observed. These findings underscore the importance of monitoring and controlling ExPEC infections in animals, as they can serve as a reservoir of ARGs with the potential to affect human health or even be the origin of pathogens infecting humans.
Collapse
Affiliation(s)
- Xudong Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huifeng Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Yongwei Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Taiquan Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Youlan Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Zhong Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| |
Collapse
|
20
|
Hamilton KA, Wade MJ, Barnes KG, Street RA, Paterson S. Wastewater-based epidemiology as a public health resource in low- and middle-income settings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124045. [PMID: 38677460 DOI: 10.1016/j.envpol.2024.124045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/14/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
In the face of emerging and re-emerging diseases, novel and innovative approaches to population scale surveillance are necessary for the early detection and quantification of pathogens. The last decade has seen the rapid development of wastewater and environmental surveillance (WES) to address public health challenges, which has led to establishment of wastewater-based epidemiology (WBE) approaches being deployed to monitor a range of health hazards. WBE exploits the fact that excretions and secretions from urine, and from the gut are discharged in wastewater, particularly sewage, such that sampling sewage systems provides an early warning system for disease outbreaks by providing an early indication of pathogen circulation. While WBE has been mainly used in locations with networked wastewater systems, here we consider its value for less connected populations typical of lower-income settings, and in assess the opportunity afforded by pit latrines to sample communities and localities. We propose that where populations struggle to access health and diagnostic facilities, and despite several additional challenges, sampling unconnected wastewater systems remains an important means to monitor the health of large populations in a relatively cost-effective manner.
Collapse
Affiliation(s)
- K A Hamilton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom; International Livestock Research Institute, Nairobi, Kenya, PO Box 30709-00100.
| | - M J Wade
- Data, Analytics & Surveillance Group, UK Health Security Agency, London United Kingdom
| | - K G Barnes
- Malawi-Liverpool-Wellcome Programme (MLW), Blantyre, Malawi; Harvard School of Public Health, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - R A Street
- South African Medical Research Council, Cape Town, Western Cape, South Africa
| | - S Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| |
Collapse
|
21
|
Strasheim W, Lowe M, Smith AM, Etter EMC, Perovic O. Whole-Genome Sequencing of Human and Porcine Escherichia coli Isolates on a Commercial Pig Farm in South Africa. Antibiotics (Basel) 2024; 13:543. [PMID: 38927209 PMCID: PMC11200671 DOI: 10.3390/antibiotics13060543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Escherichia coli is an indicator micro-organism in One Health antibiotic resistance surveillance programs. The purpose of the study was to describe and compare E. coli isolates obtained from pigs and human contacts from a commercial farm in South Africa using conventional methods and whole-genome sequencing (WGS). Porcine E. coli isolates were proportionally more resistant phenotypically and harbored a richer diversity of antibiotic resistance genes as compared to human E. coli isolates. Different pathovars, namely ExPEC (12.43%, 21/169), ETEC (4.14%, 7/169), EPEC (2.96%, 5/169), EAEC (2.96%, 5/169) and STEC (1.18%, 2/169), were detected at low frequencies. Sequence type complex (STc) 10 was the most prevalent (85.51%, 59/169) among human and porcine isolates. Six STcs (STc10, STc86, STc168, STc206, STc278 and STc469) were shared at the human-livestock interface according to multilocus sequence typing (MLST). Core-genome MLST and hierarchical clustering (HC) showed that human and porcine isolates were overall genetically diverse, but some clustering at HC2-HC200 was observed. In conclusion, even though the isolates shared a spatiotemporal relationship, there were still differences in the virulence potential, antibiotic resistance profiles and cgMLST and HC according to the source of isolation.
Collapse
Affiliation(s)
- Wilhelmina Strasheim
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Michelle Lowe
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa
| | - Anthony M. Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa;
- Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Eric M. C. Etter
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- CIRAD, UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), 97170 Petit-Bourg, France
- ASTRE, University of Montpellier, CIRAD, INRAE, 34398 Montpellier, France
| | - Olga Perovic
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
22
|
Flatgard BM, Williams AD, Amin MB, Hobman JL, Stekel DJ, Rousham EK, Islam MA. Tracking antimicrobial resistance transmission in urban and rural communities in Bangladesh: a One Health study of genomic diversity of ESBL-producing and carbapenem-resistant Escherichia coli. Microbiol Spectr 2024; 12:e0395623. [PMID: 38700359 PMCID: PMC11237648 DOI: 10.1128/spectrum.03956-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to global health and sustainable development goals, especially in low- and middle-income countries (LMICs). This study aimed to understand the transmission of AMR between poultry, humans, and the environment in Bangladesh using a One Health approach. We analyzed the whole genome sequences (WGS) of 117 extended-spectrum β-lactamase-producing Escherichia coli (ESBL-Ec) isolates, with 46 being carbapenem resistant. These isolates were obtained from human (n = 20) and poultry feces (n = 12), as well as proximal environments (wastewater) (n = 85) of three different study sites, including rural households (n = 48), rural poultry farms (n = 20), and urban wet markets (n = 49). The WGS of ESBL-Ec isolates were compared with 58 clinical isolates from global databases. No significant differences in antibiotic resistance genes (ARGs) were observed in ESBL-Ec isolated from humans with and without exposure to poultry. Environmental isolates showed higher ARG diversity than human and poultry isolates. No clonal transmission between poultry and human isolates was found, but wastewater was a reservoir for ESBL-Ec for both. Except for one human isolate, all ESBL-Ec isolates were distinct from clinical isolates. Most isolates (77.8%) carried at least one plasmid replicon type, with IncFII being the most prevalent. IncFIA was predominant in human isolates, while IncFII, Col(MG828), and p0111 were common in poultry. We observed putative sharing of ARG-carrying plasmids among isolates, mainly from wastewater. However, in most cases, bacterial isolates sharing plasmids were also clonally related, suggesting clonal spread was more probable than just plasmid transfer. IMPORTANCE Our study underscores that wastewater discharged from households and wet markets carries antibiotic-resistant organisms from both human and animal sources. Thus, direct disposal of wastewater into the environment not only threatens human health but also endangers food safety by facilitating the spread of antimicrobial resistance (AMR) to surface water, crops, vegetables, and subsequently to food-producing animals. In regions with intensive poultry production heavily reliant on the prophylactic use of antibiotics, compounded by inadequate waste management systems, such as Bangladesh, the ramifications are particularly pronounced. Wastewater serves as a pivotal juncture for the dissemination of antibiotic-resistant organisms and functions as a pathway through which strains of human and animal origin can infiltrate the environment and potentially colonize new hosts. Further research is needed to thoroughly characterize wastewater isolates/populations and understand their potential impact on interconnected environments, communities, and wildlife.
Collapse
Affiliation(s)
- Brandon M. Flatgard
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Alexander D. Williams
- Laboratory of Data Discovery for Health Ltd, Hong Kong Science and Technology Park, Tai Po, Hong Kong, China
- School of Public Health, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | | | - Jon L. Hobman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, United Kingdom
| | - Dov J. Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, United Kingdom
- Department of Mathematics and Applied Mathematics, University of Johannesburg, Johannesburg, South Africa
| | - Emily K. Rousham
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Mohammad Aminul Islam
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
- Laboratory of Food Safety and One Health, icddr,b, Dhaka, Bangladesh
| |
Collapse
|
23
|
Lewnard JA, Charani E, Gleason A, Hsu LY, Khan WA, Karkey A, Chandler CIR, Mashe T, Khan EA, Bulabula ANH, Donado-Godoy P, Laxminarayan R. Burden of bacterial antimicrobial resistance in low-income and middle-income countries avertible by existing interventions: an evidence review and modelling analysis. Lancet 2024; 403:2439-2454. [PMID: 38797180 DOI: 10.1016/s0140-6736(24)00862-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/18/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
National action plans enumerate many interventions as potential strategies to reduce the burden of bacterial antimicrobial resistance (AMR). However, knowledge of the benefits achievable by specific approaches is needed to inform policy making, especially in low-income and middle-income countries (LMICs) with substantial AMR burden and low health-care system capacity. In a modelling analysis, we estimated that improving infection prevention and control programmes in LMIC health-care settings could prevent at least 337 000 (95% CI 250 200-465 200) AMR-associated deaths annually. Ensuring universal access to high-quality water, sanitation, and hygiene services would prevent 247 800 (160 000-337 800) AMR-associated deaths and paediatric vaccines 181 500 (153 400-206 800) AMR-associated deaths, from both direct prevention of resistant infections and reductions in antibiotic consumption. These estimates translate to prevention of 7·8% (5·6-11·0) of all AMR-associated mortality in LMICs by infection prevention and control, 5·7% (3·7-8·0) by water, sanitation, and hygiene, and 4·2% (3·4-5·1) by vaccination interventions. Despite the continuing need for research and innovation to overcome limitations of existing approaches, our findings indicate that reducing global AMR burden by 10% by the year 2030 is achievable with existing interventions. Our results should guide investments in public health interventions with the greatest potential to reduce AMR burden.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA.
| | - Esmita Charani
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Alec Gleason
- One Health Trust, Bengaluru, India; High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| | - Li Yang Hsu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Wasif Ali Khan
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Clare I R Chandler
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK; Antimicrobial Resistance Centre, London School of Hygiene & Tropical Medicine, London, UK
| | - Tapfumanei Mashe
- One Health Office, Ministry of Health and Child Care, Harare, Zimbabwe; Health System Strengthening Unit, WHO, Harare, Zimbabwe
| | - Ejaz Ahmed Khan
- Department of Pediatrics, Shifa Tameer-e-Millat University, Shifa International Hospital, Islamabad, Pakistan
| | - Andre N H Bulabula
- Division of Disease Control and Prevention, Africa Centres for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Pilar Donado-Godoy
- AMR Global Health Research Unit, Colombian Integrated Program of Antimicrobial Resistance Surveillance, Corporación Colombiana de Investigación Agropecuaria, Cundinamarca, Colombia
| | - Ramanan Laxminarayan
- One Health Trust, Bengaluru, India; High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
24
|
Song H, Yoo JS, Unno T. Discerning the dissemination mechanisms of antibiotic resistance genes through whole genome sequencing of extended-spectrum beta-lactamase (ESBL)-producing E. coli isolated from veterinary clinics and farms in South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172068. [PMID: 38554973 DOI: 10.1016/j.scitotenv.2024.172068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing bacteria are resistant to most beta-lactams, including third-generation cephalosporins, limiting the treatment methods against the infections they cause. In this study, we performed whole genome sequencing of ESBL-producing E. coli to determine the mechanisms underlying the dissemination of antibiotic resistance genes. We analyzed 141 ESBL-producing isolates which had been collected from 16 veterinary clinics and 16 farms in South Korea. Long- and short-read sequencing platforms were used to obtain high-quality assemblies. The results showed that blaCTX-M is the dominant ESBL gene type found in South Korea. The spread of blaCTX-M appears to have been facilitated by both clonal spread between different host species and conjugation. Most blaCTX-M genes were found associated with diverse mobile genetic elements that may contribute to the chromosomal integration of the genes. Diverse incompatibility groups of blaCTX-M-harboring plasmids were also observed, which allows their spread among a variety of bacteria. Comprehensive whole genome sequence analysis was useful for the identification of the most prevalent types of ESBL genes and their dissemination mechanisms. The results of this study suggest that the propagation of ESBL genes can occur through clonal spread and plasmid-mediated dissemination, and that suitable action plans should be developed to prevent further propagation of these genes.
Collapse
Affiliation(s)
- Hokyung Song
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Jung Sik Yoo
- Division of Antimicrobial Resistance Research, National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea
| | - Tatsuya Unno
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Seowon-Gu, Cheongju 28644, Republic of Korea.
| |
Collapse
|
25
|
Djordjevic SP, Jarocki VM, Seemann T, Cummins ML, Watt AE, Drigo B, Wyrsch ER, Reid CJ, Donner E, Howden BP. Genomic surveillance for antimicrobial resistance - a One Health perspective. Nat Rev Genet 2024; 25:142-157. [PMID: 37749210 DOI: 10.1038/s41576-023-00649-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 09/27/2023]
Abstract
Antimicrobial resistance (AMR) - the ability of microorganisms to adapt and survive under diverse chemical selection pressures - is influenced by complex interactions between humans, companion and food-producing animals, wildlife, insects and the environment. To understand and manage the threat posed to health (human, animal, plant and environmental) and security (food and water security and biosecurity), a multifaceted 'One Health' approach to AMR surveillance is required. Genomic technologies have enabled monitoring of the mobilization, persistence and abundance of AMR genes and mutations within and between microbial populations. Their adoption has also allowed source-tracing of AMR pathogens and modelling of AMR evolution and transmission. Here, we highlight recent advances in genomic AMR surveillance and the relative strengths of different technologies for AMR surveillance and research. We showcase recent insights derived from One Health genomic surveillance and consider the challenges to broader adoption both in developed and in lower- and middle-income countries.
Collapse
Affiliation(s)
- Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia.
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia.
| | - Veronica M Jarocki
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Torsten Seemann
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Max L Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Anne E Watt
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Barbara Drigo
- UniSA STEM, University of South Australia, Adelaide, South Australia, Australia
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Ethan R Wyrsch
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Cameron J Reid
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food, and Environments (CRC SAAFE), Adelaide, South Australia, Australia
| | - Benjamin P Howden
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Li J, Song Y, Deng J, Wang Z, Wong NK, Wang C, Zhang G, Wang Y, Lu S, Che J, Zhao X, Zhang Z, Wang H, Zhang L, Zhang Y, Bai X, Yuan M, Chen X, Zhang W, Xiong Y, Kan B, Feng J. Deciphering the pivotal role of people with high-frequency occupational animal exposure in antibiotic resistance transmission between humans and animals. J Antimicrob Chemother 2024; 79:27-35. [PMID: 37944030 DOI: 10.1093/jac/dkad307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/19/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) among humans and food-producing animals has been widely reported. However, the transmission routes and associated risk factors remain incompletely understood. METHODS Here, we used commensal Escherichia coli bacteria strains from faeces of pigs and local citizens [HEG: high exposure group (pig breeders, butchers or restaurant chefs) and LEG: low exposure group (other occupations)] to explore the dynamics of ARB and ARG transmission between animals and humans. RESULTS Most ARGs (96%) present in pigs were shared with humans. Carriage rates of the shared ARGs suggest two transmission patterns among pigs, the HEG and LEG: one pattern was highest in pigs, gradually decreasing in the HEG and LEG (e.g. floR and cmlA1); the other pattern was increasing from pigs to the HEG but then decreasing in the LEG (e.g. mcr-1.1). Carriage rates of the HEG were higher than in the LEG in both patterns, implicating the HEG as a crucial medium in transmitting ARB and ARGs between food-producing animals and humans. Moreover, frequent inter/intragroup transmission via strains, plasmids and/or mobile elements was evident. Carriage of mcr-1.1 on human-gut-prevalent plasmids possibly promoted its enrichment in the HEG. CONCLUSIONS The HEG is a crucial factor in transmitting ARB and ARGs between food-producing animals and humans. Rational measures to contain the risks of occupational exposure are urgently needed to keep dissemination of antibiotic resistance in check and safeguard public health.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianping Deng
- Zi Gong Center for Disease Control and Prevention, Zi Gong, Si Chuan Province 643000, China
| | - Zhaoran Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Gang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Shan Lu
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jie Che
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiaofei Zhao
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - ZhengDong Zhang
- Zi Gong Center for Disease Control and Prevention, Zi Gong, Si Chuan Province 643000, China
| | - Hong Wang
- Zi Gong Center for Disease Control and Prevention, Zi Gong, Si Chuan Province 643000, China
| | - Ling Zhang
- Zi Gong Center for Disease Control and Prevention, Zi Gong, Si Chuan Province 643000, China
| | - YunFei Zhang
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xuemei Bai
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Min Yuan
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xia Chen
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wen Zhang
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yanwen Xiong
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Biao Kan
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Sanderson H, White AP. Methods for Genomic Epidemiology of Bacterial Pathogens: Example Salmonella. Methods Mol Biol 2024; 2813:19-37. [PMID: 38888768 DOI: 10.1007/978-1-0716-3890-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Genomics has revolutionized how we characterize and monitor infectious diseases for public health. The surveillance and characterization of Salmonella has improved drastically within the past decade. In this chapter, we discuss the prerequisites for good bacterial genomics studies and make note of advantages and disadvantages of this research approach. We discuss methods for outbreak detection and the evolutionary and epidemiological characterization of Salmonella spp. We provide an outline for determining the sequence type and serotype of isolates, building a core genome phylogenetic tree, and detecting antimicrobial resistance genes, virulence factors, and mobile genetic elements. These methods can be used to study other pathogenic bacterial species.
Collapse
Affiliation(s)
- Haley Sanderson
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Biological Informatics Center of Excellence, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Aaron P White
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
28
|
Mohamed HS, Galal L, Hayer J, Benavides JA, Bañuls AL, Dupont C, Conquet G, Carrière C, Dumont Y, Didelot MN, Michon AL, Jean-Pierre H, Aboubaker MH, Godreuil S. Genomic epidemiology of carbapenemase-producing Gram-negative bacteria at the human-animal-environment interface in Djibouti city, Djibouti. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167160. [PMID: 37730061 DOI: 10.1016/j.scitotenv.2023.167160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
The emergence of carbapenem resistance is a major public health threat in sub-Saharan Africa but remains poorly understood, particularly at the human-animal-environment interface. This study provides the first One Health-based study on the epidemiology of Carbapenemase-Producing Gram-Negative Bacteria (CP-GNB) in Djibouti City, Djibouti, East Africa. In total, 800 community urine samples and 500 hospital specimens from humans, 270 livestock fecal samples, 60 fish samples, and 20 water samples were collected and tested for carbapenem resistance. The overall estimated CP-GNB prevalence was 1.9 % (32/1650 samples) and specifically concerned 0.3 % of community urine samples, 2.8 % of clinical specimens, 2.6 % of livestock fecal samples, 11.7 % of fish samples, and 10 % of water samples. The 32 CP-GNB included 19 Escherichia coli, seven Acinetobacter baumannii, five Klebsiella pneumoniae, and one Proteus mirabilis isolate. Short-read (Illumina) and long-read (Nanopore) genome sequencing revealed that carbapenem resistance was mainly associated with chromosomal carriage of blaNDM-1, blaOXA-23, blaOXA-48, blaOXA-66, and blaOXA-69 in A. baumannii, and with plasmid carriage in Enterobacterales (blaNDM-1 and blaOXA-181 in E. coli, blaNDM-1, blaNDM-5 and blaOXA-48 in K. pneumoniae, and blaNDM-1 in P. mirabilis). Moreover, 17/32 CP-GNB isolates belonged to three epidemic clones: (1) A. baumannii sequence type (ST) 1697,2535 that showed a distribution pattern consistent with intra- and inter-hospital dissemination; (2) E. coli ST10 that circulated at the human-animal-environment interface; and (3) K. pneumoniae ST147 that circulated at the human-environment interface. Horizontal exchanges probably contributed to carbapenem resistance dissemination in the city, especially the blaOXA-181-carrying ColKP3-IncX3 hybrid plasmid that was found in E. coli isolates belonging to different STs. Our study highlights that despite a relatively low CP-GNB prevalence in Djibouti City, plasmids harboring carbapenem resistance circulate in humans, animals and environment. Our findings stress the need to implement preventive and control measures for reducing the circulation of this potentially emerging public health threat.
Collapse
Affiliation(s)
- Hasna Saïd Mohamed
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France; Hôpital Général Peltier de Djibouti, Djibouti ville, Djibouti; Laboratoire de Biologie Médicale de la Mer Rouge, Djibouti City, Djibouti
| | - Lokman Galal
- UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.
| | - Juliette Hayer
- UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Julio A Benavides
- UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France; Doctorado en Medicina de la Conservación y Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 440, Santiago, Chile
| | - Anne-Laure Bañuls
- UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France; LMI DRISA, Montpellier, France
| | - Chloé Dupont
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Guilhem Conquet
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Christian Carrière
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Yann Dumont
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Marie-Noëlle Didelot
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Anne-Laure Michon
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Hélène Jean-Pierre
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Mohamed Houmed Aboubaker
- Laboratoire de Biologie Médicale de la Mer Rouge, Djibouti City, Djibouti; Laboratoire de la Caisse Nationale de Sécurité Sociale, Djibouti City 696, Djibouti
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France; Jeune Equipe Associée à l'IRD (JEAI), FASORAM, Montpellier, France
| |
Collapse
|
29
|
Muloi DM, Jauneikaite E, Anjum MF, Essack SY, Singleton DA, Kasudi MR, Wade MJ, Egyir B, Nunn JG, Midega JT, Peacock SJ, Feasey NA, Baker KS, Zadoks RN. Exploiting genomics for antimicrobial resistance surveillance at One Health interfaces. THE LANCET. MICROBE 2023; 4:e1056-e1062. [PMID: 37977165 DOI: 10.1016/s2666-5247(23)00284-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 11/19/2023]
Abstract
The intersection of human, animal, and ecosystem health at One Health interfaces is recognised as being of key importance in the evolution and spread of antimicrobial resistance (AMR) and represents an important, and yet rarely realised opportunity to undertake vital AMR surveillance. A working group of international experts in pathogen genomics, AMR, and One Health convened to take part in a workshop series and online consultation focused on the opportunities and challenges facing genomic AMR surveillance in a range of settings. Here we outline the working group's discussion of the potential utility, advantages of, and barriers to, the implementation of genomic AMR surveillance at One Health interfaces and propose a series of recommendations for addressing these challenges. Embedding AMR surveillance at One Health interfaces will require the development of clear beneficial use cases, especially in low-income and middle-income countries. Evidence of directionality, risks to human and animal health, and potential trade implications were also identified by the working group as key issues. Addressing these challenges will be vital to enable genomic surveillance technology to reach its full potential for assessing the risk of transmission of AMR between the environment, animals, and humans at One Health interfaces.
Collapse
Affiliation(s)
- Dishon M Muloi
- Animal and Human Health Department, International Livestock Research Institute, Nairobi, Kenya; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London, UK
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, UK
| | - Sabiha Y Essack
- Antimicrobial Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - David A Singleton
- Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, UK
| | - Mitchelle R Kasudi
- Animal and Human Health Department, International Livestock Research Institute, Nairobi, Kenya
| | - Matthew J Wade
- Data Analytics and Surveillance Group, UK Health Security Agency, London, UK; School of Engineering, Newcastle University, Newcastle-upon-Tyne, UK
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Jamie G Nunn
- Infectious Disease Challenge Area, Wellcome Trust, London, UK
| | | | | | - Nicholas A Feasey
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi Liverpool Wellcome Research Programme, Chichiri, Blantyre, Malawi
| | - Kate S Baker
- Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, UK; Department of Genetics, University of Cambridge, Cambridge, UK.
| | - Ruth N Zadoks
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia; School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
30
|
Malavez Y, Nieves-Miranda SM, Loperena Gonzalez PN, Padin-Lopez AF, Xiaoli L, Dudley EG. Exploring Antimicrobial Resistance Profiles of E. coli Isolates in Dairy Cattle: A Baseline Study across Dairy Farms with Varied Husbandry Practices in Puerto Rico. Microorganisms 2023; 11:2879. [PMID: 38138023 PMCID: PMC10745463 DOI: 10.3390/microorganisms11122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023] Open
Abstract
Antimicrobial treatment in livestock can contribute to the emergence and spread of antimicrobial-resistant (AMR) microorganisms. Despite substantial surveillance of AMR bacteria in the continental United States, the prevalence of these AMR organisms in U.S. territories, such as Puerto Rico, remains understudied. The goals of this research included obtaining baseline data on the antimicrobial profile of E. coli isolates from Puerto Rico dairy farms with different husbandry practices. Seventy-nine fecal samples were collected from two types of conventional dairy farms: those that fed calves with tank milk and those that fed calves with waste milk. These samples were collected from the animals' rectums, culture, and subsequently confirmed through biochemical tests. Out of these samples, 32 isolates were analyzed phenotypically and genotypically to elucidate their AMR profiles. The results underscore a discrepancy in the occurrence of antimicrobial resistance genes between calves and adult cattle. Notably, waste milk-fed calves exhibited a significantly higher prevalence of antibiotic-resistant E. coli when compared to their tank milk-fed counterparts. These disparities emphasize the need for more comprehensive investigations to determine causative factors. These results underscore the urgency of comprehensive strategies to raise awareness about how management practices influence antimicrobial resistance, shifting the focus from treatment to prevention.
Collapse
Affiliation(s)
- Yadira Malavez
- Department of Natural Sciences, University of Puerto Rico, Aguadilla, PR 00603, USA; (S.M.N.-M.); (A.F.P.-L.)
- Department of Biology, Industrial Biotechnology Program, University of Puerto Rico, Mayagüez, PR 00681, USA
- Department of Animal Sciences, Agricultural Experimental Station, University of Puerto Rico, Mayagüez, PR 00681, USA
| | - Sharon M. Nieves-Miranda
- Department of Natural Sciences, University of Puerto Rico, Aguadilla, PR 00603, USA; (S.M.N.-M.); (A.F.P.-L.)
| | - Paola N. Loperena Gonzalez
- Department of Natural Sciences, University of Puerto Rico, Aguadilla, PR 00603, USA; (S.M.N.-M.); (A.F.P.-L.)
| | - Adrian F. Padin-Lopez
- Department of Natural Sciences, University of Puerto Rico, Aguadilla, PR 00603, USA; (S.M.N.-M.); (A.F.P.-L.)
| | - Lingzi Xiaoli
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA (E.G.D.)
| | - Edward G. Dudley
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA (E.G.D.)
- E. coli Reference Center, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
31
|
Baker KK, Simiyu S, Busienei P, Gutema FD, Okoth B, Agira J, Amondi CS, Ziraba A, Kapanka AG, Osinuga A, Ouma C, Sewell DK, Gaire S, Tumwebaze IK, Mberu B. Protocol for the PATHOME study: a cohort study on urban societal development and the ecology of enteric disease transmission among infants, domestic animals and the environment. BMJ Open 2023; 13:e076067. [PMID: 38000826 PMCID: PMC10680014 DOI: 10.1136/bmjopen-2023-076067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION Global morbidity from enteric infections and diarrhoea remains high in children in low-income and middle-income countries, despite significant investment over recent decades in health systems and water and sanitation infrastructure. Other types of societal development may be required to reduce disease burden. Ecological research on the influence of household and neighbourhood societal development on pathogen transmission dynamics between humans, animals and the environment could identify more effective strategies for preventing enteric infections. METHODS AND ANALYSIS The 'enteric pathome'-that is, the communities of viral, bacterial and parasitic pathogens transmitted from human and animal faeces through the environment is taxonomically complex in high burden settings. This integrated cohort-exposure assessment study leverages natural socioeconomic spectrums of development to study how pathome complexity is influenced by household and neighbourhood infrastructure and hygiene conditions. We are enrolling under 12-month-old children in low-income and middle-income neighbourhoods of two Kenyan cities (Nairobi and Kisumu) into a 'short-cohort' study involving repeat testing of child faeces for enteric pathogens. A mid-study exposure assessment documenting infrastructural, behavioural, spatial, climate, environmental and zoonotic factors characterises pathogen exposure pathways in household and neighbourhood settings. These data will be used to inform and validate statistical and agent-based models (ABM) that identify individual or combined intervention strategies for reducing multipathogen transmission between humans, animals and environment in urban Kenya. ETHICS AND DISSEMINATION The protocols for human subjects' research were approved by Institutional Review Boards at the University of Iowa (ID-202004606) and AMREF Health Africa (ID-ESRC P887/2020), and a national permit was obtained from the Kenya National Commission for Science Technology and Innovation (ID# P/21/8441). The study was registered on Clinicaltrials.gov (Identifier: NCT05322655) and is in pre-results stage. Protocols for research on animals were approved by the University of Iowa Animal Care and Use Committee (ID 0042302).
Collapse
Affiliation(s)
- Kelly K Baker
- Department of Occupational and Environmental Health, The University of Iowa College of Public Health, Iowa City, Iowa, USA
| | - Sheillah Simiyu
- Division of Population Dynamics and Urbanization, African Population and Health Research Center, Nairobi, Kenya
| | - Phylis Busienei
- Division of Population Dynamics and Urbanization, African Population and Health Research Center, Nairobi, Kenya
| | - Fanta D Gutema
- Department of Occupational and Environmental Health, The University of Iowa College of Public Health, Iowa City, Iowa, USA
| | - Bonphace Okoth
- Division of Population Dynamics and Urbanization, African Population and Health Research Center, Nairobi, Kenya
| | - John Agira
- Division of Population Dynamics and Urbanization, African Population and Health Research Center, Nairobi, Kenya
| | - Christine S Amondi
- Division of Population Dynamics and Urbanization, African Population and Health Research Center, Nairobi, Kenya
| | - Abdhalah Ziraba
- Division of Health and Wellbeing, African Population and Health Research Center, Nairobi, Kenya
| | - Alexis G Kapanka
- Department of Occupational and Environmental Health, The University of Iowa College of Public Health, Iowa City, Iowa, USA
| | - Abisola Osinuga
- Department of Occupational and Environmental Health, The University of Iowa College of Public Health, Iowa City, Iowa, USA
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Daniel K Sewell
- Department of Biostatistics, The University of Iowa College of Public Health, Iowa City, Iowa, USA
| | - Sabin Gaire
- Department of Biostatistics, The University of Iowa College of Public Health, Iowa City, Iowa, USA
| | - Innocent K Tumwebaze
- Division of Population Dynamics and Urbanization, African Population and Health Research Center, Nairobi, Kenya
| | - Blessing Mberu
- Division of Population Dynamics and Urbanization, African Population and Health Research Center, Nairobi, Kenya
| |
Collapse
|
32
|
|
33
|
Nadimpalli ML, Stegger M, Viau R, Yith V, de Lauzanne A, Sem N, Borand L, Huynh BT, Brisse S, Passet V, Overballe-Petersen S, Aziz M, Gouali M, Jacobs J, Phe T, Hungate BA, Leshyk VO, Pickering AJ, Gravey F, Liu CM, Johnson TJ, Hello SL, Price LB. Plugging the leaks: antibiotic resistance at human-animal interfaces in low-resource settings. FRONTIERS IN ECOLOGY AND THE ENVIRONMENT 2023; 21:428-434. [PMID: 38464945 PMCID: PMC10923528 DOI: 10.1002/fee.2639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Antibiotic resistance is one of the greatest public health challenges of our time. International efforts to curb resistance have largely focused on drug development and limiting unnecessary antibiotic use. However, in areas where water, sanitation, and hygiene infrastructure is lacking, we propose that bacterial flow between humans and animals can exacerbate the emergence and spread of resistant pathogens. Here, we describe the consequences of poor environmental controls by comparing mobile resistance elements among Escherichia coli recovered from humans and meat in Cambodia, a middle-income country with substantial human-animal connectivity and unregulated antibiotic use. We identified identical mobile resistance elements and a conserved transposon region that were widely dispersed in both humans and animals, a phenomenon rarely observed in high-income settings. Our findings indicate that plugging leaks at human-animal interfaces should be a critical part of addressing antibiotic resistance in low- and especially middle-income countries.
Collapse
Affiliation(s)
- Maya L Nadimpalli
- Gangarosa Department of Environmental Health, Emory Rollins School of Public Health, Atlanta, GA
- Stuart B Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia
| | - Roberto Viau
- Stuart B Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA
- Department of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA
| | - Vuthy Yith
- Laboratory of Environment and Food Safety, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Agathe de Lauzanne
- Epidemiology and Public Health Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Nita Sem
- Laboratory of Environment and Food Safety, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Laurence Borand
- Epidemiology and Public Health Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Bich-tram Huynh
- Université Paris-Saclay, UVSQ, Inserm, Anti-Infective Evasion and Pharmacoepidemiology Team, CESP, Montigny le Bretonneux, France
- UMR 1181, Inserm, University of Versailles Saint-Quentin-en-Yvelines, Saint-Quentin-en-Yvelines, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Virginie Passet
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | | | - Maliha Aziz
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC
| | - Malika Gouali
- Laboratory of Environment and Food Safety, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
- Enteric Bacterial Pathogens Unit, Institut Pasteur, Paris, France
| | - Jan Jacobs
- Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Thong Phe
- Sihanouk Hospital Center for Hope, Phnom Penh, Cambodia
| | - Bruce A Hungate
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ
| | - Victor O Leshyk
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ
| | - Amy J Pickering
- Stuart B Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA
- Department of Civil and Environmental Engineering, University of California–Berkeley, Berkeley, CA
| | - François Gravey
- Université de Caen Normandie, Université de Rouen Normandie, Inserm, DYNAMICURE UMR 1311, CHU Caen, Caen, France
- Department of Bacteriology, CHU Caen, Caen, France
| | - Cindy M Liu
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St Paul, MN
| | - Simon Le Hello
- Enteric Bacterial Pathogens Unit, Institut Pasteur, Paris, France
- Université de Caen Normandie, Université de Rouen Normandie, Inserm, DYNAMICURE UMR 1311, CHU Caen, Caen, France
- Department of Bacteriology, CHU Caen, Caen, France
| | - Lance B Price
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC
| |
Collapse
|
34
|
Martínez JL, Baquero F. What are the missing pieces needed to stop antibiotic resistance? Microb Biotechnol 2023; 16:1900-1923. [PMID: 37417823 PMCID: PMC10527211 DOI: 10.1111/1751-7915.14310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023] Open
Abstract
As recognized by several international agencies, antibiotic resistance is nowadays one of the most relevant problems for human health. While this problem was alleviated with the introduction of new antibiotics into the market in the golden age of antimicrobial discovery, nowadays few antibiotics are in the pipeline. Under these circumstances, a deep understanding on the mechanisms of emergence, evolution and transmission of antibiotic resistance, as well as on the consequences for the bacterial physiology of acquiring resistance is needed to implement novel strategies, beyond the development of new antibiotics or the restriction in the use of current ones, to more efficiently treat infections. There are still several aspects in the field of antibiotic resistance that are not fully understood. In the current article, we make a non-exhaustive critical review of some of them that we consider of special relevance, in the aim of presenting a snapshot of the studies that still need to be done to tackle antibiotic resistance.
Collapse
Affiliation(s)
| | - Fernando Baquero
- Ramón y Cajal Institute for Health Research (IRYCIS), Department of MicrobiologyRamón y Cajal University Hospital, CIBER en Epidemiología y Salud Pública (CIBERESP)MadridSpain
| |
Collapse
|
35
|
Byarugaba DK, Wokorach G, Alafi S, Erima B, Najjuka F, Mworozi EA, Kibuuka H, Wabwire-Mangen F. Whole Genome Sequencing Reveals High Genetic Diversity, Diverse Repertoire of Virulence-Associated Genes and Limited Antibiotic Resistance Genes among Commensal Escherichia coli from Food Animals in Uganda. Microorganisms 2023; 11:1868. [PMID: 37630428 PMCID: PMC10457813 DOI: 10.3390/microorganisms11081868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 08/27/2023] Open
Abstract
Commensal Escherichia coli with broad repertoire of virulence and antimicrobial resistance (AMR) genes pose serious public health risks as reservoirs of AMR and virulence. This study undertook whole genome characterization of commensal E. coli from food-producing animals in Uganda to investigate their genome variability (resistome and virulome). We established that the E. coli had high genomic diversity with 38 sequence types, 24 FimH types, and 33 O-antigen serotypes randomly distributed within three phylogroups (A, B1, and E). A greater proportion (≥93.65%) of the E. coli were resistant to amoxicillin/clavulanate and ampicillin antibiotics. The isolates were AmpC beta-lactamase producers dominated by blaEC-15 (71.88%) and tet(A) (20.31%) antimicrobial resistant genes besides a diverse armory of virulence-associated genes in the class of exotoxin, adhesins, iron uptake, and serine protease autotransporters which varied by host species. Cattle were found to be the major source of E. coli carrying Shiga toxin genes, whereas swine was the main source of E. coli carrying colicin-like Usp toxin gene. The study underscores the importance of livestock as the carrier of E. coli with antimicrobial resistance and a large repertoire of virulence traits with a potential of causing disease in animals and humans by acquiring more genetic traits.
Collapse
Affiliation(s)
- Denis K. Byarugaba
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
- College of Veterinary Medicine, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Godfrey Wokorach
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
- Gulu University Multifunctional Research Laboratories, Gulu P.O. Box 166, Uganda
| | - Stephen Alafi
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
| | - Bernard Erima
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
| | - Florence Najjuka
- College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Edison A. Mworozi
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
- College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
| | - Fred Wabwire-Mangen
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
- College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| |
Collapse
|
36
|
Hassell JM, Muloi DM, VanderWaal KL, Ward MJ, Bettridge J, Gitahi N, Ouko T, Imboma T, Akoko J, Karani M, Muinde P, Nakamura Y, Alumasa L, Furmaga E, Kaitho T, Amanya F, Ogendo A, Fava F, Wee BA, Phan H, Kiiru J, Kang’ethe E, Kariuki S, Robinson T, Begon M, Woolhouse MEJ, Fèvre EM. Epidemiological connectivity between humans and animals across an urban landscape. Proc Natl Acad Sci U S A 2023; 120:e2218860120. [PMID: 37450494 PMCID: PMC10629570 DOI: 10.1073/pnas.2218860120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/19/2023] [Indexed: 07/18/2023] Open
Abstract
Urbanization is predicted to be a key driver of disease emergence through human exposure to novel, animal-borne pathogens. However, while we suspect that urban landscapes are primed to expose people to novel animal-borne diseases, evidence for the mechanisms by which this occurs is lacking. To address this, we studied how bacterial genes are shared between wild animals, livestock, and humans (n = 1,428) across Nairobi, Kenya-one of the world's most rapidly developing cities. Applying a multilayer network framework, we show that low biodiversity (of both natural habitat and vertebrate wildlife communities), coupled with livestock management practices and more densely populated urban environments, promotes sharing of Escherichia coli-borne bacterial mobile genetic elements between animals and humans. These results provide empirical support for hypotheses linking resource provision, the biological simplification of urban landscapes, and human and livestock demography to urban dynamics of cross-species pathogen transmission at a landscape scale. Urban areas where high densities of people and livestock live in close association with synanthropes (species such as rodents that are more competent reservoirs for zoonotic pathogens) should be prioritized for disease surveillance and control.
Collapse
Affiliation(s)
- James M. Hassell
- Global Health Program, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC20008
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, CT06510
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, LiverpoolL69 3BX, United Kingdom
| | - Dishon M. Muloi
- Usher Institute, University of Edinburgh, EdinburghEH16 4SS, United Kingdom
- International Livestock Research Institute, 00100Nairobi, Kenya
- Centre for Immunity, Infection and Evolution, University of Edinburgh, EdinburghEH9 3FL, United Kingdom
| | - Kimberly L. VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN55108
| | - Melissa J. Ward
- Usher Institute, University of Edinburgh, EdinburghEH16 4SS, United Kingdom
- Nuffield Department of Clinical Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Faculty of Medicine, University of Southampton, SouthamtonSO17 1BJ, United Kingdom
| | - Judy Bettridge
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, LiverpoolL69 3BX, United Kingdom
- International Livestock Research Institute, 00100Nairobi, Kenya
| | | | - Tom Ouko
- Kenya Medical Research Institute, 00200Nairobi, Kenya
| | | | - James Akoko
- International Livestock Research Institute, 00100Nairobi, Kenya
| | - Maurice Karani
- International Livestock Research Institute, 00100Nairobi, Kenya
| | - Patrick Muinde
- International Livestock Research Institute, 00100Nairobi, Kenya
| | - Yukiko Nakamura
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo060-0818, Japan
| | - Lorren Alumasa
- International Livestock Research Institute, 00100Nairobi, Kenya
| | - Erin Furmaga
- Department of Epidemiology, Columbia University, New York, NY10032
| | - Titus Kaitho
- Veterinary Services Department, Kenya Wildlife Service, 00100Nairobi, Kenya
| | - Fredrick Amanya
- International Livestock Research Institute, 00100Nairobi, Kenya
| | - Allan Ogendo
- International Livestock Research Institute, 00100Nairobi, Kenya
| | - Francesco Fava
- International Livestock Research Institute, 00100Nairobi, Kenya
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133Milan, Italy
| | - Bryan A. Wee
- Usher Institute, University of Edinburgh, EdinburghEH16 4SS, United Kingdom
| | - Hang Phan
- Nuffield Department of Clinical Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
| | - John Kiiru
- Kenya Medical Research Institute, 00200Nairobi, Kenya
| | | | - Sam Kariuki
- Kenya Medical Research Institute, 00200Nairobi, Kenya
| | - Timothy Robinson
- Food and Agriculture Organization of the United Nations, 00153Rome, Italy
| | - Michael Begon
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, LiverpoolL69 3BX, United Kingdom
| | - Mark E. J. Woolhouse
- Usher Institute, University of Edinburgh, EdinburghEH16 4SS, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, EdinburghEH9 3FL, United Kingdom
| | - Eric M. Fèvre
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, LiverpoolL69 3BX, United Kingdom
- International Livestock Research Institute, 00100Nairobi, Kenya
| |
Collapse
|
37
|
Caudell MA, Ayodo C, Ita T, Smith RM, Luvsansharav UO, Styczynski AR, Ramay BM, Kariuki S, Palmer GH, Call DR, Omulo S. Risk Factors for Colonization With Multidrug-Resistant Bacteria in Urban and Rural Communities in Kenya: An Antimicrobial Resistance in Communities and Hospitals (ARCH) Study. Clin Infect Dis 2023; 77:S104-S110. [PMID: 37406050 DOI: 10.1093/cid/ciad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Colonization with antimicrobial-resistant bacteria increases the risk of drug-resistant infections. We identified risk factors potentially associated with human colonization with extended-spectrum cephalosporin-resistant Enterobacterales (ESCrE) in low-income urban and rural communities in Kenya. METHODS Fecal specimens, demographic and socioeconomic data were collected cross-sectionally from clustered random samples of respondents in urban (Kibera, Nairobi County) and rural (Asembo, Siaya County) communities between January 2019 and March 2020. Presumptive ESCrE isolates were confirmed and tested for antibiotic susceptibility using the VITEK2 instrument. We used a path analytic model to identify potential risk factors for colonization with ESCrE. Only 1 participant was included per household to minimize household cluster effects. RESULTS Stool samples from 1148 adults (aged ≥18 years) and 268 children (aged <5 years) were analyzed. The likelihood of colonization increased by 12% with increasing visits to hospitals and clinics. Furthermore, individuals who kept poultry were 57% more likely to be colonized with ESCrE than those who did not. Respondents' sex, age, use of improved toilet facilities, and residence in a rural or urban community were associated with healthcare contact patterns and/or poultry keeping and may indirectly affect ESCrE colonization. Prior antibiotic use was not significantly associated with ESCrE colonization in our analysis. CONCLUSIONS The risk factors associated with ESCrE colonization in communities include healthcare- and community-related factors, indicating that efforts to control antimicrobial resistance in community settings must include community- and hospital-level interventions.
Collapse
Affiliation(s)
- Mark A Caudell
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Charchil Ayodo
- Washington State University Global Health-Kenya, Nairobi, Kenya
| | - Teresa Ita
- Washington State University Global Health-Kenya, Nairobi, Kenya
| | - Rachel M Smith
- Division of Healthcare Quality Promotion, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ulzii-Orshikh Luvsansharav
- Division of Healthcare Quality Promotion, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ashley R Styczynski
- Division of Healthcare Quality Promotion, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Brooke M Ramay
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | | | - Guy H Palmer
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
- Washington State University Global Health-Kenya, Nairobi, Kenya
- University of Nairobi Institute of Tropical and Infectious Diseases, Nairobi, Kenya
| | - Douglas R Call
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Sylvia Omulo
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
- Washington State University Global Health-Kenya, Nairobi, Kenya
- University of Nairobi Institute of Tropical and Infectious Diseases, Nairobi, Kenya
| |
Collapse
|
38
|
Cocker D, Chidziwisano K, Mphasa M, Mwapasa T, Lewis JM, Rowlingson B, Sammarro M, Bakali W, Salifu C, Zuza A, Charles M, Mandula T, Maiden V, Amos S, Jacob ST, Kajumbula H, Mugisha L, Musoke D, Byrne R, Edwards T, Lester R, Elviss N, Roberts AP, Singer AC, Jewell C, Morse T, Feasey NA. Investigating One Health risks for human colonisation with extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Malawian households: a longitudinal cohort study. THE LANCET. MICROBE 2023; 4:e534-e543. [PMID: 37207684 PMCID: PMC10319635 DOI: 10.1016/s2666-5247(23)00062-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Low-income countries have high morbidity and mortality from drug-resistant infections, especially from enteric bacteria such as Escherichia coli. In these settings, sanitation infrastructure is of variable and often inadequate quality, creating risks of extended-spectrum β-lactamase (ESBL)-producing Enterobacterales transmission. We aimed to describe the prevalence, distribution, and risks of ESBL-producing Enterobacterales colonisation in sub-Saharan Africa using a One Health approach. METHODS Between April 29, 2019, and Dec 3, 2020, we recruited 300 households in Malawi for this longitudinal cohort study: 100 each in urban, peri-urban, and rural settings. All households underwent a baseline visit and 195 were selected for longitudinal follow-up, comprising up to three additional visits over a 6 month period. Data on human health, antibiotic usage, health-seeking behaviours, structural and behavioural environmental health practices, and animal husbandry were captured alongside human, animal, and environmental samples. Microbiological processing determined the presence of ESBL-producing E coli and Klebsiella pneumoniae, and hierarchical logistic regression was performed to evaluate the risks of human ESBL-producing Enterobacterales colonisation. FINDINGS A paucity of environmental health infrastructure and materials for safe sanitation was identified across all sites. A total of 11 975 samples were cultured, and ESBL-producing Enterobacterales were isolated from 1190 (41·8%) of 2845 samples of human stool, 290 (29·8%) of 973 samples of animal stool, 339 (66·2%) of 512 samples of river water, and 138 (46·0%) of 300 samples of drain water. Multivariable models illustrated that human ESBL-producing E coli colonisation was associated with the wet season (adjusted odds ratio 1·66, 95% credible interval 1·38-2·00), living in urban areas (2·01, 1·26-3·24), advanced age (1·14, 1·05-1·25), and living in households where animals were observed interacting with food (1·62, 1·17-2·28) or kept inside (1·58, 1·00-2·43). Human ESBL-producing K pneumoniae colonisation was associated with the wet season (2·12, 1·63-2·76). INTERPRETATION There are extremely high levels of ESBL-producing Enterobacterales colonisation in humans and animals and extensive contamination of the wider environment in southern Malawi. Urbanisation and seasonality are key risks for ESBL-producing Enterobacterales colonisation, probably reflecting environmental drivers. Without adequate efforts to improve environmental health, ESBL-producing Enterobacterales transmission is likely to persist in this setting. FUNDING Medical Research Council, National Institute for Health and Care Research, and Wellcome Trust. TRANSLATION For the Chichewa translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Derek Cocker
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Kondwani Chidziwisano
- Centre for Water, Sanitation, Health and Appropriate Technology Development, Malawi University of Business and Applied Sciences, Blantyre, Malawi; Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
| | - Madalitso Mphasa
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Taonga Mwapasa
- Centre for Water, Sanitation, Health and Appropriate Technology Development, Malawi University of Business and Applied Sciences, Blantyre, Malawi
| | - Joseph M Lewis
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Barry Rowlingson
- Centre for Health Informatics Computing and Statistics, Lancaster University, Lancaster, UK
| | - Melodie Sammarro
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Centre for Health Informatics Computing and Statistics, Lancaster University, Lancaster, UK
| | - Winnie Bakali
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Chifundo Salifu
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Allan Zuza
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Mary Charles
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Tamandani Mandula
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Victor Maiden
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Stevie Amos
- Centre for Water, Sanitation, Health and Appropriate Technology Development, Malawi University of Business and Applied Sciences, Blantyre, Malawi
| | - Shevin T Jacob
- Global Health Security Department, Infectious Disease Institute, Makerere University, Kampala, Uganda
| | - Henry Kajumbula
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - Lawrence Mugisha
- College of Health Sciences, and College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda; Conservation and Ecosystem Health Alliance, Kampala, Uganda
| | - David Musoke
- Department of Disease Control and Environmental Health, Makerere University, Kampala, Uganda
| | - Rachel Byrne
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Thomas Edwards
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Rebecca Lester
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Nicola Elviss
- Science Group, United Kingdom Health Security Agency, London, UK
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Christopher Jewell
- Centre for Health Informatics Computing and Statistics, Lancaster University, Lancaster, UK
| | - Tracy Morse
- Centre for Water, Sanitation, Health and Appropriate Technology Development, Malawi University of Business and Applied Sciences, Blantyre, Malawi; Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
| | - Nicholas A Feasey
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
39
|
Hounmanou YMG, Wanyana A, Alafi S, Wabwire-Mangen F, Christensen H, Olsen JE, Byarugaba DK. Whole strains vs MGEs in short and longterm transmission of ESBL genes between healthcare and community settings in Uganda. Sci Rep 2023; 13:10229. [PMID: 37353515 PMCID: PMC10290109 DOI: 10.1038/s41598-023-35879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/25/2023] [Indexed: 06/25/2023] Open
Abstract
Multidrug-resistant ESBL-producing Escherichia coli are a leading cause of infections in hospital and community settings. Based on samples from two hospitals in Uganda and households of inpatients we tested the hypothesis that ESBL E. coli and/or their resistance determinants could spread within the healthcare and community settings through discharged patients that were still colonized. We used bacterial culture, susceptibility testing whole genome sequencing and detailed bioinformatics analysis to test the above hypothesis. Genome analysis revealed presence of predominantly blaCTX-M-15 and blaOXA-1 genes with a total resistome with genes belonging to 14 different classes of antimicrobials. Short-term cases of strain sharing were reported within each setting and strains from the two settings were found to cluster together based on their overall resistome. Long-term horizontal transfer of ESBL genes by various IncF and IncY types of plasmids shared between healthcare and community settings was demonstrated. Based on hybrid assembly, plasmid reconstruction and phylogenetic analyses, our study suggests that while the dissemination of AMR between healthcare and community settings in the short-term is possible at whole strain level, the long-term transmission between healthcare and communities is sustained by the transfer of plasmids circulating across niches and disseminating related resistomes.
Collapse
Affiliation(s)
- Yaovi Mahuton Gildas Hounmanou
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Agnes Wanyana
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Stephen Alafi
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Fred Wabwire-Mangen
- School of Public Health, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Henrik Christensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Denis Karuhize Byarugaba
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda.
| |
Collapse
|
40
|
Fu Y, M’ikanatha NM, Dudley EG. Whole-Genome Subtyping Reveals Population Structure and Host Adaptation of Salmonella Typhimurium from Wild Birds. J Clin Microbiol 2023; 61:e0184722. [PMID: 37249426 PMCID: PMC10281135 DOI: 10.1128/jcm.01847-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Within-host evolution of bacterial pathogens can lead to host-associated variants of the same species or serovar. Identification and characterization of closely related variants from diverse host species are crucial to public health and host-pathogen adaptation research. However, the work remained largely underexplored at a strain level until the advent of whole-genome sequencing (WGS). Here, we performed WGS-based subtyping and analyses of Salmonella enterica serovar Typhimurium (n = 787) from different wild birds across 18 countries over a 75-year period. We revealed seven avian host-associated S. Typhimurium variants/lineages. These lineages emerged globally over short timescales and presented genetic features distinct from S. Typhimurium lineages circulating among humans and domestic animals. We further showed that, in terms of virulence, host adaptation of these variants was driven by genome degradation. Our results provide a snapshot of the population structure and genetic diversity of S. Typhimurium within avian hosts. We also demonstrate the value of WGS-based subtyping and analyses in unravelling closely related variants at the strain level.
Collapse
Affiliation(s)
- Yezhi Fu
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Edward G. Dudley
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- E. coli Reference Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
41
|
Massé J, Vanier G, Fairbrother JM, de Lagarde M, Arsenault J, Francoz D, Dufour S, Archambault M. Description of Antimicrobial-Resistant Escherichia coli and Their Dissemination Mechanisms on Dairy Farms. Vet Sci 2023; 10:vetsci10040242. [PMID: 37104397 PMCID: PMC10144642 DOI: 10.3390/vetsci10040242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
Despite its importance in veterinary medicine, there is little information about antimicrobial resistance (AMR) and its transmission in dairy cattle. The aim of this work is to compare AMR phenotypes and genotypes in resistant Escherichia coli and to determine how the resistance genes spread among the E. coli population on dairy farms in Québec, Canada. From an existing culture collection of E. coli isolated from dairy manure, a convenient selection of the most resistant isolates (a high level of multidrug resistance or resistance to broad-spectrum β-lactams or fluoroquinolones) was analyzed (n = 118). An AMR phenotype profile was obtained for each isolate. Whole genome sequencing was used to determine the presence of resistance genes, point mutations, and mobile genetic elements. In addition, a subset of isolates from 86 farms was taken to investigate the phylogenetic relationship and geographic distribution of the isolates. The average agreement between AMR phenotypes and genotypes was 95%. A third-generation cephalosporin resistance gene (blaCTX-M-15), a resistance gene conferring reduced susceptibility to fluoroquinolones (qnrS1), and an insertion sequence (ISKpn19) were detected in the vicinity of each other on the genome. These genes were harbored in one triplet of clonal isolates from three farms located >100 km apart. Our study reveals the dissemination of resistant E. coli clones between dairy farms. Furthermore, these clones are resistant to broad-spectrum β-lactam and fluoroquinolone antimicrobials.
Collapse
Affiliation(s)
- Jonathan Massé
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Ghyslaine Vanier
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- WOAH Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - John M Fairbrother
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- WOAH Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Maud de Lagarde
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Julie Arsenault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - David Francoz
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Simon Dufour
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie Archambault
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
42
|
Ramatla T, Tawana M, Lekota KE, Thekisoe O. Antimicrobial resistance genes of Escherichia coli, a bacterium of "One Health" importance in South Africa: Systematic review and meta-analysis. AIMS Microbiol 2023; 9:75-89. [PMID: 36891533 PMCID: PMC9988412 DOI: 10.3934/microbiol.2023005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
This is a systematic review and meta-analysis that evaluated the prevalence of Escherichia coli antibiotic-resistant genes (ARGs) in animals, humans, and the environment in South Africa. This study followed Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines to search and use literature published between 1 January 2000 to 12 December 2021, on the prevalence of South African E. coli isolates' ARGs. Articles were downloaded from African Journals Online, PubMed, ScienceDirect, Scopus, and Google Scholar search engines. A random effects meta-analysis was used to estimate the antibiotic-resistant genes of E. coli in animals, humans, and the environment. Out of 10764 published articles, only 23 studies met the inclusion criteria. The obtained results indicated that the pooled prevalence estimates (PPE) of E. coli ARGs was 36.3%, 34.4%, 32.9%, and 28.8% for blaTEM-M-1 , ampC, tetA, and bla TEM, respectively. Eight ARGs (blaCTX-M , blaCTX-M-1 , blaTEM , tetA, tetB, sul1, sulII, and aadA) were detected in humans, animals and the environmental samples. Human E. coli isolate samples harboured 38% of the ARGs. Analyzed data from this study highlights the occurrence of ARGs in E. coli isolates from animals, humans, and environmental samples in South Africa. Therefore, there is a necessity to develop a comprehensive "One Health" strategy to assess antibiotics use in order to understand the causes and dynamics of antibiotic resistance development, as such information will enable the formulation of intervention strategies to stop the spread of ARGs in the future.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| | - Mpho Tawana
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| | - Kgaugelo E Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| |
Collapse
|
43
|
Mills EG, Martin MJ, Luo TL, Ong AC, Maybank R, Corey BW, Harless C, Preston LN, Rosado-Mendez JA, Preston SB, Kwak YI, Backlund MG, Bennett JW, Mc Gann PT, Lebreton F. A one-year genomic investigation of Escherichia coli epidemiology and nosocomial spread at a large US healthcare network. Genome Med 2022; 14:147. [PMID: 36585742 PMCID: PMC9801656 DOI: 10.1186/s13073-022-01150-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Extra-intestinal pathogenic Escherichia coli (ExPEC) are a leading cause of bloodstream and urinary tract infections worldwide. Over the last two decades, increased rates of antibiotic resistance in E. coli have been reported, further complicating treatment. Worryingly, specific lineages expressing extended-spectrum β-lactamases (ESBLs) and fluoroquinolone resistance have proliferated and are now considered a serious threat. Obtaining contemporary information on the epidemiology and prevalence of these circulating lineages is critical for containing their spread globally and within the clinic. METHODS Whole-genome sequencing (WGS), phylogenetic analysis, and antibiotic susceptibility testing were performed for a complete set of 2075 E. coli clinical isolates collected from 1776 patients at a large tertiary healthcare network in the USA between October 2019 and September 2020. RESULTS The isolates represented two main phylogenetic groups, B2 and D, with six lineages accounting for 53% of strains: ST-69, ST-73, ST-95, ST-131, ST-127, and ST-1193. Twenty-seven percent of the primary isolates were multidrug resistant (MDR) and 5% carried an ESBL gene. Importantly, 74% of the ESBL-E.coli were co-resistant to fluoroquinolones and mostly belonged to pandemic ST-131 and emerging ST-1193. SNP-based detection of possible outbreaks identified 95 potential transmission clusters totaling 258 isolates (12% of the whole population) from ≥ 2 patients. While the proportion of MDR isolates was enriched in the set of putative transmission isolates compared to sporadic infections (35 vs 27%, p = 0.007), a large fraction (61%) of the predicted outbreaks (including the largest cluster grouping isolates from 12 patients) were caused by the transmission of non-MDR clones. CONCLUSION By coupling in-depth genomic characterization with a complete sampling of clinical isolates for a full year, this study provides a rare and contemporary survey on the epidemiology and spread of E. coli in a large US healthcare network. While surveillance and infection control efforts often focus on ESBL and MDR lineages, our findings reveal that non-MDR isolates represent a large burden of infections, including those of predicted nosocomial origins. This increased awareness is key for implementing effective WGS-based surveillance as a routine technology for infection control.
Collapse
Affiliation(s)
- Emma G. Mills
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Melissa J. Martin
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Ting L. Luo
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Ana C. Ong
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Rosslyn Maybank
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Brendan W. Corey
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Casey Harless
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Lan N. Preston
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Joshua A. Rosado-Mendez
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Scott B. Preston
- grid.414467.40000 0001 0560 6544Department of Pathology, Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Yoon I. Kwak
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Michael G. Backlund
- grid.414467.40000 0001 0560 6544Department of Pathology, Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Jason W. Bennett
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Patrick T. Mc Gann
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Francois Lebreton
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| |
Collapse
|
44
|
Muloi DM, Hassell JM, Wee BA, Ward MJ, Bettridge JM, Kivali V, Kiyong'a A, Ndinda C, Gitahi N, Ouko T, Imboma T, Akoko J, Murungi MK, Njoroge SM, Muinde P, Alumasa L, Kaitho T, Amanya F, Ogendo A, van Bunnik BAD, Kiiru J, Robinson TP, Kang'ethe EK, Kariuki S, Pedersen AB, Fèvre EM, Woolhouse MEJ. Genomic epidemiology of Escherichia coli: antimicrobial resistance through a One Health lens in sympatric humans, livestock and peri-domestic wildlife in Nairobi, Kenya. BMC Med 2022; 20:471. [PMID: 36482440 PMCID: PMC9730568 DOI: 10.1186/s12916-022-02677-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Livestock systems have been proposed as a reservoir for antimicrobial-resistant (AMR) bacteria and AMR genetic determinants that may infect or colonise humans, yet quantitative evidence regarding their epidemiological role remains lacking. Here, we used a combination of genomics, epidemiology and ecology to investigate patterns of AMR gene carriage in Escherichia coli, regarded as a sentinel organism. METHODS We conducted a structured epidemiological survey of 99 households across Nairobi, Kenya, and whole genome sequenced E. coli isolates from 311 human, 606 livestock and 399 wildlife faecal samples. We used statistical models to investigate the prevalence of AMR carriage and characterise AMR gene diversity and structure of AMR genes in different host populations across the city. We also investigated household-level risk factors for the exchange of AMR genes between sympatric humans and livestock. RESULTS We detected 56 unique acquired genes along with 13 point mutations present in variable proportions in human and animal isolates, known to confer resistance to nine antibiotic classes. We find that AMR gene community composition is not associated with host species, but AMR genes were frequently co-located, potentially enabling the acquisition and dispersal of multi-drug resistance in a single step. We find that whilst keeping livestock had no influence on human AMR gene carriage, the potential for AMR transmission across human-livestock interfaces is greatest when manure is poorly disposed of and in larger households. CONCLUSIONS Findings of widespread carriage of AMR bacteria in human and animal populations, including in long-distance wildlife species, in community settings highlight the value of evidence-based surveillance to address antimicrobial resistance on a global scale. Our genomic analysis provided an in-depth understanding of AMR determinants at the interfaces of One Health sectors that will inform AMR prevention and control.
Collapse
Affiliation(s)
- Dishon M Muloi
- Usher Institute, University of Edinburgh, Edinburgh, UK.
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK.
- International Livestock Research Institute, Nairobi, Kenya.
| | - James M Hassell
- International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - Bryan A Wee
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Melissa J Ward
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Judy M Bettridge
- International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
- Natural Resources Institute, University of Greenwich, Chatham Maritime, UK
| | - Velma Kivali
- International Livestock Research Institute, Nairobi, Kenya
| | - Alice Kiyong'a
- International Livestock Research Institute, Nairobi, Kenya
| | | | | | - Tom Ouko
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | - James Akoko
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Samuel M Njoroge
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Patrick Muinde
- International Livestock Research Institute, Nairobi, Kenya
| | - Lorren Alumasa
- International Livestock Research Institute, Nairobi, Kenya
| | - Titus Kaitho
- Veterinary Services Department, Kenya Wildlife Service, Nairobi, Kenya
| | | | - Allan Ogendo
- International Livestock Research Institute, Nairobi, Kenya
| | | | - John Kiiru
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Timothy P Robinson
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Amy B Pedersen
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Eric M Fèvre
- International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - Mark E J Woolhouse
- Usher Institute, University of Edinburgh, Edinburgh, UK.
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
45
|
Swarthout JM, Chan EMG, Garcia D, Nadimpalli ML, Pickering AJ. Human Colonization with Antibiotic-Resistant Bacteria from Nonoccupational Exposure to Domesticated Animals in Low- and Middle-Income Countries: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14875-14890. [PMID: 35947446 DOI: 10.1021/acs.est.2c01494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Data on community-acquired antibiotic-resistant bacterial infections are particularly sparse in low- and middle-income countries (LMICs). Limited surveillance and oversight of antibiotic use in food-producing animals, inadequate access to safe drinking water, and insufficient sanitation and hygiene infrastructure in LMICs could exacerbate the risk of zoonotic antibiotic resistance transmission. This critical review compiles evidence of zoonotic exchange of antibiotic-resistant bacteria (ARB) or antibiotic resistance genes (ARGs) within households and backyard farms in LMICs, as well as assesses transmission mechanisms, risk factors, and environmental transmission pathways. Overall, substantial evidence exists for exchange of antibiotic resistance between domesticated animals and in-contact humans. Whole bacteria transmission and horizontal gene transfer between humans and animals were demonstrated within and between households and backyard farms. Further, we identified water, soil, and animal food products as environmental transmission pathways for exchange of ARB and ARGs between animals and humans, although directionality of transmission is poorly understood. Herein we propose study designs, methods, and topical considerations for priority incorporation into future One Health research to inform effective interventions and policies to disrupt zoonotic antibiotic resistance exchange in low-income communities.
Collapse
Affiliation(s)
- Jenna M Swarthout
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Elana M G Chan
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Denise Garcia
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Maya L Nadimpalli
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, Massachusetts 02111, United States
| | - Amy J Pickering
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, Massachusetts 02111, United States
| |
Collapse
|
46
|
Lepper HC, Woolhouse MEJ, van Bunnik BAD. The Role of the Environment in Dynamics of Antibiotic Resistance in Humans and Animals: A Modelling Study. Antibiotics (Basel) 2022; 11:1361. [PMID: 36290019 PMCID: PMC9598675 DOI: 10.3390/antibiotics11101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
Antibiotic resistance is transmitted between animals and humans either directly or indirectly, through transmission via the environment. However, little is known about the contribution of the environment to resistance epidemiology. Here, we use a mathematical model to study the effect of the environment on human resistance levels and the impact of interventions to reduce antibiotic consumption in animals. We developed a model of resistance transmission with human, animal, and environmental compartments. We compared the model outcomes under different transmission scenarios, conducted a sensitivity analysis, and investigated the impacts of curtailing antibiotic usage in animals. Human resistance levels were most sensitive to parameters associated with the human compartment (rate of loss of resistance from humans) and with the environmental compartment (rate of loss of environmental resistance and rate of environment-to-human transmission). Increasing environmental transmission could lead to increased or reduced impact of curtailing antibiotic consumption in animals on resistance in humans. We highlight that environment-human sharing of resistance can influence the epidemiology of resistant bacterial infections in humans and reduce the impact of interventions that curtail antibiotic consumption in animals. More data on resistance in the environment and frequency of human-environment transmission is crucial to understanding antibiotic resistance dynamics.
Collapse
Affiliation(s)
- Hannah C. Lepper
- Usher Institute, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Mark E. J. Woolhouse
- Usher Institute, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Bram A. D. van Bunnik
- Usher Institute, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, UK
- Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| |
Collapse
|
47
|
Multidrug-Resistant Enteropathogenic Escherichia coli Isolated from Diarrhoeic Calves, Milk, and Workers in Dairy Farms: A Potential Public Health Risk. Antibiotics (Basel) 2022; 11:antibiotics11080999. [PMID: 35892389 PMCID: PMC9332572 DOI: 10.3390/antibiotics11080999] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a leading cause of diarrhoeagenic diseases in humans and cattle worldwide. The emergence of multidrug-resistant (MDR) EPEC from cattle sources is a public health concern. A total of 240 samples (75 diarrhoeic calves, 150 milk samples, and 15 workers) were examined for prevalence of EPEC in three dairy farms in Egypt. Antimicrobial resistance (AMR) traits were determined by antibiogram and polymerase chain reaction (PCR) detection of β-lactamase-encoding genes, plasmid-mediated quinolone resistance genes, and carbapenemase-encoding genes. The genetic relatedness of the isolates was assessed using repetitive extragenic palindromic sequence-based PCR (REP-PCR). EPEC isolates were detected in 22.7% (17/75) of diarrhoeic calves, 5.3% (8/150) of milk samples, and 20% (3/15) of worker samples. The detected serovars were O26 (5%), O111 (3.3%), O124 (1.6%), O126 (0.8%), and O55 (0.8%). AMR-EPEC (harbouring any AMR gene) was detected in 9.2% of samples. Among isolates, blaTEM was the most detected gene (39.3%), followed by blaSHV (32.1%) and blaCTX-M-1 (25%). The qnrA, qnrB, and qnrS genes were detected in 21.4%, 10.7%, and 7.1% of isolates, respectively. The blaVIM gene was detected in 14.3% of isolates. All EPEC (100%) isolates were MDR. High resistance rates were reported for ampicillin (100%), tetracycline (89.3%), cefazolin (71%), and ciprofloxacin (64.3%). Three O26 isolates and two O111 isolates showed the highest multiple-antibiotic resistance (MAR) indices (0.85–0.92); these isolates harboured blaSHV-12 and blaCTX-M-15 genes, respectively. REP-PCR genotyping showed high genetic diversity of EPEC, although isolates belonging to the same serotype or farm were clustered together. Two worker isolates (O111 and O26) showed high genetic similarity (80–95%) with diarrhoeic calf isolates of matched serotypes/farms. This may highlight potential inter-species transmission within the farm. This study highlights the potential high risk of cattle (especially diarrhoeic calves) as disseminators of MDR-EPEC and/or their AMR genes in the study area. Prohibition of non-prescribed use of antibiotics in dairy farms in Egypt is strongly warranted.
Collapse
|
48
|
Affiliation(s)
- Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.
| |
Collapse
|