1
|
Huang Y, Chen L, Chen Y, Zhou S, Xie X, Xie J, Yu M, Chen J. High-density lipoprotein-based nanoplatform reprograms tumor microenvironment and enhances chemotherapy against pancreatic ductal adenocarcinoma. Biomaterials 2025; 318:123147. [PMID: 39908877 DOI: 10.1016/j.biomaterials.2025.123147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 01/26/2025] [Indexed: 02/07/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive, with limited success in traditional therapies due to the fibrotic, immunosuppressive, pro-metastatic tumor microenvironment (TME), which collectively impede the drug accumulation and accelerate the tumor progression. In this work, we developed a PDAC-customized nutrient-mimicking reconstituted high-density lipoprotein (rHDL) capable of efficiently co-encapsulate versatile TME regulating cannabidiol and cytotoxic gemcitabine to simultaneously reprogram TME while suppressing PDAC progression. Specifically, a small-sized, nutrient-like rHDL was constructed to realize deep PDAC parenchyma penetration and efficient intra-tumoral uptake. Next, natural herbal compound cannabidiol was screened and incorporated into rHDL to regulate TME via attenuating fibrosis, reliving immunosuppression and mitigating metastatic tendency. At last, gemcitabine, the PDAC gold standard first-line therapy was co-delivered by the PDAC-customized rHDL to overcome drug resistance and amplify its PDAC suppression. Our findings demonstrate the feasibility of an integrated multi-stage TME regulation strategy for improved PDAC therapy, and might represent a modality in promoting chemotherapy against PDAC.
Collapse
Affiliation(s)
- Yukun Huang
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China; Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liang Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yu Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Songlei Zhou
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Xiaoying Xie
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Jing Xie
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Minghua Yu
- Fudan University Clinical Research Center for Cell-based Immunotherapy & Department of Oncology, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, China
| | - Jun Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
2
|
Zhou M, Mao X, Shen K, Zhan Q, Ni H, Liu C, Huang Z, Li R. FBLN2 inhibits gastric cancer proliferation and metastasis via the TGFβ/TGIF2 pathway. Pathol Res Pract 2025; 269:155899. [PMID: 40168772 DOI: 10.1016/j.prp.2025.155899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025]
Abstract
Gastric cancer (GC) ranks among the most common gastrointestinal tumours and is a significant contributor to cancer mortality globally. The proliferation, metastasis, occurrence and development of GC have obvious malignant tendencies. This study is based on our previous studies. Previously, we reported that Fibulin-2 (FBLN2) can inhibit the distant metastasis of GC by promoting lost-nest apoptosis. Despite its clinical importance, the biological function of FBLN2 in GC remains inadequately understood. This study investigated the underlying molecular mechanisms of FBLN2 in the pathogenesis and progression of GC, as well as its impact on the biological behaviour of GC cells. In vivo and in vitro experiments, we demonstrated that FBLN2 overexpression resulted in a reduction in GC cell proliferation and metastasis, whereas its knockdown led to enhancement of GC proliferation and metastasis. Moreover, we used RNA-seq technology to conduct KEGG enrichment analysis of differential genes in wild-type GC cells and FBLN2 knockout GC cells and successfully confirmed that FBLN2 plays a corresponding biological role through the TGFβ/TGIF2 axis. In addition, in terms of the clinical data, we revealed a correlation between FBLN2 and TGIF2 and patient prognosis. In summary, our study revealed that FBLN2 suppressed GC proliferation, migration and invasion by downregulating the TGFβ/TGIF2 axis, suggesting that FBLN2 is a promising target for GC treatment.
Collapse
Affiliation(s)
- Ming Zhou
- Jiangsu Institute of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Xiaozhe Mao
- Jiangsu Institute of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Qin Zhan
- Jiangsu Institute of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Haoxiang Ni
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun Liu
- Department of Gastroenterology, The People's Hospital of Suzhou New District, Suzhou, China
| | - Ziyi Huang
- Jiangsu Institute of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Li X, Pan L, Li W, Liu B, Xiao C, Chew V, Zhang X, Long W, Ginhoux F, Loscalzo J, Buggert M, Zhang X, Sheng R, Wang Z. Deciphering immune predictors of immunotherapy response: A multiomics approach at the pan-cancer level. Cell Rep Med 2025; 6:101992. [PMID: 40054456 DOI: 10.1016/j.xcrm.2025.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 04/18/2025]
Abstract
Immune checkpoint blockade (ICB) therapy has transformed cancer treatment, yet many patients fail to respond. Employing single-cell multiomics, we unveil T cell dynamics influencing ICB response across 480 pan-cancer and 27 normal tissue samples. We identify four immunotherapy response-associated T cells (IRATs) linked to responsiveness or resistance and analyze their pseudotemporal patterns, regulatory mechanisms, and T cell receptor clonal expansion profiles specific to each response. Notably, transforming growth factor β1 (TGF-β1)+ CD4+ and Temra CD8+ T cells negatively correlate with therapy response, in stark contrast to the positive response associated with CXCL13+ CD4+ and CD8+ T cells. Validation with a cohort of 23 colorectal cancer (CRC) samples confirms the significant impact of TGF-β1+ CD4+ and CXCL13+ CD4+ and CD8+ T cells on ICB efficacy. Our study highlights the effectiveness of single-cell multiomics in pinpointing immune markers predictive of immunotherapy outcomes, providing an important resource for crafting targeted immunotherapies for successful ICB treatment across cancers.
Collapse
Affiliation(s)
- Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110032, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning 110122, China; Department of Physiology and Pharmacology, Karolinska Institutet, 171 65 Solna, Sweden.
| | - Lu Pan
- Institute of Environmental Medicine, Karolinska Institutet, 171 65 Solna, Sweden
| | - Weiyuan Li
- School of Medicine, Yunnan University, Kunming, Yunnan 650091, China; Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Bingyang Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Chunjie Xiao
- School of Medicine, Yunnan University, Kunming, Yunnan 650091, China
| | - Valerie Chew
- Translational Immunology Institute (TII), SingHealth-Duke NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Xuan Zhang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Wang Long
- Department of Pathology, Nihon University, Tokyo 102-0074, Japan
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore; Institut Gustave Roussy, INSERM U1015, Bâtiment de Médecine Moléculaire 114 rue Edouard Vaillant, 94800 Villejuif, France; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Xiaolu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, China.
| | - Ren Sheng
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110819, China; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510000, China.
| | - Zhenning Wang
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning 110122, China; The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
4
|
Sun Z, Zhao W, Fei X, He B, Shi L, Zhang Z, Cai S. Static magnetic field inhibits epithelial mesenchymal transition and metastasis of glioma. Sci Rep 2025; 15:12430. [PMID: 40216876 PMCID: PMC11992211 DOI: 10.1038/s41598-025-96047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Gliomas exhibit suboptimal responses to conventional treatments, with tumor cell migration remaining a significant challenge in therapy. Epithelial-mesenchymal transition (EMT) is crucial for glioma cell invasion, and transforming growth factor β1(TGF-β1) is a key factor promoting proliferation, migration, and EMT in glioblastoma (GBM). Although magnetic fields are widely used in the diagnosis and treatment of various diseases, their effects on EMT in glioma cells remain unclear. In this study, we investigated whether a static magnetic field (SMF) could inhibit EMT and metastasis in glioma cells. Cellular functional assays using the U251 and U87 glioma cell lines were performed to investigate their functional and phenotypic changes. Results showed that TGF-β1 treatment increased the invasion and migration capabilities of glioma cells, while simultaneously reducing apoptosis. However, when SMF was combined with TGF-β1 treatment, a significant reduction in cell migration and invasion was observed, along with an increase in apoptosis. Additionally, this combination treatment significantly decreased the protein expression of mesenchymal markers N-cadherin and β-catenin, as well as reduced the levels of the matrix metalloproteinase (MMP)-2. Collectively, these findings suggest that SMFs may attenuate glioma cell metastasis by inhibiting EMT. Therefore, SMFs could represent a promising therapeutic strategy for diminishing glioma metastasis.
Collapse
Affiliation(s)
- Ziyu Sun
- Department of Neurosurgery, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, People's Republic of China
| | - Wenxuan Zhao
- Department of Neurosurgery, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, People's Republic of China
| | - Xifeng Fei
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, People's Republic of China
| | - Bao He
- Department of Neurosurgery, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, People's Republic of China
| | - Lei Shi
- Department of Neurosurgery, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, People's Republic of China.
| | - Zhen Zhang
- Department of Radiology, Affiliated Kunshan Hospital of Jiangsu University, China Medical University, Gusu School Nanjing Medical University, Suzhou, People's Republic of China.
| | - Shizhong Cai
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Zhao H, Niu M, Guo Y, Li Q, Wang Y, Jiang Q, Song Q, Zhang Y, Wang L. A lipid starvation strategy-synergized neutrophil activation for postoperative melanoma immunotherapy. J Control Release 2025; 380:860-874. [PMID: 39952297 DOI: 10.1016/j.jconrel.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Abnormal metabolism of melanoma cells on lipids reveals that breaking their lipid addiction provides a starvation strategy to enhance immunotherapy effects and reduce resistance. Herein, we propose an extracellular matrix-inspired scaffold fabricated by multiple cross-linking of collagen and elastin encapsulated with fatty acid transporter proteins (FATP) inhibitor lipofermata (Lipo) to close the "valve" of lipid transported into both melanoma cells and pro-tumor neutrophils. Meanwhile, model TGF-β inhibitor loaded in scaffold synergized with Lipo to polarize postoperative locally enriched neutrophils towards cytotoxic N1 phenotypes after blocking their energy supply and modulate postsurgical immunosuppressive tumor microenvironment. These N1 neutrophils induced tumor pyroptosis through a reactive oxygen species (ROS)-dependent pathway under melanoma cells suffered starvation, and the intracellular contents released from dead melanoma cells stimulated macrophages into producing proinflammatory cytokines, which recruited a secondary wave of neutrophils to the tumor site. Benefiting from the N1 neutrophil induced tumor pyroptosis feedback loop in situ, adaptive and memory antitumor immunity is activated for suppressing aggressive melanoma recurrence and metastasis. Altogether, this lipid starvation strategy synergized with neutrophil activation for amplification of tumor-specific immunotherapy provides a new paradigm for pyroptosis-mediated postsurgical melanoma therapy.
Collapse
Affiliation(s)
- Hongjuan Zhao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China
| | - Mengya Niu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China
| | - Yuxin Guo
- School of Pharmaceutical Sciences, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China
| | - Qing Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China
| | - Yinke Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China
| | - Qianqian Jiang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China
| | - Qingling Song
- School of Pharmaceutical Sciences, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Arai M, Hanada M, Taniguchi H, Nakajima F, Ohmoto H, Inoue T, Naka K, Sawa M. Discovery of HM-279, a Potent Inhibitor of ALK5 for Improving Therapeutic Efficacy of Cancer Immunotherapy. J Med Chem 2025; 68:7106-7118. [PMID: 40108955 DOI: 10.1021/acs.jmedchem.4c02293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Activin receptor-like kinase 5 (ALK5) is a type I receptor serine/threonine kinase and responsible for the TGF-β signaling pathway. ALK5 is thought to be a key player in the tumor microenvironment to promote tumor progression by affecting the anticancer immunity. Therefore, ALK5 is an attractive drug target for modulating TGF-β signaling pathways to improve the therapeutic efficacy of cancer immunotherapy. We report the optimization of a series of thiazole analogues starting from lead compound 6, focusing on improving off-target selectivity. Compound 19f (HM-279) was identified as a potent ALK5 inhibitor with an acceptable off-target selectivity and favorable ADME/PK properties. Oral administration of HM-279 demonstrated antitumor activity in a CT26.WT colon carcinoma syngeneic mouse model as a single agent and in combination with the anti-PD-1 antibody through CD8+ T cell immunity.
Collapse
Affiliation(s)
- Mai Arai
- Research and Development, Carna Biosciences, Inc., BMA 3F, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Mitsuharu Hanada
- Research and Development, Carna Biosciences, Inc., BMA 3F, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Haruka Taniguchi
- Research and Development, Carna Biosciences, Inc., BMA 3F, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Fumio Nakajima
- Research and Development, Carna Biosciences, Inc., BMA 3F, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hiroshi Ohmoto
- Research and Development, Carna Biosciences, Inc., BMA 3F, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Kazuhito Naka
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Masaaki Sawa
- Research and Development, Carna Biosciences, Inc., BMA 3F, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
7
|
Mai Z, Chen X, Lu Y, Zheng J, Lin Y, Lin P, Zheng Y, Zhou Z, Xu R, Guo B, Cui L, Zhao X. Orchestration of immunoregulatory signaling ligand and receptor dynamics by mRNA modifications: Implications for therapeutic potential. Int J Biol Macromol 2025; 310:142987. [PMID: 40210040 DOI: 10.1016/j.ijbiomac.2025.142987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
RNA modifications are pivotal regulators of gene expression, significantly influencing immune responses by modulating the stability and translation of mRNAs encoding key immunoregulatory ligands and receptors. Among these modifications, N6-methyladenosine (m6A) is the most abundant and well-characterized, orchestrating immune evasion, T-cell exhaustion, and cytokine production by dynamically regulating transcripts such as PD-L1, IFN-γ, and TGF-β. These modifications critically impact the function and availability of proteins essential for maintaining immune homeostasis and shaping adaptive immune responses. This review comprehensively examines established and emerging roles of mRNA modifications in regulating immunoregulatory signaling, including co-inhibitory and co-stimulatory molecules, chemokines, cytokines, and transforming growth factor-β. We highlight how m6A writers, erasers, and readers finely regulate immune checkpoints and inflammatory pathways across cancer, infection, and autoimmune diseases. Furthermore, the review provides a critical analysis of current discrepancies in the field, emphasizing factors contributing to inconsistencies and offering insights into the complex nature of epigenetic regulation. Challenges and limitations in this rapidly evolving area are also discussed. Advancing detection technologies and developing specific inhibitors targeting RNA-modifying proteins will be crucial for precisely modulating immune responses, paving the way for innovations in precision medicine and immunotherapy.
Collapse
Affiliation(s)
- Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Zihao Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China; School of Dentistry, University of California, Los Angeles, Los Angeles 90095, CA, USA.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China.
| |
Collapse
|
8
|
Sammarco A, Guerra G, Eyme KM, Kennewick K, Qiao Y, El Hokayem J, Williams KJ, Su B, Cakici C, Mnatsakanyan H, Zappulli V, Bensinger SJ, Badr CE. Targeting SCD triggers lipotoxicity of cancer cells and enhances anti-tumor immunity in breast cancer brain metastasis mouse models. Commun Biol 2025; 8:562. [PMID: 40185889 PMCID: PMC11971295 DOI: 10.1038/s42003-025-07977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Breast cancer brain metastases (BCBM) are incurable, and new therapies are urgently needed. BCBM upregulates stearoyl-CoA desaturase (SCD), an enzyme that catalyzes the synthesis of monounsaturated fatty acids, suggesting a potential metabolic vulnerability. Here, we test the effect of a brain-penetrant, clinical-stage SCD inhibitor (SCDi) on breast cancer cells and mouse models of BCBM. We show that SCDi markedly reshapes the lipidome of breast cancer cells, resulting in endoplasmic reticulum stress, DNA damage, impaired DNA damage repair, and cytotoxicity. Importantly, SCDi alone or combined with a PARP inhibitor prolongs the survival of BCBM-bearing mice. Furthermore, pharmacological inhibition of SCD enhances antigen presentation by dendritic cells, increases interferon signaling, promotes the infiltration of cytotoxic T cells, and decreases the proportion of exhausted T cells and regulatory T cells (Tregs) in the tumor microenvironment (TME) in a syngeneic mouse model of BCBM. Additionally, SCDi reduces the engagement of immunosuppressive pathways, including the PD-1:PD-L1/PD-L2 and PVR/TIGIT axes in the TME. These findings suggest that SCD inhibition could be an effective strategy to both intrinsically reduce tumor growth and reprogram anti-tumor immunity in the brain microenvironment to treat BCBM.
Collapse
Affiliation(s)
- Alessandro Sammarco
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy.
| | - Giorgia Guerra
- Graduate School of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Katharina M Eyme
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Kelly Kennewick
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Qiao
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joelle El Hokayem
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin J Williams
- UCLA Lipidomics Lab, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Baolong Su
- UCLA Lipidomics Lab, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cagri Cakici
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Hayk Mnatsakanyan
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Steven J Bensinger
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Lipidomics Lab, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christian E Badr
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Neuroscience Program, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Ma L, Mao JH, Barcellos-Hoff MH. Systemic inflammation in response to radiation drives the genesis of an immunosuppressed tumor microenvironment. Neoplasia 2025; 64:101164. [PMID: 40184664 PMCID: PMC11999686 DOI: 10.1016/j.neo.2025.101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
The composition of the tumor immune microenvironment has become a major determinant of response to therapy, particularly immunotherapy. Clinically, a tumor microenvironment lacking lymphocytes, so-called "cold" tumors, are considered poor candidates for immune checkpoint inhibition. In this review, we describe the diversity of the tumor immune microenvironment in breast cancer and how radiation exposure alters carcinogenesis. We review the development and use of a radiation-genetic mammary chimera model to clarify the mechanism by which radiation acts. Using the chimera model, we demonstrate that systemic inflammation elicited by a low dose of radiation is key to the construction of an immunosuppressive tumor microenvironment, resulting in aggressive, rapidly growing tumors lacking lymphocytes. Our experimental studies inform the non-mutagenic mechanisms by which radiation affects cancer and provide insight into the genesis of cold tumors.
Collapse
Affiliation(s)
- Lin Ma
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, School of Medicine, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94143 USA.
| |
Collapse
|
10
|
Liu S, Liu C, He Y, Li J. Benign non-immune cells in tumor microenvironment. Front Immunol 2025; 16:1561577. [PMID: 40248695 PMCID: PMC12003390 DOI: 10.3389/fimmu.2025.1561577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 04/19/2025] Open
Abstract
The tumor microenvironment (TME) is a highly complex and continuous evolving ecosystem, consisting of a diverse array of cellular and non-cellular components. Among these, benign non-immune cells, including cancer-associated fibroblasts (CAFs), adipocytes, endothelial cells (ECs), pericytes (PCs), Schwann cells (SCs) and others, are crucial factors for tumor development. Benign non-immune cells within the TME interact with both tumor cells and immune cells. These interactions contribute to tumor progression through both direct contact and indirect communication. Numerous studies have highlighted the role that benign non-immune cells exert on tumor progression and potential tumor-promoting mechanisms via multiple signaling pathways and factors. However, these benign non-immune cells may play different roles across cancer types. Therefore, it is important to understand the potential roles of benign non-immune cells within the TME based on tumor heterogeneity. A deep understanding allows us to develop novel cancer therapies by targeting these cells. In this review, we will introduce several types of benign non-immune cells that exert on different cancer types according to tumor heterogeneity and their roles in the TME.
Collapse
Affiliation(s)
- Shaowen Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunhui Liu
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Li
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
11
|
Linderman SW, DeRidder L, Sanjurjo L, Foote MB, Alonso MJ, Kirtane AR, Langer R, Traverso G. Enhancing immunotherapy with tumour-responsive nanomaterials. Nat Rev Clin Oncol 2025; 22:262-282. [PMID: 40050505 DOI: 10.1038/s41571-025-01000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
The targeted delivery of immunotherapies to tumours using tumour-responsive nanomaterials is a promising area of cancer research with the potential to address the limitations of systemic administration such as on-target off-tumour toxicities and a lack of activity owing to the immunosuppressive tumour microenvironment (TME). Attempts to address these challenges include the design and functionalization of nanomaterials capable of releasing their cargoes in response to specific TME characteristics, thus facilitating the targeted delivery of immune-checkpoint inhibitors, cytokines, mRNAs, vaccines and, potentially, chimaeric antigen receptors as well as of agents that modulate the extracellular matrix and induce immunogenic cell death. In this Review, we describe these various research efforts in the context of the dynamic properties of the TME, such as pH, reductive conditions, reactive oxygen species, hypoxia, specific enzymes, high levels of ATP and locoregional aspects, which can be leveraged to enhance the specificity and efficacy of nanomaterial-based immunotherapies. Highlighting preclinical successes and ongoing clinical trials, we evaluate the current landscape and potential of these innovative approaches. We also consider future research directions as well as the most important barriers to successful clinical translation, emphasizing the transformative potential of tumour-responsive nanomaterials in overcoming the barriers that limit the activity of traditional immunotherapies, thus improving patient outcomes.
Collapse
Affiliation(s)
- Stephen W Linderman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Hospital Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Louis DeRidder
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lucía Sanjurjo
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Michael B Foote
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
- IMDEA Nanosciences Institute, Madrid, Spain
| | - Ameya R Kirtane
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Robert Langer
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
12
|
Rea A, Santana-Hernández S, Villanueva J, Sanvicente-García M, Cabo M, Suarez-Olmos J, Quimis F, Qin M, Llorens E, Blasco-Benito S, Torralba-Raga L, Perez L, Bhattarai B, Alari-Pahissa E, Georgoudaki AM, Balaguer F, Juan M, Pardo J, Celià-Terrassa T, Rovira A, Möker N, Zhang C, Colonna M, Spanholtz J, Malmberg KJ, Montagut C, Albanell J, Güell M, López-Botet M, Muntasell A. Enhancing human NK cell antitumor function by knocking out SMAD4 to counteract TGFβ and activin A suppression. Nat Immunol 2025; 26:582-594. [PMID: 40119192 PMCID: PMC11957989 DOI: 10.1038/s41590-025-02103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/30/2025] [Indexed: 03/24/2025]
Abstract
Transforming growth factor beta (TGFβ) and activin A suppress natural killer (NK) cell function and proliferation, limiting the efficacy of adoptive NK cell therapies. Inspired by the partial resistance to TGFβ of NK cells with SMAD4 haploinsufficiency, we used CRISPR-Cas9 for knockout of SMAD4 in human NK cells. Here we show that SMAD4KO NK cells were resistant to TGFβ and activin A inhibition, retaining their cytotoxicity, cytokine secretion and interleukin-2/interleukin-15-driven proliferation. They showed enhanced tumor penetration and tumor growth control, both as monotherapy and in combination with tumor-targeted therapeutic antibodies. Notably, SMAD4KO NK cells outperformed control NK cells treated with a TGFβ inhibitor, underscoring the benefit of maintaining SMAD4-independent TGFβ signaling. SMAD4KO conferred TGFβ resistance across diverse NK cell platforms, including CD19-CAR NK cells, stem cell-derived NK cells and ADAPT-NK cells. These findings position SMAD4 knockout as a versatile and compelling strategy to enhance NK cell antitumor activity, providing a new avenue for improving NK cell-based cancer immunotherapies.
Collapse
Grants
- 765104 EC | EC Seventh Framework Programm | FP7 People: Marie-Curie Actions (FP7-PEOPLE - Specific Programme "People" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
- ICI24/00041 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- SGR863 Generalitat de Catalunya (Government of Catalonia)
- 765104 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Sklodowska-Curie Actions (H2020 Excellent Science - Marie Sklodowska-Curie Actions)
- PI21/00002 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- PI22/00040 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- 2024PROD00089 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- FI23/00075 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- P01 CA111412 NCI NIH HHS
- Ministerio de Ciencia, Innovación y Universidades/FEDER CNS2023-144487
- AECC postdoctoral fellowship POSTD234709BLAS
- Ministerio de Ciencia, Innovación y Universidades PID2020-113963RBI00 Gobierno de Aragón B29-23R
- Ministerio de Ciencia, Innovación y Universidades PID2023-147310OB-I00
- Research Council of Norway 275469, 237579, the Research Council of Norway through its Centres of Excellence scheme 332727, the Norwegian Cancer Society-190386, 223310, The South-Eastern Norway Regional Health Authority 2021-073, 2024-053, Knut and Alice Wallenberg Foundation 2018.0106, Swedish Foundation for Strategic Research, and the US National Cancer Institute P01 CA111412, P009500901.
- CRIS EXCELLENCE 19-30, funded by CRIS Contra el Cáncer
- CIBERONC: CB16/12/00241
Collapse
Affiliation(s)
- Anna Rea
- University Pompeu Fabra (UPF), Barcelona, Spain
| | - Sara Santana-Hernández
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Cell Biology, Physiology and Immunology Deptartments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Javier Villanueva
- University Pompeu Fabra (UPF), Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Cell Biology, Physiology and Immunology Deptartments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Mariona Cabo
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | | | - Fabricio Quimis
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Mengjuan Qin
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Eduard Llorens
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | | | - Lamberto Torralba-Raga
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway
| | - Lorena Perez
- Department of Immunology, Hospital Clínic de Barcelona (HCB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Joint Platform of Immunotherapy Hospital Sant Joan de Deu - HCB, University of Barcelona, Barcelona, Spain
| | - Bishan Bhattarai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Barcelona, Spain
| | - Manel Juan
- Department of Immunology, Hospital Clínic de Barcelona (HCB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Joint Platform of Immunotherapy Hospital Sant Joan de Deu - HCB, University of Barcelona, Barcelona, Spain
| | - Julián Pardo
- IIS Aragon Foundation/ Dpt. Microbiology, Radiology Pediatry and Public Health, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERinfec), Zaragoza, Spain
| | - Toni Celià-Terrassa
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ana Rovira
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Oncology, Hospital del Mar, Barcelona, Spain
| | - Nina Möker
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Congcong Zhang
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Karl-Johan Malmberg
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Clara Montagut
- University Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Oncology, Hospital del Mar, Barcelona, Spain
| | - Joan Albanell
- University Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Oncology, Hospital del Mar, Barcelona, Spain
| | - Marc Güell
- University Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain
| | - Miguel López-Botet
- University Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Aura Muntasell
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain.
- Institut de Biotecnologia i Biomedicina, Cell Biology, Physiology and Immunology Deptartments, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
13
|
Silverman I, Shaykevich A, Maitra R. The Role of WDR77 in Cancer: More than a PRMT5 Interactor. Mol Cancer Res 2025; 23:269-276. [PMID: 39853175 DOI: 10.1158/1541-7786.mcr-24-0933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/23/2024] [Accepted: 01/22/2025] [Indexed: 01/26/2025]
Abstract
WD repeat domain 77 protein (WDR77), a WD-40 domain-containing protein, is a crucial regulator of cellular pathways in cancer progression. Although much of the past research on WDR77 has focused on its interaction with protein arginine methyltransferase 5 (PRMT5) in histone methylation, WDR77's regulatory functions extend beyond this pathway, influencing diverse mechanisms such as mRNA translation, chromatin assembly, cell-cycle regulation, and apoptosis. WDR77 is a key regulator of cell-cycle progression, regulating the transition from the G1 phase. WDR77 regulates many signaling pathways such as TGFβ in which its role in these cellular pathways underscores its broad oncogenic potential. WDR77 also assists and promotes certain transcription factors such as E2F. Furthermore, in certain cancers, WDR77 enhances steroid hormone receptor activity, uniquely linking it to hormone-driven malignancies. WDR77 often translocates between the nucleus and the cytoplasm, with its location dictating its role in the cell. WDR77 has the ability to adapt its function depending on its location that emphasizes its dynamic role in both promoting and inhibiting tumor growth, depending on cellular context. This dual function makes WDR77 an attractive therapeutic target, as disrupting its interactions with critical signaling pathways or modulating its translocation could yield novel strategies for cancer treatment. Given WDR77's role in oncogenic pathways independent of PRMT5, further exploration of WDR77 and its non-PRMT5-related activities may reveal additional therapeutic opportunities in an array of cancers.
Collapse
Affiliation(s)
- Isaac Silverman
- Department of Biology, Yeshiva University, New York, New York
| | - Aaron Shaykevich
- Department of Biology, Yeshiva University, New York, New York
- Department of Public Health and Preventive Medicine, State University of New York Upstate Medical University, Syracuse, New York
| | | |
Collapse
|
14
|
Zhou M, Zhou C, Geng H, Huang Z, Lin Z, Wang Y, Zhu Y, Shi J, Tan J, Guo L, Zhao Y, Zhang Y, Peng Q, Yu H, Dai W, Lv H, Lin Z. EGCG-enabled Deep Tumor Penetration of Phosphatase and Acidity Dual-responsive Nanotherapeutics for Combinatory Therapy of Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406245. [PMID: 39558766 DOI: 10.1002/smll.202406245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/23/2024] [Indexed: 11/20/2024]
Abstract
The presence of dense collagen fibers is a typical characteristic of triple-negative breast cancer (TNBC). Although these fibers hinder drug penetration and reduce treatment efficacy, the depletion of the collagen matrix is associated with tumor metastasis. To address this issue, epigallocatechin-3-gallate (EGCG) is first exploited for disrupting the dense collagenous stroma and alleviate fibrosis by specifically blocking the TGF-β/Smad pathway in fibroblasts and tumor cells when intraperitoneally administrated in TNBC tumor-bearing mice. A methotrexate (MTX)-loaded dual phosphate- and pH-responsive nanodrug (pHA@MOF-Au/MTX) is next engineered by integrating Fe-based metal-organic frameworks and gold nanoparticles for improved chemo/chemodynamic therapy of TNBC. Surface modification with pH (low)-insertion peptide substantially enhanced the binding of the nanodrug to 4T1 cells owing to tumor stroma remodeling by EGCG. High-concentration EGCG inhibited glutathione peroxidase by regulating mitochondrial glutamine metabolism, thus facilitating tumor cell ferroptosis. Furthermore, sequential EGCG and pHA@MOF-Au/MTX treatment showed remarkable anti-tumor effects in a mouse model of TNBC, with a tumor growth inhibition rate of 79.9%, and a pulmonary metastasis rate of 96.8%. Altogether, the combination strategy developed in this study can improve the efficacy of chemo/chemodynamic therapy in TNBC and represents an innovative application of EGCG.
Collapse
Affiliation(s)
- Mengxue Zhou
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Chuang Zhou
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Huan Geng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, P. R. China
| | - Zhiwei Huang
- MOE, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhiyuan Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Ying Wang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Junfeng Tan
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Li Guo
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Yanni Zhao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| |
Collapse
|
15
|
Zhou X, Berenger E, Shi Y, Shirokova V, Kochetkova E, Becirovic T, Zhang B, Kaminskyy VO, Esmaeilian Y, Hosaka K, Lindskog C, Hydbring P, Ekman S, Cao Y, Genander M, Iwanicki M, Norberg E, Vakifahmetoglu-Norberg H. Chaperone-mediated autophagy regulates the metastatic state of mesenchymal tumors. EMBO Mol Med 2025; 17:747-774. [PMID: 40055574 PMCID: PMC11982252 DOI: 10.1038/s44321-025-00210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 04/11/2025] Open
Abstract
Tumors often recapitulate programs to acquire invasive and dissemination abilities, during which pro-metastatic proteins are distinctively stabilized in cancer cells to drive further progression. Whether failed protein degradation affects the metastatic programs of cancer remains unknown. Here, we show that the human cancer cell-specific knockout (KO) of LAMP-2A, a limiting protein for chaperone-mediated autophagy (CMA), promotes the aggressiveness of mesenchymal tumors. Deficient CMA resulted in widespread tumor cell dissemination, invasion into the vasculature and cancer metastasis. In clinical samples, metastatic lesions showed suppressed LAMP-2A expression compared to primary tumors from the same cancer patients. Mechanistically, while stimulating TGFβ signaling dampens LAMP-2A levels, genetic suppression of CMA aggravated TGFβ signaling in cancer cells and tumors. Conversely, pharmacological inhibition of TGFβ signaling repressed the growth of LAMP-2A KO-driven tumors. Furthermore, we found that multiple EMT-driving proteins, such as TGFβR2, are degraded by CMA. Our study demonstrates that the tumor suppressive function of CMA involves negative regulation of TGFβ-driven EMT and uncovers a mechanistic link between CMA and a major feature of metastatic invasiveness.
Collapse
Affiliation(s)
- Xun Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Eva Berenger
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Yong Shi
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Vera Shirokova
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Elena Kochetkova
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Tina Becirovic
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Boxi Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Vitaliy O Kaminskyy
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Yashar Esmaeilian
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Kayoko Hosaka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Per Hydbring
- Department of Oncology and Pathology, Karolinska Institutet, 171 64, Stockholm, Sweden
| | - Simon Ekman
- Department of Oncology and Pathology, Karolinska Institutet, 171 64, Stockholm, Sweden
- Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Maria Genander
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Marcin Iwanicki
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Erik Norberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden.
| | | |
Collapse
|
16
|
Sun Q, Wang Y, Ren H, Hou S, Niu K, Wang L, Liu S, Ye J, Cui C, Qi X. Engineered Hollow Nanocomplex Combining Photothermal and Antioxidant Strategies for Targeted Tregs Depletion and Potent Immune Activation in Tumor Immunotherapy. Adv Healthc Mater 2025:e2405124. [PMID: 40109122 DOI: 10.1002/adhm.202405124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/06/2025] [Indexed: 03/22/2025]
Abstract
In the tumor immunosuppressive microenvironment (TIME), regulatory T cells (Tregs) critically suppress anticancer immunity, characterized by high expression of glucocorticoid-induced TNF receptor (GITR) expression and sensitivity to reactive oxygen species (ROS). This study develops a near-infrared (NIR)-responsive hollow nanocomplex (HPDA-OPC/DTA-1) using hollow polydopamine nanoparticles (HPDA), endowed with thermogenic and antioxidative properties, specifically targeting Tregs to activate antitumor immunity. The GITR agonist DTA-1, combined with the antioxidant oligomeric proanthocyanidins (OPC) to deplete Tregs. However, Tregs depletion alone may not sufficiently trigger robust immune responses. The HPDA nanocarrier enhances thermogenic and antioxidative capacities, supporting photothermal immunotherapy. The HPDA-OPC/DTA-1 demonstrates NIR responsiveness for both photothermal therapy (PTT) and OPC release, while facilitating Tregs depletion via DTA-1 and reducing ROS levels, thereby reviving antitumor immunity. Notably, intratumoral CD4+CD25+FOXP3+ Tregs exhibited a 4.08-fold reduction alongside a 49.11-fold increase in CD8+ T cells/Tregs relative to controls. Enhanced dendritic cells (DCs) maturation and immunogenic cell death (ICD) induction further demonstrate that HPDA-OPC/DTA-1 alleviates immunosuppression and activates antitumor immunity. Ultimately, the observed tumor inhibitory effect (tumor volume: 6.75-fold versus the control) and an over 80% survival rate highlight the therapeutic potential of combining Tregs targeting, antioxidant strategy, and photothermal immunotherapy for effective cancer treatment.
Collapse
Affiliation(s)
- Qi Sun
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Yuyan Wang
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Hetian Ren
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Shiyuan Hou
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Kaiyi Niu
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Liu Wang
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Siyu Liu
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Jingyi Ye
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Chunying Cui
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Xianrong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
17
|
Leonardo-Sousa C, Barriga R, Florindo HF, Acúrcio RC, Guedes RC. Structural insights and clinical advances in small-molecule inhibitors targeting TGF-β receptor I. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200945. [PMID: 40115728 PMCID: PMC11923830 DOI: 10.1016/j.omton.2025.200945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
The dysregulation of the transforming growth factor β (TGF-β) signaling pathway plays a critical role in the onset and progression of several diseases, including cancer. Notably, TGF-β has emerged as a significant barrier to effective outcomes in cancer immunotherapies, particularly those using immune checkpoint inhibitors. In response to this challenge, small-molecule inhibitors targeting the TGF-β receptor I (TGF-βRI) have garnered attention as promising candidates for modulating the TGF-β signaling pathway. This comprehensive review focuses on the development of small-molecule inhibitors targeting TGF-βRI. We provide a detailed analysis of the structural biology of TGF-βRI, highlighting key binding interactions and structural insights derived from high-resolution X-ray crystal structures. Additionally, we review the current landscape of TGF-βRI inhibitors in clinical trials, including eight promising inhibitors, and discuss their mechanisms of action, selectivity, and therapeutic potential. Our investigation extends to the patent literature, summarizing over 2 decades of innovation from leading pharmaceutical companies, spanning January 2000-May 2024. This consolidated structural and biochemical knowledge aims to facilitate the design of next-generation TGF-βRI inhibitors, addressing unmet clinical needs in oncology and fibrosis treatment. The synergistic potential of combining TGF-βRI and immune checkpoint inhibitors is also explored, offering promising avenues for enhancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Carlota Leonardo-Sousa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Rodrigo Barriga
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Rita C Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Rita C Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
18
|
Vermeersch G, Gouwy M, Proost P, Struyf S, Devos T. Neutrophils in BCR::ABL1 negative MPN: Contributors or bystanders of fibrosis? Blood Rev 2025:101285. [PMID: 40133166 DOI: 10.1016/j.blre.2025.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/20/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
BCR::ABL1 negative myeloproliferative neoplasms (MPNs) are a heterogenous group of disorders characterized by clonal proliferation of hematopoietic stem and progenitor cells (HSPCs) within the bone marrow. Although the identification of somatic key driver mutations significantly increased both understanding and diagnostic accuracy of MPNs, many questions about the exact pathophysiology remain unanswered. Increased neutrophil count at diagnosis is a well-recognized predictor of worse disease evolution and survival, nonetheless the exact role of neutrophilic granulocytes within MPN pathophysiology is almost unexplored. As the majority of these cells are residing within the bone marrow, they represent a non-negligible entity within the bone marrow niche and its homeostasis. This review describes how neutrophils might contribute to the development of the inflammatory bone marrow niche, and hereby also fibrosis, associated with MPNs. The versatile functions and effects in different contexts emphasize the necessity for future research oriented to bone marrow in addition to peripheral blood.
Collapse
Affiliation(s)
- Gaël Vermeersch
- Department of Hematology, University Hospitals Leuven, 3000 Leuven, Belgium; Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium.
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| | - Timothy Devos
- Department of Hematology, University Hospitals Leuven, 3000 Leuven, Belgium; Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
19
|
Hu Q, Li X, Wang P, Xie Y. Pan-cancer analysis unveils the role and mechanisms of neddylation modifications in tumorigenesis. Med Oncol 2025; 42:119. [PMID: 40106140 DOI: 10.1007/s12032-025-02658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
This study explores the roles of ubiquitin-like modification genes in pan-cancer, focusing on their regulatory mechanisms, prognostic implications, and drug sensitivity. Data on five key neddylation pathway genes (RBX1, NEDD8, NAE1, UBA3, UBE2M) were collected from TCGA and GTEx databases, covering mRNA expression, DNA methylation, SNVs, and CNVs. Gene expression differences between normal and cancer tissues, along with associations with genetic alterations, methylation, and cancer-related pathways, were analyzed. Drug sensitivity correlations were assessed using GDSC and CTRP databases. Neddylation pathway genes exhibit hypomethylation and overexpression across various cancers, correlating with poor prognosis. SNVs are predominantly missense mutations, while CNVs are mostly heterozygous deletions and amplifications. These genes regulate several key cancer-related pathways, such as DNA damage repair, cell cycle modulation, and inhibition of RTK/RAS/MAPK pathways. Ubiquitin-like modification genes are associated with poor prognosis due to their low methylation and high expression in cancers. Their genetic alterations impact cancer pathways, underscoring their potential as therapeutic targets and prognostic biomarkers.
Collapse
Affiliation(s)
- Qianhua Hu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Public Health, Health Science Center, Hunan Normal University, Changsha, China
| | - Xiang Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Public Health, Health Science Center, Hunan Normal University, Changsha, China
| | - Ping Wang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Public Health, Health Science Center, Hunan Normal University, Changsha, China
| | - Ying Xie
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Public Health, Health Science Center, Hunan Normal University, Changsha, China.
| |
Collapse
|
20
|
Zheng D, Qin L, Lv J, Che M, He B, Zheng Y, Lin S, Qi Y, Li M, Tang Z, Wang BC, Wu YL, Weinkove R, Carson G, Yao Y, Wong N, Lau J, Thiery JP, Qin D, Pan B, Xu K, Zhang Z, Li P. CD4 + anti-TGF-β CAR T cells and CD8 + conventional CAR T cells exhibit synergistic antitumor effects. Cell Rep Med 2025; 6:102020. [PMID: 40107245 PMCID: PMC11970399 DOI: 10.1016/j.xcrm.2025.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/02/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Transforming growth factor (TGF)-β1 restricts the expansion, survival, and function of CD4+ T cells. Here, we demonstrate that CD4+ but not CD8+ anti-TGF-β CAR T cells (T28zT2 T cells) can suppress tumor growth partly through secreting Granzyme B and interferon (IFN)-γ. TGF-β1-treated CD4+ T28zT2 T cells persist well in peripheral blood and tumors, maintain their mitochondrial form and function, and do not cause in vivo toxicity. They also improve the expansion and persistence of untransduced CD8+ T cells in vivo. Tumor-infiltrating CD4+ T28zT2 T cells are enriched with TCF-1+IL7R+ memory-like T cells, express NKG2D, and downregulate T cell exhaustion markers, including PD-1 and LAG3. Importantly, a combination of CD4+ T28zT2 T cells and CD8+ anti-glypican-3 (GPC3) or anti-mesothelin (MSLN) CAR T cells exhibits augmented antitumor effects in xenografts. These findings suggest that rewiring TGF-β signaling with T28zT2 in CD4+ T cells is a promising strategy for eradicating solid tumors.
Collapse
Affiliation(s)
- Diwei Zheng
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Le Qin
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiang Lv
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Meihui Che
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bingjia He
- Department of Radiology, Translational Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongfang Zheng
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shouheng Lin
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuekun Qi
- Blood Disease Institution, Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ming Li
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhaoyang Tang
- Guangdong Zhaotai Cell Biology Technology Ltd., Foshan, China
| | - Bin-Chao Wang
- Guangdong Lung Cancer Institute, Guangdong General Hospital (GGH) & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong General Hospital (GGH) & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Georgia Carson
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Yao Yao
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Nathalie Wong
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - James Lau
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Dajiang Qin
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Pan
- Blood Disease Institution, Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Blood Disease Institution, Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhenfeng Zhang
- Department of Radiology, Translational Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| |
Collapse
|
21
|
Peng Y, Yang J, Ao J, Li Y, Shen J, He X, Tang D, Chu C, Liu C, Weng L. Single-cell profiling reveals the intratumor heterogeneity and immunosuppressive microenvironment in cervical adenocarcinoma. eLife 2025; 13:RP97335. [PMID: 40066698 PMCID: PMC11896611 DOI: 10.7554/elife.97335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Background Cervical adenocarcinoma (ADC) is more aggressive compared to other types of cervical cancer (CC), such as squamous cell carcinoma (SCC). The tumor immune microenvironment (TIME) and tumor heterogeneity are recognized as pivotal factors in cancer progression and therapy. However, the disparities in TIME and heterogeneity between ADC and SCC are poorly understood. Methods We performed single-cell RNA sequencing on 11 samples of ADC tumor tissues, with other 4 SCC samples served as controls. The immunochemistry and multiplexed immunofluorescence were conducted to validate our findings. Results Compared to SCC, ADC exhibited unique enrichments in several sub-clusters of epithelial cells with elevated stemness and hyper-malignant features, including the Epi_10_CYSTM1 cluster. ADC displayed a highly immunosuppressive environment characterized by the enrichment of regulatory T cells (Tregs) and tumor-promoting neutrophils. The Epi_10_CYSTM1 cluster recruits Tregs via ALCAM-CD6 signaling, while Tregs reciprocally induce stemness in the Epi_10_CYSTM1 cluster through TGFβ signaling. Importantly, our study revealed that the Epi_10_CYSTM1 cluster could serve as a valuable predictor of lymph node metastasis for CC patients. Conclusions This study highlights the significance of ADC-specific cell clusters in establishing a highly immunosuppressive microenvironment, ultimately contributing to the heightened aggressiveness and poorer prognosis of ADC compared to SCC. Funding Funded by the National Natural Science Foundation of China (82002753; 82072882; 81500475) and the Natural Science Foundation of Hunan Province (2021JJ40324; 2022JJ70103).
Collapse
Affiliation(s)
- Yang Peng
- Fourth Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
| | - Jing Yang
- Department of Pathology, Third Hospital, School of Basic Medical Sciences, Peking University Health Science CenterBeijingChina
| | - Jixing Ao
- Department of Gynecologic Oncology, Changsha Kexin Cancer HospitalChangshaChina
| | - Yilin Li
- Department of Pathology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
| | - Jia Shen
- Xiangya Cancer Center, Xiangya Hospital, Central South UniversityChangshaChina
- Hunan International Science and Technology Collaboration Base of Precision Medicine for CancerChangshaChina
- Key Laboratory of Molecular Radiation Oncology of Hunan ProvinceChangshaChina
| | - Xiang He
- Xiangya Cancer Center, Xiangya Hospital, Central South UniversityChangshaChina
- Hunan International Science and Technology Collaboration Base of Precision Medicine for CancerChangshaChina
- Key Laboratory of Molecular Radiation Oncology of Hunan ProvinceChangshaChina
| | - Dihong Tang
- Fourth Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
| | - Chaonan Chu
- Fourth Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
| | - Congrong Liu
- Department of Pathology, Third Hospital, School of Basic Medical Sciences, Peking University Health Science CenterBeijingChina
| | - Liang Weng
- Department of Pathology, Third Hospital, School of Basic Medical Sciences, Peking University Health Science CenterBeijingChina
- Xiangya Cancer Center, Xiangya Hospital, Central South UniversityChangshaChina
- Hunan International Science and Technology Collaboration Base of Precision Medicine for CancerChangshaChina
- Key Laboratory of Molecular Radiation Oncology of Hunan ProvinceChangshaChina
| |
Collapse
|
22
|
Colemon A, Romney CV, Jones AD, Bagsby C, Jackson R, Ramanathan S. Interplay Between TGFβ1 Signaling and Cancer-Testis Antigen MAGEB2: A New Thorn in Cancer's Side? Int J Mol Sci 2025; 26:2448. [PMID: 40141091 PMCID: PMC11942090 DOI: 10.3390/ijms26062448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
The Melanoma Antigen Gene (MAGE) family of proteins is the largest family of cancer-testis antigens (CTAs) and shares a MAGE homology domain (MHD). MAGE proteins are divided into Type I and Type II MAGEs depending on their chromosomal location and expression patterns. Type I MAGEs are true CTAs. MAGEB2 is a Type I MAGE, belonging to the MAGEB subfamily, and unlike some MAGE proteins, has not been found to bind to and enhance E3 ligase activity. MAGEB2 has been discovered to be an RNA-binding protein that serves to protect spermatogonial cells in the testis from extraneous stressors. We have discovered that MAGEB2 is necessary and sufficient for the proliferation of cells and is expressed by the differential DNA methylation of its gene promoter. Furthermore, we identified JunD as the transcription factor that regulates MAGEB2 expression. When expressed, MAGEB2 suppresses transforming grown factor-β1 (TGFβ1) signaling by decreasing mRNA levels of Thrombospondin-1 (TSP-1). TSP-1 is an anti-angiogenic protein that activates TGFβ1. Restoring levels of TSP-1 or TGFβ1 results in the inability of MAGEB2 to drive proliferation, suggesting that MAGEB2-expressing tumors might be more susceptible to therapies that induce or activate TSP-1 or TGFβ1 signaling.
Collapse
Affiliation(s)
- Ashley Colemon
- Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208, USA
- Fisk-Vanderbilt Master’s-to-Ph.D. Bridge Program, Nashville, TN 37208, USA
| | - Carlan V. Romney
- Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208, USA
- Fisk-Vanderbilt Master’s-to-Ph.D. Bridge Program, Nashville, TN 37208, USA
| | - Angelle D. Jones
- Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Clarke Bagsby
- Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Richala Jackson
- Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Saumya Ramanathan
- Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208, USA
- Fisk-Vanderbilt Master’s-to-Ph.D. Bridge Program, Nashville, TN 37208, USA
| |
Collapse
|
23
|
Maddineni S, Sharma K, Mohammad IA, Ruggiero-Sherman AD, Stepanek I, Shin JH, Bando JK, Sunwoo JB. An intraepithelial ILC1-like natural killer cell subset produces IL-13. Front Immunol 2025; 16:1521086. [PMID: 40114916 PMCID: PMC11922857 DOI: 10.3389/fimmu.2025.1521086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
Natural killer (NK) cells are innate immune effectors with considerable heterogeneity and potent antitumor capabilities. Intraepithelial ILC1 (ieILC1)-like NK cells, a population of cytotoxic tissue-resident innate lymphoid cells, have recently been documented in the microenvironment of head and neck squamous cell carcinomas (HNSCC) and other solid tumors. These cells have antitumor cytolytic potential and are potent producers of type 1 cytokines, including IFNγ. Here, we identify a subpopulation of ex vivo differentiated ieILC1-like NK cells that produce IL-13 upon stimulation. Functional characterization revealed that these cells co-expressed IFNγ and IL-13 while maintaining an ILC1 transcriptional signature. IL-13 was induced either upon co-culture with tumor cell lines, or in response to TGF-β and IL-15. IL-13-expressing ieILC1-like NK cells were identified among tumor infiltrating lymphocytes expanded from patient HNSCC tumors, in support of their in vivoexistence in primary tumors. These data demonstrate additional heterogeneity within the ieILC1-like NK cell population than previously appreciated and highlight a unique form of ILC plasticity in which cells with clear ILC1 transcriptional profiles express a type 2 cytokine. With the known roles of IL-13 in cancer cell growth dynamics and immunoregulation, the identification of this subset within tumor microenvironments presents a potential target for therapeutic manipulation.
Collapse
Affiliation(s)
- Sainiteesh Maddineni
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Krishna Sharma
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Imran A Mohammad
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Alistaire D Ruggiero-Sherman
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Ivan Stepanek
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - June Ho Shin
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Jennifer K Bando
- Department of Microbiology & Immunology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - John B Sunwoo
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
24
|
Moore J, Gkantalis J, Guix I, Chou W, Yuen K, Lazar AA, Spitzer M, Combes A, Barcellos-Hoff MH. Identification of a conserved subset of cold tumors responsive to immune checkpoint blockade. J Immunother Cancer 2025; 13:e010528. [PMID: 40050047 PMCID: PMC11887281 DOI: 10.1136/jitc-2024-010528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The efficacy of immune checkpoint blockade (ICB) depends on restoring immune recognition of cancer cells that have evaded immune surveillance. Transforming growth factor-beta (TGFβ) is associated with immune-poor, so-called cold tumors whereas loss of its signaling promotes DNA misrepair that could stimulate immune response. METHODS We analyzed transcriptomic data from IMvigor210, The Cancer Genome Atlas, and Tumor Immune Syngeneic MOuse data sets to evaluate the predictive value of high βAlt, a score representing low expression of a signature consisting of TGFβ targets and high expression of genes involved in error-prone DNA repair. The immune context of βAlt was assessed by evaluating tumor-educated immune signatures. An ICB-resistant, high βAlt preclinical tumor model was treated with a TGFβ inhibitor, radiation, and/or ICB and assessed for immune composition and tumor control. RESULTS We found that a high βAlt score predicts ICB response yet is paradoxically associated with an immune-poor tumor microenvironmentcancer in both human and mouse tumors. We postulated that high βAlt cancers consist of cancer cells in which loss of TGFβ signaling generates a TGFβ rich, immunosuppressive tumor microenvironment. Accordingly, preclinical modeling showed that TGFβ inhibition followed by radiotherapy could convert an immune-poor, high βAlt tumor to an immune-rich, ICB-responsive tumor. Mechanistically, TGFβ inhibition increased activated natural killer (NK) cells, which were required to recruit lymphocytes to respond to ICB in irradiated tumors. NK cell activation signatures were also increased in high βAlt, cold mouse and human tumors that responded to ICB. CONCLUSIONS These studies indicate that loss of TGFβ signaling competency and gain of error-prone DNA repair identifies a subset of cold tumors that are responsive to ICB. Our mechanistic studies show that inhibiting TGFβ activity can convert a high βAlt, cold tumor into ICB-responsive tumors via NK cells. A biomarker consisting of combined TGFβ, DNA repair, and immune context signatures is a means to prospectively identify patients whose cancers may be converted from cold to hot with appropriate therapy.
Collapse
Affiliation(s)
- Jade Moore
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Jim Gkantalis
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Ines Guix
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - William Chou
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Kobe Yuen
- Oncology Biomarker Development, Genentech, South San Francisco, California, USA
| | - Ann A Lazar
- Division of Oral Epidemiology and Division of Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Matthew Spitzer
- Depts of Otolaryngology-Head and Neck Surgery and of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
| | - Alexis Combes
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
25
|
Shan X, Cai Y, Zhu B, Sun X, Zhou L, Zhao Z, Li Y, Wang D. Computer-Aided Design of Self-Assembled Nanoparticles to Enhance Cancer Chemoimmunotherapy via Dual-Modulation Strategy. Adv Healthc Mater 2025; 14:e2404261. [PMID: 39828527 DOI: 10.1002/adhm.202404261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/05/2025] [Indexed: 01/22/2025]
Abstract
The rational design of self-assembled compounds is crucial for the highly efficient development of carrier-free nanomedicines. Herein, based on computer-aided strategies, important physicochemical properties are identified to guide the rational design of self-assembled compounds. Then, the pharmacophore hybridization strategy is used to design self-assemble nanoparticles by preparing new chemical structures by combining pharmacophore groups of different bioactive compounds. Hydroxychloroquine is grafted with the lipophilic vitamin E succinate and then co-assembled with bortezomib to fabricate the nanoparticle. The nanoparticle can reduce M2-type tumor-associated macrophages (TAMs) through lysosomal alkalization and induce immunogenic cell death (ICD) and nuclear factor-κB (NF-κB) inhibition in tumor cells. In mouse models, the nanoparticles induce decreased levels of M2-type TAMs, regulatory T cells, and transforming growth factor-β (TGF-β), and increase the proportion of cytotoxicity T lymphocytes. Additionally, the nanoparticles reduce the secretion of Interleukin-6 (IL-6) by inhibiting NF-κB and enhance the programmed death ligand-1 (PD-L1) checkpoint blockade therapy. The pharmacophore hybridization-derived nanoparticle provides a dual-modulation strategy to reprogram the tumor microenvironment, which will efficiently enhance the chemoimmunotherapy against triple-negative breast cancer.
Collapse
Affiliation(s)
- Xiaoting Shan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Ying Cai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
| | - Binyu Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Xujie Sun
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Lingli Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhiwen Zhao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264000, China
| | - Dangge Wang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| |
Collapse
|
26
|
Mariniello A, Borgeaud M, Weiner M, Frisone D, Kim F, Addeo A. Primary and Acquired Resistance to Immunotherapy with Checkpoint Inhibitors in NSCLC: From Bedside to Bench and Back. BioDrugs 2025; 39:215-235. [PMID: 39954220 PMCID: PMC11906525 DOI: 10.1007/s40259-024-00700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 02/17/2025]
Abstract
Immunotherapy with checkpoint inhibitors has become the cornerstone of systemic treatment for non-oncogene addicted non-small-cell lung cancer. Despite its pivotal role, a significant proportion of patients-approximately 70-85%-either exhibit primary resistance to PD-1 blockade or develop acquired resistance following an initial benefit, even in combination with chemotherapy and/or anti-CTLA-4 agents. The phenomenon of primary and acquired resistance to immunotherapy represents a critical clinical challenge, largely based on our incomplete understanding of the mechanisms of action of immunotherapy, and the resulting lack of accurate predictive biomarkers. Here, we review the definitions and explore the proposed mechanisms of primary and acquired resistance, including those related to the tumor microenvironment, systemic factors, and intrinsic tumor characteristics. We also discuss translational data on adaptive changes within tumor cells and the immune infiltrate following exposure to checkpoint inhibitors. Lastly, we offer a comprehensive overview of current and emerging therapeutic strategies designed to prevent primary resistance and counteract acquired resistance.
Collapse
Affiliation(s)
- Annapaola Mariniello
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Maxime Borgeaud
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Marc Weiner
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Daniele Frisone
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Floryane Kim
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Alfredo Addeo
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland.
| |
Collapse
|
27
|
Benedik NS, Proj M, Steinebach C, Sova M, Sosič I. Targeting TAK1: Evolution of inhibitors, challenges, and future directions. Pharmacol Ther 2025; 267:108810. [PMID: 39909209 DOI: 10.1016/j.pharmthera.2025.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/07/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
The increasing incidence of inflammatory and malignant diseases signifies the need to develop first-in-class drugs with novel mechanisms of action. In this respect, the transforming growth factor (TGF)-β-activated kinase 1 (TAK1), an essential part of several signaling pathways, is considered relevant and promising. This manuscript provides a brief overview of the signal transduction orchestrated by TAK1 within these pathways, followed by an in-depth and thorough analysis of the chemical matter demonstrated to inhibit this kinase. Special attention is given to the selectivity profiling of inhibitors, as well as to the outcomes of their biological characterization. Because published TAK1 inhibitors differ significantly in their kinome selectivity, active-site binding, and biological activity, we hope that this review will allow a judicial estimation of their quality and usefulness for TAK1-addressing assays. Our thoughts on the perspectives and possible developments of the field are also provided to assist scientists who are involved in the design and development of TAK1-targeting modulators.
Collapse
Affiliation(s)
- Nika Strašek Benedik
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Christian Steinebach
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Matej Sova
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
28
|
Yang W, Hicks DR, Ghosh A, Schwartze TA, Conventry B, Goreshnik I, Allen A, Halabiya SF, Kim CJ, Hinck CS, Lee DS, Bera AK, Li Z, Wang Y, Schlichthaerle T, Cao L, Huang B, Garrett S, Gerben SR, Rettie S, Heine P, Murray A, Edman N, Carter L, Stewart L, Almo SC, Hinck AP, Baker D. Design of high-affinity binders to immune modulating receptors for cancer immunotherapy. Nat Commun 2025; 16:2001. [PMID: 40011465 PMCID: PMC11865580 DOI: 10.1038/s41467-025-57192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/14/2025] [Indexed: 02/28/2025] Open
Abstract
Immune receptors have emerged as critical therapeutic targets for cancer immunotherapy. Designed protein binders can have high affinity, modularity, and stability and hence could be attractive components of protein therapeutics directed against these receptors, but traditional Rosetta based protein binder methods using small globular scaffolds have difficulty achieving high affinity on convex targets. Here we describe the development of helical concave scaffolds tailored to the convex target sites typically involved in immune receptor interactions. We employed these scaffolds to design proteins that bind to TGFβRII, CTLA-4, and PD-L1, achieving low nanomolar to picomolar affinities and potent biological activity following experimental optimization. Co-crystal structures of the TGFβRII and CTLA-4 binders in complex with their respective receptors closely match the design models. These designs should have considerable utility for downstream therapeutic applications.
Collapse
Affiliation(s)
- Wei Yang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Derrick R Hicks
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tristin A Schwartze
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian Conventry
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Aza Allen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Samer F Halabiya
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Chan Johng Kim
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Cynthia S Hinck
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David S Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Zhe Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yujia Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Thomas Schlichthaerle
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Longxing Cao
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Sarah Garrett
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Stacey R Gerben
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Stephen Rettie
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Piper Heine
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Analisa Murray
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Natasha Edman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lance Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
29
|
Luo P, Hong H, Zhang B, Li J, Zhang S, Yue C, Cao J, Wang J, Dai Y, Liao Q, Xu P, Yang B, Liu X, Lin X, Yu Y, Feng XH. ERBB4 selectively amplifies TGF-β pro-metastatic responses. Cell Rep 2025; 44:115210. [PMID: 39854208 DOI: 10.1016/j.celrep.2024.115210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/19/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Transforming growth factor β (TGF-β) is well known to play paradoxical roles in tumorigenesis as it has both growth-inhibitory and pro-metastatic effects. However, the underlying mechanisms of how TGF-β drives the opposing responses remain largely unknown. Here, we report that ERBB4, a member of the ERBB receptor tyrosine kinase family, specifically promotes TGF-β's metastatic response but not its anti-growth response. ERBB4 directly phosphorylates Tyr162 in the linker region of SMAD4, which enables SMAD4 to achieve a higher DNA-binding ability and potentiates TGF-β-induced gene transcription associated with epithelial-to-mesenchymal transition (EMT), cell migration, and invasion without affecting the genes involved in growth inhibition. These selective effects facilitate lung cancer metastasis in mouse models. This discovery sheds light on the previously unrecognized role of SMAD4 as a substrate of ERBB4 and highlights the selective involvement of the ERBB4-SMAD4 regulatory axis in tumor metastasis.
Collapse
Affiliation(s)
- Peihong Luo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huanyu Hong
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Baoling Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jie Li
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuyi Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chaomin Yue
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jin Cao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jia Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuhan Dai
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qingqing Liao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Pinglong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bing Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Xia Lin
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yi Yu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xin-Hua Feng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
30
|
White SE, Schwartze TA, Mukundan A, Schoenherr C, Singh SP, van Dinther M, Cunningham KT, White MPJ, Campion T, Pritchard J, Hinck CS, Ten Dijke P, Inman GJ, Maizels RM, Hinck AP. TGM6 is a helminth secretory product that mimics TGF-β binding to TGFBR2 to antagonize signaling in fibroblasts. Nat Commun 2025; 16:1847. [PMID: 39984487 PMCID: PMC11845725 DOI: 10.1038/s41467-025-56954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 01/30/2025] [Indexed: 02/23/2025] Open
Abstract
TGM6 is a natural antagonist of mammalian TGF-β signaling produced by the murine helminth parasite Heligmosomoides polygyrus. It differs from the previously described agonist, TGM1 (TGF-β Mimic-1), in that it lacks domains 1/2 that bind TGFBR1. It nonetheless retains TGFBR2 binding through domain 3 and potently inhibits TGF-β signaling in fibroblasts and epithelial cells, but does not inhibit TGF-β signaling in T cells, consistent with divergent domains 4/5 and an altered co-receptor binding preference. The crystal structure of TGM6 bound to TGFBR2 reveals an interface remarkably similar to that of TGF-β with TGFBR2. Thus, TGM6 has adapted its structure to mimic TGF-β, while engaging a distinct co-receptor to direct antagonism to fibroblasts and epithelial cells. The co-expression of TGM6, along with immunosuppressive TGMs that activate the TGF-β pathway, may minimize fibrotic damage to the host as the parasite progresses through its life cycle from the intestinal lumen to submucosa and back again. The co-receptor-dependent targeting of TGFBR2 by the parasite provides a template for the development of therapies for targeting the cancer- and fibrosis-promoting activities of the TGF-βs in humans.
Collapse
Affiliation(s)
- Stephen E White
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Ten63 Therapeutics, Durham, NC, USA
| | - Tristin A Schwartze
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ananya Mukundan
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Shashi P Singh
- Centre for Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Pilani, Rajasthan, India
| | - Maarten van Dinther
- Oncode Institute and Department of Cell and Chemical Biology, University of Leiden, Leiden, The Netherlands
| | - Kyle T Cunningham
- Centre for Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Madeleine P J White
- Centre for Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Tiffany Campion
- Centre for Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - John Pritchard
- Cancer Research UK Scotland Institute, University of Glasgow, Glasgow, UK
| | - Cynthia S Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, University of Leiden, Leiden, The Netherlands
| | - Gareth J Inman
- Cancer Research UK Scotland Institute, University of Glasgow, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Rick M Maizels
- Centre for Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Moore J, Gkantalis J, Guix I, Chou W, Yuen K, Lazar AA, Spitzer M, Combes AJ, Barcellos-Hoff MH. A conserved subset of cold tumors responsive to immune checkpoint blockade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.06.583752. [PMID: 38496519 PMCID: PMC10942434 DOI: 10.1101/2024.03.06.583752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background The efficacy of immune checkpoint blockade (ICB) depends on restoring immune recognition of cancer cells that have evaded immune surveillance. At the time of diagnosis, patients with lymphocyte-infiltrated cancers are the most responsive to ICB, yet a considerable fraction of patients have immune-poor tumors. Methods We analyzed transcriptomic data from IMvigor210, TCGA, and TISMO datasets to evaluate the predictive value of βAlt, a score representing the negative correlation of signatures consisting of transforming growth factor beta (TGFβ) targets and genes involved in error-prone DNA repair. The immune context of βAlt was assessed by evaluating tumor-educated immune signatures. An ICB-resistant, high βAlt preclinical tumor model was treated with a TGFβ inhibitor, radiation, and/or ICB and assessed for immune composition and tumor control. Results Here, we show that high βAlt is associated with an immune-poor context yet is predictive of ICB response in both humans and mice. A high βAlt cancer in which TGFβ signaling is compromised generates a TGFβ rich, immunosuppressive tumor microenvironment. Accordingly, preclinical modeling showed that TGFβ inhibition followed by radiotherapy could convert an immune-poor, ICB-resistant tumor to an immune-rich, ICB-responsive tumor. Mechanistically, TGFβ blockade in irradiated tumors activated natural killer cells that were required to recruit lymphocytes to respond to ICB. In support of this, natural killer cell activation signatures were also increased in immune-poor mouse and human tumors that responded to ICB. Conclusions These studies suggest that loss of TGFβ competency identifies a subset of cold tumors that are candidates for ICB. Our mechanistic studies show that inhibiting TGFβ activity converts high βAlt, cold tumors into ICB-responsive tumors via NK cells. Thus, a biomarker consisting of combined TGFβ, DNA repair, and immune context signatures provides a means to prospectively identify patients whose cancers may be converted from 'cold' to 'hot,' which could be exploited for therapeutic treatment.
Collapse
Affiliation(s)
- Jade Moore
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- A member of the imCORE Network
| | - Jim Gkantalis
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Ines Guix
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - William Chou
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Kobe Yuen
- Oncology Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | - Ann A. Lazar
- Division of Oral Epidemiology and Division of Biostatistics, University of California, San Francisco, CA, USA
| | - Mathew Spitzer
- Parker Institute for Cancer Immunotherapy, Department of Otolaryngology-Head and Neck Surgery, Department of Microbiology and Immunology, University of California, San Francisco, CA USA
- A member of the imCORE Network
| | - Alexis J. Combes
- Department of Pathology, CoLabs, University of California, San Francisco, San Francisco, CA, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- A member of the imCORE Network
| |
Collapse
|
32
|
Geng M, Du H, Wei X, Chen S, Cheng J, Meng S, Gong L, Yang H, Cai K, Dai L. Engineered platelets-based nano-aircraft system for precise tumor chemo-immunotherapy with graded drug delivery and self-recognized tumor targeting. Sci Bull (Beijing) 2025:S2095-9273(25)00164-1. [PMID: 39979208 DOI: 10.1016/j.scib.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/17/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025]
Abstract
Metastasis and heterogeneity pose major challenges in cancer treatment. Although chemoimmunotherapy shows promising efficacy, its therapeutic impact is limited by off-target effects and differences in the delivery sites of chemotherapeutic drugs and immunosuppressants. In this study, an engineered platelets (Pts)-based nano-aircraft, Pts@DOX/HANGs@Gal, was constructed with an internally loaded chemotherapeutic drug, doxorubicin, and externally grafted reduction-responsive hyaluronidase-cross-linked nanospheroids loaded with the immunosuppressant galunisertib for precise tumor chemo-immunotherapy. The normal physiological features of host Pts, including their excellent targeting capability for both metastatic and orthotopic tumors, are not disturbed by functional nanosystems. The interaction between Pts@DOX/HANGs@Gal and tumors gives rise to Pts activation, achieving the continuous targeted delivery of DOX to tumors, inducing the transition from cold to hot tumors, and promoting the recruitment of immune cells. Simultaneously, the external nanospheres disintegrate from Pts@DOX/HANGs@Gal, releasing galunisertib and hyaluronidase into the extracellular matrix to relieve immune tolerance and open up a high-speed channel for the tumor infiltration of immune cells and deep tumor penetration of the nanosystem. Consequently, Pts@DOX/HANGs@Gal not only effectively reinforced the antitumor immune response through self-recognized tumor-targeting chemo-immunotherapy and graded drug delivery but also reduced tumor metastasis in vivo. This study presents promising Pt-based nanovesicles for precise cancer treatment.
Collapse
Affiliation(s)
- Meijuan Geng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huiping Du
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuan Wei
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Siyu Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiamin Cheng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Siyu Meng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Liyang Gong
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hui Yang
- School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Liangliang Dai
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
33
|
Wu S, Hu Y, Sui B. Promotion Mechanisms of Stromal Cell-Mediated Lung Cancer Development Within Tumor Microenvironment. Cancer Manag Res 2025; 17:249-266. [PMID: 39957904 PMCID: PMC11829646 DOI: 10.2147/cmar.s505549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/19/2025] [Indexed: 02/18/2025] Open
Abstract
Lung cancer, with its high incidence and mortality rates, has garnered significant attention in the medical community. The tumor microenvironment (TME), composed of tumor cells, stromal cells, extracellular matrix, surrounding blood vessels, and other signaling molecules, plays a pivotal role in the development of lung cancer. Stromal cells within the TME hold potential as therapeutic targets for lung cancer treatment. However, the precise and comprehensive mechanisms by which stromal cells contribute to lung cancer progression have not been fully elucidated. This review aims to explore the mechanisms through which stromal cells in the tumor microenvironment promote lung cancer development, with a particular focus on how immune cells, tumor-associated fibroblasts, and endothelial cells contribute to immune suppression, inflammation, and angiogenesis. The goal is to provide new insights and potential strategies for the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Siyu Wu
- Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Yumeng Hu
- Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Bowen Sui
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| |
Collapse
|
34
|
Shimura M, Matsuo J, Pang S, Jangphattananont N, Hussain A, Rahmat MB, Lee JW, Douchi D, Tong JJL, Myint K, Srivastava S, Teh M, Koh V, Yong WP, So JBY, Tan P, Yeoh KG, Unno M, Chuang LSH, Ito Y. IQGAP3 signalling mediates intratumoral functional heterogeneity to enhance malignant growth. Gut 2025; 74:364-386. [PMID: 39438124 PMCID: PMC11874294 DOI: 10.1136/gutjnl-2023-330390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The elevation of IQGAP3 expression in diverse cancers indicates a key role for IQGAP3 in carcinogenesis. Although IQGAP3 was established as a proliferating stomach stem cell factor and a regulator of the RAS-ERK pathway, how it drives cancer growth remains unclear. OBJECTIVE We define the function of IQGAP3 in gastric cancer (GC) development and progression. DESIGN We studied the phenotypic changes caused by IQGAP3 knockdown in three molecularly diverse GC cell lines by RNA-sequencing. In vivo tumorigenesis and lung metastasis assays corroborated IQGAP3 as a mediator of oncogenic signalling. Spatial analysis was performed to evaluate the intratumoral transcriptional and functional differences between control tumours and IQGAP3 knockdown tumours. RESULTS Transcriptomic profiling showed that IQGAP3 inhibition attenuates signal transduction networks, such as KRAS signalling, via phosphorylation blockade. IQGAP3 knockdown was associated with significant inhibition of MEK/ERK signalling-associated growth factors, including TGFβ1, concomitant with gene signatures predictive of impaired tumour microenvironment formation and reduced metastatic potential. Xenografts involving IQGAP3 knockdown cells showed attenuated tumorigenesis and lung metastasis in immunodeficient mice. Accordingly, immunofluorescence staining revealed significant reductions of TGFβ/SMAD signalling and αSMA-positive stromal cells; digital spatial analysis indicated that IQGAP3 is indispensable for the formation of two phenotypically diverse cell subpopulations, which played crucial but distinct roles in promoting oncogenic functions. CONCLUSION IQGAP3 knockdown suppressed the RAS-TGFβ signalling crosstalk, leading to a significant reduction of the tumour microenvironment. In particular, IQGAP3 maintains functional heterogeneity of cancer cells to enhance malignant growth. IQGAP3 is thus a highly relevant therapy target in GC.
Collapse
Affiliation(s)
- Mitsuhiro Shimura
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junichi Matsuo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - ShuChin Pang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Aashiq Hussain
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Jung-Won Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Daisuke Douchi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jasmine Jie Lin Tong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Khine Myint
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Ming Teh
- Department of Medicine, National University of Singapore, Singapore
| | - Vivien Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- National University Cancer Institute, National University Health System, Singapore
| | - Wei Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- National University Cancer Institute, National University Health System, Singapore
| | - Jimmy Bok Yan So
- Department of Surgery, National University of Singapore, Singapore
| | - Patrick Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore
- Genome Institute of Singapore, Singapore
| | - Khay-Guan Yeoh
- Department of Medicine, National University of Singapore, Singapore
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
35
|
Kostecki G, Chuang K, Buxton A, Dakshanamurthy S. Dose-Dependent PFESA-BP2 Exposure Increases Risk of Liver Toxicity and Hepatocellular Carcinoma. Curr Issues Mol Biol 2025; 47:98. [PMID: 39996819 PMCID: PMC11854358 DOI: 10.3390/cimb47020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are persistent and highly bioaccumulative emerging environmental contaminants of concern that display significant toxic and carcinogenic effects. An emerging PFAS is PFESA-BP2, a polyfluoroalkyl ether sulfonic acid found in drinking water and the serum of humans and animals. While PFESA-BP2-induced liver and intestinal toxicity has been demonstrated, the toxicological mechanisms and carcinogenic potential of PFESA-BP2 have remained relatively understudied. Here, we studied how different doses of PFESA-BP2 affect gene activity related to liver toxicity and the risk of liver cancer such as hepatocellular carcinoma (HCC) in mice exposed to PFESA-BP2 once daily through oral gavage for seven days. An analysis of key hepatic pathways suggested increased risk of hepatotoxicity as a result of PFESA-BP2 exposure. Increased oxidative stress response was associated with all concentrations of exposure. Liver toxicity pathways, including PXR/RXR activation and hepatic fibrosis, showed dose-dependent alteration with activation primarily at low doses, suggesting an increased risk of hepatic inflammation and injury. Additionally, an analysis of carcinogenic and HCC-specific pathways suggested PFESA-BP2-induced risk of liver cancer, particularly at low doses. Low-dose PFESA-BP2 exposure (0.03 and 0.3 mg/kg-day) was associated with an increased risk of HCC carcinogenesis, as indicated by the activation of tumor-related and HCC-associated pathways. In contrast, these pathways were inhibited at high doses (3.0 and 6.0 mg/kg-day), accompanied by the activation of HCC-suppressive pathways. The increased risk of HCC development at low doses was mechanistically linked to the activation of signaling pathways such as HIF, EGF, NOTCH4, HGF, and VEGF. Biomarkers linked to liver cancer risk, prognoses, and diagnoses were also identified as a result of exposure. Overall, our findings on liver carcinogenic and hepatotoxic pathway activation patterns suggest that PFESA-BP2 increases the risk of liver toxicity and HCC development, particularly at low doses.
Collapse
Affiliation(s)
| | - Kiara Chuang
- College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Amelia Buxton
- Department of Biomedical Engineering, College of Engineering, University of Maine, Orono, ME 04469, USA
| | - Sivanesan Dakshanamurthy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
36
|
To A, Yu Z, Sugimura R. Recent advancement in the spatial immuno-oncology. Semin Cell Dev Biol 2025; 166:22-28. [PMID: 39705969 DOI: 10.1016/j.semcdb.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Recent advancements in spatial transcriptomics and spatial proteomics enabled the high-throughput profiling of single or multi-cell types and cell states with spatial information. They transformed our understanding of the higher-order architectures and paired cell-cell interactions within a tumor microenvironment (TME). Within less than a decade, this rapidly emerging field has discovered much crucial fundamental knowledge and significantly improved clinical diagnosis in the field of immuno-oncology. This review summarizes the conceptual frameworks to understand spatial omics data and highlights the updated knowledge of spatial immuno-oncology.
Collapse
Affiliation(s)
- Alex To
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Zou Yu
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Ryohichi Sugimura
- School of Biomedical Sciences, University of Hong Kong, Hong Kong; Centre for Translational Stem Cell Biology, Hong Kong.
| |
Collapse
|
37
|
Liu S, Wang F, Zhang C, Jiang H, Liu C. Synthesis and biological evaluation of 4-((3-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-yl)oxy)quinoline derivatives as novel potential transforming growth factor-β type 1 receptor inhibitors for hepatocellular carcinoma. Bioorg Chem 2025; 155:108156. [PMID: 39809119 DOI: 10.1016/j.bioorg.2025.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The transforming growth factor β (TGF-β) type 1 receptor (ALK5) plays a key role in tumor microenvironment. Small-molecule inhibitors of TGFβR1 provides a prospective approach for the treatment of malignant tumors. In this study, a series of 4-((3-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-yl)oxy)quinoline derivatives were identified as novel, potential TGFβR1 inhibitors. The most potent compound 16w inhibited SMAD2/3 phosphorylation and H22 cell viability with IC50 values of 12 and 65 nM, respectively. Further, compound 16w exhibited reasonable pharmacokinetic profiles and exhibited significant anti-tumor efficacy in a xenograft model of H22 cells, with TGI of 79.6 %. Additionally, compound 16w also showed a strong synergistic proapoptotic effect in combination with sorafenib, which provided a promising lead for further development of novel anticancer drugs.
Collapse
MESH Headings
- Humans
- Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Quinolines/pharmacology
- Quinolines/chemistry
- Quinolines/chemical synthesis
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Animals
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Structure-Activity Relationship
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Molecular Structure
- Drug Screening Assays, Antitumor
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemical synthesis
- Protein Kinase Inhibitors/chemistry
- Dose-Response Relationship, Drug
- Mice
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Apoptosis/drug effects
- Cell Line, Tumor
- Pyrazoles/pharmacology
- Pyrazoles/chemistry
- Pyrazoles/chemical synthesis
- Male
- Mice, Nude
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Siyuan Liu
- Department of General Surgery, the Second Xiang-Ya Hospital, Central South University, Changsha 410011 China; The First Central Clinical School, Tianjin Medical University, Tianjin 300190 China
| | - Fusheng Wang
- Department of General Surgery, Fuyang People's Hospital, Fuyang China
| | - Caifang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hong Jiang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Chun Liu
- Department of General Surgery, the Second Xiang-Ya Hospital, Central South University, Changsha 410011 China.
| |
Collapse
|
38
|
Omelianenko I, Kobyliak N, Falalyeyeva T, Seleznov O, Botsun P, Ostapchenko L, Korotkyi O, Domylivska L, Tsyryuk O, Mykhalchyshyn G, Shapochka T, Sulaieva O. Immune cells in thyroid adenoma and carcinoma: uncovering a hidden value of assessing tumor-host interplay and its potential application in thyroid cytopathology. Front Mol Biosci 2025; 12:1542821. [PMID: 39936166 PMCID: PMC11810721 DOI: 10.3389/fmolb.2025.1542821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
Introduction Although the role of tumor immune microenvironment (TIME) in thyroid cancer is well established, little data exists about the differences in immune cell presence in thyroid adenomas and carcinomas. We assume that immune cell density could be an additional diagnostic criterion for differentiating benign and malignant tumors in thyroid aspirates. Aim The current study compared the immune contexture of thyroid adenoma (TA) and thyroid carcinoma (TC) in histological and cytological specimens of III-V categories. Materials and methods This pilot study included 72 cases (36 of TA and 36 of TC) with verified histological diagnosis and pre-operative cytology corresponding to categories III, IV and V according to the Bethesda system for reporting thyroid cytology. The number of CD8+, CD68+ and CD163+ cells was assessed in histological samples of TA and TC with further comparison to cytological specimens. Besides, the expression of STAT6 and SMAD4 as potential regulators of TIME was evaluated in the study. Results TC demonstrated an immune-rich profile representing abundant tumor-associated CD8+ lymphocytes, CD68 and CD163+ macrophages. In contrast, TA represented mostly a low immune cell infiltration. The higher immunogenicity of TC was accompanied by the more profound expression of STAT6 and SMAD4 in tumor cells. The number of immune cells in cytological specimens correlated with CD8+ (r = 0.693; p < 0.001) and CD163+ cells (r = 0.559; p < 0.001) in histological samples, reflecting the differences in the tumor immune microenvironment between benign and malignant thyroid neoplasms. Conclusion TC demonstrated high immunogenicity compared to TA, which correlated to the number of immune cells in cytological specimens. The number of immune cells in thyroid cytology samples could be an additional criterion in cytological diagnostics for III-V Bethesda categories. Further investigations are needed to validate the findings of the study.
Collapse
Affiliation(s)
- Iryna Omelianenko
- Medical Laboratory CSD, Pathology Department, Kyiv, Ukraine
- Educational-Scientific Center “Institute of Biology and Medicine” Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Nazarii Kobyliak
- Medical Laboratory CSD, Pathology Department, Kyiv, Ukraine
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Medical Laboratory CSD, Pathology Department, Kyiv, Ukraine
- Educational-Scientific Center “Institute of Biology and Medicine” Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | - Pavlina Botsun
- Medical Laboratory CSD, Pathology Department, Kyiv, Ukraine
| | - Lyudmila Ostapchenko
- Educational-Scientific Center “Institute of Biology and Medicine” Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Oleksandr Korotkyi
- Educational-Scientific Center “Institute of Biology and Medicine” Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Liudmyla Domylivska
- Educational-Scientific Center “Institute of Biology and Medicine” Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Olena Tsyryuk
- Educational-Scientific Center “Institute of Biology and Medicine” Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | | | - Oksana Sulaieva
- Medical Laboratory CSD, Pathology Department, Kyiv, Ukraine
- Pathology Department, Kyiv Medical University, Kyiv, Ukraine
| |
Collapse
|
39
|
Xu J, Li Z, Tong Q, Zhang S, Fang J, Wu A, Wei G, Zhang C, Yu S, Zheng B, Lin H, Liao X, Xiao Z, Lu W. CD133 +PD-L1 + cancer cells confer resistance to adoptively transferred engineered macrophage-based therapy in melanoma. Nat Commun 2025; 16:895. [PMID: 39837811 PMCID: PMC11751330 DOI: 10.1038/s41467-025-55876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Adoptive transfer of genetically or nanoparticle-engineered macrophages represents a promising cell therapy modality for treatment of solid tumor. However, the therapeutic efficacy is suboptimal without achieving a complete tumor regression, and the underlying mechanism remains elusive. Here, we discover a subpopulation of cancer cells with upregulated CD133 and programmed death-ligand 1 in mouse melanoma, resistant to the phagocytosis by the transferred macrophages. Compared to the CD133-PD-L1- cancer cells, the CD133+PD-L1+ cancer cells express higher transforming growth factor-β signaling molecules to foster a resistant tumor niche, that restricts the trafficking of the transferred macrophages by stiffened extracellular matrix, and inhibits their cell-killing capability by immunosuppressive factors. The CD133+PD-L1+ cancer cells exhibit tumorigenic potential. The CD133+PD-L1+ cells are further identified in the clinically metastatic melanoma. Hyperthermia reverses the resistance of CD133+PD-L1+ cancer cells through upregulating the 'eat me' signal calreticulin, significantly improving the efficacy of adoptive macrophage therapy. Our findings demonstrate the mechanism of resistance to adoptive macrophage therapy, and provide a de novo strategy to counteract the resistance.
Collapse
Affiliation(s)
- Jiaojiao Xu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Zhe Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Qinli Tong
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Sihang Zhang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Jianchen Fang
- Department of Pathology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Aihua Wu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Guoguang Wei
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Chen Zhang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Sheng Yu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Binbin Zheng
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Hongzheng Lin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Xueling Liao
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
| | - Zeyu Xiao
- Department of Pathology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei Lu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China.
- Minhang Hospital, Fudan University, Shanghai, 201199, China.
- Quzhou Fudan Institute, Quzhou, Zhejiang, 324002, China.
| |
Collapse
|
40
|
Liu J, Sun Z, Cao S, Dai H, Zhang Z, Luo J, Wang X. Desmoglein-2 was a novel cancer-associated fibroblasts-related biomarker for oral squamous cell carcinoma. BMC Oral Health 2025; 25:102. [PMID: 39833796 PMCID: PMC11744874 DOI: 10.1186/s12903-024-05284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer with alarmingly high morbidity. The cancer-associated fibroblasts (CAFs) play a pivotal role in tumor development, while their specific mechanisms in OSCC remains largely unclear. Our object is to explore a CAFs-related biomarker in OSCC. METHODS Single-cell RNA sequencing (ScRNA-seq) analysis was used to pinpoint CAF clusters in OSCC samples. Differentially expressed genes and Cox regression analyses were used to identify candidate genes, and their functions were evaluated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The prognostic performance of the identified biomarker was evaluated using receiver operating characteristic analysis. The qPCR and western blot were used to assess gene expression. The hub gene related immune characteristics were analyzed in independent cohorts, and gene expression differences between different immunotherapy response groups were investigated using Pearson correlation analysis. RESULTS Desmoglein-2 (DSG2) was identified as a CAFs-related biomarker in OSCC exhibiting elevated expression compared to controls and being associated with poor prognosis. Enrichment analyses revealed that DSG2 was involved in signal transduction pathways like focal adhesion. The Area Under Curve values of DSG2 in predicting prognosis exceeded 0.6 in both training-set and validation-set. Furthermore, patients with low DSG2 expression were more likely to benefit from immunotherapy than those DSG2 highly expressed patients. CONCLUSION Our study identified DSG2 as a reliable CAFs-related prognostic biomarker in OSCC, providing a new reference for the mechanistic understanding and target therapy of this malignancy.
Collapse
Affiliation(s)
- Jin Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China
| | - Zhonghao Sun
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China
| | - Shihui Cao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China
| | - Hao Dai
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China
| | - Ze Zhang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China.
| | - Jingtao Luo
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China.
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China.
| |
Collapse
|
41
|
Li X, Sun X, Wang Y, Chen H, Gao Y. A nanotheranostics with hypoxia-switchable fluorescence and photothermal effect for hypoxia imaging-guided immunosuppressive tumor microenvironment modulation. J Colloid Interface Sci 2025; 678:897-912. [PMID: 39321645 DOI: 10.1016/j.jcis.2024.09.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Modulating the immunosuppressive tumor immune microenvironment (TIME) is considered a promising strategy for cancer treatment. However, effectively modulating the immunosuppressive TIME within hypoxic zones remains a significant challenge. In this work, we developed a hypoxia-responsive amphiphilic drug carrier using boron-dipyrromethene (BODIPY) dye-modified chitosan (CsB), and then fabricated a hypoxia-targeted nanotheranostic system, named CsBPNs, through self-assembly of CsB and pexidartinib (5-((5-Chloro-1H-pyrrolo[2,3-b]pyridin-3-yl)methyl)-N-((6-(trifluoromethyl)pyridin-3-yl)methyl), PLX3397), an immunotherapeutic drug targeting tumor-associated macrophages (TAMs), for synergistic photothermal/immunotherapy and hypoxia imaging. CsBPNs demonstrated uniform size, good stability, and hypoxia-switchable fluorescence and photothermal effects, enabling deep penetration and hypoxia imaging capacities in three-dimensional tumor cell spheres and tumor tissues. In vitro and in vivo experiments showed that CsBPNs under laser irradiation promoted TAMs repolarization, reversed the immunosuppressive TIME, and enhanced the therapeutic outcome of PLX3397 in solid tumors by facilitating deep delivery into hypoxic regions and synergistic photothermal therapy. This work provides a new strategy for detecting and modulating the immunosuppressive TIME in hypoxic zones, potentially enabling more precise and effective photo-immunotherapy in the future.
Collapse
Affiliation(s)
- Xudong Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Xianbin Sun
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Ya Wang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Haijun Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
42
|
Wen P, Jiang D, Qu F, Wang G, Zhang N, Shao Q, Huang Y, Li S, Wang L, Zeng X. PFDN5 plays a dual role in breast cancer and regulates tumor immune microenvironment: Insights from integrated bioinformatics analysis and experimental validation. Gene 2025; 933:149000. [PMID: 39396557 DOI: 10.1016/j.gene.2024.149000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Although the prognosis for patients with breast cancer has improved, breast cancer remains the leading cause of death for women worldwide. Prefoldin 5 (PFDN5), as a subunit of the prefoldin complex, plays a vital role in aiding the correct folding of newly synthesized proteins. However, the exact impact of PFDN5 on breast cancer development and its prognostic implications remain unclear. METHODS We conducted bioinformatics analysis to investigate the correlation between PFDN5 and patient survival, as well as various clinicopathological characteristics in breast cancer. Additionally, various assays were employed to validate the biological functions of PFDN5 in breast cancer. Finally, RNA sequencing (RNA-seq) was utilized to investigate the molecular mechanisms associated with PFDN5. RESULTS Compared to normal tissues, PFDN5 exhibited lower expression levels in breast cancer tissues, and lower expression of PFDN5 is associated with poorer prognosis. PFDN5 led to G2/M phase arrest in the cell cycle and reduced proliferative potential in breast cancer cells. However, PFDN5 also promoted migration and invasion of breast cancer cells. Also, RNA-seq analysis revealed an involvement of PFDN5 in the cell cycle and TGF-β signaling pathway. Furthermore, PFDN5 had a significant impact on tumor immune microenvironment by promoting macrophage polarization towards the M1 phenotype and exhibited a positive correlation with CD8+ T cell infiltration levels. CONCLUSIONS PFDN5 plays a dual role in breast cancer and serves as a key factor in tumor immune microenvironment. Therefore, PFDN5 holds promise as a valuable biomarker for predicting both metastatic and prognosis in breast cancer.
Collapse
Affiliation(s)
- Ping Wen
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China; Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Dongping Jiang
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China; Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Fanli Qu
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Guanwen Wang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Ningning Zhang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Qing Shao
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yuxin Huang
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China; Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Sisi Li
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Long Wang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Xiaohua Zeng
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China; Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China; Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing 400030, China.
| |
Collapse
|
43
|
Su BH, Wang CT, Chang JM, Chen HY, Huang TH, Yen YT, Tseng YL, Chang MY, Lee CH, Cheng LH, Wu YC, Wu CL, Ling P, Shiau AL. OCT4 promotes lung cancer progression through upregulation of VEGF-correlated chemokine-1. Int J Med Sci 2025; 22:680-695. [PMID: 39898238 PMCID: PMC11783078 DOI: 10.7150/ijms.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/21/2024] [Indexed: 02/04/2025] Open
Abstract
Embryonic development and tumor genesis share numerous similarities, with OCT4 standing out as a pivotal transcription factor in embryonic development. Expression of OCT4 is associated with poor prognosis of lung adenocarcinoma. VEGF-correlated chemokine-1 (VCC-1), also known as C-X-C motif chemokine ligand 17 (CXCL17), has been suggested to play a role in promoting tumor angiogenesis and metastasis. In the present study, we show a positive correlation between OCT4 expression levels and tumor metastatic potential, where an increase in OCT4 expression parallels an upregulation of VCC-1 in lung cancer. This relationship was substantiated through DNA microarray analysis and further confirmed by tissue staining of clinical lung cancer samples, demonstrating a positive correlation between OCT4 and VCC-1 expression. In A549 and H1299 human lung cancer cells, modulations in OCT4 expression directly influenced VCC-1 levels, as evidenced by the reporter assay of the VCC-1 promoter, indicating the regulatory role of OCT4 in transactivating VCC-1 expression. Furthermore, enhanced VCC-1 expression in H1299 cells promoted transforming growth factor-β (TGF-β) secretion, contributing to lung cancer cell aggressiveness. Additionally, VCC-1 secretion by H1299 cells could attract THP-1 macrophages, further implicating its role in tumor progression. NOD/SCID mice inoculated with VCC-1-knockdown A549 lung cancer cells exhibited significantly smaller tumors than those inoculated with control cells. On the basis of these findings, we highlight the importance of the OCT4-VCC-1 axis in lung cancer progression. Our findings also provide therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Bing-Hua Su
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Thoracic Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Teng Wang
- Tong Yuan Diabetes Center, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jia-Ming Chang
- Thoracic Division, Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan
- Institute of Molecular Biology, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Huan-Yun Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tang-Hsiu Huang
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Ting Yen
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Meng-Ya Chang
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaoshiung 80424, Taiwan
| | - Li-Hsin Cheng
- Core Laboratory of Organoids Technology, Office of R&D, Taipei Medical University, Taiwan
| | - Yu-Chih Wu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Thoracic Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Liang Wu
- Tong Yuan Diabetes Center, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan
| | - Pin Ling
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ai-Li Shiau
- Tong Yuan Diabetes Center, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
44
|
Tauriello DVF, Sancho E, Byrom D, Sanchez-Zarzalejo C, Salvany M, Henriques A, Palomo-Ponce S, Sevillano M, Hernando-Momblona X, Matarin JA, Ramos I, Ruano I, Prats N, Batlle E, Riera A. New Potent Inhibitor of Transforming Growth Factor-Beta (TGFβ) Signaling that is Efficacious against Microsatellite Stable Colorectal Cancer Metastasis in Combination with Immune Checkpoint Therapy in Mice. ACS Pharmacol Transl Sci 2025; 8:97-112. [PMID: 39816803 PMCID: PMC11729428 DOI: 10.1021/acsptsci.4c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 01/18/2025]
Abstract
Blockade of the TGFβ signaling pathway has emerged from preclinical studies as a potential treatment to enhance the efficacy of immune checkpoint inhibition in advanced colorectal cancer (CRC) and several other types of cancer. However, clinical translation of first-generation inhibitors has shown little success. Here, we report the synthesis and characterization of HYL001, a potent inhibitor of TGFβ receptor 1 (ALK5), that is approximately 9 times more efficacious than the structurally related compound galunisertib, while maintaining a favorable safety profile. HYL001 in combination with immune checkpoint blockade (anti-PD1) eradicates liver metastases generated in mice by microsatellite stable, aggressive colorectal cancer tumors at doses where galunisertib is ineffective.
Collapse
Affiliation(s)
- Daniele V. F. Tauriello
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Elena Sancho
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
| | - Daniel Byrom
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Carolina Sanchez-Zarzalejo
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Maria Salvany
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
- Universitat
de Barcelona, Barcelona 08028, Spain
| | - Ana Henriques
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Sergio Palomo-Ponce
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
| | - Marta Sevillano
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
| | - Xavier Hernando-Momblona
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
| | - Joan A. Matarin
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Israel Ramos
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Irene Ruano
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Neus Prats
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Eduard Batlle
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Antoni Riera
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Department
Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| |
Collapse
|
45
|
Johnson AL, Khela HS, Korleski J, Sall S, Li Y, Zhou W, Smith-Connor K, Lopez-Bertoni H, Laterra J. TGFBR2 High mesenchymal glioma stem cells phenocopy regulatory T cells to suppress CD4+ and CD8+ T cell function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631757. [PMID: 39829747 PMCID: PMC11741370 DOI: 10.1101/2025.01.07.631757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Attempts to activate an anti-tumor immune response in glioblastoma (GBM) have been met with many challenges due to its inherently immunosuppressive tumor microenvironment. The degree and mechanisms by which molecularly and phenotypically diverse tumor-propagating glioma stem cells (GSCs) contribute to this state are poorly defined. In this study, our multifaceted approach combining bioinformatics analyses of clinical and experimental datasets, single-cell sequencing, and molecular and pharmacologic manipulation of patient-derived cells identified GSCs expressing immunosuppressive effectors mimicking regulatory T cells (Tregs). We show that this I mmunosuppressive T reg- L ike (ITL) GSC state is specific to the mesenchymal GSC subset and is associated with and driven specifically by TGF-β type II receptor (TGFBR2) in contrast to TGFBR1. Transgenic TGFBR2 expression in patient-derived GBM neurospheres promoted a mesenchymal transition and induced a 6-gene ITL signature consisting of CD274 (PD-L1), NT5E (CD73), ENTPD1 (CD39), LGALS1 (galectin-1), PDCD1LG2 (PD-L2), and TGFB1. This TGFBR2-driven ITL signature was identified in clinical GBM specimens, patient-derived GSCs and systemic mesenchymal malignancies. TGFBR2 High GSCs inhibited CD4+ and CD8+ T cell viability and their capacity to kill GBM cells, effects reversed by pharmacologic and shRNA-based TGFBR2 inhibition. Collectively, our data identify an immunosuppressive GSC state that is TGFBR2-dependent and susceptible to TGFBR2-targeted therapeutics.
Collapse
|
46
|
Li S, Yan L, Li C, Lou L, Cui F, Yang X, He F, Jiang Y. NPC1 controls TGFBR1 stability in a cholesterol transport-independent manner and promotes hepatocellular carcinoma progression. Nat Commun 2025; 16:439. [PMID: 39762312 PMCID: PMC11704005 DOI: 10.1038/s41467-024-55788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Niemann-Pick disease type C protein 1 (NPC1), classically associated with cholesterol transport and viral entry, has an emerging role in cancer biology. Here, we demonstrate that knockout of Npc1 in hepatocytes attenuates hepatocellular carcinoma (HCC) progression in both DEN (diethylnitrosamine)-CCl4 induced and MYC-driven HCC mouse models. Mechanistically, NPC1 significantly promotes HCC progression by modulating the TGF-β pathway, independent of its traditional role in cholesterol transport. We identify that the 692-854 amino acid region of NPC1's transmembrane domain is critical for its interaction with TGF-β receptor type-1 (TGFBR1). This interaction prevents the binding of SMAD7 and SMAD ubiquitylation regulatory factors (SMURFs) to TGFBR1, reducing TGFBR1 ubiquitylation and degradation, thus enhancing its stability. Notably, the NPC1 (P691S) mutant, which is defective in cholesterol transport, still binds TGFBR1, underscoring a cholesterol-independent mechanism. These findings highlight a cholesterol transport-independent mechanism by which NPC1 contributes to the stability of TGFBR1 in HCC and suggest potential therapeutic strategies targeting NPC1 for HCC treatment.
Collapse
Affiliation(s)
- Shuangyan Li
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Lishan Yan
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Chaoying Li
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Lijuan Lou
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Fengjiao Cui
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiao Yang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.
- Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- Anhui Medical University, Hefei, China.
| | - Ying Jiang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.
- Anhui Medical University, Hefei, China.
| |
Collapse
|
47
|
Teo JMN, Chen Z, Chen W, Tan RJY, Cao Q, Chu Y, Ma D, Chen L, Yu H, Lam KH, Lee TKW, Chakarov S, Becher B, Zhang N, Li Z, Ma S, Xue R, Ling GS. Tumor-associated neutrophils attenuate the immunosensitivity of hepatocellular carcinoma. J Exp Med 2025; 222:e20241442. [PMID: 39636298 PMCID: PMC11619716 DOI: 10.1084/jem.20241442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/11/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
Tumor-associated neutrophils (TANs) are heterogeneous; thus, their roles in tumor development could vary depending on the cancer type. Here, we showed that TANs affect metabolic dysfunction-associated steatohepatitis hepatocellular carcinoma (MASH-related HCC) more than viral-associated HCC. We attributed this difference to the predominance of SiglecFhi TANs in MASH-related HCC tumors. Linoleic acid and GM-CSF, which are commonly elevated in the MASH-related HCC microenvironment, fostered the development of this c-Myc-driven TAN subset. Through TGFβ secretion, SiglecFhi TANs promoted HCC stemness, proliferation, and migration. Importantly, SiglecFhi TANs supported immune evasion by directly suppressing the antigen presentation machinery of tumor cells. SiglecFhi TAN removal increased the immunogenicity of a MASH-related HCC model and sensitized it to immunotherapy. Likewise, a high SiglecFhi TAN signature was associated with poor prognosis and immunotherapy resistance in HCC patients. Overall, our study highlights the importance of understanding TAN heterogeneity in cancer to improve therapeutic development.
Collapse
Affiliation(s)
- Jia Ming Nickolas Teo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhulin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Weixin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rachael Julia Yuenyinn Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qi Cao
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Yingming Chu
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Delin Ma
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
| | - Liting Chen
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Huajian Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ka-Hei Lam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Svetoslav Chakarov
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Burkhard Becher
- Institue of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ning Zhang
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| | - Ruidong Xue
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
- International Cancer Institute and State Key Laboratory of Molecular Oncology, Peking University, Beijing, China
- MOE Frontiers Science Center for Cancer Integrative Omics, Peking University, Beijing, China
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
48
|
Tanaka A, Ishitsuka Y, Ohta H, Takenouchi N, Nakagawa M, Koh KR, Onishi C, Tanaka H, Fujimoto A, Yasunaga JI, Matsuoka M. Integrative analysis of ATAC-seq and RNA-seq for cells infected by human T-cell leukemia virus type 1. PLoS Comput Biol 2025; 21:e1012690. [PMID: 39746113 PMCID: PMC11753684 DOI: 10.1371/journal.pcbi.1012690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 01/22/2025] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy (HAM) after a long latent period in a fraction of infected individuals. These HTLV-1-infected cells typically have phenotypes similar to that of CD4+T cells, but the cell status is not well understood. To extract the inherent information of HTLV-1-infected CD4+ cells, we integratively analyzed the ATAC-seq and RNA-seq data of the infected cells. Compared to CD4+T cells from healthy donors, we found anomalous chromatin accessibility in HTLV-1infected CD4+ cells derived from ATL cases in terms of location and sample-to-sample fluctuations in open chromatin regions. Further, by focusing on systematically selected genes near the open chromatin regions, we quantified the difference between the infected CD4+ cells in ATL cases and healthy CD4+T cells in terms of the correlation between the chromatin structures and the gene expressions. Based on a further analysis of chromatin accessibility, we detected TLL1 (Tolloid Like 1) as one of the key genes that exhibit unique gene expressions in ATL cases. A luciferase assay indicated that TLL1 has an isoform-dependent regulatory effect on TGF-β. Overall, this study provides results about the status of HTLV-1-infected cells, which are qualitatively consistent across the different scales of chromatin accessibility, transcription, and immunophenotype.
Collapse
Affiliation(s)
- Azusa Tanaka
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Ishitsuka
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
| | - Hiroki Ohta
- Department of Human Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | | | - Masanori Nakagawa
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ki-Ryang Koh
- Department of Hematology, Osaka General Hospital of West Japan Railway Company, Osaka, Japan
| | - Chiho Onishi
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromitsu Tanaka
- Department of Biophysics, Graduate school of Science, Kyoto University, Kyoto, Japan
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akihiro Fujimoto
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun-ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
49
|
Hanahan D, Michielin O, Pittet MJ. Convergent inducers and effectors of T cell paralysis in the tumour microenvironment. Nat Rev Cancer 2025; 25:41-58. [PMID: 39448877 DOI: 10.1038/s41568-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Tumorigenesis embodies the formation of a heterotypic tumour microenvironment (TME) that, among its many functions, enables the evasion of T cell-mediated immune responses. Remarkably, most TME cell types, including cancer cells, fibroblasts, myeloid cells, vascular endothelial cells and pericytes, can be stimulated to deploy immunoregulatory programmes. These programmes involve regulatory inducers (signals-in) and functional effectors (signals-out) that impair CD8+ and CD4+ T cell activity through cytokines, growth factors, immune checkpoints and metabolites. Some signals target specific cell types, whereas others, such as transforming growth factor-β (TGFβ) and prostaglandin E2 (PGE2), exert broad, pleiotropic effects; as signals-in, they trigger immunosuppressive programmes in most TME cell types, and as signals-out, they directly inhibit T cells and also modulate other cells to reinforce immunosuppression. This functional diversity and redundancy pose a challenge for therapeutic targeting of the immune-evasive TME. Fundamentally, the commonality of regulatory programmes aimed at abrogating T cell activity, along with paracrine signalling between cells of the TME, suggests that many normal cell types are hard-wired with latent functions that can be triggered to prevent inappropriate immune attack. This intrinsic capability is evidently co-opted throughout the TME, enabling tumours to evade immune destruction.
Collapse
Affiliation(s)
- Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| | - Olivier Michielin
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
| | - Mikael J Pittet
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva (UNIGE), Geneva, Switzerland
| |
Collapse
|
50
|
Cassani M, Fernandes S, Pagliari S, Cavalieri F, Caruso F, Forte G. Unraveling the Role of the Tumor Extracellular Matrix to Inform Nanoparticle Design for Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409898. [PMID: 39629891 PMCID: PMC11727388 DOI: 10.1002/advs.202409898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/01/2024] [Indexed: 01/14/2025]
Abstract
The extracellular matrix (ECM)-and its mechanobiology-regulates key cellular functions that drive tumor growth and development. Accordingly, mechanotherapy is emerging as an effective approach to treat fibrotic diseases such as cancer. Through restoring the ECM to healthy-like conditions, this treatment aims to improve tissue perfusion, facilitating the delivery of chemotherapies. In particular, the manipulation of ECM is gaining interest as a valuable strategy for developing innovative treatments based on nanoparticles (NPs). However, further progress is required; for instance, it is known that the presence of a dense ECM, which hampers the penetration of NPs, primarily impacts the efficacy of nanomedicines. Furthermore, most 2D in vitro studies fail to recapitulate the physiological deposition of matrix components. To address these issues, a comprehensive understanding of the interactions between the ECM and NPs is needed. This review focuses on the main features of the ECM and its complex interplay with NPs. Recent advances in mechanotherapy are discussed and insights are offered into how its combination with nanomedicine can help improve nanomaterials design and advance their clinical translation.
Collapse
Affiliation(s)
- Marco Cassani
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Soraia Fernandes
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Stefania Pagliari
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonWC2R 2LSUK
| | - Francesca Cavalieri
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
- Dipartimento di Scienze e Tecnologie ChimicheUniversita di Roma “Tor Vergata”Via della Ricerca Scientifica 1Rome00133Italy
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Giancarlo Forte
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonWC2R 2LSUK
| |
Collapse
|