1
|
Thangadural T, Dobretsov S, Aeby G. Exploring Bacterial Diversity in Acropora pharaonis: Implications for Coral Health and Growth Anomalies. Microb Pathog 2025:107616. [PMID: 40294758 DOI: 10.1016/j.micpath.2025.107616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/07/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Coral growth anomalies (GA) affect many coral genera across the world, yet the etiology of GAs remains unknown, with limited knowledge of associated bacteria. In this study, we investigated bacterial associations between the growth anomalies (GAs) and healthy (H) portions of coral colonies in Acropora faraonis for two seasons to understand microbial dynamics. Additionally, we examined bacteria in water (W), which could be affecting coral bacterial communities. We found that alpha diversity remained consistent between healthy and GA coral tissues, but their relative abundances differed significantly. Notably, differential analysis revealed the abundance of Endozoicomonas spp., differed significantly between GA and H tissue, although it remains the dominant genus in both GA and H tissue. The high relative abundance of Endozoicomonas spp. in both GA and healthy tissue underscores its potential role in maintaining coral health. Structural modifications in GAs, such as changes in polyp sizes or densities, could be responsible for these differences in bacterial abundance. Similarly, microbial community composition remained consistent between seasons but differed in abundance again. We found differences between microbial communities of GAs and water, but no significant differences were observed between GAs and H, and no previously established bacterial pathogens were detected in GA tissue. These findings describe bacterial community patterns in GAs, but their potential role in its pathogenesis remains unknown. Further metagenomic and meta-transcriptomic analyses are needed to understand potential bacterial involvement in GAs. Additionally, investigating viruses and fungi in GA tissue is recommended to gain deeper insights into GA pathogenesis.
Collapse
Affiliation(s)
- Thinesh Thangadural
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 PO Box 34, Muscat, Oman
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 PO Box 34, Muscat, Oman; UNESCO Chair in Marine Biotechnology, Sultan Qaboos University, Al Khoud 123 PO Box 50, Muscat, Oman.
| | - Greta Aeby
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Raymundo LJ, Andersen MD, Rouzé H. Coral restoration in a stressful environment: Disease, bleaching, and dysbiosis in Acropora aspera in Guam, Micronesia. iScience 2025; 28:112244. [PMID: 40241745 PMCID: PMC12002618 DOI: 10.1016/j.isci.2025.112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/15/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Despite advances in coral restoration science, challenges imposed by rapid environmental change impede progress. Here, we report mortality from disease and bleaching in an introduced nursery-reared population of the staghorn coral Acropora aspera, in Guam, Micronesia. We present disease progression, incidence, synergies between stressors, and response of the coral microbiome. Microbiome composition in nursery vs. outplanted corals indicated dysbiosis induced by the transition to poorer water quality. However, among outplants, there were no differences between diseased tissues, visually healthy tissues on the same infected colony and tissues from non-infected colonies, suggesting that outplanting into a stressful environment may have compromised coral immune response, increasing susceptibility to disease and bleaching. Our study highlights that outplanting is inherently physically stressful, thus underscoring the need for understanding the microbiome's role in the coral transplantation stress response. We suggest workflows to minimize stress and improve restoration in the face of environmental challenges.
Collapse
Affiliation(s)
- Laurie J. Raymundo
- University of Guam Marine Laboratory, Mangilao 96923, Guam
- James Cook University, Townsville, QLD 4810, Australia
| | | | - Héloïse Rouzé
- University of Guam Marine Laboratory, Mangilao 96923, Guam
| |
Collapse
|
3
|
Liu Y, Hua Y, Yi Y, Liu J, Fu P. Coral-Associated Bacteria Provide Alternative Nitrogen Source for Symbiodiniaceae Growth in Oligotrophic Environment. Microorganisms 2025; 13:748. [PMID: 40284585 PMCID: PMC12029909 DOI: 10.3390/microorganisms13040748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Coral reefs thrive in nutrients-poor waters, and their survival strategy in such oligotrophic marine environments remains largely unexplored. Current coral research has focused on the interplay between the animal hosts, symbiotic Symbiodiniaceae, and associated bacteria, with little attention given to their individual interactions. Here, we integrated biochemical, transcriptomic, and metabonomic analyses of the clade D Symbiodiniaceae strain AG11 to investigate the growth-assisting mechanisms of symbiotic bacteria. Our findings indicate that metabolic trophallaxis between Symbiodiniaceae and symbiotic bacteria plays a crucial role in enhancing survival and population growth under nitrogen-depleted conditions, commonly found in typical coral habitats. Notably, the exchange of organic compounds between Symbiodiniaceae and bacteria significantly boosts nitrogen uptake in their free-living state. Furthermore, we demonstrated how beneficial bacteria influence the survival of Symbiodiniaceae in response to environmental changes, which are vital for coping with nitrogen-depleted conditions where coral reefs are particularly vulnerable.
Collapse
Affiliation(s)
- Yawen Liu
- School of Life and Pharmaceutical Sciences, Hainan University, 58 Renmin Avenue, Haikou 570228, China; (Y.L.); (Y.H.); (Y.Y.); (J.L.)
| | - Yanying Hua
- School of Life and Pharmaceutical Sciences, Hainan University, 58 Renmin Avenue, Haikou 570228, China; (Y.L.); (Y.H.); (Y.Y.); (J.L.)
| | - Yan Yi
- School of Life and Pharmaceutical Sciences, Hainan University, 58 Renmin Avenue, Haikou 570228, China; (Y.L.); (Y.H.); (Y.Y.); (J.L.)
| | - Jicai Liu
- School of Life and Pharmaceutical Sciences, Hainan University, 58 Renmin Avenue, Haikou 570228, China; (Y.L.); (Y.H.); (Y.Y.); (J.L.)
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| |
Collapse
|
4
|
Ostendarp M, de Breuyn M, El-Khaled YC, Garcias-Bonet N, Carvalho S, Peixoto RS, Wild C. Temperature-dependent responses of the hard corals Acropora sp. and Pocillopora verrucosa to molecular hydrogen. PLoS One 2025; 20:e0308894. [PMID: 40132032 PMCID: PMC11936180 DOI: 10.1371/journal.pone.0308894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/11/2025] [Indexed: 03/27/2025] Open
Abstract
Coral reefs are increasingly threatened by mass bleaching events due to global ocean warming. Novel management strategies are urgently needed to support coral survival until global efforts can mitigate ocean warming. Given the strong antioxidant, anti-inflammatory and anti-apoptotic properties of molecular hydrogen, our study explores its potential to alleviate the negative effects of heat stress on corals. We investigated the ecophysiological responses of two common hard corals (Acropora sp. and Pocillopora verrucosa) from the Central Red Sea under ambient (26 °C) and elevated seawater temperatures (32 °C), with and without hydrogen addition ( ~ 150 µ M H2) over 48 h. Our results showed that at 32 °C without hydrogen addition, P. verrucosa exhibited high temperature tolerance, whereas Acropora sp. showed significant reductions in photosynthetic efficiency and maximum electron transport rate compared to the ambient condition (26 °C). The addition of hydrogen at 32 °C increased the maximum electron transport rate of Acropora sp. by 28%, maintaining it at levels compared to those at 26 °C. In contrast, the addition of hydrogen at 26 °C caused a significant decrease in the photophysiology of both Acropora sp. and P. verrucosa. This suggests that the short-term response of the coral holobiont to molecular hydrogen is temperature-dependent, potentially benefiting the coral holobiont under heat stress, while impairing the photophysiology under ambient temperatures. Our findings therefore provide the foundation for future long-term studies uncovering the mechanisms behind molecular hydrogen, potentially informing the development of new management strategies to enhance coral resilience to ocean warming.
Collapse
Affiliation(s)
- Malte Ostendarp
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Mareike de Breuyn
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Yusuf C. El-Khaled
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Neus Garcias-Bonet
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Susana Carvalho
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Raquel S. Peixoto
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Christian Wild
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| |
Collapse
|
5
|
Ghobashy MOI, Al-otaibi AS, Alharbi BM, Alshehri D, Ghabban H, Albalawi DA, Alenzi AM, Alatawy M, Alatawi FA, Algammal AM, Mir R, Mahrous YM. Metagenomic Characterization of Microbiome Taxa Associated with Coral Reef Communities in North Area of Tabuk Region, Saudia Arabia. Life (Basel) 2025; 15:423. [PMID: 40141768 PMCID: PMC11944186 DOI: 10.3390/life15030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
The coral microbiome is highly related to the overall health and the survival and proliferation of coral reefs. The Red Sea's unique physiochemical characteristics, such a significant north-south temperature and salinity gradient, make it a very intriguing research system. However, the Red Sea is rather isolated, with a very diversified ecosystem rich in coral communities, and the makeup of the coral-associated microbiome remains little understood. Therefore, comprehending the makeup and dispersion of the endogenous microbiome associated with coral is crucial for understanding how the coral microbiome coexists and interacts, as well as its contribution to temperature tolerance and resistance against possible pathogens. Here, we investigate metagenomic sequencing targeting 16S rRNA using DNAs from the sediment samples to identify the coral microbiome and to understand the dynamics of microbial taxa and genes in the surface mucous layer (SML) microbiome of the coral communities in three distinct areas close to and far from coral communities in the Red Sea. These findings highlight the genomic array of the microbiome in three areas around and beneath the coral communities and revealed distinct bacterial communities in each group, where Pseudoalteromonas agarivorans (30%), Vibrio owensii (11%), and Pseudoalteromonas sp. Xi13 (10%) were the most predominant species in samples closer to coral (a coral-associated microbiome), with the domination of Pseudoalteromonas_agarivorans and Vibrio_owensii in Alshreah samples distant from coral, while Pseudoalteromonas_sp._Xi13 was more abundant in closer samples. Moreover, Proteobacteria such as Pseudoalteromonas, Pseudomonas and Cyanobacteria were the most prevalent phyla of the coral microbiome. Further, Saweehal showed the highest diversity far from corals (52.8%) and in Alshreah (7.35%) compared to Marwan (1.75%). The microbial community was less diversified in the samples from Alshreah Far (5.99%) and Marwan Far (1.75%), which had comparatively lower values for all indices. Also, Vibrio species were the most prevalent microorganisms in the coral mucus, and the prevalence of these bacteria is significantly higher than those found in the surrounding saltwater. These findings reveal that there is a notable difference in microbial diversity across the various settings and locales, revealing that geographic variables and coral closeness affect the diversity of microbial communities. There were significant differences in microbial community composition regarding the proximity to coral. In addition, there were strong positive correlations between genera Pseudoalteromonas and Vibrio in close-to-coral environments, suggesting that these bacteria may play a synergistic role in Immunizing coral, raising its tolerance towards environmental stress and overall coral health.
Collapse
Affiliation(s)
- Madeha O. I. Ghobashy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Amenah S. Al-otaibi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Basmah M. Alharbi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hanaa Ghabban
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Doha A. Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Asma Massad Alenzi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Faud A. Alatawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
| | - Abdelazeem M. Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair for Biomedical Research, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Yussri M. Mahrous
- Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
6
|
Stuij TM, Cleary DFR, de Voogd NJ, Rocha RJM, Polónia ARM, Silva DAM, Frommlet JC, Louvado A, Huang YM, Gomes NCM. Humic substances modulate bacterial communities and mitigate adverse effects of temperature stress in coral reef organisms. J Appl Microbiol 2025; 136:lxaf024. [PMID: 39875192 DOI: 10.1093/jambio/lxaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/20/2025] [Accepted: 02/08/2025] [Indexed: 01/30/2025]
Abstract
AIMS In the present study, we tested whether terrestrially derived humic substances (HS) could mitigate the adverse effects of elevated temperature and ultraviolet B (UVB) radiation on the bacterial communities of two hard corals (Montipora digitata and M. capricornis), one soft coral (Sarcophyton glaucum), sediment and water. We also examined the impact of temperature, UVB radiation, and HS supplementation on coral photosynthetic activity, a proxy for coral bleaching. METHODS AND RESULTS We performed a multifactorial experiment using a randomized-controlled microcosm setup. Coral photosynthetic efficiency was measured in vivo using a pulse amplitude modulation fluorometer. Bacterial communities were analyzed using 16S rRNA gene sequencing. Corals in HS-supplemented microcosms had significantly higher photosynthetic activities than those in microcosms subjected to elevated temperature and UVB radiation. Additionally, HS supplementation significantly influenced the composition of sediment, water, and host-associated bacterial communities. Reef organisms in HS supplemented microcosms contained distinct bacterial communities enriched with groups of potentially beneficial bacteria. In the hard coral M. digitata, we observed an interactive effect of HS supplementation, UVB radiation, and temperature. CONCLUSION Our findings indicate that HS significantly modulates coral reef bacterial communities and support the hypothesis that these substances contribute to improved reef resistance to the adverse effects of elevated temperature and UVB radiation.
Collapse
Affiliation(s)
- Tamara M Stuij
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
- Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Daniel F R Cleary
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
- Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
- Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Rui J M Rocha
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
- Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Ana Rita M Polónia
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
- Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Davide A M Silva
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
- Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Jörg C Frommlet
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
- Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Antonio Louvado
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
- Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Yusheng M Huang
- Penghu University of Science and Technology, 300 Liu-Ho Rd., Magong City, Penghu 880, Taiwan
| | - Newton C M Gomes
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
- Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
7
|
Guo M, Jiang L, Zhou G, Lian J, Yu X, Huang H. Diversity and dynamics of multiple symbionts contribute to early development of broadcast spawning reef-building coral Dipsastraea veroni. Appl Environ Microbiol 2025; 91:e0235924. [PMID: 39878491 PMCID: PMC11837535 DOI: 10.1128/aem.02359-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Sexual reproduction and recruitment enhance the genetic diversity and evolution of reef-building corals for population recovery and coral reef conservation under climate change. However, new recruits are vulnerable to physical changes and the mechanisms of symbiosis establishment remain poorly understood. Here, Dipsastraea veroni, a broadcast spawning hermaphrodite reef-building coral, was subjected to settlement and juvenile growth in flow-through in situ seawater at 27.93 ± 0.96°C. Symbiosis of Symbiodiniaceae, bacteria, and/or archaea by horizontal acquisition and/or hypothetical vertical transmission through the mucus with symbionts from the parent appears to be a heritable process of selection and adaptation in D. veroni at the egg, larva, juvenile (5 days post settlement, d p.s. and 32 d p.s.) stages. Symbiodiniaceae was dominated by the genera Cladocopium, Durusdinium, Symbiodinium, with increasing relative abundance of Durusdinium at 5 d p.s. and Symbiodinium at 32 d p.s. Mixed acquisition of the dominant phyla Pseudomonadota, Bacteroidota, Cyanobacteriota, Bacillota, Planctomycetota, and Actinomycetota in egg, larva, and/or juvenile showed a winnowing and regulated bacterial diversity and dynamics, resulting in stage-abundant orders Pseudomonadales and Bacillales in egg and Rhodobacterales, Rhodospirillales, Cyanobacteria, and Cyanobacteriales in larva and/or juvenile. The photoautotrophic Chloroflexales, Cyanobacteriales, and Chlorobiales were abundant in adults. The stable archaeal community contained predominant Crenarchaeota, Halobacterota, Nanoarchaeia Thermoplasmatota, and eight rare phyla, with increased relative abundance of the genera Bathyarchaeota, Candidatus_Nitrosopumilus, Candidatus_Nitrocosmicus, Nitrosarchaeum, Candidatus_Nitrosotenuis, Candidatus_Nitrosopelagicus, Cenarchaeum, Haladaptatus, Halogranum, Halolamina, and Woesearchaeales and GW2011-AR15 in juveniles. All results revealed flexible symbiotic mechanisms in D. veroni during early ontogeny for coral survival and evolution.IMPORTANCEFlexible symbioses of Symbiodiniaceae, bacteria, and archaea appear to be a heritable process of selection and adaptation in Dipsastraea veroni in the field, benefiting early coral development and facilitating coral population recovery and reef conversation.
Collapse
Affiliation(s)
- Minglan Guo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Lei Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Guowei Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Jiansheng Lian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Xiaolei Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
8
|
Abdelghany S, Simancas-Giraldo SM, Zayed A, Farag MA. How does the coral microbiome mediate its natural host fitness under climate stress conditions? Physiological, molecular, and biochemical mechanisms. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106920. [PMID: 39729906 DOI: 10.1016/j.marenvres.2024.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
Although the symbiotic partnership between corals and algal endosymbionts has been extensively explored, interactions between corals, their algal endosymbionts and microbial associates are still less understood. Screening the response of natural microbial consortiums inside corals can aid in exploiting them as markers for dysbiosis interactions inside the coral holobiont. The coral microbiome includes archaea, bacteria, fungi, and viruses hypothesized to play a pivotal vital role in coral health and tolerance to heat stress condition via different physiological, biochemical, and molecular mechanisms. The dynamic behaviour of microbial associates could denote their potential role in coral adaptation to future climate change, with microbiome shifts occurring independently as a response to thermal stress or as a response to host stress response. Associated adaptations include regulation of coral-algal-microbial interactions, expression of heat shock proteins, microbial composition changes, and accumulation of secondary metabolites to aid in sustaining the coral's overall homeostasis under ocean warming scenarios.
Collapse
Affiliation(s)
- Sabrin Abdelghany
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany; Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany; National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516, Egypt
| | - Susana M Simancas-Giraldo
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), Am Alten Hafen, 27568, Bremerhaven, Germany
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), 31527, Tanta, Egypt.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, P.B, 11562, Egypt.
| |
Collapse
|
9
|
Stenger PL, Tribollet A, Guilhaumon F, Cuet P, Pennober G, Jourand P. A Multimarker Approach to Identify Microbial Bioindicators for Coral Reef Health Monitoring-Case Study in La Réunion Island. MICROBIAL ECOLOGY 2025; 87:179. [PMID: 39870904 PMCID: PMC11772467 DOI: 10.1007/s00248-025-02495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/11/2025] [Indexed: 01/29/2025]
Abstract
The marine microbiome arouses an increasing interest, aimed at better understanding coral reef biodiversity, coral resilience, and identifying bioindicators of ecosystem health. The present study is a microbiome mining of three environmentally contrasted sites along the Hermitage fringing reef of La Réunion Island (Western Indian Ocean). This mining aims to identify bioindicators of reef health to assist managers in preserving the fringing reefs of La Réunion. The watersheds of the fringing reefs are small, steeply sloped, and are impacted by human activities with significant land use changes and hydrological modifications along the coast and up to mid-altitudes. Sediment, seawater, and coral rubble were sampled in austral summer and winter at each site. For each compartment, bacterial, fungal, microalgal, and protist communities were characterized by high throughput DNA sequencing methodology. Results show that the reef microbiome composition varied greatly with seasons and reef compartments, but variations were different among targeted markers. No significant variation among sites was observed. Relevant bioindicators were highlighted per taxonomic groups such as the Firmicutes:Bacteroidota ratio (8.4%:7.0%), the genera Vibrio (25.2%) and Photobacterium (12.5%) dominating bacteria; the Ascomycota:Basidiomycota ratio (63.1%:36.1%), the genera Aspergillus (40.9%) and Cladosporium (16.2%) dominating fungi; the genus Ostreobium (81.5%) in Chlorophyta taxon for microalgae; and the groups of Dinoflagellata (63.3%) and Diatomea (22.6%) within the protista comprising two dominant genera: Symbiodinium (41.7%) and Pelagodinium (27.8%). This study highlights that the identified bioindicators, mainly in seawater and sediment reef compartments, could be targeted by reef conservation stakeholders to better monitor La Réunion Island's reef state of health and to improve management plans.
Collapse
Affiliation(s)
- Pierre-Louis Stenger
- IRD, CS 41095 - 2 Rue Joseph Wetzell, Parc Technologique Universitaire, 97495 Sainte Clotilde Cedex, La Réunion, France
- Omicsphere Analytics, 19 Rue Philippe Maupas, 37250, Montbazon, France
| | - Aline Tribollet
- IRD, UMR LOCEAN-IPSL (Sorbonne Université-IRD-CNRS-MNHN), Parc Technologique Universitaire, CS 41095 - 2 Rue Joseph Wetzell, 97495 Sainte Clotilde Cedex, La Réunion, France
| | - François Guilhaumon
- IRD, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France
| | - Pascale Cuet
- Université de La Réunion, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France
| | - Gwenaelle Pennober
- Université de La Réunion, UMR ESPACE-DEV, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France
| | - Philippe Jourand
- IRD, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France.
| |
Collapse
|
10
|
Xu Y, Liang J, Qin L, Niu T, Liang Z, Li Z, Chen B, Zhou J, Yu K. The Dynamics of Symbiodiniaceae and Photosynthetic Bacteria Under High-Temperature Conditions. MICROBIAL ECOLOGY 2025; 87:169. [PMID: 39786593 PMCID: PMC11717853 DOI: 10.1007/s00248-024-02470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 11/25/2024] [Indexed: 01/12/2025]
Abstract
Coral thermal tolerance is intimately linked to their symbiotic relationships with photosynthetic microorganisms. However, the potential compensatory role of symbiotic photosynthetic bacteria in supporting Symbiodiniaceae photosynthesis under extreme summer temperatures remains largely unexplored. Here, we examined the seasonal variations in Symbiodiniaceae and photosynthetic bacterial community structures in Pavona decussata corals from Weizhou Island, Beibu Gulf, China, with particular emphasis on the role of photosynthetic bacteria under elevated temperature conditions. Our results revealed that Symbiodiniaceae density and Chlorophyll a concentration were lowest during the summer and highest in the winter. Notably, the summer bacterial community was predominately composed of the proteorhodopsin bacterium BD 1-7 _clade, alongside a significant increase in Cyanobacteria, particularly Synechococcus_CC9902 and Cyanobium_PCC-6307, which represented 61.85% and 31.48% of the total Cyanobacterial community, respectively. In vitro experiments demonstrated that Cyanobacteria significantly enhanced Symbiodiniaceae photosynthetic efficiency under high-temperature conditions. These findings suggest that the increased abundance of photosynthetic bacteria during summer may mitigate the adverse physiological effects of reduced Symbiodiniaceae density, thereby contributing to coral stability. Our study highlights a potential synergistic interaction between Symbiodiniaceae and photosynthetic bacteria, emphasizing the importance of understanding these dynamic interactions in sustaining coral resilience against environmental stress, although further research is necessary to establish their role in preventing coral bleaching.
Collapse
Affiliation(s)
- Yongqian Xu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Liangyun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Tianyi Niu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Zhuqing Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Zhicong Li
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510030, China.
| |
Collapse
|
11
|
Brown AL, Koskella B, Boots M. How host-microbiome/holobiont evolution depends on whether the microbiome affects host lifespan or fecundity. J Evol Biol 2025; 38:41-49. [PMID: 39513573 DOI: 10.1093/jeb/voae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
There is overwhelming evidence that the microbiome can be important to host physiology and fitness. As such, there is interest in and some theoretical work on understanding when hosts and microbiomes (co)evolve so that microbes benefit hosts and hosts favour beneficial microbes. However, the outcome of evolution likely depends on how microbes benefit hosts. Here, we use adaptive dynamics to investigate how host and symbiont evolution depend on whether symbionts increase host lifespan or host reproduction in a simple model of host and symbiont dynamics. In addition, we investigate 2 ways hosts release (and transmit) symbionts: by releasing symbionts steadily during their lifetime or by releasing them at reproduction, potentially increasing symbionts' chances of infecting the host's offspring. The former is strict horizontal transmission, whereas the latter is also a form of indirect or "pseudovertical" transmission. Our first key result is that the evolution of symbionts that benefit host fecundity requires pseudovertical transmission, while the evolution of symbionts that benefit host lifespan does not. Furthermore, our second key result is that when investing in host benefits is costly to the free-living symbiont stage, intermediate levels of pseudovertical transmission are needed for selection to favour beneficial symbionts. This is true regardless of fitness effects because release at reproduction increases the free-living symbiont population, which increases competition for hosts. Consequently, hosts could evolve away from traits that favour beneficial symbionts. Generally, our work emphasizes the importance of different forms of vertical transmission and fitness benefits in host, microbiome, and holobiont evolution as highlighted by our prediction that the evolution of fecundity-increasing symbionts requires parent-to-offspring transmission.
Collapse
Affiliation(s)
- Alexandra L Brown
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Mike Boots
- Department of Integrative Biology, University of California, Berkeley, CA, United States
- Department of Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
12
|
You M, Yang W. Environmental Changes Driving Shifts in the Structure and Functional Properties of the Symbiotic Microbiota of Daphnia. Microorganisms 2024; 12:2492. [PMID: 39770695 PMCID: PMC11728151 DOI: 10.3390/microorganisms12122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Symbiotic microbiota significantly influence the development, physiology, and behavior of their hosts, and therefore, they are widely studied. However, very few studies have investigated the changes in symbiotic microbiota across generations. Daphnia magna originating from the Qinghai-Tibetan Plateau were cultured through seven generations in our laboratory, and the symbiotic microbiota of D. magna were sequenced using a 16S rRNA amplicon to analyze changes in the structure and functional properties of the symbiotic microbiota of D. magna from a harsh environment to an ideal environment. We detected substantial changes in the symbiotic microbiota of D. magna across generations. For example, the genus Nevskia, a member of the gamma-subclass Proteobacteria, had the highest abundance in the first generation (G1), followed by a decrease in abundance in the fourth (G4) and seventh (G7) generations. The gene functions of the microbiota in different generations of D. magna also changed significantly. The fourth generation was mainly rich in fatty acyl-CoA synthase, acetyl-CoA acyltransferase, phosphoglycerol phosphatase, etc. The seventh generation was mainly rich in osmotic enzyme protein and ATP-binding protein of the ABC transport system. This study confirms that the alterations in the structure and functional properties of the symbiotic microbiota of D. magna under changing environments are typical responses of D. magna to environmental changes.
Collapse
Affiliation(s)
| | - Wenwu Yang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai 200438, China;
| |
Collapse
|
13
|
Qin Y, Cheng K, Jong MC, Zheng H, Cai Z, Xiao B, Zhou J. Symbiotic bacterial communities and carbon metabolic profiles of Acropora coral with varying health status under thermal stress. MARINE POLLUTION BULLETIN 2024; 209:117116. [PMID: 39418876 DOI: 10.1016/j.marpolbul.2024.117116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Thermal-induced coral bleaching has received substantial research attention; however, the dynamics of symbiotic coral-associated bacterial communities are underexplored and the roles of coral with intermediate health status remain unclear. Using high-throughput sequencing and biochemical analyses, we found that the symbiotic zooxanthellae number gradually decreased with the increase of bleaching degree (non-bleached, semi-bleached, and fully-bleached) in the coral Acropora pruinosa. The semi-bleached host exhibited a relatively more complex microbial interaction network. For the carbon metabolic profiles, relatively higher carbon-fixing abilities observed in non-bleached coral symbiotic bacteria, followed by semi-bleached host, and lowest values appeared in fully-bleached coral. Partial least-squares pathway modeling revealed that bacterial community features and carbon metabolic function were directly related with health status, while temperature exerted a strong influence on the bleaching resilience. These findings can help us better understand the coral microecological feature and carbon metabolic potential under changing environment.
Collapse
Affiliation(s)
- Yuke Qin
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Keke Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Huina Zheng
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518120, Guangdong Province, PR China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Baohua Xiao
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518120, Guangdong Province, PR China.
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China.
| |
Collapse
|
14
|
Chen J, Yu X, Yu K, Chen B, Qin Z, Liao Z, Ma Y, Xu L, Wang Y. Potential adaptation of scleractinian coral Pocillopora damicornis during hypo-salinity stress caused by extreme pre-flood rainfall over south China. ENVIRONMENTAL RESEARCH 2024; 262:119848. [PMID: 39216737 DOI: 10.1016/j.envres.2024.119848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Global warming intensifies the water cycle, resulting in significant increases in precipitation and river runoff, which brings severe hypo-salinity stress to nearshore coral reefs. Ecological investigations have found that some corals exhibit remarkable adaptability to hypo-salinity stress during mass-bleaching events. However, the exact cause of this phenomenon remains unclear. To elucidate the potential molecular mechanism leading to high tolerance to hypo-salinity stress, Pocillopora damicornis was used as a research object in this study. We compared the differences in transcriptional responses and symbiotic microbiomes between bleaching and unbleaching P. damicornis during hypo-salinity stress caused by extreme pre-flood rainfall over South China in 2022. The results showed that: (1) Under hypo-salinity stress, the coral genes related to immune defense and cellular stress were significantly upregulated in bleaching corals, indicating more severe immune damage and stress, and the Symbiodiniaceae had no significant gene enrichment. Conversely, metabolic genes related to glycolysis/gluconeogenesis were significantly downregulated in unbleaching corals, whereas Symbiodiniaceae genes related to oxidative phosphorylation were significantly upregulated to meet the energy requirements of coral holobiont; (2) C1d was the dominant Symbiodiniaceae subclade in all samples, with no significant difference between the two groups; (3) The symbiotic bacterial community structure was reorganized under hypo-salinity stress. The abundance of opportunistic bacteria increased significantly in bleaching coral, whereas the relative abundance of probiotics was higher in unbleaching coral. This may be due to severe immune damage, making the coral more susceptible to opportunistic infection and bleaching. These results suggest that long-term hypo-salinity acclimation in the Pearl River Estuary enhances the tolerance of some corals to hypo-salinity stress. Corals with higher tolerance may reduce energy consumption by slowing down their metabolism, improve the energy metabolism of Symbiodiniaceae to meet the energy requirements of the coral holobiont, and alter the structure of symbiotic bacterial communities to avoid bleaching.
Collapse
Affiliation(s)
- Junling Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Nanning Normal University, Nanning, China
| | - Yuling Ma
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China.
| | - Yongzhi Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| |
Collapse
|
15
|
Leasi F, Eckert EM, Norenburg JL, Thomas WK, Sevigny JL, Hall JA, Wirshing HH, Fontaneto D. Microbiota Associated With Ototyphlonemertes Species (Nemertea, Hoplonemertea, Monostilifera, Ototyphlonemertidae) Reveal Evidence of Phylosymbiosis. Ecol Evol 2024; 14:e70471. [PMID: 39629175 PMCID: PMC11612514 DOI: 10.1002/ece3.70471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
Phylosymbiosis, the association between the phylogenetic relatedness of hosts and the composition of their microbial communities, is a widespread phenomenon in diverse animal taxa. However, the generality of the existence of such a pattern has been questioned in many animals across the tree of life, including small-sized aquatic invertebrates. This study aims to investigate the microbial communities associated with poorly known marine interstitial nemerteans to uncover their microbiota diversity and assess the occurrence of phylosymbiosis. Specimens from various Central American sites were analyzed using morphology-based taxonomy and molecular techniques targeting the host 18S rRNA gene whereas their microbial association was analyzed by targeting the prokaryotic 16S rRNA gene. Phylogenetic and statistical analyses were conducted to examine the potential effects of host nemertean taxa and sampling locations on the host-associated microbial communities. The results provide compelling evidence of phylosymbiosis in meiofaunal nemertean species, highlighting the significant impact of host genetic relatedness on microbiome diversity in small-sized animals. This finding supports previous studies that demonstrate how certain nemertean species harbor distinct microbial communities with functional and ecological implications. Given the remarkable diversity of meiofaunal animals-spanning numerous phyla with varying lifestyles and co-existing in the same habitat-combined with advancements in multi-omics approaches, there is a promising opportunity to deepen our understanding of the evolutionary and ecological interactions between hosts and their microbiota throughout the animal tree of life.
Collapse
Affiliation(s)
- Francesca Leasi
- Department of Biology, Geology, and Environmental ScienceUniversity of Tennessee at ChattanoogaChattanoogaTennesseeUSA
| | - Ester M. Eckert
- National Research Council of Italy (CNR), water Research Institute (IRSA)Molecular Ecology Group (MEG)Verbania PallanzaItaly
| | - Jon L. Norenburg
- National Museum of Natural HistorySmithsonian InstitutionWashington, DCUSA
| | - W. Kelley Thomas
- Hubbard Center for Genome StudiesUniversity of New HampshireDurhamNew HampshireUSA
| | - Joseph L. Sevigny
- Hubbard Center for Genome StudiesUniversity of New HampshireDurhamNew HampshireUSA
| | - Jeffrey A. Hall
- Hubbard Center for Genome StudiesUniversity of New HampshireDurhamNew HampshireUSA
| | - Herman H. Wirshing
- National Museum of Natural HistorySmithsonian InstitutionWashington, DCUSA
| | - Diego Fontaneto
- National Research Council of Italy (CNR), water Research Institute (IRSA)Molecular Ecology Group (MEG)Verbania PallanzaItaly
| |
Collapse
|
16
|
Wei Y, Zhang W, Baguya EB, Gu Y, Yi K, Zhou J, Tong M. Bleached coral supports high diversity and heterogeneity of bacterial communities: Following the rule of the 'Anna Karenina principle'. ENVIRONMENTAL RESEARCH 2024; 262:119977. [PMID: 39265759 DOI: 10.1016/j.envres.2024.119977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
Coral-associated bacteria are sensitive to the health status of coral and proven biomarker(s) of the coral bleaching. However, whether coral specificity or health status play a key role when coral-associated bacteria responding to coral bleaching is not known. Therefore, the bacterial communities of five species of healthy and bleached corals, Acropora millepora, Favites abdita, Galaxea fascicularis, Dipsastraea speciosa and Pocillopora damicornis, were collected along the coast of Sanya, South China Sea and targeted for associated bacterial studies. The relative abundance of the dominant class Gammaproteobacteria tended to be higher in healthy corals, while Alphaproteobacteria were more abundant in bleached corals. Dominant genus Achromobacter demonstrated higher relative abundance in healthy corals (0.675) than in bleached corals (0.151). Most of the bleached corals had high α diversity, β dispersion, heterogeneity and complexity of the co-occurrence network of bacterial communities, which support the 'Anna Karenina Principle (AKP)' of diverse in threatened objects and conserved in healthy ones. The bacterial communities in the bleached corals were mostly involved in the selection process, and communities in the healthy corals were involved in the undominated process, which is obtained based on the null model test of β nearest-taxon-index (βNTI) and Bray-Curtis-based Raup-Crick (RCBray). This evidence further confirmed the AKP and revealed that the bacterial communities in the bleached corals were driven by deterministic factors. These findings provide valuable insights into the connection between bacterial and coral status, and the application of the AKP in the changing patterns of bacterial communities during coral bleaching.
Collapse
Affiliation(s)
- Yihan Wei
- Ocean College, Zhejiang University, Zhoushan, 316021, China; Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources, Guangzhou, 510030, China
| | - Wenguang Zhang
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | | | - Yu Gu
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Kehan Yi
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518131, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan, 316021, China; Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources, Guangzhou, 510030, China; Hainan Institute, Zhejiang University, Sanya, 572025, China.
| |
Collapse
|
17
|
Cecchini P, Nitta T, Sena E, Du ZY. Saving coral reefs: significance and biotechnological approaches for coral conservation. ADVANCED BIOTECHNOLOGY 2024; 2:42. [PMID: 39883363 PMCID: PMC11740877 DOI: 10.1007/s44307-024-00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/31/2025]
Abstract
Coral reefs are highly productive ecosystems that provide valuable services to coastal communities worldwide. However, both local and global anthropogenic stressors, threaten the coral-algal symbiosis that enables reef formation. This breakdown of the symbiotic relationship, known as bleaching, is often triggered by cumulative cell damage. UV and heat stress are commonly implicated in bleaching, but other anthropogenic factors may also play a role. To address coral loss, active restoration is already underway in many critical regions. Additionally, coral researchers are exploring assisted evolution methods for greater coral resilience to projected climate change. This review provides an overview of the symbiotic relationship, the mechanisms underlying coral bleaching in response to stressors, and the strategies being pursued to address coral loss. Despite the necessity of ongoing research in all aspects of this field, action on global climate change remains crucial for the long-term survival of coral reefs.
Collapse
Affiliation(s)
- Pansa Cecchini
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Thomas Nitta
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Edoardo Sena
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Zhi-Yan Du
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
18
|
Levy N, Marques JA, Simon-Blecher N, Bourne DG, Doniger T, Benichou JIC, Lim JY, Tarazi E, Levy O. Ecosystem transplant from a healthy reef boosts coral health at a degraded reef. Nat Commun 2024; 15:10033. [PMID: 39562544 DOI: 10.1038/s41467-024-54149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Organismal communities associated with coral reefs, particularly invertebrates and microbes, play crucial roles in ecosystem maintenance and coral health. Here, we characterized the organismal composition of a healthy, non-urbanized reef (Site A) and a degraded, urbanized reef (Site B) in the Gulf of Eilat/Aqaba, Red Sea to assess its impact on coral health and physiology. Biomimetically designed terracotta tiles were conditioned for 6 months at both sites, then reciprocally transplanted, and scleractinian coral species, Acropora eurystoma and Stylophora pistillata, were attached for an additional 6 months. After 12 months, tiles from Site A transplanted to Site B exhibited greater invertebrate richness and diversity than Site B's original tiles (via Cytochrome c. Oxidase subunit I metabarcoding). Key bacteria from the healthy reef were more prevalent on Site A tiles and on the tiles transplanted to Site B (via 16S rRNA gene sequencing). Corals originally from Site B attached to transplanted healthy tiles (Site A) showed higher photochemical capacity, increased endosymbionts, and reduced physiological stress, measured by total antioxidant capacity and an integrated biomarker response. Our findings demonstrate the successful transfer of organismal communities between reefs, highlighting the potential benefits of healthy reef-associated invertebrates and microbes on coral physiology and their implications for reef restoration strategies.
Collapse
Affiliation(s)
- Natalie Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| | - Joseane A Marques
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sde Boker, Israel
- The Inter-University Institute for Marine Sciences of Eilat, Eilat, Israel
| | - Noa Simon-Blecher
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Tirza Doniger
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Jennifer I C Benichou
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Jin Yan Lim
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Ezri Tarazi
- Design-Tech Lab, Industrial Design Department at the Faculty of Architecture and Town Planning Technion, Israel Institute of Technology, Haifa, Israel
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
- The Inter-University Institute for Marine Sciences of Eilat, Eilat, Israel.
| |
Collapse
|
19
|
Martin-Cuadrado AB, Rubio-Portillo E, Rosselló F, Antón J. The coral Oculina patagonica holobiont and its response to confinement, temperature, and Vibrio infections. MICROBIOME 2024; 12:222. [PMID: 39472959 PMCID: PMC11520598 DOI: 10.1186/s40168-024-01921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/28/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Extensive research on the diversity and functional roles of the microorganisms associated with reef-building corals has been promoted as a consequence of the rapid global decline of coral reefs attributed to climate change. Several studies have highlighted the importance of coral-associated algae (Symbiodinium) and bacteria and their potential roles in promoting coral host fitness and survival. However, the complex coral holobiont extends beyond these components to encompass other entities such as protists, fungi, and viruses. While each constituent has been individually investigated in corals, a comprehensive understanding of their collective roles is imperative for a holistic comprehension of coral health and resilience. RESULTS The metagenomic analysis of the microbiome of the coral Oculina patagonica has revealed that fungi of the genera Aspergillus, Fusarium, and Rhizofagus together with the prokaryotic genera Streptomyces, Pseudomonas, and Bacillus were abundant members of the coral holobiont. This study also assessed changes in microeukaryotic, prokaryotic, and viral communities under three stress conditions: aquaria confinement, heat stress, and Vibrio infections. In general, stress conditions led to an increase in Rhodobacteraceae, Flavobacteraceae, and Vibrionaceae families, accompanied by a decrease in Streptomycetaceae. Concurrently, there was a significant decline in both the abundance and richness of microeukaryotic species and a reduction in genes associated with antimicrobial compound production by the coral itself, as well as by Symbiodinium and fungi. CONCLUSION Our findings suggest that the interplay between microeukaryotic and prokaryotic components of the coral holobiont may be disrupted by stress conditions, such as confinement, increase of seawater temperature, or Vibrio infection, leading to a dysbiosis in the global microbial community that may increase coral susceptibility to diseases. Further, microeukaryotic community seems to exert influence on the prokaryotic community dynamics, possibly through predation or the production of secondary metabolites with anti-bacterial activity. Video Abstract.
Collapse
Affiliation(s)
| | - Esther Rubio-Portillo
- Dpt. Fisiología, Genética y Microbiología, University of Alicante, San Vicente del Raspeig, Spain.
| | - Francesc Rosselló
- Mathematics and Computer Science Dept, University of the Balearic Islands, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Josefa Antón
- Dpt. Fisiología, Genética y Microbiología, University of Alicante, San Vicente del Raspeig, Spain
| |
Collapse
|
20
|
Hasnain SE, Ahmed N. Rethinking Conservation in the Anthropocene-The Case of Holobionts. DISEASE BIOLOGY, GENETICS, AND SOCIOECOLOGY 2024; 1:2. [PMID: 40123705 PMCID: PMC11927786 DOI: 10.53941/dbgs.2025.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Editorial
Rethinking Conservation in the Anthropocene—The Case of Holobionts
Seyed E. Hasnain 1,2,* and Niyaz Ahmed 3,*
1 Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IITD), New Delhi 110016, India
2 Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, India
3 Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, India
* Correspondence: seyedhasnain@gmail.com (S.E.H.); niyaz.ahmed@uohyd.ac.in (N.A.)
Received: 29 September 2024; Accepted: 9 October 2024; Published: 11 October 2024
Collapse
Affiliation(s)
- Seyed E. Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IITD), New Delhi 110016, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, India
| | - Niyaz Ahmed
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
21
|
Denis H, Selmoni O, Gossuin H, Jauffrais T, Butler CC, Lecellier G, Berteaux-Lecellier V. Climate adaptive loci revealed by seascape genomics correlate with phenotypic variation in heat tolerance of the coral Acropora millepora. Sci Rep 2024; 14:22179. [PMID: 39333135 PMCID: PMC11436834 DOI: 10.1038/s41598-024-67971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/18/2024] [Indexed: 09/29/2024] Open
Abstract
One of the main challenges in coral reef conservation and restoration is the identification of coral populations resilient under global warming. Seascape genomics is a powerful tool to uncover genetic markers potentially involved in heat tolerance among large populations without prior information on phenotypes. Here, we aimed to provide first insights on the role of candidate heat associated loci identified using seascape genomics in driving the phenotypic response of Acropora millepora from New Caledonia to thermal stress. We subjected 7 colonies to a long-term ex-situ heat stress assay (4 °C above the maximum monthly mean) and investigated their physiological response along with their Symbiodiniaceae communities and genotypes. Despite sharing similar thermal histories and associated symbionts, these conspecific individuals differed greatly in their tolerance to heat stress. More importantly, the clustering of individuals based on their genotype at heat-associated loci matched the phenotypic variation in heat tolerance. Colonies that sustained on average lower mortality, higher Symbiodiniaceae/chlorophyll concentrations and photosynthetic efficiency under prolonged heat stress were also the closest based on their genotypes, although the low sample size prevented testing loci predictive accuracy. Together these preliminary results support the relevance of coupling seascape genomics and long-term heat stress experiments in the future, to evaluate the effect size of candidate heat associated loci and pave the way for genomic predictive models of corals heat tolerance.
Collapse
Affiliation(s)
- Hugo Denis
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia.
- Ecole Doctorale 129, SU Sorbonne Université, 4, Place Jussieu, 75252, Paris, France.
| | - Oliver Selmoni
- Laboratory of Geographic Information Systems (LASIG), EPFL, Lausanne, Switzerland
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Hugues Gossuin
- Laboratory of Marine Biology and Ecology, Aquarium des Lagons, Nouméa, New Caledonia
| | - Thierry Jauffrais
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia
| | | | - Gaël Lecellier
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia
- Institut des Sciences Exactes et Appliquées (ISEA) EA7484, 145, Avenue James Cook, BP R4 98 851, Nouméa, New Caledonia
| | | |
Collapse
|
22
|
Stuij TM, Cleary DFR, Rocha RJM, Polonia ARM, Machado E Silva DA, Frommlet JC, Louvado A, Huang YM, De Voogd NJ, Gomes NCM. Development and validation of an experimental life support system to study coral reef microbial communities. Sci Rep 2024; 14:21260. [PMID: 39261551 PMCID: PMC11391067 DOI: 10.1038/s41598-024-69514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
In the present study, we developed and validated an experimental life support system (ELSS) designed to investigate coral reef associated bacterial communities. The microcosms in the ELSS consisted of coral reef sediment, synthetic seawater, and specimens of five benthic reef species. These included two hard corals Montipora digitata and Montipora capricornis, a soft coral Sarcophyton glaucum, a zoanthid Zoanthus sp., and a sponge Chondrilla sp.. Physicochemical parameters and bacterial communities in the ELSS were similar to those observed at shallow coral reef sites. Sediment bacterial evenness and higher taxonomic composition were more similar to natural-type communities at days 29 and 34 than at day 8 after transfer to the microcosms, suggesting microbial stabilization after an initial recovery period. Biotopes were compositionally distinct but shared a number of ASVs. At day 34, sediment specific ASVs were found in hosts and visa versa. Transplantation significantly altered the bacterial community composition of M. digitata and Chondrilla sp., suggesting microbial adaptation to altered environmental conditions. Altogether, our results support the suitability of the ELSS developed in this study as a model system to investigate coral reef associated bacterial communities using multi-factorial experiments.
Collapse
Affiliation(s)
- T M Stuij
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal.
| | - D F R Cleary
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - R J M Rocha
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - A R M Polonia
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - D A Machado E Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - J C Frommlet
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - A Louvado
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Y M Huang
- National Penghu University of Science and Technology, Magong, Taiwan
| | - N J De Voogd
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Institute of Biology (IBL), Leiden University, Leiden, the Netherlands
| | - N C M Gomes
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
23
|
Voolstra CR, Raina JB, Dörr M, Cárdenas A, Pogoreutz C, Silveira CB, Mohamed AR, Bourne DG, Luo H, Amin SA, Peixoto RS. The coral microbiome in sickness, in health and in a changing world. Nat Rev Microbiol 2024; 22:460-475. [PMID: 38438489 DOI: 10.1038/s41579-024-01015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Stony corals, the engines and engineers of reef ecosystems, face unprecedented threats from anthropogenic environmental change. Corals are holobionts that comprise the cnidarian animal host and a diverse community of bacteria, archaea, viruses and eukaryotic microorganisms. Recent research shows that the bacterial microbiome has a pivotal role in coral biology. A healthy bacterial assemblage contributes to nutrient cycling and stress resilience, but pollution, overfishing and climate change can break down these symbiotic relationships, which results in disease, bleaching and, ultimately, coral death. Although progress has been made in characterizing the spatial-temporal diversity of bacteria, we are only beginning to appreciate their functional contribution. In this Review, we summarize the ecological and metabolic interactions between bacteria and other holobiont members, highlight the biotic and abiotic factors influencing the structure of bacterial communities and discuss the impact of climate change on these communities and their coral hosts. We emphasize how microbiome-based interventions can help to decipher key mechanisms underpinning coral health and promote reef resilience. Finally, we explore how recent technological developments may be harnessed to address some of the most pressing challenges in coral microbiology, providing a road map for future research in this field.
Collapse
Affiliation(s)
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia.
| | - Melanie Dörr
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anny Cárdenas
- Department of Biology, American University, Washington, DC, USA
| | - Claudia Pogoreutz
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | | | - Amin R Mohamed
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Haiwei Luo
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, State Key Laboratory of Agrobiotechnology and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shady A Amin
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Raquel S Peixoto
- Red Sea Research Center (RSRC) and Computational Biology Research Center (CBRC), Biological, Environmental Sciences, and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
24
|
Bai C, Wang Q, Xu J, Zhang H, Huang Y, Cai L, Zheng X, Yang M. Impact of Nutrient Enrichment on Community Structure and Co-Occurrence Networks of Coral Symbiotic Microbiota in Duncanopsammia peltata: Zooxanthellae, Bacteria, and Archaea. Microorganisms 2024; 12:1540. [PMID: 39203380 PMCID: PMC11356306 DOI: 10.3390/microorganisms12081540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Symbiotic microorganisms in reef-building corals, including algae, bacteria, archaea, fungi, and viruses, play critical roles in the adaptation of coral hosts to adverse environmental conditions. However, their adaptation and functional relationships in nutrient-rich environments have yet to be fully explored. This study investigated Duncanopsammia peltata and the surrounding seawater and sediments from protected and non-protected areas in the summer and winter in Dongshan Bay. High-throughput sequencing was used to characterize community changes, co-occurrence patterns, and factors influencing symbiotic coral microorganisms (zooxanthellae, bacteria, and archaea) in different environments. The results showed that nutrient enrichment in the protected and non-protected areas was the greatest in December, followed by the non-protected area in August. In contrast, the August protected area had the lowest nutrient enrichment. Significant differences were found in the composition of the bacterial and archaeal communities in seawater and sediments from different regions. Among the coral symbiotic microorganisms, the main dominant species of zooxanthellae is the C1 subspecies (42.22-56.35%). The dominant phyla of bacteria were Proteobacteria, Cyanobacteria, Firmicutes, and Bacteroidota. Only in the August protected area did a large number (41.98%) of SAR324_cladeMarine_group_B exist. The August protected and non-protected areas and December protected and non-protected areas contained beneficial bacteria as biomarkers. They were Nisaea, Spiroplasma, Endozoicomonas, and Bacillus. No pathogenic bacteria appeared in the protected area in August. The dominant phylum in Archaea was Crenarchaeota. These symbiotic coral microorganisms' relative abundances and compositions vary with environmental changes. The enrichment of dissolved inorganic nitrogen in environmental media is a key factor affecting the composition of coral microbial communities. Co-occurrence analysis showed that nutrient enrichment under anthropogenic disturbances enhanced the interactions between coral symbiotic microorganisms. These findings improve our understanding of the adaptations of coral holobionts to various nutritional environments.
Collapse
Affiliation(s)
- Chuanzhu Bai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (C.B.); (Y.H.)
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Qifang Wang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Jinyan Xu
- Fujian Key Laboratory of Island Monitoring and Ecological Development (Island Research Center, MNR), Pingtan 350400, China;
| | - Han Zhang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Yuxin Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (C.B.); (Y.H.)
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Ling Cai
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
- Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China
| | - Xinqing Zheng
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
- Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China
- Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone, Zhangzhou 363216, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (C.B.); (Y.H.)
| |
Collapse
|
25
|
Mason B, Hayward DC, Moya A, Cooke I, Sorenson A, Brunner R, Andrade N, Huerlimann R, Bourne DG, Schaeffer P, Grinblat M, Ravasi T, Ueda N, Tang SL, Ball EE, Miller DJ. Microbiome manipulation by corals and other Cnidaria via quorum quenching. Curr Biol 2024; 34:3226-3232.e5. [PMID: 38942019 DOI: 10.1016/j.cub.2024.05.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 06/30/2024]
Abstract
A dynamic mucous layer containing numerous micro-organisms covers the surface of corals and has multiple functions including both removal of sediment and "food gathering."1 It is likely to also act as the primary barrier to infection; various proteins and compounds with antimicrobial activity have been identified in coral mucus, though these are thought to be largely or exclusively of microbial origin. As in Hydra,2 anti-microbial peptides (AMPs) are likely to play major roles in regulating the microbiomes of corals.3,4 Some eukaryotes employ a complementary but less obvious approach to manipulate their associated microbiome by interfering with quorum signaling, effectively preventing bacteria from coordinating gene expression across a population. Our investigation of immunity in the reef-building coral Acropora millepora,5 however, led to the discovery of a coral gene referred to here as AmNtNH1 that can inactivate a range of acyl homoserine lactones (AHLs), common bacterial quorum signaling molecules, and is induced on immune challenge of adult corals and expressed during the larval settlement process. Closely related proteins are widely distributed within the Scleractinia (hard corals) and some other cnidarians, with multiple paralogs in Acropora, but their closest relatives are bacterial, implying that these are products of one or more lateral gene transfer events post-dating the cnidarian-bilaterian divergence. The deployment by corals of genes used by bacteria to compete with other bacteria reflects a mechanism of microbiome manipulation previously unknown in Metazoa but that may apply more generally.
Collapse
Affiliation(s)
- Benjamin Mason
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - David C Hayward
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Aurelie Moya
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Ira Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Alanna Sorenson
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Ramona Brunner
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Natalia Andrade
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - David G Bourne
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Patrick Schaeffer
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Mila Grinblat
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Nobuo Ueda
- Marine Science Section, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei 15529, Taiwan
| | - Eldon E Ball
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia.
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia; Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
26
|
Liu T, Gao X, Chen R, Tang K, Liu Z, Wang P, Wang X. A nuclease domain fused to the Snf2 helicase confers antiphage defence in coral-associated Halomonas meridiana. Microb Biotechnol 2024; 17:e14524. [PMID: 38980956 PMCID: PMC11232893 DOI: 10.1111/1751-7915.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
The coral reef microbiome plays a vital role in the health and resilience of reefs. Previous studies have examined phage therapy for coral pathogens and for modifying the coral reef microbiome, but defence systems against coral-associated bacteria have received limited attention. Phage defence systems play a crucial role in helping bacteria fight phage infections. In this study, we characterized a new defence system, Hma (HmaA-HmaB-HmaC), in the coral-associated Halomonas meridiana derived from the scleractinian coral Galaxea fascicularis. The Swi2/Snf2 helicase HmaA with a C-terminal nuclease domain exhibits antiviral activity against Escherichia phage T4. Mutation analysis revealed the nickase activity of the nuclease domain (belonging to PDD/EXK superfamily) of HmaA is essential in phage defence. Additionally, HmaA homologues are present in ~1000 bacterial and archaeal genomes. The high frequency of HmaA helicase in Halomonas strains indicates the widespread presence of these phage defence systems, while the insertion of defence genes in the hma region confirms the existence of a defence gene insertion hotspot. These findings offer insights into the diversity of phage defence systems in coral-associated bacteria and these diverse defence systems can be further applied into designing probiotics with high-phage resistance.
Collapse
Affiliation(s)
- Tianlang Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xinyu Gao
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Ziyao Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| |
Collapse
|
27
|
Bogale AT, Braun M, Bernhardt J, Zühlke D, Schiefelbein U, Bog M, Scheidegger C, Zengerer V, Becher D, Grube M, Riedel K, Bengtsson MM. The microbiome of the lichen Lobaria pulmonaria varies according to climate on a subcontinental scale. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13289. [PMID: 38923181 PMCID: PMC11194104 DOI: 10.1111/1758-2229.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/03/2024] [Indexed: 06/28/2024]
Abstract
The Lobaria pulmonaria holobiont comprises algal, fungal, cyanobacterial and bacterial components. We investigated L. pulmonaria's bacterial microbiome in the adaptation of this ecologically sensitive lichen species to diverse climatic conditions. Our central hypothesis posited that microbiome composition and functionality aligns with subcontinental-scale (a stretch of ~1100 km) climatic parameters related to temperature and precipitation. We also tested the impact of short-term weather dynamics, sampling season and algal/fungal genotypes on microbiome variation. Metaproteomics provided insights into compositional and functional changes within the microbiome. Climatic variables explained 41.64% of microbiome variation, surpassing the combined influence of local weather and sampling season at 31.63%. Notably, annual mean temperature and temperature seasonality emerged as significant climatic drivers. Microbiome composition correlated with algal, not fungal genotype, suggesting similar environmental recruitment for the algal partner and microbiome. Differential abundance analyses revealed distinct protein compositions in Sub-Atlantic Lowland and Alpine regions, indicating differential microbiome responses to contrasting environmental/climatic conditions. Proteins involved in oxidative and cellular stress were notably different. Our findings highlight microbiome plasticity in adapting to stable climates, with limited responsiveness to short-term fluctuations, offering new insights into climate adaptation in lichen symbiosis.
Collapse
Affiliation(s)
| | - Maria Braun
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Jörg Bernhardt
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Daniela Zühlke
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Ulf Schiefelbein
- Landscape EcologyUniversity of Rostock, Botanical GardenRostockGermany
| | - Manuela Bog
- Institute of Botany and Landscape EcologyUniversity of GreifswaldGreifswaldGermany
| | - Christoph Scheidegger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Veronika Zengerer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Dörte Becher
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Martin Grube
- Karl‐Franzens‐Universität Graz, Institut für BiologieGrazAustria
| | - Katharina Riedel
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Mia M. Bengtsson
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| |
Collapse
|
28
|
Li Q, Liu C, Xie F, Lyu L, Zhang S, Li J. Coralliovum pocilloporae gen. nov., sp. nov. and Sanyastnella coralliicola gen. nov., sp. nov. isolated from coral tissue: proposal of two new families, Coralliovaceae fam. nov. and Sanyastnellaceae fam. nov. Int J Syst Evol Microbiol 2024; 74. [PMID: 38900566 DOI: 10.1099/ijsem.0.006427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
A genome-based polyphasic approach was used to determine the taxonomic status of two novel bacterial strains, SCSIO 12594T and SCSIO 12813T, isolated from tissues of a coral. Both strains were Gram-stain-negative and facultatively anaerobic. The genome sizes of strains SCSIO 12594T and SCSIO 12813T were 3.9 Mb and 4.1 Mb, respectively, and they possessed DNA G+C contents of 55.1 and 46.2 mol%, respectively . Both strains were found to be catalase- and oxidase-positive, while SCSIO 12594T also could hydrolyse starch. SCSIO 12594T was observed to grow at between 20 and 37 °C (optimally at 25 °C) and at a pH range from 6 to 7 and in the presence of 3-7 % (w/v) NaCl. The growth of SCSIO 12813T required seawater and occurred at 20-30 °C (optimum, 25 °C), pH 5-8 (optimum, pH 6-7) and in the presence of 3-3.7 % (w/v) NaCl. The results of 16S rRNA gene-based phylogenetic analysis indicated that SCSIO 12594T shared 92.97 % or less sequence similarity with its closest relatives Rhodobium gokarnense JA173T and other members of the order Hyphomicrobiales. The results of 16S rRNA sequences-based phylogenetic analysis of SCSIO 12813T indicated that Croceimicrobium hydrocarbonivorans A20-9T (89.34 %) was the most closely related species. SCSIO 12594T and SCSIO 12813T can be readily separated from their closest relatives, as indicated by the results of phylogenomic analysis, low average nucleotide indexes, average amino acid identity, digital DNA-DNA hybridisation (dDDH) similarities and associated phenotypic and chemical data. Consequently, the two coral isolates are considered to represent two novel genera and species for which the names Coralliovum pocilloporae gen. nov., sp. nov. and Sanyastnella coralliicola gen. nov., sp. nov. are proposed, the type strains are SCSIO 12594T (= JCM 35320T = GDMCC 1.3060T) and SCSIO 12813T (= JCM 35373T = GDMCC 1.3063T), respectively. In addition, two novel families, Coralliovaceae fam. nov. and Sanyastnellaceae fam. nov are proposed to accommodate Coralliovum pocilloporae gen. nov., sp. nov. and Sanyastnella coralliicola gen. nov., sp. nov., respectively.
Collapse
Affiliation(s)
- Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Cong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Feiyang Xie
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, PR China
| |
Collapse
|
29
|
Helgoe J, Davy SK, Weis VM, Rodriguez-Lanetty M. Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. Biol Rev Camb Philos Soc 2024; 99:715-752. [PMID: 38217089 DOI: 10.1111/brv.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
The intracellular coral-dinoflagellate symbiosis is the engine that underpins the success of coral reefs, one of the most diverse ecosystems on the planet. However, the breakdown of the symbiosis and the loss of the microalgal symbiont (i.e. coral bleaching) due to environmental changes are resulting in the rapid degradation of coral reefs globally. There is an urgent need to understand the cellular physiology of coral bleaching at the mechanistic level to help develop solutions to mitigate the coral reef crisis. Here, at an unprecedented scope, we present novel models that integrate putative mechanisms of coral bleaching within a common framework according to the triggers (initiators of bleaching, e.g. heat, cold, light stress, hypoxia, hyposalinity), cascades (cellular pathways, e.g. photoinhibition, unfolded protein response, nitric oxide), and endpoints (mechanisms of symbiont loss, e.g. apoptosis, necrosis, exocytosis/vomocytosis). The models are supported by direct evidence from cnidarian systems, and indirectly through comparative evolutionary analyses from non-cnidarian systems. With this approach, new putative mechanisms have been established within and between cascades initiated by different bleaching triggers. In particular, the models provide new insights into the poorly understood connections between bleaching cascades and endpoints and highlight the role of a new mechanism of symbiont loss, i.e. 'symbiolysosomal digestion', which is different from symbiophagy. This review also increases the approachability of bleaching physiology for specialists and non-specialists by mapping the vast landscape of bleaching mechanisms in an atlas of comprehensible and detailed mechanistic models. We then discuss major knowledge gaps and how future research may improve the understanding of the connections between the diverse cascade of cellular pathways and the mechanisms of symbiont loss (endpoints).
Collapse
Affiliation(s)
- Joshua Helgoe
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, 2701 SW Campus Way, 2403 Cordley Hall, Corvallis, OR, USA
| | - Mauricio Rodriguez-Lanetty
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, USA
| |
Collapse
|
30
|
Ju H, Zhang J, Zou Y, Xie F, Tang X, Zhang S, Li J. Bacteria undergo significant shifts while archaea maintain stability in Pocillopora damicornis under sustained heat stress. ENVIRONMENTAL RESEARCH 2024; 250:118469. [PMID: 38354884 DOI: 10.1016/j.envres.2024.118469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Global warming reportedly poses a critical risk to coral reef ecosystems. Bacteria and archaea are crucial components of the coral holobiont. The response of archaea associated with warming is less well understood than that of the bacterial community in corals. Also, there have been few studies on the dynamics of the microbial community in the coral holobiont under long-term heat stress. In order to track the dynamic alternations in the microbial communities within the heat-stressed coral holobiont, three-week heat-stress monitoring was carried out on the coral Pocillopora damicornis. The findings demonstrate that the corals were stressed at 32 °C, and showed a gradual decrease in Symbiodiniaceae density with increasing duration of heat stress. The archaeal community in the coral holobiont remained relatively unaltered by the increasing temperature, whereas the bacterial community was considerably altered. Sustained heat stress exacerbated the dissimilarities among parallel samples of the bacterial community, confirming the Anna Karenina Principle in animal microbiomes. Heat stress leads to more complex and unstable microbial networks, characterized by an increased average degree and decreased modularity, respectively. With the extension of heat stress duration, the relative abundances of the gene (nifH) and genus (Tistlia) associated with nitrogen fixation increased in coral samples, as well as the potential pathogenic bacteria (Flavobacteriales) and opportunistic bacteria (Bacteroides). Hence, our findings suggest that coral hosts might recruit nitrogen-fixing bacteria during the initial stages of suffering heat stress. An environment that is conducive to the colonization and development of opportunistic and pathogenic bacteria when the coral host becomes more susceptible as heat stress duration increases.
Collapse
Affiliation(s)
- Huimin Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yiyang Zou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Feiyang Xie
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
31
|
Johnston EC, Caruso C, Mujica E, Walker NS, Drury C. Complex parental effects impact variation in larval thermal tolerance in a vertically transmitting coral. Heredity (Edinb) 2024; 132:275-283. [PMID: 38538721 PMCID: PMC11167003 DOI: 10.1038/s41437-024-00681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 06/13/2024] Open
Abstract
Coral populations must be able to adapt to changing environmental conditions for coral reefs to persist under climate change. The adaptive potential of these organisms is difficult to forecast due to complex interactions between the host animal, dinoflagellate symbionts and the environment. Here we created 26 larval families from six Montipora capitata colonies from a single reef, showing significant, heritable variation in thermal tolerance. Our results indicate that 9.1% of larvae are expected to exhibit four times the thermal tolerance of the general population. Differences in larval thermotolerance were driven mainly by maternal contributions, but we found no evidence that these effects were driven by symbiont identity despite vertical transmission from the dam. We also document no evidence of reproductive incompatibility attributable to symbiont identity. These data demonstrate significant genetic variation within this population which provides the raw material upon which natural selection can act.
Collapse
Affiliation(s)
- Erika C Johnston
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA.
| | - Carlo Caruso
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Elena Mujica
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Nia S Walker
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Crawford Drury
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| |
Collapse
|
32
|
Maull V, Solé R. Biodiversity as a firewall to engineered microbiomes for restoration and conservation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231526. [PMID: 39100153 PMCID: PMC11296081 DOI: 10.1098/rsos.231526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 08/06/2024]
Abstract
The possibility of abrupt transitions threatens to poise ecosystems into irreversibly degraded states. Synthetic biology has recently been proposed to prevent them from crossing tipping points. However, there is little understanding of the impact of such intervention on the resident communities. Can such modification have 'unintended consequences', such as loss of species? Here, we address this problem by using a mathematical model that allows us to simulate this intervention scenario explicitly. We show how the indirect effect of damping the decay of shared resources results in biodiversity increase, and last but not least, the successful incorporation of the synthetic within the ecological network and very small-positive changes in the population size of the resident community. Furthermore, extensions and implications for future restoration and terraformation strategies are discussed.
Collapse
Affiliation(s)
- Victor Maull
- ICREA-Complex Systems Lab, UPF-PRBB, Dr. Aiguader 80, Barcelona08003, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Passeig Maritim de la Barceloneta 37, Barcelona08003, Spain
| | - Ricard Solé
- ICREA-Complex Systems Lab, UPF-PRBB, Dr. Aiguader 80, Barcelona08003, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Passeig Maritim de la Barceloneta 37, Barcelona08003, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
| |
Collapse
|
33
|
Cunning R, Lenz EA, Edmunds PJ. Measuring multi-year changes in the Symbiodiniaceae algae in Caribbean corals on coral-depleted reefs. PeerJ 2024; 12:e17358. [PMID: 38827291 PMCID: PMC11141555 DOI: 10.7717/peerj.17358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 06/04/2024] Open
Abstract
Monitoring coral cover can describe the ecology of reef degradation, but rarely can it reveal the proximal mechanisms of change, or achieve its full potential in informing conservation actions. Describing temporal variation in Symbiodiniaceae within corals can help address these limitations, but this is rarely a research priority. Here, we augmented an ecological time series of the coral reefs of St. John, US Virgin Islands, by describing the genetic complement of symbiotic algae in common corals. Seventy-five corals from nine species were marked and sampled in 2017. Of these colonies, 41% were sampled in 2018, and 72% in 2019; 28% could not be found and were assumed to have died. Symbiodiniaceae ITS2 sequencing identified 525 distinct sequences (comprising 42 ITS2 type profiles), and symbiont diversity differed among host species and individuals, but was in most cases preserved within hosts over 3 yrs that were marked by physical disturbances from major hurricanes (2017) and the regional onset of stony coral tissue loss disease (2019). While changes in symbiont communities were slight and stochastic over time within colonies, variation in the dominant symbionts among colonies was observed for all host species. Together, these results indicate that declining host abundances could lead to the loss of rare algal lineages that are found in a low proportion of few coral colonies left on many reefs, especially if coral declines are symbiont-specific. These findings highlight the importance of identifying Symbiodiniaceae as part of a time series of coral communities to support holistic conservation planning. Repeated sampling of tagged corals is unlikely to be viable for this purpose, because many Caribbean corals are dying before they can be sampled multiple times. Instead, random sampling of large numbers of corals may be more effective in capturing the diversity and temporal dynamics of Symbiodiniaceae metacommunities in reef corals.
Collapse
Affiliation(s)
- Ross Cunning
- Conservation Research Department, John G. Shedd Aquarium, Chicago, Illinois, United States
| | - Elizabeth A. Lenz
- University of Hawai‘i Sea Grant College Program, University of Hawai‘i at Mānoa, Honolulu, Hawaii, United States
| | - Peter J. Edmunds
- Department of Biology, California State University, Northridge, Northridge, California, United States
| |
Collapse
|
34
|
Lima LFO, Alker AT, Morris MM, Edwards RA, de Putron SJ, Dinsdale EA. Pre-Bleaching Coral Microbiome Is Enriched in Beneficial Taxa and Functions. Microorganisms 2024; 12:1005. [PMID: 38792833 PMCID: PMC11123844 DOI: 10.3390/microorganisms12051005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Coral reef health is tightly connected to the coral holobiont, which is the association between the coral animal and a diverse microbiome functioning as a unit. The coral holobiont depends on key services such as nitrogen and sulfur cycling mediated by the associated bacteria. However, these microbial services may be impaired in response to environmental changes, such as thermal stress. A perturbed microbiome may lead to coral bleaching and disease outbreaks, which have caused an unprecedented loss in coral cover worldwide, particularly correlated to a warming ocean. The response mechanisms of the coral holobiont under high temperatures are not completely understood, but the associated microbial community is a potential source of acquired heat-tolerance. Here we investigate the effects of increased temperature on the taxonomic and functional profiles of coral surface mucous layer (SML) microbiomes in relationship to coral-algal physiology. We used shotgun metagenomics in an experimental setting to understand the dynamics of microbial taxa and genes in the SML microbiome of the coral Pseudodiploria strigosa under heat treatment. The metagenomes of corals exposed to heat showed high similarity at the level of bacterial genera and functional genes related to nitrogen and sulfur metabolism and stress response. The coral SML microbiome responded to heat with an increase in the relative abundance of taxa with probiotic potential, and functional genes for nitrogen and sulfur acquisition. Coral-algal physiology significantly explained the variation in the microbiome at taxonomic and functional levels. These consistent and specific microbial taxa and gene functions that significantly increased in proportional abundance in corals exposed to heat are potentially beneficial to coral health and thermal resistance.
Collapse
Affiliation(s)
- Laís F. O. Lima
- Marine Biology, Scripps Institute of Oceanography, University of California San Diego, La Jolla, CA 92093, USA;
- San Diego State University, San Diego, CA 92182, USA
| | - Amanda T. Alker
- Innovative Genomics Institute, University of California, Berkeley, SA 5045, USA;
| | - Megan M. Morris
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;
| | - Robert A. Edwards
- Flinders Accelerator Microbiome Exploration, Flinders University, Bedford Park, SA 5042, Australia;
| | | | - Elizabeth A. Dinsdale
- Flinders Accelerator Microbiome Exploration, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|
35
|
Klimovich A, Bosch TCG. Novel technologies uncover novel 'anti'-microbial peptides in Hydra shaping the species-specific microbiome. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230058. [PMID: 38497265 PMCID: PMC10945409 DOI: 10.1098/rstb.2023.0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 03/19/2024] Open
Abstract
The freshwater polyp Hydra uses an elaborate innate immune machinery to maintain its specific microbiome. Major components of this toolkit are conserved Toll-like receptor (TLR)-mediated immune pathways and species-specific antimicrobial peptides (AMPs). Our study harnesses advanced technologies, such as high-throughput sequencing and machine learning, to uncover a high complexity of the Hydra's AMPs repertoire. Functional analysis reveals that these AMPs are specific against diverse members of the Hydra microbiome and expressed in a spatially controlled pattern. Notably, in the outer epithelial layer, AMPs are produced mainly in the neurons. The neuron-derived AMPs are secreted directly into the glycocalyx, the habitat for symbiotic bacteria, and display high selectivity and spatial restriction of expression. In the endodermal layer, in contrast, endodermal epithelial cells produce an abundance of different AMPs including members of the arminin and hydramacin families, while gland cells secrete kazal-type protease inhibitors. Since the endodermal layer lines the gastric cavity devoid of symbiotic bacteria, we assume that endodermally secreted AMPs protect the gastric cavity from intruding pathogens. In conclusion, Hydra employs a complex set of AMPs expressed in distinct tissue layers and cell types to combat pathogens and to maintain a stable spatially organized microbiome. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Alexander Klimovich
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| | - Thomas C. G. Bosch
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| |
Collapse
|
36
|
Li J, Luo J, Li M, Wang C, Hu S, Lu K, Wang G. Splendidivirga corallicola gen. nov., sp. nov. and Agaribacillus aureus gen. nov., sp. nov., two bacteria isolated from coral Porites lutea, and proposal of Splendidivirgaceae fam. nov. Int J Syst Evol Microbiol 2024; 74. [PMID: 38739684 DOI: 10.1099/ijsem.0.006376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
The Bacteroidota is one of the dominant bacterial phyla in corals. However, the exact taxa of those coral bacteria under the Bacteroidota are still unclear. Two aerobic, Gram-stain-negative, non-motile rods, designated strains BMA10T and BMA12T, were isolated from stony coral Porites lutea collected from Weizhou Island, PR China. Global alignment of 16S rRNA gene sequences indicated that both strains are closest to species of Fulvivirga with the highest identities being lower than 93 %, and the similarity value between these two strains was 92.3 %. Phylogenetic analysis based on 16S rRNA gene and genome sequences indicated that these two strains form an monophylogenetic lineage alongside the families Fulvivirgaceae, Reichenbachiellaceae, Roseivirgaceae, Marivirgaceae, Cyclobacteriaceae, and Cesiribacteraceae in the order Cytophagales, phylum Bacteroidota. The genomic DNA G+C contents of BMA10T and BMA12T were 38.4 and 41.9 mol%, respectively. The major polar lipids of BMA10T were phosphatidylethanolamine, unidentified aminophospholipid, four unidentified aminolipids, and five unidentified lipids. While those of BMA12T were phosphatidylethanolamine, two unidentified aminolipids, and five unidentified lipids. The major cellular fatty acids detected in both isolates were iso-C15 : 0 and C16 : 1 ω5c. Carbohydrate-active enzyme analysis indicated these two strains may utilize coral mucus or chitin. Based on above characteristics, these two strains are suggested to represent two new species in two new genera of a new family in the order Cytophagales, for which the name Splendidivirga corallicola gen. nov., sp. nov., Agaribacillus aureus gen. nov., sp. nov. and Splendidivirgaceae fam. nov. are proposed. The type strain of S. corallicola is BMA10T (=MCCC 1K08300T=KCTC 102045T), and that for A. aureus is BMA12T (=MCCC 1K08309T=KCTC 102046T).
Collapse
Affiliation(s)
- Jin Li
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Jixin Luo
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Mi Li
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Chenyan Wang
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Siyu Hu
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Kun Lu
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Guanghua Wang
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
37
|
Xu M, Cai Z, Cheng K, Chen G, Zhou J. Mitigation of Vibrio coralliilyticus-induced coral bleaching through bacterial dysbiosis prevention by Ruegeria profundi. Appl Environ Microbiol 2024; 90:e0227423. [PMID: 38470181 PMCID: PMC11022554 DOI: 10.1128/aem.02274-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Vibrio species are prevalent in ocean ecosystems, particularly Vibrio coralliilyticus, and pose a threat to corals and other marine organisms under global warming conditions. While microbiota manipulation is considered for coral disease management, understanding the role of commensal bacteria in stress resilience remains limited. Here, a single bacterial species (Ruegeria profundi) rather than a consortium of native was used to combat pathogenic V. coralliilyticus and protect corals from bleaching. R. profundi showed therapeutic activity in vivo, preventing a significant reduction in bacterial diversity in bleached corals. Notably, the structure of the bacterial community differed significantly among all the groups. In addition, compared with the bleached corals caused by V. coralliilyticus, the network analysis revealed that complex interactions and positive correlations in the bacterial community of the R. profundi protected non-bleached corals, indicating R. profundi's role in fostering synergistic associations. Many genera of bacteria significantly increased in abundance during V. coralliilyticus infection, including Vibrio, Alteromonas, Amphritea, and Nautella, contributing to the pathogenicity of the bacterial community. However, R. profundi effectively countered the proliferation of these genera, promoting potential probiotic Endozoicomonas and other taxa, while reducing the abundance of betaine lipids and the type VI section system of the bacterial community. These changes ultimately influenced the interactive relationships among symbionts and demonstrated that probiotic R. profundi intervention can modulate coral-associated bacterial community, alleviate pathogenic-induced dysbiosis, and preserve coral health. These findings elucidated the relationship between the behavior of the coral-associated bacterial community and the occurrence of pathological coral bleaching.IMPORTANCEChanges in the global climate and marine environment can influence coral host and pathogen repartition which refers to an increased likelihood of pathogen infection in hosts. The risk of Vibrio coralliilyticus-induced coral disease is significantly heightened, primarily due to its thermos-dependent expression of virulent and populations. This study investigates how coral-associated bacterial communities respond to bleaching induced by V. coralliilyticus. Our findings demonstrate that Ruegeria profundi exhibits clear evidence of defense against pathogenic bacterial infection, contributing to the maintenance of host health and symbiont homeostasis. This observation suggests that bacterial pathogens could cause dysbiosis in coral holobionts. Probiotic bacteria display an essential capability in restructuring and manipulating coral-associated bacterial communities. This restructuring effectively reduces bacterial community virulence and enhances the pathogenic resistance of holobionts. The study provides valuable insights into the correlation between the health status of corals and how coral-associated bacterial communities may respond to both pathogens and probiotics.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
38
|
Chen B, Wei Y, Yu K, Liang Y, Yu X, Liao Z, Qin Z, Xu L, Bao Z. The microbiome dynamics and interaction of endosymbiotic Symbiodiniaceae and fungi are associated with thermal bleaching susceptibility of coral holobionts. Appl Environ Microbiol 2024; 90:e0193923. [PMID: 38445866 PMCID: PMC11022545 DOI: 10.1128/aem.01939-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024] Open
Abstract
The thermal bleaching percentage of coral holobionts shows interspecific differences under heat-stress conditions, which are closely related to the coral-associated microbiome. However, the ecological effects of community dynamics and interactions between Symbiodiniaceae and fungi on coral thermal bleaching susceptibility remain unclear. In this study, we analyzed the diversity, community structure, functions, and potential interaction of Symbiodiniaceae and fungi among 18 coral species from a high thermal bleaching risk atoll using next-generation sequencing. The results showed that heat-tolerant C3u sub-clade and Durusdinium dominated the Symbiodiniaceae community of corals and that there were no core amplicon sequence variants in the coral-associated fungal community. Fungal richness and the abundance of confirmed functional animal-plant pathogens were significantly positively correlated with the coral thermal bleaching percentage. Fungal indicators, including Didymellaceae, Chaetomiaceae, Schizophyllum, and Colletotrichum, were identified in corals. Each coral species had a complex Symbiodiniaceae-fungi interaction network (SFIN), which was driven by the dominant Symbiodiniaceae sub-clades. The SFINs of coral holobionts with low thermal bleaching susceptibility exhibited low complexity and high betweenness centrality. These results indicate that the extra heat tolerance of coral in Huangyan Island may be linked to the high abundance of heat-tolerant Symbiodiniaceae. Fungal communities have high interspecific flexibility, and the increase of fungal diversity and pathogen abundance was correlated with higher thermal bleaching susceptibility of corals. Moreover, fungal indicators were associated with the degrees of coral thermal bleaching susceptibility, including both high and intermediate levels. The topological properties of SFINs suggest that heat-tolerant coral have limited fungal parasitism and strong microbial network resilience.IMPORTANCEGlobal warming and enhanced marine heatwaves have led to a rapid decline in coral reef ecosystems worldwide. Several studies have focused on the impact of coral-associated microbiomes on thermal bleaching susceptibility in corals; however, the ecological functions and interactions between Symbiodiniaceae and fungi remain unclear. We investigated the microbiome dynamics and potential interactions of Symbiodiniaceae and fungi among 18 coral species in Huangyan Island. Our study found that the Symbiodiniaceae community of corals was mainly composed of heat-tolerant C3u sub-clade and Durusdinium. The increase in fungal diversity and pathogen abundance has close associations with higher coral thermal bleaching susceptibility. We first constructed an interaction network between Symbiodiniaceae and fungi in corals, which indicated that restricting fungal parasitism and strong interaction network resilience would promote heat acclimatization of corals. Accordingly, this study provides insights into the role of microorganisms and their interaction as drivers of interspecific differences in coral thermal bleaching.
Collapse
Affiliation(s)
- Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanting Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Zeming Bao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
39
|
Chen X, Liao X, Chang S, Chen Z, Yang Q, Peng J, Hu W, Zhang X. Comprehensive insights into the differences of fungal communities at taxonomic and functional levels in stony coral Acropora intermedia under a natural bleaching event. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106419. [PMID: 38408405 DOI: 10.1016/j.marenvres.2024.106419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Previous studies have reported the correlations between bacterial communities and coral bleaching, but the knowledge of fungal roles in coral bleaching is still limited. In this study, the taxonomic and functional diversities of fungi in unbleached, partly bleached and bleached stony coral Acropora intermedia were investigated through the ITS-rRNA gene next-generation sequencing. An unexpected diversity of successfully classified fungi (a total of 167 fungal genera) was revealed in this study, and the partly bleached coral samples gained the highest fungal diversity, followed by bleached and unbleached coral samples. Among these fungi, 122 genera (nearly 73.2%) were rarely found in corals in previous studies, such as Calostoma and Morchella, which gave us a more comprehensive understanding of coral-associated fungi. Positively correlated fungal genera (Calostoma, Corticium, Derxomyces, Fusicolla, Penicillium and Vishniacozyma) and negative correlated fungal genera (Blastobotrys, Exophiala and Dacryopinax) with the coral bleaching were both detected. It was found that a series of fungal genera, dominant by Apiotrichum, a source of opportunistic infections, was significantly enriched; while another fungal group majoring in Fusicolla, a probiotic fungus, was distinctly depressed in the bleached coral. It was also noteworthy that the abundance of pathogenic fungi, including Fusarium, Didymella and Trichosporon showed a rising trend; while the saprotrophic fungi, including Tricladium, Botryotrichum and Scleropezicula demostrated a declining trend as the bleaching deteriorating. The rising of pathogenic fungi and the declining of saprotrophic fungi revealed the basic rules of fungal community transitions in the coral bleaching, but the mechanism of coral-associated fungal interactions still lacks further investigation. Overall, this is an investigation focused on the differences of fungal communities at taxonomic and functional levels in stony coral A. intermedia under different bleaching statuses, which provides a better comprehension of the correlations between fungal communities and the coral bleaching.
Collapse
Affiliation(s)
- Xinye Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyu Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shihan Chang
- University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Zihui Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiaoting Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingjing Peng
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weihui Hu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
40
|
Edmunds PJ, Maritorena S, Burgess SC. Early post-settlement events, rather than settlement, drive recruitment and coral recovery at Moorea, French Polynesia. Oecologia 2024; 204:625-640. [PMID: 38418704 DOI: 10.1007/s00442-024-05517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Understanding population dynamics is a long-standing objective of ecology, but the need for progress in this area has become urgent. For coral reefs, achieving this objective is impeded by a lack of information on settlement versus post-settlement events in determining recruitment and population size. Declines in coral abundance are often inferred to be associated with reduced densities of recruits, which could arise from mechanisms occurring at larval settlement, or throughout post-settlement stages. This study uses annual measurements from 2008 to 2021 of coral cover, the density of coral settlers (S), the density of small corals (SC), and environmental conditions, to evaluate the roles of settlement versus post-settlement events in determining rates of coral recruitment and changes in coral cover at Moorea, French Polynesia. Coral cover, S, SC, and the SC:S ratio (a proxy for post-settlement success), and environmental conditions, were used in generalized additive models (GAMs) to show that: (a) coral cover was more strongly related to SC and SC:S than S, and (b) SC:S was highest when preceded by cool seawater, low concentrations of Chlorophyll a, and low flow speeds, and S showed evidence of declining with elevated temperature. Together, these results suggest that changes in coral cover in Moorea are more strongly influenced by post-settlement events than settlement. The key to understanding coral community resilience may lie in elucidating the factors attenuating the bottleneck between settlers and small corals.
Collapse
Affiliation(s)
- Peter J Edmunds
- Department of Biology, California State University, Northridge, CA, 91330-8303, USA.
| | - Stéphane Maritorena
- Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106-3060, USA
| | - Scott C Burgess
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306-4295, USA
| |
Collapse
|
41
|
Sparagon WJ, Arts MGI, Quinlan ZA, Wegley Kelly L, Koester I, Comstock J, Bullington JA, Carlson CA, Dorrestein PC, Aluwihare LI, Haas AF, Nelson CE. Coral thermal stress and bleaching enrich and restructure reef microbial communities via altered organic matter exudation. Commun Biol 2024; 7:160. [PMID: 38351328 PMCID: PMC10864316 DOI: 10.1038/s42003-023-05730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 12/16/2023] [Indexed: 02/16/2024] Open
Abstract
Coral bleaching is a well-documented and increasingly widespread phenomenon in reefs across the globe, yet there has been relatively little research on the implications for reef water column microbiology and biogeochemistry. A mesocosm heating experiment and bottle incubation compared how unbleached and bleached corals alter dissolved organic matter (DOM) exudation in response to thermal stress and subsequent effects on microbial growth and community structure in the water column. Thermal stress of healthy corals tripled DOM flux relative to ambient corals. DOM exudates from stressed corals (heated and/or previously bleached) were compositionally distinct from healthy corals and significantly increased growth of bacterioplankton, enriching copiotrophs and putative pathogens. Together these results demonstrate how the impacts of both short-term thermal stress and long-term bleaching may extend into the water column, with altered coral DOM exudation driving microbial feedbacks that influence how coral reefs respond to and recover from mass bleaching events.
Collapse
Affiliation(s)
- Wesley J Sparagon
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
| | - Milou G I Arts
- Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, The Netherlands
| | - Zachary A Quinlan
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
- San Diego State University, San Diego, USA
| | - Linda Wegley Kelly
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
- San Diego State University, San Diego, USA
| | - Irina Koester
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
| | - Jacqueline Comstock
- Department of Ecology, Evolution and Marine Biology, The Marine Science Institute, University of California Santa Barbara, Santa Barbara, USA
| | - Jessica A Bullington
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Craig A Carlson
- Department of Ecology, Evolution and Marine Biology, The Marine Science Institute, University of California Santa Barbara, Santa Barbara, USA
| | | | - Lihini I Aluwihare
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
| | - Andreas F Haas
- Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, The Netherlands
- San Diego State University, San Diego, USA
| | - Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| |
Collapse
|
42
|
Bringhurst B, Greenwold M, Kellner K, Seal JN. Symbiosis, dysbiosis and the impact of horizontal exchange on bacterial microbiomes in higher fungus-gardening ants. Sci Rep 2024; 14:3231. [PMID: 38332146 PMCID: PMC10853281 DOI: 10.1038/s41598-024-53218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Advances in our understanding of symbiotic stability have demonstrated that microorganisms are key to understanding the homeostasis of obligate symbioses. Fungus-gardening ants are excellent model systems for exploring how microorganisms may be involved in symbiotic homeostasis as the host and symbionts are macroscopic and can be easily experimentally manipulated. Their coevolutionary history has been well-studied; examinations of which have depicted broad clade-to-clade specificity between the ants and fungus. Few studies hitherto have addressed the roles of microbiomes in stabilizing these associations. Here, we quantified changes in microbiome structure as a result of experimentally induced horizontal exchange of symbionts. This was done by performing cross-fostering experiments forcing ants to grow novel fungi and comparing known temporally unstable (undergoing dysbiosis) and stable combinations. We found that fungus-gardening ants alter their unstable, novel garden microbiomes into configurations like those found in native gardens. Patterns of dysbiosis/symbiosis appear to be predictable in that two related species with similar specificity patterns also show similar patterns of microbial change, whereas a species with more relaxed specificity does not show such microbiome change or restructuring when growing different fungi. It appears that clade-to-clade specificity patterns are the outcomes of community-level interactions that promote stability or cause symbiotic collapse.
Collapse
Affiliation(s)
- Blake Bringhurst
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 1315 Kinnear Rd, Columbus, OH, 43212, USA
| | - Matthew Greenwold
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
| | - Katrin Kellner
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
| | - Jon N Seal
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA.
| |
Collapse
|
43
|
Wei Y, Chen B, Yu K, Liao Z, Yu X, Qin Z, Bao Z, Xu L, Wang Y. Evolutionary radiation and microbial community dynamics shape the thermal tolerance of Fungiidae in the southern South China Sea. Microbiol Spectr 2024; 12:e0243623. [PMID: 38174936 PMCID: PMC10845974 DOI: 10.1128/spectrum.02436-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Fungiidae have shown increased thermal adaptability in coral reef ecosystems under global warming. This study analyzes the evolutionary divergence and microbial communities of Fungiidae in the Sanjiao Reef of the southern South China Sea and explores the impact of coral evolution radiation and microbial dynamics on the heat tolerance of Fungiidae. The results found that Cycloseris was an ancient branch of Fungiidae, dating back approximately 147.8953 Mya, and Fungiidae differentiated into two ancestral clades (clades I and II) before 107.0312 Ma. Fungiidae exhibited specific symbioses with the Cladocopium C27 sub-clade. Notably, the Cladocopium C1 sub-clade has a high relative abundance in clade I, whereas the heat-tolerant Cladocopium C40 and C3u sub-clades subdominante in clade II. Regarding bacterial communities, Cycloseris costulata, the earliest divergent species, had higher bacterial β-diversity, while the latest divergent species, Lithophyllon scabra, displayed lower bacterial α-diversity and higher community stability. Beneficial bacteria dominante Fungiidae's bacterial community (54%). The co-occurrence network revealed that microbial networks in clade II exhibited lower complexity and greater resilience than those in clade I. Our study highlights that host evolutionary radiation and microbial communities shaped Fungiidae's thermal tolerance. The variability in subdominant Symbiodiniaceae populations may contribute to interspecific differences in thermal tolerance along the evolutionary branches of Fungiidae. The presence of abundant beneficial bacteria may further enhance the thermal ability of the Fungiidae. Furthermore, the later divergent species of Fungiidae have stronger heat tolerance, possibly driven by the increased regulation ability of the host on the bacterial community, greater microbial community stability, and interaction network resistance.IMPORTANCECoral reefs are facing significant threats due to global warming. The heat tolerance of coral holobionts depends on both the coral host and its microbiome. However, the association between coral evolutionary radiation and interspecific differences in microbial communities remains unclear. In this study, we investigated the role of evolutionary radiation and microbial community dynamics in shaping the thermal acclimation potential of Fungiidae in the Sanjiao Reef of the southern South China Sea. The study's results suggest that evolutionary radiation enhances the thermal tolerance of Fungiidae. Fungiidae species that have diverged more recently have exhibited a higher presence of heat-tolerant Symbiodiniaceae taxa, more stable bacterial communities, and a robust and resilient microbial interaction network, improving the thermal adaptability of Fungiidae. In summary, this study provides new insights into the thermal adaptation patterns of corals under global warming conditions.
Collapse
Affiliation(s)
- Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Zhiheng Liao
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zeming Bao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Yongzhi Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| |
Collapse
|
44
|
Kang Y, Xu L, Dong J, Yuan X, Ye J, Fan Y, Liu B, Xie J, Ji X. Programmed microalgae-gel promotes chronic wound healing in diabetes. Nat Commun 2024; 15:1042. [PMID: 38310127 PMCID: PMC10838327 DOI: 10.1038/s41467-024-45101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
Chronic diabetic wounds are at lifelong risk of developing diabetic foot ulcers owing to severe hypoxia, excessive reactive oxygen species (ROS), a complex inflammatory microenvironment, and the potential for bacterial infection. Here we develop a programmed treatment strategy employing live Haematococcus (HEA). By modulating light intensity, HEA can be programmed to perform a variety of functions, such as antibacterial activity, oxygen supply, ROS scavenging, and immune regulation, suggesting its potential for use in programmed therapy. Under high light intensity (658 nm, 0.5 W/cm2), green HEA (GHEA) with efficient photothermal conversion mediate wound surface disinfection. By decreasing the light intensity (658 nm, 0.1 W/cm2), the photosynthetic system of GHEA can continuously produce oxygen, effectively resolving the problems of hypoxia and promoting vascular regeneration. Continuous light irradiation induces astaxanthin (AST) accumulation in HEA cells, resulting in a gradual transformation from a green to red hue (RHEA). RHEA effectively scavenges excess ROS, enhances the expression of intracellular antioxidant enzymes, and directs polarization to M2 macrophages by secreting AST vesicles via exosomes. The living HEA hydrogel can sterilize and enhance cell proliferation and migration and promote neoangiogenesis, which could improve infected diabetic wound healing in female mice.
Collapse
Affiliation(s)
- Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Lingling Xu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jinrui Dong
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jiamin Ye
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yueyue Fan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Bing Liu
- Department of Disease Control and Prevention, Rocket Force Characteristic Medical Center, Beijing, 10088, China.
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China.
- Medical College, Linyi University, Linyi, 276000, China.
| |
Collapse
|
45
|
Zou Y, Ip JCH, Xie JY, Yeung YH, Wei L, Guo Z, Zhang Y, Qiu JW. Dynamic changes in bacterial communities in three species of corals during the 2017 bleaching event in subtropical Hong Kong waters. MARINE POLLUTION BULLETIN 2024; 199:116002. [PMID: 38181470 DOI: 10.1016/j.marpolbul.2023.116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Bacteria play important roles in coral health, yet little is known about the dynamics of coral-associated bacterial communities during coral bleaching. Here, we reported the dynamic changes of bacterial communities in three scleractinian corals (Montipora peltiformis, Pavona decussata and Platygyra carnosa) during and after bleaching through amplicon sequencing. Our results revealed that the bacterial composition and dominant bacteria varied among the three coral species. The higher susceptibility of M. peltiformis to bleaching corresponded to a lower bacterial community diversity, and the dominant Synechococcus shifted in abundance during the bleaching and coral recovery phases. The resilient P. decussata and P. carnosa had higher bacterial diversity and a more similar bacterial composition between the healthy and bleached conditions. Overall, our study reveals the dynamic changes in coral-associated microbial diversity under different conditions, contributing to explaining the differential susceptibility of corals to extreme climate conditions.
Collapse
Affiliation(s)
- Ying Zou
- School of Life and Health Sciences, Hainan University, Haikou, China
| | | | - James Y Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yip Hung Yeung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Lu Wei
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Zhiqiang Guo
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Yanjie Zhang
- School of Life and Health Sciences, Hainan University, Haikou, China.
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
46
|
Crump BC, Bowen JL. The Microbial Ecology of Estuarine Ecosystems. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:335-360. [PMID: 37418833 DOI: 10.1146/annurev-marine-022123-101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Human civilization relies on estuaries, and many estuarine ecosystem services are provided by microbial communities. These services include high rates of primary production that nourish harvests of commercially valuable species through fisheries and aquaculture, the transformation of terrestrial and anthropogenic materials to help ensure the water quality necessary to support recreation and tourism, and mutualisms that maintain blue carbon accumulation and storage. Research on the ecology that underlies microbial ecosystem services in estuaries has expanded greatly across a range of estuarine environments, including water, sediment, biofilms, biological reefs, and stands of seagrasses, marshes, and mangroves. Moreover, the application of new molecular tools has improved our understanding of the diversity and genomic functions of estuarine microbes. This review synthesizes recent research on microbial habitats in estuaries and the contributions of microbes to estuarine food webs, elemental cycling, and interactions with plants and animals, and highlights novel insights provided by recent advances in genomics.
Collapse
Affiliation(s)
- Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA;
| | - Jennifer L Bowen
- Marine Science Center, Department of Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts, USA;
| |
Collapse
|
47
|
González-Pech RA, Li VY, Garcia V, Boville E, Mammone M, Kitano H, Ritchie KB, Medina M. The Evolution, Assembly, and Dynamics of Marine Holobionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:443-466. [PMID: 37552896 DOI: 10.1146/annurev-marine-022123-104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The holobiont concept (i.e., multiple living beings in close symbiosis with one another and functioning as a unit) is revolutionizing our understanding of biology, especially in marine systems. The earliest marine holobiont was likely a syntrophic partnership of at least two prokaryotic members. Since then, symbiosis has enabled marine organisms to conquer all ocean habitats through the formation of holobionts with a wide spectrum of complexities. However, most scientific inquiries have focused on isolated organisms and their adaptations to specific environments. In this review, we attempt to illustrate why a holobiont perspective-specifically, the study of how numerous organisms form a discrete ecological unit through symbiosis-will be a more impactful strategy to advance our understanding of the ecology and evolution of marine life. We argue that this approach is instrumental in addressing the threats to marine biodiversity posed by the current global environmental crisis.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vivian Y Li
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vanessa Garcia
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Elizabeth Boville
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Marta Mammone
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | | | - Kim B Ritchie
- Department of Natural Sciences, University of South Carolina, Beaufort, South Carolina, USA;
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| |
Collapse
|
48
|
Zhou K, Zhang T, Chen XW, Xu Y, Zhang R, Qian PY. Viruses in Marine Invertebrate Holobionts: Complex Interactions Between Phages and Bacterial Symbionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:467-485. [PMID: 37647612 DOI: 10.1146/annurev-marine-021623-093133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Marine invertebrates are ecologically and economically important and have formed holobionts by evolving symbiotic relationships with cellular and acellular microorganisms that reside in and on their tissues. In recent decades, significant focus on symbiotic cellular microorganisms has led to the discovery of various functions and a considerable expansion of our knowledge of holobiont functions. Despite this progress, our understanding of symbiotic acellular microorganisms remains insufficient, impeding our ability to achieve a comprehensive understanding of marine holobionts. In this review, we highlight the abundant viruses, with a particular emphasis on bacteriophages; provide an overview of their diversity, especially in extensively studied sponges and corals; and examine their potential life cycles. In addition, we discuss potential phage-holobiont interactions of various invertebrates, including participating in initial bacterial colonization, maintaining symbiotic relationships, and causing or exacerbating the diseases of marine invertebrates. Despite the importance of this subject, knowledge of how viruses contribute to marine invertebrate organisms remains limited. Advancements in technology and greater attention to viruses will enhance our understanding of marine invertebrate holobionts.
Collapse
Affiliation(s)
- Kun Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China;
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ting Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen, Fujian, China
| | - Xiao-Wei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen, Fujian, China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China;
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China;
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China;
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
49
|
Moore B, Jolly J, Izumiyama M, Kawai E, Ravasi T, Ryu T. Tissue-specific transcriptional response of post-larval clownfish to ocean warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168221. [PMID: 37923256 DOI: 10.1016/j.scitotenv.2023.168221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Anthropogenically driven climate change is predicted to increase average sea surface temperatures, as well as the frequency and intensity of marine heatwaves in the future. This increasing temperature is predicted to have a range of negative physiological impacts on multiple life-stages of coral reef fish. Nevertheless, studies of early-life stages remain limited, and tissue-specific transcriptomic studies of post-larval coral reef fish are yet to be conducted. Here, in an aquaria-based study we investigate the tissue-specific (brain, liver, muscle, and digestive tract) transcriptomic response of post-larval (20 dph) Amphiprion ocellaris to temperatures associated with future climate change (+3 °C). Additionally, we utilized metatranscriptomic sequencing to investigate how the microbiome of the digestive tract changes at +3 °C. Our results show that the transcriptional response to elevated temperatures is highly tissue-specific, as the number of differentially expressed genes (DEGs) and gene functions varied amongst the brain (102), liver (1785), digestive tract (380), and muscle (447). All tissues displayed DEGs associated with thermal stress, as 23 heat-shock protein genes were upregulated in all tissues. Our results indicate that post-larval clownfish may experience liver fibrosis-like symptoms at +3 °C as genes associated with extracellular matrix structure, oxidative stress, inflammation, glucose transport, and metabolism were all upregulated. We also observe a shift in the digestive tract microbiome community structure, as Vibrio sp. replace Escherichia coli as the dominant bacteria. This shift is coupled with the dysregulation of various genes involved in immune response in the digestive tract. Overall, this study highlights post-larval clownfish will display tissue-specific transcriptomic responses to future increases in temperature, with many potentially harmful pathways activated at +3 °C.
Collapse
Affiliation(s)
- Billy Moore
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Jeffrey Jolly
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Michael Izumiyama
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Erina Kawai
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Taewoo Ryu
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
50
|
Terzin M, Laffy PW, Robbins S, Yeoh YK, Frade PR, Glasl B, Webster NS, Bourne DG. The road forward to incorporate seawater microbes in predictive reef monitoring. ENVIRONMENTAL MICROBIOME 2024; 19:5. [PMID: 38225668 PMCID: PMC10790441 DOI: 10.1186/s40793-023-00543-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Marine bacterioplankton underpin the health and function of coral reefs and respond in a rapid and sensitive manner to environmental changes that affect reef ecosystem stability. Numerous meta-omics surveys over recent years have documented persistent associations of opportunistic seawater microbial taxa, and their associated functions, with metrics of environmental stress and poor reef health (e.g. elevated temperature, nutrient loads and macroalgae cover). Through positive feedback mechanisms, disturbance-triggered heterotrophic activity of seawater microbes is hypothesised to drive keystone benthic organisms towards the limit of their resilience and translate into shifts in biogeochemical cycles which influence marine food webs, ultimately affecting entire reef ecosystems. However, despite nearly two decades of work in this space, a major limitation to using seawater microbes in reef monitoring is a lack of a unified and focused approach that would move beyond the indicator discovery phase and towards the development of rapid microbial indicator assays for (near) real-time reef management and decision-making. By reviewing the current state of knowledge, we provide a comprehensive framework (defined as five phases of research and innovation) to catalyse a shift from fundamental to applied research, allowing us to move from descriptive to predictive reef monitoring, and from reactive to proactive reef management.
Collapse
Affiliation(s)
- Marko Terzin
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| | - Patrick W Laffy
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Steven Robbins
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yun Kit Yeoh
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Pedro R Frade
- Natural History Museum Vienna, 1010, Vienna, Austria
| | - Bettina Glasl
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030, Vienna, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Antarctic Program, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, 7050, Australia
| | - David G Bourne
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|