1
|
Guo L, Zhang X, Liu Y, Zhang A, Song W, Li L, Zhao J, Pang Q. Salt-alkali-tolerant growth-promoting Streptomyces sp. Jrh8-9 enhances alfalfa growth and resilience under saline-alkali stress through integrated modulation of photosynthesis, antioxidant defense, and hormone signaling. Microbiol Res 2025; 296:128158. [PMID: 40164013 DOI: 10.1016/j.micres.2025.128158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/26/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Streptomyces is a group of plant growth-promoting microorganisms with considerable potential for enhancing plant tolerance to environmental stress. However, the mechanisms by which Streptomyces strains induce systemic tolerance to saline-alkaline stress remain unclear. Here, we evaluated the properties of Streptomyces sp. Jrh8-9, isolated from the halophyte rhizosphere soil, and its effects on alfalfa growth and response to saline-alkali stress. Jrh8-9 exhibited multiple plant-beneficial traits, including phosphate solubilization, nitrogen fixation, indole-3-acetic acid production, and high saline-alkali tolerance. Jrh8-9 inoculation considerably promoted growth in stressed alfalfa by increasing shoot fresh weight, root fresh weight, leaf area, plant height, root length, and root vigor by 46.7 %, 250.8 %, 36.0 %, 31.8 %, 47.4 %, and 103.0 %, respectively. It also improved the chlorophyll content, maximum photochemical efficiency of photosystem II, and the net photosynthetic rate. Physiological and biochemical analyses revealed that Jrh8-9 facilitated ion homeostasis by reducing Na+ and increasing Mg2+ levels, improving osmotic regulation by increasing soluble sugar and relative water contents, and enhancing antioxidant defenses by increasing superoxide dismutase, catalase, and ascorbate peroxidase activities. Transcriptomic profiling identified key differentially expressed genes associated with auxin and jasmonic acid signaling in response to Jrh8-9 inoculation, with auxin- and jasmonic acid-related genes linked to antioxidant pathways. Further analysis showed that increased auxin and jasmonic acid levels induced by Jrh8-9 mitigated reactive oxygen species accumulation and supported photosynthetic function. These findings highlight the multifaceted mechanisms underlying Streptomyces-induced saline-alkali tolerance and provide a potential strategy for improving forage crop resilience in saline-alkali soils.
Collapse
Affiliation(s)
- Lifeng Guo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xuchen Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yaning Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Aiqin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Wenshuai Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Lixin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China.
| | - Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Yanagisawa K, Kaneko K, Ikeda H, Iwata S, Muranaka A, Koshino H, Nagao N, Watari S, Nishimura S, Shinzato N, Onaka H, Kakeya H. A new pyranonaphthoquinone, actinoquinonal A, and its congeners from the combined-culture of Streptomyces sp. 23-50 and Tsukamurella pulmonis TP-B0596. J Antibiot (Tokyo) 2025:10.1038/s41429-025-00821-y. [PMID: 40263474 DOI: 10.1038/s41429-025-00821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/24/2025]
Abstract
The combined-culture of actinomycetes with mycolic acid-containing bacteria (MACB) Tsukamurella pulmonis TP-B0596 is a promising strategy to produce cryptic metabolites in actinomycetes. In this study, Streptomyces sp. 23-50 was identified as an appropriate strain for co-culturing with T. pulmonis TP-B0596 using on-gel combined-culture screening of 160 strains of actinomycetes. A new pyranonaphthoquinone, actinoquinonal A (1), along with two known congeners, compound 2 and mevashuntin (3), were isolated from the combined-culture of Streptomyces sp. 23-50 with T. pulmonis TP-B0596 based on global natural product social (GNPS) molecular networking. The planar structures of 1-3 were elucidated by analyzing 2D nuclear magnetic resonance (NMR) and LC-MS/MS spectral data, and the absolute configurations of 1 and 3 were unambiguously determined by comparing experimental and calculated ECD spectra. Moreover, the combined-culture characteristic metabolites, including 3, were enhanced when Streptomyces sp. 23-50 was cultured in the presence of pravastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in the mevalonate pathway, suggesting that T. pulmonis TP-B0596 triggered a shunt in the mevalonate pathway of Streptomyces sp. 23-50. Notably, compounds 1 and 3 exhibited cytotoxicity against human cervical epithelioid carcinoma HeLa S3 (IC50 = 60.5 μM for 1, 0.67 μM for 3) and human colorectal cancer HT29 cells (IC50 = 101.9 μM for 1, 0.45 μM for 3).
Collapse
Affiliation(s)
- Kazuki Yanagisawa
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kensuke Kaneko
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Advanced Instruments Center, Kyushu Sangyo University, Fukuoka, Japan
| | - Hiroaki Ikeda
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Sumika Iwata
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Atsuya Muranaka
- RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | | | - Noeka Nagao
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Susumu Watari
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shinichi Nishimura
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Naoya Shinzato
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | | | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Wang YN, Cai TG, Li Y, Dai WC, Lin D, Zheng JT, Wang YF, Zhu D. Warming exacerbates the effects of pesticides on the soil collembolan gut microbiome and antibiotic resistome. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138294. [PMID: 40245716 DOI: 10.1016/j.jhazmat.2025.138294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/27/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
In the context of global climate warming, studies have yet to fully clarify how pollutants affect the gut microbiome and antibiotic resistance genes (ARGs) in nontarget soil fauna. This study investigates the interactive effects of pesticide exposure (imidacloprid) and elevated temperature on the gut bacterial community and ARGs in the model soil collembolan Folsomia candida. Our results demonstrate warming exacerbates the toxicity of imidacloprid in collembolans. While exposure to both warming and pesticide significantly altered the gut microbial composition of F. candida, impairing microbial metabolic diversity and potential host defense mechanisms, it also increased collembolan mortality. This combined exposure significantly enhanced the abundance and diversity of ARGs in the collembolan gut. A notable correlation between ARGs and mobile genetic elements (MGEs) underscores the potential risk of ARG transmission. Co-occurrence network analysis identified 52 bacterial genera as potential ARG hosts. Additionally, pure-culture exposure experiments with the isolated bacterium Serratia liquefaciens revealed the adaptability of ARG hosts to pesticide and warming stress plays an important role in driving the observed increase in ARGs. In conclusion, this study highlights the synergistic effects of climate warming and pesticide contamination on nontarget soil organisms, emphasizing the potential long-term risks to soil ecosystem health and stability.
Collapse
Affiliation(s)
- Ya-Ning Wang
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Gui Cai
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Li
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
| | - Wen-Cai Dai
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Da Lin
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Ting Zheng
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Fei Wang
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Dong Zhu
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
4
|
Lu L, Tang N, Zhu Z, Wang R, Gao X, Yan M, Hu T, Ma H, Li G, Li W, Zhang J, Li X, Liang J. Unraveling the interaction of dissolved organic matter and microorganisms with internal phosphorus cycling in the floodplain lake ecosystem. ENVIRONMENTAL RESEARCH 2025; 270:120966. [PMID: 39880117 DOI: 10.1016/j.envres.2025.120966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/12/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Internal nutrient cycling, especially phosphorus (P), is of great influence in lake eutrophication. Dissolved organic matter (DOM) and microorganisms are ubiquitous in the sediments and closely associated with P-cycling. However, the underlying interactions of DOM, microorganisms and P in floodplain lake area with different hydrological characteristics remain scarce. This study evaluated the P and DOM properties, P functional genes and microbial community ranging from channel to stagnant to grass area (CA, SA, GA) in a floodplain lake, respectively. The results showed that sediments dissolved organic carbon (DOC) and total P (TP) gradually decreased from GA to SA to CA. Organic P (64.44%) and Fe-bound P (34.86%) were primary bioavailable P fractions in three areas. Water Chl-a, DO, DOC and fulvic-like C1 component were essential driving factors affecting the distribution of P in sediments (p < 0.05). Microbial diversity, community structure and P-cycling function were significantly different in three areas and closely associated with sediment P and DOM (p < 0.05). The co-occurrence network analysis revealed that the interconnection of microbial communities, DOM components and P fractions decreased from CA (node: 123, edge: 1399) to SA (node: 122, edge: 667) to GA (node: 119, edge: 521). Sediment microbial communities enhanced P cycling via mineralizing organic P and dissolving inorganic P (Ca-P) in CA and coupling DOM mineralization and Fe-P dissolution in SA, while sediment in GA owned the significant potential of P and DOM storage and the abundant P-cycling genes. This finding provides further understanding that underlying mechanisms of internal P-cycling in floodplain lake ecosystem.
Collapse
Affiliation(s)
- Lan Lu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Ronghan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Min Yan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Tingting Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Han Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Guoyu Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Weixiang Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Jingyi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
5
|
Zhang X, Liu X, Xie K, Pan Y, Liu F, Hou F. Effects of different fiber levels of energy feeds on rumen fermentation and the microbial community structure of grazing sheep. BMC Microbiol 2025; 25:180. [PMID: 40165064 PMCID: PMC11956436 DOI: 10.1186/s12866-024-03644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/08/2024] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Rumen microbial community structure and stability are very important for ruminant health, growth and development, and livestock product yield. Dietary composition and nutritional structure affect microbial diversity and richness. The purpose of this study was to evaluate the effects of different fiber levels of energy feed on the rumen microflora and fermentation function of grazing sheep in salinized sown pasture, to reveal the response of the main microflora of sheep rumen at the phylum and genus levels to different fiber levels of energy feed and to analyze the internal mechanism to provide a reference for the selection of energy feed and the improvement of the production performance of grazing livestock. RESULTS The fiber level of energy feed affects the rumen fermentation and rumen microbial community structure of grazing sheep. Low-fiber-energy feeds significantly increased the relative abundance of Actinobacteria, while the relative abundances of Cyanobacteria, Ruminococcaceae_UCG_010, Ruminococcaceae_NK4A214_group, and Elusimicrobium significantly decreased, adjusting the relationship between the flora toward cooperation. High-fiber-energy feeds significantly increased the concentration of VFAs, significantly decreased the relative abundances of Proteobacteria, Ruminococcaceae_NK4A214_group and Rikenellaceae_RC9_gut_group, adjusted the relationship between the flora to compete, and promoted the enrichment of metabolic pathways such as "Protein Digestion and Absorption," "Nitrogen Metabolism," "Starch and Sucrose Metabolism," and "Degradation of Other Sugars." CONCLUSIONS Supplementary feeding of high and low fiber energy feeds reduced the pH value of rumen fluid and the richness and diversity of microorganisms in grazing sheep, reduced the relative abundance of some harmful microorganisms, affected the metabolic activities of some fiber-digesting bacteria, regulated the interaction and competition between bacteria, increased the content of volatile fatty acids (VFAs) and the relative abundance of metabolic-related microorganisms in the supplementary feeding group, and enriched the metabolic-related pathways. However, further understand the mechanism of the effect of fiber level on the rumen of sheep, it is necessary to conduct in-depth analysis using research methods such as transcriptomics, proteomics and metabolomics.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xulei Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Kaili Xie
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yueting Pan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fuyao Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
- , Lanzhou, P. R. China.
| |
Collapse
|
6
|
Helmi NR. Exploring the diversity and antimicrobial potential of actinomycetes isolated from different environments in Saudi Arabia: a systematic review. Front Microbiol 2025; 16:1568899. [PMID: 40207161 PMCID: PMC11979186 DOI: 10.3389/fmicb.2025.1568899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
The increasing prevalence of antimicrobial resistance (AMR) presents a significant global health challenge, underscoring the urgent need for novel antimicrobial agents. Actinomycetes, particularly Streptomyces species, are well known for synthesizing bioactive compounds with antibacterial, antifungal, and antiviral properties. This review explores the diversity and antimicrobial potential of actinomycetes from Saudi Arabia's unique ecosystems, including terrestrial (soil, rhizosphere), aquatic (marine, freshwater), extreme (deserts, caves, hot springs, mountains, and mangroves), and other unique environments. The adaptation of these microorganisms to harsh environmental conditions has driven the evolution of unique strains with enhanced biosynthetic capacities. Several studies have demonstrated their antimicrobial efficacy against multidrug-resistant pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, Pseudomonas aeruginosa, and Candida albicans. However, challenges in actinomycete research persist, including difficulties in culturing rare strains, limited genomic characterization, and high production costs. Recent advancements, such as genome mining, metagenomics, AI-driven bioinformatics, and CRISPR-based gene activation, offer promising avenues for unlocking novel antimicrobial compounds. Additionally, synthetic biology, advanced fermentation technologies, and nanotechnology-based drug delivery systems are enhancing the industrial scalability of actinomycete-derived antibiotics. Beyond antimicrobials, actinomycete-derived compounds show potential applications in oncology, immunotherapy, and agriculture. Alternative therapeutic strategies, including quorum sensing inhibitors, phage therapy, and combination therapies, are being explored to combat AMR. Cutting-edge analytical techniques, such as mass spectrometry, liquid chromatography, and nuclear magnetic resonance spectroscopy (NMR), are essential for structural elucidation and mechanism characterization of new bioactive compounds. To harness Saudi Arabia's microbial biodiversity effectively, interdisciplinary collaborations between microbiologists, biotechnologists, and pharmaceutical industries are crucial. Sustainable bioprospecting and advanced bioprocessing strategies will facilitate the translation of actinomycete-derived bioactive compounds into clinically viable therapeutics. Expanding research efforts into underexplored Saudi ecosystems can lead to groundbreaking discoveries in antibiotic development and beyond.
Collapse
Affiliation(s)
- Noof Refat Helmi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Augustijn HE, van Nassauw D, Cernat S, Reitz ZL, van Wezel GP, Medema MH. Regulatory Genes as Beacons for Discovery and Prioritization of Biosynthetic Gene Clusters in Streptomyces. Biochemistry 2025. [PMID: 40133269 DOI: 10.1021/acs.biochem.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Actinobacteria are renowned for their ability to produce a wide range of bioactive molecules, including many anticancer compounds and antibiotics that are critical in the battle against antimicrobial resistance. Despite identification of a vast array of biosynthetic gene clusters (BGCs) through genome mining, much of this biosynthetic potential remains unexplored, partially due to the fact that many remain silent or cryptic under typical laboratory conditions. Regulatory networks can provide clues to the location of yet undiscovered gene cluster families or be leveraged to predict their expression. Here, we investigate the associations between regulatory genes and BGCs to uncover their predictive capabilities in discovering and prioritizing gene clusters for downstream wet-lab validation. By analyzing the protein domain architectures of 128,993 potential regulators derived from 440 complete Streptomyces genomes, we uncovered various associations between biosynthetic classes, biological activities of their products, and regulator families. Specifically, subsets of the Streptomyces Antibiotic Regulatory Protein (SARP) and LuxR families were strongly associated with biosynthetic pathways encoding the production of bioactive compounds. After closer genomic inspection of the small SARPs, we discovered 82 putative SARP-associated BGCs that escaped detection by state-of-the-art software. This shows that continued exploration of regulatory systems will not only deepen our understanding of Actinobacteria's biosynthetic capabilities but also facilitates discovery and prioritization of high-potential BGCs in future genome-mining applications.
Collapse
Affiliation(s)
- Hannah E Augustijn
- Bioinformatics Group, Wageningen University, Wageningen 6708 PB, The Netherlands
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden 2333 BE, The Netherlands
| | - Daan van Nassauw
- Bioinformatics Group, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Simona Cernat
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden 2333 BE, The Netherlands
| | - Zachary L Reitz
- Bioinformatics Group, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden 2333 BE, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen 6708 PB, The Netherlands
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden 2333 BE, The Netherlands
| |
Collapse
|
8
|
Xu Y, Liu Y, Chen T, Wang S, Liu G, Zhang G, Zhang W, Wu M, Chen X, Zhang B. Role of Cyanobacteria in the assembly and dynamics of microbial communities on glacier surfaces. iScience 2025; 28:112061. [PMID: 40104071 PMCID: PMC11915163 DOI: 10.1016/j.isci.2025.112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/21/2024] [Accepted: 02/14/2025] [Indexed: 03/20/2025] Open
Abstract
Glacier surface habitats are dynamic ecosystems that respond to local climatic and thermal changes, although the assembly mechanisms of microbial communities in these environments remain unclear. This study examined microbial communities on the surface of Baishui Glacier No. 1 across the accumulation, the intense melt, and the late melt periods. The absolute abundance of Cyanobacteria increased significantly, becoming the most abundant phylum by the end of the melt period. Cyanobacteria were strongly associated with other local microorganisms, especially in community structure, community assembly, and co-occurrence networks. The correlations between Cyanobacteria and other microorganisms shifted from predominantly mutualistic interactions, to being predominantly competitive interactions, and finally to mutualistic interactions with a portion of the community. Additionally, Cyanobacteria abundance positively correlated with nitrogen metabolism multifunctionality in other microorganisms, indicating a potential link between Cyanobacteria and nitrogen cycling. These findings provide new insights into microbial community dynamics and survival strategies on glacier surfaces.
Collapse
Affiliation(s)
- Yeteng Xu
- Yulong Snow Station of Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco- Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730000, China
| | - Yang Liu
- Yulong Snow Station of Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco- Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tuo Chen
- Yulong Snow Station of Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco- Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shijin Wang
- Yulong Snow Station of Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco- Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Minghui Wu
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Ximing Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Binglin Zhang
- Yulong Snow Station of Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco- Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
9
|
Salamzade R, Kalan LR. Context matters: assessing the impacts of genomic background and ecology on microbial biosynthetic gene cluster evolution. mSystems 2025; 10:e0153824. [PMID: 39992097 PMCID: PMC11915812 DOI: 10.1128/msystems.01538-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Encoded within many microbial genomes, biosynthetic gene clusters (BGCs) underlie the synthesis of various secondary metabolites that often mediate ecologically important functions. Several studies and bioinformatics methods developed over the past decade have advanced our understanding of both microbial pangenomes and BGC evolution. In this minireview, we first highlight challenges in broad evolutionary analysis of BGCs, including delineation of BGC boundaries and clustering of BGCs across genomes. We further summarize key findings from microbial comparative genomics studies on BGC conservation across taxa and habitats and discuss the potential fitness effects of BGCs in different settings. Afterward, recent research showing the importance of genomic context on the production of secondary metabolites and the evolution of BGCs is highlighted. These studies draw parallels to recent, broader, investigations on gene-to-gene associations within microbial pangenomes. Finally, we describe mechanisms by which microbial pangenomes and BGCs evolve, ranging from the acquisition or origination of entire BGCs to micro-evolutionary trends of individual biosynthetic genes. An outlook on how expansions in the biosynthetic capabilities of some taxa might support theories that open pangenomes are the result of adaptive evolution is also discussed. We conclude with remarks about how future work leveraging longitudinal metagenomics across diverse ecosystems is likely to significantly improve our understanding on the evolution of microbial genomes and BGCs.
Collapse
Affiliation(s)
- Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Gullì M, Cangioli L, Frusciante S, Graziano S, Caldara M, Fiore A, Klonowski AM, Maestri E, Brunori A, Mengoni A, Pihlanto A, Diretto G, Marmiroli N, Bevivino A. The relevance of biochar and co-applied SynComs on maize quality and sustainability: Evidence from field experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178872. [PMID: 39970561 DOI: 10.1016/j.scitotenv.2025.178872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Adoption of sustainable maize cropping practices is urgently needed. Synthetic microbial communities (SynComs) made of plant growth-promoting microorganisms (PGPMs), coupled with biochar from residual biomass, offer an environmentally compatible alternative to inorganic fertilizers and may improve soil fertility. This article extends in a two-year field trial with preliminary results obtained in previous pot experiments, monitoring plant physiology, soil biology and chemistry, and kernel metabolomics. Here, we report the synergistic effect of the co-application of biochar, SynComs, and arbuscular mycorrhizal fungi on the soil microbiome, maize growth, and kernel metabolomic profile. SynComs application did not affect the diversity and richness of soil microbial communities; therefore, it posed a low risk of long-term effects on soil microbial ecology. With SynComs and biochar co-application to the soil, the physiology of maize plants was characterized by higher chlorophyll content, ear weight, and kernel weight. The combination of SynComs and biochar also affected the kernel metabolome, resulting in enriched health-beneficial and anti-stress metabolites. Since the preliminary evidence on the environmental and economic impact of these new associations was more favorable than that of conventional fertilizers, it seems reasonable that their large-scale implementation can eventually favor the transition to more sustainable agriculture.
Collapse
Affiliation(s)
- Mariolina Gullì
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Lisa Cangioli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Sarah Frusciante
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Sara Graziano
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Marina Caldara
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Alessia Fiore
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Alexandra M Klonowski
- Exploration & Utilisation of Genetic Resources, Matís ohf., Icelandic Food and Biotech R&D, Vínlandsleið 12, 113 Reykjavík, Iceland
| | - Elena Maestri
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Andrea Brunori
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Alessio Mengoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Anne Pihlanto
- Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Helsinki, Finland
| | - Gianfranco Diretto
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Nelson Marmiroli
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Annamaria Bevivino
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy.
| |
Collapse
|
11
|
Meka AF, Bekele GK, Abas MK, Gemeda MT. Exploring bioactive compound origins: Profiling gene cluster signatures related to biosynthesis in microbiomes of Sof Umer Cave, Ethiopia. PLoS One 2025; 20:e0315536. [PMID: 40048434 PMCID: PMC11884727 DOI: 10.1371/journal.pone.0315536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/26/2024] [Indexed: 03/09/2025] Open
Abstract
Sof Umer Cave is an unexplored extreme environment that hosts novel microbes and potential genetic resources. Microbiomes from caves have been genetically adapted to produce various bioactive metabolites, allowing them to survive and tolerate harsh conditions. However, the biosynthesis-related gene cluster signatures in the microbiomes of Sof Umer Cave have not been explored. Therefore, high-throughput shotgun sequencing was used to explore biosynthesis-related gene clusters (BGCs) in the microbiomes of Sof Umer Cave. The GeneAll DNA Soil Mini Kit was used to extract high-molecular-weight DNA from homogenized samples, and the purified DNA was sequenced using a NovaSeq PE150. According to the Micro-RN database, the most common microbial genera in Sof Umer Cave are Protobacteria, Actinobacteria, Verrucomicrobiota, and Cyanobacteria. The biosynthesis-related gene clusters were annotated and classified, and the BGCs were predicted using antiSMASH and NAPDOS1. A total of 460 putative regions of BGCs encoding a wide range of secondary metabolites were identified, including RiPP (47.82%), terpene (19.57%), NRPS (13.04%), hybrid (2.18%), and other newly annotated (10.87%) compounds. Additionally, the NAPDOS pipeline identified a calcium-dependent antibiotic gene cluster from Streptomyces coelicolor, an actinomycin gene cluster from Streptomyces chrysomallus, and a bleomycin gene cluster from Streptomyces verticillus. These findings highlight the untapped biosynthetic potential of the Sof Umer Cave microbiome, as well as its potential for the discovery of natural products.
Collapse
Affiliation(s)
- Abu Feyisa Meka
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Department of Biology, Bule Hora University, Bule Hora, Ethiopia
| | - Gessesse Kebede Bekele
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Centre of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Musin Kelel Abas
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Centre of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Mesfin Tafesse Gemeda
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Centre of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
12
|
Benhadj M, Menasria T, Zaatout N, Ranque S. Genomic Insights and Antimicrobial Potential of Newly Streptomyces cavourensis Isolated from a Ramsar Wetland Ecosystem. Microorganisms 2025; 13:576. [PMID: 40142469 PMCID: PMC11945845 DOI: 10.3390/microorganisms13030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025] Open
Abstract
The growing threat of antimicrobial resistance underscores the urgent need to identify new bioactive compounds. In this study, a Streptomyces strain, ACT158, was isolated from a Ramsar wetland ecosystem and found to exhibit broad-spectrum effects against Gram-positive and Gram-negative bacteria, as well as fungal pathogens. The active strain was characterized as S. cavourensis according to its morphology, phylogenetic analysis, average nucleotide identity (ANI), and digital DNA-DNA hybridization (dDDH). Whole-genome sequencing (WGS) and annotation revealed a genome size of 6.86 Mb with 5122 coding sequences linked to carbohydrate metabolism, secondary metabolite biosynthesis, and stress responses. Genome mining through antiSMASH revealed 32 biosynthetic gene clusters (BGCs), including those encoding polyketides, nonribosomal peptides, and terpenes, many of which showed low similarity to known clusters. Comparative genomic analysis, showing high genomic synteny with closely related strains. Unique genomic features of ACT158 included additional BGCs and distinct genes associated with biosynthesis pathways and stress adaptation. These findings highlight the strain's potential as a rich source of bioactive compounds and provide insights into its genomic basis for antimicrobial production and its ecological and biotechnological significance.
Collapse
Affiliation(s)
- Mabrouka Benhadj
- Biomolecules and Application Laboratory, Faculty of Exact Sciences and Natural and Life Sciences, Echahid Cheikh Larbi Tebessi University, 12002 Tebessa, Algeria;
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, Echahid Cheikh Larbi Tebessi University, 12002 Tebessa, Algeria
| | - Taha Menasria
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078 Batna, Algeria; (T.M.); (N.Z.)
| | - Nawel Zaatout
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078 Batna, Algeria; (T.M.); (N.Z.)
| | - Stéphane Ranque
- Aix Marseille University, SSA, RITMES, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
13
|
Flores-Piña A, Valencia-Cantero E, Santoyo G. Underground fires shape the structure of microbial communities and select for thermophilic bacteria through a temperature gradient. Microbiol Res 2025; 292:127996. [PMID: 39671811 DOI: 10.1016/j.micres.2024.127996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
A detailed diversity analysis of the prokaryotic and fungal communities in soil impacted by an underground fire located in the Trans-Mexican volcanic belt, Mexico, is described. Microbial diversity data obtained from soils at different depths and temperatures (27 °C, 42 °C, 50 ºC and 54 ºC) were analyzed, and Firmicutes increased in abundance as the temperature augmented, and Proteobacteria mainly decreased in abundance at high temperatures compared to unaffected soils. The fungal phylum Ascomycota was the most abundant, with no significant changes. A clear reduction in the richness of both prokaryotic and eukaryotic operational taxonomic units (OTUs) was observed in the affected soils. At the genus level, Bacillus species were the most abundant among bacteria, while Aspergillus, Penicillium, and Mortierella were dominant fungal genera at higher temperatures. Interestingly, the physicochemical parameters of the affected soils modified organic matter, which was indirectly correlated with the presence of some microbial taxa. Likewise, we obtained 308 soil bacterial isolates from both control and affected soils. Among these, the taxa from the phyla Actinobacteria and Firmicutes demonstrated the highest thermotolerance in the affected soils. Our findings shed light on the impact of underground fires on the structure of microbial communities, favoring an abundance of thermotolerant microbes.
Collapse
Affiliation(s)
- Aurora Flores-Piña
- Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico
| | - Eduardo Valencia-Cantero
- Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico
| | - Gustavo Santoyo
- Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico.
| |
Collapse
|
14
|
Li J, Lu Y, Chen X, Wang L, Cao Z, Lei H, Zhang Z, Wang P, Sun B. Seasonal variation of microbial community and diversity in the Taiwan Strait sediments. ENVIRONMENTAL RESEARCH 2025; 268:120809. [PMID: 39798660 DOI: 10.1016/j.envres.2025.120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Human activities and ocean currents in the Taiwan Strait exhibit significant seasonal variation, yet the response of marine microbes to ocean changes under anthropogenic and climatic stress remains unclear. Using 16S rRNA gene amplicon sequencing, we investigated the spatiotemporal dynamics and functional variations of microbial communities in sediment samples. Our findings revealed distinct seasonal patterns in microbial diversity and composition. Proteobacteria, Desulfobacterota, and Crenarchaeota dominated at the phylum level, while Candidatus Nitrosopumilus, Woeseia, and Subgroup 10 were prevalent at the genus level. Iron concentrations, heavy metals and C/N ratio were primary factors influencing microbial communities during specific seasons, whereas sulfur content, temperature fluctuations, and heavy metals shaped the entire microbial structure and diversity. Core microbial groups, including Desulfobulbus, Subgroup 10, Unidentified Latescibacterota, and Sumerlaea, played essential roles in regulating community structure and functional transitions. Marker species, such as Aliidiomarina sanyensis, Spirulina platensis, Croceimarina litoralis and Sulfuriflexus mobilis, acted as seasonal indicators. Bacteria exhibited survival strategy akin to higher organisms, encompassing process of synthesis, growth, dormancy, and disease resistance throughout the seasonal cycle. Core microbial groups and marker species in specific seasons can serve as indicators for monitoring and assessing the health of the Taiwan Strait ecosystem.
Collapse
Affiliation(s)
- Jialong Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yonglong Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Xueting Chen
- Key Laboratory of Multimedia Trusted Perception and Efficient Computing, Ministry of Education of China and the Fujian Key Laboratory of Sensing and Computing for Smart City, School of Informatics, Xiamen University, Xiamen 361005, China
| | - Lianghui Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Zhiwei Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Haojie Lei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Zhenjun Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Pei Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Bin Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
15
|
Nauta KM, Burton NO. H 2S regulation of a host-microbe interaction. Trends Microbiol 2025; 33:258-259. [PMID: 39915166 DOI: 10.1016/j.tim.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 03/08/2025]
Abstract
It is often difficult to identify the molecular mechanisms that underlie interactions between species. Using Caenorhabditis elegans as a model system,Patange et al. recently demonstrated that H2S mediates interactions between C. elegans and Actinobacteria.
Collapse
Affiliation(s)
- Kelsie M Nauta
- Van Andel Research Institute, Department of Metabolism and Nutritional Programing, Grand Rapids, MI, 49503, USA
| | - Nicholas O Burton
- Van Andel Research Institute, Department of Metabolism and Nutritional Programing, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
16
|
Fu Y, Wang J, Su Z, Chen Q, Li J, Zhao J, Xuan W, Miao Y, Zhang J, Zhang R. Sinomonas gamaensis NEAU-HV1 remodels the IAA14-ARF7/19 interaction to promote plant growth. THE NEW PHYTOLOGIST 2025; 245:2016-2037. [PMID: 39722601 DOI: 10.1111/nph.20370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Sinomonas species typically reside in soils or the rhizosphere and can promote plant growth. Sinomonas enrichment in rhizospheric soils is positively correlated with increases in plant biomass. However, the growth promotion mechanisms regulated by Sinomonas remain unclear. By using soil systems, we studied the growth-promoting effects of Sinomonas gamaensis NEAU-HV1 on various plants. Through a combination of phenotypic analyses and microscopic observations, the effects of NEAU-HV1 on root development were evaluated. We subsequently conducted molecular and genetic experiments to reveal the mechanism promoting lateral root (LR) development. We demonstrated that NEAU-HV1 significantly promoted the growth of lettuce, wheat, maize, peanut and Arabidopsis. This effect was associated with multiple beneficial traits, including phosphate solubilization, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid deaminase production and survival ability in the rhizosphere and within the inner tissue of roots. In addition, NEAU-HV1 could secrete metabolites to promote LR development by affecting auxin transport and signaling. Importantly, we found that the influence of auxin signaling may be attributed to the remodeling interaction between SOLITARY-ROOT (SLR)/IAA14 and ARF7/19, occurring independently of the auxin receptor TIR1/AFB2. Our results indicate that NEAU-HV1-induced LR formation is dependent on direct remodeling interactions between transcription factors, providing novel insights into plant-microbe interactions.
Collapse
Affiliation(s)
- Yansong Fu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Juexuan Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziwei Su
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Qinyuan Chen
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaxin Li
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Zhao
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Youzhi Miao
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Ruifu Zhang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
17
|
Vignolle A, Zehl M, Kirkegaard RH, Vignolle GA, Zotchev SB. Secondary Metabolite Biosynthesis Potential of Streptomyces Spp. from the Rhizosphere of Leontopodium nivale Subsp. alpinum. ACS OMEGA 2025; 10:7163-7171. [PMID: 40028056 PMCID: PMC11865988 DOI: 10.1021/acsomega.4c10476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/24/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
Bacteria of the phylum Actinomycetota, particularly those of the genus Streptomyces, are prolific producers of secondary metabolites (SMs), many of which have been developed into antibiotics, immunosuppressants, and cancer therapeutics. With high rediscovery rates, the attention has shifted to Streptomyces from unique ecological niches for the discovery of new SMs. The plant rhizosphere is one such niche, characterized by complex chemical interactions between the plant and its rhizobiome, which can elicit the production of SMs in Streptomyces. In the present study, 18 Streptomyces strains were previously isolated from the rhizosphere of the rare alpine medicinal plant Leontopodium nivale subsp. alpinum were investigated for their capacity to produce secondary metabolites. Genomes of these strains were analyzed for the presence of SM biosynthetic gene clusters (BGCs). In total, 551 BGCs were detected, of which 217 could not be linked to known SMs. These isolates were cultivated in different media known to support the production of SMs, and 15 out of the 54 methanolic extracts from these cultures exhibited antimicrobial activities. Subsequent liquid chromatography-mass spectrometry analyses of the bioactive extracts led to a putative identification of 69 known SMs as well as 16 potentially new molecules. The results of this study may provide a basis for the discovery of unique molecules with the potential to be developed as drugs against a variety of human diseases.
Collapse
Affiliation(s)
- Anna Vignolle
- Department
of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna 1090, Austria
| | - Martin Zehl
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Rasmus H. Kirkegaard
- Joint
Microbiome
Facility, Medical University of Vienna and
University of Vienna, Vienna 1030, Austria
- Division
of Microbial Ecology, Centre for Microbiology and Environmental Systems
Science, University of Vienna, Vienna 1090, Austria
| | - Gabriel A. Vignolle
- Center Health
& Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, Vienna 1210, Austria
| | - Sergey B. Zotchev
- Department
of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
18
|
Fernandes CF, da Silva Iúdice TN, Bezerra NV, Pontes AN. Biodegradation of oil-derived hydrocarbons by marine actinobacteria: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125509. [PMID: 39667573 DOI: 10.1016/j.envpol.2024.125509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
The intensive use of oil and its derivatives is related to a greater frequency of accidents involving the release of pollutants that cause harmful effects on ecosystems. Actinobacteria are cosmopolitan and saprophytic microorganisms of great commercial interest, but because they are predominantly found in soil, most research into the products of this phylum's metabolism has focused on this habitat. Marine actinobacteria exhibit unique metabolic characteristics in response to extreme conditions in their habitat, which distinguishes them from terrestrial actinobacteria. This systematic review aims to describe cultivable hydrocarbonoclastic marine actinobacteria, analyze their biodegradation rates, as well as discuss their respective potential for application in bioremediation techniques and their limitations. Twenty-one actinobacteria were found to be capable of degrading one or more hydrocarbons derived from petroleum. The majority of these bacteria belonged to the genera Rhodococcus, Gordonia, Pseudonocardia, Isoptericola, Microbacterium, Citricoccus, Kocuria, Brevibacterium, and Cellulosimicrobium. The highest degradation rate was obtained by the species R. ruber, which degraded 100 % of fluorene at a concentration of 100 mg/L. On the other hand, the species Streptomyces gougerotti and Micromonospora matsumotoense were able to degrade polyethylene and use the carbon derived from it to produce polylactic acid (PLA), which represents an excellent candidate for making safely degradable bioplastics, with a view to recycling and replacing conventional petroleum-based plastics. An approach that integrates physicochemical and biological methods, and optimized growth conditions can lead to greater success in decontaminating environments. Despite the number of bacteria found in the research, this number may be significantly higher. This review provides valuable information to support further studies.
Collapse
Affiliation(s)
- Caroline Ferreira Fernandes
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Center for Biological and Health Sciences., University of Pará State (UEPA), Av. Perebebuí, 2623, Belém, Pará, Brazil.
| | - Tirça Naiara da Silva Iúdice
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Center for Biological and Health Sciences., University of Pará State (UEPA), Av. Perebebuí, 2623, Belém, Pará, Brazil; Institute of Health Sciences, Federal University of Pará (UFPA), Av. Augusto Corrêa, Belém, Pará, Brazil
| | - Nilson Veloso Bezerra
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Center for Biological and Health Sciences., University of Pará State (UEPA), Av. Perebebuí, 2623, Belém, Pará, Brazil
| | - Altem Nascimento Pontes
- Center of Natural Sciences and Technology., University of Pará State (UEPA), av. Eneas, 2626, Belém, Pará, Brazil
| |
Collapse
|
19
|
Zhao BR, Hu XR, Wang WD, Zhou Y. Cardiorenal syndrome: clinical diagnosis, molecular mechanisms and therapeutic strategies. Acta Pharmacol Sin 2025:10.1038/s41401-025-01476-z. [PMID: 39910210 DOI: 10.1038/s41401-025-01476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025]
Abstract
As the heart and kidneys are closely connected by the circulatory system, primary dysfunction of either organ usually leads to secondary dysfunction or damage to the other organ. These interactions play a major role in the pathogenesis of a clinical entity named cardiorenal syndrome (CRS). The pathophysiology of CRS is complicated and involves multiple body systems. In early studies, CRS was classified into five subtypes according to the organs associated with the vicious cycle and the acuteness and chronicity of CRS. Increasing evidence shows that CRS is associated with a variety of pathological mechanisms, such as haemodynamics, neurohormonal changes, hypervolemia, hypertension, hyperuraemia and hyperuricaemia. In this review, we summarize the classification and currently available diagnostic biomarkers of CRS. We highlight the recently revealed molecular pathogenesis of CRS, such as oxidative stress and inflammation, hyperactive renin‒angiotensin‒aldosterone system, maladaptive Wnt/β-catenin signalling pathway and profibrotic TGF‒β1/Smad signalling pathway, as well as other pathogeneses, such as dysbiosis of the gut microbiota and dysregulation of noncoding RNAs. Targeting these CRS-associated signalling pathways has new therapeutic potential for treating CRS. In addition, various chemical drugs, natural products, complementary therapies, blockers, and agonists that protect against CRS are summarized. Since the molecular mechanisms of CRS remain to be elucidated, no single intervention has been shown to be effective in treating CRS. Pharmacologic therapies designed to block CRS are urgently needed. This review presents a critical therapeutic avenue for targeting CRS and concurrently illuminates challenges and opportunities for discovering novel treatment strategies for CRS.
Collapse
Affiliation(s)
- Bo-Rui Zhao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin-Rong Hu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Wei-Dong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.
| |
Collapse
|
20
|
Medema MH, van Wezel GP. New solutions for antibiotic discovery: Prioritizing microbial biosynthetic space using ecology and machine learning. PLoS Biol 2025; 23:e3003058. [PMID: 40019875 DOI: 10.1371/journal.pbio.3003058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/04/2025] [Indexed: 03/05/2025] Open
Abstract
With the explosive increase in genome sequence data, perhaps the major challenge in natural-product-based drug discovery is the identification of gene clusters most likely to specify new chemistry and bioactivities. We discuss the challenges and state-of-the-art of antibiotic discovery based on ecological principles, genome mining and artificial intelligence.
Collapse
Affiliation(s)
- Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
21
|
Salamzade R, Tran P, Martin C, Manson A, Gilmore M, Earl A, Anantharaman K, Kalan L. zol and fai: large-scale targeted detection and evolutionary investigation of gene clusters. Nucleic Acids Res 2025; 53:gkaf045. [PMID: 39907107 PMCID: PMC11795205 DOI: 10.1093/nar/gkaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/06/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Many universally and conditionally important genes are genomically aggregated within clusters. Here, we introduce fai and zol, which together enable large-scale comparative analysis of different types of gene clusters and mobile-genetic elements, such as biosynthetic gene clusters (BGCs) or viruses. Fundamentally, they overcome a current bottleneck to reliably perform comprehensive orthology inference at large scale across broad taxonomic contexts and thousands of genomes. First, fai allows the identification of orthologous instances of a query gene cluster of interest amongst a database of target genomes. Subsequently, zol enables reliable, context-specific inference of ortholog groups for individual protein-encoding genes across gene cluster instances. In addition, zol performs functional annotation and computes a variety of evolutionary statistics for each inferred ortholog group. Importantly, in comparison to tools for visual exploration of homologous relationships between gene clusters, zol can scale to handle thousands of gene cluster instances and produce detailed reports that are easy to digest. To showcase fai and zol, we apply them for: (i) longitudinal tracking of a virus in metagenomes, (ii) performing population genetic investigations of BGCs for a fungal species, and (iii) uncovering evolutionary trends for a virulence-associated gene cluster across thousands of genomes from a diverse bacterial genus.
Collapse
Affiliation(s)
- Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Freshwater and Marine Science Doctoral Program, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Cody Martin
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Abigail L Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Michael S Gilmore
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, 02114, United States
- Department of Microbiology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, 02115, United States
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, United States
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
22
|
Dinglasan JLN, Otani H, Doering DT, Udwary D, Mouncey NJ. Microbial secondary metabolites: advancements to accelerate discovery towards application. Nat Rev Microbiol 2025:10.1038/s41579-024-01141-y. [PMID: 39824928 DOI: 10.1038/s41579-024-01141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/20/2025]
Abstract
Microbial secondary metabolites not only have key roles in microbial processes and relationships but are also valued in various sectors of today's economy, especially in human health and agriculture. The advent of genome sequencing has revealed a previously untapped reservoir of biosynthetic capacity for secondary metabolites indicating that there are new biochemistries, roles and applications of these molecules to be discovered. New predictive tools for biosynthetic gene clusters (BGCs) and their associated pathways have provided insights into this new diversity. Advanced molecular and synthetic biology tools and workflows including cell-based and cell-free expression facilitate the study of previously uncharacterized BGCs, accelerating the discovery of new metabolites and broadening our understanding of biosynthetic enzymology and the regulation of BGCs. These are complemented by new developments in metabolite detection and identification technologies, all of which are important for unlocking new chemistries that are encoded by BGCs. This renaissance of secondary metabolite research and development is catalysing toolbox development to power the bioeconomy.
Collapse
Affiliation(s)
- Jaime Lorenzo N Dinglasan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hiroshi Otani
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Drew T Doering
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Udwary
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nigel J Mouncey
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
23
|
Mathew DE, Soni A, Dhimmar A, Gajjar A, Parab AS, Phakatkar SS, Sahastrabudhe H, Manohar CS, Shinde PB, Mantri VA. Characterization, Bio-Prospection, and Comparative Metagenomics of Bacterial Communities Revealing the Predictive Functionalities in Wild and Cultured Samples of Industrially Important Red Seaweed Gracilaria dura. Curr Microbiol 2025; 82:85. [PMID: 39821458 DOI: 10.1007/s00284-025-04065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
The present study explores the microbial community associated with the industrially important red seaweed Gracilaria dura to determine the diversity and biotechnological potential through culture and metagenomics approaches. In the first part of the investigation, we isolated and characterized 75 bacterial morphotypes, with varied colony characteristics and metabolic diversity from the wild seaweed. Phylogenetic analysis identified isolates in Proteobacteria, Firmicutes, and Actinobacteria, with Bacillus sp. being prevalent. B. licheniformis and Streptomyces sp. were notable in producing important enzymes like L-asparaginase, and polysaccharide lyases. Antimicrobial activity was significant in 21% of isolates, effective against seaweed pathogens such as Vibrio and Xanthomonas. Rhodococcus pyridinivorans showed strong pyridine degradation, suggesting bioremediation potential. Several isolates exhibited phosphate solubilization and nitrate indicating the roles of bacteria as algal growth promoters and biocontrol agents. Subsequent metagenome analysis of wild and cultured samples provides insights into bacterial communities associated with G. dura, revealing their distribution and functional roles. Proteobacteria (~ 95%) dominated the communities, further bacterial groups involved in algal growth, carpospore liberation, stress resistance, biogeochemical cycles, and biomedical applications were identified. A notable difference in bacteriomes was observed between the samples, with 25% remaining stable. The samples are cultured in the lab to generate seedlings for farming and serve as germplasm storage during the monsoon season. Microbiome surveys are crucial for understanding the association of pathogens and the overall health of the seedlings, supporting successful seaweed farming. Our findings provide valuable insights into G. dura-associated microbial communities and their role in algal growth, which has aquacultural implications.
Collapse
Affiliation(s)
- Doniya Elze Mathew
- Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aastha Soni
- Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India
| | - Asmita Dhimmar
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Apexa Gajjar
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashutosh Shankar Parab
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, India
| | - Sumit Sudhir Phakatkar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Harshal Sahastrabudhe
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Cathrine Sumathi Manohar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pramod B Shinde
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Vaibhav A Mantri
- Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
24
|
Yannelli FA, Keet JH, Kritzinger-Klopper S, Le Roux JJ. Legacy effects of an invasive legume more strongly impact bacterial than plant communities in a Mediterranean-type ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123802. [PMID: 39729714 DOI: 10.1016/j.jenvman.2024.123802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024]
Abstract
The impacts of invasive plants on ecosystem processes and functions may persist as "legacy effects" after their removal. Understanding these effects on native plant-soil interactions is critical for guiding ecological restoration efforts. This study examines the legacy effects of the invasive legume Acacia saligna (Labill.) H.L. Wendl. in South Africa's Cape Fynbos to evaluate restoration potential post-removal. We compared cleared, invaded, and uninvaded reference sites across three conservation areas, examining soil chemical properties, nitrogen (N) isotope signatures (as a proxy for the sources of N uptake by a native plant and A. saligna), and the diversity and composition of plant and soil bacterial communities. The effects of A. saligna removal was contingent on conservation area, though consistent patterns emerged for plant and bacterial diversity across sites. Recovery toward reference site levels were evident for soil organic carbon and potassium, but nitrate and available phosphorous only improved in one area. Invader removal was linked to higher soil pH in one area and higher phosphorus availability in two. Soil conditions in cleared sites influenced the nitrogen sources used by A. saligna, shifting towards soil-derived nitrogen, but did not influence those used by the native species assessed. While we observed signs of native plant community recovery after clearing, soil bacterial communities remained comparable to those in invaded sites. The lag in bacterial community recovery was linked to soil pH changes caused by A. saligna invasion. Our findings demonstrate that removing A. saligna can promote native vegetation recovery, though legacy effects may impede or delay the recovery of soil bacterial communities. The influence of these soil legacy effects may also depend on the management or invasion history of sites.
Collapse
Affiliation(s)
- Florencia A Yannelli
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa; Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Institute of Biology, 14195, Berlin, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587, Berlin, Germany; Argentine Institute for Dryland Research, CONICET and Universidad Nacional de Cuyo, 5500, Mendoza, Argentina.
| | - Jan-Hendrik Keet
- EcoFloristix Specialist Environmental Consulting, Somerset West, 7130, South Africa; Department of Mathematical Sciences, Stellenbosch University, Matieland, 7602, South Africa
| | - Suzaan Kritzinger-Klopper
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa
| | - Johannes J Le Roux
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa; School of Natural Sciences, Macquarie University, Sydney, 2109, Australia
| |
Collapse
|
25
|
Rodrigues RDS, Souza AQLD, Barbosa AN, Santiago SRSDS, Vasconcelos ADS, Barbosa RD, Alves TCL, da Cruz JC, da Silva GF, Bentes JLDS, Souza ADLD. Biodiversity and Antifungal Activities of Amazonian Actinomycetes Isolated from Rhizospheres of Inga edulis Plants. Front Biosci (Elite Ed) 2024; 16:39. [PMID: 39736009 DOI: 10.31083/j.fbe1604039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/28/2024] [Accepted: 08/09/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Actinobacteria are major producers of antibacterial and antifungal metabolites and are growing their search for substances of biotechnological interest, especially for use in agriculture, among other applications. The Amazon is potentially rich in actinobacteria; however, almost no research studies exist. Thus, we present a study of the occurrence and antifungal potential of actinobacteria from the rhizosphere of Inga edulis, a native South American plant and one that is economically useful in the whole of the Amazon. METHODS Among the 64 actinobacteria strains isolated from the rhizosphere of three Inga edulis plants, 20 strains were selected and submitted to dual-culture assays against five important phytopathogenic fungi and morphological and 16S rRNA gene analyses. Two strains, LaBMicrA B270 and B280, were also studied for production curves of metabolic extracts and antifungal activities, including their minimum inhibitory concentration (MIC) against phytopathogenic fungi. RESULTS Among the 20 strains, 90% were identified as Streptomyces and 10% as Kitasatospora. All the strains showed antagonisms against two or more of five phytopathogens: Corynespora cassiicola, Colletotrichum guaranicola, Colletotrichum sp., Pestalotiopsis sp., and Sclerotium coffeicola. Streptomyces spp. strains LaBMicrA B270 and B280 were active against phytopathogens of the guarana plant (Paullinia cupana). Furthermore, AcOEt/2-propanol 9:1 extract from the 10-day strain LaBMicrA B280 cultured medium presented activity against all the phytopathogens tested, with a minimum inhibitory concentration of 125 μg/mL. CONCLUSIONS The results revealed various actinomycetes in three rhizospheres of I. edulis in the Amazon and the high potential of metabolic extracts from some of these bacterial strains against phytopathogenic fungi that destroy numerous crops.
Collapse
Affiliation(s)
| | - Antonia Queiroz Lima de Souza
- Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, AM 69067-005, Brasil
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, AM 69067-005, Brasil
| | | | | | - Aldenora Dos Santos Vasconcelos
- Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, AM 69067-005, Brasil
- Centro Multiusuário de Análise de Fenômenos Biomédicos, Universidade Estadual do Amazonas (CMABio-UEA), Manaus, AM 69065-001, Brasil
| | - Roneres Deniz Barbosa
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, AM 69067-005, Brasil
| | | | | | | | | | - Afonso Duarte Leão de Souza
- Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, AM 69067-005, Brasil
- Departamento de Química, Universidade Federal do Amazonas, Manaus, AM 69067-005, Brasil
| |
Collapse
|
26
|
Gonzalez-Silva A, San Juan-Mendo M, Delgado-Prudencio G, Hernández-García JA, Larios-Serrato V, Aguilar C, Villa-Tanaca L, Hernández-Rodríguez C. Comparative Genomics and Biosynthetic Cluster Analysis of Antifungal Secondary Metabolites of Three Strains of Streptomyces albidoflavus Isolated from Rhizospheric Soils. Microorganisms 2024; 12:2637. [PMID: 39770839 PMCID: PMC11678301 DOI: 10.3390/microorganisms12122637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/01/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Streptomyces is a genus of Gram-positive bacteria with high GC content. It remains attractive for studying and discovering new antibiotics, antifungals, and chemotherapeutics. Streptomyces genomes can contain more than 30 cryptic and expressed biosynthetic gene clusters (BGC) encoding secondary metabolites. In this study, three Streptomyces strains isolated from jungle rhizospheric soil exhibited supernatants that can inhibit sensitive and fluconazole-resistant Candida spp. The genomes of the strains Streptomyces sp. A1, J25, J29 ori2 were sequenced, assembled de novo, and analyzed. The genome assemblies revealed that the size of the genomes was 6.9 Mb, with linear topology and 73.5% GC. A phylogenomic approach identified the strains with high similitudes between 98.5 and 98.7% with Streptomyces albidoflavus SM254 and R-53649 strains, respectively. Pangenomic analysis of eight genomes of S. albidoflavus strains deposited in the Genomes database recognized 4707 core protein orthogroups and 745 abundant accessory and exclusive protein orthogroups, suggesting an open pangenome in this species. The antiSMASH software detected candicidin and surugamide BGC-encoding polyene and octapeptide antifungal secondary metabolites in other S. albidoflavus. CORASON software was used to compare the synteny, and the abundance of genes harbored in the clusters was used. In conclusion, although the three strains belong to the same species, each possesses a distinct genome, as evidenced by the different phenotypes, including antifungal and extracellular enzymatic activities.
Collapse
Affiliation(s)
- Adilene Gonzalez-Silva
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala S/N, Mexico City CP 11430, Mexico; (A.G.-S.); (M.S.J.-M.); (J.A.H.-G.); (L.V.-T.)
| | - Magali San Juan-Mendo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala S/N, Mexico City CP 11430, Mexico; (A.G.-S.); (M.S.J.-M.); (J.A.H.-G.); (L.V.-T.)
| | - Gustavo Delgado-Prudencio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca CP 62210, Mexico;
| | - Juan Alfredo Hernández-García
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala S/N, Mexico City CP 11430, Mexico; (A.G.-S.); (M.S.J.-M.); (J.A.H.-G.); (L.V.-T.)
| | - Violeta Larios-Serrato
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala S/N, Mexico City CP 11430, Mexico;
| | - César Aguilar
- Department of Chemistry, Purdue University, 575 Stadium Mall Dr. West Lafayette, Indiana, IN 47907, USA;
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala S/N, Mexico City CP 11430, Mexico; (A.G.-S.); (M.S.J.-M.); (J.A.H.-G.); (L.V.-T.)
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala S/N, Mexico City CP 11430, Mexico; (A.G.-S.); (M.S.J.-M.); (J.A.H.-G.); (L.V.-T.)
| |
Collapse
|
27
|
Roblero-Mejía DO, García-Ausencio C, Rodríguez-Sanoja R, Guzmán-Chávez F, Sánchez S. Embleporicin: A Novel Class I Lanthipeptide from the Actinobacteria Embleya sp. NF3. Antibiotics (Basel) 2024; 13:1179. [PMID: 39766569 PMCID: PMC11672506 DOI: 10.3390/antibiotics13121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Genome mining has emerged as a revolutionary tool for discovering new ribosomally synthesized and post-translationally modified peptides (RiPPs) in various genomes. Recently, these approaches have been used to detect and explore unique environments as sources of RiPP-producing microorganisms, particularly focusing on endophytic microorganisms found in medicinal plants. Some endophytic actinobacteria, especially strains of Streptomyces, are notable examples of peptide producers, as specific biosynthetic clusters encode them. To uncover the genetic potential of these organisms, we analyzed the genome of the endophytic actinobacterium Embleya sp. NF3 using genome mining and bioinformatics tools. Our analysis led to the identification of a putative class I lanthipeptide. We cloned the core biosynthetic genes of this putative lanthipeptide, named embleporicin, and expressed them in vitro using a cell-free protein system (CFPS). The resulting product demonstrated antimicrobial activity against Micrococcus luteus ATCC 9341. This represents the first RiPP reported in the genus Embleya and the first actinobacterial lanthipeptide produced through cell-free technology.
Collapse
Affiliation(s)
- Dora Onely Roblero-Mejía
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Carlos García-Ausencio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Fernando Guzmán-Chávez
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| |
Collapse
|
28
|
Surwase AJ, Thakur NL. Production of marine-derived bioactive peptide molecules for industrial applications: A reverse engineering approach. Biotechnol Adv 2024; 77:108449. [PMID: 39260778 DOI: 10.1016/j.biotechadv.2024.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/28/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
This review examines a wide range of marine microbial-derived bioactive peptide molecules, emphasizing the significance of reverse engineering in their production. The discussion encompasses the advancements in Marine Natural Products (MNPs) bio-manufacturing through the integration of omics-driven microbial engineering and bioinformatics. The distinctive features of non-ribosomally synthesised peptides (NRPs), and ribosomally synthesised precursor peptides (RiPP) biosynthesis is elucidated and presented. Additionally, the article delves into the origins of common peptide modifications. It highlights various genome mining approaches for the targeted identification of Biosynthetic Gene Clusters (BGCs) and novel RiPP and NRPs-derived peptides. The review aims to demonstrate the advancements, prospects, and obstacles in engineering both RiPP and NRP biosynthetic pathways.
Collapse
Affiliation(s)
- Akash J Surwase
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Narsinh L Thakur
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
29
|
Gantt SE, Kemp KM, Colin PL, Hoadley KD, LaJeunesse TC, Warner ME, Kemp DW. Influence of reef habitat on coral microbial associations. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70051. [PMID: 39517101 PMCID: PMC11549029 DOI: 10.1111/1758-2229.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Corals have complex symbiotic associations that can be influenced by the environment. We compare symbiotic dinoflagellate (family: Symbiodiniaceae) associations and the microbiome of five scleractinian coral species from three different reef habitats in Palau, Micronesia. Although pH and temperature corresponded with specific host-Symbiodiniaceae associations common to the nearshore and offshore habitats, bacterial community dissimilarity analyses indicated minimal influence of these factors on microbial community membership for the corals Coelastrea aspera, Psammocora digitata, and Pachyseris rugosa. However, coral colonies sampled close to human development exhibited greater differences in microbial community diversity compared to the nearshore habitat for the coral species Coelastrea aspera, Montipora foliosa, and Pocillopora acuta, and the offshore habitat for Coelastrea aspera, while also showing less consistency in Symbiodiniaceae associations. These findings indicate the influence that habitat location has on the bacterial and Symbiodiniaceae communities comprising the coral holobiont and provide important considerations for the conservation of coral reef communities, especially for island nations with increasing human populations and development.
Collapse
Affiliation(s)
- Shelby E. Gantt
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Keri M. Kemp
- Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | - Kenneth D. Hoadley
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabamaUSA
- Dauphin Island Sea LabDauphin IslandAlabamaUSA
| | - Todd C. LaJeunesse
- Department of BiologyPennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Mark E. Warner
- School of Marine Science and PolicyUniversity of DelawareLewesDelawareUSA
| | - Dustin W. Kemp
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
30
|
She Y, Wang P, Wen J, Ding M, Zhang H, Nie M, Huang G. Riverine bacterial communities are more shaped by species sorting in intensive urban and agricultural watersheds. Front Microbiol 2024; 15:1463549. [PMID: 39640856 PMCID: PMC11617543 DOI: 10.3389/fmicb.2024.1463549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Bacterial communities play a crucial role in maintaining the stability of river ecosystems and driving biogeochemical cycling, exhibiting high sensitivity to environmental change. However, understanding the spatial scale effects and assembly mechanisms of riverine bacterial communities under distinct anthropogenic disturbances remains a challenge. Here, we investigated bacterial communities across three distinct watersheds [i.e., intensive urban (UW), intensive agricultural (AW), and natural (NW)] in both dry and wet seasons. We explored biogeographic patterns of bacterial communities and the influence of landscape patterns at multi-spatial scales and water chemistry on bacterial communities. Results showed that α diversity was significantly lower in UW and AW compared to NW, particularly in the dry season. A gradient of β diversity with NW > UW > AW was observed across both seasons (p < 0.05). Pseudomonadota, Bacteroidota, and Actinobacteriota were the most abundant phyla across all watersheds, with specific taxa enriched in each watershed (i.e., the class Actinobacteria was significant enrichment in UW and AW, and Clostridia in NW). The influence of landscape patterns on bacterial communities was significantly lower in human-disturbed watersheds, particularly in UW, where this influence also varied slightly from near riparian buffers to sub-watershed. Homogeneous selection and drift jointly dominated the bacterial community assembly across all watersheds, with homogeneous selection exhibiting a greater influence in UW and AW. Landscape patterns explained less variance in bacterial communities in UW and AW than in NW, and more variance was explained by water chemistry (particularly in UW). These suggest that the stronger influence of species sorting in UW and AW was driven by more allochthonous inputs of water chemistry (greater environmental stress). These findings provide a theoretical foundation for a deeper understanding of riverine bacterial community structure, spatial scale effects, and ecological management under different anthropogenic activities.
Collapse
Affiliation(s)
- Yuanyang She
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
- School of History Culture and Tourism, Longnan Normal University, Longnan, China
| | - Peng Wang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Jiawei Wen
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Mingjun Ding
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Hua Zhang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Minghua Nie
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Gaoxiang Huang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
31
|
Yao K, Wang G, Zhang W, Liu Q, Hu J, Ye M, Jiang X. Saline soil improvement promotes the transformation of microbial salt tolerance mechanisms and microbial-plant-animal ecological interactions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123360. [PMID: 39566212 DOI: 10.1016/j.jenvman.2024.123360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The improvement of coastal saline land would alleviate the problem of insufficient arable land and provide new solutions for guaranteeing food security and ecological environment modification. In this study, five typical soil samples were collected from Tongzhou Bay, China. The changes in bacterial, animal and plant community composition before and after improvement were comprehensively investigated by a combination of high-throughput sequencing and macro-barcode sequencing analysis of eDNA. The study aimed (1) to characterize the species composition and diversity of the bacterial communities in saline soils, (2) to elucidate the mechanisms of salt tolerance of the bacterial communities, and (3) to investigate the impacts of the microbial salt tolerance mechanisms on the regional bacteria and fauna. The results showed that over 15 years of improvement, the composition of the bacteria in the saline-alkaline plots evolved significantly, changing from Desulfovibrio (10.60%) and Campylobacter (11.20%), to Acidobacter (12.91%). After the improvement, salt stress on the bacterial phyla gradually decreased. The functional differentiation of the bacterial phyla became more pronounced. As ion concentrations decreased, the main mechanism of salt tolerance of the bacterial bacteria changed from mainly mechanism of inorganic ion accumulation (55.56%), supplemented by flexible halophilic enzymes (31.77%), to mainly mechanism of compatible solute (44.80%). The mechanism of microbial salt tolerance directly affected micro-diversity and indirectly influenced the diversity of environmental species (R = 0.54). The results of this study provide a scientific basis for coastal saline land as a microbiodiversity marker and for the exploration of microbial improvement of saline land.
Collapse
Affiliation(s)
- Keyu Yao
- National Engineering Laboratory of Soil Nutrients Management, Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy Sciences, Nanjing, 211135, China
| | - Guanghao Wang
- Soil Ecology Lab, Jiangsu Provincial Key LaboratoryofCoastal Saline Soil Resources Utilizationand Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic WasteResource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, NanjingAgricultural, University,Nanjing, 210095, China
| | - Wen Zhang
- Soil Ecology Lab, Jiangsu Provincial Key LaboratoryofCoastal Saline Soil Resources Utilizationand Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic WasteResource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, NanjingAgricultural, University,Nanjing, 210095, China
| | - Qiang Liu
- Marine Geological Survey of Jiangsu Province, Nanjing, 210007, China
| | - Jian Hu
- Marine Geological Survey of Jiangsu Province, Nanjing, 210007, China.
| | - Mao Ye
- National Engineering Laboratory of Soil Nutrients Management, Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy Sciences, Nanjing, 211135, China.
| | - Xin Jiang
- National Engineering Laboratory of Soil Nutrients Management, Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy Sciences, Nanjing, 211135, China
| |
Collapse
|
32
|
Yang JX, Peng Y, Yu QY, Yang JJ, Zhang YH, Zhang HY, Adams CA, Willing CE, Wang C, Li QS, Han XG, Gao C. Gene horizontal transfers and functional diversity negatively correlated with bacterial taxonomic diversity along a nitrogen gradient. NPJ Biofilms Microbiomes 2024; 10:128. [PMID: 39550371 PMCID: PMC11569254 DOI: 10.1038/s41522-024-00588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024] Open
Abstract
Horizontal gene transfer (HGT) mediated diversification is a critical force driving evolutionary and ecological processes. However, how HGT might relate to anthropogenic activity such as nitrogen addition, and its subsequent effect on functional diversity and cooccurrence networks remain unknown. Here we approach this knowledge gap by blending bacterial 16S rRNA gene amplicon and shotgun metagenomes from a platform of cessation of nitrogen additions and continuous nitrogen additions. We found that bacterial HGT events, functional genes, and virus diversities increased whereas bacterial taxonomic diversity decreased by nitrogen additions, resulting in a counterintuitive strong negative association between bacterial taxonomic and functional diversities. Nitrogen additions, especially the ceased one, complexified the cooccurrence network by increasing the contribution of vitamin B12 auxotrophic Acidobacteria, indicating cross-feeding. These findings advance our perceptions of the causes and consequences of the diversification process in community ecology.
Collapse
Affiliation(s)
- Jian-Xia Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yi Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Jie Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yun-Hai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hai-Yang Zhang
- College of Life Sciences, Hebei University, Baoding, China
| | - Catharine Allyssa Adams
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Claire Elizabeth Willing
- Department of Biology, Stanford University, Stanford, CA, USA
- School of Environmental and Forest Science, University of Washington, Seattle, WA, USA
| | - Cong Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qiu-Shi Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Guo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, Hebei University, Baoding, China.
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
33
|
Wang Y, Shi YN, Xiang H, Shi YM. Exploring nature's battlefield: organismic interactions in the discovery of bioactive natural products. Nat Prod Rep 2024; 41:1630-1651. [PMID: 39316448 DOI: 10.1039/d4np00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Covering: up to March 2024.Microbial natural products have historically been a cornerstone for the discovery of therapeutic agents. Advanced (meta)genome sequencing technologies have revealed that microbes harbor far greater biosynthetic capabilities than previously anticipated. However, despite the application of CRISPR/Cas-based gene editing and high-throughput technologies to activate silent biosynthetic gene clusters, the rapid identification of new natural products has not led to a proportional increase in the discovery rate of lead compounds or drugs. A crucial issue in this gap may be insufficient knowledge about the inherent biological and physiological functions of microbial natural products. Addressing this gap necessitates recognizing that the generation of functional natural products is deeply rooted in the interactions between the producing microbes and other (micro)organisms within their ecological contexts, an understanding that is essential for harnessing their potential therapeutic benefits. In this review, we highlight the discovery of functional microbial natural products from diverse niches, including those associated with humans, nematodes, insects, fungi, protozoa, plants, and marine animals. Many of these findings result from an organismic-interaction-guided strategy using multi-omic approaches. The current importance of this topic lies in its potential to advance drug discovery in an era marked by increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Yuyang Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yan-Ni Shi
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Hao Xiang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Ming Shi
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Mark DR, Tucker NP, Herron PR. Chromosome architecture as a determinant for biosynthetic diversity in Micromonospora. Microb Genom 2024; 10:001313. [PMID: 39499242 PMCID: PMC11537254 DOI: 10.1099/mgen.0.001313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/27/2024] [Indexed: 11/07/2024] Open
Abstract
Natural products - small molecules generated by organisms to facilitate ecological interactions - are of great importance to society and are used as antibacterial, antiviral, antifungal and anticancer drugs. However, the role and evolution of these molecules and the fitness benefits they provide to their hosts in their natural habitat remain an outstanding question. In bacteria, the genes that encode the biosynthetic proteins that generate these molecules are organised into discrete loci termed biosynthetic gene clusters (BGCs). In this work, we asked the following question: How are biosynthetic gene clusters organised at the chromosomal level? We sought to answer this using publicly available high-quality assemblies of Micromonospora, an actinomycete genus with members responsible for biosynthesizing notable natural products, such as gentamicin and calicheamicin. By orienting the Micromonospora chromosome around the origin of replication, we demonstrated that Micromonospora has a conserved origin-proximal region, which becomes progressively more disordered towards the antipodes of the origin. We then demonstrated through genome mining of these organisms that the conserved origin-proximal region and the origin-distal region of Micromonospora have distinct populations of BGCs and, in this regard, parallel the organization of Streptomyces, which possesses linear chromosomes. Specifically, the origin-proximal region contains highly syntenous, conserved BGCs predicted to biosynthesize terpenes and a type III polyketide synthase. In contrast, the ori-distal region contains a highly diverse population of BGCs, with many BGCs belonging to unique gene cluster families. These data highlight that genomic plasticity in Micromonospora is locus-specific, and highlight the importance of using high-quality genome assemblies for natural product discovery and guide future natural product discovery by highlighting that biosynthetic novelty may be enriched in specific chromosomal neighbourhoods.
Collapse
Affiliation(s)
- David R. Mark
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
- School of Infection and Immunity, University of Glasgow, Glasgow, G12 8TA, UK
| | - Nicholas P. Tucker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
- School of Allied Health Sciences, University of Suffolk, Ipswich, IP3 0FS, UK
| | - Paul R. Herron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| |
Collapse
|
35
|
Ma L, Li R, Luan H, Tang J, Wang L, Guo T, Huang S. Impacts of long-term different fertilization regimes on microbial utilization of straw-derived carbon in greenhouse vegetable soils: insights from its ecophysiological roles and temperature responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1486817. [PMID: 39524564 PMCID: PMC11543410 DOI: 10.3389/fpls.2024.1486817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
As the largest organic carbon input in the agroecosystems, crop residues can increase soil carbon sequestration and crop production in greenhouse vegetable fields (GVFs). However, the soil microbiological mechanisms driving straw decomposition in GVFs under different incubation temperatures and fertilization treatments are not clear. Thus, soil samples were collected from a long-term field experiment included chemical fertilizer application alone (CF), 2/4 fertilizer N+2/4 organic fertilizer N (CM), 2/4 fertilizer N+1/4 organic fertilizer N+1/4 straw N (CMS), 2/4 fertilizer N+2/4 straw N (CS), and incubated with 13C-labeled straw at different temperatures (15, 25, and 35°C) for 60 days. Organic-amended treatments (CM, CMS, and CS), especially CMS treatment, increased soil bacterial Alpha diversity before and after straw addition. Straw decomposition process was dominated by soil Proteobacteria, Actinobacteria, and Firmicutes for each treatments. The effect of incubation temperature on soil microbial community composition was higher than that of fertilization treatments. Soil Alphaproteobacteria and Actinomycetia were the most predominant class involved in straw decomposition. Gammaproteobacteria (Pseudomonas, Steroidobacter, Acidibacter, and Arenimonas) were the unique and predominant class involved in straw decomposition at medium and high temperatures as well as in the straw-amended treatments. Organic-amended treatments, especially straw-amended treatments, increased the relative abundance of glycosyl transferases (GT) and auxiliary activities (AA). Alphaproteobacteria, Actinomycetia, and Gammaproteobacteria had higher relative contribution to carbohydrase genes. In summary, the long-term organic-amended treatments altered the structure of soil microbial communities and increased soil bacterial diversity, with the CMS having a greater potential to enhance resistance to external environmental changes. Soil Alphaproteobacteria and Actinomycetia were responsible for the dominance of straw decomposition, and Gammaproteobacteria may be responsible for the acceleration of straw decomposition. Fertilization treatments promote straw decomposition by increasing the abundance of indicator bacterial groups involved in straw decomposition, which is important for isolating key microbial species involved in straw decomposition under global warming.
Collapse
Affiliation(s)
- Long Ma
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruonan Li
- Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Haoan Luan
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Jiwei Tang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liying Wang
- Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Tengfei Guo
- Institution of Plant Nutrition and Environmental Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shaowen Huang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
36
|
Arini GS, Mencucini LGS, de Felício R, Feitosa LGP, Rezende-Teixeira P, de Oliveira Tsuji HMY, Pilon AC, Pinho DR, Costa Lotufo LV, Lopes NP, Trivella DBB, da Silva RR. A complementary approach for detecting biological signals through a semi-automated feature selection tool. Front Chem 2024; 12:1477492. [PMID: 39525959 PMCID: PMC11543558 DOI: 10.3389/fchem.2024.1477492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Untargeted metabolomics is often used in studies that aim to trace the metabolic profile in a broad context, with the data-dependent acquisition (DDA) mode being the most commonly used method. However, this approach has the limitation that not all detected ions are fragmented in the data acquisition process, in addition to the lack of specificity regarding the process of fragmentation of biological signals. The present work aims to extend the detection of biological signals and contribute to overcoming the fragmentation limits of the DDA mode with a dynamic procedure that combines experimental and in silico approaches. Methods Metabolomic analysis was performed on three different species of actinomycetes using liquid chromatography coupled with mass spectrometry. The data obtained were preprocessed by the MZmine software and processed by the custom package RegFilter. Results and Discussion RegFilter allowed the coverage of the entire chromatographic run and the selection of precursor ions for fragmentation that were previously missed in DDA mode. Most of the ions selected by the tool could be annotated through three levels of annotation, presenting biologically relevant candidates. In addition, the tool offers the possibility of creating local spectral libraries curated according to the user's interests. Thus, the adoption of a dynamic analysis flow using RegFilter allowed for detection optimization and curation of potential biological signals, previously absent in the DDA mode, being a good complementary approach to the current mode of data acquisition. In addition, this workflow enables the creation and search of in-house tailored custom libraries.
Collapse
Affiliation(s)
- Gabriel Santos Arini
- Department of Biomolecular Sciences, Computational Chemical Biology Laboratory, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- NPPNS, Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Cellular and Molecular Biology of Ribeirão Preto, Cellular and Molecular Biology Program, School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gabriel Souza Mencucini
- Department of Biomolecular Sciences, Computational Chemical Biology Laboratory, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- NPPNS, Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rafael de Felício
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Luís Guilherme Pereira Feitosa
- NPPNS, Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Paula Rezende-Teixeira
- Department of Pharmacology, Marine Pharmacology Laboratory, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Henrique Marcel Yudi de Oliveira Tsuji
- Department of Biomolecular Sciences, Computational Chemical Biology Laboratory, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- NPPNS, Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Alan Cesar Pilon
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, Paulista State University, São Paulo, Brazil
| | - Danielle Rocha Pinho
- NPPNS, Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Letícia Veras Costa Lotufo
- Department of Pharmacology, Marine Pharmacology Laboratory, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Norberto Peporine Lopes
- NPPNS, Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Ricardo Roberto da Silva
- Department of Biomolecular Sciences, Computational Chemical Biology Laboratory, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- NPPNS, Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Cellular and Molecular Biology of Ribeirão Preto, Cellular and Molecular Biology Program, School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
37
|
Zhang X, Zhang F, Li C, Li J, Xu X, Zhu T, Che Q, Li D, Zhang G. Heterologous Expression of Type II PKS Gene Cluster Leads to Diversified Angucyclines in Streptomyces albus J1074. Mar Drugs 2024; 22:480. [PMID: 39590760 PMCID: PMC11595736 DOI: 10.3390/md22110480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Heterologous expression has emerged as an effective strategy in activating Streptomyces cryptic gene clusters or improving yield. Eight compounds were successfully obtained by heterologous expression of the type II PKS gene cluster spi derived from marine Streptomyces sp. HDN155000 in the chassis host Streptomyces albus J1074. The structures with absolute configurations were elucidated using extensive MS and NMR spectroscopic methods, as well as theoretical NMR calculations and electronic circular dichroism (ECD) calculations. Interestingly, compound WS009 Z (2) contains a rare thiomethyl group, angumycinone T (4) has a novel oxo-bridge formed between C12a and C4, and angumycinone X (3) showed cytotoxicity toward K562 and NCI-H446/EP cell lines.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Falei Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chen Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiayi Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiao Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Deihai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266101, China
| |
Collapse
|
38
|
Bhowmick S, Viveros RP, Latoscha A, Commichau FM, Wrede C, Al-Bassam MM, Tschowri N. Cell shape and division septa positioning in filamentous Streptomyces require a functional cell wall glycopolymer ligase CglA. mBio 2024; 15:e0149224. [PMID: 39248520 PMCID: PMC11481543 DOI: 10.1128/mbio.01492-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
The cell wall of monoderm bacteria consists of peptidoglycan and glycopolymers in roughly equal proportions and is crucial for cellular integrity, cell shape, and bacterial vitality. Despite the immense value of Streptomyces in biotechnology and medicine as antibiotic producers, we know very little about their cell wall biogenesis, composition, and functions. Here, we have identified the LCP-LytR_C domain protein CglA (Vnz_13690) as a key glycopolymer ligase, which specifically localizes in zones of cell wall biosynthesis in S. venezuelae. Reduced amount of glycopolymers in the cglA mutant results in enlarged vegetative hyphae and failures in FtsZ-rings formation and positioning. Consequently, division septa are misplaced leading to the formation of aberrant cell compartments, misshaped spores, and reduced cell vitality. In addition, we report our discovery that c-di-AMP signaling and decoration of the cell wall with glycopolymers are physiologically linked in Streptomyces since the deletion of cglA restores growth of the S. venezuelae disA mutant at high salt. Altogether, we have identified and characterized CglA as a novel component of cell wall biogenesis in Streptomyces, which is required for cell shape maintenance and cellular vitality in filamentous, multicellular bacteria.IMPORTANCEStreptomyces are our key producers of antibitiotics and other bioactive molecules and are, therefore, of high value for medicine and biotechnology. They proliferate by apical extension and branching of hyphae and undergo complex cell differentiation from filaments to spores during their life cycle. For both, growth and sporulation, coordinated cell wall biogenesis is crucial. However, our knowledge about cell wall biosynthesis, functions, and architecture in Streptomyces and in other Actinomycetota is still very limited. Here, we identify CglA as the key enzyme needed for the attachment of glycopolymers to the cell wall of S. venezuelae. We demonstrate that defects in the cell wall glycopolymer content result in loss of cell shape in these filamentous bacteria and show that division-competent FtsZ-rings cannot assemble properly and fail to be positioned correctly. As a consequence, cell septa placement is disturbed leading to the formation of misshaped spores with reduced viability.
Collapse
Affiliation(s)
- Sukanya Bhowmick
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Ruth P. Viveros
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Andreas Latoscha
- Institute of Biology/Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fabian M. Commichau
- Institute of Biology, FG Molecular Microbiology 190 h, Universität Hohenheim, Stuttgart, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | | | - Natalia Tschowri
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
39
|
Zhang H, Ni T, Liu X, Ma B, Huang T, Zhao D, Li H, Chen K, Liu T. Ignored microbial-induced taste and odor in drinking water reservoirs: Novel insight into actinobacterial community structure, assembly, and odor-producing potential. WATER RESEARCH 2024; 264:122219. [PMID: 39121820 DOI: 10.1016/j.watres.2024.122219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
The presence of actinobacteria in reservoirs can lead to taste and odor issues, posing potential risks to the safety of drinking water supply. However, the response of actinobacterial communities to environmental factors in drinking water reservoirs remains largely unexplored. To address this gap, this study investigated the community structure and metabolic characteristics of odor-producing actinobacteria in water reservoirs across northern and southern China. The findings revealed differences in the actinobacterial composition across the reservoirs, with Mycobacterium sp. and Candidatus Nanopelagicus being the most prevalent genera. Notably, water temperature, nutrient levels, and metal concentrations were associated with differences in actinobacterial communities, with stochastic processes playing a major role in shaping the community assembly. In addition, three strains of odor-producing actinobacteria were cultured in raw reservoir water, namely Streptomyces antibioticus LJH21, Streptomyces sp. ZEU13, and Streptomyces sp. PQK19, with peak ATP concentrations of 51 nmol/L, 66 nmol/L, and 70 nmol/L, respectively, indicating that odor-producing actinobacteria could remain metabolically active under poor nutrient pressure. Additionally, Streptomyces antibioticus LJH21 produced the highest concentration of geosmin at 24.4 ng/L. These findings enhance our understanding of regional variances and reproductive metabolic mechanisms of actinobacteria in drinking water reservoirs, providing a solid foundation for improving drinking water quality control, especially for taste and odor.
Collapse
Affiliation(s)
- Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tongchao Ni
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daijuan Zhao
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaige Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
40
|
Ducousso‐Détrez A, Morvan S, Fontaine J, Hijri M, Sahraoui AL. How do high phosphate concentrations affect soil microbial communities after a century of ecosystem self-reclamation? ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70003. [PMID: 39440691 PMCID: PMC11497093 DOI: 10.1111/1758-2229.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/27/2024] [Indexed: 10/25/2024]
Abstract
The use of rock phosphate (RP) instead of soluble phosphate fertilizers is preferred for the development of more sustainable agriculture. However, the impact of high concentrations in RP on bacterial and fungal communities remains poorly documented. Thus, next-generation sequencing was used to characterize bacterial and fungal communities in the soils and roots of four plant species growing naturally in a self-restored ecosystem, on former open-pit phosphate mines where past exploitation generated locally a substantial phosphate enrichment of the soil. Our results show that bacterial communities are dominated by Actinobacteria and Proteobacteria phyla, while the Ascomycota and Basidiomycota phyla predominate in the fungal community. The alpha and beta diversities of both bacterial and fungal communities differ significantly between the root and soil compartments but are not significantly affected by RP inputs. However, Amplicon Sequence Variants (ASVs) indicative of RP-enriched soils have been identified; among them are bacteria representative of Streptomyces, Bacillus, Mycobacterium or Agromyces. Implications of these results open new ways of reflection to understand the microbial response following RP-inputs and long-term soil restoration, as well as to formulate microbial-based bioinoculants for sustainable agriculture applications based on microorganisms better adapted to high concentrations of RP.
Collapse
Affiliation(s)
- Amandine Ducousso‐Détrez
- Université du Littoral Côte d'Opale, UR 4492Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV)Calais CedexFrance
- Institut de Recherche en Biologie Végétale (IRBV), Département de Sciences BiologiquesUniversité de MontréalMontréalQuebecCanada
| | - Simon Morvan
- Institut de Recherche en Biologie Végétale (IRBV), Département de Sciences BiologiquesUniversité de MontréalMontréalQuebecCanada
| | - Joël Fontaine
- Université du Littoral Côte d'Opale, UR 4492Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV)Calais CedexFrance
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale (IRBV), Département de Sciences BiologiquesUniversité de MontréalMontréalQuebecCanada
- African Genome CenterMohammed VI Polytechnic University (UM6P)Ben GuerirMorocco
| | - Anissa Lounès‐Hadj Sahraoui
- Université du Littoral Côte d'Opale, UR 4492Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV)Calais CedexFrance
| |
Collapse
|
41
|
Shi N, Chen F, Wen Z, Yang J, Zhang N, Yin Y, Lu Z, Lin R, Du Y. Antifungal Activity and Possible Mechanism of Streptomyces nojiriensis 9-13 Against Mycogone sp., Causing Wet Bubble Disease on Agaricus bisporus. PLANT DISEASE 2024; 108:3097-3107. [PMID: 38885024 DOI: 10.1094/pdis-03-24-0645-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Wet bubble disease (WBD) in Agaricus bisporus caused by Mycogone species imposes a substantial economic loss to mushroom production in China. Currently, fungicide application is the main method to control WBD. However, excessive use of fungicides is challenged by the appearance of resistance and food safety. Therefore, it is necessary to explore safe and efficient strategies to control WBD. Strain 9-13, isolated from the rhizosphere soil of Taxus chinensis, showed strong inhibitory activity against three Mycogone species. According to morphological and biochemical characteristics and multilocus phylogenetic analysis, the strain was identified as Streptomyces nojiriensis. In addition, strain 9-13 extracts significantly inhibited mycelial growth and spore germination of M. perniciosa, M. rosea, and M. xinjiangensis in vitro. Strain 9-13 and its extracts also exhibited broad-spectrum antifungal activities against 12 selected plant pathogenic fungi. Scanning electron microscopic observations showed that the extracts destroyed mycelial structure, inducing mycelia to twist and shrink. Moreover, transmission electron microscopy revealed that the extracts resulted in severe plasmolysis, rupture of the cell membrane, and a decrease in cell inclusions, and the cell wall had a rough and uneven surface. Notably, the extracts obviously reduced disease severity and incidence of WBD by from 83.85 to 87.32% in fruiting bodies and 77.36% in mushroom beds and maintained fruiting time and color on harvested mushrooms. Collectively, these results clearly indicate that S. nojiriensis 9-13 is a promising biocontrol agent to control WBD on A. bisporus.
Collapse
Affiliation(s)
- Niuniu Shi
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian 350013, China
| | - Furu Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
| | - Zhiqiang Wen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jun Yang
- Institute for the Control of Agrochemicals, Beijing 100000, China
| | - Nan Zhang
- Institute for the Control of Agrochemicals, Beijing 100000, China
| | - Yue Yin
- Institute for the Control of Agrochemicals, Beijing 100000, China
| | - Zhenghui Lu
- Institute of Edible Fungi, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
| | - Ronghua Lin
- Institute for the Control of Agrochemicals, Beijing 100000, China
| | - Yixin Du
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian 350013, China
| |
Collapse
|
42
|
Gang J, Ping Y, Du C. Anti-Magnaporthe oryzae Activity of Streptomyces bikiniensis HD-087 In Vitro and Bioinformatics Analysis of Polyketide Synthase Gene pksL. Curr Microbiol 2024; 81:379. [PMID: 39340701 DOI: 10.1007/s00284-024-03898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Streptomyces bikiniensis HD-087 is capable of synthesizing various antimicrobial substances to counter the detrimental effects of hazardous microorganisms. To elucidate whether it produces polyketide antibiotics and the synthesis mechanism of antibiotic substances, the metabolites and related genes of S. bikiniensis HD-087 were analyzed through LC-MS, anti-Magnaporthe oryzae activity detection, and bioinformatics approaches. The result indicated that the strain HD-087 could produce erythromycin, a polyketide antibiotic. The inhibitory zones of the fermentation supernatant of strain HD-087 and methanol solution of erythromycin extract against M. oryzae were 40.84 ± 0.68 mm and 33.18 ± 0.81 mm, respectively. The IC50 value of erythromycin extract for inhibiting spore germination of erythromycin extract was 220.43 μg/mL. There are two polyketide synthesis gene clusters in the genome of strain HD-087, namely t1pks-nrps and t3pks-lantipeptide-t1pks-nrps. The key gene pksL in the t3pks-lantipeptide-t1pks-nrps gene cluster was predicted. The results suggested that it encodes a stable, hydrophilic, and acidic protein, mainly composed of α-helix and random coil. The PksL protein contains dehydrogenase (DH), ketone reductase (KR), acyl carrier protein (ACP), and ketone synthase (KS) domains. Moreover, it can form interaction networks with 11 proteins containing domains, such as polyketide synthase and ACP synthase. The molecular docking between PksL and acetyl-CoA is stable and strong, suggesting that PksL protein could catalyze the synthesis of polyketides with CoA as a substrate. This study provides a theoretical basis for further exploring the polyketides synthesis mechanism and developing antifungal metabolites in S. bikiniensis HD-087.
Collapse
Affiliation(s)
- Jiahan Gang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yuan Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
43
|
Terlouw BR, Biermann F, Vromans SPJM, Zamani E, Helfrich EJN, Medema MH. RAIChU: automating the visualisation of natural product biosynthesis. J Cheminform 2024; 16:106. [PMID: 39227914 PMCID: PMC11373092 DOI: 10.1186/s13321-024-00898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/17/2024] [Indexed: 09/05/2024] Open
Abstract
Natural products are molecules that fulfil a range of important ecological functions. Many natural products have been exploited for pharmaceutical and agricultural applications. In contrast to many other specialised metabolites, the products of modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) systems can often (partially) be predicted from the DNA sequence of the biosynthetic gene clusters. This is because the biosynthetic pathways of NRPS and PKS systems adhere to consistent rulesets. These universal biosynthetic rules can be leveraged to generate biosynthetic models of biosynthetic pathways. While these principles have been largely deciphered, software that leverages these rules to automatically generate visualisations of biosynthetic models has not yet been developed. To enable high-quality automated visualisations of natural product biosynthetic pathways, we developed RAIChU (Reaction Analysis through Illustrating Chemical Units), which produces depictions of biosynthetic transformations of PKS, NRPS, and hybrid PKS/NRPS systems from predicted or experimentally verified module architectures and domain substrate specificities. RAIChU also boasts a library of functions to perform and visualise reactions and pathways whose specifics (e.g., regioselectivity, stereoselectivity) are still difficult to predict, including terpenes, ribosomally synthesised and posttranslationally modified peptides and alkaloids. Additionally, RAIChU includes 34 prevalent tailoring reactions to enable the visualisation of biosynthetic pathways of fully maturated natural products. RAIChU can be integrated into Python pipelines, allowing users to upload and edit results from antiSMASH, a widely used BGC detection and annotation tool, or to build biosynthetic PKS/NRPS systems from scratch. RAIChU's cluster drawing correctness (100%) and drawing readability (97.66%) were validated on 5000 randomly generated PKS/NRPS systems, and on the MIBiG database. The automated visualisation of these pathways accelerates the generation of biosynthetic models, facilitates the analysis of large (meta-) genomic datasets and reduces human error. RAIChU is available at https://github.com/BTheDragonMaster/RAIChU and https://pypi.org/project/raichu .Scientific contributionRAIChU is the first software package capable of automating high-quality visualisations of natural product biosynthetic pathways. By leveraging universal biosynthetic rules, RAIChU enables the depiction of complex biosynthetic transformations for PKS, NRPS, ribosomally synthesised and posttranslationally modified peptide (RiPP), terpene and alkaloid systems, enhancing predictive and analytical capabilities. This innovation not only streamlines the creation of biosynthetic models, making the analysis of large genomic datasets more efficient and accurate, but also bridges a crucial gap in predicting and visualising the complexities of natural product biosynthesis.
Collapse
Affiliation(s)
- Barbara R Terlouw
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Friederike Biermann
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Sophie P J M Vromans
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Elham Zamani
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438, Frankfurt am Main, Germany
| | - Eric J N Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438, Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
44
|
Manikkam R, Kaari M, Baskaran A, Ramakodi MP, Venugopal G, Bhaskar PV. Existence of rare actinobacterial forms in the Indian sector of Southern Ocean: 16 S rRNA based metabarcoding study. Braz J Microbiol 2024; 55:2363-2370. [PMID: 38987524 PMCID: PMC11405354 DOI: 10.1007/s42770-024-01424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
The significance of the Southern Ocean (SO) as a sink of atmospheric CO2 and other greenhouse gases is well established. Earlier studies have highlighted the role of microbes in various SO ecosystem processes. However, the diversity and role of actinobacteria in the Indian sector of SO (ISO) water and sediments are unknown. This study aimed to analyze the diversity of actinobacteria in water and sediment samples of SO based on amplicon microbiome analyses. The taxonomic analysis identified a total number of 27 phyla of which Proteobacteria (40.2%), Actinobacteria (13.6%), and Firmicutes (8.7%) were found to be dominant. The comparative study of water and sediment samples revealed the dominance of different actinobacteria in water and sediments. While the order Streptomycetales was dominant in the water samples, Micrococcales was found to be dominant in the sediment samples. The genus level analysis found the presence of eight and seventeen genera in the sediment and water samples, respectively. The genus Streptomyces, Saccharopolyspora, Nocardioides, Sva0996 marine group, and Mycobacterium were seen both in sediment and water samples. Marmoricola, Ilumatobacter, and Glaciihabitans were observed only in sediment samples whereas Rhodococcus, Corynebacterium, Micrococcus, Turicella, Pseudonocardia, Bifidobacterium, Nesterenkonia, Collinsella, Knoellia, Cadidatus, Actinomarina, Libanicoccus and Cutibacterium were noticed exclusively in water samples. Our study also emphasizes the need for further detailed study to understand the links between actinobacterial diversity and their ecological functions in the ISO. The available metabarcoding data paves the way for future research in cultivable forms of novel and rare Actinobacteria for their bioprospecting applications.
Collapse
Affiliation(s)
- Radhakrishnan Manikkam
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600 119, India.
| | - Manigundan Kaari
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600 119, India
- Department of Applied Bioscience, Dong-A University, Busan, 49315, South Korea
| | - Abirami Baskaran
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600 119, India
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Discipline of Biotechnology, Wrocław University of Environmental and Life Sciences, Wrocław, 50-375, Poland
| | - Meganathan P Ramakodi
- CSIR-National Environmental Engineering Research Institute (NEERI), Hyderabad Zonal Centre, IICT Campus, Hyderabad, India.
| | - Gopikrishnan Venugopal
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600 119, India
| | - Parli Venkateswaran Bhaskar
- Polar Science Group, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco Da Gama, Goa, India
| |
Collapse
|
45
|
Augustijn HE, Karapliafis D, Joosten KMM, Rigali S, van Wezel GP, Medema MH. LogoMotif: A Comprehensive Database of Transcription Factor Binding Site Profiles in Actinobacteria. J Mol Biol 2024; 436:168558. [PMID: 38580076 DOI: 10.1016/j.jmb.2024.168558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Actinobacteria undergo a complex multicellular life cycle and produce a wide range of specialized metabolites, including the majority of the antibiotics. These biological processes are controlled by intricate regulatory pathways, and to better understand how they are controlled we need to augment our insights into the transcription factor binding sites. Here, we present LogoMotif (https://logomotif.bioinformatics.nl), an open-source database for characterized and predicted transcription factor binding sites in Actinobacteria, along with their cognate position weight matrices and hidden Markov models. Genome-wide predictions of binding site locations in Streptomyces model organisms are supplied and visualized in interactive regulatory networks. In the web interface, users can freely access, download and investigate the underlying data. With this curated collection of actinobacterial regulatory interactions, LogoMotif serves as a basis for binding site predictions, thus providing users with clues on how to elicit the expression of genes of interest and guide genome mining efforts.
Collapse
Affiliation(s)
- Hannah E Augustijn
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands; Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | - Kristy M M Joosten
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Sébastien Rigali
- InBioS - Center for Protein Engineering, University of Liège, Institut de Chimie, B-4000 Liège, Belgium
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands; Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
46
|
Ouchene R, Zaatout N, Suzuki MT. An Overview on Nocardiopsis Species Originating From North African Biotopes as a Promising Source of Bioactive Compounds and In Silico Genome Mining Analysis of Three Sequenced Genomes. J Basic Microbiol 2024; 64:e2400046. [PMID: 38934516 DOI: 10.1002/jobm.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Actinobacteria are renowned for their prolific production of diverse bioactive secondary metabolites. In recent years, there has been an increasing focus on exploring "rare" genera within this phylum for biodiscovery purposes, notably the Nocardiopsis genus, which will be the subject of the present study. Recognizing the absence of articles describing the research process of finding bioactive molecules from the genus Nocardiopsis in North African environments. We, therefore, present a historical overview of the discoveries of bioactive molecules of the genus Nocardiopsis originating from the region, highlighting their biological activities and associated reported molecules, providing a snapshot of the current state of the field, and offering insights into future opportunities and challenges for drug discovery. Additionally, we present a genome mining analysis of three genomes deposited in public databases that have been reported to be bioactive. A total of 36 biosynthetic gene clusters (BGCs) were identified, including those known to encode bioactive molecules. Notably, a substantial portion of the BGCs showed little to no similarity to those previously described, suggesting the possibility that the analyzed strains could be potential producers of new compounds. Further research on these genomes is essential to fully uncovering their biotechnological potential. Moving forward, we discuss the experimental designs adopted in the reported studies, as well as new avenues to guide the exploration of the Nocardiopsis genus in North Africa.
Collapse
Affiliation(s)
- Rima Ouchene
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
- CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Sorbonne Université, Paris, France
| | - Nawel Zaatout
- Faculty of Natural and Life Sciences, University of Batna, Batna, Algeria
| | - Marcelino T Suzuki
- CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Sorbonne Université, Paris, France
| |
Collapse
|
47
|
Cunha-Ferreira IC, Vizzotto CS, Frederico TD, Peixoto J, Carvalho LS, Tótola MR, Krüger RH. Impact of Paenibacillus elgii supernatant on screening bacterial strains with potential for biotechnological applications. ENGINEERING MICROBIOLOGY 2024; 4:100163. [PMID: 39629112 PMCID: PMC11610968 DOI: 10.1016/j.engmic.2024.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 12/06/2024]
Abstract
The biotechnological industry faces a crucial demand for novel bioactive compounds, particularly antimicrobial agents, to address the rising challenge of bacterial resistance to current available antibiotics. Traditional strategies for cultivating naturally occurring microorganisms often limit the discovery of novel antimicrobial producers. This study presents a protocol for targeted selection of bacterial strains using the supernatant of Paenibacillus elgii, which produces abundant signal molecules and antimicrobial peptides. Soil samples were inoculated in these enriched culture media to selectively cultivate bacteria resistant to the supernatant, indicating their potential to produce similar compounds. The bacterial strains isolated through this method were assessed for their antibacterial activity. In addition, the functional annotation of the genome of one of these strains revealed several gene clusters of biotechnological interest. This study highlights the effectiveness of using this approach for selective cultivation of microorganisms with potential for biotechnological applications.
Collapse
Affiliation(s)
- I. C. Cunha-Ferreira
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - C. S. Vizzotto
- Laboratory of Environmental Sanitation, Department of Civil and Environmental Engineering, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - T. D. Frederico
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - J. Peixoto
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - L. S Carvalho
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - M. R. Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Brazil
| | - R. H. Krüger
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| |
Collapse
|
48
|
Qin YY, Gong Y, Kong SY, Wan ZY, Liu JQ, Xing K, Qin S. Aerial signaling by plant-associated Streptomyces setonii WY228 regulates plant growth and enhances salt stress tolerance. Microbiol Res 2024; 286:127823. [PMID: 38959523 DOI: 10.1016/j.micres.2024.127823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Plant-associated streptomycetes play important roles in plant growth and development. However, knowledge of volatile-mediated crosstalk between Streptomyces spp. and plants remains limited. In this study, we investigated the impact of volatiles from nine endophytic Streptomyces strains on the growth and development of plants. One versatile strain, Streptomyces setonii WY228, was found to significantly promote the growth of Arabidopsis thaliana and tomato seedlings, confer salt tolerance, and induce early flowering and increased fruit yield following volatile treatment. Analysis of plant growth-promoting traits revealed that S. setonii WY228 could produce indole-3-acetic acid, siderophores, ACC deaminase, fix nitrogen, and solubilize inorganic phosphate. These capabilities were further confirmed through genome sequencing and analysis. Volatilome analysis indicated that the volatile organic compounds emitted from ISP-2 medium predominantly comprised sesquiterpenes and 2-ethyl-5-methylpyrazine. Further investigations showed that 2-ethyl-5-methylpyrazine and sesquiterpenoid volatiles were the primary regulators promoting growth, as confirmed by experiments using the terpene synthesis inhibitor phosphomycin, pure compounds, and comparisons of volatile components. Transcriptome analysis, combined with mutant and inhibitor studies, demonstrated that WY228 volatiles promoted root growth by activating Arabidopsis auxin signaling and polar transport, and enhanced root hair development through ethylene signaling activation. Additionally, it was confirmed that volatiles can stimulate plant abscisic acid signaling and activate the MYB75 transcription factor, thereby promoting anthocyanin synthesis and enhancing plant salt stress tolerance. Our findings suggest that aerial signaling-mediated plant growth promotion and abiotic stress tolerance represent potentially overlooked mechanisms of Streptomyces-plant interactions. This study also provides an exciting strategy for the regulation of plant growth and the improvement of horticultural crop yields within sustainable agricultural practices.
Collapse
Affiliation(s)
- Yue-Ying Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Yuan Gong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Su-Yun Kong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Zhi-Yuan Wan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Jia-Qi Liu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Ke Xing
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| |
Collapse
|
49
|
Cruz LG, Shen FT, Chen CP, Chen WC. Dose Effect of Polyethylene Microplastics Derived from Commercial Resins on Soil Properties, Bacterial Communities, and Enzymatic Activity. Microorganisms 2024; 12:1790. [PMID: 39338465 PMCID: PMC11434124 DOI: 10.3390/microorganisms12091790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Soils are the largest reservoir of microplastics (MPs) on earth. Since MPs can remain in soils for a very long time, their effects are magnified. In this study, different concentrations of polyethylene (PE) MPs derived from commercial resins (0%, 1%, 7%, and 14%, represented as MP_0, MP_1, MP_7, and MP_14) were added to soils to assess the changes in the soils' chemical properties, enzyme activities, and bacterial communities during a 70-day incubation period. The results show that PE MP treatments with low concentrations differed from other treatments in terms of exchangeable Ca and Mg, whereas at high concentrations, the pH and availability of phosphate ions differed. Fluorescein diacetate (FDA), acid phosphatase (ACP), and N-acetyl-β-d-glucosaminidase (NAG) enzyme activities exhibited a dose-related trend with the addition of the PE MPs; however, the average FDA and ACP activities were significantly affected only by MP_14. Changes in the microbial communities were observed at both the phylum and family levels with all PE MP treatments. It was revealed that even a low dosage of PE MPs in soils can affect the functional microbes, and a greater impact is observed on those that can survive in polluted environments with limited resources.
Collapse
Affiliation(s)
- Lesbia Gicel Cruz
- International Master Program in Agriculture, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Fo-Ting Shen
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 40227, Taiwan
| | - Chiou-Pin Chen
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Nantou County 557004, Taiwan;
| | - Wen-Ching Chen
- International Bachelor Program in Agribusiness, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
50
|
Han JR, Li S, Li WJ, Dong L. Mining microbial and metabolic dark matter in extreme environments: a roadmap for harnessing the power of multi-omics data. ADVANCED BIOTECHNOLOGY 2024; 2:26. [PMID: 39883228 PMCID: PMC11740847 DOI: 10.1007/s44307-024-00034-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 01/31/2025]
Abstract
Extreme environments such as hyperarid, hypersaline, hyperthermal environments, and the deep sea harbor diverse microbial communities, which are specially adapted to extreme conditions and are known as extremophiles. These extremophilic organisms have developed unique survival strategies, making them ideal models for studying microbial diversity, evolution, and adaptation to adversity. They also play critical roles in biogeochemical cycles. Additionally, extremophiles often produce novel bioactive compounds in response to corresponding challenging environments. Recent advances in technologies, including genomic sequencing and untargeted metabolomic analysis, have significantly enhanced our understanding of microbial diversity, ecology, evolution, and the genetic and physiological characteristics in extremophiles. The integration of advanced multi-omics technologies into culture-dependent research has notably improved the efficiency, providing valuable insights into the physiological functions and biosynthetic capacities of extremophiles. The vast untapped microbial resources in extreme environments present substantial opportunities for discovering novel natural products and advancing our knowledge of microbial ecology and evolution. This review highlights the current research status on extremophilic microbiomes, focusing on microbial diversity, ecological roles, isolation and cultivation strategies, and the exploration of their biosynthetic potential. Moreover, we emphasize the importance and potential of discovering more strain resources and metabolites, which would be boosted greatly by harnessing the power of multi-omics data.
Collapse
Affiliation(s)
- Jia-Rui Han
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|