1
|
Xie D, Wu C, Yao L, Zhu Q, Lu J, Ding W. Clinic- and home-based renal rehabilitation improves spKt/V and uremic syndrome in hemodialysis patients: a case report. BMC Nephrol 2025; 26:187. [PMID: 40217508 PMCID: PMC11987303 DOI: 10.1186/s12882-025-04102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
There was an increasing uptake of hemodialysis and patient life expectancy due to improved treatment efficiency. However, the quality of life (QOL) of chronic kidney disease (CKD) patients is not parallelly improved, leading to a shift in focus towards promoting the QOL. Among the common complications of CKD such as anaemia and mineral bone disorder, uremic syndrome has been found as the main contributor to poor QOL. We present the case of an 80-year-old man with hemodialysis, who presented with poor appetite and weakness following recovering from COVID-19. Biochemical, echocardiographic, body composition, psychological, nutritional, and QOL assessments suggested multi-organ dysfunction attributable to uremic syndrome. Renal rehabilitation involving the combination of clinic- and home-based exercise and nutritional interventions effectively improved his symptoms while elevating spKt/V. Our case report not only demonstrated exercise and nutritional rehabilitation as an effective approach to managing uremic syndrome in hemodialysis patients, but also provided insight into the effects of improved nutritional status on spKt/V.
Collapse
Affiliation(s)
- Danshu Xie
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, PR China
| | - Chaolun Wu
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, PR China
- Department of Rehabilitation, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Lu Yao
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, PR China
| | - Qin Zhu
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, PR China
| | - Jianxin Lu
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, PR China.
| | - Wei Ding
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, PR China.
| |
Collapse
|
2
|
Rispoli RM, Popolo A, De Fabrizio V, d’Emmanuele di Villa Bianca R, Autore G, Dalli J, Marzocco S. Targeting Inflammatory Imbalance in Chronic Kidney Disease: Focus on Anti-Inflammatory and Resolution Mediators. Int J Mol Sci 2025; 26:3072. [PMID: 40243751 PMCID: PMC11989065 DOI: 10.3390/ijms26073072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Chronic kidney disease (CKD) is a condition caused by the gradual decline of renal function that approximatively affects 10-12% of the world population, thus representing a public health priority. In CKD patients, chronic and systemic low-grade inflammation is observed, and it significantly contributes to disease development and progression, especially for patients with advanced disease. It also results in CKD-associated complications and increased mortality. The low-grade inflammation is due to different factors, such as the decline of glomerular filtration rate, increased immune system activation, reactive oxygen species release, and intestinal homeostasis. Therefore, the possibility to control chronic low-grade inflammation in CKD deserves great attention. In this review, we will examine the current possible pharmacological approaches to counteract the inflammatory state in CKD, focusing our attention both on the pro-inflammatory factors and the pro-resolving mediators involved in CKD inflammatory state.
Collapse
Affiliation(s)
- Rosaria Margherita Rispoli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.M.R.); (A.P.); (V.D.F.); (G.A.)
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Ada Popolo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.M.R.); (A.P.); (V.D.F.); (G.A.)
| | - Vincenzo De Fabrizio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.M.R.); (A.P.); (V.D.F.); (G.A.)
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | | | - Giuseppina Autore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.M.R.); (A.P.); (V.D.F.); (G.A.)
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London E1 4NS, UK;
- Centre of Inflammation and Therapeutic Innovation, Queen Mary University of London, London E1 4NS, UK
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.M.R.); (A.P.); (V.D.F.); (G.A.)
| |
Collapse
|
3
|
Xu L, Zhang R. Nobiletin alleviates brain injury in uremic mice and inhibits indoxyl sulfate-induced neurotoxicity in HT22 cells through the phosphatidylinositol 3-kinase/protein kinase B signaling pathway. Cytojournal 2025; 22:27. [PMID: 40260073 PMCID: PMC12010812 DOI: 10.25259/cytojournal_233_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/23/2025] [Indexed: 04/23/2025] Open
Abstract
Objective Uremic encephalopathy presents as central nervous system symptoms in acute and chronic renal failure. Nobiletin (NOB), an extract from chenpi, has demonstrated anti-inflammatory bioactivity and potential neuroprotective effects without remarkable toxicity. This study aims to evaluate the pharmacological effects of NOB on treating uremic brain injury and elucidate its underlying mechanisms. Material and Methods A uremic encephalopathy mouse model was established by inducing renal failure with cisplatin (DDP). The therapeutic effects of NOB were investigated by assessing its effect on brain damage and neuronal viability. HT22 murine hippocampal neurons were also treated with DDP to induce neurotoxicity, and the effects of NOB on cell viability, apoptosis, and the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway were examined. The PI3K inhibitor LY294002 was used to further investigate the involvement of the PI3K/Akt pathway in the neuroprotective effects of NOB. Results NOB alleviated uremia-induced brain damage in mice, and this function was associated with the activation of the PI3K/Akt signaling pathway. In vitro, NOB improved the DPP-suppressed cell viability in HT22 neurons and restored apoptosis. NOB treatment also restored the phosphorylation levels of PI3K, Akt, and Pyruvate dehydrogenase kinase 1. These effects were partially blocked by the PI3K inhibitor LY294002. Conclusion NOB exerts potent neuroprotective effects by activating the PI3K/Akt pathway, mitigating uremia-induced brain injury and preventing DDP-induced neurotoxicity. These findings support the potential therapeutic application of NOB for uremic encephalopathy and provide insights into its underlying mechanisms.
Collapse
Affiliation(s)
- Liangshi Xu
- Department of Nephrology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| | - Ruyi Zhang
- Department of Internal Medicine, The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, China
| |
Collapse
|
4
|
Ponce MF, Gilligan G, de Andrade BAB, de Arruda JAA. An exuberant case of uremic stomatitis in an older adult. Gerodontology 2025; 42:129-132. [PMID: 40019941 DOI: 10.1111/ger.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 05/12/2025]
Abstract
OBJECTIVE To report the case of an older adult with uremic stomatitis. BACKGROUND Uremic stomatitis is a rare condition, with only 57 cases documented in the literature. Gerodontologists may be unfamiliar with this condition. MATERIALS AND METHODS A 71-year-old male patient, undergoing oncological treatment and with chronic kidney disease (CKD), presented with an asymptomatic, exuberant tongue lesion which had persisted for 3 months. The lesion was characterised by a white-yellowish plaque with a rough, warty surface covering the entire dorsum and lateral borders of the tongue. Blood tests revealed relatively high urea (130 mg/dL) and creatinine (2.22 mg/dL) levels. RESULTS Clinical, biochemical and histopathological data were consistent with uremic stomatitis. The patient passed away shortly after diagnosis. CONCLUSION This report documents the fifth case of uremic stomatitis in older adults in their 70s. Prompt diagnosis of this condition in individuals with CKD is critically important because it can alleviate symptoms, improve quality of life and extend survival.
Collapse
Affiliation(s)
- Maria Fernanda Ponce
- Service of Oral Medicine, Instituto Odontológico Dr. Cayetano Torcivia, San Juan, Argentina
| | - Gerardo Gilligan
- Department of Oral Medicine, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - José Alcides Almeida de Arruda
- Department of Oral Diagnosis and Pathology, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Fan X, Li J, Gao Y, Li L, Zhang H, Bi Z. The mechanism of enterogenous toxin methylmalonic acid aggravating calcium-phosphorus metabolic disorder in uremic rats by regulating the Wnt/β-catenin pathway. Mol Med 2025; 31:19. [PMID: 39844078 PMCID: PMC11756144 DOI: 10.1186/s10020-025-01067-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Uremia (UR) is caused by increased UR-related toxins in the bloodstream. We explored the mechanism of enterogenous toxin methylmalonic acid (MMA) in calcium-phosphorus metabolic disorder in UR rats via the Wnt/β-catenin pathway. METHODS The UR rat model was established by 5/6 nephrectomy. The fecal bacteria of UR rats were transplanted into Sham rats. Sham rats were injected with exogenous MMA or Salinomycin (SAL). Pathological changes in renal/colon tissues were analyzed. MMA concentration, levels of renal function indicators, serum inflammatory factors, Ca2+/P3+, and parathyroid hormone, intestinal flora structure, fecal metabolic profile, intestinal permeability, and glomerular filtration rate (GFR) were assessed. Additionally, rat glomerular podocytes were cultured, with cell viability and apoptosis measured. RESULTS Intestinal flora richness and diversity in UR rats were decreased, along with unbalanced flora structure. Among the screened 133 secondary differential metabolites, the MMA concentration rose, showing the most significant difference. UR rat fecal transplantation caused elevated MMA concentration in the serum and renal tissues of Sham rats. The intestinal flora metabolite MMA or exogenous MMA promoted intestinal barrier impairment, increased intestinal permeability, induced glomerular podocyte loss, and reduced GFR, causing calcium-phosphorus metabolic disorder. The intestinal flora metabolite MMA or exogenous MMA induced inflammatory responses and facilitated glomerular podocyte apoptosis by activating the Wnt/β-catenin pathway, which could be counteracted by repressing the Wnt/β-catenin pathway. CONCLUSIONS Enterogenous toxin MMA impelled intestinal barrier impairment in UR rats, enhanced intestinal permeability, and activated the Wnt/β-catenin pathway to induce glomerular podocyte loss and reduce GFR, thus aggravating calcium-phosphorus metabolic disorder.
Collapse
Affiliation(s)
- Xing Fan
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Jing Li
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Yan Gao
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
| | - Lin Li
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
| | - Haisong Zhang
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Zhaoyu Bi
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| |
Collapse
|
6
|
Ribeiro FPB, de Luna Freire MO, de Oliveira Coutinho D, de Santana Cirilo MA, de Brito Alves JL. Gut Dysbiosis and Probiotic Therapy in Chronic Kidney Disease: A Comprehensive Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10427-9. [PMID: 39668321 DOI: 10.1007/s12602-024-10427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
Chronic kidney disease (CKD) is a multifactorial disease affecting more than 13.4% of the world's population and is a growing public health problem. It is silent in its early stages and leads to irreversible kidney damage as the disease progresses. A key factor in this progression is the bidirectional relationship between CKD and gut dysbiosis, which creates an imbalance that promotes the accumulation of uremic toxins (UTs), contributing to renal fibrosis, endothelial dysfunction, and decreased glomerular filtration rate. In addition, CKD itself exacerbates gut dysbiosis by altering the composition of the gut microbiota (GM) and promoting the growth of pathogenic microorganisms. Therefore, it is crucial to explore new therapeutic strategies, and the use of probiotics and synbiotics has shown promise in modulating the GM. Numerous preclinical studies have shown that the use of probiotics in CKD has a beneficial effect on the kidney by reducing UTs, apoptosis, inflammation, and oxidative stress. Probiotic treatment has also been associated with restoration of intestinal integrity, modulation of microbial composition and diversity, and increased production of short-chain fatty acids (SCFAs). These positive results have also been observed in patients at different stages of CKD, where the use of probiotics and/or synbiotics was able to improve creatinine levels and uremic parameters and alleviate abdominal discomfort, in addition to modulating GM and reducing serum endotoxin levels. Although recent studies have explored the benefits of probiotics in the treatment of CKD, further research is needed to determine their long-term efficacy and clinical relevance. This review focuses on the factors driving gut dysbiosis in CKD, its role in disease progression, and the potential of probiotics as a therapeutic strategy.
Collapse
Affiliation(s)
- Fernanda Priscila Barbosa Ribeiro
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd, Cidade Universitária, João Pessoa, 58051-900, Brazil
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd, Cidade Universitária, João Pessoa, 58051-900, Brazil
| | - Daniella de Oliveira Coutinho
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd, Cidade Universitária, João Pessoa, 58051-900, Brazil
| | | | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd, Cidade Universitária, João Pessoa, 58051-900, Brazil.
| |
Collapse
|
7
|
Chu C, Behera TR, Huang Y, Qiu W, Chen J, Shen Q. Research progress of gut microbiome and diabetic nephropathy. Front Med (Lausanne) 2024; 11:1490314. [PMID: 39735707 PMCID: PMC11671260 DOI: 10.3389/fmed.2024.1490314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/19/2024] [Indexed: 12/31/2024] Open
Abstract
Diabetic nephropathy is an important complication of diabetic microvascular injury, and it is also an important cause of end-stage renal disease. Its high prevalence and disability rate significantly impacts patients' quality of life while imposing substantial social and economic burdens. Gut microbiota affects host metabolism, multiple organ functions, and regulates host health throughout the life cycle. With the rapid development of technology, researchers have found that gut microbiota is closely related to the progression of diabetic kidney disease. This review explores the role of gut microbiome in diabetic nephropathy summarizing proposed mechanisms of progression and focusing on microbial metabolites, intestinal barrier disruption, inflammation, filtration barrier damage and renal fibrosis. This review also examines the mechanism and limitations of current treatments, including drugs, fecal microbiota transplantation, and lifestyle changes, offering new perspectives on prevention and treatment.
Collapse
Affiliation(s)
- Chenling Chu
- Department of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Tapas Ranjan Behera
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, United States
| | - Ying Huang
- Department of Public Health and Preventive Medicine, Hangzhou Medical College, Hangzhou, China
| | - Wenhui Qiu
- Department of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jiayi Chen
- Department of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Quanquan Shen
- Department of Nephrology, Zhejiang Provincial People’s Hospital Bijie Hospital, Bijie, China
- Department of Nephrology, Urology & Nephrology Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
8
|
Ma X, Li T, Liu C, Ge H, Zheng D, Ma J, Guo Y, Zhang X, Liu J, Liu Y, Li Y, Shen W, Ma Y, Liu Y, Su R, Wang T, Zhang X, Ma J, Wang H. Alterations of gut microbiota and metabolome are associated with primary nephrotic syndrome in children. BMC Microbiol 2024; 24:519. [PMID: 39633292 PMCID: PMC11619441 DOI: 10.1186/s12866-024-03667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Primary nephrotic syndrome (PNS) is a common glomerular disease in children. Dysbiosis of gut microbiota acts as a cause of Treg abnormalities. However, the intestinal metabolic impact of PNS with children remains poorly understood. This study aims to investigate the dynamic changes of gut microbiota and it's metabolism in children with PNS. METHODS Fecal and peripheral blood samples were separately collected from patients with initial diagnosis of PNS (PNS_In group), recurrence of PNS (PNS_Re group), and healthy controls (HCs group). The fecal samples were subjected to the microbiome and metabolome by the multi-omics analysis. Additionally, the peripheral blood samples were collected and associated inflammatory indicators were determined. RESULTS We found that in PNS_In group, lipopolysaccharide (LPS), pro-inflammatory interleukin (IL)-6, IL-17A, IL-23p19, and IL-1β were significantly increased compared with those in HCs group. However, these abnormalities were dramatically reversed in PNS_Re group treated with prednisone acetate. Moreover, the crucial Treg/Th17 axis in PNS inflammation was also proved to be discriminated between PNS and HCs. Gut microbial dysbiosis was identified in PNS_In and PNS_Re patients. At the genus level, compared to HCs group, the abundance of Faecalibacterium notably changed in PNS_In and PNS_Re groups, showing negatively correlated with inflammatory factors. Moreover, the fecal metabolome of PNS_In and PNS_Re remarkably altered with the major impacts in the metabolism of phenylalanine, ABC transporters, arginine and proline. CONCLUSION The dynamic changes of gut microbiota and associated metabolites are closely correlated with initial period and recurrence of PNS in children via probably regulating inflammatory Th17/Treg axis, which may potentially provide novel targets for the control of the disease. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Xiaolong Ma
- Department of Pediatrics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Ting Li
- Department of Pediatrics, Peking University First Hospital Ningxia Women and Children's Hospital, Yinchuan, Ningxia, 750001, China
| | - Chunxia Liu
- Department of Pediatrics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Huiqing Ge
- Department of Pediatrics, Peking University First Hospital Ningxia Women and Children's Hospital, Yinchuan, Ningxia, 750001, China
| | - Dandan Zheng
- Department of Pediatrics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Junbai Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yamei Guo
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xiaoxu Zhang
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Jian Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yuanyuan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yiwei Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Wenke Shen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yunyun Ma
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yajuan Liu
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Rong Su
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Jinhai Ma
- Department of Pediatrics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
9
|
Lauriola M, Zadora W, Farré R, Meijers B. Intestinal transport of organic food compounds and drugs: A scoping review on the alterations observed in chronic kidney disease. Clin Nutr ESPEN 2024; 64:461-482. [PMID: 39491666 DOI: 10.1016/j.clnesp.2024.10.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/28/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND AND AIMS Around 850 million people worldwide are affected by chronic kidney disease (CKD). Patients with CKD often develop malnutrition and sarcopenia and changes in the pharmacokinetics of drugs. A reduced kidney function partially explains the prolonged half-life of certain drugs due to decreased renal clearance, which leads to an increased risk of adverse effects. While the intestine plays a fundamental role in this context, a systematic review of the effects of CKD on intestinal transport is lacking. We aimed to systematically summarize all the available evidence on intestinal transport of organic food components (carbohydrates/sugar, proteins/amino acids, fats, vitamins) and drugs (including drug transporters) in CKD. METHODS We conducted a systematic search of all the articles published until the 1st of April 2024, on five databases i.e. Embase, PubMed, Web of Science Core Collection, Cochrane Library, and Scopus. This systematic review was registered on the Open Science Framework (OSF) (osf.io/5e6wb) and was carried out according to the PRISMA 2020 guidelines. RESULTS From 9205 articles identified, 68 met the inclusion criteria. Absorption of organic food compounds seems to be altered, in general, and reduced for vitamins. The expression of intestinal efflux drug transporters may be altered in CKD. CONCLUSIONS Despite alterations in intestinal transport is suggested to be altered in CKD, the lack of recent studies, the paucity of human data and the heterogeneity of the methodologies used underscore the need for more research on the effect of CKD and uremia on intestinal transport.
Collapse
Affiliation(s)
- Mara Lauriola
- Laboratory of Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Nephrology, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Ward Zadora
- Laboratory of Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Nephrology, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Björn Meijers
- Laboratory of Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Nephrology, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
10
|
Hirai A, Sato K, Hoshi T, Aoyagi T. Improvement of Adsorption Capacity by Refined Encapsulating Method of Activated Carbon into the Hollow-Type Spherical Bacterial Cellulose Gels for Oral Absorbent. Gels 2024; 10:723. [PMID: 39590079 PMCID: PMC11593359 DOI: 10.3390/gels10110723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
To reduce the risk of adsorption of granular activated carbon (AC) in the gastrointestinal tract, we successfully prepared a hollow-type spherical bacterial cellulose gel encapsulated with AC (ACEG) and evaluated its pH tolerance and adsorption capacity. The bacterial cellulose gel membrane of ACEG features a three-dimensional mesh structure of cellulose fibers, allowing the selective permeation of substances based on their size. In this study, the preparation method of ACEGs was investigated, and the indole saturation adsorption capacity of the obtained gel was measured. We modified the gel culture nucleus gel from calcium alginate gel to agar gel, facilitating the encapsulation of previously challenging particles. The new preparation method used sodium hydroxide solution for sterilization and dissolution to remove the debris of Komagataeibacter xylinus, which was feared to remain in the bacterial cellulose membrane. This treatment was also confirmed to have no effect on the adsorption capacity of the AC powder. Therefore, this new preparation method is expected not only to improve the performance of ACEGs but also to be applied to a wide range of adsorbent-encapsulated hollow-type bacterial cellulose gels.
Collapse
Affiliation(s)
- Aya Hirai
- Department of Materials and Applied Chemistry, Graduate School of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Tokyo 101-8308, Japan; (A.H.); (K.S.)
| | - Kaito Sato
- Department of Materials and Applied Chemistry, Graduate School of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Tokyo 101-8308, Japan; (A.H.); (K.S.)
| | - Toru Hoshi
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Tokyo 101-8308, Japan;
| | - Takao Aoyagi
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Tokyo 101-8308, Japan;
| |
Collapse
|
11
|
Granados JC, Nigam SK. Organic anion transporters in remote sensing and organ crosstalk. Pharmacol Ther 2024; 263:108723. [PMID: 39284369 DOI: 10.1016/j.pharmthera.2024.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 11/05/2024]
Abstract
The organic anion transporters, OAT1 and OAT3, regulate the movement of drugs, toxins, and endogenous metabolites. In 2007, we proposed that OATs and other SLC22 transporters are involved in "remote sensing" and organ crosstalk. This is now known as the Remote Sensing and Signaling Theory (RSST). In the proximal tubule of the kidney, OATs regulate signaling molecules such as fatty acids, bile acids, indoxyl sulfate, kynurenine, alpha-ketoglutarate, urate, flavonoids, and antioxidants. OAT1 and OAT3 function as key hubs in a large homeostatic network involving multi-, oligo- and monospecific transporters, enzymes, and nuclear receptors. The Remote Sensing and Signaling Theory emphasizes the functioning of OATs and other "drug" transporters in the network at multiple biological scales (inter-organismal, organism, organ, cell, organelle). This network plays an essential role in the homeostasis of urate, bile acids, prostaglandins, sex steroids, odorants, thyroxine, gut microbiome metabolites, and uremic toxins. The transported metabolites have targets in the kidney and other organs, including nuclear receptors (e.g., HNF4a, AHR), G protein-coupled receptors (GPCRs), and protein kinases. Feed-forward and feedback loops allow OAT1 and OAT3 to mediate organ crosstalk as well as modulate energy metabolism, redox state, and remote sensing. Furthermore, there is intimate inter-organismal communication between renal OATs and the gut microbiome. Extracellular vesicles containing microRNAs and proteins (exosomes) play a key role in the Remote Sensing and Signaling System as does the interplay with the neuroendocrine, hormonal, and immune systems. Perturbation of function with OAT-interacting drugs (e.g., probenecid, diuretics, antivirals, antibiotics, NSAIDs) can lead to drug-metabolite interactions. The RSST has general applicability to other multi-specific SLC and ABC "drug" transporters (e.g., OCT1, OCT2, SLCO1B1, SLCO1B3, ABCG2, P-gp, ABCC2, ABCC3, ABCC4). Recent high-resolution structures of SLC22 and other transporters, together with chemoinformatic and artificial intelligence methods, will aid drug development and also lead to a deeper mechanistic understanding of polymorphisms.
Collapse
Affiliation(s)
- Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Garcia-Martinez Y, Alexandrova E, Iebba V, Ferravante C, Spinelli M, Franci G, Amoresano A, Weisz A, Trepiccione F, Borriello M, Ingrosso D, Perna AF. Does gut microbiota dysbiosis impact the metabolic alterations of hydrogen sulfide and lanthionine in patients with chronic kidney disease? BMC Microbiol 2024; 24:436. [PMID: 39462312 PMCID: PMC11515264 DOI: 10.1186/s12866-024-03590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Chronic Kidney Disease (CKD) is characterized by a methionine-related metabolic disorder involving reduced plasma levels of hydrogen sulfide (H2S) and increased lanthionine. The gut microbiota influences methionine metabolism, potentially impacting sulfur metabolite dysfunctions in CKD. We evaluated whether gut microbiota dysbiosis contributes to H2S and lanthionine metabolic alterations in CKD. METHODS The gut microbiota of 88 CKD patients (non-dialysis, hemodialysis, and transplant patients) and 26 healthy controls were profiled using 16 S-amplicon sequencing. H2S and lanthionine concentrations were measured in serum and fecal samples using the methylene blue method and LC-MS/MS, respectively. RESULTS The CKD population exhibited a tenfold increase in serum lanthionine associated with kidney dysfunction. Despite lanthionine retention, hemodialysis and transplant patients had significantly lower serum H2S than healthy controls. Fecal H2S levels were not altered or related to bloodstream H2S concentrations. Conversely, fecal lanthionine was significantly increased in CKD compared to healthy controls and associated with kidney dysfunction. Microbiota composition varied among CKD groups and healthy controls, with the greatest dissimilarity observed between hemodialysis and transplant patients. Changes relative to the healthy group included uneven Ruminococcus gnavus distribution (higher in transplant patients and lower in non-dialysis CKD patients), reduced abundance of the short-chain fatty acid-producing bacteria Alistipes indistinctus and Coprococcus eutactus among transplant patients, and depleted Streptococcus salivarius in non-dialysis CKD patients. A higher abundance of Methanobrevibacter smithii, Christensenella minuta, and Negativibacillus massiliensis differentiated hemodialysis patients from controls. No correlation was found between differentially abundant species and the metabolic profile that could account for the H2S and lanthionine alterations observed. CONCLUSIONS The metabolic deregulation of H2S and lanthionine observed in the study was not associated with alterations in the gut microbiota composition in CKD patients. Further research on microbial sulfur pathways may provide a better understanding of the role of gut microbiota in maintaining H2S and lanthionine homeostasis.
Collapse
Affiliation(s)
- Yuselys Garcia-Martinez
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy.
| | - Elena Alexandrova
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Italy
| | - Valerio Iebba
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, Paris, France
| | - Carlo Ferravante
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Italy
| | - Michelle Spinelli
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Napoli Federico II, Naples, Italy
| | - Alessandro Weisz
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, Campus of Medicine, University of Salerno, Baronissi, Italy
| | - Francesco Trepiccione
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alessandra F Perna
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
13
|
Jin WY, Guo JX, Tang R, Wang J, Zhao H, Zhang M, Teng LZ, Sansonetti PJ, Gao YZ. In vivo detection of endogenous toxic phenolic compounds of intestine. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135526. [PMID: 39153300 DOI: 10.1016/j.jhazmat.2024.135526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Phenol and p-cresol are two common toxic small molecules related to various diseases. Existing reports confirmed that high L-tyrosine in the daily diet can increase the concentration of phenolic compounds in blood and urine. L-tyrosine is a common component of protein-rich foods. Some anaerobic bacteria in the gut can convert non-toxic l-tyrosine into these two toxic phenolic compounds, phenol and p-cresol. Existing methods have been constructed for measuring the concentration of phenolic compound in feces. However, there is still a lack of direct visual evidence to measure the phenolic compounds in the intestine. In this study, we aimed to construct a whole-cell biosensor for phenolic compounds detection based on the dmpR, the regulator from the phenol metabolism cluster. The commensal bacterium Citrobacter amalonaticus PS01 was selected and used as the chassis. Compared with the biosensor based on ECN1917, the biosensor PS01[dmpR] could better implant into the mouse gut through gavage and showed a higher sensitive to phenolic compound. And the concentration of phenolic compounds in the intestines could be observed with the help of in vivo imaging system using PS01[dmpR]. This paper demonstrated endogenous phenol synthesis in the gut and the strategy of using commensal bacteria to construct whole-cell biosensors for detecting small molecule compounds in the intestines.
Collapse
Affiliation(s)
- Wen-Yu Jin
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; The Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Xin Guo
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; The Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rongkang Tang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; The Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jielin Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Zhang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; The Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; Pasteurian College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Lin-Zuo Teng
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; The Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Philippe J Sansonetti
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; The Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Université de Paris, Paris, France.
| | - Yi-Zhou Gao
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; The Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Zheng K, Qian Y, Wang H, Song D, You H, Hou B, Han F, Zhu Y, Feng F, Lam SM, Shui G, Li X. Withdrawn: Combinatorial lipidomics and proteomics underscore erythrocyte lipid membrane aberrations in the development of adverse cardio-cerebrovascular complications in maintenance hemodialysis patients. Redox Biol 2024; 76:103295. [PMID: 39159596 PMCID: PMC11378344 DOI: 10.1016/j.redox.2024.103295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). The authors reached out to the Publisher to alert the Publisher to incorrect text published in the article. After investigating the situation, the journal came to the conclusion that the wrong version of the file was sent by the authors to the production team during the proof stage and the misplaced text was not noticed by the authors when they approved the final version. After consulting with the Editor-in-Chief of the journal, the decision was made to withdraw the current version of the article.
Collapse
Affiliation(s)
- Ke Zheng
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yujun Qian
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; Department of Nephrology, Jiangsu Province Hospital/The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiyun Wang
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Song
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Han
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yicheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Xuemei Li
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
15
|
Sguanci M, Ferrara G, Palomares SM, Parozzi M, Godino L, Gazineo D, Anastasi G, Mancin S. Dysgeusia and Chronic Kidney Disease: A Scoping Review. J Ren Nutr 2024; 34:374-390. [PMID: 38729584 DOI: 10.1053/j.jrn.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Dysgeusia is a common altered taste perception in chronic kidney disease patients. The study aims to identify available treatments for educating, screening, and clinically managing dysgeusia in this population. A scoping review was conducted following the protocol of Arksey and O'Malley, incorporating the Joanna Briggs Institute methodology, and adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines. Among the 424 identified records, 13 studies were included. Screening methodologies, educational strategies, particularly a hospital-based program focusing on salt reduction, showed a significant improvement in dysgeusia (P < .001). The identified clinical treatments exclusively included oral zinc supplementation, with dosages ranging from 50 to 220 mg, reporting heterogeneous results not consistent across different studies. The personalized management of dysgeusia associated with chronic kidney disease is crucial, requiring targeted education and treatment protocols to prevent and address nutritional complications such as malnutrition.
Collapse
Affiliation(s)
- Marco Sguanci
- Italian Nephrological Nursing Society (SIAN), Olbia, Italy; Department of Medicine and Surgery, Research Unit of Nursing Science, University of Rome, Rome, Italy
| | - Gaetano Ferrara
- Italian Nephrological Nursing Society (SIAN), Olbia, Italy; Nephrology and Dialysis Unit, Ramazzini Hospital, Carpi, Italy
| | - Sara Morales Palomares
- Italian Nephrological Nursing Society (SIAN), Olbia, Italy; Department of Pharmacy, Health and Nutritional Sciences (DFSSN), University of Calabria, Rende, Italy
| | - Mauro Parozzi
- Italian Nephrological Nursing Society (SIAN), Olbia, Italy; Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.
| | - Lea Godino
- Italian Nephrological Nursing Society (SIAN), Olbia, Italy; Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Domenica Gazineo
- Italian Nephrological Nursing Society (SIAN), Olbia, Italy; Governo Clinico e Qualità, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giuliano Anastasi
- Italian Nephrological Nursing Society (SIAN), Olbia, Italy; Department of Trauma, AOU G. Martino University Hospital, Messina, Italy
| | - Stefano Mancin
- Italian Nephrological Nursing Society (SIAN), Olbia, Italy; IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
16
|
Bakinowska E, Olejnik-Wojciechowska J, Kiełbowski K, Skoryk A, Pawlik A. Pathogenesis of Sarcopenia in Chronic Kidney Disease-The Role of Inflammation, Metabolic Dysregulation, Gut Dysbiosis, and microRNA. Int J Mol Sci 2024; 25:8474. [PMID: 39126043 PMCID: PMC11313360 DOI: 10.3390/ijms25158474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic kidney disease (CKD) is a progressive disorder associated with a decline in kidney function. Consequently, patients with advanced stages of CKD require renal replacement therapies, such as dialysis and kidney transplantation. Various conditions lead to the development of CKD, including diabetes mellitus, hypertension, and glomerulonephritis, among others. The disease is associated with metabolic and hormonal dysregulation, including uraemia and hyperparathyroidism, as well as with low-grade systemic inflammation. Altered homeostasis increases the risk of developing severe comorbidities, such as cardiovascular diseases or sarcopenia, which increase mortality. Sarcopenia is defined as a progressive decline in muscle mass and function. However, the precise mechanisms that link CKD and the development of sarcopenia are poorly understood. Knowledge about these linking mechanisms might lead to the introduction of precise treatment strategies that could prevent muscle wasting. This review discusses inflammatory mediators, metabolic and hormonal dysregulation, gut microbiota dysbiosis, and non-coding RNA alterations that could link CKD and sarcopenia.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| | - Joanna Olejnik-Wojciechowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
- Independent Laboratory of Community Nursing, Pomeranian Medical University, 71-210 Szczecin, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| | - Anastasiia Skoryk
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| |
Collapse
|
17
|
Kim YT, Mills DA. Exploring the gut microbiome: probiotics, prebiotics, synbiotics, and postbiotics as key players in human health and disease improvement. Food Sci Biotechnol 2024; 33:2065-2080. [PMID: 39130661 PMCID: PMC11315840 DOI: 10.1007/s10068-024-01620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 08/13/2024] Open
Abstract
The human gut microbiome accompanies us from birth, and it is developed and matured by diet, lifestyle, and environmental factors. During aging, the bacterial composition evolves in reciprocal communication with the host's physiological properties. Many diseases are closely related to the gut microbiome, which means the modulation of the gut microbiome can promote the disease targeting remote organs. This review explores the intricate interaction between the gut microbiome and other organs, and their improvement from disease by prebiotics, probiotics, synbiotics, and postbiotics. Each section of the review is supported by clinical trials that substantiate the benefits of modulation the gut microbiome through dietary intervention for improving primary health outcomes across various axes with the gut. In conclusion, the review underscores the significant potential of targeting the gut microbiome for therapeutic and preventative interventions in a wide range of diseases, calling for further research to fully unlock the microbiome's capabilities in enhancing human health.
Collapse
Affiliation(s)
- You-Tae Kim
- Department of Food Science and Technology, University of California-Davis, Davis, CA USA
| | - David A. Mills
- Department of Food Science and Technology, University of California-Davis, Davis, CA USA
| |
Collapse
|
18
|
Hirai A, Suzuki M, Sato K, Hoshi T, Aoyagi T. Adsorption Capacity of Activated Carbon-Encapsulated Hollow-Type Spherical Bacterial Cellulose Gels for Uremic Toxins in a Simulated Human Gastrointestinal Environment. Gels 2024; 10:417. [PMID: 39057441 PMCID: PMC11276446 DOI: 10.3390/gels10070417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
To reduce the risk of the adsorption of granular activated carbon in the gastrointestinal tract, we successfully produced a hollow-type spherical bacterial cellulose (HSBC) gel containing activated carbon with a particle size of 6 μm. In this study, the aim of which was to develop an effective formulation, we evaluated the stability of activated-carbon-encapsulating HSBC gels under various pH conditions. Activated-carbon-encapsulating HSBC gels (ACEGs) retained the activated carbon without leaking when subjected to agitation in acidic or basic environments. The saturated adsorption amount, calculated using the Langmuir adsorption isotherm, was affected by the target adsorbate and pH conditions. These results indicate that ACEGs can adsorb uremic toxins and their precursors similarly to conventional uremic toxin adsorbents while preventing direct contact between the encapsulated activated carbon and the gastrointestinal tract. Compared to powdered activated carbon, the ACEG is less likely to be adsorbed in the gastrointestinal tract. Therefore, the proposed ACEG is a promising new formulation that will contribute to the treatment of renal failure and improve patients' compliance with medication.
Collapse
Affiliation(s)
- Aya Hirai
- Department of Materials and Applied Chemistry, Graduate School of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan; (A.H.); (M.S.); (K.S.)
| | - Masashige Suzuki
- Department of Materials and Applied Chemistry, Graduate School of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan; (A.H.); (M.S.); (K.S.)
| | - Kaito Sato
- Department of Materials and Applied Chemistry, Graduate School of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan; (A.H.); (M.S.); (K.S.)
| | - Toru Hoshi
- Department of Materials and Applied Chemistry, College of Science and Technology Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan;
| | - Takao Aoyagi
- Department of Materials and Applied Chemistry, College of Science and Technology Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan;
| |
Collapse
|
19
|
de Arruda JAA, Monteiro JLGC, Barreto MEZ, Villarroel-Dorrego M, Gilligan G, Panico R, Calcia TBB, Lara SMDC, Silva AMDO, Aranda-Romo S, Tejeda-Nava FJ, Israel MS, Silva TA, de Andrade BAB. Uremic Stomatitis: A Latin American Case Series and Literature Review. Head Neck Pathol 2024; 18:54. [PMID: 38896178 PMCID: PMC11187249 DOI: 10.1007/s12105-024-01652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Uremic stomatitis is often unfamiliar to healthcare professionals. This study presents five cases of uremic stomatitis, providing a comprehensive analysis of their demographic distribution, clinicopathological features, and management strategies based on existing literature. METHODS Data were collected from centers across Brazil, Argentina, Venezuela, and Mexico. Electronic searches were conducted in five databases supplemented by manual scrutiny and gray literature. RESULTS The series consisted of three men and two women with a mean age of 40.2 years. Lesions mostly appeared as white plaques, particularly on the tongue (100%). The median blood urea level was 129 mg/dL. Histopathological analysis revealed epithelial changes, including acanthosis and parakeratosis, with ballooned keratinocytes in the suprabasal region. Oral lesions resolved subsequent to hemodialysis in three cases (75%). Thirty-seven studies comprising 52 cases of uremic stomatitis have been described hitherto. Most patients were male (65.4%) with a mean age of 43.6 years. Clinically, grayish-white plaques (37.3%) and ulcers/ulcerations (28.9%) were common, particularly on the tongue (30.9%). Hemodialysis was performed on 27 individuals. The resolution rate of oral lesions was 53.3%. CONCLUSION Earlier recognition of uremic stomatitis, possibly associated with long-term uremia, holds the potential to improve outcomes for patients with undiagnosed chronic kidney disease.
Collapse
Affiliation(s)
- José Alcides Almeida de Arruda
- Department of Oral Diagnosis and Pathology, School of Dentistry, Universidade Federal do Rio de Janeiro, R. Rodolpho Paulo Rocco, n. 325, 1st floor, Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| | | | - Maria Eduarda Zeraik Barreto
- Department of Oral Diagnosis and Pathology, School of Dentistry, Universidade Federal do Rio de Janeiro, R. Rodolpho Paulo Rocco, n. 325, 1st floor, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | | | - Gerardo Gilligan
- Department of Oral Medicine, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - René Panico
- Department of Oral Medicine, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | - Saray Aranda-Romo
- Diagnostic Clinic, School of Dentistry, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Mônica Simões Israel
- Department of Diagnosis and Therapeutics, School of Dentistry, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Augusto Benevenuto de Andrade
- Department of Oral Diagnosis and Pathology, School of Dentistry, Universidade Federal do Rio de Janeiro, R. Rodolpho Paulo Rocco, n. 325, 1st floor, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Hu J, Zhao R, Gu J, Xi Z, Wang Y, Sun X, Xu Z, Sha K, Xi J, Liu Y, Han J, Guo R. Crystal Facet Controlled Metal-Support Interaction in Uricase Mimics for Highly Efficient Hyperuricemia Treatment. NANO LETTERS 2024; 24:6634-6643. [PMID: 38742828 DOI: 10.1021/acs.nanolett.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The effect of strong metal-support interaction (SMSI) has never been systematically studied in the field of nanozyme-based catalysis before. Herein, by coupling two different Pd crystal facets with MnO2, i.e., (100) by Pd cube (Pdc) and (111) by Pd icosahedron (Pdi), we observed the reconstruction of Pd atomic structure within the Pd-MnO2 interface, with the reconstructed Pdc (100) facet more disordered than Pdi (111), verifying the existence of SMSI in such coupled system. The rearranged Pd atoms in the interface resulted in enhanced uricase-like catalytic activity, with Pdc@MnO2 demonstrating the best catalytic performance. Theoretical calculations suggested that a more disordered Pd interface led to stronger interactions with intermediates during the uricolytic process. In vitro cell experiments and in vivo therapy results demonstrated excellent biocompatibility, therapeutic effect, and biosafety for their potential hyperuricemia treatment. Our work provides a brand-new perspective for the design of highly efficient uricase-mimic catalysts.
Collapse
Affiliation(s)
- Jun Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Rufang Zhao
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Jiake Gu
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Zheng Xi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Zhuobin Xu
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Kexin Sha
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Juqun Xi
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
21
|
Benrahla DE, Mohan S, Trickovic M, Castelli FA, Alloul G, Sobngwi A, Abdiche R, Kieser S, Demontant V, Trawinski E, Chollet C, Rodriguez C, Kitagishi H, Fenaille F, Trajkovski M, Motterlini R, Foresti R. An orally active carbon monoxide-releasing molecule enhances beneficial gut microbial species to combat obesity in mice. Redox Biol 2024; 72:103153. [PMID: 38608580 PMCID: PMC11025006 DOI: 10.1016/j.redox.2024.103153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Carbon monoxide (CO), a gaseous signaling molecule, has shown promise in preventing body weight gain and metabolic dysfunction induced by high fat diet (HFD), but the mechanisms underlying these effects are largely unknown. An essential component in response to HFD is the gut microbiome, which is significantly altered during obesity and represents a target for developing new therapeutic interventions to fight metabolic diseases. Here, we show that CO delivered to the gut by oral administration with a CO-releasing molecule (CORM-401) accumulates in faeces and enriches a variety of microbial species that were perturbed by a HFD regimen. Notably, Akkermansia muciniphila, which exerts salutary metabolic effects in mice and humans, was strongly depleted by HFD but was the most abundant gut species detected after CORM-401 treatment. Analysis of bacterial transcripts revealed a restoration of microbial functional activity, with partial or full recovery of the Krebs cycle, β-oxidation, respiratory chain and glycolysis. Mice treated with CORM-401 exhibited normalization of several plasma and fecal metabolites that were disrupted by HFD and are dependent on Akkermansia muciniphila's metabolic activity, including indoles and tryptophan derivatives. Finally, CORM-401 treatment led to an improvement in gut morphology as well as reduction of inflammatory markers in colon and cecum and restoration of metabolic profiles in these tissues. Our findings provide therapeutic insights on the efficacy of CO as a potential prebiotic to combat obesity, identifying the gut microbiota as a crucial target for CO-mediated pharmacological activities against metabolic disorders.
Collapse
Affiliation(s)
| | - Shruti Mohan
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France
| | - Matija Trickovic
- Department of Cell Physiology and Metabolism, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Florence Anne Castelli
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, 91191 Gif-sur-Yvette, France
| | - Ghida Alloul
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France
| | - Arielle Sobngwi
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France
| | - Rosa Abdiche
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France
| | - Silas Kieser
- Department of Cell Physiology and Metabolism, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vanessa Demontant
- NGS Platform, Henri Mondor Hospital, AP-HP, and IMRB Institute, University of Paris-Est-Créteil, Créteil, France
| | - Elisabeth Trawinski
- NGS Platform, Henri Mondor Hospital, AP-HP, and IMRB Institute, University of Paris-Est-Créteil, Créteil, France
| | - Céline Chollet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, 91191 Gif-sur-Yvette, France
| | - Christophe Rodriguez
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France; NGS Platform, Henri Mondor Hospital, AP-HP, and IMRB Institute, University of Paris-Est-Créteil, Créteil, France; Microbiology Unit, Department of Diagnostic, Prevention and Treatment of Infections, Henri Mondor Hospital, AP-HP, University of Paris-Est Créteil, Créteil, France
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, 91191 Gif-sur-Yvette, France
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Roberta Foresti
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France.
| |
Collapse
|
22
|
Meijers B, Zadora W, Lowenstein J. A Historical Perspective on Uremia and Uremic Toxins. Toxins (Basel) 2024; 16:227. [PMID: 38787079 PMCID: PMC11126090 DOI: 10.3390/toxins16050227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Uremia, also known as uremic syndrome, refers to the clinical symptoms in the final stage of renal failure. The definition of the term has changed over time due to an improved comprehension of the kidney's function and the advancement of dialysis technology. Here, we aim to present an overview of the various concepts that have developed regarding uremia throughout the years. We provide a comprehensive review of the historical progression starting from the early days of Kolff and his predecessors, continuing with the initial research conducted by Niwa et al., and culminating in the remote sensing hypothesis of Nigam. Additionally, we explore the subsequent investigation into the function of these toxins as signaling molecules in various somatic cells.
Collapse
Affiliation(s)
- Björn Meijers
- Nephrology and Transplantation Unit, University Hospitals Leuven, 30000 Leuven, Belgium; (B.M.); (W.Z.)
- Laboratory of Nephrology, Katholieke Universiteit Leuven, 30000 Leuven, Belgium
| | - Ward Zadora
- Nephrology and Transplantation Unit, University Hospitals Leuven, 30000 Leuven, Belgium; (B.M.); (W.Z.)
- Laboratory of Nephrology, Katholieke Universiteit Leuven, 30000 Leuven, Belgium
| | - Jerome Lowenstein
- Nephrology Division, NYU Langone Medical Center, New York, NY 10016, USA
| |
Collapse
|
23
|
Kirkham AM, Candeliere J, Mai T, Nagpal SK, Brandys TM, Dubois L, Shorr R, Stelfox HT, McIsaac DI, Roberts DJ. Risk Factors for Surgical Site Infection after Lower Limb Revascularisation Surgery: a Systematic Review and Meta-Analysis of Prognostic Studies. Eur J Vasc Endovasc Surg 2024; 67:455-467. [PMID: 37925099 DOI: 10.1016/j.ejvs.2023.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/27/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVE To systematically review and meta-analyse adjusted risk factors for surgical site infection (SSI) after lower limb revascularisation surgery. DATA SOURCES MEDLINE, Embase, Evidence Based Medicine Reviews, and the Cochrane Central Register of Controlled Trials (inception to 28 April 2022). REVIEW METHODS Systematic review and meta-analysis conducted according to PRISMA guidelines. After protocol registration, databases were searched. Studies reporting adjusted risk factors for SSI in adults who underwent lower limb revascularisation surgery for peripheral artery disease were included. Adjusted odds ratios (ORs) were pooled using random effects models. GRADE was used to assess certainty. RESULTS Among 6 377 citations identified, 50 studies (n = 271 125 patients) were included. The cumulative incidence of SSI was 12 (95% confidence interval [CI] 10 - 13) per 100 patients. Studies reported 139 potential SSI risk factors adjusted for a median of 12 (range 1 - 69) potential confounding factors. Risk factors that increased the pooled adjusted odds of SSI included: female sex (pooled OR 1.41, 95% CI 1.20 - 1.64; high certainty); dependent functional status (pooled OR 1.18, 95% CI 1.03 - 1.35; low certainty); being overweight (pooled OR 1.82, 95% CI 1.29 - 2.56; moderate certainty), obese (pooled OR 2.20, 95% CI 1.44 - 3.36; high certainty), or morbidly obese (pooled OR 1.65, 95% CI 1.08 - 2.52; moderate certainty); chronic obstructive pulmonary disease (pooled OR 1.42, 95% CI 1.17 - 1.71; high certainty); chronic limb threatening ischaemia (pooled OR 1.67, 95% CI 1.22 - 2.29; moderate certainty); chronic kidney disease (pooled OR 2.13, 95% CI 1.18 - 3.83; moderate certainty); intra-operative (pooled OR 1.23, 95% CI 1.02 - 1.49), peri-operative (pooled OR 1.92, 95% CI 1.27 - 2.90), or post-operative (pooled OR 2.21, 95% CI 1.44 - 3.39) blood transfusion (moderate certainty for all); urgent or emergency surgery (pooled OR 2.12, 95% CI 1.22 - 3.70; moderate certainty); vein bypass and or patch instead of endarterectomy alone (pooled OR 1.86, 95% CI 1.33 - 2.59; moderate certainty); an operation lasting ≥ 3 hours (pooled OR 1.86, 95% CI 1.33 - 2.59; moderate certainty) or ≥ 5 hours (pooled OR 1.60, 95% CI 1.18 - 2.17; moderate certainty); and early or unplanned re-operation (pooled OR 4.50, 95% CI 2.18 - 9.32; low certainty). CONCLUSION This systematic review identified evidence informed SSI risk factors following lower limb revascularisation surgery. These may be used to develop improved SSI risk prediction tools and to identify patients who may benefit from evidence informed SSI prevention strategies.
Collapse
Affiliation(s)
- Aidan M Kirkham
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology Program, The Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Jasmine Candeliere
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Trinh Mai
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | - Sudhir K Nagpal
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | - Timothy M Brandys
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | - Luc Dubois
- Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada; Division of Vascular Surgery, Department of Surgery, Western University, London, Ontario, Canada; Department of Epidemiology and Biostatistics, Faculty of Medicine, Western University, London, Ontario, Canada
| | - Risa Shorr
- Learning Services, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Henry T Stelfox
- The O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada; Departments of Critical Care Medicine, Medicine, and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Daniel I McIsaac
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology Program, The Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada; Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada; Department of Anesthesiology and Pain Medicine, University of Ottawa and The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Derek J Roberts
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology Program, The Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada; The O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
24
|
Cabała S, Ożgo M, Herosimczyk A. The Kidney-Gut Axis as a Novel Target for Nutritional Intervention to Counteract Chronic Kidney Disease Progression. Metabolites 2024; 14:78. [PMID: 38276313 PMCID: PMC10819792 DOI: 10.3390/metabo14010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
A well-balanced diet is integral for overall health, aiding in managing key risk factors for kidney damage like hypertension while supplying necessary precursors for metabolite production. Dietary choices directly influence the composition and metabolic patterns of the gut microbiota, showing promise as therapeutic tools for addressing various health conditions, including chronic kidney diseases (CKD). CKD pathogenesis involves a decline in the glomerular filtration rate and the retention of nitrogen waste, fostering gut dysbiosis and the excessive production of bacterial metabolites. These metabolites act as uremic toxins, contributing to inflammation, oxidative stress, and tissue remodeling in the kidneys. Dietary interventions hold significance in reducing oxidative stress and inflammation, potentially slowing CKD progression. Functional ingredients, nutrients, and nephroprotective phytoconstituents could modulate inflammatory pathways or impact the gut mucosa. The "gut-kidney axis" underscores the impact of gut microbes and their metabolites on health and disease, with dysbiosis serving as a triggering event in several diseases, including CKD. This review provides a comprehensive overview, focusing on the gut-liver axis, and explores well-established bioactive substances as well as specific, less-known nutraceuticals showing promise in supporting kidney health and positively influencing CKD progression.
Collapse
Affiliation(s)
| | | | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (S.C.); (M.O.)
| |
Collapse
|
25
|
Kukreja N, Rodriguez IE, Moore HB, LaRiviere W, Crouch C, Stewart E, Nydam TL, Kennealey P, Hendrickse AD, Pomfret EA, Fernandez-Bustamante A. The in-vitro influence of urea concentration on thromboelastrography in patients with and without end stage renal disease. Am J Surg 2023; 226:817-822. [PMID: 37407391 PMCID: PMC10733546 DOI: 10.1016/j.amjsurg.2023.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND End stage renal disease (ESRD) is associated with platelet dysfunction but also thromboembolic complications. The specific role of increased blood urea nitrogen (BUN) on coagulation is unclear. We aimed to characterize thromboelastography (TEG) parameters from males and females with ESRD and normal kidney function and evaluate if exogenous urea in vitro reproduced those TEG differences. METHODS We collected blood samples from 20 living kidney donors and 20 kidney recipients. TEG was performed without and with two increasing urea concentrations in vitro. TEG parameters were compared between recipients and donors. RESULTS Blood from kidney recipients showed baseline increased maximum amplitude (MA) and shortened time to maximum amplitude (TMA) compared to donors. These differences were not confirmed in females. In all patients, BUN was inversely correlated with TMA (r = -0.342; p = 0.031). In males, BUN and creatinine concentrations showed a direct correlation with MA (0.583; p = 0.007) and an inverse correlation with TMA (r = -0.520; p = 0.019). Urea in vitro decreased R-time (p = 0.005) and increased LY30 (p = 0.009) in donors but not recipients. CONCLUSIONS ESRD is associated with increased MA and decreased TMA on TEG. No change in MA was observed with increasing urea concentrations in vitro. Gender-specific variability in TEG parameters were observed.
Collapse
Affiliation(s)
- Naveen Kukreja
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Ivan E Rodriguez
- Colorado Center for Transplantation Care, Research, and Education (CCTCARE). Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hunter B Moore
- Colorado Center for Transplantation Care, Research, and Education (CCTCARE). Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Cara Crouch
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erin Stewart
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Trevor L Nydam
- Colorado Center for Transplantation Care, Research, and Education (CCTCARE). Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Peter Kennealey
- Colorado Center for Transplantation Care, Research, and Education (CCTCARE). Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Adrian D Hendrickse
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Elizabeth A Pomfret
- Colorado Center for Transplantation Care, Research, and Education (CCTCARE). Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | | |
Collapse
|
26
|
Yuan W, Kou S, Ma Y, Qian Y, Li X, Chai Y, Jiang Z, Zhang L, Sun L, Huang X. Hyperoside ameliorates cisplatin-induced acute kidney injury by regulating the expression and function of Oat1. Xenobiotica 2023; 53:559-571. [PMID: 37885225 DOI: 10.1080/00498254.2023.2270046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Cisplatin is a widely used chemotherapeutic agent to treat solid tumours in clinics. However, cisplatin-induced acute kidney injury (AKI) limits its clinical application. This study investigated the effect of hyperoside (a flavonol glycoside compound) on regulating AKI.The model of cisplatin-induced AKI was established, and hyperoside was preadministered to investigate its effect on improving kidney injury.Hyperoside ameliorated renal pathological damage, reduced the accumulation of SCr, BUN, Kim-1 and indoxyl sulphate in vivo, increased the excretion of indoxyl sulphate into the urine, and upregulated the expression of renal organic anion transporter 1 (Oat1). Moreover, evaluation of rat kidney slices demonstrated that hyperoside promoted the uptake of PAH (p-aminohippurate, the Oat1 substrate), which was confirmed by transient over-expression of OAT1 in HEK-293T cells. Additionally, hyperoside upregulated the mRNA expression of Oat1 upstream regulators hepatocyte nuclear factor-1α (HNF-1α) and pregnane X receptor (PXR).These findings indicated hyperoside could protect against cisplatin-induced AKI by promoting indoxyl sulphate excretion through regulating the expression and function of Oat1, suggesting hyperoside may offer a potential tactic for cisplatin-induced AKI treatment.
Collapse
Affiliation(s)
- Wenjing Yuan
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Shanshan Kou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Ying Ma
- Foreign Language Teaching Department, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yusi Qian
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Xinyu Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Yuanyuan Chai
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Zhenzhou Jiang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Lixin Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Xin Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
27
|
Ermakov VS, Granados JC, Nigam SK. Remote effects of kidney drug transporter OAT1 on gut microbiome composition and urate homeostasis. JCI Insight 2023; 8:e172341. [PMID: 37937647 PMCID: PMC10721261 DOI: 10.1172/jci.insight.172341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023] Open
Abstract
The organic anion transporter OAT1 (SLC22A6, originally identified as NKT) is a multispecific transporter responsible for the elimination by the kidney of small organic anions that derive from the gut microbiome. Many are uremic toxins associated with chronic kidney disease (CKD). OAT1 is among a group of "drug" transporters that act as hubs in a large homeostatic network regulating interorgan and interorganismal communication via small molecules. The Remote Sensing and Signaling Theory predicts that genetic deletion of such a key hub in the network results in compensatory interorganismal communication (e.g., host-gut microbe dynamics). Recent metabolomics data from Oat1-KO mice indicate that some of the most highly affected metabolites derive from bacterial tyrosine, tryptophan, purine, and fatty acid metabolism. Functional metagenomic analysis of fecal 16S amplicon and whole-genome sequencing revealed that loss of OAT1 was impressively associated with microbial pathways regulating production of urate, gut-derived p-cresol, tryptophan derivatives, and fatty acids. Certain changes, such as alterations in gut microbiome urate metabolism, appear compensatory. Thus, Oat1 in the kidney appears to mediate remote interorganismal communication by regulating the gut microbiome composition and metabolic capability. Since OAT1 function in the proximal tubule is substantially affected in CKD, our results may shed light on the associated alterations in gut-microbiome dynamics.
Collapse
Affiliation(s)
| | | | - Sanjay K Nigam
- Department of Pediatrics, and
- Department of Medicine, Division of Nephrology, University of California, San Diego (UCSD), La Jolla, California, USA
| |
Collapse
|
28
|
Dwiyana RF, Tsaqilah L, Sukesi L, Setiawan, Avriyanti E, Suhada KU, Zahira NI. Characteristics of Xerosis, Pruritus, and Pallor in Stage 5 Chronic Kidney Disease Patients Undergoing Hemodialysis at Dr. Hasan Sadikin General Hospital, Bandung. Clin Cosmet Investig Dermatol 2023; 16:2613-2621. [PMID: 37752968 PMCID: PMC10519221 DOI: 10.2147/ccid.s418776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
Purpose This study aims to delineate the demographic and clinical characteristics of xerosis, pruritus, and pallor among patients with stage 5 chronic kidney disease (CKD) undergoing hemodialysis at Dr. Hasan Sadikin General Hospital, Bandung. Patients and Methods This cross-sectional, descriptive study involved the analysis of 139 selected medical records of patients with stage 5 CKD who underwent hemodialysis between July and August 2022. A comprehensive examination was conducted by a dermatovenereologist, and the findings were duly recorded in the patients' medical records. The documentation encompassed gender, age, employment status, as well as the clinical characteristics of xerosis, pruritus, and pallor. The collected data were analyzed using descriptive statistical methods. Results Out of the 139 patients, 70 (50.4%) were male, while 69 (49.6%) were female. The mean (SD) age was 47.6 (11.8) years. The majority of the patients were unemployed (n=96, 69.1%). The median (IQR) duration of hemodialysis was 48 (96.0-24.0) months. The predominant findings were xerosis (n=84, 60.4%) and pallor (n=83, 59.7%), followed by pruritus (n=56, 40.3%). Instances of xerosis were more frequently observed in males, whereas pallor was more prevalent in females. Xerosis and pruritus exhibited higher prevalence in the ≥65 years age group, whereas pallor was more common in the 18-44 years age group. In contrast to xerosis, pruritus and pallor were more frequently noted in the unemployed group. Xerosis was predominantly mild with overall dry skin (ODS) score of one, and it was mainly observed on the patients' legs. Among those experiencing pruritus, over half displayed a moderate severity with visual analogue scale (VAS) scores ranging from ≥3 to <7. Patients with pallor mostly exhibited hemoglobin levels below 10 g/dL. Conclusion Xerosis, pruritus, and pallor were prevalent among patients with stage 5 CKD undergoing hemodialysis. These disorders presented with distinct demographic and clinical characteristics. Timely diagnosis and intervention have the potential to enhance the quality of life for these patients.
Collapse
Affiliation(s)
- Reiva Farah Dwiyana
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Laila Tsaqilah
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Lilik Sukesi
- Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Setiawan
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Sumedang Regency, West Java, Indonesia
| | - Erda Avriyanti
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Kamelia Utami Suhada
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Nazya Irene Zahira
- Undergraduate Program, Faculty of Medicine, Universitas Padjadjaran, Sumedang Regency, West Java, Indonesia
| |
Collapse
|
29
|
Farag YM, Blasco-Colmenares E, Zhao D, Sanon M, Guallar E, Finkelstein FO. Effect of Anemia on Physical Function and Physical Activity in CKD: The National Health and Nutrition Examination Survey, 1999-2016. KIDNEY360 2023; 4:e1212-e1222. [PMID: 37768811 PMCID: PMC10550006 DOI: 10.34067/kid.0000000000000218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/11/2023] [Indexed: 09/30/2023]
Abstract
Key Points In a large sample representative of the US adult noninstitutionalized population, among participants with CKD stages 3–5, anemia was associated with a significantly lower level of physical activity. The presence of CKD and anemia showed a positive interaction on physical functioning outcomes. Among participants with CKD, physical functioning was worse in patients with anemia compared with those without anemia. Background CKD is a major public health problem worldwide. Anemia, a frequent and treatable complication of CKD, is associated with decreased physical functioning and physical activity. The objective of this study was to evaluate the joint association of CKD and anemia with physical functioning and physical activity in a representative sample of the US population. Methods Cross-sectional study using the National Health and Nutrition Examination Survey (NHANES) 1999–2016 for physical functioning outcomes (N =33,300) and NHANES 2007–2016 for physical activity (N =22,933). The NHANES physical functioning questionnaire included 19 items. The NHANES physical activity questionnaire captured work-related, leisure-time, and sedentary activities. Higher physical functioning scores represent worse function. CKD was classified using Kidney Disease Outcomes Quality Initiative 2002 criteria, and anemia was defined using the World Health Organization criteria. Results The adjusted mean differences (95% confidence interval) in overall physical functioning score comparing participants with anemia with those without anemia among participants with no CKD, CKD stages 1–2, and stages 3–5 were 0.5 (−0.1 to 1.0), 1.5 (0.2 to 2.8), and 3.6 (2.0 to 5.2). Anemia and CKD showed a supra-additive interaction for all physical functioning outcomes among participants in CKD stages 3–5. The prevalence of high physical activity was also lower in participants with anemia compared with those without anemia among participants in CKD stages 3–5 (adjusted prevalence ratio, 0.74; 95% confidence interval, 0.54 to 1.01). Conclusions CKD and anemia were associated with impairments in physical functioning and reduced physical activity. For physical functioning outcomes, the combined presence of CKD and of anemia showed a stronger effect than what was expected from their independent effects.
Collapse
Affiliation(s)
- Youssef M.K. Farag
- Akebia Therapeutics, Inc., Cambridge, Massachusetts
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Elena Blasco-Colmenares
- Department of Medicine, Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Di Zhao
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland
- Department of Medicine, Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Myrlene Sanon
- Otsuka Pharmaceutical Development and Commercialization, Inc., Princeton, New Jersey
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland
- Department of Medicine, Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
30
|
Wu C, Song Y, Yu Y, Xu Q, Cui X, Wang Y, Wu J, Gu HF. Single-Cell Transcriptional Landscape Reveals the Regulatory Network and Its Heterogeneity of Renal Mitochondrial Damages in Diabetic Kidney Disease. Int J Mol Sci 2023; 24:13502. [PMID: 37686311 PMCID: PMC10487965 DOI: 10.3390/ijms241713502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the common chronic microvascular complications of diabetes in which mitochondrial disorder plays an important role in its pathogenesis. The current study delved into the single-cell level transcriptome heterogeneity of mitochondrial homeostasis in db/db mice, an animal model for study of type 2 diabetes and DKD, with single-cell RNA sequencing (scRNA-Seq) and bulk RNA-seq analyses. From the comprehensive dataset comprising 13 meticulously captured and authenticated renal cell types, an unsupervised cluster analysis of mitochondria-related genes within the descending loop of Henle, collecting duct principal cell, endothelial, B cells and macrophage, showed that they had two types of cell subsets, i.e., health-dominant and DKD-dominant clusters. Pseudotime analysis, cell communication and transcription factors forecast resulted in identification of the hub differentially expressed genes between these two clusters and unveiled that the hierarchical regulatory network of receptor-TF-target genes was triggered by mitochondrial degeneration. Furthermore, the collecting duct principal cells were found to be regulated by the decline of Fzd7, which contributed to the impaired cellular proliferation and development, apoptosis and inactive cell cycle, as well as diminished capacity for material transport. Thereby, both scRNA-Seq and bulk RNA-Seq data from the current study elucidate the heterogeneity of mitochondrial disorders among distinct cell types, particularly in the collecting duct principal cells and B cells during the DKD progression and drug administration, which provide novel insights for better understanding the pathogenesis of DKD.
Collapse
Affiliation(s)
- Chenhua Wu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (C.W.); (Y.S.); (Y.Y.); (Q.X.); (X.C.); (Y.W.)
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yuhui Song
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (C.W.); (Y.S.); (Y.Y.); (Q.X.); (X.C.); (Y.W.)
| | - Yihong Yu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (C.W.); (Y.S.); (Y.Y.); (Q.X.); (X.C.); (Y.W.)
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Qing Xu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (C.W.); (Y.S.); (Y.Y.); (Q.X.); (X.C.); (Y.W.)
| | - Xu Cui
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (C.W.); (Y.S.); (Y.Y.); (Q.X.); (X.C.); (Y.W.)
| | - Yurong Wang
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (C.W.); (Y.S.); (Y.Y.); (Q.X.); (X.C.); (Y.W.)
| | - Jie Wu
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Harvest F. Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (C.W.); (Y.S.); (Y.Y.); (Q.X.); (X.C.); (Y.W.)
| |
Collapse
|
31
|
Yang Y, Mihajlovic M, Masereeuw R. Protein-Bound Uremic Toxins in Senescence and Kidney Fibrosis. Biomedicines 2023; 11:2408. [PMID: 37760849 PMCID: PMC10525416 DOI: 10.3390/biomedicines11092408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a progressive condition of kidney dysfunction due to diverse causes of injury. In healthy kidneys, protein-bound uremic toxins (PBUTs) are cleared from the systemic circulation by proximal tubule cells through the concerted action of plasma membrane transporters that facilitate their urinary excretion, but the endogenous metabolites are hardly removed with kidney dysfunction and may contribute to CKD progression. Accumulating evidence suggests that senescence of kidney tubule cells influences kidney fibrosis, the common endpoint for CKD with an excessive accumulation of extracellular matrix (ECM). Senescence is a special state of cells characterized by permanent cell cycle arrest and limitation of proliferation, which promotes fibrosis by releasing senescence-associated secretory phenotype (SASP) factors. The accumulation of PBUTs in CKD causes oxidative stress and increases the production of inflammatory (SASP) factors that could trigger fibrosis. Recent studies gave some clues that PBUTs may also promote senescence in kidney tubular cells. This review provides an overview on how senescence contributes to CKD, the involvement of PBUTs in this process, and how kidney senescence can be studied. Finally, some suggestions for future therapeutic options for CKD while targeting senescence are given.
Collapse
Affiliation(s)
- Yi Yang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Milos Mihajlovic
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| |
Collapse
|
32
|
Faria J, Ahmed S, Stamatialis D, Verhaar MC, Masereeuw R, Gerritsen KGF, Mihăilă SM. Bioengineered Kidney Tubules Efficiently Clear Uremic Toxins in Experimental Dialysis Conditions. Int J Mol Sci 2023; 24:12435. [PMID: 37569805 PMCID: PMC10419568 DOI: 10.3390/ijms241512435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Patients with end-stage kidney disease (ESKD) suffer from high levels of protein-bound uremic toxins (PBUTs) that contribute to various comorbidities. Conventional dialysis methods are ineffective in removing these PBUTs. A potential solution could be offered by a bioartificial kidney (BAK) composed of porous membranes covered by proximal tubule epithelial cells (PTECs) that actively secrete PBUTs. However, BAK development is currently being hampered by a lack of knowledge regarding the cytocompatibility of the dialysis fluid (DF) that comes in contact with the PTECs. Here, we conducted a comprehensive functional assessment of the DF on human conditionally immortalized PTECs (ciPTECs) cultured as monolayers in well plates, on Transwell® inserts, or on hollow fiber membranes (HFMs) that form functional units of a BAK. We evaluated cell viability markers, monolayer integrity, and PBUT clearance. Our results show that exposure to DF did not affect ciPTECs' viability, membrane integrity, or function. Seven anionic PBUTs were efficiently cleared from the perfusion fluid containing a PBUTs cocktail or uremic plasma, an effect which was enhanced in the presence of albumin. Overall, our findings support that the DF is cytocompatible and does not compromise ciPTECs function, paving the way for further advancements in BAK development and its potential clinical application.
Collapse
Affiliation(s)
- João Faria
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.F.); (S.A.); (R.M.)
| | - Sabbir Ahmed
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.F.); (S.A.); (R.M.)
| | - Dimitrios Stamatialis
- Advanced Organ Bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center, 3508 GA Utrecht, The Netherlands; (M.C.V.); (K.G.F.G.)
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.F.); (S.A.); (R.M.)
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension, University Medical Center, 3508 GA Utrecht, The Netherlands; (M.C.V.); (K.G.F.G.)
| | - Silvia M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.F.); (S.A.); (R.M.)
| |
Collapse
|
33
|
Shin JA, Park H, Choi H, Chang YK, Kim JJ, Ham YR, Na KR, Lee KW, Choi DE. ω-3 Polyunsaturated Fatty Acids Improve the Blood-Brain-Barrier Integrity in Contrast-Induced Blood-Brain-Barrier Injury in Uremic Mice. Int J Mol Sci 2023; 24:12168. [PMID: 37569545 PMCID: PMC10418677 DOI: 10.3390/ijms241512168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
In patients with chronic kidney disease, the need for examinations using contrast media (CM) increases because of underlying diseases. Although contrast agents can affect brain cells, the blood-brain barrier (BBB) protects against brain-cell damage in vivo. However, uremia can disrupt the BBB, increasing the possibility of contrast-agent-induced brain-cell damage in patients with chronic kidney disease (CKD). ω-3 polyunsaturated fatty acids (PUFAs) have shown protective effects on various neurological disorders, including uremic brain injury. This study examined whether ω-3 PUFAs attenuate damage to the BBB caused by uremia and contrast agents in a uremic mouse model and evaluated its associated mechanisms. C57BL/6 mice (eight weeks old, male) and fat-1 mice (b6 background/eight weeks old, male) were divided into groups according to uremic induction, CM, and ω-3 PUFA administration. Uremia was induced via 24 h ischemia-reperfusion (IR) renal injury. One day after CM treatment, the brain tissue, kidney tissue, and blood were collected. The expression levels of glial fibrillary acidic protein (GFAP), claudin 5, CD31, laminin α4, and laminin α5 increased in ω-3 PUFA + CM-treated uremic mice and the brain of fat-1 + CM-treated uremic mice compared with those in the brains of CM-treated uremic mice. The pro-apoptotic protein expression decreased, whereas the anti-apoptotic proteins increased in ω-3 PUFA + CM-treated uremic mice and fat-1 + CM-treated uremic mice compared with CM-treated uremic mice. In addition, the brain-expression levels of p-JNK, p-P53, and p-P38 decreased in the ω-3 PUFA + CM-treated uremic mice and fat-1 + CM-treated uremic mice compared with those in wild-type uremic mice. Our results confirm that uremic toxin and CM damage the BBB and cause brain-cell death. ω-3 PUFAs play a role in BBB protection caused by CM in uremic mice.
Collapse
Affiliation(s)
- Jin Ah Shin
- Department of Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea; (J.A.S.); (H.P.)
| | - Hyerim Park
- Department of Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea; (J.A.S.); (H.P.)
| | - Hyunsu Choi
- Clinical Research Institute, Daejeon Saint Mary Hospital, Daejeon 34943, Republic of Korea;
| | - Yoon-Kyung Chang
- Department of Nephrology, Daejeon Saint Mary Hospital, Daejeon 34943, Republic of Korea;
| | - Jwa-Jin Kim
- Department of Nephrology, Chungnam National University Hospital, Daejeon 35015, Republic of Korea; (J.-J.K.); (K.R.N.); (K.W.L.)
| | - Young Rok Ham
- Department of Nephrology, Chungnam National University Hospital, Daejeon 35015, Republic of Korea; (J.-J.K.); (K.R.N.); (K.W.L.)
| | - Ki Ryang Na
- Department of Nephrology, Chungnam National University Hospital, Daejeon 35015, Republic of Korea; (J.-J.K.); (K.R.N.); (K.W.L.)
| | - Kang Wook Lee
- Department of Nephrology, Chungnam National University Hospital, Daejeon 35015, Republic of Korea; (J.-J.K.); (K.R.N.); (K.W.L.)
| | - Dae Eun Choi
- Department of Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea; (J.A.S.); (H.P.)
- Department of Nephrology, Chungnam National University Hospital, Daejeon 35015, Republic of Korea; (J.-J.K.); (K.R.N.); (K.W.L.)
| |
Collapse
|
34
|
Yi ZY, Peng YJ, Hui BP, Liu Z, Lin QX, Zhao D, Wang Y, Liu X, Xie J, Zhang SH, Huang JH, Yu R. Zuogui-Jiangtang-Yishen decoction prevents diabetic kidney disease: Intervene pyroptosis induced by trimethylamine n-oxide through the mROS-NLRP3 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154775. [PMID: 36990008 DOI: 10.1016/j.phymed.2023.154775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Nowadays, diabetic kidney disease (DKD) has become one of the most threatening to the end-stage renal diseases, and the early prevention of DKD is inevitable for Diabetes Mellitus (DM) patients. AIMS Pyroptosis, a programmed cell death that mediates renal inflammation induced early renal injury. The trimethylamine n-oxide (TMAO) was also an independent risk factor for renal injury. Here, the associations between TMAO-induced pyroptosis and pathogenesis of DKD were studied, and the potential mechanism of Zuogui-Jiangtang-Yishen (ZGJTYS) decoction to prevent DKD was further investigated. METHOD Using Goto-Kakizaki (GK) rats to establish the early DKD models. The 16S-ribosomal RNA (16S rRNA) sequencing, fecal fermentation and UPLC-MS targeted metabolism techniques were combined to explore the changes of gut-derived TMAO level under the background of DKD and the effects of ZGJTYS. The proximal convoluted tubule epithelium of human renal cortex (HK-2) cells was adopted to explore the influence of pyroptosis regulated by TMAO. RESULTS It was demonstrated that ZGJTYS could prevent the progression of DKD by regulating glucolipid metabolism disorder, improving renal function and delaying renal pathological changes. In addition, we illustrated that gut-derived TMAO could promote DKD by activating the mROS-NLRP3 axis to induce pyroptosis. Furthermore, besides interfering with the generation of TMAO through gut microbiota, ZGJTYS inhibited TMAO-induced pyroptosis with a high-glucose environment and the underlying mechanism was related to the regulation of mROS-NLRP3 axis. CONCLUSION Our results suggested that ZGJTYS inhibited the activation of pyroptosis by gut-derived TMAO via the mROS-NLRP3 axis to prevent DKD.
Collapse
Affiliation(s)
- Zi-Yang Yi
- Hunan academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, P.R China
| | - Ya-Jun Peng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R China; Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, P. R. China
| | - Bo-Ping Hui
- Hunan academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, P.R China
| | - Zhao Liu
- Hunan academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, P.R China
| | - Qing-Xia Lin
- Hunan academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, P.R China
| | - Di Zhao
- Hunan academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, P.R China
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Xiu Liu
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, P. R. China
| | - Jing Xie
- Hunan academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, P.R China
| | - Shui-Han Zhang
- Hunan academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, P.R China
| | - Jian-Hua Huang
- Hunan academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, P.R China; Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, P. R. China.
| | - Rong Yu
- Hunan academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, P.R China; Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, P. R. China.
| |
Collapse
|
35
|
Mo Y, Hu D, Yu W, Ji C, Li Y, Liu X, Lu Z. Astragaloside IV attenuates indoxyl sulfate-induced injury of renal tubular epithelial cells by inhibiting the aryl hydrocarbon receptor pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116244. [PMID: 36764562 DOI: 10.1016/j.jep.2023.116244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus membranaceus Fisch. ex Bunge has long been used to treat chronic kidney disease (CKD) in China. However, the mechanism of action requires further study. Indoxyl sulfate accumulation is the key cause of CKD progression. The aryl hydrocarbon receptor (AhR) plays an essential role in the renal tubular injury induced by indoxyl sulfate (IS). AIM We explored the effects of Astragaloside IV (AS-IV), a minor component of the flowering perennial Astragalus membranaceus Fisch. ex Bunge, on AhR activity during IS-induced injury of renal tubular epithelial cells. METHODS C57BL/6 mice fed a 0.2% adenine diet (adenine + IS) and intraperitoneally injected with IS were used to study the protective effects of AS-IV, and specifically the effect on the AhR. In addition, apoptosis (annexin/PI), oxidative stress and the AhR pathway were investigated in IS-stimulated HK-2 cells treated with AS-IV. The binding of AS-IV to the AhR was assessed in a molecular docking analysis. AhR knockdown using AhR siRNA allowed determination of the effects of AS-IV in IS-stimulated HK-2 cells. RESULTS AS-IV inhibited tubulointerstitial injury in adenine + IS mice. While AS-IV did not reduce serum IS levels, it did inhibit AhR expression in the kidney. In IS-stimulated HK-2 cells, AS-IV also dramatically reduced apoptosis, decreased oxidative stress responses and inhibited the expression of the AhR pathway. The molecular docking analysis showed surface binding of AS-IV to the AhR. Following AhR knockdown in HK-2 cells, IS-induced apoptosis was reduced and could not be further reduced by AS-IV. CONCLUSION By targeting the AhR, AS-IV may alleviate IS-induced renal tubular injury, thus offering a novel therapeutic approach to the treatment of chronic renal failure.
Collapse
Affiliation(s)
- Yenan Mo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Dongmei Hu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanlin Yu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunlan Ji
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yin Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xusheng Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhaoyu Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
36
|
Faucher Q, van der Made TK, De Lange E, Masereeuw R. Blood-brain barrier perturbations by uremic toxins: key contributors in chronic kidney disease-induced neurological disorders? Eur J Pharm Sci 2023; 187:106462. [PMID: 37169097 DOI: 10.1016/j.ejps.2023.106462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Chronic kidney disease is multifactorial and estimated to affect more than 840 million people worldwide constituting a major global health crisis. The number of patients will continue to rise mostly because of the ageing population and the increased prevalence of comorbidities such as diabetes and hypertension. Patients with advanced stages display a loss of kidney function leading to an accumulation of, a.o. protein-bound uremic toxins that are poorly eliminated by renal replacement therapies. This systemic retention of toxic metabolites, known as the uremic syndrome, affects other organs. Indeed, neurological complications such as cognitive impairment, uremic encephalopathy, and anxiety have been reported in chronic kidney disease patients. Several factors are involved, including hemodynamic disorders and blood-brain barrier (BBB) impairment. The BBB guarantees the exchange of solutes between the blood and the brain through a complex cellular organization and a diverse range of transport proteins. We hypothesize that the increased exposure of the brain to protein-bound uremic toxins is involved in BBB disruption and induces a perturbation in the activity of endothelial membrane transporters. This phenomenon could play a part in the evolution of neurological disorders driven by this kidney-brain crosstalk impairment. In this review, we present chronic kidney disease-induced neurological complications by focusing on the pathological relationship between the BBB and protein-bound uremic toxins. The importance of mechanistically delineating the impact of protein-bound uremic toxins on BBB integrity and membrane drug transporter expression and function in brain endothelial capillary cells is highlighted. Additionally, we put forward current knowledge gaps in the literature.
Collapse
Affiliation(s)
- Quentin Faucher
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Thomas K van der Made
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Elizabeth De Lange
- Predictive Pharmacology group, Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, The Netherlands.
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
37
|
De Leon-Oliva D, Garcia-Montero C, Fraile-Martinez O, Boaru DL, García-Puente L, Rios-Parra A, Garrido-Gil MJ, Casanova-Martín C, García-Honduvilla N, Bujan J, Guijarro LG, Alvarez-Mon M, Ortega MA. AIF1: Function and Connection with Inflammatory Diseases. BIOLOGY 2023; 12:biology12050694. [PMID: 37237507 DOI: 10.3390/biology12050694] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Macrophages are a type of immune cell distributed throughout all tissues of an organism. Allograft inflammatory factor 1 (AIF1) is a calcium-binding protein linked to the activation of macrophages. AIF1 is a key intracellular signaling molecule that participates in phagocytosis, membrane ruffling and F-actin polymerization. Moreover, it has several cell type-specific functions. AIF1 plays important roles in the development of several diseases: kidney disease, rheumatoid arthritis, cancer, cardiovascular diseases, metabolic diseases and neurological disorders, and in transplants. In this review, we present a comprehensive review of the known structure, functions and role of AIF1 in inflammatory diseases.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis García-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Antonio Rios-Parra
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| | - Maria J Garrido-Gil
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Carlos Casanova-Martín
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
38
|
Abstract
Homeostasis is a prerequisite for health. When homeostasis becomes disrupted, dysfunction occurs. This is especially the case for the gut microbiota, which under normal conditions lives in symbiosis with the host. As there are as many microbial cells in and on our body as human cells, it is unlikely they would not contribute to health or disease. The gut bacterial metabolism generates numerous beneficial metabolites but also uremic toxins and their precursors, which are transported into the circulation. Barrier function in the intestine, the heart, and the kidneys regulates metabolite transport and concentration and plays a role in inter-organ and inter-organism communication via small molecules. This communication is analyzed from the perspective of the remote sensing and signaling theory, which emphasizes the role of a large network of multispecific, oligospecific, and monospecific transporters and enzymes in regulating small-molecule homeostasis. The theory provides a systems biology framework for understanding organ cross talk and microbe-host communication involving metabolites, signaling molecules, nutrients, antioxidants, and uremic toxins. This remote small-molecule communication is critical for maintenance of homeostasis along the gut-heart-kidney axis and for responding to homeostatic perturbations. Chronic kidney disease is characterized by gut dysbiosis and accumulation of toxic metabolites. This slowly impacts the body, affecting the cardiovascular system and contributing to the progression of kidney dysfunction, which in its turn influences the gut microbiota. Preserving gut homeostasis and barrier functions or restoring gut dysbiosis and dysfunction could be a minimally invasive way to improve patient outcomes and quality of life in many diseases, including cardiovascular and kidney disease.
Collapse
Affiliation(s)
- Griet Glorieux
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| | - Sanjay K Nigam
- Department of Pediatrics (S.K.N.), University of California San Diego, La Jolla, CA
- Division of Nephrology, Department of Medicine (S.K.N.), University of California San Diego, La Jolla, CA
| | - Raymond Vanholder
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| | - Francis Verbeke
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| |
Collapse
|
39
|
Zang D, Li J, Zhou C. Clinical expression of microRNA-144-5p and its regulatory effect on renal function in uremia. Ther Apher Dial 2023; 27:246-252. [PMID: 35997718 DOI: 10.1111/1744-9987.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The study commits to probing the clinical expression of microRNA-144-5p (miR-144-5p) and its modulatory effect on the renal function of uremia. METHODS Levels of blood urea nitrogen (BUN), β2-microglobulin (β2-MG), serum creatinine (Scr), blood calcium (Ca), phosphorus (P), and intact parathyroid hormone (iPTH) and miR-144-5p expression in serum of uremia patients were detected. The correlation among miR-144-5p expression with BUN, β2-MG, Scr, Ca, P, and iPTH levels in uremic patients was analyzed. The rats were injected with miR-144-5p agomir to detect the change of BUN, Scr, β2-MG, Scr, Ca, P, and iPTH levels in uremic rats. RESULTS miR-144-5p expression in uremic patients was negatively correlated with BUN, Scr, β2-MG, P, and iPTH levels, and positively correlated with free Ca concentration in blood. miR-144-5p elevation reduced BUN, Scr, β2-MG, P, and iPTH levels, and increased free Ca concentration in blood in uremic rats. CONCLUSION miR-144-5p is lowly expressed, and miR-144-5p has a regulatory effect on renal function in uremia.
Collapse
Affiliation(s)
- Dong Zang
- Department of Clinical Laboratory, Beijing Hospital of Integrated Traditional Chinese and Western, Beijing, China
| | - Junyi Li
- Department of Clinical Laboratory, Beijing Maternal and Child Health Care Hospital Yanqing District, Beijing, China
| | - Chuanyan Zhou
- Department of Clinical Laboratory, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
Granados JC, Ermakov V, Maity K, Vera DR, Chang G, Nigam SK. The kidney drug transporter OAT1 regulates gut microbiome-dependent host metabolism. JCI Insight 2023; 8:e160437. [PMID: 36692015 PMCID: PMC9977316 DOI: 10.1172/jci.insight.160437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/30/2022] [Indexed: 01/24/2023] Open
Abstract
Organic anion transporter 1 (OAT1/SLC22A6, NKT) is a multispecific drug transporter in the kidney with numerous substrates, including pharmaceuticals, endogenous metabolites, natural products, and uremic toxins. Here, we show that OAT1 regulates levels of gut microbiome-derived metabolites. We depleted the gut microbiome of Oat1-KO and WT mice and performed metabolomics to analyze the effects of genotype (KO versus WT) and microbiome depletion. OAT1 is an in vivo intermediary between the host and the microbes, with 40 of the 162 metabolites dependent on the gut microbiome also impacted by loss of Oat1. Chemoinformatic analysis revealed that the altered metabolites (e.g., indoxyl sulfate, p-cresol sulfate, deoxycholate) had more ring structures and sulfate groups. This indicates a pathway from gut microbes to liver phase II metabolism, to renal OAT1-mediated transport. The idea that multiple gut-derived metabolites directly interact with OAT1 was confirmed by in vitro transport and magnetic bead binding assays. We show that gut microbiome-derived metabolites dependent on OAT1 are impacted in a chronic kidney disease (CKD) model and human drug-metabolite interactions. Consistent with the Remote Sensing and Signaling Theory, our results support the view that drug transporters (e.g., OAT1, OAT3, OATP1B1, OATP1B3, MRP2, MRP4, ABCG2) play a central role in regulating gut microbe-dependent metabolism, as well as interorganismal communication between the host and microbiome.
Collapse
Affiliation(s)
| | | | - Koustav Maity
- Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - David R. Vera
- Department of Radiology
- In Vivo Cancer and Molecular Imaging Program
| | - Geoffrey Chang
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- Department of Pharmacology, School of Medicine
| | - Sanjay K. Nigam
- Department of Pediatrics, and
- Department of Medicine (Nephrology), UCSD, La Jolla, California, USA
| |
Collapse
|
41
|
Nigam SK, Granados JC. OAT, OATP, and MRP Drug Transporters and the Remote Sensing and Signaling Theory. Annu Rev Pharmacol Toxicol 2023; 63:637-660. [PMID: 36206988 DOI: 10.1146/annurev-pharmtox-030322-084058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The coordinated movement of organic anions (e.g., drugs, metabolites, signaling molecules, nutrients, antioxidants, gut microbiome products) between tissues and body fluids depends, in large part, on organic anion transporters (OATs) [solute carrier 22 (SLC22)], organic anion transporting polypeptides (OATPs) [solute carrier organic (SLCO)], and multidrug resistance proteins (MRPs) [ATP-binding cassette, subfamily C (ABCC)]. Depending on the range of substrates, transporters in these families can be considered multispecific, oligospecific, or (relatively) monospecific. Systems biology analyses of these transporters in the context of expression patterns reveal they are hubs in networks involved in interorgan and interorganismal communication. The remote sensing and signaling theory explains how the coordinated functions of drug transporters, drug-metabolizing enzymes, and regulatory proteins play a role in optimizing systemic and local levels of important endogenous small molecules. We focus on the role of OATs, OATPs, and MRPs in endogenous metabolism and how their substrates (e.g., bile acids, short chain fatty acids, urate, uremic toxins) mediate interorgan and interorganismal communication and help maintain and restore homeostasis in healthy and disease states.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Department of Pediatrics and Medicine (Nephrology), University of California San Diego, La Jolla, California, USA;
| | - Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
42
|
Zeng Z, Zheng W, Hou P. The role of drug-metabolizing enzymes in synthetic lethality of cancer. Pharmacol Ther 2022; 240:108219. [PMID: 35636517 DOI: 10.1016/j.pharmthera.2022.108219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
Drug-metabolizing enzymes (DMEs) have shown increasing importance in anticancer therapy. It is not only due to their effect on activation or deactivation of anticancer drugs, but also because of their extensive connections with pathological and biochemistry changes during tumorigenesis. Meanwhile, it has become more accessible to discovery anticancer drugs that selectively targeted cancer cells with the development of synthetic lethal screen technology. Synthetic lethal strategy makes use of unique genetic markers that different cancer cells from normal tissues to discovery anticancer agents. Dysregulation of DMEs has been found in various cancers, making them promising candidates for synthetic lethal strategy. In this review, we will systematically discuss about the role of DMEs in tumor progression, the application of synthetic lethality strategy in drug discovery, and a link between DMEs and synthetic lethal of cancer.
Collapse
Affiliation(s)
- Zekun Zeng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Wenfang Zheng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
43
|
Proton pump inhibitor-induced risk of chronic kidney disease is associated with increase of indoxyl sulfate synthesis via inhibition of CYP2E1 protein degradation. Chem Biol Interact 2022; 368:110219. [DOI: 10.1016/j.cbi.2022.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 11/03/2022]
|
44
|
Jamshidi N, Nigam SK. Drug transporters OAT1 and OAT3 have specific effects on multiple organs and gut microbiome as revealed by contextualized metabolic network reconstructions. Sci Rep 2022; 12:18308. [PMID: 36316339 PMCID: PMC9622871 DOI: 10.1038/s41598-022-21091-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
In vitro and in vivo studies have established the organic anion transporters OAT1 (SLC22A6, NKT) and OAT3 (SLC22A8) among the main multi-specific "drug" transporters. They also transport numerous endogenous metabolites, raising the possibility of drug-metabolite interactions (DMI). To help understand the role of these drug transporters on metabolism across scales ranging from organ systems to organelles, a formal multi-scale analysis was performed. Metabolic network reconstructions of the omics-alterations resulting from Oat1 and Oat3 gene knockouts revealed links between the microbiome and human metabolism including reactions involving small organic molecules such as dihydroxyacetone, alanine, xanthine, and p-cresol-key metabolites in independent pathways. Interestingly, pairwise organ-organ interactions were also disrupted in the two Oat knockouts, with altered liver, intestine, microbiome, and skin-related metabolism. Compared to older models focused on the "one transporter-one organ" concept, these more sophisticated reconstructions, combined with integration of a multi-microbial model and more comprehensive metabolomics data for the two transporters, provide a considerably more complex picture of how renal "drug" transporters regulate metabolism across the organelle (e.g. endoplasmic reticulum, Golgi, peroxisome), cellular, organ, inter-organ, and inter-organismal scales. The results suggest that drugs interacting with OAT1 and OAT3 can have far reaching consequences on metabolism in organs (e.g. skin) beyond the kidney. Consistent with the Remote Sensing and Signaling Theory (RSST), the analysis demonstrates how transporter-dependent metabolic signals mediate organ crosstalk (e.g., gut-liver-kidney) and inter-organismal communication (e.g., gut microbiome-host).
Collapse
Affiliation(s)
- Neema Jamshidi
- grid.19006.3e0000 0000 9632 6718Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA USA ,grid.266100.30000 0001 2107 4242Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA USA
| | - Sanjay K. Nigam
- grid.266100.30000 0001 2107 4242Departments of Pediatrics and Medicine (Nephrology), University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
45
|
Zhu H, Wang M, Xiong X, Du Y, Li D, Wang Z, Ge W, Zhu Y. Plasma metabolomic profiling reveals factors associated with dose-adjusted trough concentration of tacrolimus in liver transplant recipients. Front Pharmacol 2022; 13:1045843. [PMID: 36386159 PMCID: PMC9659571 DOI: 10.3389/fphar.2022.1045843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/13/2022] [Indexed: 07/30/2023] Open
Abstract
Inter- and intrapatient variability of tacrolimus exposure is a vital prognostic risk factor for the clinical outcome of liver transplantation. New factors or biomarkers characterizing tacrolimus disposition is essential for optimal dose prediction in recipients of liver transplant. The aim of the study was to identify potential plasma metabolites associated with the dose-adjusted trough concentration of tacrolimus in liver transplant recipients by using a global metabolomic approach. A total of 693 plasma samples were collected from 137 liver transplant recipients receiving tacrolimus and regular therapeutic drug monitoring. Untargeted metabolomic analysis was performed by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry. Univariate and multivariate analyses with a mixed linear model were conducted, and the results showed that the dose-adjusted tacrolimus trough concentration was associated with 31 endogenous metabolites, including medium- and long-chain acylcarnitines such as stearoylcarnitine (β = 0.222, p = 0.001), microbiota-derived uremic retention solutes such as indolelactic acid (β = 0.194, p = 0.007), bile acids such as taurohyodeoxycholic acid (β = -0.056, p = 0.002), and steroid hormones such as testosterone (β = 0.099, p = 0.001). A multiple linear mixed model including 11 metabolites and clinical information was established with a suitable predictive performance (correlation coefficient based on fixed effects = 0.64 and correlation coefficient based on fixed and random effects = 0.78). These data demonstrated that microbiota-derived uremic retention solutes, bile acids, steroid hormones, and medium- and long-chain acylcarnitines were the main metabolites associated with the dose-adjusted trough concentration of tacrolimus in liver transplant recipients.
Collapse
Affiliation(s)
- Huaijun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- Department of Pharmacy, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, China
| | - Min Wang
- Department of Pharmacy, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, China
| | - Xiaofu Xiong
- Department of Pharmacy, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Du
- Department of Pharmacy, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, China
| | - Danying Li
- Department of Pharmacy, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, China
| | - Zhou Wang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Weihong Ge
- Department of Pharmacy, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, China
| | - Yizhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
46
|
Granados JC, Falah K, Koo I, Morgan EW, Perdew GH, Patterson AD, Jamshidi N, Nigam SK. AHR is a master regulator of diverse pathways in endogenous metabolism. Sci Rep 2022; 12:16625. [PMID: 36198709 PMCID: PMC9534852 DOI: 10.1038/s41598-022-20572-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor with roles in detoxification, development, immune response, chronic kidney disease and other syndromes. It regulates the expression of drug transporters and drug metabolizing enzymes in a proposed Remote Sensing and Signaling Network involved in inter-organ communication via metabolites and signaling molecules. Here, we use integrated omics approaches to analyze its contributions to metabolism across multiple scales from the organ to the organelle. Global metabolomics analysis of Ahr-/- mice revealed the role of AHR in the regulation of 290 metabolites involved in many biochemical pathways affecting fatty acids, bile acids, gut microbiome products, antioxidants, choline derivatives, and uremic toxins. Chemoinformatics analysis suggest that AHR plays a role in determining the hydrophobicity of metabolites and perhaps their transporter-mediated movement into and out of tissues. Of known AHR ligands, indolepropionate was the only significantly altered molecule, and it activated AHR in both human and murine cells. To gain a deeper biological understanding of AHR, we employed genome scale metabolic reconstruction to integrate knockout transcriptomics and metabolomics data, which indicated a role for AHR in regulation of organic acids and redox state. Together, the results indicate a central role of AHR in metabolism and signaling between multiple organs and across multiple scales.
Collapse
Affiliation(s)
- Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kian Falah
- Departments of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan W Morgan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA, 16801, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Neema Jamshidi
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
47
|
Bartochowski P, Gayrard N, Bornes S, Druart C, Argilés A, Cordaillat-Simmons M, Duranton F. Gut–Kidney Axis Investigations in Animal Models of Chronic Kidney Disease. Toxins (Basel) 2022; 14:toxins14090626. [PMID: 36136564 PMCID: PMC9502418 DOI: 10.3390/toxins14090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is an incurable disease in which renal function gradually declines, resulting in no noticeable symptoms during the early stages and a life-threatening disorder in the latest stage. The changes that accompany renal failure are likely to influence the gut microbiota, or the ecosystem of micro-organisms resident in the intestine. Altered gut microbiota can display metabolic changes and become harmful to the host. To study the gut–kidney axis in vivo, animal models should ideally reproduce the disorders affecting both the host and the gut microbiota. Murine models of CKD, but not dog, manifest slowed gut transit, similarly to patient. Animal models of CKD also reproduce altered intestinal barrier function, as well as the resulting leaky gut syndrome and bacterial translocation. CKD animal models replicate metabolic but not compositional changes in the gut microbiota. Researchers investigating the gut–kidney axis should pay attention to the selection of the animal model (disease induction method, species) and the setting of the experimental design (control group, sterilization method, individually ventilated cages) that have been shown to influence gut microbiota.
Collapse
Affiliation(s)
- Piotr Bartochowski
- RD Néphrologie SAS, 34090 Montpellier, France
- BC2M, Faculty of Pharmacy, University of Montpellier, 34090 Montpellier, France
| | - Nathalie Gayrard
- RD Néphrologie SAS, 34090 Montpellier, France
- BC2M, Faculty of Pharmacy, University of Montpellier, 34090 Montpellier, France
- Correspondence:
| | - Stéphanie Bornes
- Université Clermont Auvergne, Inrae, Vetagro Sup, UMRF0545, 15000 Aurillac, France
| | - Céline Druart
- Pharmabiotic Research Institute (PRI), 11100 Narbonne, France
| | - Angel Argilés
- RD Néphrologie SAS, 34090 Montpellier, France
- BC2M, Faculty of Pharmacy, University of Montpellier, 34090 Montpellier, France
| | | | - Flore Duranton
- RD Néphrologie SAS, 34090 Montpellier, France
- BC2M, Faculty of Pharmacy, University of Montpellier, 34090 Montpellier, France
| |
Collapse
|
48
|
Hashimoto M, Maeda H, Oniki K, Yasui-Furukori N, Watanabe H, Saruwatari J, Kadowaki D. New Insight Concerning Therapeutic Drug Monitoring-The Importance of the Concept of Psychonephrology. Biol Pharm Bull 2022; 45:834-842. [PMID: 35786590 DOI: 10.1248/bpb.b22-00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, the concept of psychonephrology was developed and has been recognized as a field of study that focuses on nephrology and mental health fields, such as psychiatry and psychosomatic medicine. Indeed, patients with chronic kidney disease frequently suffer from mental problems as the disease stage progresses. Most psychotropic drugs are hepatically metabolized, but some are unmetabolized and eliminated renally. However, renal disease may affect the pharmacokinetics of many psychotropic drugs, as the decreased renal function not only delays the urinary excretion of the drug and its metabolites but also alters various pharmacokinetic factors, such as protein-binding, enterohepatic circulation, and activity of drug-metabolizing enzymes. Therefore, when prescribing drug therapy for patients with both renal disease and mental issues, we should consider reducing the dosage of psychotropic drugs that are eliminated mainly via the kidney and also carefully monitor the blood drug concentrations of other drugs with a high extrarenal clearance, such as those that are largely metabolized in the liver. Furthermore, we should carefully consider the dialyzability of each psychotropic drug, as the dialyzability impacts the drug clearance in patients with end-stage renal failure undergoing dialysis. Therapeutic drug monitoring (TDM) may be a useful tool for adjusting the dosage of psychotropic drugs appropriately in patients with renal disease. We herein review the pharmacokinetic considerations for psychotropic drugs in patients with renal disease as well as those undergoing dialysis and offer new insight concerning TDM in the field of psychonephrology.
Collapse
Affiliation(s)
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Kentaro Oniki
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | | | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | | |
Collapse
|
49
|
Masereeuw R. The Dual Roles of Protein-Bound Solutes as Toxins and Signaling Molecules in Uremia. Toxins (Basel) 2022; 14:toxins14060402. [PMID: 35737063 PMCID: PMC9230939 DOI: 10.3390/toxins14060402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 06/10/2022] [Indexed: 01/25/2023] Open
Abstract
In patients with severe kidney disease, renal clearance is compromised, resulting in the accumulation of a plethora of endogenous waste molecules that cannot be removed by current dialysis techniques, the most often applied treatment. These uremic retention solutes, also named uremic toxins, are a heterogeneous group of organic compounds of which many are too large to be filtered and/or are protein-bound. Their renal excretion depends largely on renal tubular secretion, by which the binding is shifted towards the free fraction that can be eliminated. To facilitate this process, kidney proximal tubule cells are equipped with a range of transport proteins that cooperate in cellular uptake and urinary excretion. In recent years, innovations in dialysis techniques to advance uremic toxin removal, as well as treatments with drugs and/or dietary supplements that limit uremic toxin production, have provided some clinical improvements or are still in progress. This review gives an overview of these developments. Furthermore, the role protein-bound uremic toxins play in inter-organ communication, in particular between the gut (the side where toxins are produced) and the kidney (the side of their removal), is discussed.
Collapse
Affiliation(s)
- Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
50
|
The Role of Gut-Derived, Protein-Bound Uremic Toxins in the Cardiovascular Complications of Acute Kidney Injury. Toxins (Basel) 2022; 14:toxins14050336. [PMID: 35622583 PMCID: PMC9143532 DOI: 10.3390/toxins14050336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023] Open
Abstract
Acute kidney injury (AKI) is a frequent disease encountered in the hospital, with a higher incidence in intensive care units. Despite progress in renal replacement therapy, AKI is still associated with early and late complications, especially cardiovascular events and mortality. The role of gut-derived protein-bound uremic toxins (PBUTs) in vascular and cardiac dysfunction has been extensively studied during chronic kidney disease (CKD), in particular, that of indoxyl sulfate (IS), para-cresyl sulfate (PCS), and indole-3-acetic acid (IAA), resulting in both experimental and clinical evidence. PBUTs, which accumulate when the excretory function of the kidneys is impaired, have a deleterious effect on and cause damage to cardiovascular tissues. However, the link between PBUTs and the cardiovascular complications of AKI and the pathophysiological mechanisms potentially involved are unclear. This review aims to summarize available data concerning the participation of PBUTs in the early and late cardiovascular complications of AKI.
Collapse
|