1
|
Du J, Baranova A, Zhang F. Bidirectional causal effects between bipolar disorder and immune cell traits. J Affect Disord 2025; 383:179-186. [PMID: 40288451 DOI: 10.1016/j.jad.2025.04.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND The complexity of the pathogenesis hinders the diagnosis and treatment of bipolar disorder (BD). Despite studies finding a correlation between immune function and BD, the causative relationship between the two remains poorly explained. METHODS We investigated the causative relationships between BD (41,917 cases and 371,549 controls) and levels of six types of white blood cells and further evaluated the causative relationships between BD and 731 immune cell traits) using a two-sample Mendelian randomization method, prioritizing the inverse variance weighted approach, based on publicly available GWAS data. Sensitivity analysis was based on MR-Egger intercept method and Cochran's Q test. RESULTS We did not find a significant causative relationship between BD and 6 white blood cell traits (FDR > 0.05). However, we found 38 immune cell traits had a causal effect to BD. Among them, 26 immune cell traits increased the risk of BD (OR: 1.01-1.07), including CD4+/CD28+ T cells and CD20+/CD27+ B cells. The remaining 12 including had a protective effect on BD (OR: 0.92-0.99). The backward MR results showed that BD had negative causal effects on 23 immune cell traits (n = 23, OR: 0.79-0.89), which included monocyte, majority of CD4+ T cells, and CD20+ B cells. BD had Positive causal effects 10 immune cell traits (OR: 1.13-1.19), especially CD19+ B cells. The overall causal effect of BD on immune cell traits was significantly higher than the inverse effect (0.011 ± 0.049 vs. 0.001 ± 0.016, p < 0.001). CONCLUSION A complex network of bidirectional causative relationships exists between BD and various phenotypic features of immune cells. These findings provide new insights into the diagnosis and treatment of BD from an immunotherapeutic perspective.
Collapse
Affiliation(s)
- Jianbin Du
- Department of Geriatric Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China.
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; Research Centre for Medical Genetics, Moscow 115478, Russia
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Bu S, Wang Q, Zhang G, Zhang Z, Dai J, Zhang Z. Inflammation molecular network alterations in a depressive-like primate model. J Affect Disord 2025; 379:410-420. [PMID: 40081592 DOI: 10.1016/j.jad.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
At present, there are no definitive biomarkers for major depressive disorder (MDD). Previous studies prompted that neuroimmunoinflammation is involved in the pathogenesis of depression and its factors become potential diagnostic biomarkers. Non-human primates exhibit depression-like behavior similar to humans in chronically stressed environments. Therefore, in the present study, after completing Whole transcriptome sequencing of peripheral blood, neurology-related and inflammatory molecules in plasma and cerebrospinal fluid were measured by Olink proximity extension assay technology simultaneously in 4 natural depressive-like (DL) cynomolgus monkeys and 4 normal controls to screen potential biological markers. Further, postmortem brain tissues and peripheral blood RNA sequencing data from MDD patients available in the Gene Expression Omnibus (GEO) database were used for cross-species validation. Compared to control monkeys, depressive-like monkeys exhibited elevated levels of neurocan (NCAN). RNA sequencing revealed Toll-like receptor 4 (TLR4) and the interacting S100 calcium-binding protein A family as key molecules in the inflammatory gene network. GEO brain tissue data showed up-regulation of S100A8 and S100A9 in the anterior cingulate cortex of MDD patients. These findings suggest that depressive-like monkeys are in a state of chronic low-grade inflammation and identify NCAN and TLR4 inflammatory network molecules as potential biomarkers of MDD.
Collapse
Affiliation(s)
- Siyuan Bu
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease of Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Qingyun Wang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 999077, Hong Kong
| | - Gaojia Zhang
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease of Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China; Department of Psychology and Sleep Medicine, the Second Hospital of Anhui Medical University, Hefei 230000, China
| | - Zhiting Zhang
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ji Dai
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhijun Zhang
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease of Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China; Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences of Shenzhen University of Advanced Technology, The Brain Cognition and Brain Disease Institute of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
3
|
González-Portilla M, Montagud-Romero S, Rodríguez de Fonseca F, Rodríguez-Arias M. Oleoylethanolamide restores stress-induced prepulse inhibition deficits and modulates inflammatory signaling in a sex-dependent manner. Psychopharmacology (Berl) 2025; 242:913-928. [PMID: 37314479 PMCID: PMC12043760 DOI: 10.1007/s00213-023-06403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
RATIONALE Social stress contributes to the development of depressive and anxiety symptomatology and promotes pro-inflammatory signaling in the central nervous system. In this study, we explored the effects of a lipid messenger with anti-inflammatory properties - oleoylethanolamide (OEA) - on the behavioral deficits caused by social stress in both male and female mice. METHODS Adult mice were assigned to an experimental group according to the stress condition (control or stress) and treatment (vehicle or OEA, 10 mg/kg, i.p.). Male mice in the stress condition underwent a protocol consisting of four social defeat (SD) encounters. In the case of female mice, we employed a procedure of vicarious SD. After the stress protocol resumed, anxiety, depressive-like behavior, social interaction, and prepulse inhibition (PPI) were assessed. In addition, we characterized the stress-induced inflammatory profile by measuring IL-6 and CX3CL1 levels in the striatum and hippocampus. RESULTS Our results showed that both SD and VSD induced behavioral alterations. We found that OEA treatment restored PPI deficits in socially defeated mice. Also, OEA affected differently stress-induced anxiety and depressive-like behavior in male and female mice. Biochemical analyses showed that both male and female stressed mice showed increased levels of IL-6 in the striatum compared to control mice. Similarly, VSD female mice exhibited increased striatal CX3CL1 levels. These neuroinflammation-associated signals were not affected by OEA treatment. CONCLUSIONS In summary, our results confirm that SD and VSD induced behavioral deficits together with inflammatory signaling in the striatum and hippocampus. We observed that OEA treatment reverses stress-induced PPI alterations in male and female mice. These data suggest that OEA can exert a buffering effect on stress-related sensorimotor gating behavioral processing.
Collapse
Affiliation(s)
- Macarena González-Portilla
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad Clínica de Neurología, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
- Atención Primaria, Cronicidad Y Promoción de La Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Málaga, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain.
- Atención Primaria, Cronicidad Y Promoción de La Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Málaga, Spain.
| |
Collapse
|
4
|
Gao M, Dong Q, Zou D, Yang Z, Guo L, Xu R. Induced neural stem cells regulate microglial activation through Akt-mediated upregulation of CXCR4 and Crry in a mouse model of closed head injury. Neural Regen Res 2025; 20:1416-1430. [PMID: 38934402 PMCID: PMC11624864 DOI: 10.4103/nrr.nrr-d-23-01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/27/2023] [Accepted: 01/27/2024] [Indexed: 06/28/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00025/figure1/v/2024-07-28T173839Z/r/image-tiff Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair. We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling, influencing their activation such that they can promote neurological recovery. However, the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear. In this study, we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-α expression but suppressed insulin-like growth factor-1 expression. However, recombinant complement receptor 2-conjugated Crry (CR2-Crry) reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia, CXCL12, and tumor necrosis factor-α. Additionally, we observed that, in response to stimulation (including stimulation by CXCL12 secreted by activated microglia), CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4, Crry, and Akt signaling to modulate microglial activation. In agreement with these in vitro experimental results, we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation, leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice. Notably, these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury, cerebral edema, and neurological disorders post-closed head injury. In conclusion, our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry, thereby promoting induced neural stem cell-mediated improvement of neuronal injury, cerebral edema, and neurological disorders following closed head injury.
Collapse
Affiliation(s)
- Mou Gao
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Qin Dong
- Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Dan Zou
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhijun Yang
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Lili Guo
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Wang H, Lin S, Xu Y, Fu H, Shen M, Qiu P, Li C, Efferth T, Hong C. Modulation of Pseudomonas aeruginosa-induced avoidance behavior by Shen Qi pills via mitogen-activated protein kinase PMK-1 and forkhead box protein O DAF-16 in Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156585. [PMID: 40049101 DOI: 10.1016/j.phymed.2025.156585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Avoidance behavior is one of the core features of anxiety and related in-depth study can help to reveal the biological basis of these disorders. In recent years, traditional Chinese medicine has incorporated Shen Qi pills to treat neuropsychiatric disorders, such as depression and post-traumatic stress, and has achieved significant therapeutic effects. However, its specific mechanism of action is still unclear. PURPOSE The aim of this study was to link the avoidance phenotype to psychiatric disorders by utilizing the Caenorhabditis elegans as a biological model, revealing the potential common mechanisms underlying the treatment of these disorders with Shen Qi pills. METHODS Avoidance behavior and immunity of C. elegans as a phenotypic entry point to explore the molecular mechanisms by which Shen Qi pills affects avoidance behavior with the help of pmk-1 and daf-16 mutants and RNA interference techniques. RESULTS We found that the intervention of Shen Qi pills can delay the avoidance behavior of C. elegans to P. aeruginosa, improve the immunity level, and reduce the up-regulation of pmk-1 and daf-16 genes induced by P. aeruginosa. Shen Qi pills did not improve the immunity of pmk-1 mutant but could still enhance the immunity of daf-16 mutant. After daf-16 knockout, Shen Qi pills could not delay its avoidance behavior, which was consistent with the results shown in the neuron-specific silencing of daf-16 C. elegans. CONCLUSION These findings reveal the conclusion that Shen Qi pills regulate the avoidance behavior of C. elegans induced by P. aeruginosa via PMK-1 and DAF-16, with the latter acting directly on neurons independent of immune pathways.
Collapse
Affiliation(s)
- Hanxiao Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Siyi Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Yingying Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Huangjie Fu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Meiqi Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Ping Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, PR China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany.
| | - Chunlan Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, PR China.
| |
Collapse
|
6
|
Ramirez-Bermudez J, Espinola-Nadurille M, Restrepo-Martinez M, Martínez-Ángeles V, Martínez-Carrillo F, Cascante L, Valdeiglesias P, Mondragón M, Armenta J, Almánzar JG, Rivas-Alonso V, Flores-Rivera J, Arias-Carrión O, Pollak TA. Autoimmune psychosis: Psychopathological patterns and outcome after immunotherapy. Schizophr Res 2025; 281:10-19. [PMID: 40306141 DOI: 10.1016/j.schres.2025.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/17/2025] [Accepted: 04/20/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND The diagnostic criteria for "autoimmune psychosis" have been proposed to identify patients presenting with psychotic symptoms of autoimmune origin. Here, we aim to characterize the psychopathological features and outcomes of patients diagnosed with autoimmune psychosis. METHODS We describe a cohort study conducted at the National Institute of Neurology and Neurosurgery of Mexico, including patients with psychotic symptoms exhibiting features of possible autoimmune psychosis: a) catatonia, b) dyskinesia, c) seizures, d) signs of neuroleptic malignant syndrome or clinical worsening after use of antipsychotics, or e) severe cognitive impairment. RESULTS Of 195 psychotic patients under assessment, 164 patients were diagnosed as having psychosis of autoimmune origin and received immunotherapy. Hallucinations were present in 83 %, delusions in 77 %, and disorganized speech in 64 % of the cases. Severe cognitive dysfunction was present in 75 % while 64 % were diagnosed with catatonia. Seizures were the most common neurological feature (63 %), followed by movement disorders and autonomic abnormalities. Most patients (71%) were diagnosed as having definite anti- NMDAR encephalitis. A significant proportion of the cases (39 %) had been previously misdiagnosed as having a primary psychiatric disorder. After immunotherapy, most patients with anti-NMDA receptor encephalitis, or with a negative determination of NMDA receptor antibodies, experienced cognitive and functional improvement, and a significant reduction in psychotic symptoms. CONCLUSIONS Our study supports previous observations about the value of the autoimmune psychosis construct, the pleomorphic psychopathological patterns of autoimmune encephalitis, and the significant improvement of psychopathology after immunotherapy.
Collapse
Affiliation(s)
- Jesus Ramirez-Bermudez
- Neuropsychiatry Unit, National Institute of Neurology and Neurosurgery of Mexico, Mexico; School of Medicine, Universidad Nacional Autónoma de México, Mexico.
| | | | | | | | | | - Lissy Cascante
- Neuropsychiatry Unit, National Institute of Neurology and Neurosurgery of Mexico, Mexico
| | - Paloma Valdeiglesias
- Neuropsychiatry Unit, National Institute of Neurology and Neurosurgery of Mexico, Mexico
| | - Monserrat Mondragón
- Neuropsychiatry Unit, National Institute of Neurology and Neurosurgery of Mexico, Mexico
| | - Jazmín Armenta
- Neuropsychiatry Unit, National Institute of Neurology and Neurosurgery of Mexico, Mexico
| | - Josué García Almánzar
- Neuropsychiatry Unit, National Institute of Neurology and Neurosurgery of Mexico, Mexico
| | - Verónica Rivas-Alonso
- Neuroimmunology Clinic, National Institute of Neurology and Neurosurgery of Mexico, Mexico
| | - José Flores-Rivera
- Neuroimmunology Clinic, National Institute of Neurology and Neurosurgery of Mexico, Mexico
| | - Oscar Arias-Carrión
- Experimental Neurology, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Tomas A Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, United Kingdom
| |
Collapse
|
7
|
Chung EN, Lee J, Polonio CM, Choi J, Akl CF, Kilian M, Weiß WM, Gunner G, Ye M, Heo TH, Drake SS, Yang L, d'Eca CRGL, Lee JH, Deng L, Farrenkopf D, Schüle AM, Lee HG, Afolabi O, Ghaznavi S, Smirnakis SM, Chiu IM, Kuchroo VK, Quintana FJ, Wheeler MA. Psychedelic control of neuroimmune interactions governing fear. Nature 2025:10.1038/s41586-025-08880-9. [PMID: 40269152 DOI: 10.1038/s41586-025-08880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 03/11/2025] [Indexed: 04/25/2025]
Abstract
Neuroimmune interactions-signals transmitted between immune and brain cells-regulate many aspects of tissue physiology1, including responses to psychological stress2-5, which can predispose individuals to develop neuropsychiatric diseases6-9. Still, the interactions between haematopoietic and brain-resident cells that influence complex behaviours are poorly understood. Here, we use a combination of genomic and behavioural screens to show that astrocytes in the amygdala limit stress-induced fear behaviour through epidermal growth factor receptor (EGFR). Mechanistically, EGFR expression in amygdala astrocytes inhibits a stress-induced, pro-inflammatory signal-transduction cascade that facilitates neuron-glial crosstalk and stress-induced fear behaviour through the orphan nuclear receptor NR2F2 in amygdala neurons. In turn, decreased EGFR signalling and fear behaviour are associated with the recruitment of meningeal monocytes during chronic stress. This set of neuroimmune interactions is therapeutically targetable through the administration of psychedelic compounds, which reversed the accumulation of monocytes in the brain meninges along with fear behaviour. Together with validation in clinical samples, these data suggest that psychedelics can be used to target neuroimmune interactions relevant to neuropsychiatric disorders and potentially other inflammatory diseases.
Collapse
Affiliation(s)
- Elizabeth N Chung
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Jinsu Lee
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Carolina M Polonio
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Joshua Choi
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Camilo Faust Akl
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael Kilian
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Wiebke M Weiß
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Georgia Gunner
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Mingyu Ye
- Department of Neurology, Brigham and Women's Hospital and Jamaica Plain Veterans Administration Hospital, Harvard Medical School, Boston, MA, USA
| | - Tae Hyun Heo
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Sienna S Drake
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Liu Yang
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Catarina R G L d'Eca
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Joon-Hyuk Lee
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Liwen Deng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel Farrenkopf
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Anton M Schüle
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Hong-Gyun Lee
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Oreoluwa Afolabi
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Sharmin Ghaznavi
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston, MA, USA
| | - Stelios M Smirnakis
- Department of Neurology, Brigham and Women's Hospital and Jamaica Plain Veterans Administration Hospital, Harvard Medical School, Boston, MA, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Vijay K Kuchroo
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francisco J Quintana
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael A Wheeler
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
8
|
De Ridder D, Langguth B, Schlee W. Mourning for Silence: Bereavement and Tinnitus-A Perspective. J Clin Med 2025; 14:2218. [PMID: 40217670 PMCID: PMC11989574 DOI: 10.3390/jcm14072218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/08/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Tinnitus is defined as the conscious awareness of a tonal or composite noise for which there is no identifiable corresponding external acoustic source, which becomes tinnitus disorder when the phantom sound is associated with suffering and/or disability. There is only limited knowledge about the time course of tinnitus disorder. Bereavement science has identified four different trajectories: resilience, recovery, chronic, and delayed. The question arises whether these four trajectories exist in tinnitus as well if one considers tinnitus as the loss of silence (at will). To verify whether these four trajectories exist, short-term tinnitus progression was analyzed retrospectively using an Ecological Momentary Assessment (EMA) approach, extracting the data from patients who started using the TrackYourTinnitus (TYT) app (version 1, Ulm University, 2013) from the start of their tinnitus perception. Four patients were identified retrospectively via the TYT app with acute tinnitus, and the bereavement trajectories were reconstructed based on EMA. In conclusion, this perspective suggests that the four known bereavement trajectories may exist in tinnitus, and prospective evaluations of larger samples are warranted to confirm or disprove this analogy between bereavement and tinnitus, in which tinnitus is conceived as the loss of (controllable) silence.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany;
| | - Winfried Schlee
- Institute for Information and Process Management, Eastern Switzerland University of Applied Sciences, 9000 St. Gallen, Switzerland;
| |
Collapse
|
9
|
Zhang H, Tang S, Chen X, Wang M, Su J. Association between Emotional Distress and Atopic Dermatitis: A Cross-Sectional Study. J Invest Dermatol 2025:S0022-202X(25)00365-3. [PMID: 40139563 DOI: 10.1016/j.jid.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Affiliation(s)
- Hanyi Zhang
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Siding Tang
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mi Wang
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Mental Health Center, Xiangya Hospital, Central South University, Changsha, China.
| | - Juan Su
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Borrego-Ruiz A, Borrego JJ. Involvement of virus infections and antiviral agents in schizophrenia. Psychol Med 2025; 55:e73. [PMID: 40059820 PMCID: PMC12055031 DOI: 10.1017/s0033291725000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Schizophrenia is a chronic and complex mental disorder resulting from interactions between cumulative and synergistic genetic and environmental factors. Viral infection during the prenatal stage constitutes one of the most relevant risk factors for the development of schizophrenia later in adulthood. METHODS A narrative review was conducted to explore the link between viral infections and schizophrenia, as well as the neuropsychiatric effects of antiviral drugs, particularly in the context of this specific mental condition. Literature searches were performed using the PubMed, Scopus, and Web of Science databases. RESULTS Several viral infections, such as herpesviruses, influenza virus, Borna disease virus, and coronaviruses, can directly or indirectly disrupt normal fetal brain development by modifying gene expression in the maternal immune system, thereby contributing to the pathophysiological symptoms of schizophrenia. In addition, neuropsychiatric effects caused by antiviral drugs are frequent and represent significant adverse outcomes for viral treatment. CONCLUSIONS Epidemiological evidence suggests a potential relationship between viruses and schizophrenia. Increases in inflammatory cytokine levels and changes in the expression of key genes observed in several viral infections may constitute potential links between these viral infections and schizophrenia. Furthermore, antivirals may affect the central nervous system, although for most drugs, their mechanisms of action are still unclear, and a strong relationship between antivirals and schizophrenia has not yet been established.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
11
|
Hikosaka M, Parvez MSA, Yamawaki Y, Oe S, Liang Y, Wada Y, Hirahara Y, Koike T, Imai H, Oishi N, Schalbetter SM, Kumagai A, Yoshida M, Sakurai T, Kitada M, Meyer U, Narumiya S, Ohtsuki G. Maternal immune activation followed by peripubertal stress combinedly produce reactive microglia and confine cerebellar cognition. Commun Biol 2025; 8:296. [PMID: 40033126 PMCID: PMC11876345 DOI: 10.1038/s42003-025-07566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025] Open
Abstract
The functional alteration of microglia arises in brains exposed to external stress during early development. Pathophysiological findings of neurodevelopmental disorders such as schizophrenia and autism spectrum disorder suggest cerebellar functional deficits. However, the link between stress-induced microglia reactivity and cerebellar dysfunction is missing. Here, we investigate the developmental immune environment in translational mouse models that combine two risk factors: maternal infection and repeated social defeat stress (2HIT). We find the synergy of inflammatory stress insults, leading to microglial increase specifically in the cerebellum of both sexes. Microglial turnover correlates with the Purkinje neuron loss in 2HIT mice. Highly multiplexed imaging-mass-cytometry identifies a cell transition to TREM2(+) stress-associated microglia in the cerebellum. Single-cell-proteomic clustering reveals IL-6- and TGFβ-signaling association with microglial cell transitions. Reduced excitability of remaining Purkinje cells, cerebellum-involved brain-wide functional dysconnectivity, and behavioral abnormalities indicate cerebellar cognitive dysfunctions in 2HIT animals, which are ameliorated by both systemic and cerebellum-specific microglia replacement.
Collapse
Affiliation(s)
- Momoka Hikosaka
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Md Sorwer Alam Parvez
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuki Yamawaki
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Souichi Oe
- Department of Anatomy, Kansai Medical University, Hirakata-shi, Osaka, Japan
| | - Yuan Liang
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
- Institute of Basic Theory in Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yayoi Wada
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Yukie Hirahara
- Department of Anatomy, Kansai Medical University, Hirakata-shi, Osaka, Japan
| | - Taro Koike
- Department of Anatomy, Kansai Medical University, Hirakata-shi, Osaka, Japan
| | - Hirohiko Imai
- Department of Systems Science, Kyoto University Graduate School of Informatics, Yoshida-Honmachi, Kyoto, Japan
- Innovation Research Center for Quantum Medicine, Gifu University School of Medicine, Gifu, Japan
| | - Naoya Oishi
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sina M Schalbetter
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Takeshi Sakurai
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, Hirakata-shi, Osaka, Japan
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
12
|
Mehta I, Juneja K, Nimmakayala T, Bansal L, Pulekar S, Duggineni D, Ghori HK, Modi N, Younas S. Gut Microbiota and Mental Health: A Comprehensive Review of Gut-Brain Interactions in Mood Disorders. Cureus 2025; 17:e81447. [PMID: 40303511 PMCID: PMC12038870 DOI: 10.7759/cureus.81447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2025] [Indexed: 05/02/2025] Open
Abstract
The human gut flora of trillions of bacteria is vital for general health and greatly influences digestion, immune system function, and brain development. Through neuronal, hormonal, and immunological channels, the gut-brain axis (GBA), a bidirectional communication network, links the gut microbiota to the central nervous system (CNS). This relationship has been linked to affective diseases, including depression and anxiety, as well as mental health issues. This review explores the intricate relationship between gut bacteria and mood disorders, focusing on how gut microbiota-host interactions, immune system modulation, and neurotransmitter control support mental health. The function of important microbial metabolites, including short-chain fatty acids (SCFAs), in preserving blood-brain barrier integrity and modulating neuroinflammation is covered in this review. It also examines the bidirectional impact between gut health and mental health, including how dysbiosis could aggravate mood disorders and how depressed states might change the composition of gut bacteria. Furthermore, we discuss how psychotropic drugs affect gut flora and consider other elements such as nutrition and lifestyle that affect gut microbiome composition. Potential paths for treating mood disorders through gut microbiota modification are presented as emerging treatment techniques, including probiotics, nutritional therapies, and precision medicine. The development of new therapeutic approaches for mood disorders depends on the awareness of the GBA. Gut bacteria significantly affect mental health through immune modulation, neurotransmitter generation, and other intricate processes. Future studies should concentrate on large, varied populations to better understand these interactions and to create customized treatments that combine gut microbiota modulation with conventional mental health therapies.
Collapse
Affiliation(s)
- Ishani Mehta
- Psychiatry and Behavioral Sciences, Maharaja Agrasen Institute of Medical Research and Education, Hisar, IND
| | | | - Tharun Nimmakayala
- Medicine and Surgery, Apollo Institute of Medical Sciences and Research, Chittoor, IND
| | - Lajpat Bansal
- Psychiatry and Behavioral Sciences, Maharaja Agrasen Institute of Medical Research and Education, Hisar, IND
| | - Shivani Pulekar
- General Practice, Davao Medical School Foundation, Davao, PHL
| | | | | | - Nishi Modi
- Medicine, Government Medical College, Surat, Surat, IND
| | - Salma Younas
- Pharmacy, Punjab University College of Pharmacy, Lahore, PAK
| |
Collapse
|
13
|
Zhang T, Ji C, Zhu J, Wang X, Shen C, Liang F, Hou Y, Sun Y, Wang C, Wang P, Lu G, Wang X, Lv Q, Yi Z. Comparison of clinical features and inflammatory factors between patients with bipolar depression and unipolar depression. BMC Psychiatry 2025; 25:108. [PMID: 39930379 PMCID: PMC11812187 DOI: 10.1186/s12888-025-06516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND This study aims to compare the differences in clinical features and inflammatory factors between unipolar depression and bipolar depression, and to investigate potential clinical characteristics and peripheral blood biomarkers that could be used to differentiate between these two conditions. Furthermore, the study seeks to establish a predictive model. METHODS Inpatients from the Shanghai Mental Health Center, admitted between June 2022 and June 2024, were selected as study participants. Based on diagnosis records, 274 patients were assigned to the unipolar depression group, and 128 patients to the bipolar depression group. A total of 128 patients were matched between the two groups using the propensity score matching method. Demographic data, clinical characteristics, and biological indicators were compared between the two groups. The biological markers assessed included neutrophil/lymphocyte ratio (NLR), monocyte/lymphocyte ratio (MLR), platelet/lymphocyte ratio (PLR), C-reactive protein (CRP), serum triiodothyronine (T3), thyroxine (T4), free thyroid hormones (fT3, fT4), thyroid-stimulating hormone (TSH), complement 3 (C3), complement 4 (C4), immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM). Binomial logistic regression analysis was employed to control for confounding factors and to explore the predictors of bipolar depression. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive value of clinical features and biological markers for bipolar depression. RESULTS Statistically significant differences were observed between the unipolar depression and bipolar depression groups with respect to life events (χ² = 15.397, P = 0.000), CRP (Z = 6.717, P = 0.000), TSH (Z = 1.988, P = 0.047), C3 (Z = 5.682, P = 0.000), C4 (Z = 4.216, P = 0.000), and IgM (Z = 2.304, P = 0.021). Logistic regression analysis indicated that life events (OR = 4.552, 95% CI = 2.238-9.257), CRP (OR = 13.886, 95% CI = 5.290-36.452), and IgM (OR = 0.561, 95% CI = 0.325-0.970) were associated with bipolar depression. ROC curve analysis revealed that the area under the curve (AUC) for the logistic regression model predicting bipolar depression was 0.806, with a sensitivity of 61.7% and a specificity of 85.9%. CONCLUSIONS Compared to unipolar depression, bipolar depression was associated with the absence of life events, elevated CRP levels, and reduced IgM levels. The combined diagnostic model proved more effective in distinguishing bipolar depression from unipolar depression.
Collapse
Affiliation(s)
- Tianwei Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Qingpu District Mental Health Center, Shanghai, 201721, China
| | - Changjun Ji
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Nantong Fourth People's Hospital, Nantong, Jiangsu, 226005, China
| | - Jiayu Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Department of Psychiatry, Huashan Hospital, School of Medicine, Fudan University, No. 12 Wulumuqi Road (middle), Shanghai, 200040, China
| | - Xiaoxiao Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Department of Psychiatry, Huashan Hospital, School of Medicine, Fudan University, No. 12 Wulumuqi Road (middle), Shanghai, 200040, China
| | - Chengjia Shen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Department of Psychiatry, Huashan Hospital, School of Medicine, Fudan University, No. 12 Wulumuqi Road (middle), Shanghai, 200040, China
| | - Fei Liang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, Guangxi, 545005, China
| | - Yajun Hou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- The Sixth People's Hospital of Hebei Province, Baoding, Hebei, 071000, China
| | - Yan Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Huangpu District Mental Health Center, Shanghai, 200023, China
| | - Chongze Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Peijuan Wang
- Nantong Fourth People's Hospital, Nantong, Jiangsu, 226005, China
| | - Guoqiang Lu
- Shanghai Qingpu District Mental Health Center, Shanghai, 201721, China
| | - Xiaohui Wang
- Shanghai Qingpu District Mental Health Center, Shanghai, 201721, China.
| | - Qinyu Lv
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Department of Psychiatry, Huashan Hospital, School of Medicine, Fudan University, No. 12 Wulumuqi Road (middle), Shanghai, 200040, China.
| | - Zhenghui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Department of Psychiatry, Huashan Hospital, School of Medicine, Fudan University, No. 12 Wulumuqi Road (middle), Shanghai, 200040, China.
- Institute of Mental Health, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
14
|
Dan Y, Xiong Y, Xu D, Wang Y, Yin M, Sun P, Ding Y, Feng Z, Sun P, Xia W, Yu G, Li L. Potential common targets of music therapy intervention in neuropsychiatric disorders: the prefrontal cortex-hippocampus -amygdala circuit (a review). Front Hum Neurosci 2025; 19:1471433. [PMID: 39963392 PMCID: PMC11832007 DOI: 10.3389/fnhum.2025.1471433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
As life becomes more stressful, neurological disorders, psychiatric disorders, and comorbidities of the two are becoming more and more of a concern. Multiple neuropsychiatric disorders share the same mental and somatic dysfunction and may involve common brain circuits and mechanistic targets. Music therapy, as an art form with proven efficacy, low cost and few side effects, is promoted for use in interventions for neuropsychiatric disorders. This may be closely related to the release of signaling molecules such as monoamine neurotransmitters, the glutamatergic system, the gut-microbiota-brain axis, pro-inflammatory cytokines and the endogenous opioid peptide system. However, fewer studies have mentioned the main targets of music to promote functional changes in brain regions. Therefore, this paper is a review of the mechanisms by which music therapy interacts with the prefrontal cortex-hippocampus-amygdala circuit through the aforementioned molecules. It is also hypothesized that glial cells, mitochondria and microRNAs are microscopic targets for musical intervention in neuropsychiatric disorders. The aim is to give new ideas for future research into the biological mechanisms of music therapy intervention in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yuqin Dan
- The College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Xiong
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Danghan Xu
- Rehabilitation Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuqi Wang
- The College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng Yin
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, China
| | - Pengwei Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi Ding
- Department Rehabilitation Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziyun Feng
- Department Rehabilitation Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weili Xia
- Shandong Mental Health Center, Shandong University, Jinan, China
| | - Gongchang Yu
- Shandong Mental Health Center, Shandong University, Jinan, China
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Li Li
- The College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department Rehabilitation Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
15
|
Wu XR, Li ZY, Yang L, Liu Y, Fei CJ, Deng YT, Liu WS, Wu BS, Dong Q, Feng JF, Cheng W, Yu JT. Large-scale exome sequencing identified 18 novel genes for neuroticism in 394,005 UK-based individuals. Nat Hum Behav 2025; 9:406-419. [PMID: 39511343 DOI: 10.1038/s41562-024-02045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024]
Abstract
Existing genetic studies of neuroticism have been largely limited to common variants. Here we performed a large-scale exome analysis of white British individuals from UK Biobank, revealing the role of coding variants in neuroticism. For rare variants, collapsing analysis uncovered 14 neuroticism-associated genes. Among these, 12 (PTPRE, BCL10, TRIM32, ANKRD12, ADGRB2, MON2, HIF1A, ITGB2, STK39, CAPNS2, OGFOD1 and KDM4B) were novel, and the remaining (MADD and TRPC4AP) showed convergent evidence with common variants. Heritability of rare coding variants was estimated to be up to 7.3% for neuroticism. For common variants, we identified 78 significant associations, implicating 6 unreported genes. We subsequently replicated these variants using meta-analysis across other four ancestries from UK Biobank and summary data from 23andMe sample. Furthermore, these variants had widespread impacts on neuropsychiatric disorders, cognitive abilities and brain structure. Our findings deepen the understanding of neuroticism's genetic architecture and provide potential targets for future mechanistic research.
Collapse
Affiliation(s)
- Xin-Rui Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ze-Yu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ying Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Chen-Jie Fei
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Qi Y, Zhao X, Wu W, Wang N, Ge P, Guo S, Lei S, Zhou P, Zhao L, Tang Z, Duan J, Yang N, Guo R, Dong Y, Chai X, Zhang Q, Snijders AM, Zhu H. Coptisine improves LPS-induced anxiety-like behaviors by regulating the Warburg effect in microglia via PKM2. Biomed Pharmacother 2025; 183:117837. [PMID: 39823725 DOI: 10.1016/j.biopha.2025.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
Neuroinflammation mediated by microglia is considered the primary cause and pathological process of anxiety. Abnormal glycolysis of microglia is observed during microglia activation. However, whether regulating the Warburg effect in microglia can effectively intervene anxiety and its potential mechanisms have not been elucidated. This study focused on coptisine (Cop), a natural alkaloid that regulates the glycolysis and function of microglia affecting anxiety. The effects of Cop on anxiety-like behaviors, hippocampal synaptic function, and excessive activation of microglia were assessed in lipopolysaccharide (LPS) induced mouse models of anxiety. Microglia expressing mutant pyruvate kinase isoform M2 (PKM2) were used to further investigate the molecular mechanism by which Cop regulates the phenotype of microglia. neuroinflammatory is emerging Further research revealed that Cop attaches to the amino acid residue phenylalanine 26 of PKM2, shifting the dynamic equilibrium of PKM2 towards tetramers, and enhancing its pyruvate kinase activity. This interaction prevented LPS-induced Warburg effect and inactivated PKM2/hypoxia-inducible factor-1α (HIF-1α) pathway in microglia. In conclusion, Cop attenuates anxiety by regulating the Warburg effect in microglia. Our work revealed the role of PKM2/(HIF-1α) pathway in anxiety for the first time. Importantly, the molecular mechanism by which Cop ameliorates anxiety-like behaviors is through modulation of the dimeric/tetrameric form of PKM2, indicating the usefulness of PKM2 as a key potential target for the treatment of anxiety.
Collapse
Affiliation(s)
- Yiyu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China; College of Chemical and Materials Engineering, Zhejiang A&F University, Lin'an 311300, China
| | - Xin Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Weizhen Wu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Ningjing Wang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Pingyuan Ge
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Siqi Guo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Shaohua Lei
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Peng Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Li Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Zhishu Tang
- Shanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xixian Rd., Xianyang 712046, China
| | - Jin'ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Nianyun Yang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Rui Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Yinfeng Dong
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Xin Chai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qichun Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China.
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| | - Huaxu Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China.
| |
Collapse
|
17
|
Tunset ME, Haslene-Hox H, Larsen JB, Kondziella D, Nygård M, Pedersen SA, Vaaler A, Llorente A. Clinical studies of blood-borne Extracellular vesicles in psychiatry: A systematic review. J Psychiatr Res 2025; 182:373-390. [PMID: 39862765 DOI: 10.1016/j.jpsychires.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/02/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Biomarkers for the diagnosis and clinical management of psychiatric disorders are currently lacking. Extracellular vesicles (EVs), lipid membrane-encapsulated vesicles released by cells, hold promise as a source of biomarkers due to their ability to carry molecules that reflect the status of their donor cells and their ubiquitous presence in biofluids. This review examines the literature on EVs in biofluids from psychiatric disorder patients, and discuss how the published studies contribute to our understanding of the pathophysiology of these conditions and to the discovery of potential biomarkers. We analyzed 46 studies on blood-borne EVs; no investigations on cerebrospinal fluid-derived EVs were found. A significant number of studies lacked optimal description of the methodology and/or characterization of the isolated EVs. Moreover, many studies aimed to capture brain-derived EVs, but often capture-proteins with low brain specificity were used. Considering biomarkers, miRNAs were the most investigated molecular type, but based on the studies analyzed it was not possible to identify robust biomarker candidates for the investigated disorders. Additionally, we describe the contribution of EV studies in illuminating the pathophysiology of psychiatric disorders, including research on insulin resistance, inflammation, mitochondrial dysfunction, and the microbiota. We conclude that there is a shortage of studies with detailed methodology description and EV sample characterization in psychiatric research. To exploit the potential of EVs to investigate psychiatric disorders and identify biomarkers more studies and validated protocols using capture proteins with high specificity to brain cells are needed. The review protocol was pre-registered in the PROSPERO database under the registration number CRD42021277534.
Collapse
Affiliation(s)
- Mette Elise Tunset
- Department of Psychosis and Rehabilitation, Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway; Department of Mental Health- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Hanne Haslene-Hox
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Jeanette Brun Larsen
- Department of Psychosis and Rehabilitation, Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mona Nygård
- Department of Psychosis and Rehabilitation, Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway; Department of Mental Health- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Arne Vaaler
- Department of Mental Health- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Acute Psychiatry, Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
18
|
Zhao S, Ling Y, Zhang B, Wang D, Sun L. Integrated multi-omics analysis reveals the underlying molecular mechanism for the neurotoxicity of triclosan in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117537. [PMID: 39671762 DOI: 10.1016/j.ecoenv.2024.117537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Triclosan (TCS) is a primary broad-spectrum antibacterial agent commonly present in the environment. As a new type of environmental endocrine disruptor, it causes range of toxicities, including hepatotoxicity and reproductive toxicity. However, few research has examined the toxicity of long-term TCS-induced exposure in zebrafish at ambient concentrations, in contrast to the early life stage investigations. In the present study, we investigated the behavioral effects of TCS at environmental concentrations (300 μg/L) during constant exposure in zebrafish adults;An integrated transcriptomic and metabolomic analysis was performed to analyze the molecular mechanism underlying behavioral effects of TCS. Our results show that TCS exposure significantly induces behavioral disruptions such as anxiety-like behavior, memory problems, and altered social preferences. Histopathological investigations and neural ultrastructural observations demonstrated that TCS could induce variable levels of pyknosis and vacuolation in the cytoplasm of neurons as well as torn mitochondrial membranes, shrinkage and broken or absent cristae. Transcriptomics indicated that immune- and metabolism-related gene expression patterns were severely disturbed by TCS. Metabolomic analysis revealed 82 distinct metabolites in adult zebrafish exposed to TCS. Lipid metabolism, especially glycerophospholipid metabolism, and amino acid regulation pathways were co-enriched by multi-omics combinatorial analysis. Hence, this study highlights a number of biomarkers for the risk assessment of TCS against non-target organisms, offering a reference dataset for the behavioral toxicity of TCS to zebrafish, and strengthening the early warning, management, and control of TCS pollution.
Collapse
Affiliation(s)
- Shasha Zhao
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yuhang Ling
- First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang 313000, China
| | - Baohua Zhang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Danting Wang
- Department of Transfusion, The West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu 610041, China.
| | - Limei Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
19
|
Xia M, Lu J, Lan J, Teng T, Shiao R, Sun H, Jin Z, Liu X, Wang J, Wu H, Wang C, Yi H, Qi Q, Li J, Schneeberger M, Shen W, Lu B, Chen L, Ilanges A, Zhou X, Yu X. Elevated IL-22 as a result of stress-induced gut leakage suppresses septal neuron activation to ameliorate anxiety-like behavior. Immunity 2025; 58:218-231.e12. [PMID: 39644894 DOI: 10.1016/j.immuni.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/28/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
Psychological stress and its sequelae pose a major challenge to public health. Immune activation is conventionally thought to aggravate stress-related mental diseases such as anxiety disorders and depression. Here, we sought to identify potentially beneficial consequences of immune activation in response to stress. We showed that stress led to increased interleukin (IL)-22 production in the intestine as a result of stress-induced gut leakage. IL-22 was both necessary and sufficient to attenuate stress-induced anxiety behaviors in mice. More specifically, IL-22 gained access to the septal area of the brain and directly suppressed neuron activation. Furthermore, human patients with clinical depression displayed reduced IL-22 levels, and exogenous IL-22 treatment ameliorated depressive-like behavior elicited by chronic stress in mice. Our study thus identifies a gut-brain axis in response to stress, whereby IL-22 reduces neuronal activation and concomitant anxiety behavior, suggesting that early immune activation can provide protection against psychological stress.
Collapse
Affiliation(s)
- Mengyu Xia
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Junmei Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiabin Lan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Rani Shiao
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Hongbin Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zheyu Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xueer Liu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Jie Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Hongyan Wu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Changchun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Han Yi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qingqing Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Marc Schneeberger
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Wei Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Boxun Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lei Chen
- Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Anoj Ilanges
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
20
|
Wang P, Hu J, Chen C, Jiang Z, Zhang Y, Lin K, Liao L, Wang X. The immune regulatory mechanism of ketamine-induced psychiatric disorders: A new perspective on drug-induced psychiatric symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111194. [PMID: 39542202 DOI: 10.1016/j.pnpbp.2024.111194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Ketamine, a psychoactive substance strictly regulated by international drug conventions, is classified as a "new type drug" due to its excitatory, hallucinogenic, or inhibitory effects. The etiology of ketamine-induced psychiatric symptoms is multifaceted, with the immune regulatory mechanism being the most prominent among several explanatory theories. In recent years, the interaction between the immune system and nervous system have garnered significant attention in neuropsychiatric disorder research. Notably, the infiltration of peripheral lymphocytes into the central nervous system has emerged as an early hallmark of certain neuropsychiatric disorders. However, a notable gap exists in the current literature, regarding the immune regulatory mechanisms, specifically the peripheral immune alterations, associated with ketamine-induced psychiatric symptoms. To address this void, this article endeavors to provide a comprehensive overview of the pathophysiological processes implicated in psychiatric disorders or symptoms, encompassing those elicited by ketamine. This analysis delves into aspects such as nerve damage, alterations within the central immune system, and the regulation of the peripheral immune system. By emphasizing the intricate crosstalk between the peripheral immune system and the central nervous system, this study sheds light on their collaborative role in the onset and progression of psychiatric diseases or symptoms. This insight offers fresh perspectives on the underlying mechanisms, diagnosis and therapeutic strategies for mental disorders stemming from drug abuse.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Junmei Hu
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Congliang Chen
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zihan Jiang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yu Zhang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Kexin Lin
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Linchuan Liao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Xia Wang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Jiang W, He Y, Liu Q, Peng S, Ni Y, Zhong X, Guo L. Associations between childhood maltreatment, peripheral immune biomarkers, and psychiatric symptoms in adults: A cohort study of over 138,000 participants. Brain Behav Immun 2025; 123:840-850. [PMID: 39477077 DOI: 10.1016/j.bbi.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/24/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Few studies have integrated the impact of individual and cumulative childhood maltreatment on multiple psychiatric symptoms, with the mechanisms underlying these associations largely unknown. This study aims to comprehensively assess the associations between childhood maltreatment, multiple peripheral immune biomarkers, and various psychiatric symptoms in adulthood and to explore whether peripheral immune inflammation plays a mediator role in the associations between childhood maltreatment and psychiatric symptoms in adulthood. METHODS Using data from the UK Biobank, we constructed a retrospective cohort study of 138,915 participants who provided self-reported childhood maltreatment and had peripheral immune biomarkers assessed. We examined seven types of psychiatric symptoms in adulthood, including depressive symptoms, anxiety symptoms, mania, post-traumatic stress disorder (PTSD), psychotic experiences, self-harm, and alcohol use disorder. Logistic regression models were performed to explore the associations between childhood maltreatment, immune biomarkers, and psychiatric symptoms, calculating the average marginal effects for each indicator of childhood maltreatment. Mediation analyses were conducted to determine the extent to which the immune biomarkers could explain the association between childhood maltreatment and psychiatric symptoms in adulthood. Subgroup and sensitivity analyses were also performed. RESULTS Among the participants, 77,937 (56.10 %) were female, with a mean age of 55.91 (SD: 7.73) years at baseline. There were dose-response relationships existed between the accumulation of childhood maltreatment indicators and all seven assessed psychiatric symptoms and multimorbidity in adulthood (e.g., for depressive symptoms, OR = 1.67 [95 %CI, 1.57 to 1.78] for one childhood maltreatment indicator; OR = 2.77 [95 % CI, 2.58 to 2.97] for two; OR = 4.91 [95 % CI, 4.61 to 5.24] for three or more). Emotional abuse and physical neglect showed the strongest average marginal effects on psychiatric symptoms. Levels of C-reactive protein (CRP) and counts of leukocytes and neutrophils were positively associated with depressive symptoms (e.g., OR = 1.13 [95 % CI, 1.08 to 1.17] for CRP level), anxiety symptoms, PTSD, and psychotic experiences. Moreover, levels of CRP partially mediated the association between childhood maltreatment scores and psychiatric symptoms, albeit with a relatively low mediation proportion (0.65 %-1.77 %). CONCLUSIONS Our findings underscore the importance of interventions that address multiple forms of childhood maltreatment to mitigate long-term mental health challenges substantially. While peripheral immunity responses may serve as predictors of mental health problems, they might not to be the primary mechanism through which childhood maltreatment influences psychiatric symptoms in adulthood.
Collapse
Affiliation(s)
- Weiqing Jiang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China
| | - Yitong He
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China
| | - Qianyu Liu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China
| | - Shuyi Peng
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China
| | - Yanyan Ni
- The University of Hong Kong, LKS Faculty of Medicine, Hong Kong Special Administrative Region, China
| | - Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, China.
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
22
|
Leboyer M, Foiselle M, Tchitchek N, Tamouza R, Lorenzon R, Richard JR, Arrouasse R, Le Corvoisier P, Le Dudal K, Vicaut E, Ellul P, Rosenzwajg M, Klatzmann D. Low-dose interleukin-2 in patients with bipolar depression: A phase 2 randomised double-blind placebo-controlled trial. Brain Behav Immun 2025; 123:177-184. [PMID: 39242054 DOI: 10.1016/j.bbi.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
Immune abnormalities including an insufficiency of regulatory T cells (Treg) and increased blood-based inflammatory markers have been observed in bipolar disorders (BD), particularly during depression. As Tregs are pivotal to control inflammation, Treg stimulation by low-dose IL-2 (IL-2LD) could have a therapeutic impact on bipolar depression. We performed a randomized, double-blind, placebo-controlled (2 active: 1 placebo) proof-of-concept trial of add-on IL-2LD in patients with bipolar depression. Patients received a placebo or IL-2LD (1MIU) once a day for 5 days, and then once a week for 4 weeks starting on week 2. The primary objective was to demonstrate a biological Treg response to IL-2LD assessed by fold increase in Treg percentage of CD4 + cells from baseline to day 5. Secondary objectives included safety assessment and mood improvement throughout the study period. This trial is registered with ClinicalTrials.gov, number NCT04133233. Fourteen patients with bipolar depression were included, with 4 receiving placebo and 10 IL-2LD. Baseline clinical and biological characteristics were balanced between groups. The primary evaluation criterion was met, with IL-2LD expanding 1.17 [95 % CI 1.01-1.34] vs 1.01 [95 % CI 0.90-1.12] (p = 0.0421) and activating Tregs. Secondary evaluation criteria were also met with significant improvements of depressive symptoms and global functioning from day-15 onwards in the IL-2LD treated patients. The treatment was well-tolerated, with no serious adverse events related to treatment. This proof-of-concept trial shows that stimulating Tregs in patients with bipolar depression is safe and associated with clinical improvements. This supports a pathophysiological role of inflammation in BD and warrants pursuing the evaluation of IL-2LD as an adjunct treatment of major mood disorders.
Collapse
Affiliation(s)
- Marion Leboyer
- Université Paris Est Créteil (UPEC), AP-HP, Department of Psychiatry, Hôpital Henri Mondor, DMU IMPACT, FHU ADAPT, INSERM U955, IMRB, Translational NeuroPsychiatry Laboratory, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France.
| | - Marianne Foiselle
- Université Paris Est Créteil (UPEC), AP-HP, Department of Psychiatry, Hôpital Henri Mondor, DMU IMPACT, FHU ADAPT, INSERM U955, IMRB, Translational NeuroPsychiatry Laboratory, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Nicolas Tchitchek
- Sorbonne Université, INSERM, UMR_S 959, Immunology-Immunopathology- Immunotherapy (i3), F-75651 Paris, France
| | - Ryad Tamouza
- Université Paris Est Créteil (UPEC), AP-HP, Department of Psychiatry, Hôpital Henri Mondor, DMU IMPACT, FHU ADAPT, INSERM U955, IMRB, Translational NeuroPsychiatry Laboratory, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Roberta Lorenzon
- Sorbonne Université, INSERM, UMR_S 959, Immunology-Immunopathology- Immunotherapy (i3), F-75651 Paris, France; AP-HP, Pitié-Salpêtrière Hospital, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), F-75651 Paris, France
| | - Jean-Romain Richard
- Université Paris Est Créteil (UPEC), AP-HP, Department of Psychiatry, Hôpital Henri Mondor, DMU IMPACT, FHU ADAPT, INSERM U955, IMRB, Translational NeuroPsychiatry Laboratory, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Raphaele Arrouasse
- Inserm, Centre d'Investigation Clinique 1430 et AP-HP, Hôpitaux Universitaires Henri Mondor, Univ Paris Est Creteil, F-94010 Créteil, France
| | - Philippe Le Corvoisier
- Inserm, Centre d'Investigation Clinique 1430 et AP-HP, Hôpitaux Universitaires Henri Mondor, Univ Paris Est Creteil, F-94010 Créteil, France
| | - Katia Le Dudal
- Inserm, Centre d'Investigation Clinique 1430 et AP-HP, Hôpitaux Universitaires Henri Mondor, Univ Paris Est Creteil, F-94010 Créteil, France
| | - Eric Vicaut
- AP-HP, Saint Louis/Lariboisière Hospitals, Unité de recherche clinique and Université Paris 7, F-75010 Paris, France
| | - Pierre Ellul
- Sorbonne Université, INSERM, UMR_S 959, Immunology-Immunopathology- Immunotherapy (i3), F-75651 Paris, France
| | - Michelle Rosenzwajg
- Sorbonne Université, INSERM, UMR_S 959, Immunology-Immunopathology- Immunotherapy (i3), F-75651 Paris, France; AP-HP, Pitié-Salpêtrière Hospital, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), F-75651 Paris, France
| | - David Klatzmann
- Sorbonne Université, INSERM, UMR_S 959, Immunology-Immunopathology- Immunotherapy (i3), F-75651 Paris, France; AP-HP, Pitié-Salpêtrière Hospital, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), F-75651 Paris, France.
| |
Collapse
|
23
|
Wang JL, Li B, He XX, Gao CY, Wang JQ, Guo RY, Fan JY, Zhang YN, Quan MY, Song S, Xie T. The Protective Effect of Astragalus Polysaccharide on Experimental Autoimmune Encephalomyelitis in Mice by Activating the AMPK/JAK/ STAT3/Arginase-1 Signaling Pathway. Curr Pharm Biotechnol 2025; 26:863-871. [PMID: 39289935 DOI: 10.2174/0113892010314302240902073112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE This study aimed to investigate the protective effect and mechanism of Astragalus polysaccharide (APS) on autoimmune encephalomyelitis. METHODS C57BL/6 mice were randomly divided into the blank control group, EAE group, and APS intervention group (n=15/group). The Experimental Autoimmune Encephalomyelitis (EAE) mouse model was established by active immunization. The pathological changes in the spinal cord were evaluated by Hematoxylin-eosin (HE) and Luxol Fast Blue (LFB) staining. The number of CD11b+ Gr-1+ myeloid-derived suppressor cells (MDSCs) in the spleen tissues of mice in each group was determined by immunofluorescence staining. The expression of Arginase-1 in the spinal cord and spleen of each group was detected by immunofluorescence double staining. The TNF-α, IL-6, and Arginase-1 levels in the spleen were detected by ELISA assay. A western blot was used to detect the protein expression of the AMPK/JAK/STAT3/Arginase-1 signaling pathway. RESULTS After the intervention of APS, the incidence of autoimmune encephalomyelitis in mice of the APS group was significantly lower than that in the EAE group, and the intervention of APS could significantly delay the onset time in the EAE mice, and the score of neurological function deficit in mice was significantly lower than that in EAE group (P < 0.05). APS intervention could reduce myelin loss and improve the inflammatory response of EAE mice. Moreover, it could induce the expression of CD11b+ GR-1 + bone MDSCs in the spleen and increase the expression of Arginase-1 in the spinal cord and spleen. This study further demonstrated that APS can protect EAE mice by activating the AMPK/JAK/STAT3/Arginase-1 signaling pathway. CONCLUSION After the intervention of APS, myelin loss and inflammatory response of EAE mice were effectively controlled. APS promoted the secretion of Arginase-1 by activating MDSCs and inhibited CD4+T cells by activating AMPK/JAK/STAT3/Arginase-1 signaling pathway, thus improving the clinical symptoms and disease progression of EAE mice.
Collapse
Affiliation(s)
- Jin-Li Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, 050051, Hebei, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, 050051, Hebei, China
| | - Xue-Xin He
- Department of Rehabilitation, The Traditional Chinese Medical Hosptial of Shijiazhuang, 050000 Shijiazhuang, Hebei, China
| | - Chang-Yu Gao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, 050051, Hebei, China
| | - Jue-Qiong Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, 050051, Hebei, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, 050051, Hebei, China
| | - Jing-Yi Fan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, 050051, Hebei, China
| | - Ya-Nan Zhang
- Department of Neurology, Hebei Chest Hospital, Shijiazhuang, 050041, Hebei, China
| | - Mo-Yuan Quan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, 050051, Hebei, China
| | - Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Tao Xie
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, 050051, Hebei, China
| |
Collapse
|
24
|
Loiodice S, D'Acquisto F, Drinkenburg P, Suojanen C, Llorca PM, Manji HK. Neuropsychiatric drug development: Perspectives on the current landscape, opportunities and potential future directions. Drug Discov Today 2025; 30:104255. [PMID: 39615745 DOI: 10.1016/j.drudis.2024.104255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Mental health represents a major challenge to our societies. One key difficulty associated with neuropsychiatric drug development is the lack of connection between the underlying biology and the disease. Nevertheless, there is growing optimism in this field with recent drug approvals (the first in decades) and renewed interest from pharmaceutical companies and investors. Here we review some of the most promising drug discovery and development endeavors currently deployed by industry. We also present elements illustrating the renewed interest from key stakeholders in neuropsychiatric drug development and provide potential future directions in this field.
Collapse
Affiliation(s)
| | - Fulvio D'Acquisto
- William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK; School of Life and Health Science, University of Roehampton, London, UK
| | - Pim Drinkenburg
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Christian Suojanen
- Broadreach Global LLC, Miami, FL, USA; European Brain Council, Brussels, Belgium
| | - Pierre-Michel Llorca
- Department of Psychiatry, CHU Clermont-Ferrand, University of Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal (UMR 6602), Clermont-Ferrand, France; Fondation FondaMental, Créteil, France
| | - Husseini K Manji
- Oxford University, Oxford, UK; Yale University, New Haven, CT, USA; UK Government Mental Health Mission, London, UK
| |
Collapse
|
25
|
San Felipe D, Martín-Sánchez B, Zekri-Nechar K, Moya M, Llorente R, Zamorano-León JJ, Marco EM, López-Gallardo M. Consequences of Early Maternal Deprivation on Neuroinflammation and Mitochondrial Dynamics in the Central Nervous System of Male and Female Rats. BIOLOGY 2024; 13:1011. [PMID: 39765678 PMCID: PMC11672930 DOI: 10.3390/biology13121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Early life stress (ELS) is associated with an increased risk for neuropsychiatric disorders, and both neuroinflammation and mitochondrial dysfunction seem to be central to mental health. Herein, using an animal model of ELS, a single episode of maternal deprivation (MD, 24 h on pnd 9) extensively documented to elicit behavioural anomalies in male and female Wistar rats, we investigated its consequences in terms of neuroinflammation and mitochondrial dynamics in the prefrontal cortex (PFC) and the hippocampal formation (HCF). MD differentially affected the brain content of cytokines: MD induced a transient increase in pro-inflammatory cytokines (IL-1β and IL-6) in the PFC, as well as in the levels of the anti-inflammatory cytokine IL-10 in the HCF. MD also induced a significant decrease mitochondria citrate synthase activity, but MD did not exert significant changes in mitochondria Complex IV activity, revealing a generalized decrease in mitochondrial density without any change in mitochondrial respiration. In the present study, we demonstrate that MD induces neuroinflammatory processes in specific brain regions. Additional research is needed to better understand the temporal pattern of such changes, their impact on the developing brain, and their participation in the already well-known behavioural consequences of MD.
Collapse
Affiliation(s)
- Diego San Felipe
- Department of Physiology, School of Medicine, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (D.S.F.); (B.M.-S.); (M.M.); (R.L.); (M.L.-G.)
| | - Beatriz Martín-Sánchez
- Department of Physiology, School of Medicine, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (D.S.F.); (B.M.-S.); (M.M.); (R.L.); (M.L.-G.)
| | - Khaoula Zekri-Nechar
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Department of Public Health and Maternal-Child Health, School of Medicine, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain;
| | - Marta Moya
- Department of Physiology, School of Medicine, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (D.S.F.); (B.M.-S.); (M.M.); (R.L.); (M.L.-G.)
| | - Ricardo Llorente
- Department of Physiology, School of Medicine, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (D.S.F.); (B.M.-S.); (M.M.); (R.L.); (M.L.-G.)
| | - Jose J. Zamorano-León
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Department of Public Health and Maternal-Child Health, School of Medicine, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain;
| | - Eva M. Marco
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, C/José Antonio Novais 12, 28040 Madrid, Spain
| | - Meritxell López-Gallardo
- Department of Physiology, School of Medicine, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (D.S.F.); (B.M.-S.); (M.M.); (R.L.); (M.L.-G.)
| |
Collapse
|
26
|
Ye F, Wei C, Wu A. The potential mechanism of mitochondrial homeostasis in postoperative neurocognitive disorders: an in-depth review. Ann Med 2024; 56:2411012. [PMID: 39450938 PMCID: PMC11514427 DOI: 10.1080/07853890.2024.2411012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 10/26/2024] Open
Abstract
Postoperative neurocognitive disorders (PND) are the most common neurological disorders following surgery and anaesthesia before and within 12 months after surgery, with a high prevalence in the geriatric population. PND can severely deteriorate the quality of life of patients, especially among the elderly, mainly manifested as memory loss, attention, decline and language comprehension disorders, mostly in elderly patients, with an incidence as high as 31%. Previous studies have also raised the possibility of accelerated cognitive decline and underlying neuropathological processes associated with diseases that affect cognitive performance (e.g. Alzheimer's dementia) for reasons related to anaesthesia and surgery. Currently, most research on PND has focused on various molecular pathways, especially in the geriatric population. The various hypotheses that have been proposed regarding the mechanisms imply peripheral neuroinflammation, oxidative stress, mitochondrial homeostasis, synaptic function, autophagy disorder, blood-brain barrier dysfunction, the microbiota-gut-brain axis and lack of neurotrophic support. However, the underlying pathogenesis and molecular mechanisms of PND have not yet been uncovered. Recent research has focused on mitochondrial homeostasis. In this paper, we present a review of various studies to better understand and characterize the mechanisms of associated cognitive dysfunction. As the biochemical basis of PND becomes more clearly defined, future treatments based on mitochondrial homeostasis modulation can prove to be very promising.
Collapse
Affiliation(s)
- Fan Ye
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Varghese SM, Patel S, Nandan A, Jose A, Ghosh S, Sah RK, Menon B, K V A, Chakravarty S. Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives. Mol Neurobiol 2024; 61:10398-10447. [PMID: 38730081 DOI: 10.1007/s12035-024-04205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Depression is a highly prevalent psychological disorder characterized by persistent dysphoria, psychomotor retardation, insomnia, anhedonia, suicidal ideation, and a remarkable decrease in overall well-being. Despite the prevalence of accessible antidepressant therapies, many individuals do not achieve substantial improvement. Understanding the multifactorial pathophysiology and the heterogeneous nature of the disorder could lead the way toward better outcomes. Recent findings have elucidated the substantial impact of compromised blood-brain barrier (BBB) integrity on the manifestation of depression. BBB functions as an indispensable defense mechanism, tightly overseeing the transport of molecules from the periphery to preserve the integrity of the brain parenchyma. The dysfunction of the BBB has been implicated in a multitude of neurological disorders, and its disruption and consequent brain alterations could potentially serve as important factors in the pathogenesis and progression of depression. In this review, we extensively examine the pathophysiological relevance of the BBB and delve into the specific modifications of its components that underlie the complexities of depression. A particular focus has been placed on examining the effects of peripheral inflammation on the BBB in depression and elucidating the intricate interactions between the gut, BBB, and brain. Furthermore, this review encompasses significant updates on the assessment of BBB integrity and permeability, providing a comprehensive overview of the topic. Finally, we outline the therapeutic relevance and strategies based on BBB in depression, including COVID-19-associated BBB disruption and neuropsychiatric implications. Understanding the comprehensive pathogenic cascade of depression is crucial for shaping the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Shamili Mariya Varghese
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Shashikant Patel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Soumya Ghosh
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
28
|
Hässler S, Lorenzon R, Binvignat M, Ribet C, Roux A, Johanet C, Amouyal C, Amselem S, Berenbaum F, Benveniste O, Cacoub P, Grateau G, Hartemann A, Saadoun D, Salem JE, Sellam J, Seksik P, Vicaut E, Mariotti-Ferrandiz E, Rosenzwajg M, Klatzmann D. Clinical correlates of lifetime and current comorbidity patterns in autoimmune and inflammatory diseases. J Autoimmun 2024; 149:103318. [PMID: 39357469 DOI: 10.1016/j.jaut.2024.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Autoimmune and inflammatory diseases (AIDs) are a heterogeneous group of disorders with diverse etiopathogenic mechanisms. This study explores the potential utility of family history, together with present and past comorbidities, in identifying distinct etiopathogenic subgroups. This approach may facilitate more accurate diagnosis, prognosis and personalized therapy. METHODS We performed a multiple correspondence analysis on patients' comorbidities, followed by hierarchical principal component clustering of clinical data from 48 healthy volunteers and 327 patients with at least one of 19 selected AIDs included in the TRANSIMMUNOM cross-sectional study. RESULTS We identified three distinct clusters characterized by: 1) the absence of comorbidities, 2) polyautoimmunity, and 3) polyinflammation. These clusters were further distinguished by specific comorbidities and biological parameters. Autoantibodies, allergies, and viral infections characterized the polyautoimmunity cluster, while older age, BMI, depression, cancer, hypertension, periodontal disease, and dyslipidemia characterized the polyinflammation cluster. Rheumatoid arthritis patients were distributed across all three clusters. They had higher DAS28 and prevalence of extra-articular manifestations when belonging to the polyinflammation and polyautoimmunity clusters, and also lower ACPA and RF seropositivity and higher pain scores within the polyinflammation cluster. We developed a model allowing to classify AID patients into comorbidity clusters. CONCLUSIONS In this study, we have uncovered three distinct comorbidity profiles among AID patients. These profiles suggest the presence of distinct etiopathogenic mechanisms underlying these subgroups. Validation, longitudinal stability assessment, and exploration of their impact on therapy efficacy are needed for a comprehensive understanding of their potential role in personalized medicine.
Collapse
Affiliation(s)
- Signe Hässler
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, 75013, France; Biotherapy (CIC-BTi) and Inflammation, Immunopathology, Biotherapy Department (i2B), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75013, France
| | - Roberta Lorenzon
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, 75013, France; Biotherapy (CIC-BTi) and Inflammation, Immunopathology, Biotherapy Department (i2B), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75013, France
| | - Marie Binvignat
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, 75013, France; Biotherapy (CIC-BTi) and Inflammation, Immunopathology, Biotherapy Department (i2B), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75013, France; INSERM UMRS 938, Centre de Recherche Saint-Antoine, FHU PaCeMM, Sorbonne Université, Paris, 75012, France; Rheumatology Department, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75012, France
| | - Claire Ribet
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, 75013, France; Biotherapy (CIC-BTi) and Inflammation, Immunopathology, Biotherapy Department (i2B), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75013, France
| | - Alexandra Roux
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, 75013, France; Biotherapy (CIC-BTi) and Inflammation, Immunopathology, Biotherapy Department (i2B), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75013, France
| | - Catherine Johanet
- Immunology Department, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75012, France
| | - Chloé Amouyal
- Diabetology Department, Institute of Cardiometabolism and Nutrition (ICAN), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75013, France
| | - Serge Amselem
- Sorbonne Université, INSERM, Childhood genetic diseases, Armand-Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75012, France
| | - Francis Berenbaum
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, FHU PaCeMM, Sorbonne Université, Paris, 75012, France; Rheumatology Department, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75012, France
| | - Olivier Benveniste
- Internal Medicine and Clinical Immunology Department, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75013, France
| | - Patrice Cacoub
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, 75013, France; Internal Medicine and Clinical Immunology Department, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75013, France
| | - Gilles Grateau
- Internal Medicine Department, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75020, France
| | - Agnès Hartemann
- Diabetology Department, Institute of Cardiometabolism and Nutrition (ICAN), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75013, France
| | - David Saadoun
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, 75013, France; Internal Medicine and Clinical Immunology Department, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75013, France
| | - Joe-Elie Salem
- CIC-1901, Pharmacology Department, INSERM, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75013, France
| | - Jérémie Sellam
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, FHU PaCeMM, Sorbonne Université, Paris, 75012, France; Rheumatology Department, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75012, France
| | - Philippe Seksik
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Saint-Antoine, Department of Gastroenterology, Paris, 75013, France
| | - Eric Vicaut
- Unité de recherche clinique, UMR 942, Saint-Louis Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75010, France
| | | | - Michelle Rosenzwajg
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, 75013, France; Biotherapy (CIC-BTi) and Inflammation, Immunopathology, Biotherapy Department (i2B), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75013, France
| | - David Klatzmann
- Immunology, Immunopathology, Immunotherapy (i3), Sorbonne Université, INSERM, Paris, 75013, France; Biotherapy (CIC-BTi) and Inflammation, Immunopathology, Biotherapy Department (i2B), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 75013, France.
| |
Collapse
|
29
|
Peng S, Deng J, Zhou Y, Lu Y, Chen Z, Yan W, Huang X. Causal associations between sexually transmitted infections, depression, and self-harm: a mendelian randomization and cross-sectional study. BMC Infect Dis 2024; 24:1339. [PMID: 39578793 PMCID: PMC11585095 DOI: 10.1186/s12879-024-10218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND The causal relationships between sexually transmitted infections, depression, and self-harm remain unclear. METHODS We executed various Mendelian Randomization (MR) analyses. At the same time, a cross-sectional analysis from NHANES was used for verification and an enrichment analysis was also utilized to explore the potential common gene functions. RESULTS We found that STIs may have a potential causal effect on depression (P = 0.002) and self-harm (P = 0.003). Conversely, self-harm has been identified as a risk factor for the acquisition of STIs (P = 0.006), while there is no evidence to support an effect of depression on STIs. Furthermore, mediation MR indicated that monocyte absolute count played a mediating role in the association between STIs and depression, accounting for 7.7%. And then, the weighted regression analysis of the cross-sectional analysis demonstrated a significant association between one of the common STIs, HPV, and depression. Gene enrichment analysis suggested that the PI3K-Akt signalling pathway and the infectious virus signalling pathway may represent a common underlying pathogenesis. CONCLUSION STIs may increase the risk of depression and self-harm, while self-harm might also represent a risk factor for STIs, which could provide insights and a foundation for the control of STIs and mental health monitoring in clinical practice.
Collapse
Affiliation(s)
- Shixiong Peng
- Department of Dermatology, The Affiliated Hospital of Guilin Medical University, Guilin Medical University, Lequn Road, Guilin, China
| | - Jia Deng
- Department of Dermatology, The Affiliated Hospital of Guilin Medical University, Guilin Medical University, Lequn Road, Guilin, China
| | - Yitong Zhou
- Department of Dermatology, The Affiliated Hospital of Guilin Medical University, Guilin Medical University, Lequn Road, Guilin, China
| | - Yonglong Lu
- Department of Dermatology, The Affiliated Hospital of Guilin Medical University, Guilin Medical University, Lequn Road, Guilin, China
| | - Zian Chen
- Department of Dermatology, The Affiliated Hospital of Guilin Medical University, Guilin Medical University, Lequn Road, Guilin, China
| | - Wenjie Yan
- Department of Dermatology, The Affiliated Hospital of Guilin Medical University, Guilin Medical University, Lequn Road, Guilin, China.
| | - Xi Huang
- Department of Dermatology, The Affiliated Hospital of Guilin Medical University, Guilin Medical University, Lequn Road, Guilin, China.
| |
Collapse
|
30
|
Liu X, Ling Z, Cheng Y, Wu L, Shao L, Gao J, Lei W, Zhu Z, Ding W, Song Q, Zhao L, Jin G. Oral fungal dysbiosis and systemic immune dysfunction in Chinese patients with schizophrenia. Transl Psychiatry 2024; 14:475. [PMID: 39572530 PMCID: PMC11582559 DOI: 10.1038/s41398-024-03183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Oral microbial dysbiosis contributes to the development of schizophrenia (SZ). While numerous studies have investigated alterations in the oral bacterial microbiota among SZ patients, investigations into the fungal microbiota, another integral component of the oral microbiota, are scarce. In this cross-sectional study, we enrolled 118 Chinese patients with SZ and 97 age-matched healthy controls (HCs) to evaluate the oral fungal microbiota from tongue coating samples using internal transcribed spacer 1 amplicon sequencing and assess host immunity via multiplex immunoassays. Our findings revealed that SZ patients exhibited reduced fungal richness and significant differences in β-diversity compared to HCs. Within the oral fungal communities, we identified two distinct fungal clusters (mycotypes): Candida and Malassezia, with SZ patients showing increased Malassezia and decreased Candida levels. These key functional oral fungi may serve as potential diagnostic biomarkers for SZ. Furthermore, SZ patients displayed signs of immunological dysfunction, characterized by elevated levels of pro-inflammatory cytokines such as IL-6 and TNF-α, and chemokines including MIP-1α and MCP-1. Importantly, Malassezia mycotype correlated positively with peripheral pro-inflammatory cytokines, while Candida mycotype exhibited a negative correlation with these cytokines. In conclusion, we have demonstrated, for the first time, the presence of altered oral fungal communities and systemic immune dysfunction in Chinese SZ patients compared to HCs, providing novel insights into the potential role of oral fungi as biomarkers and the broader implications for understanding SZ pathogenesis.
Collapse
Affiliation(s)
- Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Lingbin Wu
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| | - Li Shao
- School of Clinical Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, 250000, China
| | - Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Qinghai Song
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| | - Longyou Zhao
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China.
| | - Guolin Jin
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China.
| |
Collapse
|
31
|
Ramesh R, Sundaresh A, Rajkumar RP, Negi VS, Vijayalakshmi MA, Kamalanathan AS. Occurrence of protease-like catalytic activity in the polyclonal IgG in schizophrenia and bipolar disorder. Sci Rep 2024; 14:27970. [PMID: 39543211 PMCID: PMC11564965 DOI: 10.1038/s41598-024-75200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/03/2024] [Indexed: 11/17/2024] Open
Abstract
Neuro-immune dysfunction and inflammation are said to be involved in the aetiology of major mental illnesses. This study describes the assessment of the protease-like catalytic function of serum IgG in psychiatric disorders, schizophrenia and bipolar disorder, along with healthy controls of Indian ethnicity. Systemic lupus erythematosus patients experiencing neuropsychiatry conditions were included as comparators for the comprehensive evaluation of IgG catalytic function. The catalytic activity of serum IgG was determined using the generic peptide substrate Pro-Phe-Arg-methylcoumarylamide, and then the apparent kinetic data was computed. Compared to healthy controls (n = 25), the activity of those with schizophrenia (n = 30) was found to be 11-fold higher. The neuropsychiatry lupus patients (n = 25) exhibited 2.7 times less activity than the schizophrenia group. The IgG activity of the bipolar patients' (n = 30) were found to be 2.9 and 12 times higher than lupus and healthy controls. IgG activity showed a modest, no significant, link with PANSS positive and negative disease scores, in a subset of schizophrenia patients. The study's findings express presence of catalytic antibodies in the blood as well as neuro-immune dysfunction in major psychosis disorders. In addition, subsets of schizophrenia patients indicate presence of autoimmune component in them.
Collapse
Affiliation(s)
- Rajendran Ramesh
- Centre for BioSeparation Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Aparna Sundaresh
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006, India
| | - Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006, India
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006, India
| | - M A Vijayalakshmi
- Centre for BioSeparation Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - A S Kamalanathan
- Centre for BioSeparation Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
32
|
Jin Z. New technology and emerging theories driving progress in neuropsychiatric disorders. FUNDAMENTAL RESEARCH 2024; 4:1349-1350. [PMID: 39734550 PMCID: PMC11670723 DOI: 10.1016/j.fmre.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024] Open
Affiliation(s)
- Zengliang Jin
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
33
|
Liu D, Zhu C, Wei H, Xu Q. A mouse model of schizophrenia induced by autoantibodies against SFT2D2. Neuroscience 2024; 558:30-36. [PMID: 39067681 DOI: 10.1016/j.neuroscience.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Schizophrenia (SCZ) is a highly heterogeneous, severe neuropsychiatric disorder of unknown etiopathology. Increasing data indicate an overlap between schizophrenia and pathological processes related to immunological dysregulation as well as inflammation, such as high levels of pro-inflammatory substances in patients' blood and cerebrospinal fluid and autoantibodies against synaptic and nerve cell membrane proteins. Autoantibodies against SFT2D2 have been reported in patients with SCZ. However, their roles in inflammation have not yet been established. We performed a continuous intracerebroventricular infusion of polyclonal rabbit anti-SFT2D2-IgG in male C57BL/6 mice. Behavioral tests were conducted after 2 weeks of treatment. Our results showed an increased density of microglia and activated astrocytes in the primary somatosensory cortex of the anti-SFT2D2-IgG-infused mice. Quantitative reverse transcription-polymerase chain reactions showed that the expression of pro-inflammatory genes was upregulated in the primary somatosensory cortex and hippocampus of the anti-SFT2D2-IgG-infused mice. Additionally, the mice exhibited defective sensorimotor gating, memory deficits, motor impairment, and anxiety-related behaviors without signs of depression. These findings indicate that anti-SFT2D2 autoantibodies can induce encephalitis, cause a series of behavioral changes associated with schizophrenia, and offer a model for testing novel therapies to improve treatment strategies for a subgroup of patients with SCZ.
Collapse
Affiliation(s)
- Duilin Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Caiyun Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Wei
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China.
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Pignon B, Wiernik E, Ranque B, Robineau O, Carrat F, Severi G, Touvier M, Gouraud C, Ouazana Vedrines C, Pitron V, Hoertel N, Kab S, Tebeka S, Goldberg M, Zins M, Lemogne C. SARS-CoV-2 infection and the risk of depressive symptoms: a retrospective longitudinal study from the population-based CONSTANCES cohort. Psychol Med 2024; 54:1-10. [PMID: 39399920 PMCID: PMC11578902 DOI: 10.1017/s0033291724002435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Should COVID-19 have a direct impact on the risk of depression, it would suggest specific pathways for prevention and treatment. In this retrospective population-based study, we aimed to examine the association of prior SARS-CoV-2 infection with depressive symptoms, distinguishing self-reported v. biologically confirmed COVID-19. METHODS 32 007 participants from the SAPRIS survey nested in the French CONSTANCES cohort were included. COVID-19 was measured as followed: ad hoc serologic testing, self-reported PCR or serology positive test results, and self-reported COVID-19. Depressive symptoms were measured with the Center of Epidemiologic Studies-Depression Scale (CES-D). Outcomes were depressive symptoms (total CES-D score, its four dimensions, and clinically significant depressive symptoms) and exposure was prior COVID-19 (no COVID-19/self-reported unconfirmed COVID-19/biologically confirmed COVID-19). RESULTS In comparison to participants without COVID-19, participants with self-reported unconfirmed COVID-19 and biologically confirmed COVID-19 had higher CES-D scores (β for one interquartile range increase [95% CI]: 0.15 [0.08-0.22] and 0.09 [0.05-0.13], respectively) and somatic complaints dimension scores (0.15 [0.09-0.21] and 0.10 [0.07-0.13]). Only those with self-reported but unconfirmed COVID-19 had higher depressed affect dimension scores (0.08 [0.01-0.14]). Accounting for ad hoc serologic testing only, the CES-D score and the somatic complaints dimension were only associated with the combination of self-reported COVID-19 and negative serology test results. CONCLUSIONS The association between COVID-19 and depressive symptoms was merely driven by somatic symptoms of depression and did not follow a gradient consistent with the hypothesis of a direct impact of SARS-CoV-2 infection on the risk of depression.
Collapse
Affiliation(s)
- Baptiste Pignon
- Université Paris Cité, Paris Saclay University, Université de Versailles Saint-Quentin-en-Yvelines, INSERM, UMS 011 « Population-based Cohorts Unit », Paris, France
| | - Emmanuel Wiernik
- Université Paris Cité, Paris Saclay University, Université de Versailles Saint-Quentin-en-Yvelines, INSERM, UMS 011 « Population-based Cohorts Unit », Paris, France
| | - Brigitte Ranque
- Service de Médecine interne, AP-HP, Hôpital européen Georges-Pompidou, Paris, France
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Olivier Robineau
- Sorbonne Université, Inserm, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, Paris, France
- EA2694, Univ Lille, Centre Hospitalier de Tourcoing, Tourcoing, France
| | - Fabrice Carrat
- Sorbonne Université, Inserm, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, Paris, France
- Département de santé publique, AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, INSERM, CESP U1018, Gustave Roussy, Villejuif, France
- Department of Statistics, Computer Science, Applications ‘G. Parenti,’ University of Florence, Florence, Italy
| | - Mathilde Touvier
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Centre of Research in Epidemiology and Statistics (CRESS) – Université Paris Cité (CRESS), Bobigny, France
| | - Clément Gouraud
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
- Service de Psychiatrie de l'adulte, AP-HP, Hôpital Hôtel-Dieu, Paris, France
| | - Charles Ouazana Vedrines
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
- Service de Psychiatrie de l'adulte, AP-HP, Hôpital Hôtel-Dieu, Paris, France
| | - Victor Pitron
- Université Paris Cité, VIFASOM (Vigilance Fatigue Sommeil et Santé Publique), Paris, France
- Centre du Sommeil et de la Vigilance-Pathologie professionnelle, APHP, Hôtel-Dieu, Paris, France
| | - Nicolas Hoertel
- Université Paris Cité, INSERM U1266, Institut de Psychiatrie et Neuroscience de Paris, Paris, France
- Service de Psychiatrie et Addictologie, AP-HP, Hôpital Corentin-Celton, DMU Psychiatrie et Addictologie, Issy-les-Moulineaux, France
| | - Sofiane Kab
- Université Paris Cité, Paris Saclay University, Université de Versailles Saint-Quentin-en-Yvelines, INSERM, UMS 011 « Population-based Cohorts Unit », Paris, France
| | - Sarah Tebeka
- Université Paris Cité, INSERM U1266, Institut de Psychiatrie et Neuroscience de Paris, Paris, France
| | - Marcel Goldberg
- Université Paris Cité, Paris Saclay University, Université de Versailles Saint-Quentin-en-Yvelines, INSERM, UMS 011 « Population-based Cohorts Unit », Paris, France
| | - Marie Zins
- Université Paris Cité, Paris Saclay University, Université de Versailles Saint-Quentin-en-Yvelines, INSERM, UMS 011 « Population-based Cohorts Unit », Paris, France
| | - Cédric Lemogne
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
- Service de Psychiatrie de l'adulte, AP-HP, Hôpital Hôtel-Dieu, Paris, France
| |
Collapse
|
35
|
Yang Y, Liu R, Sun Y, Wu B, He B, Jia Y, Yan T. Schisandrin B restores M1/M2 balance through miR-124 in lipopolysaccharide-induced BV2 cells. J Pharm Pharmacol 2024; 76:1352-1361. [PMID: 39024474 DOI: 10.1093/jpp/rgae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/03/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND In this study, Schisandrin B (SCHB), the main active component of Schisandra chinensis extract (SCE), was taken as the research object. From gene, microRNA (miR-124), and the level of protein expression system to study the influences of microglia phenotype to play the role of nerve inflammation. METHODS In this study, we investigated the role of miR-124 in regulating microglial polarization alteration and NF-κB/TLR4 signaling and MAPK signaling in the LPS-induced BV2 by PCR, western blot, ELISA, immunofluorescence, and cytometry. RESULTS SCE and SCHB significantly reduced the NO-releasing, decreased the levels of TNF-α, iNOS, IBA-1, and ratio of CD86+/CD206+, and increased the levels of IL-10, Arg-1. In addition, SCE and SCHB inhibited the nucleus translocation of NF-κB, decreased the expressions of IKK-α, and increased the expressions of IκB-α. Besides, the expressions of TLR4 and MyD88, and the ratios of p-p38/p38, p-ERK/ERK, and p-JNK/JNK were reduced by SCE and SCHB treatments. Furthermore, SCHB upregulated the mRNA levels of miR-124. However, the effects of SCHB were reversed by the miR-124 inhibitor. CONCLUSIONS These findings suggested SCHB downregulated NF-κB/TLR4/MyD88 signaling pathway and MAPK signaling pathway via miR-124 to restore M1/M2 balance and alleviate depressive symptoms.
Collapse
Affiliation(s)
- Yunfang Yang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Rihong Liu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Yixuan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bosai He
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| |
Collapse
|
36
|
Yu X, Ye L, Liang H, Li H, Gao S, Xu C, Yang T, Shi Y, Liu L, Huang R. The alterations in CD4 +Treg cells across various phases of major depression. J Affect Disord 2024; 362:485-492. [PMID: 39009318 DOI: 10.1016/j.jad.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Major depression (MD) is recurrent and devastating mental disease with a high worldwide prevalence. Mounting evidence suggests neuroinflammation triggers cellular immune dysregulation, characterized by increased proportions of circulating monocytes, and T helper 17 cells and proinflammatory cytokines, thereby increasing susceptibility to MD. However, there is ambiguity in the findings of clinical studies that investigate CD4+ T regulatory (Treg) cells in MD. METHODS The proportion of CD4+ Treg cell from blood mononuclear cells was examined using flow cytometry in healthy controls (HCs: n = 96) and patients with first (FEMD: n = 62) or recurrent (RMD: n = 41) disease episodes of MD at baseline (T0; hospital admission) and after a two-week antidepressant treatment (T14). All participants underwent comprehensive neuropsychological assessments. RESULTS The initial scores on emotional assessments in patients with MD significantly differed from those of HCs. Both FEMD and RMD patients exhibited a significant decrease in CD4+ Treg cell proportion at baseline compared to HCs. Treg cell proportion rose significantly from T0 to T14 in FEMD patients, who responded to antidepressant therapy, whereas no significant changes were observed in FEMD patients in non-response as well as RMD patients. The improvement of 24-item Hamilton Depression Scale was correlate with changes of Treg cell proportion from T0 to T14 in FEMD patients in response, and the change in Treg cell proportion over a 14-day period exhibited an AUC curve of 0.710. CONCLUSIONS A decrease in the proportion of CD4+ Treg cells points towards immune system abnormalities in patients with MD. Furthermore, our finding suggests that the immune activation state varies across different stages of depression.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Wuxi School of Medicine, Jiangnan University, China
| | - Long Ye
- Department of Hematology, Affiliated Hospital of Jiangnan University, China
| | - Huijun Liang
- Wuxi School of Medicine, Jiangnan University, China
| | - Heng Li
- Wuxi School of Medicine, Jiangnan University, China
| | - Shulei Gao
- Wuxi School of Medicine, Jiangnan University, China
| | - Chenxue Xu
- Wuxi School of Medicine, Jiangnan University, China
| | | | - Yachen Shi
- Department of Neurology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, China
| | - Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, China.
| | - Rongrong Huang
- Department of Pharmacy, Affiliated Hospital of Nantong University, China.
| |
Collapse
|
37
|
Guo X, Chen Y, Huang H, Liu Y, Kong L, Chen L, Lyu H, Gao T, Lai J, Zhang D, Hu S. Serum signature of antibodies to Toxoplasma gondii, rubella virus, and cytomegalovirus in females with bipolar disorder: A cross-sectional study. J Affect Disord 2024; 361:82-90. [PMID: 38844171 DOI: 10.1016/j.jad.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND AND AIM Immunity alterations have been observed in bipolar disorder (BD). However, whether serum positivity of antibodies to Toxoplasma gondii (T gondii), rubella, and cytomegalovirus (CMV) shared clinical relevance with BD, remains controversial. This study aimed to investigate this association. METHODS Antibody seropositivity of IgM and IgG to T gondii, rubella virus, and CMV of females with BD and controls was extracted based on medical records from January 2018 to January 2023. Family history, type of BD, onset age, and psychotic symptom history were also collected. RESULTS 585 individuals with BD and 800 healthy controls were involved. Individuals with BD revealed a lower positive rate of T gondii IgG in the 10-20 aged group (OR = 0.10), and a higher positive rate of rubella IgG in the 10-20 (OR = 5.44) and 20-30 aged group (OR = 3.15). BD with family history preferred a higher positive rate of T gondii IgG (OR = 24.00). Type-I BD owned a decreased positive rate of rubella IgG (OR = 0.37) and an elevated positive rate of CMV IgG (OR = 2.12) compared to type-II BD, while BD with early onset showed contrast results compared to BD without early onset (Rubella IgG, OR = 2.54; CMV IgG, OR = 0.26). BD with psychotic symptom history displayed a lower positive rate of rubella IgG (OR = 0.50). LIMITATIONS Absence of male evidence and control of socioeconomic status and environmental exposure. CONCLUSIONS Differential antibody seropositive rates of T gondii, rubella, and cytomegalovirus in BD were observed.
Collapse
Affiliation(s)
- Xiaonan Guo
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yiqing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Huimin Huang
- Department of Psychiatry, The Third Affiliated Hospital of Wenzhou Medical University, 325800, Wenzhou, Zhejiang, China.
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Lingzhuo Kong
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Lizichen Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Hailong Lyu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | - Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310058, China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310058, China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Psychology and Behavioral Sciences, Graduate School, Zhejiang University, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China.
| |
Collapse
|
38
|
Guerini FR, Bolognesi E, Mensi MM, Zanette M, Agliardi C, Zanzottera M, Chiappedi M, Annunziata S, García-García F, Cavallini A, Clerici M. HLA-A, -B, -C and -DRB1 Association with Autism Spectrum Disorder Risk: A Sex-Related Analysis in Italian ASD Children and Their Siblings. Int J Mol Sci 2024; 25:9879. [PMID: 39337366 PMCID: PMC11431861 DOI: 10.3390/ijms25189879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Autism Spectrum disorders (ASD) are diagnosed more often in males than in females, by a ratio of about 3:1; this is likely to be due to a difference in risk burden between the sexes and/or to "compensatory skills" in females, that may delay the diagnosis of ASD. Identifying specific risk factors for ASD in females may be important in facilitating early diagnosis. We investigated whether HLA- class I: -A, -B, -C and class II -DRB1 alleles, which have been suggested to play a role in the development of ASD, can be considered as sex-related risk/protective markers towards the ASD. We performed HLA allele genotyping in 178 Italian children with ASD, 94 healthy siblings, and their parents. HLA allele distribution was compared between children with ASD, sex-matched healthy siblings, and a cohort of healthy controls (HC) enrolled in the Italian bone marrow donor registry. Allele transmission from parents to children with ASD and their siblings was also assessed. Our findings suggest that HLA-A*02, B*38, and C*12 alleles are more frequently carried by females with ASD compared to both HC and healthy female siblings, indicating these alleles as potential risk factors for ASD in females. Conversely, the HLA-A*03 allele was more commonly transmitted to healthy female siblings, suggesting it might have a protective effect. Additionally, the HLA-B*44 allele was found to be more prevalent in boys with ASD, indicating it is a potential risk factor for male patients. This is the first Italian study of sex-related HLA association with ASD. If confirmed, these results could facilitate early ASD diagnosis in female patients, allowing earlier interventions, which are crucial in the management of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Franca Rosa Guerini
- Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy
| | - Elisabetta Bolognesi
- Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy
| | - Martina Maria Mensi
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
- IRCCS Fondazione Mondino, 27100 Pavia, Italy
| | - Michela Zanette
- Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy
| | - Cristina Agliardi
- Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy
| | - Milena Zanzottera
- Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy
| | - Matteo Chiappedi
- Child Neurology and Psychiatry Unit, ASST Pavia, 27029 Vigevano, Italy
| | - Silvia Annunziata
- Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy
| | - Francisco García-García
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Anna Cavallini
- Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy
| | - Mario Clerici
- Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy
- Pathophysiology and Transplantation Department, University of Milan, 20122 Milan, Italy
| |
Collapse
|
39
|
Andersen HG, DellaValle B, Bøgehave H, Mogensen PB, Hahn MK, Goth CK, Sørensen ME, Sigvard AK, Tangmose K, Bojesen KB, Nielsen MØ, Tonetto S, Jørgensen ML, Hempel C, Rungby J, Glenthøj BY, Ambrosen KS, Ebdrup BH. Glycocalyx shedding patterns identifies antipsychotic-naïve patients with first-episode psychosis. Psychiatry Res 2024; 339:116037. [PMID: 38959578 DOI: 10.1016/j.psychres.2024.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Psychotic disorders have been linked to immune-system abnormalities, increased inflammatory markers, and subtle neuroinflammation. Studies further suggest a dysfunctional blood brain barrier (BBB). The endothelial Glycocalyx (GLX) functions as a protective layer in the BBB, and GLX shedding leads to BBB dysfunction. This study aimed to investigate whether a panel of 11 GLX molecules derived from peripheral blood could differentiate antipsychotic-naïve first-episode psychosis patients (n47) from healthy controls (HC, n49) and whether GLX shedding correlated with symptom severity. Blood samples were collected at baseline and serum was isolated for GLX marker detection. Machine learning models were applied to test whether patterns in GLX markers could classify patient groups. Associations between GLX markers and symptom severity were explored. Patients showed significantly increased levels of three GLX markers compared to HC. Based on the panel of 11 GLX markers, machine learning models achieved a significant mean classification accuracy of 81%. Post hoc analysis revealed associations between increased GLX markers and symptom severity. This study demonstrates the potential of GLX molecules as immuno-neuropsychiatric biomarkers for early diagnosis of psychosis, as well as indicate a compromised BBB. Further research is warranted to explore the role of GLX in the early detection of psychotic disorders.
Collapse
Affiliation(s)
- Helle G Andersen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark; Copenhagen Research Centre for Mental Health and VIRTU Research Group, Mental Health Centre Copenhagen, Denmark.
| | - Brian DellaValle
- Department of Endocrinology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark; Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, Denmark; GLX Analytix ApS, Copenhagen, Denmark
| | - Hjalte Bøgehave
- Department of Endocrinology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark; Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, Denmark; GLX Analytix ApS, Copenhagen, Denmark
| | - Phillip Bredahl Mogensen
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, Denmark; GLX Analytix ApS, Copenhagen, Denmark
| | - Margaret K Hahn
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, Canada; Banting and Best Diabetes Centre, University of Toronto, Canada; Department of Pharmacology, University of Toronto, Canada
| | - Christoffer K Goth
- Department of Endocrinology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark; Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, Denmark; GLX Analytix ApS, Copenhagen, Denmark
| | - Mikkel E Sørensen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Anne K Sigvard
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simone Tonetto
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, Denmark; Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mathias L Jørgensen
- Department of Endocrinology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark; Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, Denmark; GLX Analytix ApS, Copenhagen, Denmark
| | - Casper Hempel
- GLX Analytix ApS, Copenhagen, Denmark; DTU Health, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jørgen Rungby
- Department of Endocrinology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark; Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karen S Ambrosen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Wilson JD, Dworsky-Fried M, Ismail N. Neurodevelopmental implications of COVID-19-induced gut microbiome dysbiosis in pregnant women. J Reprod Immunol 2024; 165:104300. [PMID: 39004033 DOI: 10.1016/j.jri.2024.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
The global public health emergency of COVID-19 in January 2020 prompted a surge in research focusing on the pathogenesis and clinical manifestations of the virus. While numerous reports have been published on the acute effects of COVID-19 infection, the review explores the multifaceted long-term implications of COVID-19, with a particular focus on severe maternal COVID-19 infection, gut microbiome dysbiosis, and neurodevelopmental disorders in offspring. Severe COVID-19 infection has been associated with heightened immune system activation and gastrointestinal symptoms. Severe COVID-19 may also result in gut microbiome dysbiosis and a compromised intestinal mucosal barrier, often referred to as 'leaky gut'. Increased gut permeability facilitates the passage of inflammatory cytokines, originating from the inflamed intestinal mucosa and gut, into the bloodstream, thereby influencing fetal development during pregnancy and potentially elevating the risk of neurodevelopmental disorders such as autism and schizophrenia. The current review discusses the role of cytokine signaling molecules, microglia, and synaptic pruning, highlighting their potential involvement in the pathogenesis of neurodevelopmental disorders following maternal COVID-19 infection. Additionally, this review addresses the potential of probiotic interventions to mitigate gut dysbiosis and inflammatory responses associated with COVID-19, offering avenues for future research in optimizing maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Jacob D Wilson
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, Ontario K1N 9A4, Canada
| | - Michaela Dworsky-Fried
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, Ontario K1N 9A4, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, Ontario K1N 9A4, Canada; LIFE Research Institute, Ottawa, Ontario K1N 6N5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
41
|
Chen S, Tan Y, Tian L. Immunophenotypes in psychosis: is it a premature inflamm-aging disorder? Mol Psychiatry 2024; 29:2834-2848. [PMID: 38532012 PMCID: PMC11420084 DOI: 10.1038/s41380-024-02539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Immunopsychiatric field has rapidly accumulated evidence demonstrating the involvement of both innate and adaptive immune components in psychotic disorders such as schizophrenia. Nevertheless, researchers are facing dilemmas of discrepant findings of immunophenotypes both outside and inside the brains of psychotic patients, as discovered by recent meta-analyses. These discrepancies make interpretations and interrogations on their roles in psychosis remain vague and even controversial, regarding whether certain immune cells are more activated or less so, and whether they are causal or consequential, or beneficial or harmful for psychosis. Addressing these issues for psychosis is not at all trivial, as immune cells either outside or inside the brain are an enormously heterogeneous and plastic cell population, falling into a vast range of lineages and subgroups, and functioning differently and malleably in context-dependent manners. This review aims to overview the currently known immunophenotypes of patients with psychosis, and provocatively suggest the premature immune "burnout" or inflamm-aging initiated since organ development as a potential primary mechanism behind these immunophenotypes and the pathogenesis of psychotic disorders.
Collapse
Affiliation(s)
- Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Li Tian
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
42
|
Strydom JP, Brand L, Viljoen FP, Wolmarans DW. Differential impact of pegfilgrastim, a recombinant human granulocyte colony stimulating factor, on the neutrophil count of male and female deer mice (Peromyscus maniculatus bairdii). BMC Pharmacol Toxicol 2024; 25:52. [PMID: 39160640 PMCID: PMC11331688 DOI: 10.1186/s40360-024-00778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND An increasing body of research implicates inflammatory processes, including alterations in the neutrophil-lymphocyte ratio (NLR), in the pathophysiology of psychiatric illness. The deer mouse (Peromyscus maniculatus bairdii) is commonly studied for its naturalistic expression of compulsive-like behaviour. Towards future efforts to gain an understanding of how innate and adaptive immune processes might be involved in this model, we aimed to study the effects of pegfilgrastim, a pegylated recombinant human granulocyte colony-stimulating factor (g-CSF) analogue, on the NLR of both male and female deer mice. METHODS Briefly, 54 deer mice (equally distributed between sexes) were exposed to a single injection with either control or pegfilgrastim (0.1 or 1 mg/kg) (n = 18 per group). Six mice of each group (three per sex) were euthanized on days two, four and seven post-administration, their blood collected and the NLR calculated. Data were analysed by means of ordinary three-way ANOVA, followed by Bonferroni post-hoc testing. RESULTS Irrespective of dose, pegfilgrastim resulted in higher NLR values in mice of both sexes at days four and seven of testing. However, female mice exposed to the higher dose, presented with significantly higher NLR values irrespective of time, compared to male mice exposed to the same. CONCLUSION The data generated from this work highlight important dose- and sex-specific aspects of pegfilgrastim with female mice showing heighted elevation of the NLR in response to high-dose pegfilgrastim administration only. Since the innate immune components of male and female deer mice is differentially sensitive to g-CSF stimulation, our results provide a useful basis for further study of sex-specific immunological processes in deer mice.
Collapse
Affiliation(s)
- J P Strydom
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Building G23, Office 315, 11 Hoffman Street, Potchefstroom, 2531, South Africa
| | - Linda Brand
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Building G23, Office 315, 11 Hoffman Street, Potchefstroom, 2531, South Africa
| | - Francois P Viljoen
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Building G23, Office 315, 11 Hoffman Street, Potchefstroom, 2531, South Africa
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Building G23, Office 315, 11 Hoffman Street, Potchefstroom, 2531, South Africa.
| |
Collapse
|
43
|
Wu XP, Fang RR, Ji TT. Dietary inflammatory index and its impact on severity and recurrence of Tourette syndrome in children. World J Psychiatry 2024; 14:1208-1215. [PMID: 39165553 PMCID: PMC11331388 DOI: 10.5498/wjp.v14.i8.1208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Tourette syndrome (TS) is a neurodevelopmental disorder characterized by the presence of motor and vocal tics, typically beginning in childhood. Despite significant research efforts, the exact pathophysiology of TS remains incompletely understood. Recent studies suggest that inflammation may play a role in the severity and progression of TS, pointing to the potential influence of dietary and lifestyle factors on the condition. Currently, research on the specific connection between dietary inflammatory index (DII) and TS is still in its early stages, requiring additional clinical and epidemiological studies to validate the strength and specific mechanisms of this connection. AIM To investigate the association between DII and the severity, recurrence, and inflammatory levels of TS in children. METHODS A total of 207 children diagnosed with TS in the pediatric department of Qingdao Chengyang People's Hospital from January 2022 to January 2023 were selected. They were divided into stable and unstable groups based on follow-up conditions. Before enrollment, general information of the children [age, gender, body mass index (BMI), guardian's education level, DII score, medical history, family history, academic stress, electronic device usage, medication, and disease progression] was assessed, and serum inflammatory levels were measured during follow-up visits. DII scores and Yale Global Tic Severity Scale (YGTSS) scores were calculated. Furthermore, based on YGTSS scores, the children were classified into mild, moderate, and severe groups. The DII, interleukin-6 (IL-6), C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α) levels in each group were compared. RESULTS Follow-up surveys were completed by 207 children and their guardians. Among them, 117 children were in the stable group, and 90 were in the recurrent group. We found no statistically significant differences in age, gender, comorbidities, BMI, and disease duration between the two groups (P > 0.05). However, academic stress, electronic device usage, medication, guardian's education level, and DII scores showed statistically significant differences between the groups (P < 0.05). Multifactorial regression analysis revealed that guardian's anxiety level, DII score, medication, academic stress, and family history were statistically significant factors (P < 0.05) affecting the recurrence of TS in children. Therefore, anxiety level, DII score, medication status, electronic device usage, and academic stress were identified as factors influencing the recurrence of TS in children. Among them, DII score, academic stress, and family history had odds ratios (OR) greater than 1, indicating risk factors, whereas medication status and guardian's education level had OR values less than 1, indicating protective factors. According to the YGTSS scores, children were categorized into mild, moderate, and severe groups. Comparative analysis of DII and inflammatory levels in children with different degrees of tic disorders revealed that the severe group had the highest DII and inflammatory levels, followed by the moderate group, and the mild group had the lowest levels. The trend of TS progression was consistent with the DII results. Receiver operating characteristic curves were plotted to predict disease progression in patients with TS via inflammatory markers. The areas under the curve for IL-6, CRP, and TNF-α were 0.894 (95%CI: 0.817-0.969), 0.793 (95%CI: 0.694-0.893), and 0.728 (95%CI: 0.614-0.843) respectively, with statistically significant differences (P < 0.05). According to the Youden index, the optimal cutoff values were IL-6 = 3.775 ng/L (sensitivity 68.1% and specificity 68.4%), CRP = 6.650 mg/L (sensitivity 60.6% and specificity 68.4%), and TNF-α = 0.666 (sensitivity 60.6% and specificity 71.1%). CONCLUSION We found a certain correlation between DII and the severity, recurrence, and inflammatory levels of TS in children. Reasonable reduction in the intake of pro-inflammatory foods may be beneficial in reducing the risk of disease progression in children with TS.
Collapse
Affiliation(s)
- Xiao-Ping Wu
- Department of Pediatrics, Qingdao Chengyang People’s Hospital, Qingdao 266109, Shandong Province, China
| | - Rong-Rong Fang
- Department of Pediatrics, Qingdao Chengyang People’s Hospital, Qingdao 266109, Shandong Province, China
| | - Ting-Ting Ji
- Department of Pediatrics, Qingdao Chengyang People’s Hospital, Qingdao 266109, Shandong Province, China
| |
Collapse
|
44
|
Wang M, Wang S, Yuan G, Gao M, Zhao X, Chu Z, Gao D. Causal role of immune cells in bipolar disorder: a Mendelian randomization study. Front Psychiatry 2024; 15:1411280. [PMID: 39220183 PMCID: PMC11362081 DOI: 10.3389/fpsyt.2024.1411280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background The understanding of the immunological mechanisms underlying bipolar disorder (BD) has enhanced in recent years due to the extensive use of high-density genetic markers for genotyping and advancements in genome-wide association studies (GWAS). However, studies on the relationship between immune cells and the risk of BD remain limited, necessitating further investigation. Methods Bidirectional two-sample Mendelian Randomization (MR) analysis was employed to investigate the causal association between immune cell morphologies and bipolar disorder. Immune cell traits were collected from a research cohort in Sardinia, whereas the GWAS summary statistics for BD were obtained from the Psychiatric Genomics Consortium. Sensitivity analyses were conducted, and the combination of MR-Egger and MR-Presso was used to assess horizontal pleiotropy. Cochran's Q test was employed to evaluate heterogeneity, and the results were adjusted for false discovery rate (FDR). Results The study identified six immune cell phenotypes significantly associated with BD incidence (P< 0.01). These phenotypes include IgD- CD27- %lymphocyte, CD33br HLA DR+ CD14- AC, CD8 on CD28+ CD45RA+ CD8br, CD33br HLA DR+ AC, CD14 on CD14+ CD16+ monocyte, and HVEM on CD45RA- CD4+. After adjusting the FDR to 0.2, two immune cell phenotypes remained statistically significant: IgD-CD27-% lymphocyte (OR=1.099, 95% CI: 1.051-1.149, P = 3.51E-05, FDR=0.026) and CD33br HLA DR+ CD14-AC (OR=0.981, 95% CI: 0.971-0.991, P = 2.17E-04, FDR=0.079). In the reverse MR analysis, BD significantly impacted the phenotypes of four monocytes (P< 0.01), including CD64 on CD14+ CD16+ monocyte, CD64 on monocyte, CX3CR1 on CD14- CD16-, CD64 on CD14+ CD16- monocyte. However, after applying the FDR correction (FDR < 0.2), no statistically significant results were observed. Conclusions This MR investigation reveals associations between immune cell phenotypes, bipolar disorder, and genetics, providing novel perspectives on prospective therapeutic targets for bipolar disorder.
Collapse
Affiliation(s)
- Mengxuan Wang
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuo Wang
- Department of Intelligent and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoshan Yuan
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingzhou Gao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiyan Zhao
- Department of Foreign Studies, China University of Petroleum (East China), Qingdao, China
| | - Zhenhan Chu
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongmei Gao
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
45
|
Chand Dakal T, Choudhary K, Tiwari I, Yadav V, Kumar Maurya P, Kumar Sharma N. Unraveling the Triad: Hypoxia, Oxidative Stress and Inflammation in Neurodegenerative Disorders. Neuroscience 2024; 552:126-141. [PMID: 38936458 DOI: 10.1016/j.neuroscience.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The mammalian brain's complete dependence on oxygen for ATP production makes it highly susceptible to hypoxia, at high altitudes or in clinical scenarios including anemia or pulmonary disease. Hypoxia plays a crucial role in the development of various brain disorders, such as Alzheimer's, Parkinson's, and other age-related neurodegenerative diseases. On the other hand, a decrease in environmental oxygen levels, such as prolonged stays at high elevations, may have beneficial impacts on the process of ageing and the likelihood of death. Additionally, the utilization of controlled hypoxia exposure could potentially serve as a therapeutic approach for age-related brain diseases. Recent findings indicate that the involvement of HIF-1α and the NLRP3 inflammasome is of significant importance in the development of Alzheimer's disease. HIF-1α serves as a pivotal controller of various cellular reactions to oxygen deprivation, exerting influence on a multitude of physiological mechanisms such as energy metabolism and inflammatory responses. The NLRP3 plays a crucial role in the innate immune system by coordinating the initiation of inflammatory reactions through the assembly of the inflammasome complex. This review examines the information pertaining to the contrasting effects of hypoxia on the brain, highlighting both its positive and deleterious effects and molecular pathways that are involved in mediating these different effects. This study explores potential strategies for therapeutic intervention that focus on restoring cellular balance and reducing neuroinflammation, which are critical aspects in addressing this severe neurodegenerative condition and addresses crucial inquiries that warrant further future investigations.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Kanika Choudhary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Isha Tiwari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India
| | - Vikas Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India.
| |
Collapse
|
46
|
Wang Z, Dou Y, Chen L, Feng W, Zou Y, Xiao J, Wang J, Zou Z. Mendelian randomization identifies causal effects of major depressive disorder on accelerated aging. J Affect Disord 2024; 358:422-431. [PMID: 38750800 DOI: 10.1016/j.jad.2024.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Evidence links major depressive disorder (MDD) with aging, but it's unclear if MDD accelerates aging and what factors mediate this transition. METHODS Two-sample Mendelian randomization (MR) analyses were applied to estimate the causal association between MDD and frailty index (FI), telomere length (TL), and appendicular lean mass (ALM) from available genome-wide association studies in populations of European ancestry. Furthermore, we conducted mediation MR analyses to assess the mediating effects of 31 lifestyle factors or diseases on the causal relationship between MDD and aging. RESULTS MDD was significantly causally associated with increased FI (βIVW = 0.23, 95 % CI = 0.18 to 0.28, p = 1.20 × 10-17), shorter TL (βIVW = -0.04, 95 % CI = -0.07 to -0.01, p = 0.01), and decreased ALM (βIVW = -0.07, 95 % CI = -0.11 to -0.03, p = 3.54 × 10-4). The mediation analysis through two-step MR revealed smoking initiation (9.09 %), hypertension (6.67 %) and heart failure (5.36 %) mediated the causal effect of MDD on FI. Additionally, alcohol use disorders and alcohol dependence on the causal relationship between MDD and TL were found to be 17.52 % and 17.13 % respectively. LIMITATIONS Confounding, statistical power, and Euro-centric focus limit generalization. CONCLUSION Overall, individuals with MDD may be at a higher risk of experiencing premature aging, and this risk is partially influenced by the pathways involving smoking, alcohol use, and cardiovascular health. It underscores the importance of early intervention and comprehensive health management in individuals with MDD to promote healthy aging and overall well-being.
Collapse
Affiliation(s)
- Zuxing Wang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| | - Yikai Dou
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lili Chen
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Wenqian Feng
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Yazhu Zou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Jun Xiao
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Jinyu Wang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Zhili Zou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| |
Collapse
|
47
|
Liu Y, Zhao X, Long Q, Guo Z, Cao X, Wu X, Tu F, Zhang Y, You X, Shi X, Teng Z, Zeng Y. Investigating the role of miR-26b-5p and PTGS2 in schizophrenia treatment using Wendan decoction: Network pharmacology and experimental validation. Eur J Integr Med 2024; 69:102380. [DOI: 10.1016/j.eujim.2024.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
|
48
|
Chen P, Chen W, Xu L, Luan L, Peng R, Zhang X, Yang H. Decreased serum VEGF and NRG1β1 levels in male patients with chronic schizophrenia: VEGF correlation with clinical symptoms and cognitive deficits. J Psychiatr Res 2024; 176:85-92. [PMID: 38850582 DOI: 10.1016/j.jpsychires.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) and neuregulin1 (NRG1) are multifunctional trophic factors reported to be dysregulated in schizophrenia. However, the relationships between serum concentrations and schizophrenia symptoms have differed markedly across studies, possibly because schizophrenia is a highly heterogenous disorder. The aim of this study was to investigate the associations of serum VEGF and NRG1 with clinical symptoms and cognitive deficits specifically in male patients with chronic schizophrenia. METHODS The study included 79 male patients with chronic schizophrenia and 79 matched healthy individuals. Serum VEGF, NRG1β1, S100B, S100A8, and neuropilin1 were measured using the Luminex liquid suspension chip detection method, psychopathological symptom severity using the Positive and Negative Symptom Scale (PANSS), and cognitive dysfunction using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). RESULTS Serum VEGF and NRG1β1 concentrations were significantly lower in male chronic schizophrenic patients than healthy controls (P < 0.05), while serum S100B, S100A8, and neuropilin1 concentrations did not differ between groups (P > 0.05). Serum VEGF concentration was negatively correlated with PANSS negative subscore (beta = -0.220, t = -2.07, P = 0.042), general psychopathology subscore (beta = -0.269, t = -2.55, P = 0.013), and total score (beta = -0.234, t = -2.12, P = 0.038), and positively correlated with RBANS language score (beta = 0.218, t = 2.03, P = 0.045). Alternatively, serum NRG1β1 concentration was not correlated with clinical symptoms or cognitive deficits (all P > 0.05). CONCLUSION Dysregulation of VEGF and NRG1β1 signaling may contribute to the pathogenesis of chronic schizophrenia in males. Moreover, abnormal VEGF signaling may contribute directly or through intermediary processes to neuropsychiatric and cognitive symptom expression.
Collapse
Affiliation(s)
- Peng Chen
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, PR China.
| | - Wanming Chen
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China; Yangzhou University, Yangzhou, 225003, PR China.
| | - Li Xu
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China; Yangzhou University, Yangzhou, 225003, PR China.
| | - Lingshu Luan
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China.
| | - Ruijie Peng
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, PR China.
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, PR China.
| | - Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China.
| |
Collapse
|
49
|
Lyu N, Wang H, Zhao Q, Fu B, Li J, Yue Z, Huang J, Yang F, Liu H, Zhang L, Li R. Peripheral biomarkers to differentiate bipolar depression from major depressive disorder: a real-world retrospective study. BMC Psychiatry 2024; 24:543. [PMID: 39085797 PMCID: PMC11293032 DOI: 10.1186/s12888-024-05979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Bipolar depression (BPD) is often misdiagnosed as a major depressive disorder (MDD) in clinical practice, which may be attributed to a lack of robust biomarkers indicative of differentiated diagnosis. This study analysed the differences in various hormones and inflammatory markers to explore peripheral biomarkers that differentiate BPD from MDD patients. METHODS A total of 2,048 BPD and MDD patients were included. A panel of blood tests was performed to determine the levels of sex hormones, stress hormones, and immune-related indicators. Propensity score matching (PSM) was used to control for the effect of potential confounders between two groups and further a receiver operating characteristic (ROC) curve was used to analyse the potential biomarkers for differentiating BPD from MDD. RESULTS Compared to patients with MDD, patients with BPD expressed a longer duration of illness, more hospitalisations within five years, and an earlier age of onset, along with fewer comorbid psychotic symptoms. In terms of biochemical parameters, MDD patients presented higher IgA and IgM levels, while BPD patients featured more elevated neutrophil and monocyte counts. ROC analysis suggested that combined biological indicators and clinical features could moderately distinguish between BPD and MDD. In addition, different biological features exist in BPD and MDD patients of different ages and sexes. CONCLUSIONS Differential peripheral biological parameters were observed between BPD and MDD, which may be age-sex specific, and a combined diagnostic model that integrates clinical characteristics and biochemical indicators has a moderate accuracy in distinguishing BPD from MDD.
Collapse
Affiliation(s)
- Nan Lyu
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Hutong Road, Xicheng District, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Han Wang
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Hutong Road, Xicheng District, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Qian Zhao
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Hutong Road, Xicheng District, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Bingbing Fu
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Hutong Road, Xicheng District, Beijing, 100088, China
| | - Jinhong Li
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Hutong Road, Xicheng District, Beijing, 100088, China
| | - Ziqi Yue
- National Center for Cardiovascular Diseases and Fuwai Hospital, Beijing, China
| | - Juan Huang
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Hutong Road, Xicheng District, Beijing, 100088, China
| | - Fan Yang
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Hutong Road, Xicheng District, Beijing, 100088, China
| | - Hao Liu
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Hutong Road, Xicheng District, Beijing, 100088, China
| | - Ling Zhang
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Hutong Road, Xicheng District, Beijing, 100088, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Hutong Road, Xicheng District, Beijing, 100088, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
- Center for Brain Disorders Research, Capital Medical University & Beijing Institute of Brain Disorders, Beijing, China.
| |
Collapse
|
50
|
Le Belle JE, Condro M, Cepeda C, Oikonomou KD, Tessema K, Dudley L, Schoenfield J, Kawaguchi R, Geschwind D, Silva AJ, Zhang Z, Shokat K, Harris NG, Kornblum HI. Acute rapamycin treatment reveals novel mechanisms of behavioral, physiological, and functional dysfunction in a maternal inflammation mouse model of autism and sensory over-responsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602602. [PMID: 39026891 PMCID: PMC11257517 DOI: 10.1101/2024.07.08.602602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Maternal inflammatory response (MIR) during early gestation in mice induces a cascade of physiological and behavioral changes that have been associated with autism spectrum disorder (ASD). In a prior study and the current one, we find that mild MIR results in chronic systemic and neuro-inflammation, mTOR pathway activation, mild brain overgrowth followed by regionally specific volumetric changes, sensory processing dysregulation, and social and repetitive behavior abnormalities. Prior studies of rapamycin treatment in autism models have focused on chronic treatments that might be expected to alter or prevent physical brain changes. Here, we have focused on the acute effects of rapamycin to uncover novel mechanisms of dysfunction and related to mTOR pathway signaling. We find that within 2 hours, rapamycin treatment could rapidly rescue neuronal hyper-excitability, seizure susceptibility, functional network connectivity and brain community structure, and repetitive behaviors and sensory over-responsivity in adult offspring with persistent brain overgrowth. These CNS-mediated effects are also associated with alteration of the expression of several ASD-,ion channel-, and epilepsy-associated genes, in the same time frame. Our findings suggest that mTOR dysregulation in MIR offspring is a key contributor to various levels of brain dysfunction, including neuronal excitability, altered gene expression in multiple cell types, sensory functional network connectivity, and modulation of information flow. However, we demonstrate that the adult MIR brain is also amenable to rapid normalization of these functional changes which results in the rescue of both core and comorbid ASD behaviors in adult animals without requiring long-term physical alterations to the brain. Thus, restoring excitatory/inhibitory imbalance and sensory functional network modularity may be important targets for therapeutically addressing both primary sensory and social behavior phenotypes, and compensatory repetitive behavior phenotypes.
Collapse
|