1
|
Tran GT, Bedi S, Rakesh P, Verma ND, Carter N, Robinson CM, Al-Atiyah R, Hall BM, Hodgkinson SJ. Autoantigen and IL-2 activated CD4 +CD25 +T regulatory cells are induced to express CD8 and are autoantigen specific in inhibiting experimental autoimmune encephalomyelitis. J Neuroimmunol 2025; 404:578611. [PMID: 40228404 DOI: 10.1016/j.jneuroim.2025.578611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/18/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025]
Abstract
Experimental autoimmune encephalomyelitis (EAE) induced by immunization with myelin basic protein (MBP) is a self-limiting disease model of multiple sclerosis. CD4+CD25+Foxp3+T cells play a role in limiting autoimmune disease but treatment with antigen naïve CD4+CD25+ cells does not reduce EAE. This study examined if in vitro activation by MBP and rIL-2 induced CD4+CD25+Foxp3+ cells that could inhibit EAE. Culture of CD4+CD8-CD25+cells from naïve rats with MBP and rIL-2 induced activated Treg that reduced the severity of clinical EAE and infiltration of CD8+T cells and macrophage into brain stem. CD4+CD25+T cells activated by an irrelevant autoantigen and rIL-2 did not suppress EAE. Resting CD4+CD25+T cells activated by autoantigen and rIL-2 have mRNA for Infgr, Il12rb2, Il5 but not Tbet, Gata3, Ilr5ra or Ifng. These changes in mRNA expression are the markers of Ts1 cells. A proportion of CD4+CD8-CD25+ cells activated by MBP/rIL-2 were induced to express CD8α, CD8β and CD62L. Depletion of CD4+CD8α+CD25+ cells removed the capacity of MBP and rIL-2 activated CD4+CD25+T cells to suppress EAE. This study demonstrated that in vitro activation of CD4+CD8-CD25+ cells by MBP/rIL-2 induced relevant antigen-specific Treg within days, which expressed CD8α, CD8β and CD62L with a Ts1 phenotype and that had greater potency than freshly isolated antigen naive CD4+CD25+Treg in suppressing clinical severity of EAE and immune inflammation in CNS. These findings may guide development of antigen-specific Treg for therapy.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Rats
- Autoantigens/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Interleukin-2/pharmacology
- Interleukin-2/immunology
- Myelin Basic Protein/immunology
- Rats, Inbred Lew
- Female
- Interleukin-2 Receptor alpha Subunit/metabolism
- CD8 Antigens/biosynthesis
- CD8 Antigens/metabolism
- Cells, Cultured
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
Collapse
Affiliation(s)
- Giang T Tran
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Sukhandep Bedi
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia
| | - Prateek Rakesh
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Nirupama D Verma
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Nicole Carter
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia
| | - Catherine M Robinson
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia
| | - Ranje Al-Atiyah
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia
| | - Bruce M Hall
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia.
| | - Suzanne J Hodgkinson
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia.
| |
Collapse
|
2
|
Mohsen E, Haffez H, Ahmed S, Hamed S, El-Mahdy TS. Multiple Sclerosis: A Story of the Interaction Between Gut Microbiome and Components of the Immune System. Mol Neurobiol 2025; 62:7762-7775. [PMID: 39934561 PMCID: PMC12078361 DOI: 10.1007/s12035-025-04728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
Multiple sclerosis (MS) is defined as an inflammatory disorder that chronically affects the central nervous system of young people mostly and is distributed globally. It is associated with degeneration and demyelination of the myelin sheath around the nerves, resulting in multiple neurological disability symptoms ranging from mild to severe cases that end with paralysis sometimes. MS is one of the rising diseases globally that is unfortunately associated with reduced quality of life and adding national economic burdens. The definite MS mechanism is not clearly defined; however, all the previous researches confirm the role of the immune system as the master contributor in the pathogenesis. Innate and adaptive immune cells are activated peripherally then attracted toward the central nervous system (CNS) due to the breakdown of the blood-brain barrier. Recently, the gut-brain axis was shown to depend on gut metabolites that are produced by different microorganisms in the colon. The difference in microbiota composition between individuals is responsible for diversity in secreted metabolites that affect immune responses locally in the gut or systemically when reach blood circulation to the brain. It may enhance or suppress immune responses in the central nervous system (CNS) (repeated short forms); consequently, it may exacerbate or ameliorate MS symptoms. Recent data showed that some metabolites can be used as adjuvant therapy in MS and other inflammatory diseases. This review sheds light on the nature of MS and the possible interaction between gut microbiota and immune system regulation through the gut-brain axis, hence contributing to MS pathogenesis.
Collapse
Affiliation(s)
- Esraa Mohsen
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt
| | - Hesham Haffez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt
- Center of Scientific Excellence "Helwan Structural Biology Research (HSBR), Helwan University, Cairo, 11795, Egypt
| | - Sandra Ahmed
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Selwan Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt.
| | - Taghrid S El-Mahdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| |
Collapse
|
3
|
Rosenberger L, Hansmann L, Anastasopoulou V, Wolf SP, Drousch K, Moewes C, Feng X, Cao G, Huang J, Yew PY, Strønen E, Kato T, Saligrama N, Olweus J, Nakamura Y, Willimsky G, Blankenstein T, Schreiber H, Leisegang M. Selection of therapeutically effective T-cell receptors from the diverse tumor-bearing repertoire. J Immunother Cancer 2025; 13:e011351. [PMID: 40316304 PMCID: PMC12049912 DOI: 10.1136/jitc-2024-011351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/03/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND The development of T-cell receptor (TCR)-based T-cell therapies is hampered by the difficulties in identifying therapeutically effective tumor-specific TCRs from the natural repertoire of a patient's cancer-specific T cells. METHODS Here, we mimic experimentally near-patient conditions to analyze the T-cell repertoire in euthymic tumor-bearing mice responding to the H-2Kb-presented neoantigen p68S551F (mp68). We temporarily separated the time point of mp68 expression from that of cancer cell transplantation to exclude the influence of injection-induced inflammation on T-cell priming. Thus, the mp68-specific T-cell response could only develop after the acute inflammatory phase had subsided. RESULTS We found that mp68-specific TCRs isolated from either tumor-infiltrating T cells or spleens of mice immunized with mp68-expressing cancer cells are diverse and not inherently therapeutic when introduced into peripheral T cells and used for adoptive therapy of established tumors. While measuring short-term T-cell responses in vitro was unreliable for some TCRs in predicting their therapeutic failure, assessing the persistence of cancer cell destruction by TCR-modified T cells in long-term cultures accurately predicted therapeutic outcomes. A tumor-derived TCR with optimal function was also correctly identified with this approach when analyzing human TCRs that recognize the HLA-A2-presented neoantigen CDK4R24L. CONCLUSIONS We show that a neoantigen-directed T-cell response in tumor-bearing hosts comprises a diverse repertoire. Infiltration and expansion of certain T-cell clonotypes in the tumor do not necessarily correlate with therapeutic efficacy of their TCRs in adoptive therapy. We propose that analysis of persistent rather than immediate responses of TCR-modified T cells in vitro serves as a reliable parameter to identify TCRs that are therapeutically effective in vivo.
Collapse
Affiliation(s)
- Leonie Rosenberger
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leo Hansmann
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vasiliki Anastasopoulou
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steven P Wolf
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, Illinois, USA
| | - Kimberley Drousch
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christina Moewes
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Xinyi Feng
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Guoshuai Cao
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Jun Huang
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Poh Yin Yew
- Cancer Precision Medicine, Inc, Tokyo, Japan
| | - Erlend Strønen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Taigo Kato
- Department of Medicine, Center for Personalized Therapeutics, The University of Chicago, Chicago, Illinois, USA
| | - Naresha Saligrama
- Department of Neurology, Bursky Center for Human Immunology, and Immunotherapy Programs, Hope Center for Neurological Disorders, Center for Brain Immunology and Glia, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Gerald Willimsky
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Blankenstein
- Molecular Immunology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Hans Schreiber
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, Illinois, USA
- Committee on Cancer Biology and Committee on Immunology, The University of Chicago, Chicago, Illinois, USA
| | - Matthias Leisegang
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Liu J, Cheng P, Xu C, Pu K. Molecular probes for in vivo optical imaging of immune cells. Nat Biomed Eng 2025; 9:618-637. [PMID: 39984703 DOI: 10.1038/s41551-024-01275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/23/2024] [Indexed: 02/23/2025]
Abstract
Advancing the understanding of the various roles and components of the immune system requires sophisticated methods and technology for the detection of immune cells in their natural states. Recent advancements in the development of molecular probes for optical imaging have paved the way for non-invasive visualization and real-time monitoring of immune responses and functions. Here we discuss recent progress in the development of molecular probes for the selective imaging of specific immune cells. We emphasize the design principles of the probes and their comparative performance when using various optical modalities across disease contexts. We highlight molecular probes for imaging tumour-infiltrating immune cells, and their applications in drug screening and in the prediction of therapeutic outcomes of cancer immunotherapies. We also discuss the use of these probes in visualizing immune cells in atherosclerosis, lung inflammation, allograft rejection and other immune-related conditions, and the translational opportunities and challenges of using optical molecular probes for further understanding of the immune system and disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
5
|
Kohlgruber AC, Dezfulian MH, Sie BM, Wang CI, Kula T, Laserson U, Larman HB, Elledge SJ. High-throughput discovery of MHC class I- and II-restricted T cell epitopes using synthetic cellular circuits. Nat Biotechnol 2025; 43:623-634. [PMID: 38956325 PMCID: PMC11994455 DOI: 10.1038/s41587-024-02248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/16/2024] [Indexed: 07/04/2024]
Abstract
Antigen discovery technologies have largely focused on major histocompatibility complex (MHC) class I-restricted human T cell receptors (TCRs), leaving methods for MHC class II-restricted and mouse TCR reactivities relatively undeveloped. Here we present TCR mapping of antigenic peptides (TCR-MAP), an antigen discovery method that uses a synthetic TCR-stimulated circuit in immortalized T cells to activate sortase-mediated tagging of engineered antigen-presenting cells (APCs) expressing processed peptides on MHCs. Live, tagged APCs can be directly purified for deconvolution by sequencing, enabling TCRs with unknown specificity to be queried against barcoded peptide libraries in a pooled screening context. TCR-MAP accurately captures self-reactivities or viral reactivities with high throughput and sensitivity for both MHC class I-restricted and class II-restricted TCRs. We elucidate problematic cross-reactivities of clinical TCRs targeting the cancer/testis melanoma-associated antigen A3 and discover targets of myocarditis-inciting autoreactive T cells in mice. TCR-MAP has the potential to accelerate T cell antigen discovery efforts in the context of cancer, infectious disease and autoimmunity.
Collapse
Affiliation(s)
- Ayano C Kohlgruber
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Mohammad H Dezfulian
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Brandon M Sie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Charlotte I Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Tomasz Kula
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
- Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Uri Laserson
- Department of Genetics and Genomic Sciences and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard University Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
6
|
Liu C, Zhang H, Zhai YY, Dong J, Zhou Y, Li H, Zhang M, Yang CL, Zhang P, Li XL, Duan RS, Du T. Phenotypic and functional dysregulations of CD8 + T Cells in myasthenia gravis. Clin Exp Med 2025; 25:96. [PMID: 40131529 PMCID: PMC11937161 DOI: 10.1007/s10238-025-01603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 02/14/2025] [Indexed: 03/27/2025]
Abstract
Myasthenia Gravis (MG) is a heterogeneous autoimmune disorder characterized by fluctuating muscle weakness caused by autoantibodies targeting neuromuscular junction components. While the role of CD4 + T cells in MG is well established, the contribution of CD8 + T cells remains poorly understood. In this study, we analyze CD8 + T cells in 36 MG patients and 38 age- and gender-matched controls using flow cytometry to evaluate subset distribution, granzyme expression, and cytokine production. MG patients exhibit an altered CD4 + /CD8 + T cell ratio and significant changes in CD8 + T cell subsets, including increased central memory CD8 + T cell (Tcm) proportions and decreased effector memory CD8 + T cell (Tem) proportions. Granzyme B expression in Tcm cells is significantly elevated in MG patients, whereas no significant changes are observed in other subsets or GZMK expression. Cytokine analysis reveals increased IL-21, GM-CSF, and IL-17A production by CD8 + T cells in MG patients. These phenotypic and functional alterations of CD8 + T cells persist during the acute phase of the disease, regardless of immunotherapy usage, and vary between ocular and generalized MG. Subgroup and correlation analyses further identify age-dependent and age-independent dysregulations of CD8 + T cells, indicating complex and subtype-specific roles of CD8 + T cells in the immunopathological processes underlying MG. Our findings provide novel insights into the involvement of CD8 + T cells in MG pathogenesis, laying a foundation for future research and potential therapeutic strategies targeting CD8 + T cells.
Collapse
Affiliation(s)
- Chang Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
| | - Hao Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
| | - Yu-Yao Zhai
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
| | - Jing Dong
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
| | - Yang Zhou
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
- Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, 250014, People's Republic of China
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
- Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, 250014, People's Republic of China
| | - Min Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
- Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, 250014, People's Republic of China
| | - Chun-Lin Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
- Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, 250014, People's Republic of China
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
- Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, 250014, People's Republic of China
| | - Xiao-Li Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
- Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, 250014, People's Republic of China
| | - Rui-Sheng Duan
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China.
- Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, 250014, People's Republic of China.
| | - Tong Du
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China.
- Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, 250014, People's Republic of China.
| |
Collapse
|
7
|
Segal Y, Soltys J, Clarkson BDS, Howe CL, Irani SR, Pittock SJ. Toward curing neurological autoimmune disorders: Biomarkers, immunological mechanisms, and therapeutic targets. Neuron 2025; 113:345-379. [PMID: 39809275 DOI: 10.1016/j.neuron.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/26/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
Autoimmune neurology is a rapidly expanding field driven by the discovery of neuroglial autoantibodies and encompassing a myriad of conditions affecting every level of the nervous system. Traditionally, autoantibodies targeting intracellular antigens are considered markers of T cell-mediated cytotoxicity, while those targeting extracellular antigens are viewed as pathogenic drivers of disease. However, recent advances highlight complex interactions between these immune mechanisms, suggesting a continuum of immunopathogenesis. The breakdown of immune tolerance, central to these conditions, is affected by modifiable and non-modifiable risk factors such as genetic predisposition, infections, and malignancy. While significant therapeutic advancements have revolutionized treatment of certain diseases, such as neuromyelitis optica, our understanding of many others, particularly T cell-mediated conditions, remains limited, with fewer treatment options available. Future research should focus on improving effector function modeling and deepening our understanding of the factors influencing immune tolerance, with the goal of providing novel treatment options and improving patient care.
Collapse
Affiliation(s)
- Yahel Segal
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - John Soltys
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin D S Clarkson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA; Division of Experimental Neurology, Mayo Clinic, Rochester, MN, USA
| | - Sarosh R Irani
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA; Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK; Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Sean J Pittock
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatial transcriptomic clocks reveal cell proximity effects in brain ageing. Nature 2025; 638:160-171. [PMID: 39695234 PMCID: PMC11798877 DOI: 10.1038/s41586-024-08334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain ageing is complex and is accompanied by many cellular changes2. Furthermore, the influence that aged cells have on neighbouring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in ageing tissues have not yet been developed. Here we generate a spatially resolved single-cell transcriptomics brain atlas of 4.2 million cells from 20 distinct ages across the adult lifespan and across two rejuvenating interventions-exercise and partial reprogramming. We build spatial ageing clocks, machine learning models trained on this spatial transcriptomics atlas, to identify spatial and cell-type-specific transcriptomic fingerprints of ageing, rejuvenation and disease, including for rare cell types. Using spatial ageing clocks and deep learning, we find that T cells, which increasingly infiltrate the brain with age, have a marked pro-ageing proximity effect on neighbouring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating proximity effect on neighbouring cells. We also identify potential mediators of the pro-ageing effect of T cells and the pro-rejuvenating effect of neural stem cells on their neighbours. These results suggest that rare cell types can have a potent influence on their neighbours and could be targeted to counter tissue ageing. Spatial ageing clocks represent a useful tool for studying cell-cell interactions in spatial contexts and should allow scalable assessment of the efficacy of interventions for ageing and disease.
Collapse
Affiliation(s)
- Eric D Sun
- Biomedical Data Science Graduate Program, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Olivia Y Zhou
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biophysics Graduate Program, Stanford University, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Max Hauptschein
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Lucy Xu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biology Graduate Program, Stanford University, Stanford, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A Rando
- Department of Neurology, Stanford University, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Xu Z, Su B. Distinct functions of CD4 + and CD8 + regulatory T cells in autoimmunity. Nat Immunol 2025; 26:159-160. [PMID: 39870902 DOI: 10.1038/s41590-024-02071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Affiliation(s)
- Ziyang Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Gastroenterology, Center for Immune-Related Diseases at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Oncology at Xiangya Cancer Center and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism (SYIIM), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Weiner HL. Immune mechanisms and shared immune targets in neurodegenerative diseases. Nat Rev Neurol 2025; 21:67-85. [PMID: 39681722 DOI: 10.1038/s41582-024-01046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The immune system plays a major part in neurodegenerative diseases. In some, such as multiple sclerosis, it is the primary driver of the disease. In others, such as Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, it has an amplifying role. Immunotherapeutic approaches that target the adaptive and innate immune systems are being explored for the treatment of almost all neurological diseases, and the targets and approaches are often common across diseases. Microglia are the primary immune cells in the brain that contribute to disease pathogenesis, and are consequently a common immune target for therapy. Other therapeutic approaches target components of the peripheral immune system, such as regulatory T cells and monocytes, which in turn act within the CNS. This Review considers in detail how microglia, monocytes and T cells contribute to the pathogenesis of multiple sclerosis, Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, and their potential as shared therapeutic targets across these diseases. The microbiome is also highlighted as an emerging therapeutic target that indirectly modulates the immune system. Therapeutic approaches being developed to target immune function in neurodegenerative diseases are discussed, highlighting how immune-based approaches developed to treat one disease could be applicable to multiple other neurological diseases.
Collapse
Affiliation(s)
- Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Chung EYM, Wang YM, Shaw K, Ronning E, Wang Y, Zhang GY, Hu M, Keung K, McCarthy HJ, Harris DCH, Stephen A. CD8 + Regulatory T Cells Induced by Peptide Vaccination Ameliorates Experimental Model of Membranous Nephropathy. Nephrology (Carlton) 2025; 30:e70005. [PMID: 39970933 DOI: 10.1111/nep.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/21/2025]
Abstract
AIM CD8+ regulatory T cells (Tregs) are cross-protective across multiple animal models of autoimmunity. Recently, specific peptides from a yeast-peptide-major histocompatibility complex library that expanded CD8+ Tregs in murine experimental multiple sclerosis were reported. Whether these peptides also expand CD8+ Tregs and protect against Heymann nephritis (HN), an experimental model of membranous nephropathy is unknown. We aimed to assess the efficacy of peptide vaccination to induce CD8+ Tregs in HN. METHODS Lewis rats were immunised with Fx1A/complete Freund's adjuvant to induce HN and received peptide vaccination 1 week before (prevention vaccination) or 1 week after disease induction (treatment vaccination). To understand whether the effect of peptide vaccination was mediated by CD8+ Tregs, we adoptively transferred CD8+ T cells 1 week after peptide vaccination into HN rats. RESULTS Prevention vaccination, but not treatment vaccination, significantly reduced anti-Fx1A autoantibody levels and serum creatinine. Both prevention and treatment vaccination reduced histological kidney injury. mRNA expression of Helios, the major CD8+ Treg transcription factor, was upregulated in both the spleen and kidney with prevention vaccination and in the kidney with treatment vaccination. Adoptive transfer of CD8+ T cells after peptide vaccination significantly reduced serum creatinine, proteinuria, histological kidney injury, anti-Fx1A autoantibody levels, germinal centre formation, and mRNA expression of markers of T follicular helper cells (Bcl6, interleukin-21), T helper 1 cells (interferon-γ, Tbet) and T helper 17 cells (interleukin-6, interleukin-17). CONCLUSIONS Peptide vaccination induces CD8+ Tregs that ameliorate induction of experimental membranous nephropathy which may represent a further peripheral regulation of autoimmunity.
Collapse
MESH Headings
- Animals
- Glomerulonephritis, Membranous/immunology
- Glomerulonephritis, Membranous/prevention & control
- Glomerulonephritis, Membranous/pathology
- Glomerulonephritis, Membranous/chemically induced
- Rats, Inbred Lew
- Disease Models, Animal
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Kidney/immunology
- Kidney/pathology
- Kidney/metabolism
- Autoantibodies/blood
- Adoptive Transfer
- Vaccination
- Vaccines, Subunit
- Rats
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Edmund Y M Chung
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Yuan Min Wang
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Karli Shaw
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Emily Ronning
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Ya Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Geoff Yu Zhang
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Min Hu
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Karen Keung
- Department of Nephrology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Hugh J McCarthy
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - David C H Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Alexander Stephen
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| |
Collapse
|
12
|
Chen X, Ghanizada M, Mallajosyula V, Sola E, Capasso R, Kathuria KR, Davis MM. Differential roles of human CD4 + and CD8 + regulatory T cells in controlling self-reactive immune responses. Nat Immunol 2025; 26:230-239. [PMID: 39806065 PMCID: PMC11785521 DOI: 10.1038/s41590-024-02062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Here we analyzed the relative contributions of CD4+ regulatory T cells expressing Forkhead box protein P3 (FOXP3) and CD8+ regulatory T cells expressing killer cell immunoglobulin-like receptors to the control of autoreactive T and B lymphocytes in human tonsil-derived immune organoids. FOXP3 and GZMB respectively encode proteins FOXP3 and granzyme B, which are critical to the suppressive functions of CD4+ and CD8+ regulatory T cells. Using CRISPR-Cas9 gene editing, we were able to achieve a reduction of ~90-95% in the expression of these genes. FOXP3 knockout in tonsil T cells led to production of antibodies against a variety of autoantigens and increased the affinity of influenza-specific antibodies. By contrast, GZMB knockout resulted in an increase in follicular helper T cells, consistent with the ablation of CD8+ regulatory T cells observed in mouse models, and a marked expansion of autoreactive CD8+ and CD4+ T cells. These findings highlight the distinct yet complementary roles of CD8+ and CD4+ regulatory T cells in regulating cellular and humoral responses to prevent autoimmunity.
Collapse
Affiliation(s)
- Xin Chen
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Mustafa Ghanizada
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Elsa Sola
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Robson Capasso
- Division of Sleep Surgery, Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Karan Raj Kathuria
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
13
|
Lu BY, Lucca LE, Lewis W, Wang J, Nogueira CV, Heer S, Rayon-Estrada V, Axisa PP, Reeves SM, Buitrago-Pocasangre NC, Pham GH, Kojima ML, Wei W, Aizenbud L, Bacchiocchi A, Zhang L, Walewski JJ, Chiang V, Olino K, Clune J, Halaban R, Kluger Y, Coyle AJ, Kisielow J, Obermair FJ, Kluger HM, Hafler DA. Circulating tumor-reactive KIR +CD8 + T cells suppress anti-tumor immunity in patients with melanoma. Nat Immunol 2025; 26:82-91. [PMID: 39609626 DOI: 10.1038/s41590-024-02023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024]
Abstract
Effective anti-tumor immunity is driven by cytotoxic CD8+ T cells with specificity for tumor antigens. However, the factors that control successful tumor rejection are not well understood. Here we identify a subpopulation of CD8+ T cells that are tumor-antigen-specific and can be identified by KIR expression but paradoxically impair anti-tumor immunity in patients with melanoma. These tumor-antigen-specific KIR+CD8+ regulatory T cells target other tumor-antigen-specific CD8+ T cells, can be detected in both the tumor and the blood, have a conserved transcriptional program and are associated with a poor overall survival. These findings broaden our understanding of the transcriptional and functional heterogeneity of human CD8+ T cells and implicate KIR+CD8+ regulatory T cells as a cellular mediator of immune evasion in human cancer.
Collapse
Affiliation(s)
- Benjamin Y Lu
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA.
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Liliana E Lucca
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- University of Toulouse, Inserm, CNRS, University Toulouse III-Paul Sabatier, Cancer Research Center of Toulouse, Toulouse, France
| | - Wesley Lewis
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Jiping Wang
- Applied Mathematics Program, Yale University, New Haven, CT, USA
| | | | | | | | - Pierre-Paul Axisa
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- University of Toulouse, Inserm, CNRS, University Toulouse III-Paul Sabatier, Cancer Research Center of Toulouse, Toulouse, France
| | - Sarah M Reeves
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Giang H Pham
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Mina L Kojima
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Wei Wei
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Lilach Aizenbud
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | | | - Lin Zhang
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Joseph J Walewski
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Veronica Chiang
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Kelly Olino
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - James Clune
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Ruth Halaban
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Yuval Kluger
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Applied Mathematics Program, Yale University, New Haven, CT, USA
| | | | - Jan Kisielow
- Repertoire Immune Medicines, Schlieren, Switzerland
| | | | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
14
|
Beckers D, Jainarayanan AK, Dustin ML, Capera J. T Cell Resistance: On the Mechanisms of T Cell Non-activation. Immune Netw 2024; 24:e42. [PMID: 39801736 PMCID: PMC11711127 DOI: 10.4110/in.2024.24.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Immunological tolerance is a fundamental arm of any functioning immune system. Not only does tolerance mitigate collateral damage from host immune responses, but in doing so permits a robust response sufficient to clear infection as necessary. Yet, despite occupying such a cornerstone, research aiming to unravel the intricacies of tolerance induction is mired by interchangeable and often misused terminologies, with markers and mechanistic pathways that beg the question of redundancy. In this review we aim to define these boarders by providing new perspectives to long-standing theories of tolerance. Given the central role of T cells in enforcing immune cascades, in this review we choose to explore immunological tolerance through the perspective of T cell 'resistance to activation,' to delineate the contexts in which one tolerance mechanism has evolved over the other. By clarifying the important biological markers and cellular players underpinning T cell resistance to activation, we aim to encourage more purposeful and directed research into tolerance and, more-over, potential therapeutic strategies in autoimmune diseases and cancer. The tolerance field is in much need of reclassification and consideration, and in this review, we hope to open that conversation.
Collapse
Affiliation(s)
- Daniel Beckers
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Ashwin K. Jainarayanan
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Michael L. Dustin
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Jesusa Capera
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
15
|
Xu Y, Zhang E, Wei L, Dai Z, Chen S, Zhou S, Huang Y. NINJ1: A new player in multiple sclerosis pathogenesis and potential therapeutic target. Int Immunopharmacol 2024; 141:113021. [PMID: 39197295 DOI: 10.1016/j.intimp.2024.113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelination. Current treatment options for MS focus on immunosuppression, but their efficacy can be limited. Recent studies suggest a potential role for nerve injury-induced protein 1 (NINJ1) in MS pathogenesis. NINJ1, a protein involved in cell death and inflammation, may contribute to the infiltration and activation of inflammatory cells in the CNS, potentially through enhanced blood-brain barrier crossing; enhancing plasma membrane rupture during cell death, leading to the release of inflammatory mediators and further tissue damage. This review explores the emerging evidence for NINJ1's involvement in MS. It discusses how NINJ1 might mediate the migration of immune cells across the blood-brain barrier, exacerbate neuroinflammation, and participate in plasma membrane rupture-related damage. Finally, the review examines potential therapeutic strategies targeting NINJ1 for improved MS management. Abbreviations: MS, Multiple sclerosis; CNS, Central nervous system; BBB, Blood-brain barrier; GSDMD, Gasdermin-D; EAE, Experimental autoimmune encephalitis; HMGB-1, High mobility group box-1 protein; LDH, Lactate dehydrogenase; PMR, Plasma membrane rupture; DMF, Dimethyl fumarate; DUSP1, Dual-specificity phosphatase 1; PAMPs, Pathogen-associated molecular patterns; DAMPs, Danger-associated molecular patterns; PRRs, Pattern recognition receptors; GM-CSF, Granulocyte-macrophage colony stimulating factor; IFN-γ, Interferon gamma; TNF, Tumor necrosis factor; APCs, Antigen-presenting cells; ECs, Endothelial cells; TGF-β, Transforming growth factor-β; PBMCs, Peripheral blood mononuclear cells; FACS, Fluorescence-activated cell sorting; MCP-1, Monocyte chemoattractant protein-1; NLRP3, Pyrin domain-containing 3; TCR, T cell receptor; ROS, Reactive oxygen species; AP-1, Activator protein-1; ANG1, Angiopoietin 1; BMDMs, Bone marrow-derived macrophages; Arp2/3, actin-related protein 2/3; EMT, epithelial-mesenchymal transition; FAK, focal adhesion kinase; LIMK1, LIM domain kinase 1; PAK1, p21-activated kinases 1; Rac1, Ras-related C3 botulinum toxin substrate 1; β-cat, β-caten; MyD88, myeloid differentiation primary response gene 88; TIRAP, Toll/interleukin-1 receptor domain-containing adapter protein; TLR4, Toll-like receptor 4; IRAKs, interleukin-1 receptor-associated kinases; TRAF6, TNF receptor associated factor 6; TAB2/3, TAK1 binding protein 2/3; TAK1, transforming growth factor-β-activated kinase 1; JNK, c-Jun N-terminal kinase; ERK1/2, Extracellular Signal Regulated Kinase 1/2; IKK, inhibitor of kappa B kinase; IκB, inhibitor of NF-κB; NF-κB, nuclear factor kappa-B; AP-1, activator protein-1; ASC, Apoptosis-associated Speck-like protein containing a CARD; NEK7, NIMA-related kinase 7; NLRP3, Pyrin domain-containing 3; CREB, cAMP response element-binding protein.
Collapse
Affiliation(s)
- Yinbin Xu
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Enhao Zhang
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Liangzhe Wei
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Zifeng Dai
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Siqi Chen
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China.
| | - Yi Huang
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang 315010, China.
| |
Collapse
|
16
|
Gardell JL, Maurer ME, Childs MM, Pham MN, Meengs B, Julien SH, Tan C, Boster DR, Quach P, Therriault JH, Hermansky G, Patton DT, Bowser J, Chen A, Morgan NN, Gilbertson EA, Bogatzki L, Encarnacion K, McMahan CJ, Crane CA, Swiderek KM. Preclinical characterization of MTX-101: a novel bispecific CD8 Treg modulator that restores CD8 Treg functions to suppress pathogenic T cells in autoimmune diseases. Front Immunol 2024; 15:1452537. [PMID: 39559361 PMCID: PMC11570885 DOI: 10.3389/fimmu.2024.1452537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction Regulatory CD8 T cells (CD8 Treg) are responsible for the selective killing of self-reactive and pathogenic CD4 T cells. In autoimmune disease, CD8 Treg may accumulate in the peripheral blood but fail to control the expansion of pathogenic CD4 T cells that subsequently cause tissue destruction. This CD8 Treg dysfunction is due in part to the expression of inhibitory killer immunoglobulin-like receptors (KIR; KIR2DL isoforms [KIR2DL1, KIR2DL2, and KIR2DL3]); these molecules serve as autoimmune checkpoints and limit CD8 Treg activation. Methods Here we describe the pre-clinical characterization of MTX-101, a bispecific antibody targeting inhibitory KIR and CD8. Using human peripheral blood mononuculear cells (PBMC) derived from healthy donors and autoimmune patients, humanized mouse models, and human derived tissue organoids, we evaluated the molecular mechanisms and functional effects of MTX-101. Results By binding to KIR, MTX-101 inhibited KIR signaling that can restore CD8 Treg ability to eliminate pathogenic CD4 T cells. MTX-101 bound and activated CD8 Treg in human peripheral blood mononuclear cells (PBMC), resulting in increased CD8 Treg cytolytic capacity, activation, and prevalence. Enhancing CD8 Treg function with MTX-101 reduced pathogenic CD4 T cell expansion and inflammation, without increasing pro-inflammatory cytokines or activating immune cells that express either target alone. MTX-101 reduced antigen induced epithelial cell death in disease affected tissues, including in tissue biopsies from individuals with autoimmune disease (i.e., celiac disease, Crohn's disease). The effects of MTX-101 were specific to autoreactive CD4 T cells and did not suppress responses to viral and bacterial antigens. In a human PBMC engrafted Graft versus Host Disease (GvHD) mouse model of acute inflammation, MTX-101 bound CD8 Treg and delayed onset of disease. MTX-101 induced dose dependent binding, increased prevalence and cytolytic capacity of CD8 Treg, as well as increased CD4 T cell death. MTX-101 selectively bound CD8 Treg without unwanted immune cell activation or increase of pro-inflammatory serum cytokines and exhibited an antibody-like half-life in pharmacokinetic and exploratory tolerability studies performed using IL-15 transgenic humanized mice with engrafted human lymphocytes, including CD8 Treg at physiologic ratios. Conclusion Collectively, these data support the development of MTX-101 for the treatment of autoimmune diseases.
Collapse
|
17
|
Chen M, Meng Y, Shi X, Zhu C, Zhu M, Tang H, Zheng H. Identification of ENTPD1 as a novel biomarker linking allergic rhinitis and systemic lupus erythematosus. Sci Rep 2024; 14:18266. [PMID: 39107483 PMCID: PMC11303539 DOI: 10.1038/s41598-024-69228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Several studies reveal that allergic rhinitis (AR) is a significant risk factor of systemic lupus erythematosus (SLE). However, studies investigating the common pathogenesis linking AR and SLE are lacking. Our study aims to search for the shared biomarkers and mechanisms that may provide new therapeutic targets for preventing AR from developing SLE. GSE50223 for AR and GSE103760 for SLE were downloaded from the Gene Expression Omnibus (GEO) database to screen differentially expressed genes (DEGs). The Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to explore the functions of shared DEGs. Hub genes were screened by cytoHubba (a plugin of Cytoscape) and validated in another two datasets. Gene set enrichment analysis (GSEA) and single-sample Gene set enrichment analysis (ssGSEA) algorithm were applied to understand the functions of hub gene. ENTPD1 was validated as a hub gene between AR and SLE. GSEA results revealed that ENTPD1 was associated with KRAS_SIGNALING_UP pathway in AR and related to HYPOXIA, TGF_BETA_SIGNALING and TNFA_SIGNALING_VIA_NFKB pathways in SLE. The expression of ENTPD1 was positively correlated with activated CD8 T cell in both diseases. Thus, ENTPD1 may be a novel therapeutic target for preventing AR from developing SLE.
Collapse
Affiliation(s)
- Min Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Yingdi Meng
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Xiaoqiong Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Chengjing Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Minhui Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
| | - Haihong Tang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
| | - Hongliang Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
18
|
Santos AJM, van Unen V, Lin Z, Chirieleison SM, Ha N, Batish A, Chan JE, Cedano J, Zhang ET, Mu Q, Guh-Siesel A, Tomaske M, Colburg D, Varma S, Choi SS, Christophersen A, Baghdasaryan A, Yost KE, Karlsson K, Ha A, Li J, Dai H, Sellers ZM, Chang HY, Dunn JCY, Zhang BM, Mellins ED, Sollid LM, Fernandez-Becker NQ, Davis MM, Kuo CJ. A human autoimmune organoid model reveals IL-7 function in coeliac disease. Nature 2024; 632:401-410. [PMID: 39048815 PMCID: PMC11747932 DOI: 10.1038/s41586-024-07716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
In vitro models of autoimmunity are constrained by an inability to culture affected epithelium alongside the complex tissue-resident immune microenvironment. Coeliac disease (CeD) is an autoimmune disease in which dietary gluten-derived peptides bind to the major histocompatibility complex (MHC) class II human leukocyte antigen molecules (HLA)-DQ2 or HLA-DQ8 to initiate immune-mediated duodenal mucosal injury1-4. Here, we generated air-liquid interface (ALI) duodenal organoids from intact fragments of endoscopic biopsies that preserve epithelium alongside native mesenchyme and tissue-resident immune cells as a unit without requiring reconstitution. The immune diversity of ALI organoids spanned T cells, B and plasma cells, natural killer (NK) cells and myeloid cells, with extensive T-cell and B-cell receptor repertoires. HLA-DQ2.5-restricted gluten peptides selectively instigated epithelial destruction in HLA-DQ2.5-expressing organoids derived from CeD patients, and this was antagonized by blocking MHC-II or NKG2C/D. Gluten epitopes stimulated a CeD organoid immune network response in lymphoid and myeloid subsets alongside anti-transglutaminase 2 (TG2) autoantibody production. Functional studies in CeD organoids revealed that interleukin-7 (IL-7) is a gluten-inducible pathogenic modulator that regulates CD8+ T-cell NKG2C/D expression and is necessary and sufficient for epithelial destruction. Furthermore, endogenous IL-7 was markedly upregulated in patient biopsies from active CeD compared with remission disease from gluten-free diets, predominantly in lamina propria mesenchyme. By preserving the epithelium alongside diverse immune populations, this human in vitro CeD model recapitulates gluten-dependent pathology, enables mechanistic investigation and establishes a proof of principle for the organoid modelling of autoimmunity.
Collapse
MESH Headings
- Humans
- Autoantibodies/immunology
- Autoimmunity
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Biopsy
- Celiac Disease/immunology
- Celiac Disease/pathology
- Celiac Disease/metabolism
- Duodenum/immunology
- Duodenum/pathology
- Duodenum/metabolism
- Epitopes/immunology
- Glutens/immunology
- Glutens/metabolism
- GTP-Binding Proteins/metabolism
- GTP-Binding Proteins/immunology
- HLA-DQ Antigens/immunology
- HLA-DQ Antigens/metabolism
- Interleukin-7/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Killer Cells, Natural/immunology
- Models, Biological
- Myeloid Cells/immunology
- Organoids/immunology
- Organoids/metabolism
- Organoids/pathology
- Protein Glutamine gamma Glutamyltransferase 2/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- António J M Santos
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vincent van Unen
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhongqi Lin
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven M Chirieleison
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nhi Ha
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Arpit Batish
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua E Chan
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose Cedano
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Elisa T Zhang
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Qinghui Mu
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander Guh-Siesel
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Madeline Tomaske
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Deana Colburg
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shannon S Choi
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Asbjørn Christophersen
- K. G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Ani Baghdasaryan
- Department of Chemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kasper Karlsson
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew Ha
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jing Li
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongjie Dai
- Department of Chemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Zachary M Sellers
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - James C Y Dunn
- Department of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Bing M Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth D Mellins
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ludvig M Sollid
- K. G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Nielsen Q Fernandez-Becker
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
19
|
Lim JH, Neuwirth A, Chung KJ, Grossklaus S, Soehnlein O, Hajishengallis G, Chavakis T. Formyl peptide receptor 2 regulates dendritic cell metabolism and Th17 cell differentiation during neuroinflammation. Front Immunol 2024; 15:1354074. [PMID: 39148732 PMCID: PMC11324504 DOI: 10.3389/fimmu.2024.1354074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Formyl peptide receptor 2 (FPR2) is a receptor for formylated peptides and specific pro-resolving mediators, and is involved in various inflammatory processes. Here, we aimed to elucidate the role of FPR2 in dendritic cell (DC) function and autoimmunity-related central nervous system (CNS) inflammation by using the experimental autoimmune encephalomyelitis (EAE) model. EAE induction was accompanied by increased Fpr2 mRNA expression in the spinal cord. FPR2-deficient (Fpr2 KO) mice displayed delayed onset of EAE compared to wild-type (WT) mice, associated with reduced frequencies of Th17 cells in the inflamed spinal cord at the early stage of the disease. However, FPR2 deficiency did not affect EAE severity after the disease reached its peak. FPR2 deficiency in mature DCs resulted in decreased expression of Th17 polarizing cytokines IL6, IL23p19, IL1β, and thereby diminished the DC-mediated activation of Th17 cell differentiation. LPS-activated FPR2-deficient DCs showed upregulated Nos2 expression and nitric oxide (NO) production, as well as reduced oxygen consumption rate and impaired mitochondrial function, including decreased mitochondrial superoxide levels, lower mitochondrial membrane potential and diminished expression of genes related to the tricarboxylic acid cycle and genes related to the electron transport chain, as compared to WT DCs. Treatment with a NO inhibitor reversed the reduced Th17 cell differentiation in the presence of FPR2-deficient DCs. Together, by regulating DC metabolism, FPR2 enhances the production of DC-derived Th17-polarizing cytokines and hence Th17 cell differentiation in the context of neuroinflammation.
Collapse
Affiliation(s)
- Jong-Hyung Lim
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ales Neuwirth
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sylvia Grossklaus
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - George Hajishengallis
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
20
|
Yang C, Ma Y, Lu Q, Qu Y, Li Y, Cheng S, Xiao C, Chen J, Wang C, Wang F, Xiang AP, Huang W, Tang X, Zheng H. 2-Bromo-1,4-Naphthalenedione promotes CD8 + T cell expansion and limits Th1/Th17 to mitigate experimental autoimmune encephalomyelitis. J Neuroinflammation 2024; 21:181. [PMID: 39068463 PMCID: PMC11283727 DOI: 10.1186/s12974-024-03172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Treating Multiple sclerosis (MS), a well-known immune-mediated disease characterized by axonal demyelination, is challenging due to its complex causes. Naphthalenedione, present in numerous plants, is being explored as a potential medicine for MS due to its immunomodulatory properties. However, its effects on lymphocytes can vary depending on factors such as the specific compound, concentration, and experimental conditions. In this study, we aim to explore the therapeutic potential of 2-bromo-1,4-naphthalenedione (BrQ), a derivative of naphthalenedione, in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and to elucidate its underlying mechanisms. We observed that mice treated with BrQ exhibited reduced severity of EAE symptoms, including lower clinical scores, decreased leukocyte infiltration, and less extensive demyelination in central nervous system. Furthermore, it was noted that BrQ does not directly affect the remyelination process. Through cell-chat analysis based on bulk RNA-seq data, coupled with validation of flow analysis, we discovered that BrQ significantly promotes the expansion of CD8+ T cells and their interactions with other immune cells in peripheral immune system in EAE mice. Subsequent CD8+ T cell depletion experiments confirmed that BrQ alleviates EAE in a CD8+ T cell-dependent manner. Mechanistically, expanded CD8+ cells were found to selectively reduce antigen-specific CD4+ cells and subsequently inhibit Th1 and Th17 cell development in vivo, ultimately leading to relief from EAE. In summary, our findings highlight the crucial role of BrQ in modulating the pathogenesis of MS, suggesting its potential as a novel drug candidate for treating MS and other autoimmune diseases.
Collapse
Affiliation(s)
- Cuixia Yang
- Central Laboratory, Chaozhou Central Hospital Affiliated to Southern Medical University, Chaozhou, Guangdong Province, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China
| | - Yuanchen Ma
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiying Lu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China
| | - Yuliang Qu
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Yuantao Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
| | - Shimei Cheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China
| | - Chongjun Xiao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China
| | - Jinshuo Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China
| | - Chuangjia Wang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China
| | - Feng Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou, China.
| | - Xiaorong Tang
- Central Laboratory, Chaozhou Central Hospital Affiliated to Southern Medical University, Chaozhou, Guangdong Province, China.
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China.
| |
Collapse
|
21
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatiotemporal transcriptomic profiling and modeling of mouse brain at single-cell resolution reveals cell proximity effects of aging and rejuvenation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603809. [PMID: 39071282 PMCID: PMC11275735 DOI: 10.1101/2024.07.16.603809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain aging is complex and accompanied by many cellular changes2-20. However, the influence that aged cells have on neighboring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in aging tissues have not yet been developed. Here, we generate spatiotemporal data at single-cell resolution for the mouse brain across lifespan, and we develop the first machine learning models based on spatial transcriptomics ('spatial aging clocks') to reveal cell proximity effects during brain aging and rejuvenation. We collect a single-cell spatial transcriptomics brain atlas of 4.2 million cells from 20 distinct ages and across two rejuvenating interventions-exercise and partial reprogramming. We identify spatial and cell type-specific transcriptomic fingerprints of aging, rejuvenation, and disease, including for rare cell types. Using spatial aging clocks and deep learning models, we find that T cells, which infiltrate the brain with age, have a striking pro-aging proximity effect on neighboring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating effect on neighboring cells. By developing computational tools to identify mediators of these proximity effects, we find that pro-aging T cells trigger a local inflammatory response likely via interferon-γ whereas pro-rejuvenating neural stem cells impact the metabolism of neighboring cells possibly via growth factors (e.g. vascular endothelial growth factor) and extracellular vesicles, and we experimentally validate some of these predictions. These results suggest that rare cells can have a drastic influence on their neighbors and could be targeted to counter tissue aging. We anticipate that these spatial aging clocks will not only allow scalable assessment of the efficacy of interventions for aging and disease but also represent a new tool for studying cell-cell interactions in many spatial contexts.
Collapse
Affiliation(s)
- Eric D. Sun
- Department of Biomedical Data Science, Stanford University, CA, USA
- Department of Genetics, Stanford University, CA, USA
| | - Olivia Y. Zhou
- Department of Genetics, Stanford University, CA, USA
- Stanford Biophysics Program, Stanford University, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, CA, USA
| | | | | | - Lucy Xu
- Department of Genetics, Stanford University, CA, USA
- Department of Biology, Stanford University, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A. Rando
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| | - Anne Brunet
- Department of Genetics, Stanford University, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| |
Collapse
|
22
|
Shi Z, Sun H, Tian X, Song X, Fan J, Sun S, Wang J, Zhang J, Wang J. Extracellular vesicles containing miR-181a-5p as a novel therapy for experimental autoimmune encephalomyelitis-induced demyelination. Int Immunopharmacol 2024; 135:112326. [PMID: 38796967 DOI: 10.1016/j.intimp.2024.112326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/06/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disorder of the central nervous system. Recent research has revealed that mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), containing specific miRNAs, possess immunomodulatory properties and have demonstrated therapeutic potential in the treatment of MS. This study aimed to investigate the role MSC-EVs, containing microRNA-181a-5p (miR-181a-5p) in both experimental autoimmune encephalomyelitis (EAE), an established animal model of MS, and lipopolysaccharide-stimulated BV2 microglia. We evaluated clinical symptoms and inflammatory responses in EAE mice following intrathecal injections of MSC-EVs. MSC-EVs containing miR-181a-5p were co-cultured with microglia to explore their impact on inflammation and cell pyroptosis. We validated the interaction between miR-181a-5p and its downstream regulators and conducted in vivo verification by injecting manipulated EVs containing miR-181a-5p into EAE mice. Our results demonstrated that MSC-EVs, containing miR-181a-5p reduced the clinical symptoms of EAE mice. Furthermore, we observed downregulation of miR-181a-5p in EAE model mice, and its expression was restored after treatment with MSC-EVs, which corresponded to suppressed microglial inflammation and pyroptosis. Additionally, EVs containing miR-181a-5p mitigated spinal cord injury and demyelination in EAE mice. Mechanistically, ubiquitin-specific protease 15 (USP15) exhibited high expression in EAE mice, and miR-181a-5p was specifically targeted and bound to USP15, thereby regulating the RelA/NEK7 axis. In conclusion, MSC-EVs containing miR-181a-5p inhibit microglial inflammation and pyroptosis through the USP15-mediated RelA/NEK7 axis, thus alleviating the clinical symptoms of EAE. These findings present a potential therapeutic approach for the treatment of MS.
Collapse
Affiliation(s)
- Zhong Shi
- Ophthalmology Department, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Huanhuan Sun
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Xinyi Tian
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao 266002, Shandong, China
| | - Xiujuan Song
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jingyi Fan
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Shichao Sun
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jinli Wang
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jing Zhang
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jueqiong Wang
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China.
| |
Collapse
|
23
|
Iannucci J, Dominy R, Bandopadhyay S, Arthur EM, Noarbe B, Jullienne A, Krkasharyan M, Tobin RP, Pereverzev A, Beevers S, Venkatasamy L, Souza KA, Jupiter DC, Dabney A, Obenaus A, Newell-Rogers MK, Shapiro LA. Traumatic brain injury alters the effects of class II invariant peptide (CLIP) antagonism on chronic meningeal CLIP + B cells, neuropathology, and neurobehavioral impairment in 5xFAD mice. J Neuroinflammation 2024; 21:165. [PMID: 38937750 PMCID: PMC11212436 DOI: 10.1186/s12974-024-03146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant risk factor for Alzheimer's disease (AD), and accumulating evidence supports a role for adaptive immune B and T cells in both TBI and AD pathogenesis. We previously identified B cell and major histocompatibility complex class II (MHCII)-associated invariant chain peptide (CLIP)-positive B cell expansion after TBI. We also showed that antagonizing CLIP binding to the antigen presenting groove of MHCII after TBI acutely reduced CLIP + splenic B cells and was neuroprotective. The current study investigated the chronic effects of antagonizing CLIP in the 5xFAD Alzheimer's mouse model, with and without TBI. METHODS 12-week-old male wild type (WT) and 5xFAD mice were administered either CLIP antagonist peptide (CAP) or vehicle, once at 30 min after either sham or a lateral fluid percussion injury (FPI). Analyses included flow cytometric analysis of immune cells in dural meninges and spleen, histopathological analysis of the brain, magnetic resonance diffusion tensor imaging, cerebrovascular analysis, and assessment of motor and neurobehavioral function over the ensuing 6 months. RESULTS 9-month-old 5xFAD mice had significantly more CLIP + B cells in the meninges compared to age-matched WT mice. A one-time treatment with CAP significantly reduced this population in 5xFAD mice. Importantly, CAP also improved some of the immune, histopathological, and neurobehavioral impairments in 5xFAD mice over the ensuing six months. Although FPI did not further elevate meningeal CLIP + B cells, it did negate the ability of CAP to reduce meningeal CLIP + B cells in the 5xFAD mice. FPI at 3 months of age exacerbated some aspects of AD pathology in 5xFAD mice, including further reducing hippocampal neurogenesis, increasing plaque deposition in CA3, altering microgliosis, and disrupting the cerebrovascular structure. CAP treatment after injury ameliorated some but not all of these FPI effects.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Reagan Dominy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Shreya Bandopadhyay
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - E Madison Arthur
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Brenda Noarbe
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Amandine Jullienne
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Margret Krkasharyan
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Richard P Tobin
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Aleksandr Pereverzev
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Samantha Beevers
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Lavanya Venkatasamy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Karienn A Souza
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Daniel C Jupiter
- Department of Biostatistics and Data Science, Department of Orthopaedics and Rehabilitation, The University of Texas Medical Branch, Galveston, TX, USA
| | - Alan Dabney
- Department of Statistics, College of Arts & Sciences, Texas A&M University, College Station, TX, USA
| | - Andre Obenaus
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - M Karen Newell-Rogers
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA.
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, USA.
| | - Lee A Shapiro
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA.
| |
Collapse
|
24
|
Perussolo MC, Mogharbel BF, Saçaki CS, da Rosa NN, Irioda AC, de Oliveira NB, Appel JM, Lührs L, Meira LF, Guarita-Souza LC, Nagashima S, de Paula CBV, de Noronha L, Zotarelli-Filho IJ, Abdelwahid E, de Carvalho KAT. Cellular Therapy in Experimental Autoimmune Encephalomyelitis as an Adjuvant Treatment to Translate for Multiple Sclerosis. Int J Mol Sci 2024; 25:6996. [PMID: 39000105 PMCID: PMC11241124 DOI: 10.3390/ijms25136996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
This study aims to evaluate and compare cellular therapy with human Wharton's jelly (WJ) mesenchymal stem cells (MSCs) and neural precursors (NPs) in experimental autoimmune encephalomyelitis (EAE), a preclinical model of Multiple Sclerosis. MSCs were isolated from WJ by an explant technique, differentiated to NPs, and characterized by cytometry and immunocytochemistry analysis after ethical approval. Forty-eight rats were EAE-induced by myelin basic protein and Freund's complete adjuvant. Forty-eight hours later, the animals received intraperitoneal injections of 250 ng/dose of Bordetella pertussis toxin. Fourteen days later, the animals were divided into the following groups: a. non-induced, induced: b. Sham, c. WJ-MSCs, d. NPs, and e. WJ-MSCs plus NPs. 1 × 105. Moreover, the cells were placed in a 10 µL solution and injected via a stereotaxic intracerebral ventricular injection. After ten days, the histopathological analysis for H&E, Luxol, interleukins, and CD4/CD8 was carried out. Statistical analyses demonstrated a higher frequency of clinical manifestation in the Sham group (15.66%) than in the other groups; less demyelination was seen in the treated groups than the Sham group (WJ-MSCs, p = 0.016; NPs, p = 0.010; WJ-MSCs + NPs, p = 0.000), and a lower cellular death rate was seen in the treated groups compared with the Sham group. A CD4/CD8 ratio of <1 showed no association with microglial activation (p = 0.366), astrocytes (p = 0.247), and cell death (p = 0.577) in WJ-MSCs. WJ-MSCs and NPs were immunomodulatory and neuroprotective in cellular therapy, which would be translated as an adjunct in demyelinating diseases.
Collapse
Affiliation(s)
- Maiara Carolina Perussolo
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba P.O. Box 80240-020, Paraná, Brazil; (M.C.P.); (B.F.M.); (C.S.S.); (N.N.d.R.); (A.C.I.); (N.B.d.O.); (J.M.A.); (L.L.)
| | - Bassam Felipe Mogharbel
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba P.O. Box 80240-020, Paraná, Brazil; (M.C.P.); (B.F.M.); (C.S.S.); (N.N.d.R.); (A.C.I.); (N.B.d.O.); (J.M.A.); (L.L.)
| | - Cláudia Sayuri Saçaki
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba P.O. Box 80240-020, Paraná, Brazil; (M.C.P.); (B.F.M.); (C.S.S.); (N.N.d.R.); (A.C.I.); (N.B.d.O.); (J.M.A.); (L.L.)
| | - Nádia Nascimento da Rosa
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba P.O. Box 80240-020, Paraná, Brazil; (M.C.P.); (B.F.M.); (C.S.S.); (N.N.d.R.); (A.C.I.); (N.B.d.O.); (J.M.A.); (L.L.)
| | - Ana Carolina Irioda
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba P.O. Box 80240-020, Paraná, Brazil; (M.C.P.); (B.F.M.); (C.S.S.); (N.N.d.R.); (A.C.I.); (N.B.d.O.); (J.M.A.); (L.L.)
| | - Nathalia Barth de Oliveira
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba P.O. Box 80240-020, Paraná, Brazil; (M.C.P.); (B.F.M.); (C.S.S.); (N.N.d.R.); (A.C.I.); (N.B.d.O.); (J.M.A.); (L.L.)
| | - Julia Maurer Appel
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba P.O. Box 80240-020, Paraná, Brazil; (M.C.P.); (B.F.M.); (C.S.S.); (N.N.d.R.); (A.C.I.); (N.B.d.O.); (J.M.A.); (L.L.)
| | - Larissa Lührs
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba P.O. Box 80240-020, Paraná, Brazil; (M.C.P.); (B.F.M.); (C.S.S.); (N.N.d.R.); (A.C.I.); (N.B.d.O.); (J.M.A.); (L.L.)
| | - Leanderson Franco Meira
- Experimental Laboratory of the Institute of Biology and Health Sciences, Pontifical Catholic University of Paraná, Curitiba P.O. Box 80215-901, Paraná, Brazil; (L.F.M.); (L.C.G.-S.)
| | - Luiz Cesar Guarita-Souza
- Experimental Laboratory of the Institute of Biology and Health Sciences, Pontifical Catholic University of Paraná, Curitiba P.O. Box 80215-901, Paraná, Brazil; (L.F.M.); (L.C.G.-S.)
| | - Seigo Nagashima
- Laboratory of Experimental Pathology, Graduate Program of Health Sciences, School of Medicine, Pontifical Catholic University of Paraná (PUCPR), Curitiba P.O. Box 80215-901, Paraná, Brazil; (S.N.); (C.B.V.d.P.); (L.d.N.)
| | - Caroline Busatta Vaz de Paula
- Laboratory of Experimental Pathology, Graduate Program of Health Sciences, School of Medicine, Pontifical Catholic University of Paraná (PUCPR), Curitiba P.O. Box 80215-901, Paraná, Brazil; (S.N.); (C.B.V.d.P.); (L.d.N.)
| | - Lucia de Noronha
- Laboratory of Experimental Pathology, Graduate Program of Health Sciences, School of Medicine, Pontifical Catholic University of Paraná (PUCPR), Curitiba P.O. Box 80215-901, Paraná, Brazil; (S.N.); (C.B.V.d.P.); (L.d.N.)
| | - Idiberto José Zotarelli-Filho
- Postgraduate Program in Food, Nutrition and Food Engineering, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto P.O. Box 15054-000, São Paulo, Brazil;
| | - Eltyeb Abdelwahid
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Katherine Athayde Teixeira de Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba P.O. Box 80240-020, Paraná, Brazil; (M.C.P.); (B.F.M.); (C.S.S.); (N.N.d.R.); (A.C.I.); (N.B.d.O.); (J.M.A.); (L.L.)
| |
Collapse
|
25
|
Höpner L, Proschmann U, Inojosa H, Ziemssen T, Akgün K. Corticosteroid-depending effects on peripheral immune cell subsets vary according to disease modifying strategies in multiple sclerosis. Front Immunol 2024; 15:1404316. [PMID: 38938576 PMCID: PMC11208457 DOI: 10.3389/fimmu.2024.1404316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Background The primary treatment for acute relapses in multiple sclerosis (MS) is the intravenous administration of high-dose methylprednisolone (IVMP). However, the mechanisms through which corticosteroid treatment impacts acute neuroinflammation in people with MS (pwMS) remain not fully understood. In particular, the changes induced by glucocorticoids (GCs) on cells of the innate immune system and the differences between patients with distinct immunotherapies have received little attention to date. Methods We conducted immunophenotyping using flow cytometry on peripheral blood mononuclear cells of pwMS who received IVMP treatment during a relapse. We compared the impact of an IVMP treatment on a broad variety of immune cell subsets within three groups: twelve patients who were treatment-naïve to disease modifying therapies (wDMT) to ten patients on platform therapies (PT) and eighteen patients on fingolimod therapy (FTY). Results We observed pronounced interindividual short- and intermediate-term effects of IVMP on distinct immune cells subsets. In addition to the well-documented decrease in T-helper cells (Th cells), we detected significant alterations after the first IVMP infusion within the innate immune response among neutrophil, eosinophil and basophil granulocytes, monocytes and plasmacytoid dendritic cells (pDCs). When comparing patients wDMT to the PT and FTY cohorts, we found that IVMP had a similar impact on innate immune cells across all treatment groups. However, we did not observe a significant further decline in T lymphocyte counts during IVMP in patients with pre-existing lymphopenia under FTY treatment. Although T cell apoptosis is considered the main mechanism of action of GCs, patients with FTY still reported symptom improvement following IVMP treatment. Conclusion In addition to T cell suppression, our data suggests that further immunoregulatory mechanisms of GC, particularly on cells of the innate immune response, are of greater significance than previously understood. Due to the regulation of the adaptive immune cells by DMTs, the impact of GC on these cells varies depending on the underlying DMT. Additional studies involving larger cohorts and cerebrospinal fluid samples are necessary to gain a deeper understanding of the immune response to GC in pwMS with different DMTs during relapse to define and explain differences in clinical response profiles.
Collapse
Affiliation(s)
| | | | | | | | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
26
|
Corbin-Stein NJ, Childers GM, Webster JM, Zane A, Yang YT, Ali MA, Sandoval IM, Manfredsson FP, Kordower JH, Tyrrell DJ, Harms AS. Tissue resident memory CD8+ T cells are present but not critical for demyelination and neurodegeneration in a mouse model of multiple system atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597035. [PMID: 38895456 PMCID: PMC11185520 DOI: 10.1101/2024.06.02.597035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Multiple system atrophy (MSA) is rare, fast progressing, and fatal synucleinopathy with alpha-synuclein (α-syn) inclusions located within oligodendroglia called glial cytoplasmic inclusions (GCI). Along with GCI pathology there is severe demyelination, neurodegeneration, and neuroinflammation. In post-mortem tissue, there is significant infiltration of CD8+ T cells into the brain parenchyma, however their role in disease progression is unknown. To determine the role of CD8+ T cells, a modified AAV, Olig001-SYN, was used to selectively overexpress α-syn in oligodendrocytes modeling MSA in mice. Four weeks post transduction, we observed significant CD8+ T cell infiltration into the striatum of Olig001-SYN transduced mice recapitulating the CD8+ T cell infiltration observed in post-mortem tissue. To understand the role of CD8+ T cells, a CD8 knockout mice were transduced with Olig001-SYN. Six months post transduction into a mouse lacking CD8+ T cells, demyelination and neurodegeneration were unchanged. Four weeks post transduction, neuroinflammation and demyelination were enhanced in CD8 knockout mice compared to wild type controls. Applying unbiased spectral flow cytometry, CD103+, CD69+, CD44+, CXCR6+, CD8+ T cells were identified when α-syn was present in oligodendrocytes, suggesting the presence of tissue resident memory CD8+ T (Trm) cells during MSA disease progression. This study indicates that CD8+ T cells are not critical in driving MSA pathology but are needed to modulate the neuroinflammation and demyelination response.
Collapse
Affiliation(s)
- Nicole J. Corbin-Stein
- University of Alabama at Birmingham, Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL
| | - Gabrielle M. Childers
- University of Alabama at Birmingham, Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL
| | - Jhodi M. Webster
- University of Alabama at Birmingham, Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL
| | - Asta Zane
- University of Alabama at Birmingham, Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL
| | - Ya-Ting Yang
- University of Alabama at Birmingham, Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL
| | - Md Akkas Ali
- University of Alabama at Birmingham, Department of Pathology and Division of Molecular and Cellular Pathology, Birmingham, AL
| | - Ivette M. Sandoval
- Barrow Neurological Institute, Department of Translational Neuroscience, Phoenix, AZ
| | | | - Jeffrey H. Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ
| | - Daniel J. Tyrrell
- University of Alabama at Birmingham, Department of Pathology and Division of Molecular and Cellular Pathology, Birmingham, AL
| | - Ashley S. Harms
- University of Alabama at Birmingham, Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL
| |
Collapse
|
27
|
Lalle G, Lautraite R, Bouherrou K, Plaschka M, Pignata A, Voisin A, Twardowski J, Perrin-Niquet M, Stéphan P, Durget S, Tonon L, Ardin M, Degletagne C, Viari A, Belgarbi Dutron L, Davoust N, Postler TS, Zhao J, Caux C, Caramel J, Dalle S, Cassier PA, Klein U, Schmidt-Supprian M, Liblau R, Ghosh S, Grinberg-Bleyer Y. NF-κB subunits RelA and c-Rel selectively control CD4+ T cell function in multiple sclerosis and cancer. J Exp Med 2024; 221:e20231348. [PMID: 38563819 PMCID: PMC10986815 DOI: 10.1084/jem.20231348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
The outcome of cancer and autoimmunity is often dictated by the effector functions of CD4+ conventional T cells (Tconv). Although activation of the NF-κB signaling pathway has long been implicated in Tconv biology, the cell-autonomous roles of the separate NF-κB transcription-factor subunits are unknown. Here, we dissected the contributions of the canonical NF-κB subunits RelA and c-Rel to Tconv function. RelA, rather than c-Rel, regulated Tconv activation and cytokine production at steady-state and was required for polarization toward the TH17 lineage in vitro. Accordingly, RelA-deficient mice were fully protected against neuroinflammation in a model of multiple sclerosis due to defective transition to a pathogenic TH17 gene-expression program. Conversely, Tconv-restricted ablation of c-Rel impaired their function in the microenvironment of transplanted tumors, resulting in enhanced cancer burden. Moreover, Tconv required c-Rel for the response to PD-1-blockade therapy. Our data reveal distinct roles for canonical NF-κB subunits in different disease contexts, paving the way for subunit-targeted immunotherapies.
Collapse
Affiliation(s)
- Guilhem Lalle
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Raphaëlle Lautraite
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Khaled Bouherrou
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Maud Plaschka
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Aurora Pignata
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR INSERM 1291, CNRS 5051, Université Toulouse III, Toulouse, France
| | - Allison Voisin
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Julie Twardowski
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Marlène Perrin-Niquet
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Pierre Stéphan
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Sarah Durget
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurie Tonon
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, Gilles Thomas Bioinformatics Platform, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Maude Ardin
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, Gilles Thomas Bioinformatics Platform, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Cyril Degletagne
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Alain Viari
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, Gilles Thomas Bioinformatics Platform, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Nathalie Davoust
- Laboratory of Biology and Modelling of the Cell, Ecole Normale Supérieure of Lyon, CNRS UMR 5239, INSERM U1293, Lyon, France
| | - Thomas S. Postler
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jingyao Zhao
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Christophe Caux
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Julie Caramel
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Stéphane Dalle
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Philippe A. Cassier
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Ulf Klein
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research, School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR INSERM 1291, CNRS 5051, Université Toulouse III, Toulouse, France
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yenkel Grinberg-Bleyer
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
28
|
Dar AA, Ortega Y, Aktas S, Wu K, Guha I, Porter N, Rosen S, DeVita RJ, Pan ZQ, Oliver PM. CRL4b Inhibition Ameliorates Experimental Autoimmune Encephalomyelitis Progression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:982-991. [PMID: 38265261 PMCID: PMC11060073 DOI: 10.4049/jimmunol.2300754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
Multiple sclerosis, and its murine model experimental autoimmune encephalomyelitis (EAE), is a neurodegenerative autoimmune disease of the CNS characterized by T cell influx and demyelination. Similar to other autoimmune diseases, therapies can alleviate symptoms but often come with side effects, necessitating the exploration of new treatments. We recently demonstrated that the Cullin-RING E3 ubiquitin ligase 4b (CRL4b) aided in maintaining genome stability in proliferating T cells. In this study, we examined whether CRL4b was required for T cells to expand and drive EAE. Mice lacking Cul4b (Cullin 4b) in T cells had reduced EAE symptoms and decreased inflammation during the peak of the disease. Significantly fewer CD4+ and CD8+ T cells were found in the CNS, particularly among the CD4+ T cell population producing IL-17A, IFN-γ, GM-CSF, and TNF-α. Additionally, Cul4b-deficient CD4+ T cells cultured in vitro with their wild-type counterparts were less likely to expand and differentiate into IL-17A- or IFN-γ-producing effector cells. When wild-type CD4+ T cells were activated in vitro in the presence of the recently developed CRL4 inhibitor KH-4-43, they exhibited increased apoptosis and DNA damage. Treatment of mice with KH-4-43 following EAE induction resulted in stabilized clinical scores and significantly reduced numbers of T cells and innate immune cells in the CNS compared with control mice. Furthermore, KH-4-43 treatment resulted in elevated expression of p21 and cyclin E2 in T cells. These studies support that therapeutic inhibition of CRL4 and/or CRL4-related pathways could be used to treat autoimmune disease.
Collapse
Affiliation(s)
- Asif A Dar
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Yohaniz Ortega
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Sera Aktas
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Kenneth Wu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinani, New York, NY 10029
| | - Ipsita Guha
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Nadia Porter
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Siera Rosen
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Robert J DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Zhen-qiang Pan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinani, New York, NY 10029
| | - Paula M Oliver
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
29
|
Gaddie CD, Senior KG, Chan C, Hoffman BE, Keeler GD. Upregulation of CD8 + regulatory T cells following liver-directed AAV gene therapy. Cell Immunol 2024; 397-398:104806. [PMID: 38244266 DOI: 10.1016/j.cellimm.2024.104806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Liver-directed AAV gene therapy represents a unique treatment modality for a host of diseases. This is due, in part, to the induction of tolerance to transgene products. Despite the plethora of recognized regulatory cells in the body, there is currently a lack of literature supporting the induction of non-CD4+ regulatory cells following hepatic AAV gene transfer. In this work, we show that CD8+ regulatory T cells are up-regulated in PBMCs of mice following capsid only and therapeutic transgene AAV administration. Further, we demonstrate that hepatic AAV gene transfer results in a significant increase in CD8+ regulatory T cells following experimental autoimmune encephalomyelitis induction. Notably, this response occurred only in therapeutic vector treated animals, not capsid only controls. Understanding the role these cells play in treatment efficacy will result in the development of improved AAV vectors that take advantage of the full gamut of regulatory cells within the body.
Collapse
Affiliation(s)
- Cristina D Gaddie
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Kevin G Senior
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Christopher Chan
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Brad E Hoffman
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Geoffrey D Keeler
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
30
|
Qin C, Dong MH, Zhou LQ, Wang W, Cai SB, You YF, Shang K, Xiao J, Wang D, Li CR, Zhang M, Bu BT, Tian DS, Wang W. Single-cell analysis of refractory anti-SRP necrotizing myopathy treated with anti-BCMA CAR-T cell therapy. Proc Natl Acad Sci U S A 2024; 121:e2315990121. [PMID: 38289960 PMCID: PMC10861907 DOI: 10.1073/pnas.2315990121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Immune-mediated necrotizing myopathy (IMNM) is an autoimmune disorder associated with the presence of autoantibodies, characterized by severe clinical presentation with rapidly progressive muscular weakness and elevated levels of creatine kinase, while traditional pharmacological approaches possess varying and often limited effects. Considering the pathogenic role of autoantibodies, chimeric antigen receptor (CAR)-T cells targeting B cell maturation antigen (BCMA) have emerged as a promising therapeutic strategy. We reported here a patient with anti-signal recognition particle IMNM refractory to multiple available therapies, who was treated with BCMA-targeting CAR-T cells, exhibited favorable safety profiles, sustained reduction in pathogenic autoantibodies, and persistent clinical improvements over 18 mo. Longitudinal single-cell RNA, B cell receptor, T cell receptor sequencing analysis presented the normalization of immune microenvironment after CAR-T cell infusion, including reconstitution of B cell lineages, replacement of T cell subclusters, and suppression of overactivated immune cells. Analysis on characteristics of CAR-T cells in IMNM demonstrated a more active expansion of CD8+ CAR-T cells, with a dynamic phenotype shifting pattern similar in CD4+ and CD8+ CAR-T cells. A comparison of CD8+ CAR-T cells in patients with IMNM and those with malignancies collected at different timepoints revealed a more NK-like phenotype with enhanced tendency of cell death and neuroinflammation and inhibited proliferating ability of CD8+ CAR-T cells in IMNM while neuroinflammation might be the distinct characteristics. Further studies are warranted to define the molecular features of CAR-T cells in autoimmunity and to seek higher efficiency and longer persistence of CAR-T cells in treating autoimmune disorders.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| | - Wen Wang
- Nanjing IASO Biotherapeutics Ltd., Nanjing210000, China
| | - Song-Bai Cai
- Nanjing IASO Biotherapeutics Ltd., Nanjing210000, China
| | - Yun-Fan You
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| | - Di Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Chun-Rui Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| | - Bi-Tao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| |
Collapse
|
31
|
Kim HJ, Nakagawa H, Choi JY, Che X, Divris A, Liu Q, Wight AE, Zhang H, Saad A, Solhjou Z, Deban C, Azzi JR, Cantor H. A narrow T cell receptor repertoire instructs thymic differentiation of MHC class Ib-restricted CD8+ regulatory T cells. J Clin Invest 2024; 134:e170512. [PMID: 37934601 PMCID: PMC10760956 DOI: 10.1172/jci170512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Although most CD8+ T cells are equipped to kill infected or transformed cells, a subset may regulate immune responses and preserve self-tolerance. Here, we describe a CD8 lineage that is instructed to differentiate into CD8 T regulatory cells (Tregs) by a surprisingly restricted set of T cell receptors (TCRs) that recognize MHC-E (mouse Qa-1) and several dominant self-peptides. Recognition and elimination of pathogenic target cells that express these Qa-1-self-peptide complexes selectively inhibits pathogenic antibody responses without generalized immune suppression. Immunization with synthetic agonist peptides that mobilize CD8 Tregs in vivo efficiently inhibit antigraft antibody responses and markedly prolong heart and kidney organ graft survival. Definition of TCR-dependent differentiation and target recognition by this lineage of CD8 Tregs may open the way to new therapeutic approaches to inhibit pathogenic antibody responses.
Collapse
Affiliation(s)
- Hye-Jung Kim
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| | - Hidetoshi Nakagawa
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| | - John Y. Choi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Xuchun Che
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Andrew Divris
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Qingshi Liu
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Andrew E. Wight
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| | - Hengcheng Zhang
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Anis Saad
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Zhabiz Solhjou
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Christa Deban
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jamil R. Azzi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Harvey Cantor
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| |
Collapse
|
32
|
Lokwani R, Josyula A, Ngo TB, DeStefano S, Fertil D, Faust M, Adusei KM, Bhuiyan M, Lin A, Karkanitsa M, Maclean E, Fathi P, Su Y, Liu J, Vishwasrao HD, Sadtler K. Pro-regenerative biomaterials recruit immunoregulatory dendritic cells after traumatic injury. NATURE MATERIALS 2024; 23:147-157. [PMID: 37872423 DOI: 10.1038/s41563-023-01689-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/12/2023] [Indexed: 10/25/2023]
Abstract
During wound healing and surgical implantation, the body establishes a delicate balance between immune activation to fight off infection and clear debris and immune tolerance to control reactivity against self-tissue. Nonetheless, how such a balance is achieved is not well understood. Here we describe that pro-regenerative biomaterials for muscle injury treatment promote the proliferation of a BATF3-dependent CD103+XCR1+CD206+CD301b+ dendritic cell population associated with cross-presentation and self-tolerance. Upregulation of E-cadherin, the ligand for CD103, and XCL-1 in injured tissue suggests a mechanism for cell recruitment to trauma. Muscle injury recruited natural killer cells that produced Xcl1 when stimulated with fragmented extracellular matrix. Without cross-presenting cells, T-cell activation increases, pro-regenerative macrophage polarization decreases and there are alterations in myogenesis, adipogenesis, fibrosis and increased muscle calcification. These results, previously observed in cancer progression, suggest a fundamental mechanism of immune regulation in trauma and material implantation with implications for both short- and long-term injury recovery.
Collapse
Affiliation(s)
- Ravi Lokwani
- Section on Immunoengineering, Biomedical Engineering and Technology Acceleration Center, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Aditya Josyula
- Section on Immunoengineering, Biomedical Engineering and Technology Acceleration Center, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Tran B Ngo
- Section on Immunoengineering, Biomedical Engineering and Technology Acceleration Center, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Sabrina DeStefano
- Section on Immunoengineering, Biomedical Engineering and Technology Acceleration Center, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Daphna Fertil
- Section on Immunoengineering, Biomedical Engineering and Technology Acceleration Center, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Mondreakest Faust
- Section on Immunoengineering, Biomedical Engineering and Technology Acceleration Center, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth M Adusei
- Section on Immunoengineering, Biomedical Engineering and Technology Acceleration Center, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Minhaj Bhuiyan
- Section on Immunoengineering, Biomedical Engineering and Technology Acceleration Center, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Aaron Lin
- Section on Immunoengineering, Biomedical Engineering and Technology Acceleration Center, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Unit for Nanoengineering and Microphysiological Systems, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Maria Karkanitsa
- Section on Immunoengineering, Biomedical Engineering and Technology Acceleration Center, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Efua Maclean
- Section on Immunoengineering, Biomedical Engineering and Technology Acceleration Center, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Parinaz Fathi
- Section on Immunoengineering, Biomedical Engineering and Technology Acceleration Center, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Unit for Nanoengineering and Microphysiological Systems, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Yijun Su
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Kaitlyn Sadtler
- Section on Immunoengineering, Biomedical Engineering and Technology Acceleration Center, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
París-Muñoz A, León-Triana O, Pérez-Martínez A, Barber DF. Helios as a Potential Biomarker in Systemic Lupus Erythematosus and New Therapies Based on Immunosuppressive Cells. Int J Mol Sci 2023; 25:452. [PMID: 38203623 PMCID: PMC10778776 DOI: 10.3390/ijms25010452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The Helios protein (encoded by the IKZF2 gene) is a member of the Ikaros transcription family and it has recently been proposed as a promising biomarker for systemic lupus erythematosus (SLE) disease progression in both mouse models and patients. Helios is beginning to be studied extensively for its influence on the T regulatory (Treg) compartment, both CD4+ Tregs and KIR+/Ly49+ CD8+ Tregs, with alterations to the number and function of these cells correlated to the autoimmune phenomenon. This review analyzes the most recent research on Helios expression in relation to the main immune cell populations and its role in SLE immune homeostasis, specifically focusing on the interaction between T cells and tolerogenic dendritic cells (tolDCs). This information could be potentially useful in the design of new therapies, with a particular focus on transfer therapies using immunosuppressive cells. Finally, we will discuss the possibility of using nanotechnology for magnetic targeting to overcome some of the obstacles related to these therapeutic approaches.
Collapse
Affiliation(s)
- Andrés París-Muñoz
- Department of Immunology and Oncology and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain;
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; (O.L.-T.); (A.P.-M.)
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Odelaisy León-Triana
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; (O.L.-T.); (A.P.-M.)
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; (O.L.-T.); (A.P.-M.)
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Domingo F. Barber
- Department of Immunology and Oncology and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain;
| |
Collapse
|
34
|
Wu S, Zhang X, Hu C, Zhong Y, Chen J, Chong WP. CD8 + T cells reduce neuroretina inflammation in mouse by regulating autoreactive Th1 and Th17 cells through IFN-γ. Eur J Immunol 2023; 53:e2350574. [PMID: 37689974 DOI: 10.1002/eji.202350574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/08/2023] [Accepted: 09/08/2023] [Indexed: 09/11/2023]
Abstract
Various regulatory CD8+ T-cell subsets have been proposed for immune tolerance and have been implicated in controlling autoimmune diseases. However, their phenotypic identities and suppression mechanisms are not yet understood. This study found that coculture of T-cell receptor (TCR)- or interferon (IFN)-β-activated CD8+ T cells significantly suppressed the cytokine production of Th1 and Th17 cells. By experimenting with the experimental autoimmune uveitis (EAU), we found that adoptive transfer of TCR or IFN-β-activated CD8+ T cells significantly lessened disease development in an IFN-γ-dependent manner with a decreased uveitogenic Th1 and Th17 response. Interestingly, after adoptive transfer into the EAU mice, the IFN-γ+ CD8+ T cells were recruited more efficiently into the secondary lymphoid organs during the disease-priming phase. This recruitment depends on the IFN-γ-inducible chemokine receptor CXCR3; knocking out CXCR3 abolishes the protective effect of CD8+ T cells in EAU. In conclusion, we identified the critical role of IFN-γ for CD8+ T cells to inhibit Th1 and Th17 responses and ameliorate EAU. CXCR3 is necessary to recruit IFN-γ+ CD8+ T cells to the secondary lymphoid organ for the regulation of autoreactive Th1 and Th17 cells.
Collapse
Affiliation(s)
- Sihan Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Cuiping Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yajie Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wai Po Chong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
35
|
Cao L, Deng J, Chen W, He M, Zhao N, Huang H, Ling L, Li Q, Zhu X, Wang L. CTRP4/interleukin-6 receptor signaling ameliorates autoimmune encephalomyelitis by suppressing Th17 cell differentiation. J Clin Invest 2023; 134:e168384. [PMID: 38015631 PMCID: PMC10866667 DOI: 10.1172/jci168384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
C1q/TNF-related protein 4 (CTRP4) is generally thought to be released extracellularly and plays a critical role in energy metabolism and protecting against sepsis. However, its physiological functions in autoimmune diseases have not been thoroughly explored. In this study, we demonstrate that Th17 cell-associated experimental autoimmune encephalomyelitis was greatly exacerbated in Ctrp4-/- mice compared with WT mice due to increased Th17 cell infiltration. The absence of Ctrp4 promoted the differentiation of naive CD4+ T cells into Th17 cells in vitro. Mechanistically, CTRP4 interfered with the interaction between IL-6 and the IL-6 receptor (IL-6R) by directly competing to bind with IL-6R, leading to suppression of IL-6-induced activation of the STAT3 pathway. Furthermore, the administration of recombinant CTRP4 protein ameliorated disease symptoms. In conclusion, our results indicate that CTRP4, as an endogenous regulator of the IL-6 receptor-signaling pathway, may be a potential therapeutic intervention for Th17-driven autoimmune diseases.
Collapse
Affiliation(s)
- Lulu Cao
- Department of Rheumatology and Immunology, Peking University People’s Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Department of Immunology, School of Basic Medical Sciences, Health Science Center, and
- Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Science, Peking University, Beijing, China
| | - Jinhai Deng
- Department of Immunology, School of Basic Medical Sciences, Health Science Center, and
- Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Science, Peking University, Beijing, China
| | - Wei Chen
- Department of Immunology, School of Basic Medical Sciences, Health Science Center, and
- Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Science, Peking University, Beijing, China
| | - Minwei He
- Department of Immunology, School of Basic Medical Sciences, Health Science Center, and
- Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Science, Peking University, Beijing, China
| | - Ning Zhao
- Department of Immunology, School of Basic Medical Sciences, Health Science Center, and
- Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Science, Peking University, Beijing, China
| | - He Huang
- Department of Immunology, School of Basic Medical Sciences, Health Science Center, and
- Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Science, Peking University, Beijing, China
| | - Lu Ling
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Wang
- Department of Immunology, School of Basic Medical Sciences, Health Science Center, and
- Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Science, Peking University, Beijing, China
| |
Collapse
|
36
|
Badr ME, Zhang Z, Tai X, Singer A. CD8 T cell tolerance results from eviction of immature autoreactive cells from the thymus. Science 2023; 382:534-541. [PMID: 37917689 PMCID: PMC11302524 DOI: 10.1126/science.adh4124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023]
Abstract
CD8 T cell tolerance is thought to result from clonal deletion of autoreactive thymocytes before they differentiate into mature CD8 T cells in the thymus. However, we report that, in mice, CD8 T cell tolerance instead results from premature thymic eviction of immature autoreactive CD8 thymocytes into the periphery, where they differentiate into self-tolerant mature CD8 T cells. Premature thymic eviction is triggered by T cell receptor (TCR)-driven down-regulation of the transcriptional repressor Gfi1, which induces expression of sphingosine-1-phosphate receptor-1 (S1P1) on negatively selected immature CD8 thymocytes. Thus, premature thymic eviction is the basis for CD8 T cell tolerance and is the mechanism responsible for the appearance in the periphery of mature CD8 T cells bearing autoreactive TCRs that are absent from the thymus.
Collapse
Affiliation(s)
- Mohamed Elsherif Badr
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhongmei Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuguang Tai
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
37
|
Lin Y, Sakuraba S, Massilamany C, Reddy J, Tanaka Y, Miyake S, Yamamura T. Harnessing autoimmunity with dominant self-peptide: Modulating the sustainability of tissue-preferential antigen-specific Tregs by governing the binding stability via peptide flanking residues. J Autoimmun 2023; 140:103094. [PMID: 37716077 DOI: 10.1016/j.jaut.2023.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/18/2023]
Abstract
Sensitization to self-peptides induces various immunological responses, from autoimmunity to tumor immunity, depending on the peptide sequence; however, the underlying mechanisms remain unclear, and thus, curative therapeutic options considering immunity balance are limited. Herein, two overlapping dominant peptides of myelin proteolipid protein, PLP136-150 and PLP139-151, which induce different forms of experimental autoimmune encephalomyelitis (EAE), monophasic and relapsing EAE, respectively, were investigated. Mice with monophasic EAE exhibited highly resistant to EAE re-induction with any encephalitogenic peptides, whereas mice with relapsing EAE were susceptible, and progressed, to EAE re-induction. This resistance to relapse and re-induction in monophasic EAE mice was associated with the maintenance of potent CD69+CD103+CD4+CD25high regulatory T-cells (Tregs) enriched with antigen specificity, which expanded preferentially in the central nervous system with sustained suppressive activity. This tissue-preferential sustainability of potent antigen-specific Tregs was correlated with the antigenicity of PLP136-150, depending on its flanking residues. That is, the flanking residues of PLP136-150 enable to form pivotally arranged strong hydrogen bonds that secured its binding stability to MHC-class II. These potent Tregs acting tissue-preferentially were induced only by sensitization of PLP136-150, not by its tolerance induction, independent of EAE development. These findings suggest that, for optimal therapy, "benign autoimmunity" can be critically achieved through inverse vaccination with self-peptides by manipulating their flanking residues.
Collapse
Affiliation(s)
- Youwei Lin
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan; Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan.
| | - Shun Sakuraba
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Chiba, 263-0024, Japan.
| | | | - Jayagopala Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki, 852-8588, Japan.
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan.
| |
Collapse
|
38
|
Koh CH, Lee S, Kwak M, Kim BS, Chung Y. CD8 T-cell subsets: heterogeneity, functions, and therapeutic potential. Exp Mol Med 2023; 55:2287-2299. [PMID: 37907738 PMCID: PMC10689838 DOI: 10.1038/s12276-023-01105-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 11/02/2023] Open
Abstract
CD8 T cells play crucial roles in immune surveillance and defense against infections and cancer. After encountering antigenic stimulation, naïve CD8 T cells differentiate and acquire effector functions, enabling them to eliminate infected or malignant cells. Traditionally, cytotoxic T cells, characterized by their ability to produce effector cytokines and release cytotoxic granules to directly kill target cells, have been recognized as the constituents of the predominant effector T-cell subset. However, emerging evidence suggests distinct subsets of effector CD8 T cells that each exhibit unique effector functions and therapeutic potential. This review highlights recent advancements in our understanding of CD8 T-cell subsets and the contributions of these cells to various disease pathologies. Understanding the diverse roles and functions of effector CD8 T-cell subsets is crucial to discern the complex dynamics of immune responses in different disease settings. Furthermore, the development of immunotherapeutic approaches that specifically target and regulate the function of distinct CD8 T-cell subsets holds great promise for precision medicine.
Collapse
Affiliation(s)
- Choong-Hyun Koh
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suyoung Lee
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minkyeong Kwak
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Seok Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon, 25159, Republic of Korea.
| |
Collapse
|
39
|
Wang S, Zhang Y, Wang Y, Yang Y, Zhao S, Sheng T, Zhang Y, Gu Z, Wang J, Yu J. An in situ dual-anchoring strategy for enhanced immobilization of PD-L1 to treat autoimmune diseases. Nat Commun 2023; 14:6953. [PMID: 37907476 PMCID: PMC10618264 DOI: 10.1038/s41467-023-42725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Immune checkpoints play key roles in maintaining self-tolerance. Targeted potentiation of the checkpoint molecule PD-L1 through in situ manipulation offers clinical promise for patients with autoimmune diseases. However, the therapeutic effects of these approaches are often compromised by limited specificity and inadequate expression. Here, we report a two-step dual-anchor coupling strategy for enhanced immobilization of PD-L1 on target endogenous cells by integrating bioorthogonal chemistry and physical insertion of the cell membrane. In both type 1 diabetes and rheumatoid arthritis mouse models, we demonstrate that this approach leads to elevated and sustained conjugation of PD-L1 on target cells, resulting in significant suppression of autoreactive immune cell activation, recruitment of regulatory T cells, and systematic reshaping of the immune environment. Furthermore, it restores glucose homeostasis in type 1 diabetic mice for over 100 days. This specific in situ bioengineering approach potentiates the functions of PD-L1 and represents its translational potential.
Collapse
Affiliation(s)
- Shenqiang Wang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanfang Wang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yinxian Yang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng Zhao
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Sheng
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jinqiang Wang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
| |
Collapse
|
40
|
Su W, Saravia J, Risch I, Rankin S, Guy C, Chapman NM, Shi H, Sun Y, Kc A, Li W, Huang H, Lim SA, Hu H, Wang Y, Liu D, Jiao Y, Chen PC, Soliman H, Yan KK, Zhang J, Vogel P, Liu X, Serrano GE, Beach TG, Yu J, Peng J, Chi H. CXCR6 orchestrates brain CD8 + T cell residency and limits mouse Alzheimer's disease pathology. Nat Immunol 2023; 24:1735-1747. [PMID: 37679549 PMCID: PMC11102766 DOI: 10.1038/s41590-023-01604-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/26/2023] [Indexed: 09/09/2023]
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), are characterized by innate immune-mediated inflammation, but functional and mechanistic effects of the adaptive immune system remain unclear. Here we identify brain-resident CD8+ T cells that coexpress CXCR6 and PD-1 and are in proximity to plaque-associated microglia in human and mouse AD brains. We also establish that CD8+ T cells restrict AD pathologies, including β-amyloid deposition and cognitive decline. Ligand-receptor interaction analysis identifies CXCL16-CXCR6 intercellular communication between microglia and CD8+ T cells. Further, Cxcr6 deficiency impairs accumulation, tissue residency programming and clonal expansion of brain PD-1+CD8+ T cells. Ablation of Cxcr6 or CD8+ T cells ultimately increases proinflammatory cytokine production from microglia, with CXCR6 orchestrating brain CD8+ T cell-microglia colocalization. Collectively, our study reveals protective roles for brain CD8+ T cells and CXCR6 in mouse AD pathogenesis and highlights that microenvironment-specific, intercellular communication orchestrates tissue homeostasis and protection from neuroinflammation.
Collapse
Affiliation(s)
- Wei Su
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Isabel Risch
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sherri Rankin
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anil Kc
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wei Li
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongling Huang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Seon Ah Lim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Haoran Hu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yan Wang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Danting Liu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yun Jiao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ping-Chung Chen
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hadeer Soliman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Koon-Kiu Yan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathan Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xueyan Liu
- Department of Mathematics, University of New Orleans, New Orleans, LA, USA
| | | | | | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
41
|
Camarca A, Rotondi Aufiero V, Mazzarella G. Role of Regulatory T Cells and Their Potential Therapeutic Applications in Celiac Disease. Int J Mol Sci 2023; 24:14434. [PMID: 37833882 PMCID: PMC10572745 DOI: 10.3390/ijms241914434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
Celiac disease (CeD) is a T-cell-mediated immune disease, in which gluten-derived peptides activate lamina propria effector CD4+ T cells. While this effector T cell subset produces proinflammatory cytokines, which cause substantial tissue injury in vivo, additional subsets of T cells exist with regulatory functions (Treg). These subsets include CD4+ type 1 regulatory T cells (Tr1) and CD4+ CD25+ T cells expressing the master transcription factor forkhead box P3 (Foxp3) that may have important implications in disease pathogenesis. In this review, we provide an overview of the current knowledge about the effects of immunomodulating cytokines on CeD inflammatory status. Moreover, we outline the main Treg cell populations found in CeD and how their regulatory activity could be influenced by the intestinal microenvironment. Finally, we discuss the Treg therapeutic potential for the development of alternative strategies to the gluten-free diet (GFD).
Collapse
Affiliation(s)
- Alessandra Camarca
- Institute of Food Sciences, National Research Council—CNR, 83100 Avellino, Italy (V.R.A.)
| | - Vera Rotondi Aufiero
- Institute of Food Sciences, National Research Council—CNR, 83100 Avellino, Italy (V.R.A.)
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, 80138 Naples, Italy
| | - Giuseppe Mazzarella
- Institute of Food Sciences, National Research Council—CNR, 83100 Avellino, Italy (V.R.A.)
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, 80138 Naples, Italy
| |
Collapse
|
42
|
Zong B, Yu F, Zhang X, Pang Y, Zhao W, Sun P, Li L. Mechanosensitive Piezo1 channel in physiology and pathophysiology of the central nervous system. Ageing Res Rev 2023; 90:102026. [PMID: 37532007 DOI: 10.1016/j.arr.2023.102026] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Since the discovery of the mechanosensitive Piezo1 channel in 2010, there has been a significant amount of research conducted to explore its regulatory role in the physiology and pathology of various organ systems. Recently, a growing body of compelling evidence has emerged linking the activity of the mechanosensitive Piezo1 channel to health and disease of the central nervous system. However, the exact mechanisms underlying these associations remain inadequately comprehended. This review systematically summarizes the current research on the mechanosensitive Piezo1 channel and its implications for central nervous system mechanobiology, retrospects the results demonstrating the regulatory role of the mechanosensitive Piezo1 channel on various cell types within the central nervous system, including neural stem cells, neurons, oligodendrocytes, microglia, astrocytes, and brain endothelial cells. Furthermore, the review discusses the current understanding of the involvement of the Piezo1 channel in central nervous system disorders, such as Alzheimer's disease, multiple sclerosis, glaucoma, stroke, and glioma.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Fengzhi Yu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyou Zhang
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yige Pang
- Department of Neurosurgery, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
43
|
Wang J, Brown K, Danehy C, Mérigeon E, Goralski S, Rice S, Torgbe K, Thomas F, Block D, Olsen H, Strome SE, Fitzpatrick EA. Fc multimers effectively treat murine models of multiple sclerosis. Front Immunol 2023; 14:1199747. [PMID: 37638040 PMCID: PMC10451071 DOI: 10.3389/fimmu.2023.1199747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic neurodegenerative disease with limited therapeutic options. Recombinant Fc multimers (rFc), designed to mirror many of the anti-inflammatory activities of Intravenous Immunoglobulin (IVIG), have been shown to effectively treat numerous immune-mediated diseases in rodents. In this study we used the experimental autoimmune encephalomyelitis (EAE) murine model of MS to test the efficacy of a rFc, M019, that consists of multimers of the Fc portion of IgG2, in inhibiting disease severity. We show that M019 effectively reduced clinical symptoms when given either pre- or post-symptom onset compared to vehicle treated EAE induced mice. M019 was effective in reducing symptoms in both SJL model of relapsing remitting MS as well as the B6 model of chronic disease. M019 binds to FcγR bearing-monocytes both in vivo and in vitro and prevented immune cell infiltration into the CNS of treated mice. The lack of T cell infiltration into the spinal cord was not due to a decrease in T cell priming; there was an equivalent frequency of Th17 cells in the spleens of M019 and vehicle treated EAE induced mice. Surprisingly, there was an increase in chemokines in the sera but not in the CNS of M019 treated mice compared to vehicle treated animals. We postulate that M019 interacts with a FcγR rich monocyte intermediary to prevent T cell migration into the CNS and demyelination.
Collapse
Affiliation(s)
- Jin Wang
- Dept. of Microbiology Immunology and Biochemistry, UTHSC, Memphis, TN, United States
| | - Kellie Brown
- Dept. of Microbiology Immunology and Biochemistry, UTHSC, Memphis, TN, United States
| | - Caroline Danehy
- College of Graduate Health Sciences, UTHSC, Memphis, TN, United States
| | | | | | - Samuel Rice
- College of Medicine, UTHSC, Memphis, TN, United States
| | - Kwame Torgbe
- Dept. of Pathology, UTHSC, Memphis, TN, United States
| | - Fridtjof Thomas
- Div. of Biostatistics, Dept. of Preventive Medicine, UTHSC, Memphis, TN, United States
| | | | | | - Scott E. Strome
- Dept. of Microbiology Immunology and Biochemistry, UTHSC, Memphis, TN, United States
| | | |
Collapse
|
44
|
Sagan SA, Moinfar Z, Moseley CE, Dandekar R, Spencer CM, Verkman AS, Ottersen OP, Sobel RA, Sidney J, Sette A, Anderson MS, Steinman L, Wilson MR, Sabatino JJ, Zamvil SS. T cell deletional tolerance restricts AQP4 but not MOG CNS autoimmunity. Proc Natl Acad Sci U S A 2023; 120:e2306572120. [PMID: 37463205 PMCID: PMC10372680 DOI: 10.1073/pnas.2306572120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
Aquaporin-4 (AQP4)-specific Th17 cells are thought to have a central role in neuromyelitis optica (NMO) pathogenesis. When modeling NMO, only AQP4-reactive Th17 cells from AQP4-deficient (AQP4-/-), but not wild-type (WT) mice, caused CNS autoimmunity in recipient WT mice, indicating that a tightly regulated mechanism normally ensures tolerance to AQP4. Here, we found that pathogenic AQP4 T cell epitopes bind MHC II with exceptionally high affinity. Examination of T cell receptor (TCR) α/β usage revealed that AQP4-specific T cells from AQP4-/- mice employed a distinct TCR repertoire and exhibited clonal expansion. Selective thymic AQP4 deficiency did not fully restore AQP4-reactive T cells, demonstrating that thymic negative selection alone did not account for AQP4-specific tolerance in WT mice. Indeed, AQP4-specific Th17 cells caused paralysis in recipient WT or B cell-deficient mice, which was followed by complete recovery that was associated with apoptosis of donor T cells. However, donor AQP4-reactive T cells survived and caused persistent paralysis in recipient mice deficient in both T and B cells or mice lacking T cells only. Thus, AQP4 CNS autoimmunity was limited by T cell-dependent deletion of AQP4-reactive T cells. In contrast, myelin oligodendrocyte glycoprotein (MOG)-specific T cells survived and caused sustained disease in WT mice. These findings underscore the importance of peripheral T cell deletional tolerance to AQP4, which may be relevant to understanding the balance of AQP4-reactive T cells in health and in NMO. T cell tolerance to AQP4, expressed in multiple tissues, is distinct from tolerance to MOG, an autoantigen restricted in its expression.
Collapse
Affiliation(s)
- Sharon A Sagan
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94143
- Program in Immunology, University of California, San Francisco, CA 94143
| | - Zahra Moinfar
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94143
- Program in Immunology, University of California, San Francisco, CA 94143
| | - Carson E Moseley
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94143
- Program in Immunology, University of California, San Francisco, CA 94143
| | - Ravi Dandekar
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94143
| | - Collin M Spencer
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94143
- Program in Immunology, University of California, San Francisco, CA 94143
| | - Alan S Verkman
- Department of Medicine, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
| | - Ole Petter Ottersen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo NO-0316, Norway
| | - Raymond A Sobel
- Department of Pathology, Stanford University School of Medicine, Palo Alto VA Health Care System, Palo Alto, CA 94305
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Mark S Anderson
- Program in Immunology, University of California, San Francisco, CA 94143
- Diabetes Center, University of California, San Francisco, CA 94143
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
| | - Michael R Wilson
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94143
| | - Joseph J Sabatino
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94143
| | - Scott S Zamvil
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94143
- Program in Immunology, University of California, San Francisco, CA 94143
| |
Collapse
|
45
|
Kornberg A, Botella T, Moon CS, Rao S, Gelbs J, Cheng L, Miller J, Bacarella AM, García-Vilas JA, Vargas J, Yu X, Krupska I, Bush E, Garcia-Carrasquillo R, Lebwohl B, Krishnareddy S, Lewis S, Green PH, Bhagat G, Yan KS, Han A. Gluten induces rapid reprogramming of natural memory αβ and γδ intraepithelial T cells to induce cytotoxicity in celiac disease. Sci Immunol 2023; 8:eadf4312. [PMID: 37450575 PMCID: PMC10481382 DOI: 10.1126/sciimmunol.adf4312] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/26/2023] [Indexed: 07/18/2023]
Abstract
Celiac disease (CD) is an autoimmune disease in which intestinal inflammation is induced by dietary gluten. The means through which gluten-specific CD4+ T cell activation culminates in intraepithelial T cell (T-IEL)-mediated intestinal damage remain unclear. Here, we performed multiplexed single-cell analysis of intestinal and gluten-induced peripheral blood T cells from patients in different CD states and healthy controls. Untreated, active, and potential CD were associated with an enrichment of activated intestinal T cell populations, including CD4+ follicular T helper (TFH) cells, regulatory T cells (Tregs), and natural CD8+ αβ and γδ T-IELs. Natural CD8+ αβ and γδ T-IELs expressing activating natural killer cell receptors (NKRs) exhibited a distinct TCR repertoire in CD and persisted in patients on a gluten-free diet without intestinal inflammation. Our data further show that NKR-expressing cytotoxic cells, which appear to mediate intestinal damage in CD, arise from a distinct NKR-expressing memory population of T-IELs. After gluten ingestion, both αβ and γδ T cell clones from this memory population of T-IELs circulated systemically along with gluten-specific CD4+ T cells and assumed a cytotoxic and activating NKR-expressing phenotype. Collectively, these findings suggest that cytotoxic T cells in CD are rapidly mobilized in parallel with gluten-specific CD4+ T cells after gluten ingestion.
Collapse
Affiliation(s)
- Adam Kornberg
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Microbiology and Immunology, Columbia University; New York, NY
| | - Theo Botella
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | - Christine S. Moon
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | - Samhita Rao
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Microbiology and Immunology, Columbia University; New York, NY
| | - Jared Gelbs
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Pediatrics, Columbia University; New York, NY
| | - Liang Cheng
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | - Jonathan Miller
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | | | - Javier A. García-Vilas
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Microbiology and Immunology, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
| | - Justin Vargas
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Xuechen Yu
- Celiac Disease Center, Columbia University; New York, NY
| | - Izabela Krupska
- Department of Systems Biology, Columbia University; New York, NY
| | - Erin Bush
- Department of Systems Biology, Columbia University; New York, NY
| | | | - Benjamin Lebwohl
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Suneeta Krishnareddy
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Suzanne Lewis
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Peter H.R. Green
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Govind Bhagat
- Celiac Disease Center, Columbia University; New York, NY
- Department of Pathology and Cell Biology, Columbia University; New York, NY
| | - Kelley S. Yan
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | - Arnold Han
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Microbiology and Immunology, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| |
Collapse
|
46
|
Acosta-Galeana I, Hernández-Martínez R, Reyes-Cruz T, Chiquete E, Aceves-Buendia JDJ. RNA-binding proteins as a common ground for neurodegeneration and inflammation in amyotrophic lateral sclerosis and multiple sclerosis. Front Mol Neurosci 2023; 16:1193636. [PMID: 37475885 PMCID: PMC10355071 DOI: 10.3389/fnmol.2023.1193636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
The neurodegenerative and inflammatory illnesses of amyotrophic lateral sclerosis and multiple sclerosis were once thought to be completely distinct entities that did not share any remarkable features, but new research is beginning to reveal more information about their similarities and differences. Here, we review some of the pathophysiological features of both diseases and their experimental models: RNA-binding proteins, energy balance, protein transportation, and protein degradation at the molecular level. We make a thorough analysis on TDP-43 and hnRNP A1 dysfunction, as a possible common ground in both pathologies, establishing a potential link between neurodegeneration and pathological immunity. Furthermore, we highlight the putative variations that diverge from a common ground in an atemporal course that proposes three phases for all relevant molecular events.
Collapse
Affiliation(s)
| | | | - Tania Reyes-Cruz
- Laboratorio de Biología Molecular, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Erwin Chiquete
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jose de Jesus Aceves-Buendia
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
47
|
Zhang C, Hong X, Yu H, Xu H, Qiu X, Cai W, Hocher B, Dai W, Tang D, Liu D, Dai Y. Gene regulatory network study of rheumatoid arthritis in single-cell chromatin landscapes of peripheral blood mononuclear cells. Mod Rheumatol 2023; 33:739-750. [PMID: 35796437 DOI: 10.1093/mr/roac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Assays for transposase-accessible chromatin with single-cell sequencing (scATAC-seq) contribute to the progress in epigenetic studies. The purpose of our project was to discover the transcription factors (TFs) that were involved in the pathogenesis of rheumatoid arthritis (RA) at a single-cell resolution using epigenetic technology. METHODS Peripheral blood mononuclear cells of seven RA patients and seven natural controls were extracted nuclei suspensions for library construction. Subsequently, scATAC-seq was performed to generate a high-resolution map of active regulatory DNA for bioinformatics analysis. RESULTS We obtained 22 accessible chromatin patterns. Then, 10 key TFs were involved in RA pathogenesis by regulating the activity of mitogen-activated protein kinase. Consequently, two genes (PTPRC and SPAG9) regulated by 10 key TFs were found, which may be associated with RA disease pathogenesis, and these TFs were obviously enriched in RA patients (P < .05, fold change value > 1.2). With further quantitative polymerase chain reaction validation on PTPRC and SPAG9 in monocytes, we found differential expression of these two genes, which were regulated by eight TFs [ZNF384, HNF1B, DMRTA2, MEF2A, NFE2L1, CREB3L4 (var. 2), FOSL2::JUNB (var. 2), and MEF2B], showing highly accessible binding sites in RA patients. CONCLUSIONS These findings demonstrate the value of using scATAC-seq to reveal transcriptional regulatory variation in RA-derived peripheral blood mononuclear cells, providing insights into therapy from an epigenetic perspective.
Collapse
Affiliation(s)
- Cantong Zhang
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| | - Xiaoping Hong
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| | - Haiyan Yu
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| | - Huixuan Xu
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| | - Xiaofen Qiu
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| | - Wanxia Cai
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, TX, USA
| | - Donge Tang
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| | - Dongzhou Liu
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| | - Yong Dai
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| |
Collapse
|
48
|
Català-Senent JF, Andreu Z, Hidalgo MR, Soler-Sáez I, Roig FJ, Yanguas-Casás N, Neva-Alejo A, López-Cerdán A, de la Iglesia-Vayá M, Stranger BE, García-García F. A deep transcriptome meta-analysis reveals sex differences in multiple sclerosis. Neurobiol Dis 2023; 181:106113. [PMID: 37023829 DOI: 10.1016/j.nbd.2023.106113] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS), a chronic auto-immune, inflammatory, and degenerative disease of the central nervous system, affects both males and females; however, females suffer from a higher risk of developing MS (2-3:1 ratio relative to males). The precise sex-based factors influencing risk of MS are currently unknown. Here, we explore the role of sex in MS to identify molecular mechanisms underlying observed MS sex differences that may guide novel therapeutic approaches tailored for males or females. METHODS We performed a rigorous and systematic review of genome-wide transcriptome studies of MS that included patient sex data in the Gene Expression Omnibus and ArrayExpress databases following PRISMA statement guidelines. For each selected study, we analyzed differential gene expression to explore the impact of the disease in females (IDF), in males (IDM) and our main goal: the sex differential impact of the disease (SDID). Then, for each scenario (IDF, IDM and SDID) we performed 2 meta-analyses in the main tissues involved in the disease (brain and blood). Finally, we performed a gene set analysis in brain tissue, in which a higher number of genes were dysregulated, to characterize sex differences in biological pathways. RESULTS After screening 122 publications, the systematic review provided a selection of 9 studies (5 in blood and 4 in brain tissue) with a total of 474 samples (189 females with MS and 109 control females; 82 males with MS and 94 control males). Blood and brain tissue meta-analyses identified, respectively, 1 (KIR2DL3) and 13 (ARL17B, CECR7, CEP78, IFFO2, LOC401127, NUDT18, RNF10, SLC17A5, STMP1, TRAF3IP2-AS1, UBXN2B, ZNF117, ZNF488) MS-associated genes that differed between males and females (SDID comparison). Functional analyses in the brain revealed different altered immune patterns in females and males (IDF and IDM comparisons). The pro-inflammatory environment and innate immune responses related to myeloid lineage appear to be more affected in females, while adaptive responses associated with the lymphocyte lineage in males. Additionally, females with MS displayed alterations in mitochondrial respiratory chain complexes, purine, and glutamate metabolism, while MS males displayed alterations in stress response to metal ion, amine, and amino acid transport. CONCLUSION We found transcriptomic and functional differences between MS males and MS females (especially in the immune system), which may support the development of new sex-based research of this disease. Our study highlights the importance of understanding the role of biological sex in MS to guide a more personalized medicine.
Collapse
Affiliation(s)
| | - Zoraida Andreu
- Foundation Valencian Institute of Oncology (FIVO), 46009 Valencia, Spain
| | - Marta R Hidalgo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain
| | - Irene Soler-Sáez
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain
| | - Francisco José Roig
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain; Faculty of Health Sciences, San Jorge University, 50830 Zaragoza, Spain
| | - Natalia Yanguas-Casás
- Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Grupo de Investigación en Linfomas, C/Joaquín Rodrigo 2, Majadahonda, 28222 Madrid, Spain
| | - Almudena Neva-Alejo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain
| | - Adolfo López-Cerdán
- Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, 46012 Valencia, Spain
| | - María de la Iglesia-Vayá
- Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, 46012 Valencia, Spain
| | - Barbara E Stranger
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain.
| |
Collapse
|
49
|
Mora-Bitria L, Asquith B. Innate receptors modulating adaptive T cell responses: KIR-HLA interactions and T cell-mediated control of chronic viral infections. Immunogenetics 2023; 75:269-282. [PMID: 36719466 PMCID: PMC9887252 DOI: 10.1007/s00251-023-01293-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are mainly expressed on natural killer (NK) cells and are key regulators of innate immune responses. NK cells are the first responders in the face of infection and help promote placentation during pregnancy; the importance of KIRs in these NK-mediated processes is well-established. However, mounting evidence suggests that KIRs also have a prominent and long-lasting effect on the adaptive immune system. Here, we review the evidence for the impact of KIRs on T cell responses with a focus on the clinical significance of this interaction.
Collapse
Affiliation(s)
- Laura Mora-Bitria
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Becca Asquith
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
50
|
Abdelwahab T, Stadler D, Knöpper K, Arampatzi P, Saliba AE, Kastenmüller W, Martini R, Groh J. Cytotoxic CNS-associated T cells drive axon degeneration by targeting perturbed oligodendrocytes in PLP1 mutant mice. iScience 2023; 26:106698. [PMID: 37182098 PMCID: PMC10172788 DOI: 10.1016/j.isci.2023.106698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Myelin defects lead to neurological dysfunction in various diseases and in normal aging. Chronic neuroinflammation often contributes to axon-myelin damage in these conditions and can be initiated and/or sustained by perturbed myelinating glia. We have previously shown that distinct PLP1 mutations result in neurodegeneration that is largely driven by adaptive immune cells. Here we characterize CD8+ CNS-associated T cells in myelin mutants using single-cell transcriptomics and identify population heterogeneity and disease-associated changes. We demonstrate that early sphingosine-1-phosphate receptor modulation attenuates T cell recruitment and neural damage, while later targeting of CNS-associated T cell populations is inefficient. Applying bone marrow chimerism and utilizing random X chromosome inactivation, we provide evidence that axonal damage is driven by cytotoxic, antigen specific CD8+ T cells that target mutant myelinating oligodendrocytes. These findings offer insights into neural-immune interactions and are of translational relevance for neurological conditions associated with myelin defects and neuroinflammation.
Collapse
Affiliation(s)
- Tassnim Abdelwahab
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - David Stadler
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Konrad Knöpper
- Institute for Systems Immunology, University of Würzburg, Würzburg, Germany
| | | | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
| | | | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|