1
|
Barredo JI, Marí Rivero I, Janoušková K. Assessing disturbances in surviving primary forests of Europe. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14404. [PMID: 39560028 PMCID: PMC11959323 DOI: 10.1111/cobi.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 11/20/2024]
Abstract
Primary forests are of paramount importance for biodiversity conservation and the provision of ecosystem services. In Europe, these forests are scarce and threatened by human activities. However, a comprehensive assessment of the magnitude of disturbances in these forests is lacking, due in part to their incomplete mapping. We sought to provide a systematic assessment of disturbances in primary forests in Europe based on remotely sensed imagery from 1986 to 2020. We assessed the total area disturbed, rate of area disturbed, and disturbance severity, at the country, biogeographical, and continental level. Maps of potential primary forests were used to mitigate gaps in maps of documented primary forests. We found a widespread and significant increase in primary forest disturbance rates across Europe and heightened disturbance severity in many biogeographical regions. These findings are consistent with current evidence and associate the ongoing decline of primary forests in Europe with human activity in many jurisdictions. Considering the limited extent of primary forests in Europe and the high risk of their further loss, urgent and decisive measures are imperative to ensure the strict protection of remnants of these invaluable forests. This includes the establishment of protected areas around primary forests, expansion of old-growth zones around small primary forest fragments, and rewilding efforts.
Collapse
|
2
|
Huang X, Wu Y, Bao A, Zheng L, Yu T, Naibi S, Wang T, Song F, Yuan Y, De Maeyer P, Van de Voorde T. Habitat quality outweighs the human footprint in driving spatial patterns of Cetartiodactyla in the Kunlun-Pamir Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122693. [PMID: 39369535 DOI: 10.1016/j.jenvman.2024.122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
The Human Footprint (HFP) and Habitat Quality (HQ) are critical factors influencing the species' distribution, yet their relation to biodiversity, particularly in mountainous regions, still remains inadequately understood. This study aims to identify the primary factor that affects the biodiversity by comparing the impact of the HFP and HQ on the species' richness of Cetartiodactyla in the Kunlun-Pamir Plateau and four protected areas: The Pamir Plateau Wetland Nature Reserve, Taxkorgan Wildlife Nature Reserve, Middle Kunlun Nature Reserve and Arjinshan Nature Reserve through multi-source satellite remote sensing product data. By integrating satellite data with the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST)HQ model and utilizing residual and linear regression analysis, we found that: (1) The Wildness Area (WA) predominantly underwent a transition to a Highly Modified Area (HMA) and Intact Area (IA), with a notable 12.02% rise in stable regions, while 58.51% rather experienced a negligible decrease. (2) From 1985 to 2020, the Kunlun-Pamir Plateau has seen increases in the forestland, water, cropland and shrubland, alongside declines in bare land and grassland, denoting considerable land cover changes. (3) The HQ degradation was significant, with 79.81% of the area showing degradation compared to a 10.65% improvement, varying across the nature reserves. (4) The species richness of Cetartiodactyla was better explained by HQ than by HFP on the Kunlun-Pamir Plateau (52.99% vs. 47.01%), as well as in the Arjinshan Nature Reserve (81.57%) and Middle Kunlun Nature Reserve (56.41%). In contrast, HFP was more explanatory in the Pamir Plateau Wetland Nature Reserve (88.89%) and the Taxkorgan Wildlife Nature Reserve (54.55%). Prioritizing the restoration of degraded habitats areas of the Kunlun Pamir Plateau could enhance Cetartiodactyla species richness. These findings provide valuable insights for the biodiversity management and conservation strategies in the mountainous regions.
Collapse
Affiliation(s)
- Xiaoran Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Sciences, Xinjiang University, Urumqi, 830046, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Geography, Ghent University, Ghent, 9000, Belgium
| | - Yangfeng Wu
- Northeast Institute of Geography and Agro-Ecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Anming Bao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; CAS Research Centre for Ecology and Environment of Central Asia, Urumqi, 830011, China; China-Pakistan Joint Research Centre on Earth Sciences, CAS-HEC, Islamabad, 45320, Pakistan
| | - Lei Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Tao Yu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Geography, Ghent University, Ghent, 9000, Belgium
| | - Sulei Naibi
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Geography, Ghent University, Ghent, 9000, Belgium
| | - Ting Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Geography, Ghent University, Ghent, 9000, Belgium
| | - Fengjiao Song
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Yuan
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Philippe De Maeyer
- Department of Geography, Ghent University, Ghent, 9000, Belgium; Sino-Belgian Laboratory for Geo-Information, Ghent, 9000, Belgium
| | - Tim Van de Voorde
- Department of Geography, Ghent University, Ghent, 9000, Belgium; Sino-Belgian Laboratory for Geo-Information, Ghent, 9000, Belgium
| |
Collapse
|
3
|
Senanayake SC, Liyanage P, Pathirage DRK, Siraj MFR, De Silva BGDNK, Karunaweera ND. Impact of climate and land use on the temporal variability of sand fly density in Sri Lanka: A 2-year longitudinal study. PLoS Negl Trop Dis 2024; 18:e0012675. [PMID: 39570981 PMCID: PMC11620634 DOI: 10.1371/journal.pntd.0012675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 12/05/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Leishmaniasis has emerged as an escalating public health problem in Sri Lanka, with reported cases increasing nearly three folds over past decade, from 1,367 in 2014 to 3714 cases in 2023. Phlebotominae sand flies are the vectors of leishmaniasis. Their density is known to be influenced by context-specific climatic and land use patterns. Thus, we aimed to investigate how these factors drive sand fly density across Sri Lanka. METHODOLOGY/PRINCIPAL FINDINGS We analysed monthly collections of sand flies (n = 38,594) and weather data from ten sentinel sites representing three main geo-climatic zones across Sri Lanka, over 24 months. Site-specific land use data was also recorded. The influence of climate and land use patterns on sand fly density across the sentinel sites were estimated using distributed lag non-linear models and machine learning. We found that climate played a major role on sand fly density compared to land use structure. Increase in rainfall and relative humidity at real time, and ambient temperature and soil temperature with a 2-month lag were associated with a statistically significant increase in sand fly density. The maximum relative risk (RR) observed was 3.76 (95% CI: 1.58-8.96) for rainfall at 120 mm/month, 2.14 (95% CI: 1.04-4.38) for relative humidity at 82% (both at real time). The maximum RR was 2.81 (95% CI: 1.09-7.35) for ambient temperature at 34.5°C, and 11.6 (95% CI, 4.38-30.76) for soil temperature (both at a 2-month lag). The real-time increase in ambient temperature, sunshine hours, and evaporation rate, however, reduced sand fly density homogeneously in all study settings. The high density of chena and coconut plantations, together with low density of dense forests, homesteads, and low human footprint values, positively influenced sand fly density. CONCLUSIONS/SIGNIFICANCE The findings improve our understanding of the dynamic influence of environment on sand fly densities and spread of leishmaniasis. This knowledge lays a foundation for forecasting of sand fly densities and designing targeted interventions for mitigating the growing burden of leishmaniasis among the most vulnerable populations, particularly in an era of changing climate.
Collapse
Affiliation(s)
- Sanath C. Senanayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Prasad Liyanage
- Department of Research and Evaluation, National Institute of Health Sciences Kalutara, Ministry of Health, Sri Lanka
| | - Dulani R. K. Pathirage
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - M. F. Raushan Siraj
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | - Nadira D. Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
4
|
Li G, Fang C, Watson JEM, Sun S, Qi W, Wang Z, Liu J. Mixed effectiveness of global protected areas in resisting habitat loss. Nat Commun 2024; 15:8389. [PMID: 39333073 PMCID: PMC11437083 DOI: 10.1038/s41467-024-52693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Protected areas are the cornerstones of conservation efforts to mitigate the anthropogenic pressures driving biodiversity loss. Nations aim to protect 30% of Earth's land and water by 2030, yet the effectiveness of protected areas remains unclear. Here we analyze the performance of over 160,000 protected areas in resisting habitat loss at different spatial and temporal scales, using high-resolution data. We find that 1.14 million km2 of habitat, equivalent to three times the size of Japan, across 73% of protected areas, had been altered between 2003 and 2019. These protected areas experienced habitat loss due to the expansion of built-up land, cropland, pastureland, or deforestation. Larger and stricter protected areas generally had lower rates of habitat loss. While most protected areas effectively halted the expansion of built-up areas, they were less successful in preventing deforestation and agricultural conversion. Protected areas were 33% more effective in reducing habitat loss compared to unprotected areas, though their ability to mitigate nearby human pressures was limited and varied spatially. Our findings indicate that, beyond establishing new protected areas, there is an urgent need to enhance the effectiveness of existing ones to better prevent habitat loss and achieve the post-2020 global biodiversity goals.
Collapse
Affiliation(s)
- Guangdong Li
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Chuanglin Fang
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - James E M Watson
- School of the Environment, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Siao Sun
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Qi
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenbo Wang
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jianguo Liu
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Ye J, Xiao C, Feng Z, Qiao T. A review of global wilderness area identification since the 21st century. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120946. [PMID: 38652991 DOI: 10.1016/j.jenvman.2024.120946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Wilderness areas are natural landscape elements that are relatively undisrupted by human activity and play a critical role in maintaining ecological equilibrium, preserving naturalness, and ensuring ecosystem resilience. Since 2000, monitoring of global wilderness areas has increased owing to the availability of spatial map data and remote sensing imagery related to human activity and/or human footprint. Progress has been made in the remote sensing of wilderness areas by relying on available historical literature (e.g., published papers, books, and reports). However, to our knowledge, a synthesis of wilderness area research from a remote sensing perspective has not yet been performed. In this preliminary review, we discuss the concept of wilderness in different historical eras and systematically summarize dynamic wilderness monitoring at local, national, and global scales, available remotely sensed indicators, disparities and commonalities in identification methods, and mapping uncertainties. Finally, since this field remains in its initial stage owing to a lack of unified standards and vertical/horizontal comparisons, we present insights into future research directions, particularly with regard to remote sensing. The findings of this review may help to improve the overall understanding of current wilderness patterns (i.e., increases/decreases) and the mechanisms by which they change, as well as provide guidance for global nature conservation programs.
Collapse
Affiliation(s)
- Junzhi Ye
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Address: 11A, Datun Road, Chaoyang District, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Address: 11A, Datun Road, Chaoyang District, 100049, Beijing, China.
| | - Chiwei Xiao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Address: 11A, Datun Road, Chaoyang District, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Address: 11A, Datun Road, Chaoyang District, 100049, Beijing, China.
| | - Zhiming Feng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Address: 11A, Datun Road, Chaoyang District, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Address: 11A, Datun Road, Chaoyang District, 100049, Beijing, China.
| | - Tian Qiao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Address: 11A, Datun Road, Chaoyang District, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Address: 11A, Datun Road, Chaoyang District, 100049, Beijing, China.
| |
Collapse
|
6
|
Nedopil C, Yue M, Hughes AC. Are debt-for-nature swaps scalable: Which nature, how much debt, and who pays? AMBIO 2024; 53:63-78. [PMID: 37658986 PMCID: PMC10692041 DOI: 10.1007/s13280-023-01914-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/11/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023]
Abstract
With the ongoing sovereign debt and biodiversity crises in many emerging economies, applications of debt-for-nature swaps as a dual solution for sovereign debt and nature conservation have been re-emerging. We analyze how debt-for-nature swaps (DNS) can be scaled to protect biodiversity priority areas and reduce debt burden. We build a dataset for biodiversity conservation and debt restructuring in 67 countries at risk of sovereign debt distress and show that they hold over 22% of global biodiversity priority areas, 82.96% of which are unprotected. Furthermore, we show that for 35 of the 67 countries, using conservative cost estimates, 100% of unprotected biodiversity priority areas could be protected for a fraction of debt; for the remaining countries, applying DNS would allow the protection of 11-13% of currently unprotected biodiversity priority areas. By applying interdisciplinary research combining fundamental biodiversity and economic data and methods merging, the research contributes methodologically and practically to the understanding of debt-for-nature swaps for emerging economies.
Collapse
Affiliation(s)
- Christoph Nedopil
- Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, People's Republic of China
| | - Mengdi Yue
- Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, People's Republic of China
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
7
|
Gong X, Qi Z, Wen J, Yan Y, Liu Q, Li Y, Zhang Q. Promoting effects of soil C and N and limiting effect of soil P jointly determine the plant diversity during the aerial seeding restoration process in Mu Us sandy land, China. FRONTIERS IN PLANT SCIENCE 2023; 14:1272607. [PMID: 37954995 PMCID: PMC10634302 DOI: 10.3389/fpls.2023.1272607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
Introduction Exploring the change and maintaining mechanism of plant diversity is of great significance for guiding the restoration of degraded ecosystems. However, how plant taxonomic, functional, and phylogenetic diversity change during long-term ecosystem restoration process and their driving factors remain unclear. Methods Based on the 35-year time gradient of aerial seeding restoration in Mu Us sandy land, this study explored the changes in plant taxonomic, functional, and phylogenetic diversity and the driving factors. Results The results showed that plant taxonomic, functional, and phylogenetic diversity showed consistent response with the aerial seeding restoration, all of which increased first and then tended to a saturation state in the middle of restoration (14 years). TN, TOC, and NO3 --N increased with aerial seeding restoration and showed a significant positive correlation with plant diversity of the three dimensions, while AP showed a negative correlation. Soil nitrogen and carbon promoted the increase of diversity of three dimensions in the early restoration period, while phosphorus limited the increase of diversity of three dimensions in the middle and late restoration periods. The diversity of three dimensions was mainly affected by restoration time, soil nutrients, and climate factors, and the coupling effect of restoration time and soil nutrients was dominant. Discussion These findings indicate that the plant diversity in different dimensions and soil nutrients are improved by aerial seeding restoration. Our study highlights that aerial seeding restoration mainly improves plant diversity by increasing soil nutrients, and the relative effects of different soil nutrients on plant diversity during restoration are inconsistent.
Collapse
Affiliation(s)
- Xiaoqian Gong
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhimin Qi
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jia Wen
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yongzhi Yan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Qingfu Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Research Center of Forest Ecology, Forestry College, Guizhou University, Guiyang, China
| | - Yuanheng Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Qing Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Collaborative Innovation Center for Grassland Ecological Security (Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region), Inner Mongolia University, Hohhot, China
| |
Collapse
|
8
|
Venier-Cambron C, Malek Ž, Verburg PH. Avoiding an unjust transition to sustainability: An equity metric for spatial conservation planning. Proc Natl Acad Sci U S A 2023; 120:e2216693120. [PMID: 37844239 PMCID: PMC10614950 DOI: 10.1073/pnas.2216693120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/05/2023] [Indexed: 10/18/2023] Open
Abstract
The need for rapid and ambitious conservation and restoration is widely acknowledged, yet concern exists that the widespread reallocation of land to nature would disproportionately affect the world's poor. Conservation and restoration may limit nutrition and livelihood options and thus negatively affect social development objectives. Although much research looks into global-scale scenarios and planning of conservation and restoration, spatial evaluations of these trade-offs in terms of equity remain limited. We fill this gap by identifying areas where conservation or restoration under different future scenarios and prioritization maps expand nature into landscapes that likely support land-dependent communities in their local food security. By contrasting the expansion of nature into areas supporting land-dependent communities vs. places where the food system is supported by regional to global markets, we highlight the need for disaggregated indicators that reflect the diversity of human land-use needs in order to identify more equitable pathways. Conservation prioritizations were found to result in more equitable land-use outcomes than the land-use outcomes of widely used socioeconomic scenarios. Accounting for differentiated social impacts in model-based conservation and restoration planning and global scale scenario assessment can help achieve a more inclusive transition to sustainability as well as reduce barriers to meaningful change.
Collapse
Affiliation(s)
- Camille Venier-Cambron
- Department of Environmental Geography, Instituut voor Milieuvraagstukken, Vrije Universiteit Amsterdam, 1081 HVAmsterdam, The Netherlands
| | - Žiga Malek
- Department of Environmental Geography, Instituut voor Milieuvraagstukken, Vrije Universiteit Amsterdam, 1081 HVAmsterdam, The Netherlands
| | - Peter H. Verburg
- Department of Environmental Geography, Instituut voor Milieuvraagstukken, Vrije Universiteit Amsterdam, 1081 HVAmsterdam, The Netherlands
| |
Collapse
|
9
|
Wu JY, Liu H, Li T, Ou-Yang Y, Zhang JH, Zhang TJ, Huang Y, Gao WL, Shao L. Evaluating the ecological vulnerability of Chongqing using deep learning. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86365-86379. [PMID: 37407859 DOI: 10.1007/s11356-023-28032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/29/2023] [Indexed: 07/07/2023]
Abstract
This study used deep learning to evaluate the ecological vulnerability of Chongqing, China, discuss the deep learning evaluations of ecological vulnerability, and generate vulnerability maps that support local ecological environment protection and governance decisions and provide reference for future studies. The information gain ratio was used to screen the influencing factors, selecting 16 factors that influence ecological vulnerability. Deep neural network (DNN) and convolutional neural network (CNN) methods were used for modeling, and two ecological vulnerability maps of the study area were generated. The results showed that the mean absolute error and root mean square error of the DNN and CNN models were relatively small, and the fitting accuracy was high. The area under the receiver operating characteristic curve of the CNN model was 0.926, which was better than that of the DNN model (0.888). Random forest was applied to calculate the importance of the influencing factors in the two models. Because the main factor was geological features, the relative ecological vulnerability was mainly affected by karst topography. Through the analysis of the ecological vulnerability map, the areas with higher vulnerability are the karst mountains of Dabashan, Wushan, and Qiyaoshan in the northeast and southeast, as well as the valley between mountains and cities in the center and west of the study area. According to the investigation of these areas, the primary ecological problems are low forest quality, structural irregularities caused by self-geological factors, severe desertification, and soil erosion. Human activity is also an important factor that causes ecological vulnerability in the study area. In conclusion, deep learning, particularly CNN models, can be used for ecological vulnerability assessments. The ecological vulnerability maps conformed to the basic cognition of field surveys and can provide references for other deep learning vulnerability studies. While the overall vulnerability of the study area is not high, ecological problems that lead to its vulnerability should be addressed by future ecological protection and management measures.
Collapse
Affiliation(s)
- Jun-Yi Wu
- China University of Geosciences, Beijing, 100089, China
- Graduate School, Chinese Academy of Geological Sciences, Beijing, 100037, China
- Chengdu Center, China Geological Survey, Chengdu, 610081, China
| | - Hong Liu
- Chengdu Center, China Geological Survey, Chengdu, 610081, China
- College of Earth Sciences, Chengdu University of Technology, Chengdu, 610059, China
| | - Tong Li
- College of Earth Sciences, Chengdu University of Technology, Chengdu, 610059, China
| | - Yuan Ou-Yang
- Chengdu Center, China Geological Survey, Chengdu, 610081, China.
| | - Jing-Hua Zhang
- Chengdu Center, China Geological Survey, Chengdu, 610081, China
| | - Teng-Jiao Zhang
- Chengdu Center, China Geological Survey, Chengdu, 610081, China
| | - Yong Huang
- Chengdu Center, China Geological Survey, Chengdu, 610081, China
| | - Wen-Long Gao
- Chengdu Center, China Geological Survey, Chengdu, 610081, China
- China University of Geosciences, Wuhan, 430074, China
| | - Lu Shao
- China University of Geosciences, Beijing, 100089, China
- Graduate School, Chinese Academy of Geological Sciences, Beijing, 100037, China
- Chengdu Center, China Geological Survey, Chengdu, 610081, China
| |
Collapse
|
10
|
Skinner EB, Glidden CK, MacDonald AJ, Mordecai EA. Human footprint is associated with shifts in the assemblages of major vector-borne diseases. NATURE SUSTAINABILITY 2023; 6:652-661. [PMID: 37538395 PMCID: PMC10399301 DOI: 10.1038/s41893-023-01080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/01/2023] [Indexed: 08/05/2023]
Abstract
Predicting how increasing intensity of human-environment interactions affects pathogen transmission is essential to anticipate changing disease risks and identify appropriate mitigation strategies. Vector-borne diseases (VBDs) are highly responsive to environmental changes, but such responses are notoriously difficult to isolate because pathogen transmission depends on a suite of ecological and social responses in vectors and hosts that may differ across species. Here we use the emerging tools of cumulative pressure mapping and machine learning to better understand how the occurrence of six medically important VBDs, differing in ecology from sylvatic to urban, respond to multidimensional effects of human pressure. We find that not only is human footprint-an index of human pressure, incorporating built environments, energy and transportation infrastructure, agricultural lands and human population density-an important predictor of VBD occurrence, but there are clear thresholds governing the occurrence of different VBDs. Across a spectrum of human pressure, diseases associated with lower human pressure, including malaria, cutaneous leishmaniasis and visceral leishmaniasis, give way to diseases associated with high human pressure, such as dengue, chikungunya and Zika. These heterogeneous responses of VBDs to human pressure highlight thresholds of land-use transitions that may lead to abrupt shifts in infectious disease burdens and public health needs.
Collapse
Affiliation(s)
- Eloise B. Skinner
- Department of Biology, Stanford University, Stanford, CA, USA
- Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, Australia
| | | | - Andrew J. MacDonald
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, USA
- Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | | |
Collapse
|
11
|
Currie J, Merritt W, Liang C, Sothe C, Beatty CR, Shackelford N, Hirsh‐Pearson K, Gonsamo A, Snider J. Prioritizing ecological restoration of converted lands in Canada by spatially integrating organic carbon storage and biodiversity benefits. CONSERVATION SCIENCE AND PRACTICE 2023. [DOI: 10.1111/csp2.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Affiliation(s)
- Jessica Currie
- World Wildlife Fund Canada 410 Adelaide Street West Toronto Ontario M5V 1S8 Canada
| | - Will Merritt
- World Wildlife Fund Canada 410 Adelaide Street West Toronto Ontario M5V 1S8 Canada
| | - Chris Liang
- World Wildlife Fund Canada 410 Adelaide Street West Toronto Ontario M5V 1S8 Canada
| | - Camile Sothe
- School of Earth, Environment and Society McMaster University 1280 Main Street West Hamilton Ontario L8S 4L8 Canada
| | - Craig R. Beatty
- World Wildlife Fund United States 1250 NW 24th Street Washington DC 20037 USA
| | - Nancy Shackelford
- School of Environmental Studies University of Victoria 3800 Finnerty Rd Victoria British Columbia V8P 5C2 Canada
| | - Kristen Hirsh‐Pearson
- Conservation Solutions Lab University of Northern British Columbia 3333 University Way Prince George British Columbia V2N 4Z9 Canada
| | - Alemu Gonsamo
- School of Earth, Environment and Society McMaster University 1280 Main Street West Hamilton Ontario L8S 4L8 Canada
| | - James Snider
- World Wildlife Fund Canada 410 Adelaide Street West Toronto Ontario M5V 1S8 Canada
| |
Collapse
|
12
|
Mendez Angarita VY, Maiorano L, Dragonetti C, Di Marco M. Implications of exceeding the Paris Agreement for mammalian biodiversity. CONSERVATION SCIENCE AND PRACTICE 2023. [DOI: 10.1111/csp2.12889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Affiliation(s)
| | - Luigi Maiorano
- Department of Biology and Biotechnologies “Charles Darwin” Sapienza University of Rome Italy
| | - Chiara Dragonetti
- Department of Biology and Biotechnologies “Charles Darwin” Sapienza University of Rome Italy
| | - Moreno Di Marco
- Department of Biology and Biotechnologies “Charles Darwin” Sapienza University of Rome Italy
| |
Collapse
|
13
|
Pillay R, Watson JEM, Hansen AJ, Jantz PA, Aragon-Osejo J, Armenteras D, Atkinson SC, Burns P, Ervin J, Goetz SJ, González-Del-Pliego P, Robinson NP, Supples C, Virnig ALS, Williams BA, Venter O. Humid tropical vertebrates are at lower risk of extinction and population decline in forests with higher structural integrity. Nat Ecol Evol 2022; 6:1840-1849. [PMID: 36329351 DOI: 10.1038/s41559-022-01915-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Reducing deforestation underpins global biodiversity conservation efforts. However, this focus on retaining forest cover overlooks the multitude of anthropogenic pressures that can degrade forest quality and imperil biodiversity. We use remotely sensed indices of tropical rainforest structural condition and associated human pressures to quantify the relative importance of forest cover, structural condition and integrity (the cumulative effect of condition and pressures) on vertebrate species extinction risk and population trends across the global humid tropics. We found that tropical rainforests of high integrity (structurally intact and under low pressures) were associated with lower likelihood of species being threatened and having declining populations, compared with forest cover alone (without consideration of condition and pressures). Further, species were more likely to be threatened or have declining populations if their geographic ranges contained high proportions of degraded forest than if their ranges contained lower proportions of forest cover but of high quality. Our work suggests that biodiversity conservation policies to preserve forest integrity are now urgently required alongside ongoing efforts to halt deforestation in the hyperdiverse humid tropics.
Collapse
Affiliation(s)
- Rajeev Pillay
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, British Columbia, Canada.
| | - James E M Watson
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew J Hansen
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Patrick A Jantz
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Jose Aragon-Osejo
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Dolors Armenteras
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Patrick Burns
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Jamison Ervin
- United Nations Development Programme, New York, NY, USA
| | - Scott J Goetz
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | | | | | | | | | - Brooke A Williams
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Oscar Venter
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
14
|
Asamoah EF, Di Marco M, Watson JEM, Beaumont LJ, Venter O, Maina JM. Land-use and climate risk assessment for Earth's remaining wilderness. Curr Biol 2022; 32:4890-4899.e4. [PMID: 36323323 DOI: 10.1016/j.cub.2022.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022]
Abstract
Earth's wilderness areas are reservoirs of genetic information and carbon storage systems, and are vital to reducing extinction risks. Retaining the conservation value of these areas is fundamental to achieving global biodiversity conservation goals; however, climate and land-use risk can undermine their ability to provide these functions. The extent to which wilderness areas are likely to be impacted by these drivers has not previously been quantified. Using climate and land-use change during baseline (1971-2005) and future (2016-2050) periods, we estimate that these stressors within wilderness areas will increase by ca. 60% and 39%, respectively, under a scenario of high emission and land-use change (SSP5-RCP8.5). Nearly half (49%) of all wilderness areas could experience substantial climate change by 2050 under this scenario, potentially limiting their capacity to shelter biodiversity. Notable climate (>5 km year-1) and land-use (>0.25 km year-1) changes are expected to occur more rapidly in the unprotected wilderness, including the edges of the Amazonian wilderness, Northern Russia, and Central Africa, which support unique assemblages of species and are critical for the preservation of biodiversity. However, an alternative scenario of sustainable development (SSP1-RCP2.6) would attenuate the projected climate velocity and land-use instability by 54% and 6%, respectively. Mitigating greenhouse gas emissions and preserving the remaining intact natural ecosystems can help fortify these bastions of biodiversity.
Collapse
Affiliation(s)
- Ernest F Asamoah
- School of Natural Sciences, Macquarie University, North Ryde, 2109 Sydney, NSW, Australia.
| | - Moreno Di Marco
- Department of Biology and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy
| | - James E M Watson
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia 4072, QLD, Australia; Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Linda J Beaumont
- School of Natural Sciences, Macquarie University, North Ryde, 2109 Sydney, NSW, Australia
| | - Oscar Venter
- Natural Resource and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC, Canada
| | - Joseph M Maina
- School of Natural Sciences, Macquarie University, North Ryde, 2109 Sydney, NSW, Australia.
| |
Collapse
|
15
|
Cao Y, Wang F, Tseng TH, Carver S, Chen X, Zhao J, Yu L, Li F, Zhao Z, Yang R. Identifying ecosystem service value and potential loss of wilderness areas in China to support post-2020 global biodiversity conservation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157348. [PMID: 35842159 DOI: 10.1016/j.scitotenv.2022.157348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Preserving wilderness areas is one of the key goals in the Post-2020 Global Biodiversity Framework(GBF). However, far too little attention has been paid to identifying wilderness conservation priorities on the national scale. In this study, we developed a methodological framework to evaluate the ecosystem service values, potential loss and conservation priorities of wilderness areas in China, providing guidance for wilderness conservation. First, we assessed the conservation value of wilderness areas and found that wilderness areas provided more ecosystem services than non-wilderness areas per unit area in most ecoregions. Then we identified threatened wilderness areas under multiple scenarios due to land use and land cover change. We found that 5.82 % of the existing wilderness areas were projected to be lost by 2100. Finally, wilderness conservation priorities were identified considering both conservation values and potential loss, and 11.24 % of existing wilderness areas were highlighted as conservation priorities. This methodological framework could be applied to other countries to support post-2020 global biodiversity conservation.
Collapse
Affiliation(s)
- Yue Cao
- Institute for National Parks, Tsinghua University, Beijing 100084, China; Department of Landscape Architecture, School of Architecture, Tsinghua University, Beijing 100084, China.
| | - Fangyi Wang
- Institute for National Parks, Tsinghua University, Beijing 100084, China; Department of Landscape Architecture, School of Architecture, Tsinghua University, Beijing 100084, China.
| | - Tz-Hsuan Tseng
- Institute for National Parks, Tsinghua University, Beijing 100084, China; Department of Landscape Architecture, School of Architecture, Tsinghua University, Beijing 100084, China.
| | - Steve Carver
- Wildland Research Institute, School of Geography, University of Leeds, LS2 9JT, UK.
| | - Xin Chen
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China.
| | - Jianqiao Zhao
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China.
| | - Le Yu
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China.
| | - Feng Li
- Institute for National Parks, Tsinghua University, Beijing 100084, China; Department of Landscape Architecture, School of Architecture, Tsinghua University, Beijing 100084, China.
| | - Zhicong Zhao
- Institute for National Parks, Tsinghua University, Beijing 100084, China; Department of Landscape Architecture, School of Architecture, Tsinghua University, Beijing 100084, China.
| | - Rui Yang
- Institute for National Parks, Tsinghua University, Beijing 100084, China; Department of Landscape Architecture, School of Architecture, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
Schooler SL, Finnegan SP, Fowler NL, Kellner KF, Lutto AL, Parchizadeh J, van den Bosch M, Zubiria Perez A, Masinde LM, Mwampeta SB, Boone HM, Gantchoff MG, Hill JE, Kautz TM, Wehr NH, Fyumagwa R, Belant JL. Factors influencing lion movements and habitat use in the western Serengeti ecosystem, Tanzania. Sci Rep 2022; 12:18890. [PMID: 36344560 PMCID: PMC9640537 DOI: 10.1038/s41598-022-22053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Protected areas that restrict human activities can enhance wildlife habitat quality. Efficacy of protected areas can be improved with increased protection from illegal activities and presence of buffer protected areas that surround a core protected area. Habitat value of protected areas also can be affected by seasonal variation in anthropogenic pressures. We examined seasonal space use by African lions (Panthera leo) within a core protected area, Serengeti National Park, Tanzania, and surrounding buffer protected areas with varying protection strengths. We used lion locations in logistic regression models during wet and dry seasons to estimate probability of use in relation to protection strength, distance to protected area edge, human and livestock density, distance to roads and rivers, and land cover. Lions used strongly protected buffer areas over the core protected area and unprotected areas, and moved away from protected area boundaries toward the core protected area when buffer protected areas had less protection. Lions avoided high livestock density in the wet season and high human density in the dry season. Increased strength of protection can decrease edge effects on buffer areas and help maintain habitat quality of core protected areas for lions and other wildlife species.
Collapse
Affiliation(s)
- Sarah L. Schooler
- grid.264257.00000 0004 0387 8708Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA ,grid.17088.360000 0001 2150 1785Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 USA
| | - Shannon P. Finnegan
- grid.264257.00000 0004 0387 8708Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Nicholas L. Fowler
- grid.264257.00000 0004 0387 8708Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Kenneth F. Kellner
- grid.17088.360000 0001 2150 1785Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 USA
| | - Ashley L. Lutto
- grid.264257.00000 0004 0387 8708Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Jamshid Parchizadeh
- grid.17088.360000 0001 2150 1785Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 USA
| | - Merijn van den Bosch
- grid.17088.360000 0001 2150 1785Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 USA
| | - Alejandra Zubiria Perez
- grid.17088.360000 0001 2150 1785Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 USA
| | - Lusato M. Masinde
- Tanzania Wildlife Management Authority, Bariadi, Simiyu United Republic of Tanzania
| | - Stanslaus B. Mwampeta
- grid.17088.360000 0001 2150 1785Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 USA
| | - Hailey M. Boone
- grid.17088.360000 0001 2150 1785Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 USA
| | - Mariela G. Gantchoff
- grid.266231.20000 0001 2175 167XDepartment of Biology, University of Dayton, Dayton, OH 45469 USA
| | - Jacob E. Hill
- grid.213876.90000 0004 1936 738XSavannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 USA
| | - Todd M. Kautz
- grid.17088.360000 0001 2150 1785Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 USA
| | - Nathaniel H. Wehr
- grid.17088.360000 0001 2150 1785Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 USA
| | - Robert Fyumagwa
- grid.452871.d0000 0001 2226 9754Tanzania Wildlife Research Institute, Arusha, United Republic of Tanzania
| | - Jerrold L. Belant
- grid.17088.360000 0001 2150 1785Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
17
|
Luther DA, Cooper WJ, Jirinec V, Wolfe JD, Rutt CL, Bierregaard Jr RO, Lovejoy TE, Stouffer PC. Long-term changes in avian biomass and functional diversity within disturbed and undisturbed Amazonian rainforest. Proc Biol Sci 2022; 289:20221123. [PMID: 35975441 PMCID: PMC9382209 DOI: 10.1098/rspb.2022.1123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022] Open
Abstract
Recent long-term studies in protected areas have revealed the loss of biodiversity, yet the ramifications for ecosystem health and resilience remain unknown. Here, we investigate how the loss of understory birds, in the lowest stratum of the forest, affects avian biomass and functional diversity in the Amazon rainforest. Across approximately 30 years in the Biological Dynamics of Forest Fragments Project, we used a historical baseline of avian communities to contrast the avian communities in today's primary forest with those in modern disturbed habitat. We found that in primary rainforest, the reduced abundance of insectivorous species led to reduced functional diversity, but no reduction of biomass, indicating that species with similar functional traits are less likely to coexist in modern primary forests. Because today's forests contain fewer functionally redundant species-those with similar traits-we argue that avian communities in modern primary Amazonian rainforests are less resilient, which may ultimately disrupt the ecosystem in dynamic and unforeseen ways.
Collapse
Affiliation(s)
- David A. Luther
- Biology Department, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil
| | - W. Justin Cooper
- Biology Department, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
| | - Vitek Jirinec
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil
- Integral Ecology Research Center, 239 Railroad Avenue, Blue Lake, CA 95525, USA
- School of Renewable Natural Resources, Louisiana State University AgCenter and Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jared D. Wolfe
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Cameron L. Rutt
- Biology Department, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil
- American Bird Conservancy, The Plains, VA 20198, USA
| | | | - Thomas E. Lovejoy
- Environmental Science and Policy Department, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil
| | - Philip C Stouffer
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil
- School of Renewable Natural Resources, Louisiana State University AgCenter and Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
18
|
Williams BA, Watson JEM, Beyer HL, Klein CJ, Montgomery J, Runting RK, Roberson LA, Halpern BS, Grantham HS, Kuempel CD, Frazier M, Venter O, Wenger A. Global rarity of intact coastal regions. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13874. [PMID: 34907590 DOI: 10.1111/cobi.13874] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Management of the land-sea interface is essential for global conservation and sustainability objectives because coastal regions maintain natural processes that support biodiversity and the livelihood of billions of people. However, assessments of coastal regions have focused strictly on either the terrestrial or marine realm. Consequently, understanding of the overall state of Earth's coastal regions is poor. We integrated the terrestrial human footprint and marine cumulative human impact maps in a global assessment of the anthropogenic pressures affecting coastal regions. Of coastal regions globally, 15.5% had low anthropogenic pressure, mostly in Canada, Russia, and Greenland. Conversely, 47.9% of coastal regions were heavily affected by humanity, and in most countries (84.1%) >50% of their coastal regions were degraded. Nearly half (43.3%) of protected areas across coastal regions were exposed to high human pressures. To meet global sustainability objectives, all nations must undertake greater actions to preserve and restore the coastal regions within their borders.
Collapse
Affiliation(s)
- Brooke A Williams
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, Queensland, Australia
| | - James E M Watson
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, Queensland, Australia
| | - Hawthorne L Beyer
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, Queensland, Australia
| | - Carissa J Klein
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jamie Montgomery
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, California, USA
| | - Rebecca K Runting
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Leslie A Roberson
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, Queensland, Australia
| | - Benjamin S Halpern
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, California, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California, USA
| | - Hedley S Grantham
- Wildlife Conservation Society, Global Conservation Program, New York, New York, USA
| | - Caitlin D Kuempel
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Queensland, Australia
| | - Melanie Frazier
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, California, USA
| | - Oscar Venter
- Natural Resource and Environmental Studies Institute, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Amelia Wenger
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, Queensland, Australia
- Wildlife Conservation Society, Global Marine Program, New York, New York, USA
| |
Collapse
|
19
|
Phillips LM, Leihy RI, Chown SL. Improving species-based area protection in Antarctica. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13885. [PMID: 35040183 DOI: 10.1111/cobi.13885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Area protection is a major mechanism deployed for environmental conservation in Antarctica. Yet, the Antarctic protected areas network is widely acknowledged as inadequate, in part because the criteria for area protection south of 60°S are not fully applied. The most poorly explored of these criteria is the type locality of species, which provides the primary legal means for Antarctic species-based area protection and a method for conserving species even if little is known about their habitat or distribution. The type locality criterion has not been systematically assessed since its incorporation into the Protocol on Environmental Protection to the Antarctic Treaty in 1991, so the extent to which the criterion is being met or might be useful for area protection is largely unknown. To address the matter, we created and analyzed a comprehensive database of Antarctic type localities of terrestrial and lacustrine lichens, plants, and animals. We compiled the database via a literature search of key taxonomic and geographic terms and then analyzed the distance between type localities identifiable to a ≤ 25km2 resolution and current Antarctic Specially Protected Areas (ASPAs) and human infrastructure. We used a distance-clustering approach for localities outside current ASPAs to determine candidate protected areas that could contain these unprotected localities. Of the 386 type localities analyzed, 108 were within or overlapped current ASPAs. Inclusion of the remaining 278 type localities in the ASPA network would require the designation of a further 105 protected areas. Twenty-four of these areas included human infrastructure disturbance. Given the slow rate of ASPA designation, growing pace of human impacts on the continent, and the management burden associated with ASPAs, we propose ways in which the type locality criterion might best be deployed. These include a comprehensive, systematic conservation planning approach and an alternative emphasis on the habitat of species, rather than on a single locality.
Collapse
Affiliation(s)
- Laura M Phillips
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Rachel I Leihy
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Steven L Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Pérez-Hämmerle KV, Moon K, Venegas-Li R, Maxwell S, Simmonds JS, Venter O, Garnett ST, Possingham HP, Watson JEM. Wilderness forms and their implications for global environmental policy and conservation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13875. [PMID: 34961974 DOI: 10.1111/cobi.13875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
With the intention of securing industry-free land and seascapes, protecting wilderness entered international policy as a formal target for the first time in the zero draft of the Post-2020 Global Biodiversity Framework under the Convention on Biological Diversity. Given this increased prominence in international policy, it is timely to consider the extent to which the construct of wilderness supports global conservation objectives. We evaluated the construct by overlaying recently updated cumulative human pressure maps that offer a global-scale delineation of industry-free land as wilderness with maps of carbon stock, species richness, and ground travel time from urban centers. Wilderness areas took variable forms in relation to carbon stock, species richness, and proximity to urban centers, where 10% of wilderness areas represented high carbon and species richness, 20% low carbon and species richness, and 3% high levels of remoteness (>48 h), carbon, and species richness. Approximately 35% of all remaining wilderness in 2013 was accessible in <24 h of travel time from urban centers. Although the construct of wilderness can be used to secure benefits in specific contexts, its application in conservation must account for contextual and social implications. The diverse characterization of wilderness under a global environmental conservation lens shows that a nuanced framing and application of the construct is needed to improve understanding, communication, and retention of its variable forms as industry-free places.
Collapse
Affiliation(s)
- Katharina-Victoria Pérez-Hämmerle
- School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, Queensland, Australia
| | - Katie Moon
- School of Business, University of New South Wales, Canberra, Australian Capital Territory, Australia
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Rubén Venegas-Li
- School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, Queensland, Australia
| | - Sean Maxwell
- School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, Queensland, Australia
| | - Jeremy S Simmonds
- School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, Queensland, Australia
| | - Oscar Venter
- Natural Resources & Environmental Studies Institute, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Stephen T Garnett
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, Australia
| | - Hugh P Possingham
- Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, Queensland, Australia
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - James E M Watson
- School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, Queensland, Australia
- Wildlife Conservation Society, Global Conservation Program, Bronx, New York, USA
| |
Collapse
|
21
|
Ridley FA, Hickinbotham EJ, Suggitt AJ, McGowan PJK, Mair L. The scope and extent of literature that maps threats to species globally: a systematic map. ENVIRONMENTAL EVIDENCE 2022; 11:26. [PMID: 39294701 PMCID: PMC11378821 DOI: 10.1186/s13750-022-00279-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/30/2022] [Indexed: 09/21/2024]
Abstract
BACKGROUND Human activities are driving accelerating rates of species extinctions that continue to threaten nature's contribution to people. Yet, the full scope of where and how human activities threaten wild species worldwide remains unclear. Furthermore, the large diversity of approaches and terminology surrounding threats and threat mapping presents a barrier to understanding the state of knowledge and uptake into decision-making. Here, we define 'threats' as human activities and direct human-initiated processes, specifically where they co-occur with, and impact the survival of, wild species. Our objectives were to systematically consolidate the threat mapping literature, describe the distribution of available evidence, and produce a publicly available and searchable database of articles for easy uptake of evidence into future decision-making. METHODS Four bibliographic databases, one web-based search engine, and thirteen organisational websites were searched for peer-reviewed and grey-literature published in English 2000-2020. A three-stage screening process (title, abstract, and full-text) and coding was undertaken by two reviewers, with consistency tested on 20% of articles at each stage. Articles were coded according to 22 attributes that captured dimensions of the population, threat, and geographic location studied in addition to methodological attributes. The threats studied were classified according to the IUCN Red List threat classification scheme. A range of graphical formats were used to visualise the distribution of evidence according to these attributes and complement the searchable database of articles. REVIEW FINDINGS A total of 1069 relevant threat mapping studies were found and included in the systematic map, most conducted at a sub-national or local scale. Evidence was distributed unevenly among taxonomic groups, ecological realms, and geographies. Although articles were found for the full scope of threat categories used, most articles mapped a single threat. The most heavily mapped threats were alien invasive species, aquatic or terrestrial animal exploitation, roads and railways, residential development, and non-timber crop and livestock agriculture. Limitations regarding the English-only search and imperfect ability of the search to identify grey literature could have influenced the findings. CONCLUSIONS This systematic map represents a catalogue of threat mapping evidence at any spatial scale available for immediate use in threat reduction activities and policy decisions. The distribution of evidence has implications for devising actions to combat the threats specifically targeted in the post-2020 UN Biodiversity Framework, and for identifying other threats that may benefit from representation in global policy. It also highlights key gaps for further research to aid national and local-scale threat reduction. More knowledge would be particularly beneficial in the areas of managing multiple threats, land-based threats to marine systems, and threats to plant species and threats within the freshwater realm.
Collapse
Affiliation(s)
- Francesca A Ridley
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK.
| | - Emily J Hickinbotham
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Andrew J Suggitt
- Department of Geography and Environmental Sciences, Northumbria University, Ellison Place, Newcastle Upon Tyne, NE1 8ST, UK
| | - Philip J K McGowan
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Louise Mair
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
22
|
Allan JR, Possingham HP, Atkinson SC, Waldron A, Di Marco M, Butchart SHM, Adams VM, Kissling WD, Worsdell T, Sandbrook C, Gibbon G, Kumar K, Mehta P, Maron M, Williams BA, Jones KR, Wintle BA, Reside AE, Watson JEM. The minimum land area requiring conservation attention to safeguard biodiversity. Science 2022; 376:1094-1101. [PMID: 35653463 DOI: 10.1126/science.abl9127] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ambitious conservation efforts are needed to stop the global biodiversity crisis. In this study, we estimate the minimum land area to secure important biodiversity areas, ecologically intact areas, and optimal locations for representation of species ranges and ecoregions. We discover that at least 64 million square kilometers (44% of terrestrial area) would require conservation attention (ranging from protected areas to land-use policies) to meet this goal. More than 1.8 billion people live on these lands, so responses that promote autonomy, self-determination, equity, and sustainable management for safeguarding biodiversity are essential. Spatially explicit land-use scenarios suggest that 1.3 million square kilometers of this land is at risk of being converted for intensive human land uses by 2030, which requires immediate attention. However, a sevenfold difference exists between the amount of habitat converted in optimistic and pessimistic land-use scenarios, highlighting an opportunity to avert this crisis. Appropriate targets in the Post-2020 Global Biodiversity Framework to encourage conservation of the identified land would contribute substantially to safeguarding biodiversity.
Collapse
Affiliation(s)
- James R Allan
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1090 GE Amsterdam, Netherlands.,Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Hugh P Possingham
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, QLD 4072, Australia.,The Nature Conservancy, Arlington, VA 22203, USA
| | - Scott C Atkinson
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, QLD 4072, Australia.,United Nations Development Programme (UNDP), New York, NY, USA
| | - Anthony Waldron
- Cambridge Conservation Initiative, Department of Zoology, Cambridge University, Cambridge CB2 3QZ, UK.,Faculty of Science and Engineering ARU, Cambridge CB1 1PT, UK
| | - Moreno Di Marco
- Department of Biology and Biotechnologies, Sapienza University of Rome, I-00185 Rome, Italy.,School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Stuart H M Butchart
- BirdLife International, Cambridge CB2 3QZ, UK.,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Vanessa M Adams
- School of Geography, Planning, and Spatial Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - W Daniel Kissling
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1090 GE Amsterdam, Netherlands
| | | | - Chris Sandbrook
- Department of Geography, University of Cambridge, Cambridge CB2 3QZ, UK
| | - Gwili Gibbon
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, UK
| | - Kundan Kumar
- Rights and Resources Initiative, Washington, DC, USA
| | - Piyush Mehta
- Department of Geography and Spatial Sciences, University of Delaware, Newark, DE 19716, USA
| | - Martine Maron
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, QLD 4072, Australia.,School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Brooke A Williams
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, QLD 4072, Australia.,School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Brendan A Wintle
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - April E Reside
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, QLD 4072, Australia.,School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - James E M Watson
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, QLD 4072, Australia.,School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
23
|
Mu H, Li X, Wen Y, Huang J, Du P, Su W, Miao S, Geng M. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci Data 2022; 9:176. [PMID: 35440581 PMCID: PMC9018937 DOI: 10.1038/s41597-022-01284-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Human Footprint, the pressure imposed on the eco-environment by changing ecological processes and natural landscapes, is raising worldwide concerns on biodiversity and ecological conservation. Due to the lack of spatiotemporally consistent datasets of Human Footprint over a long temporal span, many relevant studies on this topic have been limited. Here, we mapped the annual dynamics of the global Human Footprint from 2000 to 2018 using eight variables that reflect different aspects of human pressures. The accuracy assessment revealed a good agreement between our mapped results and the previously developed datasets in different years. We found more than two million km2 of wilderness (i.e., regions with Human Footprint values below one) were lost over the past two decades. The biome dominated by mangroves experienced the most significant loss (i.e., above 5%) of wilderness, likely attributed to intensified human activities in coastal areas. The derived annual and spatiotemporally consistent global Human Footprint can be a fundamental dataset for many relevant studies about human activities and natural resources.
Collapse
Affiliation(s)
- Haowei Mu
- College of Land Science and Technology, China Agricultural University, Beijing, 100083, China
| | - Xuecao Li
- College of Land Science and Technology, China Agricultural University, Beijing, 100083, China.
- Key Laboratory of Remote Sensing for Agri-Hazards, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China.
| | - Yanan Wen
- College of Land Science and Technology, China Agricultural University, Beijing, 100083, China
| | - Jianxi Huang
- College of Land Science and Technology, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Remote Sensing for Agri-Hazards, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Peijun Du
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu, 221100, China
| | - Wei Su
- College of Land Science and Technology, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Remote Sensing for Agri-Hazards, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Shuangxi Miao
- College of Land Science and Technology, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Remote Sensing for Agri-Hazards, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Mengqing Geng
- College of Land Science and Technology, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
24
|
Pipoly I, Preiszner B, Sándor K, Sinkovics C, Seress G, Vincze E, Bókony V, Liker A. Extreme Hot Weather Has Stronger Impacts on Avian Reproduction in Forests Than in Cities. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.825410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Climate change and urbanisation are among the most salient human-induced changes affecting Earth’s biota. Extreme weather events can have high biological impacts and are becoming more frequent recently. In cities, the urban heat island can amplify the intensity and frequency of hot weather events. However, the joint effects of heat events and urban microclimate on wildlife are unclear, as urban populations may either suffer more from increased heat stress or may adapt to tolerate warmer temperatures. Here, we test whether the effects of hot weather on reproductive success of great tits (Parus major) are exacerbated or dampened in urban environments compared to forest habitats. By studying 760 broods from two urban and two forest populations over 6 years, we show that 14–16 days-old nestlings have smaller body mass and tarsus length, and suffer increased mortality when they experience a higher number of hot days during the nestling period. The negative effects of hot weather on body mass and survival are significantly stronger in forests than in urban areas, where these effects are dampened or even reversed. These results suggest that urban nestlings are less vulnerable to extreme hot weather conditions than their non-urban conspecifics. This difference might be the result of adaptations that facilitate heat dissipation, including smaller body size, altered plumage and reduced brood size. Alternatively or additionally, parental provisioning and food availability may be less affected by heat in urban areas. Our findings suggest that adaptation to heat stress may help birds cope with the joint challenges of climate change and urbanisation.
Collapse
|
25
|
Kukka PM, Jung TS, Schmiegelow FKA. Spatiotemporal patterns of wolverine (Gulo gulo) harvest: the potential role of refugia in a quota-free system. EUR J WILDLIFE RES 2022. [DOI: 10.1007/s10344-022-01566-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Kortmann M, Roth N, Buse J, Hilszczański J, Jaworski T, Morinière J, Seidl R, Thorn S, Müller JC. Arthropod dark taxa provide new insights into diversity responses to bark beetle infestations. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2516. [PMID: 34918844 DOI: 10.1002/eap.2516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/24/2021] [Accepted: 08/05/2021] [Indexed: 06/14/2023]
Abstract
Natural disturbances are increasing around the globe, also impacting protected areas. Although previous studies have indicated that natural disturbances result in mainly positive effects on biodiversity, these analyses mostly focused on a few well established taxonomic groups, and thus uncertainty remains regarding the comprehensive impact of natural disturbances on biodiversity. Using Malaise traps and meta-barcoding, we studied a broad range of arthropod taxa, including dark and cryptic taxa, along a gradient of bark beetle disturbance severities in five European national parks. We identified order-level community thresholds of disturbance severity and classified barcode index numbers (BINs; a cluster system for DNA sequences, where each cluster corresponds to a species) as negative or positive disturbance indicators. Negative indicator BINs decreased above thresholds of low to medium disturbance severity (20%-30% of trees killed), whereas positive indicator BINs benefited from high disturbance severity (76%-98%). BINs allocated to a species name contained nearly as many positive as negative disturbance indicators, but dark and cryptic taxa, particularly Diptera and Hymenoptera in our data, contained higher numbers of negative disturbance indicator BINs. Analyses of changes in the richness of BINs showed variable responses of arthropods to disturbance severity at lower taxonomic levels, whereas no significant signal was detected at the order level due to the compensatory responses of the underlying taxa. We conclude that the analyses of dark taxa can offer new insights into biodiversity responses to disturbances. Our results suggest considerable potential for forest management to foster arthropod diversity, for example by maintaining both closed-canopy forests (>70% cover) and open forests (<30% cover) on the landscape.
Collapse
Affiliation(s)
- Mareike Kortmann
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology (Zoology III), Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Nicolas Roth
- Bern University of Applied Sciences, School of Agricultural Forest and Food Sciences, Zollikofen, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jörn Buse
- Department for Ecological Monitoring, Research and Species Protection, Black Forest National Park, Seebach, Germany
| | - Jacek Hilszczański
- Department of Forest Protection, Forest Research Institute, Raszyn, Poland
| | - Tomasz Jaworski
- Department of Forest Protection, Forest Research Institute, Raszyn, Poland
| | | | - Rupert Seidl
- Ecosystem Dynamics and Forest Management, Technical University of Munich, Freising, Germany
- Berchtesgaden National Park, Berchtesgaden, Germany
| | - Simon Thorn
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology (Zoology III), Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Jörg C Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology (Zoology III), Biocenter, University of Würzburg, Rauhenebrach, Germany
- Bavarian Forest National Park, Grafenau, Germany
| |
Collapse
|
27
|
Weeks BC, Naeem S, Lasky JR, Tobias JA. Diversity and extinction risk are inversely related at a global scale. Ecol Lett 2022; 25:697-707. [PMID: 35199919 PMCID: PMC9303290 DOI: 10.1111/ele.13860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/07/2021] [Accepted: 07/08/2021] [Indexed: 12/24/2022]
Abstract
Increases in biodiversity often lead to greater, and less variable, levels of ecosystem functioning. However, whether species are less likely to go extinct in more diverse ecosystems is unclear. We use comprehensive estimates of avian taxonomic, phylogenetic and functional diversity to characterise the global relationship between multiple dimensions of diversity and extinction risk in birds, focusing on contemporary threat status and latent extinction risk. We find that more diverse assemblages have lower mean IUCN threat status despite being composed of species with attributes that make them more vulnerable to extinction, such as large body size or small range size. Indeed, the reduction in current threat status associated with greater diversity far outweighs the increased risk associated with the accumulation of extinction‐prone species in more diverse assemblages. Our results suggest that high diversity reduces extinction risk, and that species conservation targets may therefore best be achieved by maintaining high levels of overall biodiversity in natural ecosystems.
Collapse
Affiliation(s)
- Brian C Weeks
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Shahid Naeem
- Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, USA
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Silwood Park, UK
| |
Collapse
|
28
|
Liu J, Slik F, Zheng S, Lindenmayer DB. Undescribed species have higher extinction risk than known species. Conserv Lett 2022. [DOI: 10.1111/conl.12876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Jiajia Liu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences Fudan University Shanghai China
| | - Ferry Slik
- Environmental and Life Sciences Department Faculty of Science Universiti Brunei Darussalam Bandar Seri Begawan Brunei Darussalam
| | - Shilu Zheng
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences Fudan University Shanghai China
| | - David B. Lindenmayer
- Fenner School of Environment and Society The Australian National University Canberra Australia
| |
Collapse
|
29
|
Pillay R, Venter M, Aragon‐Osejo J, González‐del‐Pliego P, Hansen AJ, Watson JEM, Venter O. Tropical forests are home to over half of the world's vertebrate species. FRONTIERS IN ECOLOGY AND THE ENVIRONMENT 2022; 20:10-15. [PMID: 35873358 PMCID: PMC9293027 DOI: 10.1002/fee.2420] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tropical forests are renowned for their astonishing diversity of life, but the fundamental question of how many species occur in tropical forests remains unanswered. Using geographic range maps and data on species habitat associations, we determined that tropical forests harbor 62% of global terrestrial vertebrate species, more than twice the number found in any other terrestrial biome on Earth. Up to 29% of global vertebrate species are endemic to tropical forests, with more than 20% of these species at risk of extinction. Humid tropical forests (also known as tropical rainforests) and the Neotropics dominate as centers of species diversity, harboring more than 90% and nearly half of all tropical forest vertebrates, respectively. To maintain the biodiversity that underpins the ecosystem functions and services essential for human well-being, we emphasize the critical importance of environmental policies aimed at reducing tropical deforestation and mitigating deleterious anthropogenic pressures on these imperiled ecosystems.
Collapse
Affiliation(s)
- Rajeev Pillay
- Natural Resources and Environmental Studies InstituteUniversity of Northern British ColumbiaPrince GeorgeCanada
| | - Michelle Venter
- Natural Resources and Environmental Studies InstituteUniversity of Northern British ColumbiaPrince GeorgeCanada
| | - Jose Aragon‐Osejo
- Natural Resources and Environmental Studies InstituteUniversity of Northern British ColumbiaPrince GeorgeCanada
| | | | | | - James EM Watson
- Centre for Biodiversity and Conservation ScienceThe University of QueenslandBrisbaneAustralia
- School of Earth and Environmental SciencesThe University of QueenslandBrisbaneAustralia
| | - Oscar Venter
- Natural Resources and Environmental Studies InstituteUniversity of Northern British ColumbiaPrince GeorgeCanada
| |
Collapse
|
30
|
Ramírez-Delgado JP, Di Marco M, Watson JEM, Johnson CJ, Rondinini C, Corredor Llano X, Arias M, Venter O. Matrix condition mediates the effects of habitat fragmentation on species extinction risk. Nat Commun 2022; 13:595. [PMID: 35105881 PMCID: PMC8807630 DOI: 10.1038/s41467-022-28270-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/18/2022] [Indexed: 11/10/2022] Open
Abstract
Habitat loss is the leading cause of the global decline in biodiversity, but the influence of human pressure within the matrix surrounding habitat fragments remains poorly understood. Here, we measure the relationship between fragmentation (the degree of fragmentation and the degree of patch isolation), matrix condition (measured as the extent of high human footprint levels), and the change in extinction risk of 4,426 terrestrial mammals. We find that the degree of fragmentation is strongly associated with changes in extinction risk, with higher predictive importance than life-history traits and human pressure variables. Importantly, we discover that fragmentation and the matrix condition are stronger predictors of risk than habitat loss and habitat amount. Moreover, the importance of fragmentation increases with an increasing deterioration of the matrix condition. These findings suggest that restoration of the habitat matrix may be an important conservation action for mitigating the negative effects of fragmentation on biodiversity. The influence of human pressure within the matrix surrounding habitat fragments remains poorly understood. This study measures the relationship between habitat fragmentation, matrix condition and the change in extinction risk of 4,426 terrestrial mammals, finding that fragmentation and matrix condition are stronger predictors of risk than habitat loss and habitat amount.
Collapse
Affiliation(s)
- Juan Pablo Ramírez-Delgado
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, V2N 4Z9, Canada.
| | - Moreno Di Marco
- Department of Biology and Biotechnologies, Sapienza University of Rome, 00185, Rome, Italy
| | - James E M Watson
- School of Earth and Environmental Sciences, University of Queensland, St Lucia, 4072, Australia.,Centre for Biodiversity and Conservation Science, School of Biological Sciences, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Chris J Johnson
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, V2N 4Z9, Canada
| | - Carlo Rondinini
- Global Mammal Assessment Program, Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, 00185, Italy
| | - Xavier Corredor Llano
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, V2N 4Z9, Canada
| | - Miguel Arias
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, V2N 4Z9, Canada
| | - Oscar Venter
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, V2N 4Z9, Canada
| |
Collapse
|
31
|
Hirsh-Pearson K, Johnson CJ, Schuster R, Wheate RD, Venter O. Canada’s human footprint reveals large intact areas juxtaposed against areas under immense anthropogenic pressure. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Efforts are underway in Canada to set aside terrestrial lands for conservation, thereby protecting them from anthropogenic pressures. Here we produce the first Canadian human footprint map by combining 12 different anthropogenic pressures and identifying intact and modified lands and ecosystems across the country. Our results showed strong spatial variation in pressures across the country, with just 18% of Canada experiencing measurable human pressure. However, some ecosystems are experiencing very high pressure, such as the Great Lakes Plains and Prairies national ecological areas that have over 75% and 56% of their areas, respectively, with a high human footprint. In contrast, the Arctic and Northern Mountains have less than 0.02% and 0.2%, respectively, of their extent under high human footprint. A validation of the final map, using random statistical sampling, resulted in a Cohen Kappa statistic of 0.91, signifying an “almost perfect” agreement between the human footprint and the validation data set. By increasing the number and accuracy of mapped pressures, our map demonstrates much more widespread pressures in Canada than were indicated by previous global mapping efforts, demonstrating the value in specific national data applications. Ecological areas with immense anthropogenic pressure highlight challenges that may arise when planning for ecologically representative protected areas.
Collapse
Affiliation(s)
- Kristen Hirsh-Pearson
- Natural Resource and Environmental Studies Institute, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada
| | - Chris J. Johnson
- Natural Resource and Environmental Studies Institute, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada
| | - Richard Schuster
- Natural Resource and Environmental Studies Institute, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Roger D. Wheate
- Natural Resource and Environmental Studies Institute, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada
| | - Oscar Venter
- Natural Resource and Environmental Studies Institute, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada
| |
Collapse
|
32
|
Aycrigg JL, Mccarley TR, Belote RT, Martinuzzi S. Wilderness areas in a changing landscape: changes in land use, land cover, and climate. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02471. [PMID: 34626517 PMCID: PMC9285566 DOI: 10.1002/eap.2471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Wilderness areas are not immune to changes in land use, land cover, and/or climate. Future changes will intensify the balancing act of maintaining ecological conditions and untrammeled character within wilderness areas. We assessed the quantitative and spatial changes in land use, land cover, and climate predicted to occur in and around wilderness areas by (1) quantifying projected changes in land use and land cover around wilderness areas; (2) evaluating if public lands surrounding wilderness areas can buffer future land-use change; (3) quantifying future climate conditions in and around wilderness areas; and (4) identifying wilderness areas expected to experience the most change in land use, land cover, and climate. We used projections of land use (four variables), land cover (five variables), and climate (nine variables) to assess changes for 707 wilderness areas in the contiguous United States by mid-21st century under two scenarios (medium-low and high). We ranked all wilderness areas relative to each other by summing and ranking decile values for each land use, land cover, and climate variable and calculating a multivariate metric of future change. All wilderness areas were projected to experience some level of change by mid-century. The greatest land-use changes were associated with increases in agriculture, clear cutting, and developed land, while the greatest land cover changes were observed for grassland, forest, and shrubland. In 51.6% and 73.8% of wilderness areas, core area of natural vegetation surrounding wilderness was projected to decrease for the medium-low and high scenarios, respectfully. Presence of public land did not mitigate the influence of land-use change around wilderness areas. Geographically, projected changes occurred throughout the contiguous U.S., with areas in the northeast and upper Midwest projected to have the greatest land-use and climate change and the southwestern U.S. projected to undergo the greatest land cover and climate change. Our results provide insights into potential future threats to wilderness areas and the challenges associated with wilderness stewardship and climate adaptation. Despite the high degree of protection and remoteness of wilderness areas, effective management and preservation of these lands must consider future changes in land use, land cover, and climate.
Collapse
Affiliation(s)
- Jocelyn L. Aycrigg
- Department of Fish and Wildlife SciencesCollege of Natural ResourcesUniversity of IdahoMoscowIdaho83844USA
| | - T. Ryan Mccarley
- Department of Fish and Wildlife SciencesCollege of Natural ResourcesUniversity of IdahoMoscowIdaho83844USA
| | | | - Sebastian Martinuzzi
- SILVIS LaboratoryDepartment of Forest and Wildlife EcologyUniversity of WisconsinMadisonWisconsin53706USA
| |
Collapse
|
33
|
Pascual-Rico R, Morales-Reyes Z, Aguilera-Alcalá N, Olszańska A, Sebastián-González E, Naidoo R, Moleón M, Lozano J, Botella F, von Wehrden H, Martín-López B, Sánchez-Zapata JA. Usually hated, sometimes loved: A review of wild ungulates' contributions to people. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149652. [PMID: 34438159 DOI: 10.1016/j.scitotenv.2021.149652] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Nature's contributions to people (NCP) may be both beneficial and detrimental to humans' quality of life. Since our origins, humans have been closely related to wild ungulates, which have traditionally played an outstanding role as a source of food or raw materials. Currently, wild ungulates are declining in some regions, but recovering in others throughout passive rewilding processes. This is reshaping human-ungulate interactions. Thus, adequately understanding the benefits and detriments associated with wild ungulate populations is necessary to promote human-ungulate co-existence. Here, we reviewed 575 articles (2000-2019) on human-wild ungulate interactions to identify key knowledge gaps on NCP associated with wild ungulates. Wild ungulate research was mainly distributed into seven research clusters focussing on: (1) silvicultural damage in Eurasia; (2) herbivory and natural vegetation; (3) conflicts in urban areas of North America; (4) agricultural damage in Mediterranean agro-ecosystems; (5) social research in Africa and Asia; (6) agricultural damage in North America; (7) research in natural American Northwest areas. Research mostly focused on detrimental NCP. However, the number of publications mentioning beneficial contributions increased after the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services conceptual framework was implemented. Human-ungulate interactions' research was biased towards the Global North and Cervidae, Suidae and Bovidae families. Regarding detrimental NCP, most publications referred to production damage (e.g. crops), followed by biodiversity damage, and material damage (e.g. traffic collisions). Regarding beneficial NCP, publications mainly highlighted non-material contributions (e.g. recreational hunting), followed by material NCP and regulating contributions (e.g. habitat creation). The main actions taken to manage wild ungulate populations were lethal control and using deterrents and barriers (e.g. fencing), which effectiveness was rarely assessed. Increasing research and awareness about beneficial NCP and effective management tools may help to improve the conservation of wild ungulates and the ecosystems they inhabit to facilitate people-ungulate co-existence in the Anthropocene.
Collapse
Affiliation(s)
- Roberto Pascual-Rico
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo, 12, 13071 Ciudad Real, Spain; Department of Applied Biology, Miguel Hernández University of Elche, Avda. de la Universidad, s/n, 03202 Elche, Spain
| | - Zebensui Morales-Reyes
- Department of Applied Biology, Miguel Hernández University of Elche, Avda. de la Universidad, s/n, 03202 Elche, Spain; Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández de Elche, Elche, Spain.
| | - Natividad Aguilera-Alcalá
- Department of Applied Biology, Miguel Hernández University of Elche, Avda. de la Universidad, s/n, 03202 Elche, Spain; Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Agnieszka Olszańska
- Institute of Nature Conservation Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120 Krakow, Poland
| | - Esther Sebastián-González
- Department of Applied Biology, Miguel Hernández University of Elche, Avda. de la Universidad, s/n, 03202 Elche, Spain; Department of Ecology, University of Alicante, Ctra San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Robin Naidoo
- WWF-US, 1250 24th Street NW, Washington, DC 20037, USA; Institute of Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC VfT 1Z4, Canada
| | - Marcos Moleón
- Department of Zoology, University of Granada, Av. de Fuentenueva, s/n, 18071 Granada, Spain
| | - Jorge Lozano
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, C/José Antonio Novais 12, 28040 Madrid, Spain
| | - Francisco Botella
- Department of Applied Biology, Miguel Hernández University of Elche, Avda. de la Universidad, s/n, 03202 Elche, Spain; Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Henrik von Wehrden
- Faculty of Sustainability, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| | - Berta Martín-López
- Faculty of Sustainability, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| | - José A Sánchez-Zapata
- Department of Applied Biology, Miguel Hernández University of Elche, Avda. de la Universidad, s/n, 03202 Elche, Spain; Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández de Elche, Elche, Spain
| |
Collapse
|
34
|
Identifying science-policy consensus regions of high biodiversity value and institutional recognition. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Importance of natural land cover for plant species' conservation: A nationwide study in The Netherlands. PLoS One 2021; 16:e0259255. [PMID: 34784365 PMCID: PMC8594855 DOI: 10.1371/journal.pone.0259255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 10/17/2021] [Indexed: 11/21/2022] Open
Abstract
While shifts to high-intensity land cover have caused overwhelming biodiversity loss, it remains unclear how important natural land cover is to the occurrence, and thus the conservation, of different species groups. We used over 4 million plant species’ observations to evaluate the conservation importance of natural land cover by its association with the occurrence probability of 1 122 native and 403 exotic plant species at 1 km resolution by species distribution models. We found that 74.9% of native species, 83.9% of the threatened species and 77.1% rare species preferred landscapes with over 50% natural land cover, while these landscapes only accounted for 15.6% of all grids. Most species preferred natural areas with a mixture of forest and open areas rather than areas with completely open or forested nature. Compared to native species, exotic species preferred areas with lower natural land cover and the cover of natural open area, but they both preferred extremely high and low cover of natural forest area. Threatened and rare species preferred higher natural land cover, either cover of natural forest area or cover of natural open area than not threatened and common species, but rare species were also more likely to occur in landscapes with 0–25% cover of natural open area. Although more natural land cover in a landscape will not automatically result in more native species, because there is often a non-linear increase in species occurrence probability when going from 0% to 100% natural land cover, for conserving purposes, over 80% natural land cover should be kept in landscapes for conserving threatened and very rare species, and 60% natural land cover is the best for conserving common native species. Our results stress the importance of natural areas for plant species’ conservation. It also informs improvements to species conservation by increasing habitat diversity.
Collapse
|
36
|
Martinuzzi S, Radeloff VC, Pastur GM, Rosas YM, Lizarraga L, Politi N, Rivera L, Herrera AH, Silveira EM, Olah A, Pidgeon AM. Informing forest conservation planning with detailed human footprint data for Argentina. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
37
|
Jung M, Arnell A, de Lamo X, García-Rangel S, Lewis M, Mark J, Merow C, Miles L, Ondo I, Pironon S, Ravilious C, Rivers M, Schepaschenko D, Tallowin O, van Soesbergen A, Govaerts R, Boyle BL, Enquist BJ, Feng X, Gallagher R, Maitner B, Meiri S, Mulligan M, Ofer G, Roll U, Hanson JO, Jetz W, Di Marco M, McGowan J, Rinnan DS, Sachs JD, Lesiv M, Adams VM, Andrew SC, Burger JR, Hannah L, Marquet PA, McCarthy JK, Morueta-Holme N, Newman EA, Park DS, Roehrdanz PR, Svenning JC, Violle C, Wieringa JJ, Wynne G, Fritz S, Strassburg BBN, Obersteiner M, Kapos V, Burgess N, Schmidt-Traub G, Visconti P. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat Ecol Evol 2021; 5:1499-1509. [PMID: 34429536 DOI: 10.1038/s41559-021-01528-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
To meet the ambitious objectives of biodiversity and climate conventions, the international community requires clarity on how these objectives can be operationalized spatially and how multiple targets can be pursued concurrently. To support goal setting and the implementation of international strategies and action plans, spatial guidance is needed to identify which land areas have the potential to generate the greatest synergies between conserving biodiversity and nature's contributions to people. Here we present results from a joint optimization that minimizes the number of threatened species, maximizes carbon retention and water quality regulation, and ranks terrestrial conservation priorities globally. We found that selecting the top-ranked 30% and 50% of terrestrial land area would conserve respectively 60.7% and 85.3% of the estimated total carbon stock and 66% and 89.8% of all clean water, in addition to meeting conservation targets for 57.9% and 79% of all species considered. Our data and prioritization further suggest that adequately conserving all species considered (vertebrates and plants) would require giving conservation attention to ~70% of the terrestrial land surface. If priority was given to biodiversity only, managing 30% of optimally located land area for conservation may be sufficient to meet conservation targets for 81.3% of the terrestrial plant and vertebrate species considered. Our results provide a global assessment of where land could be optimally managed for conservation. We discuss how such a spatial prioritization framework can support the implementation of the biodiversity and climate conventions.
Collapse
Affiliation(s)
- Martin Jung
- Biodiversity and Natural Resources Program (BNR), International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
| | - Andy Arnell
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - Xavier de Lamo
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | | | - Matthew Lewis
- Biodiversity and Natural Resources Program (BNR), International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.,Department of Zoology, University of Cambridge, Cambridge, UK
| | - Jennifer Mark
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - Cory Merow
- Department of Ecology and Evolutionary Biology, University of Connecticut, Stamford, CT, USA
| | - Lera Miles
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - Ian Ondo
- Royal Botanic Gardens, Kew, Richmond, UK
| | | | - Corinna Ravilious
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - Malin Rivers
- Botanic Gardens Conservation International, Richmondy, UK
| | - Dmitry Schepaschenko
- Biodiversity and Natural Resources Program (BNR), International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.,Siberian Federal University, Krasnoyarsk, Russia
| | - Oliver Tallowin
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - Arnout van Soesbergen
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | | | - Bradley L Boyle
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Xiao Feng
- Department of Geography, Florida State University, Tallahassee, FL, USA
| | - Rachael Gallagher
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Brian Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Shai Meiri
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Mark Mulligan
- Department of Geography, King's College London, London, UK
| | - Gali Ofer
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Roll
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Jeffrey O Hanson
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Portugal
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| | - Moreno Di Marco
- Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | | | - D Scott Rinnan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| | | | - Myroslava Lesiv
- Biodiversity and Natural Resources Program (BNR), International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Vanessa M Adams
- School of Geography, Planning and Spatial Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Samuel C Andrew
- CSIRO Land and Water, Canberra, Australian Capital Territory, Australia
| | - Joseph R Burger
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Lee Hannah
- Betty and Gordon Moore Center for Science, Conservation International, Arlington, VA, USA
| | - Pablo A Marquet
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile.,Centro de Cambio Global UC, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,The Santa Fe Institute, Santa Fe, NM, USA.,Instituto de Sistemas Complejos de Valparaíso (ISCV), Valparaíso, Chile
| | | | - Naia Morueta-Holme
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Erica A Newman
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Daniel S Park
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Patrick R Roehrdanz
- Betty and Gordon Moore Center for Science, Conservation International, Arlington, VA, USA
| | - Jens-Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark.,Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Cyrille Violle
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | | | | | - Steffen Fritz
- Biodiversity and Natural Resources Program (BNR), International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Bernardo B N Strassburg
- Rio Conservation and Sustainability Science Centre, Department of Geography and the Environment, Pontifical Catholic University, Rio de Janeiro, Brazil.,International Institute for Sustainability, Rio de Janeiro, Brazil.,Programa de Pós Graduacão em Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Botanical Garden Research Institute of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael Obersteiner
- Biodiversity and Natural Resources Program (BNR), International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.,Environmental Change Institute, Centre for the Environment, Oxford University, Oxford, UK
| | - Valerie Kapos
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - Neil Burgess
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | | | - Piero Visconti
- Biodiversity and Natural Resources Program (BNR), International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
| |
Collapse
|
38
|
Persson J, Ford S, Keophoxay A, Mertz O, Nielsen JØ, Vongvisouk T, Zörner M. Large Differences in Livelihood Responses and Outcomes to Increased Conservation Enforcement in a Protected Area. HUMAN ECOLOGY: AN INTERDISCIPLINARY JOURNAL 2021; 49:597-616. [PMID: 34642533 PMCID: PMC8496435 DOI: 10.1007/s10745-021-00267-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Despite the popularity of integrated conservation and development approaches to protected area management, adjacent communities increasingly face livelihood dilemmas. Yet understanding of how market processes and conservation enforcement interact to influence livelihood responses remains limited. Targeting eight villages in Nam Et-Phou Louey (NEPL) National Park in northern Lao PDR, we draw on survey data with 255 households, 93 semi-structured interviews, and meso-level data on village conditions to examine how residents navigate associated livelihood dilemmas. A cluster analysis reveals five livelihood types with divergent capacities to engage in market development and cope with enforcement pressures. We show how market linkages, historical conservation interventions, and local access conditions shape livelihoods and differences between villages. Our approach yields a nuanced picture of how global conservation efforts result in an uneven distribution of costs and benefits at local scales. Conservation measures must account for highly divergent capacities to cope with access loss and diversify livelihoods. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10745-021-00267-4.
Collapse
Affiliation(s)
- Joel Persson
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Scott Ford
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | | | - Ole Mertz
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Østergaard Nielsen
- Department of Geography and IRI THESys, Humboldt-Universität zu Berlin, Quartier Stadtmitte Friedrichstraße 191, 10117 Berlin, Germany
| | - Thoumthone Vongvisouk
- Faculty of Forest Sciences, National University of Laos, Dongdok, Xaythany District, Vientiane, Laos
| | - Michael Zörner
- Catholic University of Eichstätt-Ingolstadt, Ostenstraße 26, 85072 Eichstätt, Germany
| |
Collapse
|
39
|
Nicholson E, Watermeyer KE, Rowland JA, Sato CF, Stevenson SL, Andrade A, Brooks TM, Burgess ND, Cheng ST, Grantham HS, Hill SL, Keith DA, Maron M, Metzke D, Murray NJ, Nelson CR, Obura D, Plumptre A, Skowno AL, Watson JEM. Scientific foundations for an ecosystem goal, milestones and indicators for the post-2020 global biodiversity framework. Nat Ecol Evol 2021; 5:1338-1349. [PMID: 34400825 DOI: 10.1038/s41559-021-01538-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Despite substantial conservation efforts, the loss of ecosystems continues globally, along with related declines in species and nature's contributions to people. An effective ecosystem goal, supported by clear milestones, targets and indicators, is urgently needed for the post-2020 global biodiversity framework and beyond to support biodiversity conservation, the UN Sustainable Development Goals and efforts to abate climate change. Here, we describe the scientific foundations for an ecosystem goal and milestones, founded on a theory of change, and review available indicators to measure progress. An ecosystem goal should include three core components: area, integrity and risk of collapse. Targets-the actions that are necessary for the goals to be met-should address the pathways to ecosystem loss and recovery, including safeguarding remnants of threatened ecosystems, restoring their area and integrity to reduce risk of collapse and retaining intact areas. Multiple indicators are needed to capture the different dimensions of ecosystem area, integrity and risk of collapse across all ecosystem types, and should be selected for their fitness for purpose and relevance to goal components. Science-based goals, supported by well-formulated action targets and fit-for-purpose indicators, will provide the best foundation for reversing biodiversity loss and sustaining human well-being.
Collapse
Affiliation(s)
- Emily Nicholson
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia. .,IUCN Commission on Ecosystem Management, Gland, Switzerland.
| | - Kate E Watermeyer
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Jessica A Rowland
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Chloe F Sato
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Simone L Stevenson
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Angela Andrade
- IUCN Commission on Ecosystem Management, Gland, Switzerland.,Conservación Internacional, Colombia, Bogotá, Colombia
| | - Thomas M Brooks
- IUCN, Gland, Switzerland.,World Agroforestry Center (ICRAF), University of The Philippines, Los Baños, The Philippines.,Institute for Marine & Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Neil D Burgess
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK.,Centre for Ecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Su-Ting Cheng
- School of Forestry & Resource Conservation, National Taiwan University, Taipei, Taiwan, ROC
| | - Hedley S Grantham
- Wildlife Conservation Society, Global Conservation Program, New York, NY, USA
| | - Samantha L Hill
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - David A Keith
- IUCN Commission on Ecosystem Management, Gland, Switzerland.,Centre for Ecosystem Science, University of NSW, Sydney, New South Wales, Australia.,NSW Department of Planning, Industry and Environment, Hurstville, New South Wales, Australia
| | - Martine Maron
- Centre for Biodiversity and Conservation Science, School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Metzke
- Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
| | - Nicholas J Murray
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Cara R Nelson
- IUCN Commission on Ecosystem Management, Gland, Switzerland.,Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, USA
| | | | - Andy Plumptre
- Key Biodiversity Area Secretariat, BirdLife International, Cambridge, UK
| | - Andrew L Skowno
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa.,Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - James E M Watson
- Centre for Biodiversity and Conservation Science, School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
40
|
Abstract
Primary forests, defined here as forests where the signs of human impacts, if any, are strongly blurred due to decades without forest management, are scarce in Europe and continue to disappear. Despite these losses, we know little about where these forests occur. Here, we present a comprehensive geodatabase and map of Europe's known primary forests. Our geodatabase harmonizes 48 different, mostly field-based datasets of primary forests, and contains 18,411 individual patches (41.1 Mha) spread across 33 countries. When available, we provide information on each patch (name, location, naturalness, extent and dominant tree species) and the surrounding landscape (biogeographical regions, protection status, potential natural vegetation, current forest extent). Using Landsat satellite-image time series (1985-2018) we checked each patch for possible disturbance events since primary forests were identified, resulting in 94% of patches free of significant disturbances in the last 30 years. Although knowledge gaps remain, ours is the most comprehensive dataset on primary forests in Europe, and will be useful for ecological studies, and conservation planning to safeguard these unique forests.
Collapse
|
41
|
Cazalis V, Barnes MD, Johnston A, Watson JEM, Şekercioğlu CH, Rodrigues ASL. Mismatch between bird species sensitivity and the protection of intact habitats across the Americas. Ecol Lett 2021; 24:2394-2405. [PMID: 34397138 DOI: 10.1111/ele.13859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 06/27/2021] [Indexed: 11/30/2022]
Abstract
Protected areas are highly heterogeneous in their effectiveness at buffering human pressure, which may hamper their ability to conserve species highly sensitive to human activities. Here, we use 60 million bird observations from eBird to estimate the sensitivity to human pressure of each bird species breeding in the Americas. Concerningly, we find that ecoregions hosting large proportions of high-sensitivity species, concentrated in tropical biomes, do not have more intact protected habitat. Moreover, 266 high-sensitivity species have little or no intact protected habitat within their distributions. Finally, we show that protected area intactness is decreasing faster where high-sensitivity species concentrate. Our results highlight a major mismatch between species conservation needs and the coverage of intact protected habitats, which likely hampers the long-term effectiveness of protected areas at retaining species. We highlight ecoregions where protection and management of intact habitats, complemented by restoration, is urgently needed.
Collapse
Affiliation(s)
- Victor Cazalis
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Leipzig University, Leipzig, Germany
| | - Megan D Barnes
- Centre for Environmental Economics and Policy, School of Agriculture and Environment, University of Western Australia, Crawley, Western Australia, Australia
| | - Alison Johnston
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| | - James E M Watson
- Centre for Biodiversity and Conservation Science, School of Earth and Environmental Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Cagan H Şekercioğlu
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.,Department of Molecular Biology and Genetics, Koç University, Sarıyer, İstanbul, Turkey
| | | |
Collapse
|
42
|
Santarém F, Saarinen J, Brito JC. Assessment and prioritization of cultural ecosystem services in the Sahara-Sahelian region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146053. [PMID: 33684754 DOI: 10.1016/j.scitotenv.2021.146053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Desert environments remain largely neglected by the society and their potential to provide benefits to people remain understudied. Hotspots of cultural ecosystem services have been identified in some deserts; yet, knowing which countries need to strengthen efforts to satisfy people's demand for those services is timely needed. Here, we show the performance of countries within the Earth's largest warm region - the Sahara-Sahel - in managing cultural ecosystem services. Using the most-advanced decision-support tools and updated databases on biodiversity features and constrains to ecosystem services and on socioeconomic indicators, we identified national priorities for cultural services management. We also identified countries that are missing opportunities for local sustainable development. About 34% of Sahara-Sahel is prioritized for cultural ecosystem services, particularly in the main mountains and waterbodies of the region and along the Western and Eastern coastal limits. Algeria, Egypt, Libya, Morocco, Senegal, and Tunisia are performing better in managing their cultural services given the availability of such services in their territories. Burkina Faso, Cameroon, Chad, Egypt, Libya, Mali, Niger, Nigeria, Sudan, and South Sudan need to urgently improve their ease of mobility, governance, safety, socioeconomic and health systems to foster ecosystem services demand. Cameroon, Eritrea, and Senegal are receiving far less tourists than what their ecosystems can handle and need to improve their local conditions for better marketing international tourists able to economically contribute to sustainable development through ecotourism programs. The approach developed here serves as a framework for conserving the last world wild ecosystems and is replicable to other contexts where regional planning for ecosystem management is compulsory.
Collapse
Affiliation(s)
- Frederico Santarém
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, R. Padre Armando Quintas, 4485-661 Vairão, Portugal; Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 4169-007 Porto, Portugal.
| | - Jarkko Saarinen
- Geography Research Unit, University of Oulu, Finland; School of Tourism and Hospitality, University of Johannesburg, Johannesburg, South Africa
| | - José Carlos Brito
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, R. Padre Armando Quintas, 4485-661 Vairão, Portugal; Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
43
|
Chowdhury S, Zalucki MP, Amano T, Woodworth BK, Venegas-Li R, Fuller RA. Seasonal spatial dynamics of butterfly migration. Ecol Lett 2021; 24:1814-1823. [PMID: 34145940 DOI: 10.1111/ele.13787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2021] [Accepted: 05/02/2021] [Indexed: 12/01/2022]
Abstract
Understanding the seasonal movements of migratory species underpins ecological studies. Several hundred butterfly species show migratory behaviour, yet the spatial pattern of these migrations is poorly understood. We developed climatic niche models for 405 migratory butterfly species globally to estimate patterns of seasonal movement and the distribution of seasonal habitat suitability. We found strong seasonal variation in habitat suitability for most migratory butterflies with >75% of pixels within their distributions showing seasonal switching in predicted occupancy for 85% of species. The greatest rate of seasonal switching occurred in the tropics. Several species showed extreme range fluctuations between seasons, exceeding 10-fold for 53 species (13%) and more than 100-fold for nine species (2%), suggesting that such species may be at elevated extinction risk. Our results can be used to search for the ecological processes that underpin migration in insects, as well as to design conservation interventions for declining migratory insects.
Collapse
Affiliation(s)
- Shawan Chowdhury
- School of Biological Sciences, The University of Queensland, Saint Lucia, Qld, Australia
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, Saint Lucia, Qld, Australia
| | - Tatsuya Amano
- School of Biological Sciences, The University of Queensland, Saint Lucia, Qld, Australia
| | - Bradley K Woodworth
- School of Biological Sciences, The University of Queensland, Saint Lucia, Qld, Australia
| | - Ruben Venegas-Li
- School of Earth and Environmental Sciences, The University of Queensland, Saint Lucia, Qld, Australia
| | - Richard A Fuller
- School of Biological Sciences, The University of Queensland, Saint Lucia, Qld, Australia
| |
Collapse
|
44
|
Choi Y, Lim CH, Chung HI, Kim Y, Cho HJ, Hwang J, Kraxner F, Biging GS, Lee WK, Chon J, Jeon SW. Forest management can mitigate negative impacts of climate and land-use change on plant biodiversity: Insights from the Republic of Korea. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112400. [PMID: 33823436 DOI: 10.1016/j.jenvman.2021.112400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/10/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Over the past century, the decline in biodiversity due to climate change and habitat loss has become unprecedentedly serious. Multiple drivers, including climate change, land-use/cover change, and qualitative change in habitat need to be considered in an integrated approach, which has rarely been taken, to create an effective conservation strategy. The purpose of this study is to quantitatively evaluate and map the combined impacts of those multiple drivers on biodiversity in the Republic of Korea (ROK). To this end, biodiversity persistence (BP) was simulated by employing generalized dissimilarity modeling with estimates of habitat conditions. Habitat Condition Index was newly developed based on national survey datasets to represent the changes in habitat quality according to the land cover changes and forest management, especially after the ROK's National Reforestation Programme. The changes in habitat conditions were simulated for a period ranging from the 1960s to the 2010s; additionally, future (2050s) spatial scenarios were constructed. By focusing on the changes in forest habitat quality along with climate and land use, this study quantitatively and spatially analyzed the changes in BP over time and presented the effects of reforestation and forest management. The results revealed that continuous forest management had a positive impact on BP by offsetting the negative effects of past urbanization. Improvements in forest habitat quality also can effectively reduce the negative impacts of climate change. This quantitative analysis of successful forest restoration in Korea proved that economic development and urbanization could be in parallel with biodiversity enhancement. Nevertheless, current forest management practices were found to be insufficient in fully offsetting the decline in future BP caused by climate change. This indicates that there is a need for additional measures along with mitigation of climate change to maintain the current biodiversity level.
Collapse
Affiliation(s)
- Yuyoung Choi
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; BK21 FOUR R&E Center for Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Chul-Hee Lim
- College of General Education, Kookmin University, Seoul, 02707, Republic of Korea
| | - Hye In Chung
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yoonji Kim
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyo Jin Cho
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinhoo Hwang
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Florian Kraxner
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria
| | - Gregory S Biging
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Woo-Kyun Lee
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinhyung Chon
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seong Woo Jeon
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
45
|
Carrasco L, Papeş M, Sheldon KS, Giam X. Global progress in incorporating climate adaptation into land protection for biodiversity since Aichi targets. GLOBAL CHANGE BIOLOGY 2021; 27:1788-1801. [PMID: 33570817 DOI: 10.1111/gcb.15511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Climate adaptation strategies are being developed and implemented to protect biodiversity from the impacts of climate change. A well-established strategy involves the identification and addition of new areas for conservation, and most countries agreed in 2010 to expand the global protected area (PA) network to 17% by 2020 (Aichi Biodiversity Target 11). Although great efforts to expand the global PA network have been made, the potential of newly established PAs to conserve biodiversity under future climate change remains unclear at the global scale. Here, we conducted the first global-extent, country-level assessment of the contribution of PA network expansion toward three key land prioritization approaches for biodiversity persistence under climate change: protecting climate refugia, protecting abiotic diversity, and increasing connectivity. These approaches avoid uncertainties of biodiversity predictions under climate change as well as the issue of undescribed species. We found that 51% of the countries created new PAs in locations with lower mean climate velocity (representing better climate refugia) and 58% added PAs in areas with higher mean abiotic diversity compared to the available, non-human-dominated lands not chosen for protection. However, connectivity among PAs declined in 53% of the countries, indicating that many new PAs were located far from existing PAs. Lastly, we identified potential improvements for climate adaptation, showing that 94% of the countries have the opportunity to improve in executing one or more approaches to conserve biodiversity. Most countries (60%) were associated with multiple opportunities, highlighting the need for integrative strategies that target multiple land protection approaches. Our results demonstrate that a global improvement in the protection of climate refugia, abiotic diversity, and connectivity of reserves is needed to complement land protection informed by existing and projected species distributions. Our study also provides a framework for countries to prioritize land protection for climate adaptation using publicly available data.
Collapse
Affiliation(s)
- Luis Carrasco
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Monica Papeş
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Kimberly S Sheldon
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Xingli Giam
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
46
|
Thaler DS. Is Global Microbial Biodiversity Increasing, Decreasing, or Staying the Same? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.565649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Animal and plant biodiversity is decreasing. In contrast, the global direction and the pace of change in microbial, including viral, biodiversity is unknown. Important niches for microbial diversity occur in highly specific associations with plants and animals, and these niches are lost as hosts become extinct. The taxonomic diversity of human gut bacteria is reported to be decreasing. On the other hand, SARS-CoV-2 variation is increasing. Where microbes are concerned, Darwin’s “tangled bank” of interdependent organisms may be composed mostly of other microbes. There is the likelihood that as some classes of microbes become extinct, others evolve and diversify. A better handle on all processes that affect microbial biodiversity and their net balance is needed. Lack of insight into the dynamics of evolution of microbial biodiversity is arguably the single most profound and consequential unknown with regard to human knowledge of the biosphere. If some or all parts of microbial diversity are relentlessly increasing, then survey approaches may be too slow to ever catch up. New approaches, including single-molecule or single-cell sequencing in populations, as well as focused attention on modulators and vectors of vertical and horizontal evolution may offer more direct insights into some aspects of the pace of microbial evolution.
Collapse
|
47
|
Carmona CP, Tamme R, Pärtel M, de Bello F, Brosse S, Capdevila P, González-M R, González-Suárez M, Salguero-Gómez R, Vásquez-Valderrama M, Toussaint A. Erosion of global functional diversity across the tree of life. SCIENCE ADVANCES 2021; 7:7/13/eabf2675. [PMID: 33771870 PMCID: PMC7997514 DOI: 10.1126/sciadv.abf2675] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/09/2021] [Indexed: 05/08/2023]
Abstract
Although one-quarter of plant and vertebrate species are threatened with extinction, little is known about the potential effect of extinctions on the global diversity of ecological strategies. Using trait and phylogenetic information for more than 75,000 species of vascular plants, mammals, birds, reptiles, amphibians, and freshwater fish, we characterized the global functional spectra of each of these groups. Mapping extinction risk within these spectra showed that larger species with slower pace of life are universally threatened. Simulated extinction scenarios exposed extensive internal reorganizations in the global functional spectra, which were larger than expected by chance for all groups, and particularly severe for mammals and amphibians. Considering the disproportionate importance of the largest species for ecological processes, our results emphasize the importance of actions to prevent the extinction of the megabiota.
Collapse
Affiliation(s)
- Carlos P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia.
| | - Riin Tamme
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia
| | - Francesco de Bello
- Centro de Investigaciones Sobre Desertificación, CSIC-UV, Carretera Moncada-Náquera, Km. 4.5 Apartado Oficial, 46113 Moncada (Valencia), Spain
- Department of Botany, Faculty of Sciences, University of South Bohemia, Na Zlaté stoce 1, 370 05 České Budějovice, Czech Republic
| | - Sébastien Brosse
- Laboratoire Évolution and Diversité Biologique (EDB UMR5174), Université Paul Sabatier-Toulouse 3, CNRS, IRD, UPS, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | - Pol Capdevila
- Department of Zoology, University of Oxford, 11a Mansfield Rd., Oxford OX1 3SZ, UK
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave., BS8 1TQ Bristol, UK
| | - Roy González-M
- Programa Ciencias de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Carrera 1 #16-20, Bogotá, Colombia
| | - Manuela González-Suárez
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | | | - Maribel Vásquez-Valderrama
- Laboratorio de Invasiones Biologicas, Facultad de Ciencias Forestales, Universidad de Concepción, Victoria 631, Concepción, Chile
| | - Aurèle Toussaint
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia
| |
Collapse
|
48
|
Using the IUCN Red List to map threats to terrestrial vertebrates at global scale. Nat Ecol Evol 2021; 5:1510-1519. [PMID: 34462602 PMCID: PMC8560638 DOI: 10.1038/s41559-021-01542-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
The Anthropocene is characterized by unparalleled human impact on other species, potentially ushering in the sixth mass extinction. Yet mitigation efforts remain hampered by limited information on the spatial patterns and intensity of the threats driving global biodiversity loss. Here we use expert-derived information from the International Union for Conservation of Nature Red List on threats to 23,271 species, representing all terrestrial amphibians, birds and mammals, to generate global maps of the six major threats to these groups: agriculture, hunting and trapping, logging, pollution, invasive species, and climate change. Our results show that agriculture and logging are pervasive in the tropics and that hunting and trapping is the most geographically widespread threat to mammals and birds. Additionally, current representations of human pressure underestimate the overall pressure on biodiversity, due to the exclusion of threats such as hunting and climate change. Alarmingly, this is particularly the case in areas of the highest biodiversity importance.
Collapse
|
49
|
Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat Commun 2020; 11:5978. [PMID: 33293507 PMCID: PMC7723057 DOI: 10.1038/s41467-020-19493-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/13/2020] [Indexed: 11/08/2022] Open
Abstract
Many global environmental agendas, including halting biodiversity loss, reversing land degradation, and limiting climate change, depend upon retaining forests with high ecological integrity, yet the scale and degree of forest modification remain poorly quantified and mapped. By integrating data on observed and inferred human pressures and an index of lost connectivity, we generate a globally consistent, continuous index of forest condition as determined by the degree of anthropogenic modification. Globally, only 17.4 million km2 of forest (40.5%) has high landscape-level integrity (mostly found in Canada, Russia, the Amazon, Central Africa, and New Guinea) and only 27% of this area is found in nationally designated protected areas. Of the forest inside protected areas, only 56% has high landscape-level integrity. Ambitious policies that prioritize the retention of forest integrity, especially in the most intact areas, are now urgently needed alongside current efforts aimed at halting deforestation and restoring the integrity of forests globally. Mapping and quantifying degree of forest modification is critical to conserve and manage forests. Here the authors propose a new quantitative metric for landscape integrity and apply it to a global forest map, showing that less than half of the world’s forest cover has high integrity, most of which is outside nationally designed protected areas.
Collapse
|
50
|
Global priority areas for ecosystem restoration. Nature 2020; 586:724-729. [DOI: 10.1038/s41586-020-2784-9] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/08/2020] [Indexed: 01/28/2023]
|