1
|
Alexander E, Khalaman VV, Nelly G, Sandrine C, Rogovskaja NY, Krasnov KA, Manoylina PA, Komendantov AY, Emilie LG. Halichondria panicea (Porifera, Demospongiae) Reparative Regeneration: An Integrative Approach to Better Understand Wound Healing. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:214-235. [PMID: 40200856 DOI: 10.1002/jez.b.23295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 02/24/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Sponges have a remarkable capacity to rapidly regenerate in response to injury. In addition, sponges rapidly renew their aquiferous system to maintain a healthy. This study describes the reparative regeneration in the cold-water demosponge Halichondria panicea. The wide range of methods allow us to make a comprehensive analysis of mechanisms, which contribute to the regeneration in this species, including morphogenetic process, cell proliferation, apoptosis and cytotoxicity. The regeneration in H. panicea includes three main stages: internal milieu isolation, wound healing - epithelization, and restoration of damaged structures. The main morphogenetical mechanisms of regeneration are epithelial-to-mesenchymal transition during the first 12 h post operation (hpo) followed by blastema formation and mesenchymal-to-epithelial transformation leading to the restoration of damaged structures. These processes can be explained by active cell dedifferentiation and transdifferentiation, participation of resident pluripotent cells (archaeocyte-like cells and choanocytes), by migration of pluripotent cells (archaeocyte-like cells), and by activation of proliferation and apoptosis. The rate of apoptosis becomes homogeneous in regeneration area and in intact tissues at 12 hpo at a significantly higher rate than at 0 hpo. The reduction of sponge toxicity at 6 hpo looks like a necessary step for activation of repair processes. However, after 24 hpo, the toxicity exceeded the initial (0 hpo) level. At 96 hpo, the aquiferous system is completely restored. The ability for rapid wound epithelialization, as well as the morphological and functional restoration of damaged tissues, can be considered as a form of sponge's adaptation to extreme conditions in cold shallow water, acquired in the course of evolution.
Collapse
Affiliation(s)
- Ereskovsky Alexander
- Aix Marseille University, IMBE, CNRS, IRD, Avignon University, Marseille, France
- Koltzov Institute of Developmental Biology of RAS, Moscow, Russia
| | | | - Godefroy Nelly
- ISEM, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Chenesseau Sandrine
- Aix Marseille University, IMBE, CNRS, IRD, Avignon University, Marseille, France
| | - Nadezhda Yu Rogovskaja
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical Biological Agency, Saint-Petersburg, Russia
| | - Konstantin A Krasnov
- Golikov Research Clinical Center of Toxicology, Federal Medical Biological Agency, Saint-Petersburg, Russia
| | | | | | - Le Goff Emilie
- ISEM, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| |
Collapse
|
2
|
Su X, Kai L, Han X, Wang R, Yang X, Wang X, Yan J, Qian Q, Wang Z, Wang H. Equipotent bisphenol S and bisphenol F with widely differing modes of action exhibit additive effects in immunotoxicity: insights based on intrinsic immunity, apoptosis and regeneration, and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179405. [PMID: 40239502 DOI: 10.1016/j.scitotenv.2025.179405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/12/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Bisphenol S (BPS) and Bisphenol F (BPF), as alternatives to bisphenol A (BPA), are recognized for their endocrine-disrupting properties, but their combined immune toxicity mechanisms remain poorly understood. This study systematically evaluates the individual and joint immune toxicity effects of BPS and BPF through ADMET predictions, transgenic zebrafish models, and molecular docking analyses. The results indicate that equal effect concentration BPS and BPF act through distinct immune pathways: BPS primarily targets macrophages to mediate immune responses, while BPF significantly stimulates neutrophil proliferation and induces a stronger inflammatory response through chemokine signaling. Molecular docking studies show that BPF binds more stably to pro-apoptotic protein Mapk8 and oxidative stress-related protein Hsp90aa1, leading to significantly higher levels of apoptosis and reactive oxygen species (ROS) compared to BPS. The similarity of modes of action (MOA)between BPS and BPF based on relevant immune indicators calculated and experimentally is about 0.3; this quantitative result also proves that modes of action differ widely. Nonetheless, most of the indicators showed superimposed effects in the combined experiments, and it is noteworthy that the oxidative stress indicators (SOD, MDA) showed synergistic effects, suggesting that BPS and BPF, which have very different modes of action, are able to be risk assessed using an additive model with respect to immunity, but may exhibit synergistic risks with respect to oxidative stress. This research demonstrates that BPS and BPF induce immune toxicity via different molecular targets and pathways and highlights the need to account for their synergistic effects in risk assessments. These findings provide important insights into the immune toxicity mechanisms of BPA substitutes and the potential risks of combined exposures.
Collapse
Affiliation(s)
- Xincong Su
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Li Kai
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314000, China
| | - Xiaowen Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Rongzhi Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiao Yang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huili Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
3
|
Jin Y, Xu C, Zhu Y, Gu Z. Extracellular vesicle as a next-generation drug delivery platform for rheumatoid arthritis therapy. J Control Release 2025; 381:113610. [PMID: 40058499 DOI: 10.1016/j.jconrel.2025.113610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by chronic inflammation and progressive damage to connective tissue. It is driven by dysregulated cellular homeostasis, often leading to autoimmune destruction and permanent disability in severe cases. Over the past decade, various drug delivery systems have been developed to enable targeted therapies for disease prevention, reduction, or suppression. As an emerging therapeutic platform, extracellular vesicles (EVs) offer several advantages over conventional drug delivery systems, including biocompatibility and low immunogenicity. Consequently, an increasing number of studies have explored EV-based delivery systems in the treatment of RA, leveraging their natural ability to evade phagocytosis, prolong in vivo half-life, and minimize the immunogenicity of therapeutic agents. In this review, we first provide an in-depth overview of the pathogenesis of RA and the current treatment landscape. We then discuss the classification and biological properties of EVs, their potential therapeutic mechanisms, and the latest advancements in EVs as drug delivery platforms for RA therapy. We emphasize the significance of EVs as carriers in RA treatment and their potential to revolutionize therapeutic strategies. Furthermore, we examine key technological innovations and the future trajectory of EV research, focusing on the challenges and opportunities in translating these platforms into clinical practice. Our discussion aims to offer a comprehensive understanding of the current state and future prospects of EV-based therapeutics in RA.
Collapse
Affiliation(s)
- Yi Jin
- Department of Rheumatology, Research Center of Clinical Medicine, Research Center of Immunology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Yujuan Zhu
- Department of Rheumatology, Research Center of Clinical Medicine, Research Center of Immunology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Zhifeng Gu
- Department of Rheumatology, Research Center of Clinical Medicine, Research Center of Immunology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
4
|
Wong AO, Ravichandran KS. Apoptotic cells are not all created equal. Sci Immunol 2025; 10:eadv4682. [PMID: 40315297 DOI: 10.1126/sciimmunol.adv4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/26/2025] [Indexed: 05/04/2025]
Abstract
After lung injury, uptake of apoptotic neutrophils, but not epithelial cells, by alveolar macrophages prioritizes tissue repair over bacterial clearance (see related Research Article by Better et al.).
Collapse
Affiliation(s)
- Amanda O Wong
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kodi S Ravichandran
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Inflammation Research Center, Vlaams Instituut voor Biotechnologie, and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Henze E, Burkhardt RN, Fox BW, Schwertfeger TJ, Gelsleichter E, Michalski K, Kramer L, Lenfest M, Boesch JM, Lin H, Schroeder FC, Kawate T. ATP-release pannexin channels are gated by lysophospholipids. eLife 2025; 14:RP107067. [PMID: 40309905 PMCID: PMC12045621 DOI: 10.7554/elife.107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
In addition to its role as cellular energy currency, adenosine triphosphate (ATP) serves as an extracellular messenger that mediates diverse cell-to-cell communication. Compelling evidence supports that ATP is released from cells through pannexins, a family of membrane proteins that form heptameric large-pore channels. However, the activation mechanisms that trigger ATP release by pannexins remain poorly understood. Here, we discover lysophospholipids as endogenous pannexin activators, using activity-guided fractionation of mouse tissue extracts combined with untargeted metabolomics and electrophysiology. We show that lysophospholipids directly and reversibly activate pannexins in the absence of other proteins. Secretomics experiments reveal that lysophospholipid-activated pannexin 1 leads to the release of not only ATP but also other signaling metabolites, such as 5'-methylthioadenosine, which is important for immunomodulation. We also demonstrate that lysophospholipids activate endogenous pannexin 1 in human monocytes, leading to the release of IL-1β through inflammasome activation. Our results provide a connection between lipid metabolism and purinergic signaling, both of which play major roles in immune responses.
Collapse
Affiliation(s)
- Erik Henze
- Department of Molecular Medicine, Cornell UniversityIthacaUnited States
| | - Russell N Burkhardt
- Boyce Thompson Institute, Cornell UniversityIthacaUnited States
- Department of Chemistry and Chemical Biology, Cornell UniversityIthacaUnited States
| | - Bennett William Fox
- Boyce Thompson Institute, Cornell UniversityIthacaUnited States
- Department of Chemistry and Chemical Biology, Cornell UniversityIthacaUnited States
| | - Tyler J Schwertfeger
- Boyce Thompson Institute, Cornell UniversityIthacaUnited States
- Department of Chemistry and Chemical Biology, Cornell UniversityIthacaUnited States
| | - Eric Gelsleichter
- Department of Chemistry and Chemical Biology, Cornell UniversityIthacaUnited States
| | - Kevin Michalski
- Department of Molecular Medicine, Cornell UniversityIthacaUnited States
| | - Lydia Kramer
- Department of Molecular Medicine, Cornell UniversityIthacaUnited States
| | - Margret Lenfest
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Jordyn M Boesch
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell UniversityIthacaUnited States
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell UniversityIthacaUnited States
- Department of Chemistry and Chemical Biology, Cornell UniversityIthacaUnited States
| | - Toshimitsu Kawate
- Department of Molecular Medicine, Cornell UniversityIthacaUnited States
| |
Collapse
|
6
|
Yin T, Sun S, Peng L, Yang M, Li M, Yang X, Yuan F, Zhu H, Wang S. Targeting microglial NAAA-regulated PEA signaling counters inflammatory damage and symptom progression of post-stroke anxiety. Cell Commun Signal 2025; 23:211. [PMID: 40312408 DOI: 10.1186/s12964-025-02202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/12/2025] [Indexed: 05/03/2025] Open
Abstract
Post-stroke anxiety (PSA) manifests as anxiety symptoms after stroke, with unclear mechanisms and limited treatment strategies. Endocannabinoids, reported to mitigate fear, anxiety, and stress, undergo dynamic alterations after stroke linked to prognosis intricately. However, endocannabinoid metabolism in ischemic microenvironment and their associations with post-stroke anxiety-like behavior remain largely uncovered. Our findings indicated that endocannabinoid metabolism was dysregulated after stroke, characterized by elevated N-palmitoylethanolamide (PEA) hydrolase N-acylethanolamine-acid amidase (NAAA) in activated microglia from ischemic area, accompanied by rapid PEA exhaustion. Microglial PEA metabolite exhaustion is directly associated with more severe pathological damage, anxiety symptoms and pain sensitivity. Naaa knockout or pharmacological supplementation to boost PEA pool content can effectively promote stroke recovery and alleviate anxiety-like behaviors. In addition, maintaining PEA pool content in ischemic area reduces overactivated microglia by confronting against mitochondria dysfunction and inflammasome cascade triggered IL-18 release and diffusion to contralateral hemisphere. Meanwhile, maintenance of microglial PEA pool content in ischemic-damaged lesion can preserve contralateral vCA1 synaptic integrity, enhancing anxiolytic pBLA-vCA1Calb1+ circuit activity by alleviating microglial phagocytosis-mediated synaptic loss. Thus, we conclude that microglial NAAA-regulated lipid signaling in the ischemic focus remodels contralateral anxiolytic circuit to participate in post-stroke anxiety progression. Blocking PEA signaling breakdown promotes stroke recovery and mitigates anxiety-like symptoms.
Collapse
Affiliation(s)
- Tianyue Yin
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Shuaijie Sun
- Department of Anesthesiology, Anhui Provincial Hospital, Wannan Medical College, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Li Peng
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Mengmeng Yang
- Department of Anesthesiology, Anhui Provincial Hospital, Wannan Medical College, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Mengyu Li
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Xinlu Yang
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Fengyun Yuan
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Hongrui Zhu
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Sheng Wang
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
7
|
Shi B, Phan TK, Poon IKH. Extracellular vesicles from the dead: the final message. Trends Cell Biol 2025; 35:439-452. [PMID: 39438206 DOI: 10.1016/j.tcb.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Communication between dying and neighbouring cells is vital to ensure appropriate processes such as tissue repair or inflammation are initiated in response to cell death. As a mechanism to aid intercellular communication, cells undergoing apoptosis can release membrane-bound extracellular vesicles (EVs) called apoptotic-cell-derived EVs (ApoEVs) that can influence downstream processes through biomolecules within or on ApoEVs. ApoEVs are broadly categorised based on size as either large ApoEVs known as apoptotic bodies (ApoBDs) or small ApoEVs (s-ApoEVs). Notably, the mechanisms of ApoBD and s-ApoEV formation are different, and the functions of these two ApoEV subsets are distinct. This Review focuses on the biogenesis and functional properties of both ApoBDs and s-ApoEVs, particularly in the context of cell clearance, cell signalling and disease progression.
Collapse
Affiliation(s)
- Bo Shi
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Research Centre for Extracellular Vesicles, La Trobe University, Victoria, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Research Centre for Extracellular Vesicles, La Trobe University, Victoria, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Research Centre for Extracellular Vesicles, La Trobe University, Victoria, Australia.
| |
Collapse
|
8
|
Breitenstein P, Visser VL, Motta SE, Martin M, Generali M, Baaijens FPT, Loerakker S, Breuer CK, Hoerstrup SP, Emmert MY. Modulating biomechanical and integrating biochemical cues to foster adaptive remodeling of tissue engineered matrices for cardiovascular implants. Acta Biomater 2025; 197:48-67. [PMID: 40118167 DOI: 10.1016/j.actbio.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Cardiovascular disease remains one of the leading causes of mortality in the Western world. Congenital heart disease affects nearly 1 % of newborns, with approximately one-fourth requiring reconstructive surgery during their lifetime. Current cardiovascular replacement options have significant limitations. Their inability to grow poses particular challenges for pediatric patients. Tissue Engineered Matrix (TEM)-based in situ constructs, with their self-repair and growth potential, offer a promising solution to overcome the limitations of current clinically used replacement options. Various functionalization strategies, involving the integration of biomechanical or biochemical components to enhance biocompatibility, have been developed for Tissue Engineered Vascular Grafts (TEVG) and Tissue Engineered Heart Valves (TEHV) to foster their capacity for in vivo remodeling. In this review, we present the current state of clinical translation for TEVG and TEHV, and provide a comprehensive overview of biomechanical and biochemical functionalization strategies for TEVG and TEHV. We discuss the rationale for functionalization, the implementation of functionalization cues in TEM-based TEVG and TEHV, and the interrelatedness of biomechanical and biochemical cues in the in vivo response. Finally, we address the challenges associated with functionalization and discuss how interdisciplinary research, especially when combined with in silico models, could enhance the translation of these strategies into clinical applications. STATEMENT OF SIGNIFICANCE: Cardiovascular disease remains one of the leading causes of mortality, with current replacements being unable to grow and regenerate. In this review, we present the current state of clinical translation for tissue engineered vascular grafts (TEVG) and heart valves (TEHV). Particularly, we discuss the rationale and implementation for functionalization cues in tissue engineered matrix-based TEVGs and TEHVs, and for the first time we introduce the interrelatedness of biomechanical and biochemical cues in the in-vivo response. These insights pave the way for next-generation cardiovascular implants that promise better durability, biocompatibility, and growth potential. Finally, we address the challenges associated with functionalization and discuss how interdisciplinary research, especially when combined with in silico models, could enhance the translation of these strategies into clinical applications .
Collapse
Affiliation(s)
- Pascal Breitenstein
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Valery L Visser
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Sarah E Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Marcy Martin
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Christopher K Breuer
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Surgery, Nationwide Children's Hospital, Columbus, OH, USA; Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland; Wyss Zurich Translational Center, University of Zurich and ETH Zurich, Zurich 8092, Switzerland
| | - Maximilian Y Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin 13353, Germany; Charité Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
9
|
Yapici FI, Seidel E, Dahlhaus A, Weber J, Schmidt C, de Britto Chaves Filho A, Yang M, Nenchova M, Güngör E, Stroh J, Kotouza I, Beck J, Abdallah AT, Lackmann JW, Bebber CM, Androulidaki A, Kreuzaler P, Schulze A, Frezza C, von Karstedt S. An atlas of ferroptosis-induced secretomes. Cell Death Differ 2025:10.1038/s41418-025-01517-4. [PMID: 40281125 DOI: 10.1038/s41418-025-01517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Cells undergoing regulated necrosis systemically communicate with the immune system via the release of protein and non-protein secretomes. Ferroptosis is a recently described iron-dependent type of regulated necrosis driven by massive lipid peroxidation. While membrane rupture occurs during ferroptosis, a comprehensive appraisal of ferroptotic secretomes and their potential biological activity has been lacking. Here, we apply a multi-omics approach to provide an atlas of ferroptosis-induced secretomes and reveal a novel function in macrophage priming. Proteins with assigned DAMP and innate immune system function, such as MIF, heat shock proteins (HSPs), and chaperones, were released from ferroptotic cells. Non-protein secretomes with assigned inflammatory function contained oxylipins as well as TCA- and methionine-cycle metabolites. Interestingly, incubation of bone marrow-derived macrophages (BMDMs) with ferroptotic supernatants induced transcriptional reprogramming consistent with priming. Indeed, exposure to ferroptotic supernatants enhanced LPS-induced cytokine production. These results define a catalog of ferroptosis-induced secretomes and identify a biological activity in macrophage priming with important implications for the fine-tuning of inflammatory processes.
Collapse
Affiliation(s)
- F Isil Yapici
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Eric Seidel
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Alina Dahlhaus
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Josephine Weber
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Christina Schmidt
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, Institute for Metabolomics in Ageing, University of Cologne, Cologne, Germany
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute for Genetics, Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Institute for Computational Biomedicine, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Adriano de Britto Chaves Filho
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ming Yang
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, Institute for Metabolomics in Ageing, University of Cologne, Cologne, Germany
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute for Genetics, Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Maria Nenchova
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Emre Güngör
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Jenny Stroh
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Ioanna Kotouza
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Julia Beck
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Ali T Abdallah
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute for Genetics, Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Christina M Bebber
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Ariadne Androulidaki
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Peter Kreuzaler
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, Institute for Metabolomics in Ageing, University of Cologne, Cologne, Germany
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christian Frezza
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, Institute for Metabolomics in Ageing, University of Cologne, Cologne, Germany
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute for Genetics, Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
10
|
Liu X, Harbison RA, Varvares MA, Puram SV, Peng G. Immunotherapeutic strategies in head and neck cancer: challenges and opportunities. J Clin Invest 2025; 135:e188128. [PMID: 40231472 PMCID: PMC11996880 DOI: 10.1172/jci188128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
HNSCC remains a substantial health issue, with treatment options including surgery, radiation, and platinum-based chemotherapy. Unfortunately, despite progress in research, only modest gains have been made in disease control, with existing treatments resulting in significant functional and quality-of-life issues. The introduction of immunotherapy in the treatment of HNSCC has resulted in some improvements in outlook for patients and is now standard of care for populations with both recurrent and metastatic disease. However, despite the early successes, responses to immune checkpoint inhibition (ICI) remain modest to low, approaching 14%-22% objective response rates. Challenges to the effectiveness of ICI and other immunotherapies are complex, including the diverse and dynamic molecular plasticity and heterogeneity of HNSCCs; lack of immunogenic antigens; accumulated suppressive immune populations such as myeloid cells and dysfunctional T cells; nutrient depletion; and metabolic dysregulation in the HNSCC tumor microenvironment. In this Review, we explore the mechanisms responsible for immunotherapy resistance, dissect these challenges, and discuss potential opportunities for overcoming hurdles to the development of successful immunotherapy for HNSCC.
Collapse
Affiliation(s)
- Xia Liu
- Department of Otolaryngology–Head and Neck Surgery
- Rob Ebert and Greg Stubblefield Head and Neck Tumor Center at Siteman Cancer Center and
| | - R. Alex Harbison
- Department of Otolaryngology–Head and Neck Surgery
- Rob Ebert and Greg Stubblefield Head and Neck Tumor Center at Siteman Cancer Center and
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mark A. Varvares
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Sidharth V. Puram
- Department of Otolaryngology–Head and Neck Surgery
- Rob Ebert and Greg Stubblefield Head and Neck Tumor Center at Siteman Cancer Center and
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Guangyong Peng
- Department of Otolaryngology–Head and Neck Surgery
- Rob Ebert and Greg Stubblefield Head and Neck Tumor Center at Siteman Cancer Center and
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Hernandez-Lima MA, Seo B, Urban ND, Truttmann MC. Modulation of C. elegans behavior, fitness, and lifespan by AWB/ASH-dependent death perception. Curr Biol 2025:S0960-9822(25)00387-2. [PMID: 40250434 DOI: 10.1016/j.cub.2025.03.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/24/2025] [Accepted: 03/27/2025] [Indexed: 04/20/2025]
Abstract
The ability of the nervous system to initiate intricate goal-directed behaviors in response to environmental stimuli is essential for metazoan survival. In this study, we demonstrate that the nematode Caenorhabditis elegans perceives and reacts to dead conspecifics. The exposure to C. elegans corpses, as well as corpse lysates, activates sensory neurons AWB and ASH, triggering a glutamate- and acetylcholine-dependent signaling cascade that regulates both immediate (aversion) and long-term (survival) responses to the presence of a death signature. We identify increased adenosine monophosphate (AMP) and histidine concentrations as potential chemical fingerprints for the presence of metazoan corpses and show that death cue sensing by AWB and ASH leads to physiological changes that promote reproduction at the expense of lifespan. Our findings illuminate a signaling paradigm that allows organisms to detect and interpret the environmental enrichment of intracellular metabolites as a death cue.
Collapse
Affiliation(s)
- Mirella A Hernandez-Lima
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian Seo
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas D Urban
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Graduate Program in Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthias C Truttmann
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Graduate Program in Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Fu X, Zhang L, Lin J, Wang Q, Wang Z, Chi M, Li D, Zhao G, Li C. Zeolitic Imidazolate Framework-90 Treats Fungal Keratitis by Promoting Macrophage Apoptosis and Targeting Increased Mitochondrial Reactive Oxygen Species in Aspergillus Fumigatus. Int J Nanomedicine 2025; 20:4551-4569. [PMID: 40242606 PMCID: PMC12002346 DOI: 10.2147/ijn.s517169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
Background Fungal keratitis is a severe vision-threatening corneal infection with a prognosis influenced by fungal virulence and the host's immune defense mechanisms. However, there is still a lack of effective drugs that attenuate fungal virulence while relieving the inflammatory response caused by fungal keratitis. Purpose Finding an effective treatment to solve these problems is particularly important. Methods We synthesized Zeolitic imidazolate framework-90 (ZIF-90) by water-based synthesis method and characterized it. In vitro experiments included mycelium electron microscopy, Cell Counting Kit-8 (CCK-8), and Enzyme-linked immunosorbent assay (ELISA). These trials verified the disruptive effects of ZIF-90 on morphology, cell membrane, cell wall, and biofilm formation of Aspergillus fumigatus (A. fumigatus). These experiments also demonstrated the impact of ZIF-90 on the proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Moreover, the effect of ZIF-90 on mitochondrial reactive oxygen species (mtROS) of cells and fungi was verified by MitoSOX Red Mitochondrial Superoxide Indicator (MitoSOX). In vivo, corneal toxicity test, establishment and treatment of mycotic keratitis mouse model, and immunofluorescence staining were used to evaluate the efficacy of ZIF-90 in the procedure of fungal keratitis. In addition, to investigate whether the metal-ligand zinc and the organic ligand imidazole acted as essential factors in ZIF-90, we investigated the in vitro antimicrobial and anti-inflammatory effects of ZIF-8, ZIF-67 and Metal-Organic Frameworks-74 (Zn) (MOF-74 (Zn)) by Minimum Inhibitory Concentration (MIC) and ELISA experiments. Results ZIF-90 has therapeutic effects on fungal keratitis, which could break the protective organelles of A. fumigatus, such as the cell wall. In addition, ZIF-90 can also be targeted to increase the amount of mtROS in fungi and promote apoptosis of macrophages. The results demonstrated that both zinc ions and imidazole possessed antimicrobial and anti-inflammatory effects. In addition, ZIF-90 exhibited better antifungal properties than ZIF-8, ZIF-67, and MOF-74 (Zn).
Collapse
Affiliation(s)
- Xueyun Fu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Lina Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Ziyi Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Menghui Chi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Daohao Li
- State Key Laboratory of Bio-fibers and Eco-Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, People’s Republic of China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
13
|
Huang P, Qin D, Qin Y, Tao S, Liu G. SIRT3/6/7: promising therapeutic targets for pulmonary fibrosis. Front Cell Dev Biol 2025; 13:1557384. [PMID: 40241794 PMCID: PMC12000143 DOI: 10.3389/fcell.2025.1557384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Pulmonary fibrosis is a chronic progressive fibrosing interstitial lung disease of unknown cause, characterized by excessive deposition of extracellular matrix, leading to irreversible decline in lung function and ultimately death due to respiratory failure and multiple complications. The Sirtuin family is a group of nicotinamide adenine dinucleotide (NAD+) -dependent histone deacetylases, including SIRT1 to SIRT7. They are involved in various biological processes such as protein synthesis, metabolism, cell stress, inflammation, aging and fibrosis through deacetylation. This article reviews the complex molecular mechanisms of the poorly studied SIRT3, SIRT6, and SIRT7 subtypes in lung fibrosis and the latest research progress in targeting them to treat lung fibrosis.
Collapse
Affiliation(s)
- Pingping Huang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Qin
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanling Qin
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sha Tao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangnan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Payne NL, Pang SHM, Freeman AJ, Ozkocak DC, Limar JW, Wallis G, Zheng D, Mendonca S, O'Reilly LA, Gray DHD, Poon IKH, Heng TSP. Proinflammatory cytokines sensitise mesenchymal stromal cells to apoptosis. Cell Death Discov 2025; 11:121. [PMID: 40148285 PMCID: PMC11950399 DOI: 10.1038/s41420-025-02412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Mesenchymal stromal cells (MSCs) exert broad therapeutic effects across a range of inflammatory diseases. Their mechanism of action has largely been attributed to paracrine signalling, orchestrated by an array of factors produced by MSCs that are collectively termed the "secretome". Strategies to enhance the release of these soluble factors by pre-exposure to inflammatory cytokines, a concept known as "licensing", is thought to provide a means of enhancing MSC efficacy. Yet, recent evidence shows that intravenously infused MSCs entrapped within the lungs undergo apoptosis, and their subsequent clearance by host phagocytes is essential for their therapeutic efficacy. We therefore sought to clarify the mechanisms governing regulated cell death in MSCs and how exposure to inflammatory cytokines impacts this process. Our results show that MSCs are relatively resistant to cell death induced via the extrinsic pathway of apoptosis, as well as stimuli that induce necroptosis, a form of regulated inflammatory cell death. Instead, efficient killing of MSCs required triggering of the mitochondrial pathway of apoptosis, via inhibition of the pro-survival proteins MCL-1 and BCL-XL. Apoptotic bodies were readily released by MSCs during cell disassembly, a process that was inhibited in vitro and in vivo when the apoptotic effectors BAK and BAX were genetically deleted. Licensing of MSCs by pre-exposure to the inflammatory cytokines TNF and IFN-γ increased the sensitivity of MSCs to intrinsic apoptosis in vitro and accelerated their in vivo clearance by host cells within the lungs after intravenous infusion. Taken together, our study demonstrates that inflammatory "licensing" of MSCs facilitates cell death by increasing their sensitivity to triggers of the intrinsic pathway of apoptosis and accelerating the kinetics of apoptotic cell disassembly.
Collapse
Affiliation(s)
- Natalie L Payne
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Swee Heng Milon Pang
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Andrew J Freeman
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dilara C Ozkocak
- Research Centre for Extracellular Vesicles, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Justin W Limar
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Georgia Wallis
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Di Zheng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Senora Mendonca
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ivan K H Poon
- Research Centre for Extracellular Vesicles, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Tracy S P Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
15
|
Wang Y, Liu C, Pang J, Li Z, Zhang J, Dong L. The Extra-Tumoral Vaccine Effects of Apoptotic Bodies in the Advancement of Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410503. [PMID: 39871756 DOI: 10.1002/smll.202410503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/16/2025] [Indexed: 01/29/2025]
Abstract
The induction of apoptosis in tumor cells is a common target for the development of anti-tumor therapies; however, these therapies still leave patients at increased risk of disease recurrence. For example, apoptotic tumor cells can promote tumor growth and immune evasion via the secretion of metabolites, apoptotic extracellular vesicles, and induction of pro-tumorigenic macrophages. This paradox of apoptosis induction and the pro-tumorigenic effects of tumor cell apoptosis has begged the question of whether apoptosis is a suitable cancer therapy, and led to further explorations into other immunogenic cell death-based approaches. However, these strategies still face multiple challenges, the most critical of which is the tumor microenvironment. Contrary to the promotion of immune tolerance mediated by apoptotic tumor cells, apoptotic bodies with enriched tumor-related antigens have demonstrated great immunogenic potential, as evidenced by their ability to initiate systemic T-cell immune responses. These characteristics indicate that apoptotic body-based therapies could be ideal "in situ" extra-tumoral tumor vaccine candidates for the treatment of cancers, and further address the current issues with apoptosis-based or immunotherapy treatments. Although not yet tested clinically, apoptotic body-based vaccines have the potential to better treatment strategies and patient outcomes in the future.
Collapse
Affiliation(s)
- Yulian Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Chunyan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jiayun Pang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Zhenjiang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
16
|
Zhang M, Wei J, Sun Y, He C, Ma S, Pan X, Zhu X. The efferocytosis process in aging: Supporting evidence, mechanisms, and therapeutic prospects for age-related diseases. J Adv Res 2025; 69:31-49. [PMID: 38499245 PMCID: PMC11954809 DOI: 10.1016/j.jare.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Aging is characterized by an ongoing struggle between the buildup of damage caused by a combination of external and internal factors. Aging has different effects on phagocytes, including impaired efferocytosis. A deficiency in efferocytosis can cause chronic inflammation, aging, and several other clinical disorders. AIM OF REVIEW Our review underscores the possible feasibility and extensive scope of employing dual targets in various age-related diseases to reduce the occurrence and progression of age-related diseases, ultimately fostering healthy aging and increasing lifespan. Key scientific concepts of review Hence, the concurrent implementation of strategies aimed at augmenting efferocytic mechanisms and anti-aging treatments has the potential to serve as a potent intervention for extending the duration of a healthy lifespan. In this review, we comprehensively discuss the concept and physiological effects of efferocytosis. Subsequently, we investigated the association between efferocytosis and the hallmarks of aging. Finally, we discuss growing evidence regarding therapeutic interventions for age-related disorders, focusing on the physiological processes of aging and efferocytosis.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yu Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chang He
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shiyin Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
17
|
Bonacina F, Zhang X, Manel N, Yvan-Charvet L, Razani B, Norata GD. Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis. Nat Rev Cardiol 2025; 22:149-164. [PMID: 39304748 PMCID: PMC11835540 DOI: 10.1038/s41569-024-01072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Lysosomes have a central role in the disposal of extracellular and intracellular cargo and also function as metabolic sensors and signalling platforms in the immunometabolic reprogramming of macrophages and other immune cells in atherosclerosis. Lysosomes can rapidly sense the presence of nutrients within immune cells, thereby switching from catabolism of extracellular material to the recycling of intracellular cargo. Such a fine-tuned degradative response supports the generation of metabolic building blocks through effectors such as mTORC1 or TFEB. By coupling nutrients to downstream signalling and metabolism, lysosomes serve as a crucial hub for cellular function in innate and adaptive immune cells. Lysosomal dysfunction is now recognized to be a hallmark of atherogenesis. Perturbations in nutrient-sensing and signalling have profound effects on the capacity of immune cells to handle cholesterol, perform phagocytosis and efferocytosis, and limit the activation of the inflammasome and other inflammatory pathways. Strategies to improve lysosomal function hold promise as novel modulators of the immunoinflammatory response associated with atherosclerosis. In this Review, we describe the crosstalk between lysosomal biology and immune cell function and polarization, with a particular focus on cellular immunometabolic reprogramming in the context of atherosclerosis.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU), Oncoage, Nice, France
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Giuseppe D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
18
|
Wang Y. Durvalumab and T-DXd Synergistically Promote Apoptosis of Cholangiocarcinoma Cells by Downregulating EGR1 Expression Through Inhibiting P38 MAPK Pathway. Appl Biochem Biotechnol 2025; 197:1773-1789. [PMID: 39607471 DOI: 10.1007/s12010-024-05112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Cholangiocarcinoma is a hepatobiliary system tumor with a high mortality rate. Although durvalumab and trastuzumab deruxtecan (T-DXd) have shown efficacy in treating cancers such as non-small cell lung cancer, their effects and regulatory mechanisms in cholangiocarcinoma remain unclear. In this study, we aimed to investigate the role and mechanism of durvalumab and T-DXd in inducing apoptosis in cholangiocarcinoma cells. Cholangiocarcinoma cells were treated with varying concentrations of durvalumab and T-DXd, either individually or in combination, to evaluate their effects. Apoptosis was quantified using flow cytometry. Quantitative real-time PCR (qPCR) and Western blotting were used to measure the mRNA expression and protein levels of genes associated with apoptosis and cell cycle regulation. The underlying mechanism was further explored through pathway enrichment analysis of differentially expressed genes (DEGs) and corroborated by qPCR and Western blotting. Xenotransplantation models using immune-deficient NOD-SCID/IL2Rγnull (NSG) mice were established to assess the in vivo effects of durvalumab and T-DXd. Our results showed that both durvalumab and T-DXd inhibited cholangiocarcinoma cell proliferation in a dose-dependent manner. Both agents promoted apoptosis and arrested the cell cycle of cholangiocarcinoma cells, with the combination treatment having the most significant effect. Furthermore, treatment with durvalumab, T-DXd, and the combination downregulated the protein levels of early growth response 1 (EGR1) by inactivating the p38 mitogen-activated protein kinase (MAPK) pathway. In vivo experiments indicated that durvalumab and T-DXd prolonged the survival of NSG mice bearing cholangiocarcinoma xenografts. In conclusion, our findings demonstrated that durvalumab and T-DXd synergistically promoted apoptosis in cholangiocarcinoma cells by inhibiting EGR1 expression through inactivation of the p38 MAPK pathway. This study confirmed the potential of durvalumab and T-DXd for the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Yuepeng Wang
- Department of Medical Oncology, Xinglongtai District, Panjin Central Hospital, No.32, Liaohe Middle RoadLiaoning Province 124010, Panjin City, China.
| |
Collapse
|
19
|
Liu H, Chen YG. Spermine attenuates TGF-β-induced EMT by downregulating fibronectin. J Biol Chem 2025; 301:108352. [PMID: 40015634 PMCID: PMC11979473 DOI: 10.1016/j.jbc.2025.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a highly dynamic cellular process that occurs in development, tissue repair, and cancer metastasis. As a master EMT inducer, transforming growth factor-beta (TGF-β) can activate the EMT program by regulating the expression of key EMT-related genes and triggering other required cellular changes. However, it is unclear whether cell metabolism is involved in TGF-β-induced EMT. Here, we characterized early metabolic changes in response to transient TGF-β stimulation in HaCaT cells and discovered that TGF-β signaling significantly reduces the intracellular polyamine pool. Exogenous addition of spermine, but not other polyamines, attenuates TGF-β-induced EMT. Mechanistically, spermine downregulates the extracellular matrix protein fibronectin. Furthermore, we found that TGF-β activates extracellular signal-regulated kinase to enhance the expression of spermine oxidase, which is responsible for the reduced spermine concentration. This action of TGF-β on EMT via the polyamine metabolism provides new insights into the mechanisms underlying EMT and might be exploited as a way to target the EMT program for therapy.
Collapse
Affiliation(s)
- Huidong Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
20
|
Hoseinzadeh A, Esmaeili SA, Sahebi R, Melak AM, Mahmoudi M, Hasannia M, Baharlou R. Fate and long-lasting therapeutic effects of mesenchymal stromal/stem-like cells: mechanistic insights. Stem Cell Res Ther 2025; 16:33. [PMID: 39901306 PMCID: PMC11792531 DOI: 10.1186/s13287-025-04158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
A large body of evidence suggests that mesenchymal stromal cells (MSCs) are able to respond rapidly to the cytokine milieu following systemic infusion. This encounter has the potential to dictate their therapeutic efficacy (also referred to as licensing). MSCs are able to rapidly react to cellular damage by migrating to the inflamed tissue and ultimately modifying the inflammatory microenvironment. However, the limited use of MSCs in clinical practice can be attributed to a lack of understanding of the fate of MSCs in patients after administration and long term MSC-derived therapeutic activity. While the known physiological effectors of viable MSCs make a relative contribution, an innate property of MSCs as a therapeutic agent is their caspase-dependent cell death. These mechanisms may be involving the functional reprogramming of myeloid phagocytes via efferocytosis, the process by which apoptotic bodies (ABs) are identified for engulfment by both specialized and non-specialized phagocytic cells. Recent studies have provided evidence that the uptake of ABs with a distinct genetic component can induce changes in gene expression through the process of epigenetic remodeling. This phenomenon, known as 'trained immunity', has a significant impact on immunometabolism processes. It is hypothesized that the diversity of recipient cells within the inflammatory stroma adjacent to MSCs may potentially serve as a biomarker for predicting the clinical outcome of MSC treatment, while also contributing to the variable outcomes observed with MSC-based therapies. Therefore, the long-term reconstructive process of MSCs may potentially be mediated by MSC apoptosis and subsequent phagocyte-mediated efferocytosis.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Department of Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed-Alireza Esmaeili
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Sahebi
- Department of Modern Sciences and Technologies, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahmoud Mahmoudi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maliheh Hasannia
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Rasoul Baharlou
- Department of Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
21
|
Zuo CY, Zhang CS, Zhang HX, Gou CY, Lei H, Tian FW, Wang ZX, Yin HY, Yu SG. Moxibustion Alleviates Inflammation via SIRT5-mediated Post-translational Modification and Macrophage Polarization. Inflammation 2025:10.1007/s10753-025-02239-y. [PMID: 39899130 DOI: 10.1007/s10753-025-02239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/30/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
Macrophage polarisation is influenced by Sirtuin5 (SIRT5), which is crucial for regulating anti-inflammatory processes. Moxibustion, a traditional Chinese medicine therapy, exerts anti-inflammatory effects by altering the succinate/α-ketoglutarate (α-KG) ratio, an indicator of the M1 to M2 macrophage shift. Glutamate dehydrogenase 1 (GLUD1), a key enzyme involved in α-KG production, is desuccinylated by SIRT5. Currently, the potential influence of moxibustion on SIRT5-GLUD1-α-KG-mediated macrophage polarization in inflammatory diseases remains unexplored. C57BL/6 J and Sirt5 knockout mice were used as complete Freund's adjuvant (CFA)-induced adjuvant arthritis models. Moxibustion and acupoint injections of MC3482 were administered. Paw capacity asssays and ELISA were performed to quantify inflammatory effects and the expression of succinate, and α-KG expressions. Flow cytometry (FCM) and immunofluorescence were used to assesss the expression of M1- and M2-like macrophages. LC-MS/MS-based proteomic analysis was performed, and GLUD1 was identified desuccinylated protein associated with SIRT5. Western blotting and immunoprecipitation (IP) were used to detect SIRT5, GLUD1, and succinylated GLUD1expressions. Moxibustion and the SIRT5-mediated desuccinylation inhibitor MC3482 decreased inflammation by increasing the number of M2 macrophages and reducing the number of M1 macrophage in the CFA model. The potential mechanism may be related to the effects of moxibustion and SIRT5 inhibition, which inverted succinate and α-KG levels in the CFA group, resulting in low succinate, high α-KG, and increased GLUD1 succinylation after treatment. These findings suggest that the anti-inflammatory effects moxibustion are related to the impact of macrophage conversion after SIRT5-mediated post-translational modification.
Collapse
Affiliation(s)
- Chuan-Yi Zuo
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Cheng-Shun Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Han-Xiao Zhang
- Faculty of Medicine, Université Paris-Saclay, 94800, Villejuif, France
| | - Chun-Yan Gou
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Hong Lei
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Feng-Wei Tian
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Zhu-Xing Wang
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Hai-Yan Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| | - Shu-Guang Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
22
|
Li Z, Xi Z, Fan C, Xi X, Zhou Y, Zhao M, Xu L. Nanomaterials evoke pyroptosis boosting cancer immunotherapy. Acta Pharm Sin B 2025; 15:852-875. [PMID: 40177577 PMCID: PMC11959974 DOI: 10.1016/j.apsb.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 10/15/2024] [Indexed: 04/05/2025] Open
Abstract
Cancer immunotherapy is currently a very promising therapeutic strategy for treating tumors. However, its effectiveness is restricted by insufficient antigenicity and an immunosuppressive tumor microenvironment (ITME). Pyroptosis, a unique form of programmed cell death (PCD), causes cells to swell and rupture, releasing pro-inflammatory factors that can enhance immunogenicity and remodel the ITME. Nanomaterials, with their distinct advantages and different techniques, are increasingly popular, and nanomaterial-based delivery systems demonstrate significant potential to potentiate, enable, and augment pyroptosis. This review summarizes and discusses the emerging field of nanomaterials-induced pyroptosis, focusing on the mechanisms of nanomaterials-induced pyroptosis pathways and strategies to activate or enhance specific pyroptosis. Additionally, we provide perspectives on the development of this field, aiming to accelerate its further clinical transition.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziyue Xi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chuanyong Fan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinran Xi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yao Zhou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ming Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
23
|
Shi X, Han S, Wang G, Zhou G. Mitochondrial-associated programmed-cell-death patterns for predicting the prognosis of non-small-cell lung cancer. Front Med 2025; 19:101-120. [PMID: 39576480 DOI: 10.1007/s11684-024-1093-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 02/27/2025]
Abstract
Mitochondria are the convergence point of multiple pathways that trigger programmed cell death (PCD). Mitochondrial-associated PCD (mtPCD) is involved in the pathogenesis of several diseases. However, the role of mtPCD in the prognostic prediction of cancers including non-small-cell lung cancer (NSCLC) remains to be investigated. Here, 12 mtPCD patterns were analyzed in transcriptomics, genomics, and clinical data collected from 4 datasets containing 977 patients. A risk-score assessment system containing 18 genes was established. We found that NSCLC patients with a high-risk score had a poorer prognosis. A nomogram was constructed by incorporating the risk score with clinical features. The risk score was further associated with clinicopathological information, tumor-mutation frequency, and immunotherapy responses. NSCLC patients with a high risk score had more Treg cells infiltration. However, these patients had higher tumor-mutation burden scores and may be more sensitive to immunotherapy. Moreover, receptor-interacting serine/threonine protein kinase 2 (RIPK2) was selected from mtPCD gene model for validation. We found that RIPK2 exhibited oncogenic function, and its expression level was inversely associated with the overall survival of NSCLC. Taken together, our results indicated the accuracy and practicability of the mtPCD gene model and RIPK2 in predicting the prognosis of NSCLC.
Collapse
Affiliation(s)
- Xueyan Shi
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sichong Han
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guizhen Wang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
24
|
Hsueh W, Wu Y, Weng M, Liu S, Santavanond JP, Liu Y, Lin C, Lai C, Lu Y, Hsu JY, Gao H, Lee J, Wei S, Lyu P, Poon IKH, Hsieh H, Chiu Y. Novel Naphthyridones Targeting Pannexin 1 for Colitis Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411538. [PMID: 39739600 PMCID: PMC11831487 DOI: 10.1002/advs.202411538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/29/2024] [Indexed: 01/02/2025]
Abstract
Pannexin 1 (PANX1) forms cell-surface channels capable of releasing signaling metabolites for diverse patho-physiological processes. While inhibiting dysregulated PANX1 has been proposed as a therapeutic strategy for many pathological conditions, including inflammatory bowel disease (IBD), low efficacy, or poor specificity of classical PANX1 inhibitors introduces uncertainty for their applications in basic and translational research. Here, hit-to-lead optimization is performed and a naphthyridone, compound 12, is identified as a new PANX1 inhibitor with an IC50 of 0.73 µm that does not affect pannexin-homologous LRRC8/SWELL1 channels. Using structure-activity relationship analysis, mutagenesis, cell thermal shift assays, and molecular docking, it is revealed that compound 12 directly engages PANX1 Trp74 residue. Using a dextran sodium sulfate mouse model of IBD, it is found that compound 12 markedly reduced colitis severity, highlighting new PANX1 inhibitors as a proof-of-concept treatment for IBD. These data describe the mechanism of action for a new PANX1 inhibitor, uncover the binding site for future drug design, and present a targeted strategy for treating IBD.
Collapse
Affiliation(s)
- Wen‐Yun Hsueh
- Department of ChemistryNational Tsing Hua UniversityHsinchu300044Taiwan
- Institute of Biotechnology and Pharmaceutical ResearchNational Health Research InstitutesMiaoli County350401Taiwan
| | - Yi‐Ling Wu
- Institute of BiotechnologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Meng‐Tzu Weng
- Department of Internal MedicineNational Taiwan University HospitalTaipei City100229Taiwan
- Department of Medical ResearchNational Taiwan University HospitalHsin‐Chu BranchHsinchu302058Taiwan
| | - Shin‐Yun Liu
- Department of Internal MedicineNational Taiwan University HospitalTaipei City100229Taiwan
| | - Jascinta P Santavanond
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVIC3086Australia
- Research Centre for Extracellular VesiclesLa Trobe UniversityVIC3086Australia
| | - Yi‐Chung Liu
- Institute of Population Health SciencesNational Health Research InstitutesMiaoli County350401Taiwan
| | - Ching‐I Lin
- Department of Internal MedicineNational Taiwan University HospitalTaipei City100229Taiwan
| | - Cheng‐Nong Lai
- Institute of BiotechnologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Yi‐Ru Lu
- Institute of BiotechnologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Jing Yin Hsu
- Institute of BiotechnologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Hong‐Yu Gao
- Institute of BiotechnologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Jinq‐Chyi Lee
- Institute of Biotechnology and Pharmaceutical ResearchNational Health Research InstitutesMiaoli County350401Taiwan
| | - Shu‐Chen Wei
- Department of Internal MedicineNational Taiwan University HospitalTaipei City100229Taiwan
| | - Ping‐Chiang Lyu
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Ivan K H Poon
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVIC3086Australia
- Research Centre for Extracellular VesiclesLa Trobe UniversityVIC3086Australia
| | - Hsing‐Pang Hsieh
- Department of ChemistryNational Tsing Hua UniversityHsinchu300044Taiwan
- Institute of Biotechnology and Pharmaceutical ResearchNational Health Research InstitutesMiaoli County350401Taiwan
| | - Yu‐Hsin Chiu
- Institute of BiotechnologyNational Tsing Hua UniversityHsinchu300044Taiwan
- Departments of Medical Science, Life Science, and MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| |
Collapse
|
25
|
Takashima S, Usui S, Matsuura S, Goten C, Inoue O, Takeda Y, Yamaguchi K, Hashimuko D, Shinjo Y, Sugita M, Ohtani K, Kubota K, Sakai Y, Sakata K, Takamura M. Bone marrow-derived NGFR-positive dendritic cells regulate arterial remodeling. Am J Physiol Cell Physiol 2025; 328:C414-C428. [PMID: 39745544 DOI: 10.1152/ajpcell.00665.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025]
Abstract
It has been proposed that bone marrow contributes to the pathogenesis of arteriosclerosis. Nerve growth factor receptor (NGFR) is expressed in bone marrow stromal cells; it is also present in peripheral blood and ischemic coronary arteries. We hypothesized that bone marrow-derived NGFR-positive (NGFR+) cells regulate arterial remodeling. We found that human NGFR+ mononuclear cells (MNCs) in peripheral blood expressed markers for plasmacytoid dendritic cells (DCs) and were susceptible to apoptosis in response to proNGF secreted by activated arterial smooth muscle cells (SMCs). Bone marrow-specific depletion of NGFR+ cells increased neointimal formation following arterial ligation in mice. Bone marrow-derived NGFR+ cells accumulated in the neointima and underwent apoptosis. In contrast, in a bone marrow-specific NGFR-knockout model, SMCs occupied the neointima with augmented proliferation. NGFR+ cells in the neointima promoted mannose receptor C-type 1-positive anti-inflammatory macrophage accumulation and secreted anti-inflammatory IL-10, thereby inhibiting SMC proliferation in the neointima. In patients with acute coronary syndrome (ACS), NGFR+ peripheral MNCs increased after ACS onset. Multiple linear regression analysis showed that an insufficient increase in NGFR+ peripheral MNCs in ACS was an adjusted independent risk factor for 9-mo intimal progression of a nontargeted lesion. Taken together, these observations imply that bone marrow-derived NGFR+ DCs are suppressors of arteriosclerosis.NEW & NOTEWORTHY We propose a new concept of arterial remodeling after injury in which bone marrow-derived NGFR+ dendritic cells inhibit neointimal progression mediated by apoptosis. NGFR+ dendritic cells promote anti-inflammatory MRC1+ M2 macrophage accumulation and production of interleukin-10, inhibiting smooth muscle cell proliferation within the neointima. In a clinical study, insufficient mobilization of NGFR+ peripheral mononuclear cells in acute coronary syndrome was an independent risk factor for 9-mo nontargeted coronary intimal progression.
Collapse
MESH Headings
- Animals
- Dendritic Cells/metabolism
- Dendritic Cells/pathology
- Vascular Remodeling/physiology
- Humans
- Neointima/pathology
- Neointima/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Male
- Mice
- Apoptosis
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Nerve Growth Factor/genetics
- Cell Proliferation
- Bone Marrow Cells/metabolism
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Acute Coronary Syndrome/pathology
- Acute Coronary Syndrome/metabolism
- Mice, Knockout
- Interleukin-10/metabolism
- Female
- Macrophages/metabolism
- Middle Aged
Collapse
Affiliation(s)
- Shinichiro Takashima
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shintaro Matsuura
- Department of Cardiology, Public Central Hospital of Matto Ishikawa, Hakusan, Japan
| | - Chiaki Goten
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Oto Inoue
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yusuke Takeda
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kosei Yamaguchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Daiki Hashimuko
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yusuke Shinjo
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mitsuhiro Sugita
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Keisuke Ohtani
- Department of Cardiology, Public Central Hospital of Matto Ishikawa, Hakusan, Japan
| | - Koji Kubota
- Department of Cardiology, Public Central Hospital of Matto Ishikawa, Hakusan, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Kanazawa University, Kanazawa, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
26
|
Zhao Y, Zheng Z, Jin X, Liang S, Zhang C, Zhang M, Lang Y, Li P, Liu Z. Aurora kinase B inhibitor AZD1152: repurposing for treatment of lupus nephritis driven by the results of clinical trials. EBioMedicine 2025; 112:105553. [PMID: 39799765 PMCID: PMC11773216 DOI: 10.1016/j.ebiom.2024.105553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Lupus nephritis (LN) is one of the most common and severe complications of systemic lupus erythematosus (SLE). Multitarget therapy (MT) achieves a 20% higher complete remission (CR) rate compared to conventional therapy in LN management. Intrigued by its excellent clinical efficacy, we aimed to develop a single-agent therapy with comparable efficacy to MT, offering a simplified treatment regimen. METHODS AZD1152, an Aurora kinase B (Aurkb) inhibitor, was identified through transcriptomic analyses and the L1000 CMap drug repurposing database. The therapeutic efficacy of AZD1152 was evaluated in MRL/lpr mice. Transcriptome sequencing and functional assays were performed to elucidate its mechanisms of action. Aurkb expression and its clinical relevance were assessed in lupus-prone mice and patients with LN. FINDINGS AZD1152 significantly attenuated systemic immune activation and renal injury in MRL/lpr mice, demonstrating efficacy comparable to MT regimens in animal studies. AZD1152 treatment modulated immune-inflammatory pathways in the kidney. Aurkb expression was upregulated in T cells infiltrating the renal interstitium in LN. Additionally, Aurkb expression levels positively correlated with the activity index (AI) and serum creatinine (Scr) in patients with LN. Mechanistic studies revealed that AZD1152 exerts therapeutic effects primarily by inhibiting T-cell proliferation. INTERPRETATION This study presents a drug development strategy that integrates clinically validated LN therapies with drug repurposing approaches. This strategy could accelerate drug development and clinical translation processes for LN. FUNDING A full list of funding sources can be found in the acknowledgements section.
Collapse
Affiliation(s)
- Yue Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Zuguo Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xuexiao Jin
- Institute of Immunology and Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Shaoshan Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Changming Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Yue Lang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China.
| |
Collapse
|
27
|
Yang X, Zhou Y, Zhou F, Bao L, Wang Z, Li Z, Ding F, Kuang H, Liu H, Tan S, Qiu X, Jing H, Liu S, Ma D. T Cell-Derived Apoptotic Extracellular Vesicles Ameliorate Bone Loss via CD39 and CD73-Mediated ATP Hydrolysis. Int J Nanomedicine 2025; 20:1083-1100. [PMID: 39895982 PMCID: PMC11784384 DOI: 10.2147/ijn.s491222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
Background Osteoporosis is a major public health concern characterized by decreased bone density. Among various therapeutic strategies, apoptotic extracellular vesicles (ApoEVs) have emerged as promising agents in tissue regeneration. Specifically, T cell-derived ApoEVs have shown substantial potential in facilitating bone regeneration. However, it remains unclear whether ApoEVs can promote bone mass recovery through enzymatic activity mediated by membrane surface molecules. Therefore, this study aimed to investigate whether T cell-derived ApoEVs could promote bone mass recovery in osteoporosis mice and reveal the underlying mechanisms. Methods ApoEVs were isolated through sequential centrifugation, and their proteomic profiles were identified via mass spectrometry. Western blot and immunogold staining confirmed the enrichment of CD39 and CD73 on ApoEVs. The role of CD39 and CD73 in hydrolyzing adenosine triphosphate (ATP) to adenosine was evaluated by quantifying the levels of ATP and adenosine. Inhibitors of CD39 and CD73, and an A2BR antagonist were used to explore the molecular mechanism of ApoEVs in promoting bone regeneration. Results ApoEVs significantly reduced bone loss and promote the osteogenic differentiation of BMMSCs in ovariectomy (OVX) mice. We observed increased levels of extracellular ATP and a decrease in CD39 and CD73, key enzymes in ATP-to-adenosine conversion in bone marrow of OVX mice. We found that ApoEVs are enriched with CD39 and CD73 on their membranes, which enable the hydrolysis of extracellular ATP to adenosine both in vitro and in vivo. The adenosine generated by ApoEVs inhibits the inflammatory response and promotes osteogenesis through A2BR and downstream PKA signaling. Conclusion T cell-derived ApoEVs are enriched with CD39 and CD73, enabling them to hydrolyze extracellular ATP to adenosine, thereby promoting bone regeneration via A2BR and PKA signaling pathway. Our data underscore the substantive role of T cell-derived ApoEVs to treat osteoporosis, thus providing new ideas for the development of ApoEVs-based therapies in tissue regeneration.
Collapse
Affiliation(s)
- Xiaoshan Yang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People’s Republic of China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Yang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Fuxing Zhou
- Department of Gynecology and Obstetrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Lili Bao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Zhengyan Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, People’s Republic of China
| | - Zihan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Feng Ding
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Huijuan Kuang
- Department of Orthopaedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an, 710054, People’s Republic of China
| | - Huan Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100871, People’s Republic of China
| | - Shenglong Tan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Xinyuan Qiu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Huan Jing
- Department of Endodontics, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Shiyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| |
Collapse
|
28
|
Karadima E, Chavakis T, Alexaki VI. Arginine metabolism in myeloid cells in health and disease. Semin Immunopathol 2025; 47:11. [PMID: 39863828 PMCID: PMC11762783 DOI: 10.1007/s00281-025-01038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses. Conversely, the arginase 1 (ARG1)-dependent switch between the branch of NO production and polyamine synthesis downregulates inflammation and promotes recovery of tissue homeostasis. Creatine metabolism is key for energy supply and proline metabolism is required for collagen synthesis. Myeloid ARG1 also regulates extracellular arginine availability and T cell responses in parasitic diseases and cancer. Cancer, surgery, sepsis and persistent inflammation in chronic inflammatory diseases, such as neuroinflammatory diseases or arthritis, are associated with dysregulation of arginine metabolism in myeloid cells. Here, we review current knowledge on arginine metabolism in different myeloid cell types, such as macrophages, neutrophils, microglia, osteoclasts, tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs) and myeloid-derived suppressor cells (MDSCs). A deeper understanding of the function of arginine metabolism in myeloid cells will improve our knowledge on the pathology of several diseases and may set the platform for novel therapeutic applications.
Collapse
Affiliation(s)
- Eleftheria Karadima
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
29
|
Li R, Li Y, Jiang K, Zhang L, Li T, Zhao A, Zhang Z, Xia Y, Ge K, Chen Y, Wang C, Tang W, Liu S, Lin X, Song Y, Mei J, Xiao C, Wang A, Zou Y, Li X, Chen X, Ju Z, Jia W, Loscalzo J, Sun Y, Fang W, Yang Y, Zhao Y. Lighting up arginine metabolism reveals its functional diversity in physiology and pathology. Cell Metab 2025; 37:291-304.e9. [PMID: 39413790 DOI: 10.1016/j.cmet.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024]
Abstract
Arginine is one of the most metabolically versatile amino acids and plays pivotal roles in diverse biological and pathological processes; however, sensitive tracking of arginine dynamics in situ remains technically challenging. Here, we engineer high-performance fluorescent biosensors, denoted sensitive to arginine (STAR), to illuminate arginine metabolism in cells, mice, and clinical samples. Utilizing STAR, we demonstrate the effects of different amino acids in regulating intra- and extracellular arginine levels. STAR enabled live-cell monitoring of arginine fluctuations during macrophage activation, phagocytosis, efferocytosis, and senescence and revealed cellular senescence depending on arginine availability. Moreover, a simple and fast assay based on STAR revealed that serum arginine levels tended to increase with age, and the elevated serum arginine level is a potential indicator for discriminating the progression and severity of vitiligo. Collectively, our study provides important insights into the metabolic and functional roles of arginine, as well as its potential in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Rui Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yan Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kun Jiang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lijuan Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ting Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yale Xia
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Kun Ge
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yaqiong Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chengnuo Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weitao Tang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shuning Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoxi Lin
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yuqin Song
- Suzhou Ruijin Vitiligo Medical Research Institute, Suzhou 215100, China
| | - Jie Mei
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chun Xiao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Aoxue Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yejun Zou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yu Sun
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Fang
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
30
|
Li R, He T, Yang M, Xu J, Li Y, Wang X, Guo X, Li M, Xu L. Regulation of Bacillus Calmette-Guérin-induced macrophage autophagy and apoptosis by the AMPK-mTOR-ULK1 pathway. Microbiol Res 2025; 290:127952. [PMID: 39476518 DOI: 10.1016/j.micres.2024.127952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/02/2024] [Accepted: 10/24/2024] [Indexed: 12/12/2024]
Abstract
Tuberculosis (TB) is a chronic wasting infectious disease caused by Mycobacterium tuberculosis (MTB) or Mycobacterium bovis that can be transmitted among people and domestic animals. During the development of TB, macrophages of the innate immune system can act against MTB via autophagy and apoptosis to prevent the spread of the disease. Among the many autophagy regulatory pathways, the adenosine monophosphate (AMP)-activated protein kinase (AMPK)-mammalian rapamycin target protein (mTOR)-Unc-51-like kinase 1 (ULK1) pathway has received considerable attention. This study investigates the regulatory role of the AMPK-mTOR-ULK1 pathway in attenuating M. bovis Bacillus Calmette-Guérin (BCG)-induced autophagy and apoptosis in murine monocyte macrophages (RAW264.7). Changes in macrophage autophagy and apoptosis were analyzed using the AMPK activator AICAR and inhibitor Compound C to interfere with the AMPK-mTOR-ULK1 pathway and siRNA to silence the pathway. Consequently, BCG stimulation of macrophages significantly activated the AMPK-mTOR-ULK1 pathway while BCG-induced macrophage AMPK activation promoted macrophage autophagy and apoptosis. Activation of the AMPK-mTOR-ULK1 pathway by AICAR significantly improved autophagy occurrence in BCG-induced macrophages and increased apoptosis while Compound C with siRNA produced opposing effects by attenuating autophagy and apoptosis in BCG-induced macrophages. Thus, the AMPK-mTOR-ULK1 pathway has a dual regulatory role in BCG-induced macrophage autophagy and apoptosis and may have synergistic effects. This study analyzes the mechanism of resistance of host cells to MTB and provides a theoretical basis for new therapeutic strategies and related drug development.
Collapse
Affiliation(s)
- Ruiqian Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Tianle He
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Min Yang
- Guyuan Vocational and Technical School, Guyuan, Ningxia 756000, China
| | - Jinghua Xu
- COFCO Feed (Yinchuan) Co., Ltd., Lingwu, Ningxia 750499, China
| | - Yongqin Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xueyan Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xuelian Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Mingzhu Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Lihua Xu
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
31
|
Moyer A, Tanaka K, Cheng EH. Apoptosis in Cancer Biology and Therapy. ANNUAL REVIEW OF PATHOLOGY 2025; 20:303-328. [PMID: 39854189 DOI: 10.1146/annurev-pathmechdis-051222-115023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Since its inception, the study of apoptosis has been intricately linked to the field of cancer. The term apoptosis was coined more than five decades ago following its identification in both healthy tissues and malignant neoplasms. The subsequent elucidation of its molecular mechanisms has significantly enhanced our understanding of how cancer cells hijack physiological processes to evade cell death. Moreover, it has shed light on the pathways through which most anticancer therapeutics induce tumor cell death, including targeted therapy and immunotherapy. These mechanistic studies have paved the way for the development of therapeutics directly targeting either pro- or antiapoptotic proteins. Notably, the US Food and Drug Administration (FDA) approved the BCL-2 inhibitor venetoclax in 2016, with additional agents currently undergoing clinical trials. Recent research has brought to the forefront both the anti- and proinflammatory effects of individual apoptotic pathways. This underscores the ongoing imperative to deepen our comprehension of apoptosis, particularly as we navigate the evolving landscape of immunotherapy.
Collapse
Affiliation(s)
- Allison Moyer
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Kosuke Tanaka
- Division of Cancer Immunology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
32
|
Fan X, Lin J, Liu H, Deng Q, Zheng Y, Wang X, Yang L. The role of macrophage-derived exosomes in noncancer liver diseases: From intercellular crosstalk to clinical potential. Int Immunopharmacol 2024; 143:113437. [PMID: 39454408 DOI: 10.1016/j.intimp.2024.113437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Chronic liver disease has a substantial global prevalence and mortality rate. Macrophages, pivotal cells in innate immunity, exhibit remarkable heterogeneity and plasticity and play a considerable role in maintaining organ homeostasis, modulating inflammatory responses, and influencing disease progression in the liver. Exosomes, which can serve as conduits for intercellular communication, biomarkers, and therapeutic targets for a spectrum of diseases, have recently garnered increasing attention recently. Given that the liver is the organ with the highest macrophage content, a thorough understanding of the influence of macrophage-derived exosomes (MDEs) on noncancer liver disease pathogenesis and their potential therapeutic applications is paramount. Interactions among MDEs, hepatocytes, hepatic stellate cells (HSCs), and other nonparenchymal cells constitute a complex network regulates liver immune homeostasis. In this review, we summarize the latest progress in the current understanding of MDE heterogeneity and cellular crosstalk in noncancer liver diseases, as well as their potential clinical applications. Additionally, challenges and future directions are underscored.
Collapse
Affiliation(s)
- Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Lin
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Honglan Liu
- Dazhou Central Hospital, Dazhou 635000, Sichuan Province, China
| | - Qiaoyu Deng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
33
|
Zhao X, Hu X, Wang W, Lu S. Macrophages dying from ferroptosis promote microglia-mediated inflammatory responses during spinal cord injury. Int Immunopharmacol 2024; 143:113281. [PMID: 39357207 DOI: 10.1016/j.intimp.2024.113281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The neurological deficits following traumatic spinal cord injury are associated with severe patient disability and economic consequences. Currently, an increasing number of studies are focusing on the importance of ferroptosis during acute organ injuries. However, the spatial and temporal distribution patterns of ferroptosis during SCI and the details of its role are largely unknown. In this study, in vivo experiments revealed that microglia are in close proximity to macrophages, the major cell type that undergoes ferroptosis following SCI. Furthermore, we found that ferroptotic macrophages aggravate SCI by inducing the proinflammatory properties of microglia. In vitro studies further revealed ferroptotic macrophages increased the expression of IL-1β, IL-6, and IL-23 in microglia. Mechanistically, due to the activation of the NF-κB signaling pathway, the expression of IL-1β and IL-6 was increased. In addition, we established that increased levels of oxidative phosphorylation cause mitochondrial reactive oxygen species generation and unfolded protein response activation and trigger an inflammatory response marked by an increase in IL-23 production. Our findings identified that targeting ferroptosis and IL-23 could be an effective strategy for promoting neurological recovery after SCI.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
34
|
Li R, Sun X, Hu Y, Liu S, Huang S, Zhang Z, Chen K, Liu Q, Chen X. Machine Learning-Assisted "Shrink-Restricted" SERS Strategy for Classification of Environmental Nanoplastic-Induced Cell Death. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22528-22538. [PMID: 39670472 DOI: 10.1021/acs.est.4c05590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The biotoxicity of nanoplastics (NPs), especially from environmental sources, and "NPs carrier effect" are in the early stages of research. This study presents a machine learning-assisted "shrink-restricted" SERS strategy (SRSS) to monitor molecular changes in the cellular secretome exposure to six types of NPs. Utilizing three-dimensional (3D) Ag@hydrogel-based SRSS, active targeting of molecules within adjustable nanogaps was achieved to track information. Machine learning was employed to analyze the overall spectral profiles, biochemical signatures, and time-dependent changes. Results indicate that environmentally derived NPs exhibited higher toxicity to BEAS-2B and L02 cells. Notably, the "NPs carrier effect," resulting from pollutant adsorption, proved to be more harmful. This effect altered the death pathway of BEAS-2B cells from a combination of apoptosis and ferroptosis to primarily ferroptosis. Furthermore, L02 cells demonstrated greater metabolic vulnerability to NPs exposure than that of BEAS-2B cells, especially concerning the "NPs carrier effect." Traditional detection methods for cell death often rely on end point assays, which limit temporal resolution and focus on single or multiple markers. In contrast, our study pioneers a machine learning-assisted SERS approach for monitoring overall metabolic levels post-NPs exposure at both cellular and molecular levels. This endeavor has significantly advanced our understanding of the risks associated with plastic pollution.
Collapse
Affiliation(s)
- Ruili Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaotong Sun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yuyang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shenghong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shuting Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhipeng Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Kecen Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Xiangjiang Laboratory, Changsha 410205, China
| |
Collapse
|
35
|
Li J, Lou L, Chen W, Qiang X, Zhu C, Wang H. Connexin 43 and Pannexin 1 hemichannels as endogenous regulators of innate immunity in sepsis. Front Immunol 2024; 15:1523306. [PMID: 39763679 PMCID: PMC11701031 DOI: 10.3389/fimmu.2024.1523306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/05/2024] [Indexed: 02/02/2025] Open
Abstract
Sepsis is a life-threatening organ dysfunction resulting from a dysregulated host response to infections that is initiated by the body's innate immune system. Nearly a decade ago, we discovered that bacterial lipopolysaccharide (LPS) and serum amyloid A (SAA) upregulated Connexin 43 (Cx43) and Pannexin 1 (Panx1) hemichannels in macrophages. When overexpressed, these hemichannels contribute to sepsis pathogenesis by promoting ATP efflux, which intensifies the double-stranded RNA-activated protein kinase R (PKR)-dependent inflammasome activation, pyroptosis, and the release of pathogenic damage-associated molecular pattern (DAMP) molecules, such as HMGB1. Mimetic peptides targeting specific regions of Cx43 and Panx1 can distinctly modulate hemichannel activity in vitro, and diversely impact sepsis-induced lethality in vivo. Along with extensive supporting evidence from others, we now propose that hemichannel molecules play critical roles as endogenous regulators of innate immunity in sepsis.
Collapse
Affiliation(s)
- Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Li Lou
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Weiqiang Chen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Xiaoling Qiang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Cassie Zhu
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
36
|
Lan H, Zhou Z, Hu Q, Xie Q, Li X, Tian T, Wang Y, Yang C, Kong L, Fu D, Guo Y, Zhang Z. Apoptotic body based biomimetic hybrid nanovesicles to attenuate cytokine storms for sepsis treatment. J Nanobiotechnology 2024; 22:775. [PMID: 39695736 DOI: 10.1186/s12951-024-03058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Sepsis is a severe immune response to pathogens that is associated with high mortality rate and a paucity of efficacious treatment options. It is characterized by the hyperactivation of macrophages and the occurrence of cytokine storms. Given the anti-inflammatory properties of M2 macrophages and their derived apoptotic bodies (AB), as well as the specific uptake of these by macrophages, a novel approach was employed to combine AB with artificial liposomes to create apoptotic body based biomimetic hybrid nanovesicles (L-AB). The L-AB effectively inherited "eat me" signaling molecules on the surface of the AB, thereby facilitating their targeted uptake by macrophages in both in vitro and in vivo settings. The administration of L-AB for the delivery of dexamethasone effectively augmented the therapeutic efficacy of the drug, mitigated macrophage hyperactivation and tissue damage in vivo, and consequently enhanced the survival rate of septic mice. Taken together, these findings suggest that the apoptotic body biomimetic nanovesicles may represent a potential drug delivery system capable of specifically targeting macrophages for the treatment of sepsis.
Collapse
Affiliation(s)
- Hongbing Lan
- Department of Pharmacy, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541002, China
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhanhao Zhou
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Hu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Xie
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dehao Fu
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Shanghai Sixth People's Hospital, Shanghai, 200025, China.
| | - Yuanyuan Guo
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430077, China.
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China.
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
37
|
Horie T, Hirata H, Sakamoto T, Kitajima H, Fuku A, Nakamura Y, Sunatani Y, Tanida I, Sunami H, Tachi Y, Ishigaki Y, Yamamoto N, Shimizu Y, Ichiseki T, Kaneuji A, Iwabuchi K, Osawa S, Kawahara N. Multiomics analyses reveal adipose-derived stem cells inhibit the inflammatory response of M1-like macrophages through secreting lactate. Stem Cell Res Ther 2024; 15:485. [PMID: 39696485 DOI: 10.1186/s13287-024-04072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) are widely used in the field of regenerative medicine because of their various functions, including anti-inflammatory effects. ADSCs are considered to exert their anti-inflammatory effects by secreting anti-inflammatory cytokines and extracellular vesicles. Although recent studies have reported that metabolites have a variety of physiological activities, whether those secreted by ADSCs have anti-inflammatory properties remains unclear. Here, we performed multiomics analyses to examine the effect of ADSC-derived metabolites on M1-like macrophages, which play an important role in inflammatory responses. METHODS The concentration of metabolites in the culture supernatant of ADSCs was quantified using capillary electrophoresis time-of-flight mass spectrometry. To evaluate their effects on inflammatory responses, M1-like macrophages were exposed to the conditioned ADSC medium or their metabolites, and RNA sequencing was used to detect gene expression changes. Immunoblotting was performed to examine how the metabolite suppresses inflammatory processes. To clarify the contribution of the metabolite in the conditioned medium to its anti-inflammatory effects, metabolite uptake was pharmacologically inhibited, and gene expression and the tumor necrosis factor-α concentration were measured by quantitative PCR and enzyme-linked immunosorbent assay, respectively. RESULTS Metabolomic analysis showed large amounts of lactate in the culture supernatant. The conditioned medium and lactate significantly suppressed or increased the pro-inflammatory and anti-inflammatory gene expressions. However, sequencing and immunoblotting analysis revealed that lactate did not induce polarization from M1- to M2-like macrophages. Based on a recent report that the immunosuppressive effect of lactate depends on epigenetic reprogramming, histone acetylation was investigated, and H3K27ac expression was upregulated. In addition, 7ACC2, which specifically inhibits the monocarboxylate transporter 1, significantly inhibited the anti-inflammatory effect of the conditioned ADSC medium on M1-like macrophages. CONCLUSIONS Our results showed that ADSCs suppress pro-inflammatory effects of M1-like macrophages by secreting lactate. This study adds to our understanding of the importance of metabolites and is also expected to elucidate new mechanisms of ADSC treatments.
Collapse
Affiliation(s)
- Tetsuhiro Horie
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Kahoku, Ishikawa, 920-0293, Japan
| | - Hiroaki Hirata
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan.
| | - Takuya Sakamoto
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Kahoku, Ishikawa, 920-0293, Japan
| | - Hironori Kitajima
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Atsushi Fuku
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Yumi Sunatani
- Department of Biochemistry I, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Ikuhiro Tanida
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Ishikawa, 924-0838, Japan
| | - Hiroshi Sunami
- Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshiyuki Tachi
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Naoki Yamamoto
- Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Nakagami, Okinawa, 903-0215, Japan
| | - Toru Ichiseki
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan.
| | - Ayumi Kaneuji
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Kuniyoshi Iwabuchi
- Department of Biochemistry I, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Satoshi Osawa
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Ishikawa, 924-0838, Japan
| | - Norio Kawahara
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| |
Collapse
|
38
|
Henze E, Ehrlich JJ, Robertson JL, Gelsleichter E, Kawate T. The C-terminal activating domain promotes pannexin 1 channel opening. Proc Natl Acad Sci U S A 2024; 121:e2411898121. [PMID: 39671183 DOI: 10.1073/pnas.2411898121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Pannexin 1 (Panx1) constitutes a large pore channel responsible for the release of adenosine triphosphate (ATP) from apoptotic cells. Strong evidence indicates that caspase-mediated cleavage of the C-terminus promotes the opening of the Panx1 channel by unplugging the pore. However, this simple pore-plugging mechanism alone cannot account for the observation that a Panx1 construct ending before the caspase cleavage site remains closed. Here, we show that a helical region located immediately before the caspase cleavage site, referred to as the "C-terminal activating domain (CAD)", plays a pivotal role in facilitating Panx1 activation. Electrophysiology and mutagenesis studies uncovered that two conserved leucine residues within the CAD play a pivotal role. Cryoelectron microscopy (Cryo-EM) analysis of the construct ending before reaching the CAD demonstrated that the N terminus extends into an intracellular pocket. In contrast, the construct including the CAD revealed that this domain occupies the intracellular pocket, causing the N terminus to flip upward within the pore. Analysis of electrostatic free energy landscape in the closed conformation indicated that the intracellular side of the ion permeation pore may be occupied by anions like ATP, creating an electrostatic barrier for anions attempting to permeate the pore. When the N terminus flips up, it diminishes the positively charged surface, thereby reducing the drive to accumulate anions inside the pore. This dynamic change in the electrostatic landscape likely contributes to the selection of permeant ions. Collectively, these experiments put forth a mechanism in which C-terminal cleavage liberates the CAD, causing the repositioning of the N terminus to promote Panx1 channel opening.
Collapse
Affiliation(s)
- Erik Henze
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | | | - Janice L Robertson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Eric Gelsleichter
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Toshimitsu Kawate
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
39
|
Dai L, Jin Y, Chai J, Yang J, Wang J, Chen M, Li L, Wang C, Yan G. Deficiency of DEK proto-oncogene alleviates allergic rhinitis by inhibiting RhoA/Ezrin-mediated mitochondrial fission. Animal Model Exp Med 2024. [PMID: 39668431 DOI: 10.1002/ame2.12523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Allergic rhinitis (AR) is a kind of immune disease mediated by IgE. We are intrigued by the potential role of DEK proto-oncogene (DEK) in inflammation-related diseases. We investigated the effects and mechanisms of DEK in treating AR, aiming to identify potential new treatment targets for AR. METHODS The AR mouse model was induced by house dust mite (HDM) (1 mg/mL). HNEpCs stimulated by HDM (1 mg/mL) were pretreated for 24 h with or without DEK lentivirus. The effect of DEK knockout or knockdown on AR was evaluated in vitro and in vivo using western blotting, ELISA, flow cytometry, real-time quantitative PCR, immunohistochemistry, HE staining, PAS staining, Diff staining, and immunofluorescence. RESULTS After DEK knockdown, the inflammatory response of AR mice was reduced. In addition, DEK deletion mitigated nasal tissue damage and mitochondrial division. Our further studies showed that DEK deletion or inhibition led to the down-regulation of RhoA activity and decreased phosphorylation of Ezrin and Drp1 proteins, and inhibited mitochondrial division. Overall, DEK deficiency mitigated AR by down-regulating RhoA/Ezrin/Drp1 pathway activity. CONCLUSION DEK alleviates AR through RhoA/Ezrin/Drp1 signaling pathway, which provides a new perspective for developing improved therapies and understanding the pathogenesis of AR.
Collapse
Affiliation(s)
- Longzhu Dai
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P. R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P. R. China
| | - Yongde Jin
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P. R. China
- Department of Otorhinolaryngology, Affiliated Hospital of Yanbian University, Yanji, P. R. China
| | - Jingmei Chai
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P. R. China
- Department of Traditional Chinese Medicine, Yanbian University Medicine College, Yanji, P. R. China
| | - Jianing Yang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P. R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P. R. China
| | - Jiangang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P. R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P. R. China
| | - Mu Chen
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P. R. China
- Department of Otorhinolaryngology, Affiliated Hospital of Yanbian University, Yanji, P. R. China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P. R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P. R. China
| | - Chongyang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P. R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P. R. China
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P. R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P. R. China
| |
Collapse
|
40
|
Xu Q, Gu L, Li Z, Gao L, Wei L, Shafiq Z, Chen S, Cai Q. Current Status of Research on Nanomaterials Combined with Mesenchymal Stem Cells for the Treatment of Ischemic Stroke. Neuromolecular Med 2024; 26:51. [PMID: 39644405 DOI: 10.1007/s12017-024-08819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
Ischemic stroke (IS) is a disease with high mortality and disability rates worldwide and is a serious threat to patient health. Owing to the narrow therapeutic window, effective treatments during the recovery period are limited. However, in recent years, mesenchymal stem cells (MSCs) have attracted attention and have shown therapeutic potential in IS treatment because of their abilities to home and secrete multiple bioactive substances and potential for differentiation and substitution. The therapeutic mechanisms of MSCs in IS include the regulatory effects of MSCs on microglia, the dual role of MSCs in astrocytes, how MSCs connect innate and adaptive immunity, the secretion of cytokines by MSCs to counteract apoptosis and MSC apoptosis, the promotion of angiogenesis by MSCs to favor the restoration of the blood‒brain barrier (BBB), and the potential function of local neural replacement by MSCs. However, the low graft survival rate, insufficient homing, poor targeting, and inability to achieve directional differentiation of MSCs limit their wide application. As an approach to compensate for the shortcomings of MSCs, scientists have used nanomaterials to assist MSCs in homing, survival and proliferation. In addition, the unique material of nanomaterials adds tracking, imaging and real-time monitoring to stroke treatment. The identification of effective treatments for stroke is urgently needed; thus, an understanding of how MSCs treat stroke and further improvements in the use of nanomaterials are necessary.
Collapse
Affiliation(s)
- Qingxue Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhiyang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lu Wei
- Department of Anesthesiology, Eastern Campus, Renmin Hospital of Wuhan University, Wuhan, 430200, China
| | - Zohaib Shafiq
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shigui Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, 430072, Hubei, China.
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
41
|
Li D, Xie C, Fan Z, Ding R, Wang X, Liao Y. Evidence that cadmium aggravate the toxicity of triphenyl phosphate in aquatic sediments to Corbicula fluminea. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136407. [PMID: 39522218 DOI: 10.1016/j.jhazmat.2024.136407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The ubiquitous co-existence of triphenyl phosphate (TPhP) and heavy metals in sediments raises significant biotoxicity concerns. However, uncertainty still exists regarding their combined toxicity to benthic organisms. Therefore, this research was conducted to elucidate the influences of cadmium (Cd) on TPhP toxicity to Corbicula fluminea (C. fluminea) in sediments. As a result, Cd promoted the accumulation of TPhP in C. fluminea and enhanced TPhP toxicity, manifested by damaged cell membranes and pronounced histological alterations. Molecular docking revealed that TPhP-Cd complexes exhibit greater binding affinity to cytochrome P4501A1 (CYP1A1) compared to TPhP alone. With the activity of CYP1A1 increasing, the biotransformation of TPhP was promoted in low-TPhP+Cd treatments (T5C0/T5C5/T5C35). Additionally, metabolites related to antioxidant defence and repair processes were reinforced to alleviate the toxicity of TPhP and Cd. However, excessive oxidative stress impaired the CYP1A1 activity in high-TPhP+Cd treatments (T35C0/T35C5/T35C35). Furthermore, metabolic pathway analysis revealed significant perturbations in the citrate cycle, alanine, aspartate and glutamate metabolism, purine metabolism, and pyrimidine metabolism. These disruptions weakened the repair capacity and aggravated apoptosis in digestive glands, potentially contributing to the synergistic toxicity of TPhP and Cd. The results highlight the ecological risks posed by TPhP in combination with heavy metals to benthic organisms.
Collapse
Affiliation(s)
- Dandan Li
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China
| | - Chen Xie
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China
| | - Ziwu Fan
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China.
| | - Rui Ding
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China
| | - Xiaoyu Wang
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China.
| | - Yipeng Liao
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China
| |
Collapse
|
42
|
Zhang S, Zhang Y, Wang W, Hu Y, Chen X, Wang B, Gao X. A combination strategy of DOX and VEGFR-2 targeted inhibitor based on nanomicelle for enhancing lymphoma therapy. CHINESE CHEM LETT 2024; 35:109658. [DOI: 10.1016/j.cclet.2024.109658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Wang S, Xu S, Li J, Wang N, Zheng Y, Wang Z. XIAOPI formula inhibits chemoresistance and metastasis of triple-negative breast cancer by suppressing extracellular vesicle/CXCL1-induced TAM/PD-L1 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156039. [PMID: 39303510 DOI: 10.1016/j.phymed.2024.156039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is challenged by the low chemotherapy response and poor prognosis. Emerging evidence suggests that cytotoxic chemotherapy may lead to the pro-metastatic tumor microenvironment (TME) by eliciting pro-tumor extracellular vesicles (EVs) from cancer cells. However, the precise mechanisms and therapeutic approaches remain inadequately understood. PURPOSE This study aims to determine whether XIAOPI formula (Chinese name XIAOPI San, XPS), a nationally sanctioned medication for mammary hyperplasia, can chemosensitize TNBC by remodeling the TME via modulating EV signaling, and exploring its underlying mechanisms. METHODS Multiple methodologies, such as EV isolation, transmission electron microscope, flow cytometry, dual-luciferase reporter assays, co-immunoprecipitation and in vivo breast cancer xenograft, were employed to elucidate the effect and molecular mechanisms of XPS on paclitaxel-induced EV signaling (EV-dead) of TNBC. RESULTS XPS, at non-toxic concentrations, synergized with PTX to inhibit the invasion and chemoresistance of TNBC cells co-cultured with macrophages. Compared to EV-dead, XPS co-treatment-elicited EVs (EV-deadXPS) exhibited a decreased capacity to promote the invasion, chemoresistance and cancer stem cell subpopulation of the co-cultured TNBC cells. Mechanistically, XPS administration led to a reduction in CXCL1 cargo in EV-dead, and thereby attenuated its activation effect on macrophage polarization into M2 phenotype through the transcriptional downregulation of PD-L1 expression. Furthermore, XPS effectively reduced the number of EV-dead from TNBC cells by inhibiting CXCL1-mediated intraluminal vesicle (ILV) biogenesis in multivesicular bodies (MVBs). Moreover, molecular explorations revealed that XPS impaired ILV biogenesis by disrupting the RAB31/FLOT2 complex via suppressing the CXCL1/Myc signaling. Importantly, XPS significantly chemosensitized paclitaxel to inhibit TNBC growth and metastasis in vivo by suppressing EV-deadCXCL1-induced PD-L1 activation and M2 polarization of macrophages. CONCLUSION This pioneering study not only sheds novel light on EV-deadCXCL1 as a potential therapeutic target to suppress TNBC chemoresistance and metastasis, but also provides XPS as a promising adjuvant formula to chemosensitize TNBC by remodeling EV-deadCXCL1-mediated immunosuppressive TME.
Collapse
Affiliation(s)
- Shengqi Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, PR China; The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Shang Xu
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, PR China; The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jing Li
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, PR China; The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Neng Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, PR China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yifeng Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, PR China; The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Zhiyu Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, PR China; The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
44
|
Chattopadhyay C, Roszik J, Bhattacharya R, Alauddin M, Mahmud I, Yadugiri S, Ali MM, Khan FS, Prabhu VV, Lorenzi PL, Wei B, Burton E, Morey RR, Lazcano R, Davies MA, Patel SP, Grimm EA. Imipridones inhibit tumor growth and improve survival in an orthotopic liver metastasis mouse model of human uveal melanoma. Br J Cancer 2024; 131:1846-1857. [PMID: 39394450 PMCID: PMC11589887 DOI: 10.1038/s41416-024-02866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Uveal melanoma (UM) is a highly aggressive disease with very few treatment options. We previously demonstrated that mUM is characterized by high oxidative phosphorylation (OXPHOS). Here we tested the anti-tumor, signaling and metabolic effects of imipridones, which are CLPP activators, which inhibit OXPHOS indirectly and have demonstrated safety in patients. METHODS We assessed CLPP expression in UM patient samples. We tested the effects of imipridones (ONC201 and ONC212) on the growth, survival, signaling and metabolism of UM cell lines in vitro, and for therapeutic efficacy in vivo in UM liver metastasis models. RESULTS CLPP expression was detected in primary and mUM patient samples. ONC201 and 212 decreased OXPHOS effectors, inhibited cell growth and migration, and induced apoptosis in human UM cell lines in vitro. ONC212 inhibited OXPHOS, increased metabolic stress and apoptotic pathways, inhibited amino acid metabolism, and induced cell death-related lipids. ONC212 also decreased tumor burden and increased survival in vivo in two UM liver metastasis models. CONCLUSIONS Imipridones are a promising strategy for further testing and development in mUM.
Collapse
Affiliation(s)
- Chandrani Chattopadhyay
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Janos Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rajat Bhattacharya
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Md Alauddin
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sirisha Yadugiri
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mir Mustafa Ali
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fatima S Khan
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bo Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Elizabeth Burton
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rohini R Morey
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sapna P Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Elizabeth A Grimm
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
45
|
Peña FJ, Martín-Cano FE, Becerro-Rey L, da Silva-Álvarez E, Gaitskell-Phillips G, Ortega-Ferrusola C, Gil MC. Artificial intelligence in Andrological flow cytometry: The next step? Anim Reprod Sci 2024; 270:107619. [PMID: 39405780 DOI: 10.1016/j.anireprosci.2024.107619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
Since its introduction in animal andrology, flow cytometry (FC) has dramatically evolved. Nowadays, many compartments and functions of the spermatozoa can be analyzed in thousands of spermatozoa, including, but not limited to DNA, acrosome, membrane integrity, membrane symmetry, permeability, and polarity; mitochondrial mass and mitochondrial membrane potential, identification of reactive oxygen species, ion dynamics, and cellular signaling among many others. Improved machines, many more probes, and new software are greatly expanding the amount of information that can be obtained from each flow cytometry analysis. Modern flow cytometers permit the simultaneous investigation of many different sperm compartments and functions and their interactions, allowing the identification of sperm phenotypes, helping to disclose different sperm populations within the ejaculate. Complex flow cytometry panels require a careful design of the experiment, including selecting probes (fully understanding the characteristics and properties of them) and adequate controls (technical and biological). Ideally, compensation and management of data ("cleaning", transformations, the establishment of gates) are better performed post-acquisition using specific software. Data can be expressed as a percentage of positive cells (typically viability assays), intensity of fluorescence (arbitrary fluorescence units, i.e. changes in intracellular Ca2+) or dim and bright populations (typically assays of membrane permeability or antigen expression). Furthermore, artificial intelligence/self-learning algorithms are improving visualization and management of data generated by modern flow cytometers. In this paper, recent developments in flow cytometry for animal andrology will be briefly reviewed; moreover, a small flow cytometry experiment will be used to illustrate how these techniques can improve data analysis.
Collapse
Affiliation(s)
- Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain.
| | - Francisco Eduardo Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Laura Becerro-Rey
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Eva da Silva-Álvarez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - María Cruz Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
46
|
Tian G, Yin H, Zheng J, Yu R, Ding Z, Yan Z, Tang Y, Wu J, Ning C, Yuan X, Liao C, Sui X, Zhao Z, Liu S, Guo W, Guo Q. Promotion of osteochondral repair through immune microenvironment regulation and activation of endogenous chondrogenesis via the release of apoptotic vesicles from donor MSCs. Bioact Mater 2024; 41:455-470. [PMID: 39188379 PMCID: PMC11347043 DOI: 10.1016/j.bioactmat.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Utilizing transplanted human umbilical cord mesenchymal stem cells (HUMSCs) for cartilage defects yielded advanced tissue regeneration, but the underlying mechanism remain elucidated. Early after HUMSCs delivery to the defects, we observed substantial apoptosis. The released apoptotic vesicles (apoVs) of HUMSCs promoted cartilage regeneration by alleviating the chondro-immune microenvironment. ApoVs triggered M2 polarization in macrophages while simultaneously facilitating the chondrogenic differentiation of endogenous MSCs. Mechanistically, in macrophages, miR-100-5p delivered by apoVs activated the MAPK/ERK signaling pathway to promote M2 polarization. In MSCs, let-7i-5p delivered by apoVs promoted chondrogenic differentiation by targeting the eEF2K/p38 MAPK axis. Consequently, a cell-free cartilage regeneration strategy using apoVs combined with a decellularized cartilage extracellular matrix (DCM) scaffold effectively promoted the regeneration of osteochondral defects. Overall, new mechanisms of cartilage regeneration by transplanted MSCs were unconcealed in this study. Moreover, we provided a novel experimental basis for cell-free tissue engineering-based cartilage regeneration utilizing apoVs.
Collapse
Affiliation(s)
- Guangzhao Tian
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Han Yin
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinxuan Zheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Rongcheng Yu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Zhengang Ding
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zineng Yan
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yiqi Tang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jiang Wu
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Chao Ning
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xun Yuan
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Chenxi Liao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xiang Sui
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zhe Zhao
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Shuyun Liu
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Weimin Guo
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510080, China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| |
Collapse
|
47
|
Santiago-Carvalho I, Ishikawa M, Borges da Silva H. Channel plan: control of adaptive immune responses by pannexins. Trends Immunol 2024; 45:892-902. [PMID: 39393945 PMCID: PMC11560585 DOI: 10.1016/j.it.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
The development of mammalian adaptive (i.e., B and T cell-mediated) immune responses is tightly controlled at transcriptional, epigenetic, and metabolic levels. Signals derived from the extracellular milieu are crucial regulators of adaptive immunity. Beyond the traditionally studied cytokines and chemokines, many other extracellular metabolites can bind to specialized receptors and regulate T and B cell immune responses. These molecules often accumulate extracellularly through active export by plasma membrane transporters. For example, mammalian immune and non-immune cells express pannexin (PANX)1-3 channels on the plasma membrane, which release many distinct small molecules, notably intracellular ATP. Here, we review novel findings defining PANXs as crucial regulators of T and B cell immune responses in disease contexts such as cancer or viral infections.
Collapse
Affiliation(s)
| | - Masaki Ishikawa
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
48
|
Herrera-Quintana L, Vázquez-Lorente H, Silva RCMC, Olivares-Arancibia J, Reyes-Amigo T, Pires BRB, Plaza-Diaz J. The Role of the Microbiome and of Radiotherapy-Derived Metabolites in Breast Cancer. Cancers (Basel) 2024; 16:3671. [PMID: 39518108 PMCID: PMC11545256 DOI: 10.3390/cancers16213671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The gut microbiome has emerged as a crucial player in modulating cancer therapies, including radiotherapy. In the case of breast cancer, the interplay between the microbiome and radiotherapy-derived metabolites may enhance therapeutic outcomes and minimize adverse effects. In this review, we explore the bidirectional relationship between the gut microbiome and breast cancer. We explain how gut microbiome composition influences cancer progression and treatment response, and how breast cancer and its treatments influence microbiome composition. A dual role for radiotherapy-derived metabolites is explored in this article, highlighting both their therapeutic benefits and potential hazards. By integrating genomics, metabolomics, and bioinformatics tools, we present a comprehensive overview of these interactions. The study provides real-world insight through case studies and clinical trials, while therapeutic innovations such as probiotics, and dietary interventions are examined for their potential to modulate the microbiome and enhance treatment effectiveness. Moreover, ethical considerations and patient perspectives are discussed, ensuring a comprehensive understanding of the subject. Towards revolutionizing treatment strategies and improving patient outcomes, the review concludes with future research directions. It also envisions integrating microbiome and metabolite research into personalized breast cancer therapy.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | | | - Jorge Olivares-Arancibia
- AFySE Group, Research in Physical Activity and School Health, School of Physical Education, Faculty of Education, Universidad de Las Américas, Santiago 7500975, Chile;
| | - Tomás Reyes-Amigo
- Physical Activity Sciences Observatory (OCAF), Department of Physical Activity Sciences, Universidad de Playa Ancha, Valparaíso 2360072, Chile;
| | - Bruno Ricardo Barreto Pires
- Biometry and Biophysics Department, Institute of Biology Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, RJ, Brazil;
| | - Julio Plaza-Diaz
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- School of Health Sciences, Universidad Internacional de La Rioja, Avenida de la Paz, 137, 26006 Logroño, Spain
| |
Collapse
|
49
|
Chen J, Wang Z, Liu S, Zhao R, Chen Q, Li X, Zhang S, Wang J. Lymphocyte-Derived Engineered Apoptotic Bodies with Inflammation Regulation and Cartilage Affinity for Osteoarthritis Therapy. ACS NANO 2024; 18:30084-30098. [PMID: 39403980 DOI: 10.1021/acsnano.4c11622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Apoptotic bodies as plentiful extracellular vesicles generated from apoptotic cells play a central role in signal transduction and homeostasis regulation and simultaneously switch death to regeneration to a certain extent. Herein, we designed engineered apoptotic bodies derived from T cells to have the capacity of inflammation regulation and cartilage affinity. The engineered apoptotic bodies as a natural anti-inflammation factor were encapsulated into lubricating hydrogel microspheres to achieve an injectable microsphere complex for the treatment of osteoarthritis (OA). In the above therapeutic system, the engineered apoptotic bodies acted as a biochemical cue to regulate the inflammatory microenvironment and promote chondrocyte cartilage homeostasis, whereas the lubricating hydrogel microspheres served as a biophysical stimulation to effectively reduce the friction of the cartilage surface, restore the cartilage stress, and control the slow delivery of the encapsulated engineered apoptotic bodies by friction degradation. Consequently, the current work creates an injectable and multifunctional therapeutic microsphere to advance cartilage remodeling and OA therapy.
Collapse
Affiliation(s)
- Jia Chen
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zihao Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuaibing Liu
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruiyue Zhao
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qi Chen
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianglin Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
50
|
Lin J, Chen X, Du Y, Li J, Guo T, Luo S. Mitophagy in Cell Death Regulation: Insights into Mechanisms and Disease Implications. Biomolecules 2024; 14:1270. [PMID: 39456203 PMCID: PMC11506020 DOI: 10.3390/biom14101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Mitophagy, a selective form of autophagy, plays a crucial role in maintaining optimal mitochondrial populations, normal function, and intracellular homeostasis by monitoring and removing damaged or excess mitochondria. Furthermore, mitophagy promotes mitochondrial degradation via the lysosomal pathway, and not only eliminates damaged mitochondria but also regulates programmed cell death-associated genes, thus preventing cell death. The interaction between mitophagy and various forms of cell death has recently gained increasing attention in relation to the pathogenesis of clinical diseases, such as cancers and osteoarthritis, neurodegenerative, cardiovascular, and renal diseases. However, despite the abundant literature on this subject, there is a lack of understanding regarding the interaction between mitophagy and cell death. In this review, we discuss the main pathways of mitophagy, those related to cell death mechanisms (including apoptosis, ferroptosis, and pyroptosis), and the relationship between mitophagy and cell death uncovered in recent years. Our study offers potential directions for therapeutic intervention and disease diagnosis, and contributes to understanding the molecular mechanism of mitophagy.
Collapse
Affiliation(s)
| | | | | | | | | | - Sai Luo
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150000, China; (J.L.); (X.C.); (Y.D.); (J.L.); (T.G.)
| |
Collapse
|