1
|
Chang SH, George W, Nelson DC. Transcriptional regulation of development by SMAX1-LIKE proteins - targets of strigolactone and karrikin/KAI2 ligand signaling. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1888-1906. [PMID: 39869020 DOI: 10.1093/jxb/eraf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE (SMXL) proteins comprise a family of plant growth regulators that includes downstream targets of the karrikin (KAR)/KAI2 ligand (KL) and strigolactone (SL) signaling pathways. Following the perception of KAR/KL or SL signals by α/β hydrolases, some types of SMXL proteins are polyubiquitinated by an E3 ubiquitin ligase complex containing the F-box protein MORE AXILLARY GROWTH2 (MAX2)/DWARF3 (D3), and proteolyzed. Because SMXL proteins interact with TOPLESS (TPL) and TPL-related (TPR) transcriptional co-repressors, SMXL degradation initiates changes in gene expression. This simplified model of SMXL regulation and function in plants must now be revised in light of recent discoveries. It has become apparent that SMXL abundance is not regulated by KAR/KL or SL alone, and that some SMXL proteins are not regulated by MAX2/D3 at all. Therefore, SMXL proteins should be considered as signaling hubs that integrate multiple cues. Here we review the current knowledge of how SMXL proteins impose transcriptional regulation of plant development and environmental responses. SMXL proteins can bind DNA directly and interact with transcriptional regulators from several protein families. Multiple mechanisms of downstream genetic control by SMXL proteins have been identified recently that do not involve the recruitment of TPL/TPR, expanding the paradigm of SMXL function.
Collapse
Affiliation(s)
- Sun Hyun Chang
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Wesley George
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
2
|
Zhao J, Shi D, Kaeufer K, Song C, Both D, Thier AL, Cao H, Lassen L, Xu X, Hamamura Y, Luzzietti L, Bennett T, Kaufmann K, Greb T. Strigolactones optimise plant water usage by modulating vessel formation. Nat Commun 2025; 16:3854. [PMID: 40295470 PMCID: PMC12037892 DOI: 10.1038/s41467-025-59072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Wood formation is crucial for plant growth, enabling water and nutrient transport through vessel elements, derived from cambium stem cells (CSCs). CSCs produce vascular cell types in a bidirectional manner, but their regulation and cell fate trajectories remain unclear. Here, using single-cell transcriptome analysis in Arabidopsis thaliana, we reveal that the strigolactone (SL) signalling pathway negatively regulates vessel element formation, impacting plant water usage. While SL signalling is generally active in differentiating vascular tissues, it is low in developing vessels and CSCs, where it modulates cell fate decisions and drought response. SL-dependent changes in vessel element formation directly affect transpiration rates via stomata, underscoring the importance of vascular tissue composition in water balance. Our findings demonstrate the role of structural alignment in water-transport tissues under unstable water conditions, offering insights for enhancing drought resistance in plants through long-term modulation of vascular development.
Collapse
Affiliation(s)
- Jiao Zhao
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Dongbo Shi
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.
- Genetics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
| | - Kiara Kaeufer
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Changzheng Song
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Dominik Both
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Anna Lea Thier
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Hui Cao
- Genetics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Linus Lassen
- Genetics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Xiaocai Xu
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yuki Hamamura
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Laura Luzzietti
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Greb
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Wang H, Zhu L, Fan M, Weng S, Zhou X, Zhao H, Shen Y, Chai J, Hou L, Hao M, Tanvir R, Li L, Xiao G. Strigolactone promotes cotton fiber cell elongation by de-repressing DWARF53 on linolenic acid biosynthesis. Dev Cell 2025; 60:1101-1117.e7. [PMID: 39731914 DOI: 10.1016/j.devcel.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/06/2024] [Accepted: 12/04/2024] [Indexed: 12/30/2024]
Abstract
Strigolactone (SL) is a plant hormone required for plant development. DWARF53 (D53) functions as a transcription repressor in SL signaling. However, the role of D53 in cotton (Gossypium hirsutum, Gh) fiber development remains unclear. Here, we identify that GhD53 suppresses fiber elongation by repressing transcription of GhFAD3 genes, which control linolenic acid (C18:3) biosynthesis. Mechanistically, GhD53 interacts with SL-related transcriptional activate factor (GhSLRF) to prevent its binding on Omega-3 fatty acid desaturase gene (GhFAD3) promoters, thereby inhibiting GhFAD3 transcription. Upon SL exposure, GhD53 is degraded and leads to GhSLRF activation. This activation further promotes GhFAD3 transcription, C18:3 biosynthesis, and fiber elongation. Our findings identify the molecular mechanism of how SL controls cell elongation via D53 and offer potential strategies to improve cotton quality through SL application.
Collapse
Affiliation(s)
- Huiqin Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Liping Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Mengyuan Fan
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Shuangshuang Weng
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xin Zhou
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Hanxuan Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yongcui Shen
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jiaquan Chai
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Liyong Hou
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Miaomiao Hao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Rezwan Tanvir
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
4
|
Shi J, Mei C, Ge F, Hu Q, Ban X, Xia R, Xin P, Cheng S, Zhang G, Nie J, Zhang S, Ma X, Wang Y, Chu J, Chen Y, Wang B, Wu W, Li J, Xie Q, Yu F. Resistance to Striga parasitism through reduction of strigolactone exudation. Cell 2025; 188:1955-1966.e13. [PMID: 39947180 DOI: 10.1016/j.cell.2025.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/31/2024] [Accepted: 01/15/2025] [Indexed: 04/06/2025]
Abstract
Parasitism with Striga poses a major threat to global food production. Striga germination and growth rely on strigolactones (SLs) exuded by crop roots under phosphate (Pi)-deficient conditions, although the mechanism of this host-parasite interaction remains elusive. In this study, transcriptomic and functional analyses of sorghum treated with Pi deficiency or the SL GR245DS identify two ABC transporter G (ABCG) transporters of SL, Sorghum biocolor strigolactones transporter 1 (SbSLT1) and SbSLT2. Using AlphaFold2 and amino acid conversion mutants, we identify highly conserved amino acids in SL transport channels essential for transport function. Sorghum lines with single or double knockouts of these transporters exhibit significantly reduced SL secretion from roots, leading to decreased Striga germination and parasitism in field experiments and consequently reducing the grain loss under Striga infestation. This study thus describes the mechanism of SL exudation in monocots and defines conserved residues essential for SL transporter function, offering a potential strategy for enhancing crop resistance to Striga parasitism.
Collapse
Affiliation(s)
- Jiayang Shi
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuo Mei
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyong Ge
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingliang Hu
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinwei Ban
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Xia
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Peiyong Xin
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shujing Cheng
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Gaohua Zhang
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Nie
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqi Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaowei Ma
- National Center of Technology Innovation for Maize, State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding, Syngenta Group China, Beijing 102206, China
| | - Yi Wang
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinfang Chu
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhang Chen
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wang
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weihua Wu
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiayang Li
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Yazhouwan National Laboratory, Sanya 572024, Hainan, China.
| | - Qi Xie
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; National Center of Technology Innovation for Maize, State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding, Syngenta Group China, Beijing 102206, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Thilakarathne AS, Liu F, Zou Z. Plant Signaling Hormones and Transcription Factors: Key Regulators of Plant Responses to Growth, Development, and Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1070. [PMID: 40219138 PMCID: PMC11990802 DOI: 10.3390/plants14071070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Plants constantly encounter a wide range of biotic and abiotic stresses that adversely affect their growth, development, and productivity. Phytohormones such as abscisic acid, jasmonic acid, salicylic acid, and ethylene serve as crucial regulators, integrating internal and external signals to mediate stress responses while also coordinating key developmental processes, including seed germination, root and shoot growth, flowering, and senescence. Transcription factors (TFs) such as WRKY, NAC, MYB, and AP2/ERF play complementary roles by orchestrating complex transcriptional reprogramming, modulating stress-responsive genes, and facilitating physiological adaptations. Recent advances have deepened our understanding of hormonal networks and transcription factor families, revealing their intricate crosstalk in shaping plant resilience and development. Additionally, the synthesis, transport, and signaling of these molecules, along with their interactions with stress-responsive pathways, have emerged as critical areas of study. The integration of cutting-edge biotechnological tools, such as CRISPR-mediated gene editing and omics approaches, provides new opportunities to fine-tune these regulatory networks for enhanced crop resilience. By leveraging insights into transcriptional regulation and hormone signaling, these advancements provide a foundation for developing stress-tolerant, high-yielding crop varieties tailored to the challenges of climate change.
Collapse
Affiliation(s)
| | - Fei Liu
- School of Life Sciences, Henan University, Kaifeng 475001, China;
| | - Zhongwei Zou
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
| |
Collapse
|
6
|
Zhang X, Feng B, Wang Y, Mu T, Zheng M, Gao C, Zhang B, Li Y, Zhang H, Yuan W, Hua W, Li H. Targeted disruption of five Bna.BRC1 homologs in rapeseed generates a highly branched germplasm for its multifunctional utilization. PLANT COMMUNICATIONS 2025:101319. [PMID: 40119513 DOI: 10.1016/j.xplc.2025.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/20/2025] [Accepted: 03/18/2025] [Indexed: 03/24/2025]
Affiliation(s)
- Xiaolong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Bin Feng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Tingting Mu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ming Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430062, China
| | - Changbin Gao
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China
| | - Biaoming Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Haitao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wenya Yuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430062, China.
| | - Haitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
7
|
Xiong S, Wu L, Chen Y, Shi X, Wang Y. Multi-omics analysis reveals the regulatory mechanism of branching development in Quercus fabri. J Proteomics 2025; 313:105373. [PMID: 39778766 DOI: 10.1016/j.jprot.2024.105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
The ability of axillary meristems to form axillary buds and subsequently develop into branches is influenced by phytohormones, environmental conditions, and genetic factors. The main trunk of Quercus fabri is prone to branching, which not only impacts the appearance and density of the wood and significantly reduces the yield rate. This study conducted transcriptomic, proteomic, and metabolomic analyses on three stages of axillary bud development in Q. fabri. A total of 12,888 differentially expressed genes (DEGs), 8193 differentially accumulated proteins (DAPs), and 1788 differentially accumulated metabolites (DAMs) were identified through comparisons among the stages and subjected to multi-omics joint analysis. Conduct interaction network analysis on DEGs and DAPs to identify the significant transcription factor family (AP2/ERF) involved in the regulation of axillary bud development. Furthermore, KEGG enrichment analysis of DEGs, DAPs and DAMs indicated significant enrichment in plant hormone signaling pathways. The analysis of endogenous hormone levels and qRT-PCR results for pathway genes demonstrated that the expression levels of IAA and tZ significantly increased during late developmental stages, whereas the expression levels of ABA, ACC and JA significantly decreased. In summary, these findings contribute to a comprehensive understanding of the regulatory networks underlying the branching development of Q. fabri. SIGNIFICANCE: Q. fabri exhibits robust vegetative growth, and its primary trunk is prone to branching, significantly influencing the wood yield rate. Through a joint analysis of transcriptomics, proteomics, and metabolomics, we comprehensively examined the regulatory network governing the axillary bud development of Q. fabri. Our findings revealed the crucial roles of the AP2/ERF transcription factor family and plant hormone signal transduction pathways in branch development. These insights contribute to a deeper understanding of the mechanisms regulating branch development.
Collapse
Affiliation(s)
- Shifa Xiong
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xiang Shi
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|
8
|
Deng Q, Wang H, Qiu Y, Wang D, Xia Y, Zhang Y, Pei M, Zhao Y, Xu X, Zhang H. The Multifaceted Impact of Karrikin Signaling in Plants. Int J Mol Sci 2025; 26:2775. [PMID: 40141418 PMCID: PMC11943027 DOI: 10.3390/ijms26062775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Karrikins (KARs), produced during wildfires, are bioactive compounds that stimulate seed germination in fire-prone ecosystems and influence broader plant-environment interactions. These compounds act through the α/β hydrolase receptor KARRIKIN INSENSITIVE2 (KAI2), which perceives KARs as analogs of the hypothesized phytohormone KAI2 ligand (KL). KAR signaling shares molecular parallels with strigolactones (SLs), another class of butenolide plant hormones, and regulates diverse processes such as seedling development, root architecture, photomorphogenesis, and stress responses. Despite its multifaceted roles, the mechanistic basis of KAR-mediated regulation remains poorly understood. This review synthesizes insights into KAR signaling mechanisms, emphasizing recent advances in signal transduction pathways and functional studies. It also addresses key unresolved questions, including the identity of endogenous KL and the crosstalk between KARs and other hormonal networks. By elucidating these mechanisms, KAR-based strategies hold promises for enhancing crop resilience and sustainability, offering novel avenues for agricultural innovation in changing environments.
Collapse
Affiliation(s)
- Qilin Deng
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Hongyang Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Yanhong Qiu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Dexin Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Yang Xia
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Yumeng Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Manying Pei
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yinling Zhao
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiulan Xu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Haijun Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| |
Collapse
|
9
|
Korek M, Mehta D, Uhrig GR, Daszkowska-Golec A, Novak O, Buchcik W, Marzec M. Strigolactone insensitivity affects the hormonal homeostasis in barley. Sci Rep 2025; 15:9375. [PMID: 40102576 PMCID: PMC11920428 DOI: 10.1038/s41598-025-94430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/13/2025] [Indexed: 03/20/2025] Open
Abstract
In response to environmental changes, plants continuously make architectural changes in order to optimize their growth and development. The regulation of plant branching, influenced by environmental conditions and affecting hormone balance and gene expression, is crucial for agronomic purposes due to its direct correlation with yield. Strigolactones (SL), the youngest class of phytohormones, function to shape the architecture of plants by inhibiting axillary outgrowth. Barley plants harboring the mutation in the HvDWARF14 (HvD14) gene, which encodes the SL-specific receptor, produce almost twice as many tillers as wild-type (WT) Sebastian plants. Here, through hormone profiling and comparison of transcriptomic and proteomic changes between 2- and 4-week-old plants of WT and hvd14 genotypes, we elucidate a regulatory mechanism that might affect the tillering of SL-insensitive plants. The analysis showed statistically significant increased cytokinin content and decreased auxin and abscisic acid content in 'bushy' hvd14 compared to WT, which aligns with the commonly known actions of these hormones regarding branching regulation. Further, transcriptomic and proteomic analysis revealed a set of differentially expressed genes (DEG) and abundant proteins (DAP), among which 11.6% and 14.6% were associated with phytohormone-related processes, respectively. Bioinformatics analyses then identified a series of potential SL-dependent transcription factors (TF), which may control the differences observed in the hvd14 transcriptome and proteome. Comparison to available Arabidopsis thaliana data implicates a sub-selection of these TF as being involved in the transduction of SL signal in both monocotyledonous and dicotyledonous plants.
Collapse
Affiliation(s)
- Magdalena Korek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland.
| | - Devang Mehta
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Glen R Uhrig
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Ondrej Novak
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Weronika Buchcik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Marek Marzec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| |
Collapse
|
10
|
Park C, Cho HS, Lim Y, Cho CH, Nam H, Choi S, Lim H, Kim YD, Yoon HS, Cho H, Hwang I. Evolution of the JULGI-SMXL4/5 module for phloem development in angiosperms. Proc Natl Acad Sci U S A 2025; 122:e2416674122. [PMID: 40053365 PMCID: PMC11912460 DOI: 10.1073/pnas.2416674122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025] Open
Abstract
Bifacial cambium, which produces xylem and phloem, and monopodial architecture, characterized by apical dominance and lateral branching from axillary buds, are key developmental features of seed plants, consisting of angiosperms and gymnosperms. These allow seed plants to adapt to diverse environments by optimizing resource allocation and structural integrity. In seed plants, SUPPRESSOR OF MAX2-LIKE (SMXL) family members function in phloem development and strigolactone-induced inhibition of axillary bud outgrowth. Although strigolactone signaling regulates most SMXL family members, the only known regulator of SMXL4 and SMXL5 is the RNA-binding protein JULGI. We demonstrate that in angiosperms, by directly regulating SMXL4/5 expression, JULGI uncouples SMXL4/5 activity from strigolactone signaling. JULGI and ancestral SMXLs from seedless vascular plants or SMXL4/5 from seed plants are coexpressed in the phloem tissues of vascular plants, from lycophytes to angiosperms. Core angiosperm SMXL4/5 mRNAs contain a G-rich element in the 5' untranslated region (UTR) that serves as a target sequence for JULGI to negatively regulate SMXL4/5 expression. Heterologous expression of JULGIs from various angiosperms rescued the Arabidopsis jul1 jul2 mutant. Expressing SMXL4/5s from seed plants and ancestral SMXLs rescued Arabidopsis smxl4 smxl5. Angiosperm SMXL4/5s lack an RGKT motif for proteasomal degradation. Indeed, treatment with the synthetic strigolactone analog rac-GR24 induced proteasomal degradation of SMXL from ferns and SMXL5a from gymnosperms, but not SMXL4/5 from angiosperms. These findings suggest that in ancestral angiosperms, the 5' UTR of SMXL4/5 gained G-rich elements, creating a regulatory module with JULGI that allows the phloem development pathway to act independently of strigolactone signaling.
Collapse
Affiliation(s)
- Chanyoung Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Korea
| | - Hyun Seob Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Korea
| | - Yookyung Lim
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju28644, Korea
| | - Chung Hyun Cho
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| | - Hoyoung Nam
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Korea
| | - Sangkyu Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Korea
| | - Hojun Lim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Korea
| | - Young-Dong Kim
- Department of Life Sciences, Hallym University, Chuncheon24252, Korea
| | - Hwan Su Yoon
- Department of Biological Science, Sungkyunkwan University, Suwon16419, Korea
| | - Hyunwoo Cho
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju28644, Korea
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Korea
| |
Collapse
|
11
|
Ban X, Qin L, Yan J, Wu J, Li Q, Su X, Hao Y, Hu Q, Kou L, Yan Z, Xin P, Zhang Y, Dong L, Bouwmeester H, Yu H, Yu Q, Huang S, Lin T, Xie Q, Chen Y, Chu J, Cui X, Li J, Wang B. Manipulation of a strigolactone transporter in tomato confers resistance to the parasitic weed broomrape. Innovation (N Y) 2025; 6:100815. [PMID: 40098680 PMCID: PMC11910882 DOI: 10.1016/j.xinn.2025.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Parasitic weeds of the Orobanchaceae family cause substantial economic losses and pose significant threats to global agriculture. However, management of such parasitism is challenging, and very few resistance genes have been cloned and characterized in depth. Here, we performed a genome-wide association study using 152 tomato accessions and identified SlABCG45 as a key gene that mediates host resistance to Phelipanche aegyptiaca by affecting the level of strigolactones (SLs) in root exudates. SLs are synthesized and released by host plants and act as germination stimulants for parasitic weeds. We found that SlABCG45 and its close homolog SlABCG44 were membrane-localized SL transporters with essential roles in exudation of SLs to the rhizosphere, resistance to Phelipanche and Orobanche, and upward transport of SLs from roots to shoots. As a predominant environmental stimulant exacerbates parasitism, phosphorus deficiency dramatically induced SlABCG45 expression and weakly induced SlABCG44 expression via the transcription factors SlNSP1 and SlNSP2. Knockout of SlABCG45 in tomato had little effect on yield traits in a broomrape-free field, but conferred increased resistance to different Phelipanche and Orobanche species, resulting in an ∼30% yield increase in a Phelipanche-infested field. Our findings reveal that targeting a single gene by genome editing can confer broad-spectrum parasite resistance in tomato, providing an effective strategy for the sustainable control of parasitic plants in agriculture.
Collapse
Affiliation(s)
- Xinwei Ban
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Qin
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jijun Yan
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxin Wu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qianjin Li
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Su
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100081, China
| | - Yanrong Hao
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingliang Hu
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Liquan Kou
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zongyun Yan
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Peiyong Xin
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuqin Zhang
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lemeng Dong
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Harro Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Hong Yu
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Qinghui Yu
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tao Lin
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100081, China
| | - Qi Xie
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhang Chen
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfang Chu
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiayang Li
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Bing Wang
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Shukla HV, Kumar A, Maan SS, Thakur S, Arora NK, Kaur G, Solanki SPS, Boora RS, Singh D, Brar JS, Kang KK, Chhuneja P, Gill MIS, Bains NS, Mittal A. Positional mapping - constitutive purple trait locus (pl) in guava (Psidium guajava L.) in F 2 and BC 1F 1 populations of Purple Local × Allahabad Safeda. PHYSIOLOGIA PLANTARUM 2025; 177:e70212. [PMID: 40254816 DOI: 10.1111/ppl.70212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/22/2025]
Abstract
Guava (Psidium guajava L.) is a popular fruit crop in Southeast Asia. Landrace Purple Local (PL), also known as Malaysian guava, is rich in anthocyanin content in all the plant parts but has poor yield. Genetic inheritance and physical location of the allele(s) controlling the constitutive purple trait in guava have not yet been reported. The F1 plants generated by cross hybridizing PL × green cv. Allahabad Safeda (AS) and analysed for 7 years did not exhibit purple trait. Evaluation of F1, F2 and BC1F1 populations derived from the cross between PL x AS revealed that purple color is a recessive trait in guava. Equally spaced (~10 Mb) co-dominant polymorphic markers developed by in silico analysis of AS and PL genome (mapped to AS genome assembly) into PCR-based assay mapped the purple color locus (pl) on pseudochromosome 11 (PC 11) of guava genome. Further mapping on PC 11 identified 2 InDel markers at 2.49 Mb (Pg11_INDL_2.49 M) and 4.99 Mb (Pg11_INDL_4.99 M) closely associated with pl. Also, QTLseqr for purple and non-purple bulks in F2 provided two co-localized significant peak ΔSNP-indices at positions 2489072 and 4978573 on PC 11. The mapped genomic interval harbours 85 coding genes, including the potential candidates MYB-like ETC1, anthocyanidin reductase, MYB41-like transcription factors and F-box protein SKIP27-like. Markers flanking pl would potentiate the marker-assisted introgression of anthocyanin trait in popular cultivars of guava.
Collapse
|
13
|
Li L, Gupta A, Zhu C, Xu K, Watanabe Y, Tanaka M, Seki M, Mochida K, Kanno Y, Seo M, Nguyen KH, Tran CD, Chu HD, Yin H, Jia KP, Tran LSP, Yin X, Li W. Strigolactone and karrikin receptors regulate phytohormone biosynthetic and catabolic processes. PLANT CELL REPORTS 2025; 44:60. [PMID: 39982558 DOI: 10.1007/s00299-025-03456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
KEY MESSAGE Karrikin plays a more critical role in affecting the homeostasis of ABA and cytokinins, while strigolactones play a more critical role in influencing the homeostasis of jasmonic acid and gibberellins. Strigolactones (SLs) and karrikins (KARs) regulate plant growth and development through their crosstalk, and through the crosstalk between them and other phytohormones, such as abscisic acid (ABA) and auxin. However, how SL and KAR signaling pathways influence the levels of other phytohormones is still unknown. Here, we performed a comparative transcriptome analysis of the Arabidopsis thaliana double mutant dwarf14 karrikin-insensitive 2 (d14 kai2), deficient in SL and KAR perception, and the wild-type (WT) using their rosette leaves. Ten gene ontology terms related to phytohormones were enriched with differentially expressed genes derived from the 'd14 kai2 vs WT' comparison. Our data revealed that the levels of auxin, ABA and salicylic acid (SA) were higher in d14 and kai2 single and d14 kai2 mutant plants than in WT, which was consistent with the results of previous investigations. In contrast, the levels of cytokinins (CKs) were found to be lower in all single and double mutants than in WT. The levels of active gibberellins were lower in d14 and d14 kai2 mutants than in WT, while they were comparable in kai2 and WT plants. Similarly, the levels of jasmonic acid (JA) were lower in d14 and d14 kai2 plants, but higher in kai2 plants than in WT. Both transcriptome and qRT-PCR analyses indicated that SL and KAR signaling pathways affect the levels of auxin, SA, CKs, gibberellin 4 (GA4) and ABA by influencing the expression of their biosynthetic (in case of auxin, SA, GA4 and CKs) and catabolic (in case of ABA) genes. Collectively, our data demonstrated that KAI2 plays a more critical role in the homeostasis of ABA and CKs, while D14 plays a more critical role in the homeostasis of JA and gibberellins. Findings of this study indicate a complex and broad crosstalk among various phytohormones in plants, which can be considered for future exogenous applications and hormone engineering.
Collapse
Affiliation(s)
- Liangliang Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Jilin Da'an Agro-Ecosystem National Observation and Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Aarti Gupta
- Department of Botany, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Chenbo Zhu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Jilin Da'an Agro-Ecosystem National Observation and Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Kun Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Jilin Da'an Agro-Ecosystem National Observation and Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yasuko Watanabe
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, Yokohama, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, Yokohama, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Yuri Kanno
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-Cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-Cho, Tsurumi, Yokohama, 230-0045, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami-gun, Okinawa, 903-0213, Japan
| | - Kien Huu Nguyen
- Department of Genetic Engineering, Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham-Van-Dong Str., Hanoi, 100000, Vietnam
| | - Cuong Duy Tran
- Department of Genetic Engineering, Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham-Van-Dong Str., Hanoi, 100000, Vietnam
| | - Ha Duc Chu
- Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University, Hanoi, 122300, Vietnam
| | - Hengxia Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Kun-Peng Jia
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, Department of Life Sciences, Henan University, Kaifeng, China
| | - Lam-Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Xiaojian Yin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
- Jilin Da'an Agro-Ecosystem National Observation and Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Weiqiang Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
- Jilin Da'an Agro-Ecosystem National Observation and Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
14
|
Zhong Y, Wang Y, Pan X, Wang R, Li D, Ren W, Hao Z, Shi X, Guo J, Ramarojaona E, Schilder M, Bouwmeester H, Chen L, Yu P, Yan J, Chu J, Xu Y, Liu W, Dong Z, Wang Y, Zhang X, Zhang F, Li X. ZmCCD8 regulates sugar and amino acid accumulation in maize kernels via strigolactone signalling. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:492-508. [PMID: 39522159 PMCID: PMC11772326 DOI: 10.1111/pbi.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
How carbon (sucrose) and nitrogen (amino acid) accumulation is coordinatively controlled in cereal grains remains largely enigmatic. We found that overexpression of the strigolactone (SL) biosynthesis gene CAROTENOID CLEAVAGE DIOXYGENASE 8 (CCD8) resulted in greater ear diameter and enhanced sucrose and amino acid accumulation in maize kernels. Loss of ZmCCD8 function reduced kernel growth with lower sugar and amino acid concentrations. Transcriptomic analysis showed down-regulation of the transcription factors ZmMYB42 and ZmMYB63 in ZmCCD8 overexpression alleles and up-regulation in zmccd8 null alleles. Importantly, ZmMYB42 and ZmMYB63 were negatively regulated by the SL signalling component UNBRANCHED 3, and repressed expression of the sucrose transporters ZmSWEET10 and ZmSWEET13c and the lysine/histidine transporter ZmLHT14. Consequently, null alleles of ZmMYB42 or ZmMYB63 promoted accumulation of soluble sugars and free amino acids in maize kernels, whereas ZmLHT14 overexpression enhanced amino acid accumulation in kernels. Moreover, overexpression of the SL receptor DWARF 14B resulted in more sucrose and amino acid accumulation in kernels, down-regulation of ZmMYB42 and ZmMYB63 expression, and up-regulation of ZmSWEETs and ZmLHT14 transcription. Together, we uncover a distinct SL signalling pathway that regulates sucrose and amino acid accumulation in kernels. Significant association of two SNPs in the 5' upstream region of ZmCCD8 with ear and cob diameter implicates its potential in breeding toward higher yield and nitrogen efficiency.
Collapse
Affiliation(s)
- Yanting Zhong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Yongqi Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Xiaoying Pan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Ruifeng Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Dongdong Li
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Wei Ren
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Ziyi Hao
- Department of Ecology and Ecological EngineeringChina Agricultural UniversityBeijingChina
| | - Xionggao Shi
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Jingyu Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Elia Ramarojaona
- Plant Hormone Biology Group, Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mario Schilder
- Plant Hormone Biology Group, Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Harro Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, Center for crop functional genomics and molecular breeding, College of Biological ScienceChina Agricultural UniversityBeijingChina
| | - Peng Yu
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource ConservationUniversity of BonnBonnGermany
| | - Jijun Yan
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yanjun Xu
- Department of Applied ChemistryChina Agricultural UniversityBeijingChina
| | - Wenxin Liu
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zhaobin Dong
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yi Wang
- State Key Laboratory of Plant Environmental Resilience, Center for crop functional genomics and molecular breeding, College of Biological ScienceChina Agricultural UniversityBeijingChina
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Xuexian Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
15
|
Ge S, Zhang Z, Hu Q, Wang Q, Gong X, Huang F, Zhang L, Han W, Luo F, Li X. Metabolomics analysis reveals crucial effects of arbuscular mycorrhizal fungi on the metabolism of quality compounds in shoots and roots of Camellia sinensis L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109426. [PMID: 39740537 DOI: 10.1016/j.plaphy.2024.109426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/13/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Arbuscular mycorrhizal fungi (AMF) are known as plants' mutualists to enhance plant growth, but their impact on the quality-related metabolites in Camellia sinensis still needs to be studied. In this study, the 2-year-old potted C. sinensis cv. 'Longjing 43' was inoculated with AMF Rhizophagus irregularis to examine the effect of AMF colonization for 3 months on plant growth, photosynthesis, and changes in metabolomics and associated gene expression in the shoots and roots of tea plants. The results showed that AMF not only promoted the growth of tea plants but also significantly up-regulated the total contents of flavonoids and free amino acids, especially the anthocyanins, flavanols, GABA, and arginine. Consistently, the expression of genes such as F3H, DFR, LAR, ANR, UFGT, GDH, and GS in tea shoots was induced by AMF. Further studies found that transcription factors MYBs and HY5, as well as phytohormone strigolactones, were induced by AMF, which may participate in the regulatory mechanism controlling the metabolism of tea-quality compounds. These findings revealed regulatory mechanisms through which AMF affected tea quality and provided a theoretical basis for the application of AMF in tea gardens to improve the economic value and health benefits of tea.
Collapse
Affiliation(s)
- Shibei Ge
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Zheng Zhang
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Qiang Hu
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Qiuhong Wang
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Xuejiao Gong
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Fan Huang
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Lan Zhang
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Wenyan Han
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Fan Luo
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xin Li
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China.
| |
Collapse
|
16
|
Dong J, Ding C, Chen H, Fu H, Pei R, Shen F, Wang W. GhRAP2.4 enhances drought tolerance by positively regulating the strigolactone receptor GhD14 expression in cotton (Gossypium hirsutum L.). Int J Biol Macromol 2025; 289:138624. [PMID: 39674463 DOI: 10.1016/j.ijbiomac.2024.138624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Drought poses significant challenges to crop productivity, necessitating a deeper understanding of plant adaptive mechanisms. Strigolactones (SLs), a class of phytohormones, have been recognized as crucial regulators in plant responses to drought, yet the specific role of SL receptor in drought tolerance in cotton (Gossypium hirsutum L.) remains underexplored. In this study, we identified and characterized DWARF14 (GhD14), a SL receptor in cotton. Silencing GhD14 in cotton compromised drought tolerance by reducing leaf relative water content and chlorophyll content, slowing stomatal closure, increasing reactive oxygen species levels, and decreasing antioxidant enzyme activities. Conversely, overexpression of GhD14 in Arabidopsis d14 mutants rescued their drought-sensitive phenotype. Further, we identified a 197-bp fragment (-697 to -894 bp) in the GhD14 promoter that plays a crucial role in the drought stress response. RELATED TO APETALA 2.4 (GhRAP2.4), a dehydration responsive element binding protein (DREB) transcription factor, binds directly to the GhD14 promoter, enhancing its transcription under drought conditions. Silencing GhRAP2.4 in cotton resulted in reduced drought tolerance. This study not only elucidates the molecular interplay between GhRAP2.4 and GhD14 in cotton's drought response but also provides a potential target for genetic modification to improve drought resilience in crops.
Collapse
Affiliation(s)
- Jie Dong
- College of Agronomy, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Cong Ding
- College of Agronomy, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Huahui Chen
- College of Agronomy, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Hailin Fu
- College of Agronomy, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Renbo Pei
- College of Agronomy, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Fafu Shen
- College of Agronomy, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Wei Wang
- College of Agronomy, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China.
| |
Collapse
|
17
|
Komatsu A, Fujibayashi M, Kumagai K, Suzuki H, Hata Y, Takebayashi Y, Kojima M, Sakakibara H, Kyozuka J. KAI2-dependent signaling controls vegetative reproduction in Marchantia polymorpha through activation of LOG-mediated cytokinin synthesis (14). Nat Commun 2025; 16:1263. [PMID: 39893162 PMCID: PMC11787308 DOI: 10.1038/s41467-024-55728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/21/2024] [Indexed: 02/04/2025] Open
Abstract
Marchantia polymorpha reproduces vegetatively (asexually) by producing propagules known as gemmae within gemma cups and sexually through spores. We previously reported that KARRIKIN INSENSITIVE2 (KAI2)-dependent signaling promotes gemma cup and gemma formation. KAI2A perceives unidentified endogenous ligand(s), tentatively referred to as KAI2 ligands (KL). Perception of KL by KAI2 triggers MORE AXILLARY GROWTH2 (MAX2)-dependent proteolysis of MpSUPPRESSOR of MORE AXILLALRY GROWTH2 1-LIKE (MpSMXL). In this study, we identify genes working downstream of KAI2-dependent signaling in M. polymorpha. We find that KAI2-dependent signaling positively controls the expression of MpLONELY GUY (MpLOG), encoding a cytokinin biosynthesis enzyme. Disruption of the MpLOG function decreases endogenous cytokinin levels and causes defects similar to KAI2-dependent signaling mutants. Moreover, supplying exogenous cytokinins rescues the defects of Mplog and KAI2-dependent signaling mutants, implying that cytokinins work downstream of KAI2-dependent signaling. Activation of MpLOG by KAI2-dependent signaling occurs in a highly cell-type-specific manner, leading to cell-specific induction of GEMMA CUP-ASSOCIATED MYB1 (GCAM1), the master regulator of vegetative reproduction of M. polymorpha. We propose a genetic cascade, starting from KAI2-dependent signaling, that promotes vegetative reproduction through the induction of MpLOG and GCAM1. The interaction between KAI2-dependent signaling and cytokinin in M. polymorpha provides insights into the function and evolution of KAI2-dependent signaling.
Collapse
Affiliation(s)
- Aino Komatsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Kazato Kumagai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hidemasa Suzuki
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yuki Hata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
18
|
Zhao M, Zheng X, Su Z, Shen G, Xu Y, Feng Z, Li W, Zhang S, Cao G, Zhang J, Wu J. MicroRNA399s and strigolactones mediate systemic phosphate signaling between dodder-connected host plants and control association of host plants with rhizosphere microbes. THE NEW PHYTOLOGIST 2025; 245:1263-1276. [PMID: 39555671 DOI: 10.1111/nph.20266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
A dodder (Cuscuta) often simultaneously parasitizes two or more adjacent hosts. Phosphate (Pi) deficiency is a common stress for plants, and plants often interact with soil microbes, including arbuscular mycorrhizal fungi (AMF), to cope with Pi stress. Little is known about whether dodder transmits Pi deficiency-induced systemic signals between different hosts. In this study, dodder-connected plant clusters, each composed of two tobacco (Nicotiana tabacum) plants connected by a dodder, were established, and in each cluster, one of the two tobacco plants was treated with Pi starvation. AMF colonization efficiency, rhizosphere bacterial community, and transcriptome were analyzed in the other dodder-connected Pi-replete tobacco plant to study the functions of interplant Pi signals. We found that dodder transfers Pi starvation-induced systemic signals between host plants, resulting in enhanced AMF colonization, changes of rhizosphere bacterial communities, and alteration of transcriptomes in the roots of Pi-replete plants. Importantly, genetic analyses indicated that microRNA399s (miR399s) and strigolactones suppress the systemic Pi signals and negatively affect AMF colonization in the Pi-replete plants. These findings provide new insight into the ecological role of dodder in mediating host-host and host-microbe interactions and highlight the importance of strigolactone and miR399 pathways in systemic Pi signaling.
Collapse
Affiliation(s)
- Man Zhao
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xijie Zheng
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongxiang Su
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zerui Feng
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenxing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuhan Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoyan Cao
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing, 100093, China
| |
Collapse
|
19
|
Korek M, Uhrig RG, Marzec M. Strigolactone insensitivity affects differential shoot and root transcriptome in barley. J Appl Genet 2025; 66:15-28. [PMID: 38877382 PMCID: PMC11762224 DOI: 10.1007/s13353-024-00885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Strigolactones (SLs) are plant hormones that play a crucial role in regulating various aspects of plant architecture, such as shoot and root branching. However, the knowledge of SL-responsive genes and transcription factors (TFs) that control the shaping of plant architecture remains elusive. Here, transcriptomic analysis was conducted using the SL-insensitive barley mutant hvd14.d (carried mutation in SL receptor DWARF14, HvD14) and its wild-type (WT) to unravel the differences in gene expression separately in root and shoot tissues. This approach enabled us to select more than six thousand SL-dependent genes that were exclusive to each studied organ or not tissue-specific. The data obtained, along with in silico analyses, found several TFs that exhibited changed expression between the analyzed genotypes and that recognized binding sites in promoters of other identified differentially expressed genes (DEGs). In total, 28 TFs that recognize motifs over-represented in DEG promoters were identified. Moreover, nearly half of the identified TFs were connected in a single network of known and predicted interactions, highlighting the complexity and multidimensionality of SL-related signalling in barley. Finally, the SL control on the expression of one of the identified TFs in HvD14- and dose-dependent manners was proved. Obtained results bring us closer to understanding the signalling pathways regulating SL-dependent plant development.
Collapse
Affiliation(s)
- Magdalena Korek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Marek Marzec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland.
| |
Collapse
|
20
|
Wang XD, Zhang YN, Wang XG, Zhuang Y, Ge SH. Effects of exogenous SLs on growth and physiological characteristics of flue-cured tobacco seedlings under different degrees of drought stress. FRONTIERS IN PLANT SCIENCE 2025; 15:1473565. [PMID: 39902209 PMCID: PMC11788351 DOI: 10.3389/fpls.2024.1473565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025]
Abstract
Background Drought stress severely affects global crop yields, reduces water availability, and hinders growth. Strigolactones can alleviate damage caused by various abiotic stresses in plants; however, limited research has been conducted on their ability to enhance drought tolerance in tobacco. Methods This study evaluated the drought tolerance of 'Qin Tobacco 96' (drought-tolerant) and 'Yun Tobacco 116' (moisture-sensitive) before and after the application of gibberellic acid lactone at a concentration of 0.2 mg·L⁻¹ under three drought conditions: mild, moderate, and severe. The primary drought tolerance traits were identified from 29 related indicators, including agronomic traits, photosynthetic efficiency, reactive oxygen metabolism, antioxidant enzyme activities, osmotic regulators, and hormone regulation, using affiliation function, principal component analysis, and cluster analysis to categorize the traits. The degree of drought tolerance enhancement in the two tobacco varieties was evaluated under various treatments. Results Spraying exogenous strigolactones reduced the adverse effects of drought stress, particularly in the moisture-sensitive Y116 variety. Under drought stress, chlorophyll content and photosynthetic parameters significantly decreased, whereas strigolactone treatment increased both chlorophyll content and photosynthetic efficiency. Strigolactones reduced the accumulation of reactive oxygen species and malondialdehyde content, enhancing the antioxidant capacity of both varieties. Additionally, strigolactones increased the levels of osmoregulatory substances and activated the production of antioxidant enzymes, thereby enhancing drought tolerance. Furthermore, drought stress disrupted the balance of endogenous hormones, decreasing levels of auxin, gibberellic acid, and ribosylzeatin, while increasing abscisic acid levels. Exogenous strigolactones restored this hormonal balance. Conclusion Sixteen traits associated with drought tolerance in tobacco were analyzed using principal component analysis, the traits were classified using cluster analysis, and the magnitude of the D-value was determined by calculating the values of the affiliation function and their respective weights. The results indicated that a concentration of 0.2 mg·L⁻¹ of strigolactones enhanced the drought tolerance of tobacco across different levels of drought stress and promoted the growth and development of flue-cured tobacco. However, the interactions between strigolactones and various hormones under drought stress require further investigation to elucidate the underlying molecular mechanisms. The application methods of strigolactones should be optimized.
Collapse
Affiliation(s)
- Xiao-dong Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yi-nan Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiao-guo Wang
- Production Technology Section, Henan Province Tobacco Company, Jiyuan, Henan, China
| | - Ye Zhuang
- Guizhou Tobacco Company Qiandongnan Branch Tobacco Technology Center, Guizhou Tobacco Company Qiandongnan Prefecture Company, Guizhou, China
| | - Shao-hua Ge
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
21
|
Sun Y, Jin S, Song G. Cotton GhMAX2 promotes single-celled fiber elongation by releasing the GhS1FA-mediated inhibition of fatty acid biosynthesis. PLANT CELL REPORTS 2025; 44:26. [PMID: 39792241 DOI: 10.1007/s00299-024-03422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
KEY MESSAGE Cotton GhMAX2 positively regulates fiber elongation by mediating the degradation of GhS1FA, which transcriptionally represses GhKCS9 expression. Strigolactones (SLs) are known to promote cotton fiber development. However, the precise molecular relationship between SL signaling and fiber cell elongation remains unclear. In this study, we investigate the role of F-box E3 ligase MORE AXILLARY GROWTH2 (MAX2) in upland cotton in relation to the regulation of fiber development. GhMAX2b and GhMAX2f act as key components for SL signal transduction, with their loss-of-function leading to a notable reduction in fiber length. Biochemical analysis showed that GhMAX2b/f trigger the ubiquitination and subsequent degradation of the transcription repressor strigolactone-1-factor-At (GhS1FA), which function as a substrate for these E3 ligases. Furthermore, GhS1FA inhibits fatty acids biosynthesis by directly binding to the W-box element within the promoter of 3-ketoacyl-CoA synthases 9 (GhKCS9) and repressing its expression. In summary, we propose that GhMAX2b/f promote fiber elongation, potentially operating partially independently of GhD53 degradation.
Collapse
Affiliation(s)
- Yaru Sun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Guoli Song
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
22
|
Sivan P, Urbancsok J, Donev EN, Derba‐Maceluch M, Barbut FR, Yassin Z, Gandla ML, Mitra M, Heinonen SE, Šimura J, Cermanová K, Karady M, Scheepers G, Jönsson LJ, Master ER, Vilaplana F, Mellerowicz EJ. Modification of xylan in secondary walls alters cell wall biosynthesis and wood formation programs and improves saccharification. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:174-197. [PMID: 39436777 PMCID: PMC11672743 DOI: 10.1111/pbi.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Wood of broad-leaf tree species is a valued source of renewable biomass for biorefinery and a target for genetic improvement efforts to reduce its recalcitrance. Glucuronoxylan (GX) plays a key role in recalcitrance through its interactions with cellulose and lignin. To reduce recalcitrance, we modified wood GX by expressing GH10 and GH11 endoxylanases from Aspergillus nidulans in hybrid aspen (Populus tremula L. × tremuloides Michx.) and targeting the enzymes to cell wall. The xylanases reduced tree height, modified cambial activity by increasing phloem and reducing xylem production, and reduced secondary wall deposition. Xylan molecular weight was decreased, and the spacing between acetyl and MeGlcA side chains was reduced in transgenic lines. The transgenic trees produced hypolignified xylem having thin secondary walls and deformed vessels. Glucose yields of enzymatic saccharification without pretreatment almost doubled indicating decreased recalcitrance. The transcriptomics, hormonomics and metabolomics data provided evidence for activation of cytokinin and ethylene signalling pathways, decrease in ABA levels, transcriptional suppression of lignification and a subset of secondary wall biosynthetic program, including xylan glucuronidation and acetylation machinery. Several candidate genes for perception of impairment in xylan integrity were detected. These candidates could provide a new target for uncoupling negative growth effects from reduced recalcitrance. In conclusion, our study supports the hypothesis that xylan modification generates intrinsic signals and evokes novel pathways regulating tree growth and secondary wall biosynthesis.
Collapse
Affiliation(s)
- Pramod Sivan
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
- Division of Glycoscience, Department of ChemistryKTH Royal Institute of Technology, AlbaNova University CentreStockholmSweden
| | - János Urbancsok
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Evgeniy N. Donev
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Marta Derba‐Maceluch
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Félix R. Barbut
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | | | | | - Madhusree Mitra
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Saara E. Heinonen
- Division of Glycoscience, Department of ChemistryKTH Royal Institute of Technology, AlbaNova University CentreStockholmSweden
- Wallenberg Wood Science Centre (WWSC)KTH Royal Institute of TechnologyStockholmSweden
| | - Jan Šimura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Kateřina Cermanová
- Laboratory of Growth Regulators, The Czech Academy of Sciences & Faculty of ScienceInstitute of Experimental Botany, Palacký UniversityOlomoucCzechia
| | - Michal Karady
- Laboratory of Growth Regulators, The Czech Academy of Sciences & Faculty of ScienceInstitute of Experimental Botany, Palacký UniversityOlomoucCzechia
| | | | | | - Emma R. Master
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Francisco Vilaplana
- Division of Glycoscience, Department of ChemistryKTH Royal Institute of Technology, AlbaNova University CentreStockholmSweden
- Wallenberg Wood Science Centre (WWSC)KTH Royal Institute of TechnologyStockholmSweden
| | - Ewa J. Mellerowicz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| |
Collapse
|
23
|
Hu Q, Liu H, He Y, Hao Y, Yan J, Liu S, Huang X, Yan Z, Zhang D, Ban X, Zhang H, Li Q, Zhang J, Xin P, Jing Y, Kou L, Sang D, Wang Y, Wang Y, Meng X, Fu X, Chu J, Wang B, Li J. Regulatory mechanisms of strigolactone perception in rice. Cell 2024; 187:7551-7567.e17. [PMID: 39500324 DOI: 10.1016/j.cell.2024.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/06/2024] [Accepted: 10/07/2024] [Indexed: 12/29/2024]
Abstract
Strigolactones (SLs) are hormones essential for plant development and environmental responses. SL perception requires the formation of the complex composed of an SL receptor DWARF14 (D14), F-box protein D3, and transcriptional repressor D53, triggering ubiquitination and degradation of D53 to activate signal transduction. However, mechanisms of SL perception and their influence on plant architecture and environmental responses remain elusive and controversial. Here, we report that key residues at interfaces of the AtD14-D3-ASK1 complex are essential for the activation of SL perception, discover that overexpression of the D3-CTH motif negatively regulates SL perception to enhance tillering, and reveal the importance of phosphorylation and N-terminal disordered (NTD) domain in mediating ubiquitination and degradation of D14. Importantly, low nitrogen promotes phosphorylation and stabilization of D14 to repress rice tillering. These findings reveal a panorama of the activation, termination, and regulation of SL perception, which determines the plasticity of plant architecture in complex environments.
Collapse
Affiliation(s)
- Qingliang Hu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Huihui Liu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yajun He
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yanrong Hao
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jijun Yan
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Simao Liu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiahe Huang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Zongyun Yan
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Dahan Zhang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xinwei Ban
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Hao Zhang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qianqian Li
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jingkun Zhang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; Yazhouwan National Laboratory, Sanya, 572024 Hainan, China
| | - Peiyong Xin
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yanhui Jing
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Liquan Kou
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Dajun Sang
- Yazhouwan National Laboratory, Sanya, 572024 Hainan, China
| | - Yonghong Wang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, 271018 Shandong, China
| | - Yingchun Wang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiangbing Meng
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiangdong Fu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jinfang Chu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Bing Wang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Jiayang Li
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; Yazhouwan National Laboratory, Sanya, 572024 Hainan, China
| |
Collapse
|
24
|
He H, Xu J, Cai N, Xu Y. Analysis of the molecular mechanism endogenous hormone regulating axillary bud development in Pinus yunnanensis. BMC PLANT BIOLOGY 2024; 24:1219. [PMID: 39701992 DOI: 10.1186/s12870-024-05819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND P. yunnanensis, a distinctive economic tree species native to Yunnan Province in China, possesses axillary buds that serve as superior material for asexual propagation. However, under natural growth conditions, the differentiation of these axillary buds is notably scarce. In this study, we employed decapitation to stimulate the development of axillary buds in P. yunnanensis. Subsequently, we assessed the phytohormone levels in both axillary and apical buds, and conducted a comprehensive transcriptomic analysis complemented by RT-qPCR validation. RESULTS We found that decapitation could effectively promote the releases of the axillary buds in P. yunnanensis. The levels of cytokinin, auxin, gibberellin and abscisic acid in axillary buds were higher than those in apical buds, and the difference in gibberellin levels was the greatest. The transcriptome sequencing results were highly reproducible, and the relative expression levels of the 13 genes screened were highly consistent with the FPKM value trend of transcriptome sequencing. There were 2877 differentially expressed genes (DEGs) between axillary buds and terminal buds, and 18 candidate genes (CGs) involved in axillary bud release were screened out. A total of 1171 DEGs were identified during the analysis of axillary bud growth, and 14 CGs involved in axillary bud growth and development were screened out. GO and KEGG enrichment analysis were performed on the DEGs. Furthermore, combined with the results and discussion, the functions of the candidate genes were analyzed and a possible regulatory network was constructed. CONCLUSION The findings and discussions indicated that the development of axillary buds in P. yunnanensis is predominantly governed by cytokinin, gibberellin, strigolactone, and auxin, as well as their biosynthesis and regulatory genes, which are crucial to the development of these buds. This study has, to some extent, bridged the research gap concerning the development of axillary buds in P. yunnanensis and has provided foundational data to support further research into the developmental mechanisms of these buds and the establishment of asexual propagation cutting nurseries.
Collapse
Affiliation(s)
- Haihao He
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China
- Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan Province, China
| | - Junfei Xu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China
- Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan Province, China
| | - Nianhui Cai
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China.
- Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan Province, China.
| | - Yulan Xu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China.
- Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan Province, China.
| |
Collapse
|
25
|
Ding W, Wang C, Mei M, Li X, Zhang Y, Lin H, Li Y, Ma Z, Han J, Song X, Wu M, Zheng C, Lin J, Zhao Y. Phytohormones involved in vascular cambium activity in woods: current progress and future challenges. FRONTIERS IN PLANT SCIENCE 2024; 15:1508242. [PMID: 39741679 PMCID: PMC11685017 DOI: 10.3389/fpls.2024.1508242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025]
Abstract
Vascular cambium is the continuation of meristem activity at the top of plants, which promotes lateral growth of plants. The vascular cambium evolved as an adaptation for secondary growth, initially in early seed plants, and became more refined in the evolution of gymnosperms and angiosperms. In angiosperms, it is crucial for plant growth and wood formation. The vascular cambium is regulated by a complex interplay of phytohormones, which are chemical messengers that coordinate various aspects of plant growth and development. This paper synthesizes the current knowledge on the regulatory effects of primary plant hormones and peptide signals on the development of the cambium in forest trees, and it outlines the current research status and future directions in this field. Understanding these regulatory mechanisms holds significant potential for enhancing our ability to manage and cultivate forest tree species in changing environmental conditions.
Collapse
Affiliation(s)
- Wenjing Ding
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Chencan Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding, Hebei, China
| | - Man Mei
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Xiaoxu Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yuqian Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Hongxia Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yang Li
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Zhiqiang Ma
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Jianwei Han
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Xiaoxia Song
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Minjie Wu
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Caixia Zheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yuanyuan Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| |
Collapse
|
26
|
Zhou X, Cao K, Meng J, Xu H, Zhou X. Strigolactone modulates phenolic acid accumulation and thereby improves tolerance to UV-B stress in Rhododendron chrysanthum Pall. PLANT CELL REPORTS 2024; 44:1. [PMID: 39643793 DOI: 10.1007/s00299-024-03393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
KEY MESSAGE Multi-omics studies have shown that strigolactone modulates phenolic acid accumulation in the leaves of R. chrysanthum and can enable it to cope with UV-B stress. UV-B stress is an abiotic stress that plants will inevitably suffer during growth and can seriously affect the normal physiological state of plants. Strigolactone, a phytohormone, has been less studied and it is important to investigate its regulation of plant growth under UV-B radiation. In the present study, we investigated the changes in leaves of Rhododendron chrysanthum Pall. (R. chrysanthum) under UV-B radiation. The leaves of R. chrysanthum were collected for widely targeted metabolomics, hormonomics, transcriptomics, proteomics and acetylated proteomics assays. The results showed that the leaves of R. chrysanthum were able to produce a large amount of differential phenolic acids with antioxidant effects under UV-B stress, the content of strigolactone was significantly elevated, and the genes and proteins involved in phenolic acid biosynthesis and strigolactone biosynthesis were significantly altered, and some of the proteins (ASP1, 4CLL7, and CCD1) underwent acetylation modification. Meanwhile, correlation analysis showed that strigolactone was strongly correlated with differential phenolic acids, which might regulate the adaptive responses of the R. chrysanthum under UV-B stress. In this paper, we investigated the effects of strigolactone on the accumulation of phenolic acid compounds and found a strong correlation between strigolactone and elevated phenolic acid levels, which provided insights into the molecular mechanism of plant regulation of phenolic acid accumulation, and facilitated the adoption of measures to mitigate the adverse effects of UV-B stress on plant growth, and to achieve the purpose of protecting plant germplasm resources.
Collapse
Affiliation(s)
- Xiangru Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Kun Cao
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Jinhao Meng
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China.
| |
Collapse
|
27
|
Yu S, Zuo H, Li P, Lu L, Li J, Zhou Z, Zhao S, Huang J, Liu Z, Zhu M, Zhao J. Strigolactones Regulate Secondary Metabolism and Nitrogen/Phosphate Signaling in Tea Plants via Transcriptional Reprogramming and Hormonal Interactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25860-25878. [PMID: 39520368 DOI: 10.1021/acs.jafc.4c05100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Strigolactones (SLs) are known to regulate plant architecture formation, nitrogen (N) and phosphorus (P) responses, and secondary metabolism, but their effects in tea plants remain unclear. We demonstrated that the application of a bioactive SL analogue GR24 either to tea roots or leaves initially stimulated but later inhibited catechins, theanine, and caffeine biosynthesis. GR24 treatment also promoted the accumulation of flavonols and insoluble proanthocyanidins in a time- and dose-dependent manner. GR24 influenced flavonoid and theanine biosynthesis genes, such as up-regulating CsTT2c, CsMYB12, and CsbZIP1, modulating N-responsive and assimilation genes (CsNRT1,1, CsGSI/TS1, CsHRS1, CsPHR1, CsNLA1, and CsLBD37/38/39), and repressing N/P transport and signaling genes (CsPHO2, CsPHT1s, CsNRT2,2, CsHHO1, and CsWRKY38). GR24-induced changes in secondary metabolites were also observed in the leaves of tea plants. GR24-regulated CsLBD37a interacted with CsTT8a and CsTT2c, repressing catechins biosynthesis by interrupting MBW complex formation. GR24 regulated caffeine biosynthesis and regulator genes CsS40 and CsNAC7 and may thereby suppress caffeine production. GR24 altered the transcriptomic profiles of multiple hormone biosynthesis and signaling genes that potentially regulate tea characteristic metabolism and N/P signaling. This study provides new insights into SL-induced transcriptional reprogramming that leads to changes in N/P nutrition, secondary metabolism, and hormone signaling in tea plants.
Collapse
Affiliation(s)
- Shuwei Yu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Tea Research institute, Shandong Academy of Agricultural Sciences, Jinan 250000, China
| | - Hao Zuo
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Ping Li
- College of Tea Sciences, Institute of Plant Health & Medicine, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Litang Lu
- College of Tea Sciences, Institute of Plant Health & Medicine, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhi Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shancen Zhao
- Beijing Life Science Academy, Beijing 102200, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - MingZhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
28
|
Bai J, Lei X, Liu J, Huang Y, Bi L, Wang Y, Li J, Yu H, Yao S, Chen L, Janssen BJ, Snowden KC, Zhang M, Yao R. The strigolactone receptor DWARF14 regulates flowering time in Arabidopsis. THE PLANT CELL 2024; 36:4752-4767. [PMID: 39235115 PMCID: PMC11530773 DOI: 10.1093/plcell/koae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Multiple plant hormones, including strigolactone (SL), play key roles in regulating flowering time. The Arabidopsis (Arabidopsis thaliana) DWARF14 (AtD14) receptor perceives SL and recruits F-box protein MORE AXILLARY GROWTH2 (MAX2) and the SUPPRESSOR OF MAX2-LIKE (SMXL) family proteins. These interactions lead to the degradation of the SMXL repressor proteins, thereby regulating shoot branching, leaf shape, and other developmental processes. However, the molecular mechanism by which SL regulates plant flowering remains elusive. Here, we demonstrate that intact strigolactone biosynthesis and signaling pathways are essential for normal flowering in Arabidopsis. Loss-of-function mutants in both SL biosynthesis (max3) and signaling (Atd14 and max2) pathways display earlier flowering, whereas the repressor triple mutant smxl6/7/8 (s678) exhibits the opposite phenotype. Retention of AtD14 in the cytoplasm leads to its inability to repress flowering. Moreover, we show that nuclear-localized AtD14 employs dual strategies to enhance the function of the AP2 transcription factor TARGET OF EAT1 (TOE1). AtD14 directly binds to TOE1 in an SL-dependent manner and stabilizes it. In addition, AtD14-mediated degradation of SMXL7 releases TOE1 from the repressor protein, allowing it to bind to and inhibit the FLOWERING LOCUS T (FT) promoter. This results in reduced FT transcription and delayed flowering. In summary, AtD14 perception of SL enables the transcription factor TOE1 to repress flowering, providing insights into hormonal control of plant flowering.
Collapse
Affiliation(s)
- Jinrui Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Xi Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Jinlan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Yi Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Lumei Bi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Yuehua Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Jindong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Haiyang Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Shixiang Yao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Li Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Bart J Janssen
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Kimberley C Snowden
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Meng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| |
Collapse
|
29
|
Fichtner F, Humphreys JL, Barbier FF, Feil R, Westhoff P, Moseler A, Lunn JE, Smith SM, Beveridge CA. Strigolactone signalling inhibits trehalose 6-phosphate signalling independently of BRC1 to suppress shoot branching. THE NEW PHYTOLOGIST 2024; 244:900-913. [PMID: 39187924 DOI: 10.1111/nph.20072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024]
Abstract
The phytohormone strigolactone (SL) inhibits shoot branching, whereas the signalling metabolite trehalose 6-phosphate (Tre6P) promotes branching. How Tre6P and SL signalling may interact and which molecular mechanisms might be involved remains largely unknown. Transcript profiling of Arabidopsis SL mutants revealed a cluster of differentially expressed genes highly enriched in the Tre6P pathway compared with wild-type (WT) plants or brc1 mutants. Tre6P-related genes were also differentially expressed in axillary buds of garden pea (Pisum sativum) SL mutants. Tre6P levels were elevated in the SL signalling mutant more axillary (max) growth 2 compared with other SL mutants or WT plants indicating a role of MAX2-dependent SL signalling in regulating Tre6P levels. A transgenic approach to increase Tre6P levels demonstrated that all SL mutant lines and brc1 flowered earlier, showing all of these mutants were responsive to Tre6P. Elevated Tre6P led to increased branching in WT plants but not in max2 and max4 mutants, indicating some dependency between the SL pathway and Tre6P regulation of shoot branching. By contrast, elevated Tre6P led to an enhanced branching phenotype in brc1 mutants indicating independence between BRC1 and Tre6P. A model is proposed whereby SL signalling represses branching via Tre6P and independently of the BRC1 pathway.
Collapse
Affiliation(s)
- Franziska Fichtner
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
- Faculty of Mathematics and Natural Sciences, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
- Cluster of Excellence in Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, 40225, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jazmine L Humphreys
- ARC Centre for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Francois F Barbier
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
- Institute for Plant Sciences of Montpellier, University of Montpellier, CNRS, INRAe, Institut Agro, Montpellier, 34060, France
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Philipp Westhoff
- Cluster of Excellence in Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Bonn, 53113, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Steven M Smith
- ARC Centre for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Christine A Beveridge
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
30
|
Xu Y, Lv Z, Manzoor MA, Song L, Wang M, Wang L, Wang S, Zhang C, Jiu S. VvD14c-VvMAX2-VvLOB/VvLBD19 module is involved in the strigolactone-mediated regulation of grapevine root architecture. MOLECULAR HORTICULTURE 2024; 4:40. [PMID: 39456080 PMCID: PMC11515387 DOI: 10.1186/s43897-024-00117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
The D14 protein, an alpha/beta hydrolase, is a key receptor in the strigolactone (SL) signaling pathway. However, the response of VvD14 to SL signals and its role in grapevine root architecture formation remain unclear. This study demonstrated that VvD14c was highly expressed in grapevine tissues and fruit stages than other VvD14 isoforms. Application of GR24, an SL analog, enhanced the elongation and diameter of adventitious roots but inhibited the elongation and density of lateral roots (LRs) and increased VvD14c expression. Additionally, GR24 is nested within the VvD14c pocket and strongly bound to the VvD14c protein, with an affinity of 5.65 × 10-9 M. Furthermore, VvD14c interacted with grapevine MORE AXILLARY GROWTH 2 (VvMAX2) in a GR24-dependent manner. Overexpression of VvD14c in the d14 mutant and VvMAX2 in the max2 Arabidopsis mutant reversed the increased LR number and density, as well as primary root elongation. Conversely, homologous overexpression of VvD14c and VvMAX2 resulted in reduced LR number and density in grapevines. VvMAX2 directly interacted with LATERAL ORGAN BOUNDARY (VvLOB) and VvLBD19, thereby positively regulating LR density. These findings highlight the role of SLs in regulating grapevine root architecture, potentially via the VvD14c-VvMAX2-VvLOB/VvLBD19 module, providing new insights into the regulation of root growth and development in grapevines.
Collapse
Affiliation(s)
- Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Linhong Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Maosen Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China.
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China.
| |
Collapse
|
31
|
Tian Z, Chen B, Li H, Pei X, Sun Y, Sun G, Pan Z, Dai P, Gao X, Geng X, Peng Z, Jia Y, Hu D, Wang L, Pang B, Zhang A, Du X, He S. Strigolactone-gibberellin crosstalk mediated by a distant silencer fine-tunes plant height in upland cotton. MOLECULAR PLANT 2024; 17:1539-1557. [PMID: 39169630 DOI: 10.1016/j.molp.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Optimal plant height is crucial in modern agriculture, influencing lodging resistance and facilitating mechanized crop production. Upland cotton (Gossypium hirsutum) is the most important fiber crop globally; however, the genetic basis underlying plant height remains largely unexplored. In this study, we conducted a genome-wide association study to identify a major locus controlling plant height (PH1) in upland cotton. This locus encodes gibberellin 2-oxidase 1A (GhPH1) and features a 1133-bp structural variation (PAVPH1) located approximately 16 kb upstream. The presence or absence of PAVPH1 influences the expression of GhPH1, thereby affecting plant height. Further analysis revealed that a gibberellin-regulating transcription factor (GhGARF) recognizes and binds to a specific CATTTG motif in both the GhPH1 promoter and PAVPH1. This interaction downregulates GhPH1, indicating that PAVPH1 functions as a distant upstream silencer. Intriguingly, we found that DWARF53 (D53), a key repressor of the strigolactone (SL) signaling pathway, directly interacts with GhGARF to inhibit its binding to targets. Moreover, we identified a previously unrecognized gibberellin-SL crosstalk mechanism mediated by the GhD53-GhGARF-GhPH1/PAVPH1 module, which is crucial for regulating plant height in upland cotton. These findings shed light on the genetic basis and gene interaction network underlying plant height, providing valuable insights for the development of semi-dwarf cotton varieties through precise modulation of GhPH1 expression.
Collapse
Affiliation(s)
- Zailong Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Baojun Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongge Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinxin Pei
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yaru Sun
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Gaofei Sun
- School of Computer Science & Information Engineering, Anyang Institute of Technology, Anyang, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Panhong Dai
- School of Computer Science & Information Engineering, Anyang Institute of Technology, Anyang, China
| | - Xu Gao
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou, China
| | - Xiaoli Geng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhen Peng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Daowu Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Liru Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Baoyin Pang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ai Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China.
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
32
|
An JP, Zhao L, Cao YP, Ai D, Li MY, You CX, Han Y. The SMXL8-AGL9 module mediates crosstalk between strigolactone and gibberellin to regulate strigolactone-induced anthocyanin biosynthesis in apple. THE PLANT CELL 2024; 36:4404-4425. [PMID: 38917246 PMCID: PMC11448916 DOI: 10.1093/plcell/koae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
Although the strigolactone (SL) signaling pathway and SL-mediated anthocyanin biosynthesis have been reported, the molecular association between SL signaling and anthocyanin biosynthesis remains unclear. In this study, we identified the SL signal transduction pathway associated with anthocyanin biosynthesis and the crosstalk between gibberellin (GA) and SL signaling in apple (Malus × domestica). ELONGATED HYPOCOTYL5 (HY5) acts as a key node integrating SL signaling and anthocyanin biosynthesis, and the SL-response factor AGAMOUS-LIKE MADS-BOX9 (AGL9) promotes anthocyanin biosynthesis by activating HY5 transcription. The SL signaling repressor SUPPRESSOR OF MAX2 1-LIKE8 (SMXL8) interacts with AGL9 to form a complex that inhibits anthocyanin biosynthesis by downregulating HY5 expression. Moreover, the E3 ubiquitin ligase PROTEOLYSIS1 (PRT1) mediates the ubiquitination-mediated degradation of SMXL8, which is a key part of the SL signal transduction pathway associated with anthocyanin biosynthesis. In addition, the GA signaling repressor REPRESSOR-of-ga1-3-LIKE2a (RGL2a) mediates the crosstalk between GA and SL by disrupting the SMXL8-AGL9 interaction that represses HY5 transcription. Taken together, our study reveals the regulatory mechanism of SL-mediated anthocyanin biosynthesis and uncovers the role of SL-GA crosstalk in regulating anthocyanin biosynthesis in apple.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018 Shandong, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Lei Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Yun-Peng Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Di Ai
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Miao-Yi Li
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018 Shandong, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| |
Collapse
|
33
|
Pan Y, Yu B, Wei X, Qiu Y, Mao X, Liu Y, Yan W, Linghu Q, Li W, Guo H, Tang Z. Suppression of SMXL4 and SMXL5 confers enhanced thermotolerance through promoting HSFA2 transcription in Arabidopsis. THE PLANT CELL 2024; 36:4557-4575. [PMID: 39102897 PMCID: PMC11449109 DOI: 10.1093/plcell/koae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/20/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Identifying the essential factors and underlying mechanisms regulating plant heat stress (HS) responses is crucial for mitigating the threat posed by HS on plant growth, development, distribution, and productivity. In this study, we found that the Arabidopsis (Arabidopsis thaliana) super-killer2 (ski2) dicer-like4 (dcl4) mutant, characterized by RNA processing defects and the accumulation of abundant 22-nt small interfering RNAs derived from protein-coding transcripts, displayed significantly increased expression levels of HS-responsive genes and enhanced thermotolerance. These traits primarily resulted from the suppression of SMAX1-LIKE4 (SMXL4) and SMXL5, which encode 2 putative transcriptional regulators that belong to the SMXL protein family. While smxl4 and smxl5 single mutants were similar to wild type, the smxl4 smxl5 double mutant displayed substantially heightened seedling thermotolerance. Further investigation demonstrated that SMXL4 and SMXL5 repressed the transcription of HEAT-SHOCK TRANSCRIPTION FACTOR A2 (HSFA2), encoding a master regulator of thermotolerance, independently of ethylene-response factor-associated amphiphilic repression motifs. Moreover, SMXL4 and SMXL5 interacted with HSFA1d and HSFA1e, central regulators sensing and transducing HS stimuli, and antagonistically affected their transactivation activity. In addition, HSFA2 directly bound to the SMXL4 and SMXL5 promoters, inducing their expression during recovery from HS. Collectively, our findings elucidate the role of the SMXL4/SMXL5-HSFA2 regulatory module in orchestrating plant thermotolerance under HS.
Collapse
Affiliation(s)
- Yajie Pan
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Bofan Yu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xin Wei
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yuping Qiu
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xin Mao
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yuelin Liu
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Wei Yan
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Qianyan Linghu
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Wenyang Li
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Hongwei Guo
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
34
|
Morales-Herrera S, Paul MJ, Van Dijck P, Beeckman T. SnRK1/TOR/T6P: three musketeers guarding energy for root growth. TRENDS IN PLANT SCIENCE 2024; 29:1066-1076. [PMID: 38580543 DOI: 10.1016/j.tplants.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Sugars derived from photosynthesis, specifically sucrose, are the primary source of plant energy. Sucrose is produced in leaves and transported to the roots through the phloem, serving as a vital energy source. Environmental conditions can result in higher or lower photosynthesis, promoting anabolism or catabolism, respectively, thereby influencing the sucrose budget available for roots. Plants can adjust their root system to optimize the search for soil resources and to ensure the plant's adaptability to diverse environmental conditions. Recently, emerging research indicates that SNF1-RELATED PROTEIN KINASE 1 (SnRK1), trehalose 6-phosphate (T6P), and TARGET OF RAPAMYCIN (TOR) collectively serve as fundamental regulators of root development, together forming a signaling module to interpret the nutritional status of the plant and translate this to growth adjustments in the below ground parts.
Collapse
Affiliation(s)
- Stefania Morales-Herrera
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium; Laboratory of Molecular Cell Biology, KU Leuven, Kasteelpark Arenberg, Leuven, Belgium
| | - Matthew J Paul
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, KU Leuven, Kasteelpark Arenberg, Leuven, Belgium; KU Leuven Plant Institute (LPI), Leuven, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
35
|
Naseer MA, Zhang ZQ, Mukhtar A, Asad MS, Wu HY, Yang H, Zhou XB. Strigolactones: A promising tool for nutrient acquisition through arbuscular mycorrhizal fungi symbiosis and abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109057. [PMID: 39173365 DOI: 10.1016/j.plaphy.2024.109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/27/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Strigolactones (SLs) constitute essential phytohormones that control pathogen defense, resilience to phosphate deficiency and abiotic stresses. Furthermore, SLs are released into the soil by roots, especially in conditions in which there is inadequate phosphate or nitrogen available. SLs have the aptitude to stimulate the root parasite plants and symbiotic cooperation with arbuscular mycorrhizal (AM) fungi in rhizosphere. The use of mineral resources, especially phosphorus (P), by host plants is accelerated by AMF, which also improves plant growth and resilience to a series of biotic and abiotic stresses. Thus, these SL treatments that promote rhizobial symbiosis are substitutes for artificial fertilizers and other chemicals, supporting ecologically friendly farming practices. Moreover, SLs have become a fascinating target for abiotic stress adaptation in plants, with an array of uses in sustainable agriculture. In this review, the biological activity has been summarized that SLs as a signaling hormone for AMF symbiosis, nutrient acquisition, and abiotic stress tolerance through interaction with other hormones. Furthermore, the processes behind the alterations in the microbial population caused by SL are clarified, emphasizing the interplay with other signaling mechanisms. This review covers the latest developments in SL studies as well as the properties of SLs on microbial populations, plant hormone transductions, interactions and abiotic stress tolerance.
Collapse
Affiliation(s)
- Muhammad Asad Naseer
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Zhi Qin Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Ahmed Mukhtar
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | | | - Hai Yan Wu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Hong Yang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China.
| | - Xun Bo Zhou
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
36
|
Suzawa S, Yamauchi M, Homma M, Yamauchi Y, Mizutani M, Wakabayashi T, Sugimoto Y. Stereospecific reduction of 2'S-configured strigolactones by cowpea OPR3 enzymes. Biosci Biotechnol Biochem 2024; 88:1172-1179. [PMID: 38970383 DOI: 10.1093/bbb/zbae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Strigolactones (SLs), plant-derived apocarotenoids, serve dual roles as phytohormones and rhizosphere signaling molecules. While exogenous administration of SLs to plants aids in studying their functions, the metabolic destiny of these administered SLs remains poorly elucidated. Our previous research demonstrated that among synthetic SL GR24 stereoisomers administered to cowpea (Vigna unguiculata), 2'-epi-GR24 undergoes selective reduction at the C-3',4' double bond in its D-ring. In this investigation, we isolated proteins from cowpea roots based on SL reducing activity and identified 12-oxophytodienoate reductase 3 homologs (VuOPR3s) as contributors to this reduction. Enzymatic assays conducted with recombinant proteins revealed that VuOPR3s exhibited a preference for reducing activity toward 2'S-configured SLs, including 2'-epi-GR24. This specificity for 2'S-configured SLs was congruent with that observed for orobanchol produced by cowpea and its stereoisomers. These findings suggest that exogenously administered SLs undergo enzymatic stereoselective reduction, underscoring the importance of considering stereospecificity when interpreting data obtained from SL usage.
Collapse
Affiliation(s)
- Shota Suzawa
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Misa Yamauchi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Masato Homma
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Yasuo Yamauchi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Masaharu Mizutani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Takatoshi Wakabayashi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yukihiro Sugimoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| |
Collapse
|
37
|
Han Y, Sun Y, Wang H, Li H, Jiang M, Liu X, Cao Y, Wang W, Yin H, Chen J, Sun J, Zhu QH, Zhu S, Zhao T. Biosynthesis and Signaling of Strigolactones Act Synergistically With That of ABA and JA to Enhance Verticillium dahliae Resistance in Cotton (Gossypium hirsutum L.). PLANT, CELL & ENVIRONMENT 2024. [PMID: 39286958 DOI: 10.1111/pce.15148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024]
Abstract
Verticillium wilt (VW) caused by the soil-borne fungal pathogen Verticillium dahliae reduces cotton productivity and quality. Numerous studies have explored the genetic and molecular mechanisms regulating VW resistance in cotton, but the role and mechanism of strigolactone (SL) is still elusive. We investigated the function of SL in cotton's immune response to V. dahliae infection by exogenously applying SL analog, blocking or enhancing biosynthesis of endogenous SLs in combination with comparative transcriptome analysis and by exploring cross-talk between SL and other phytohormones. Silencing GhDWARF27 and applying the SL analog GR24 or overexpressing GhDWARF27 decreased and enhanced V. dahliae resistance, respectively. Transcriptome analysis revealed SL-mediated activation of abscisic acid (ABA) and jasmonic acid (JA) biosynthesis and signaling pathways. Enhanced ABA biosynthesis and signaling led to increased activity of antioxidant enzymes and reduced buildup of excess reactive oxygen species. Enhanced JA biosynthesis and signaling facilitated transcription of JA-dependent disease resistance genes. One of the components of the SL signal transduction pathway, GhD53, was found to interact with GhNCED5 and GhLOX2, the key enzymes of ABA and JA biosynthesis, respectively. We revealed the molecular mechanism underlying SL-enabled V. dahliae resistance and provided potential solutions for improving VW resistance in cotton.
Collapse
Affiliation(s)
- Yifei Han
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue Sun
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Haoqi Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Huazu Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Meng Jiang
- Institute of Hainan, Zhejiang University, Sanya, China
| | - Xueying Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yuefen Cao
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Wanru Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hong Yin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinhong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Hainan, Zhejiang University, Sanya, China
| | - Jie Sun
- Agricultural College, Shihezi University, Shihezi, China
| | - Qian-Hao Zhu
- Agriculture and Food, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Shuijin Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Hainan, Zhejiang University, Sanya, China
| | - Tianlun Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Hainan, Zhejiang University, Sanya, China
| |
Collapse
|
38
|
Sun Y, Tian Z, Zuo D, Cheng H, Wang Q, Zhang Y, Lv L, Song G. Strigolactone-induced degradation of SMXL7 and SMXL8 contributes to gibberellin- and auxin-mediated fiber cell elongation in cotton. THE PLANT CELL 2024; 36:3875-3893. [PMID: 39046066 PMCID: PMC11371155 DOI: 10.1093/plcell/koae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
Cotton (Gossypium) fiber length, a key trait determining fiber yield and quality, is highly regulated by a class of recently identified phytohormones, strigolactones (SLs). However, the underlying molecular mechanisms of SL signaling involved in fiber cell development are largely unknown. Here, we show that the SL signaling repressors MORE AXILLARY GROWTH2-LIKE7 (GhSMXL7) and GhSMXL8 negatively regulate cotton fiber elongation. Specifically, GhSMXL7 and GhSMXL8 inhibit the polyubiquitination and degradation of the gibberellin (GA)-triggered DELLA protein (GhSLR1). Biochemical analysis revealed that GhSMXL7 and GhSMXL8 physically interact with GhSLR1, which interferes with the association of GhSLR1 with the E3 ligase GA INSENSITIVE2 (GhGID2), leading to the repression of GA signal transduction. GhSMXL7 also interacts with the transcription factor GhHOX3, preventing its binding to the promoters of essential fiber elongation regulatory genes. Moreover, both GhSMXL7 and GhSMXL8 directly bind to the promoter regions of the AUXIN RESPONSE FACTOR (ARF) genes GhARF18-10A, GhARF18-10D, and GhARF19-7D to suppress their expression. Cotton plants in which GhARF18-10A, GhARF18-10D, and GhARF19-7D transcript levels had been reduced by virus-induced gene silencing (VIGS) displayed reduced fiber length compared with control plants. Collectively, our findings reveal a mechanism illustrating how SL integrates GA and auxin signaling to coordinately regulate plant cell elongation at the single-cell level.
Collapse
Affiliation(s)
- Yaru Sun
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zailong Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hailiang Cheng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youping Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Limin Lv
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Guoli Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
39
|
Lee SH, Kim SH, Park TK, Kim YP, Lee JW, Kim TW. Transcription factors BZR1 and PAP1 cooperate to promote anthocyanin biosynthesis in Arabidopsis shoots. THE PLANT CELL 2024; 36:3654-3673. [PMID: 38869214 PMCID: PMC11371145 DOI: 10.1093/plcell/koae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Anthocyanins play critical roles in protecting plant tissues against diverse stresses. The complicated regulatory networks induced by various environmental factors modulate the homeostatic level of anthocyanins. Here, we show that anthocyanin accumulation is induced by brassinosteroids (BRs) in Arabidopsis (Arabidopsis thaliana) shoots and shed light on the underlying regulatory mechanism. We observed that anthocyanin levels are altered considerably in BR-related mutants, and BRs induce anthocyanin accumulation by upregulating the expression of anthocyanin biosynthetic genes. Our genetic analysis indicated that BRASSINAZOLE RESISTANT 1 (BZR1) and PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) are essential for BR-induced anthocyanin accumulation. The BR-responsive transcription factor BZR1 directly binds to the PAP1 promoter, regulating its expression. In addition, we found that intense anthocyanin accumulation caused by the pap1-D-dominant mutation is significantly reduced in BR mutants, implying that BR activity is required for PAP1 function after PAP1 transcription. Moreover, we demonstrated that BZR1 physically interacts with PAP1 to cooperatively regulate the expression of PAP1-target genes, such as TRANSPARENT TESTA 8, DIHYDROFLAVONOL 4-REDUCTASE, and LEUKOANTHOCYANIDIN DIOXYGENASE. Our findings indicate that BZR1 functions as an integral component of the PAP1-containing transcription factor complex, contributing to increased anthocyanin biosynthesis. Notably, we also show that functional interaction of BZR1 with PAP1 is required for anthocyanin accumulation induced by low nitrogen stress. Taken together, our results demonstrate that BR-regulated BZR1 promotes anthocyanin biosynthesis through cooperative interaction with PAP1 of the MBW complex.
Collapse
Affiliation(s)
- Se-Hwa Lee
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - So-Hee Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Tae-Ki Park
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| | - Young-Pil Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin-Won Lee
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| | - Tae-Wuk Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
40
|
Ye H, Hou Q, Lv H, Shi H, Wang D, Chen Y, Xu T, Wang M, He M, Yin J, Lu X, Tang Y, Zhu X, Zou L, Chen X, Li J, Wang B, Wang J. D53 represses rice blast resistance by directly targeting phenylalanine ammonia lyases. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1827-1830. [PMID: 38940574 DOI: 10.1111/jipb.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
In rice, DWARF 53 directly binds to the promoters of seven phenylalanine ammonia lyase genes, OsPAL1˜OsPAL7, and represses their expression, leading to decreased lignin accumulation and compromised resistance against Magnaporthe oryzae.
Collapse
Affiliation(s)
- Haitao Ye
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haitao Lv
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hui Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Duo Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujie Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tangshuai Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mei Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijuan Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiayang Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Bing Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
41
|
Dong F, Song J, Zhang H, Zhang J, Chen Y, Zhou X, Li Y, Ge S, Liu Y. TaSPL6B, a member of the Squamosa promoter binding protein-like family, regulates shoot branching and florescence in Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:708. [PMID: 39054432 PMCID: PMC11271066 DOI: 10.1186/s12870-024-05429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Squamosa promoter-binding protein-like (SPL) proteins are essential to plant growth and development as plant-specific transcription factors. However, the functions of SPL proteins in wheat need to be further explored. RESULTS We cloned and characterized TaSPL6B of wheat in this study. Analysis of physicochemical properties revealed that it contained 961 amino acids and had a molecular weight of 105 kDa. Full-length TaSPL6B transcription activity was not validated in yeast and subcellular localization analysis revealed that TaSPL6B was distributed in the nucleus. Ectopic expression of TaSPL6B in Arabidopsis led to increasing number of branches and early flowering. TaSPL6B was highly transcribed in internodes of transgenic Arabidopsis. The expression of AtSMXL6/AtSMXL7/AtSMXL8 (homologous genes of TaD53) was markedly increased, whereas the expression of AtSPL2 (homologous genes of TaSPL3) and AtBRC1 (homologous genes of TaTB1) was markedly reduced in the internodes of transgenic Arabidopsis. Besides, TaSPL6B, TaSPL3 and TaD53 interacted with one another, as demonstrated by yeast two-hybrid and bimolecular fluorescence complementation assays. Therefore, we speculated that TaSPL6B brought together TaD53 and TaSPL3 and enhanced the inhibition effect of TaD53 on TaSPL3 through integrating light and strigolactone signaling pathways, followed by suppression of TaTB1, a key repressor of tillering. CONCLUSIONS As a whole, our findings contribute to a better understanding of how SPL genes work in wheat and will be useful for further research into how TaSPL6B affects yield-related traits in wheat.
Collapse
Affiliation(s)
- Feiyan Dong
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/ Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co- construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Jinghan Song
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huadong Zhang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/ Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co- construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Jiarun Zhang
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yangfan Chen
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyi Zhou
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co- construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Yaqian Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/ Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
| | - Shijie Ge
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/ Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
| | - Yike Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/ Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China.
| |
Collapse
|
42
|
Zhang Y, Li J, Guo K, Wang T, Gao L, Sun Z, Ma C, Wang C, Tian Y, Zheng X. Strigolactones alleviate AlCl 3 stress by vacuolar compartmentalization and cell wall blocking in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:197-217. [PMID: 38565306 DOI: 10.1111/tpj.16753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Poor management and excess fertilization of apple (Malus domestica Borkh.) orchards are causing increasingly serious soil acidification, resulting in Al toxicity and direct poisoning of roots. Strigolactones (SLs) are reported to be involved in plant responses to abiotic stress, but their role and mechanism under AlCl3 stress remain unknown. Here, we found that applying 1 μm GR24 (an SL analoge) significantly alleviated AlCl3 stress of M26 apple rootstock, mainly by blocking the movement of Al through cell wall and by vacuolar compartmentalization of Al. RNA-seq analysis identified the core transcription factor gene MdWRKY53, and overexpressing MdWRKY53 enhanced AlCl3 tolerance in transgenic apple plants through the same mechanism as GR24. Subsequently, we identified MdPMEI45 (encoding pectin methylesterase inhibitor) and MdALS3 (encoding an Al transporter) as downstream target genes of MdWRKY53 using chromatin immunoprecipitation followed by sequencing (ChIP-seq). GR24 enhanced the interaction between MdWRKY53 and the transcription factor MdTCP15, further increasing the binding of MdWRKY53 to the MdPMEI45 promoter and inducing MdPMEI45 expression to prevent Al from crossing cell wall. MdWRKY53 also bound to the promoter of MdALS3 and enhanced its transcription to compartmentalize Al in vacuoles under AlCl3 stress. We therefore identified two modules involved in alleviating AlCl3 stress in woody plant apple: the SL-WRKY+TCP-PMEI module required for excluding external Al by blocking the entry of Al3+ into cells and the SL-WRKY-ALS module allowing internal detoxification of Al through vacuolar compartmentalization. These findings lay a foundation for the practical application of SLs in agriculture.
Collapse
Affiliation(s)
- Yong Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Jianyu Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Kexin Guo
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Tianchao Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Lijie Gao
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| |
Collapse
|
43
|
Chang W, Qiao Q, Li Q, Li X, Li Y, Huang X, Wang Y, Li J, Wang B, Wang L. Non-transcriptional regulatory activity of SMAX1 and SMXL2 mediates karrikin-regulated seedling response to red light in Arabidopsis. MOLECULAR PLANT 2024; 17:1054-1072. [PMID: 38807366 DOI: 10.1016/j.molp.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/09/2024] [Accepted: 05/26/2024] [Indexed: 05/30/2024]
Abstract
Karrikins and strigolactones govern plant development and environmental responses through closely related signaling pathways. The transcriptional repressor proteins SUPPRESSOR OF MAX2 1 (SMAX1), SMAX1-like2 (SMXL2), and D53-like SMXLs mediate karrikin and strigolactone signaling by directly binding downstream genes or by inhibiting the activities of transcription factors. In this study, we characterized the non-transcriptional regulatory activities of SMXL proteins in Arabidopsis. We discovered that SMAX1 and SMXL2 with mutations in their ethylene-response factor-associated amphiphilic repression (EAR) motif had undetectable or weak transcriptional repression activities but still partially rescued the hypocotyl elongation defects and fully reversed the cotyledon epinasty defects of the smax1 smxl2 mutant. SMAX1 and SMXL2 directly interact with PHYTOCHROME INTERACTION FACTOR 4 (PIF4) and PIF5 to enhance their protein stability by interacting with phytochrome B (phyB) and suppressing the association of phyB with PIF4 and PIF5. The karrikin-responsive genes were then identified by treatment with GR24ent-5DS, a GR24 analog showing karrikin activity. Interestingly, INDOLE-3-ACETIC ACID INDUCIBLE 29 (IAA29) expression was repressed by GR24ent-5DS treatment in a PIF4- and PIF5-dependent and EAR-independent manner, whereas KARRIKIN UPREGULATED F-BOX 1 (KUF1) expression was induced in a PIF4- and PIF5-independent and EAR-dependent manner. Furthermore, the non-transcriptional regulatory activity of SMAX1, which is independent of the EAR motif, had a global effect on gene expression. Taken together, these results indicate that non-transcriptional regulatory activities of SMAX1 and SMXL2 mediate karrikin-regulated seedling response to red light.
Collapse
Affiliation(s)
- Wenwen Chang
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Qiao
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingtian Li
- Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Xin Li
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Li
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Xiahe Huang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayang Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Bing Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei Wang
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
44
|
Zhao B, Gao Y, Ma Q, Wang X, Zhu JK, Li W, Wang B, Yuan F. Global dynamics and cytokinin participation of salt gland development trajectory in recretohalophyte Limonium bicolor. PLANT PHYSIOLOGY 2024; 195:2094-2110. [PMID: 38588029 DOI: 10.1093/plphys/kiae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024]
Abstract
Salt gland is an epidermal Na+ secretory structure that enhances salt resistance in the recretohalophyte sea lavender (Limonium bicolor). To elucidate the salt gland development trajectory and related molecular mechanisms, we performed single-cell RNA sequencing of L. bicolor protoplasts from young leaves at salt gland initiation and differentiation stages. Dimensionality reduction analyses defined 19 transcriptionally distinct cell clusters, which were assigned into 4 broad populations-promeristem, epidermis, mesophyll, and vascular tissue-verified by in situ hybridization. Cytokinin was further proposed to participate in salt gland development by the expression patterns of related genes and cytological evidence. By comparison analyses of Single-cell RNA sequencing with exogenous application of 6-benzylaminopurine, we delineated 5 salt gland development-associated subclusters and defined salt gland-specific differentiation trajectories from Subclusters 8, 4, and 6 to Subcluster 3 and 1. Additionally, we validated the participation of TRIPTYCHON and the interacting protein Lb7G34824 in salt gland development, which regulated the expression of cytokinin metabolism and signaling-related genes such as GLABROUS INFLORESCENCE STEMS 2 to maintain cytokinin homeostasis during salt gland development. Our results generated a gene expression map of young leaves at single-cell resolution for the comprehensive investigation of salt gland determinants and cytokinin participation that helps elucidate cell fate determination during epidermis formation and evolution in recretohalophytes.
Collapse
Affiliation(s)
- Boqing Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yaru Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Qiuyu Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| |
Collapse
|
45
|
Karniel U, Koch A, Bar Nun N, Zamir D, Hirschberg J. Tomato Mutants Reveal Root and Shoot Strigolactone Involvement in Branching and Broomrape Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1554. [PMID: 38891362 PMCID: PMC11174905 DOI: 10.3390/plants13111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
The phytohormones strigolactones (SLs) control root and shoot branching and are exuded from roots into the rhizosphere to stimulate interaction with mycorrhizal fungi. The exuded SLs serve as signaling molecules for the germination of parasitic plants. The broomrape Phelipanche aegyptiaca is a widespread noxious weed in various crop plants, including tomato (Solanum lycopersicum). We have isolated three mutants that impair SL functioning in the tomato variety M82: SHOOT BRANCHING 1 (sb1) and SHOOT BRANCHING 2 (sb2), which abolish SL biosynthesis, and SHOOT BRANCHING 3 (sb3), which impairs SL perception. The over-branching phenotype of the sb mutants resulted in a severe yield loss. The isogenic property of the mutations in a determinate growth variety enabled the quantitative evaluation of the contribution of SL to yield under field conditions. As expected, the mutants sb1 and sb2 were completely resistant to infection by P. aegyptiaca due to the lack of SL in the roots. In contrast, sb3 was more susceptible to P. aegyptiaca than the wild-type M82. The SL concentration in roots of the sb3 was two-fold higher than in the wild type due to the upregulation of the transcription of SL biosynthesis genes. This phenomenon suggests that the steady-state level of root SLs is regulated by a feedback mechanism that involves the SL signaling pathway. Surprisingly, grafting wild-type varieties on sb1 and sb2 rootstocks eliminated the branching phenotype and yield loss, indicating that SL synthesized in the shoots is sufficient to control shoot branching. Moreover, commercial tomato varieties grafted on sb1 were protected from P. aegyptiaca infection without significant yield loss, offering a practical solution to the broomrape crisis.
Collapse
Affiliation(s)
- Uri Karniel
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (U.K.)
| | - Amit Koch
- Robert H. Smith Institute of Plant Sciences and Genetics, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (A.K.); (D.Z.)
| | - Nurit Bar Nun
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (U.K.)
| | - Dani Zamir
- Robert H. Smith Institute of Plant Sciences and Genetics, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (A.K.); (D.Z.)
| | - Joseph Hirschberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (U.K.)
| |
Collapse
|
46
|
Huang K, Wang Y, Li Y, Zhang B, Zhang L, Duan P, Xu R, Wang D, Liu L, Zhang G, Zhang H, Wang C, Guo N, Hao J, Luo Y, Zhu X, Li Y. Modulation of histone acetylation enables fully mechanized hybrid rice breeding. NATURE PLANTS 2024; 10:954-970. [PMID: 38831046 DOI: 10.1038/s41477-024-01720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/08/2024] [Indexed: 06/05/2024]
Abstract
Hybrid rice has achieved high grain yield and greatly contributes to food security, but the manual-labour-intensive hybrid seed production process limits fully mechanized hybrid rice breeding. For next-generation hybrid seed production, the use of small-grain male sterile lines to mechanically separate small hybrid seeds from mixed harvest is promising. However, it is difficult to find ideal grain-size genes for breeding ideal small-grain male sterile lines without penalties in the number of hybrid seeds and hybrid rice yield. Here we report that the use of small-grain alleles of the ideal grain-size gene GSE3 in male sterile lines enables fully mechanized hybrid seed production and dramatically increases hybrid seed number in three-line and two-line hybrid rice systems. The GSE3 gene encodes a histone acetyltransferase that binds histones and influences histone acetylation levels. GSE3 is recruited by the transcription factor GS2 to the promoters of their co-regulated grain-size genes and influences the histone acetylation status of their co-regulated genes. Field trials demonstrate that genome editing of GSE3 can be used to immediately improve current elite male sterile lines of hybrid rice for fully mechanized hybrid rice breeding, providing a new perspective for mechanized hybrid breeding in other crops.
Collapse
Affiliation(s)
- Ke Huang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Hainan Seed Industry Laboratory, Sanya, China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yingjie Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Hainan Seed Industry Laboratory, Sanya, China
| | - Baolan Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Limin Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Penggen Duan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ran Xu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dekai Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lijie Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agriculture, University of Chinese Academy of Sciences, Beijing, China
| | - Guozheng Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hao Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agriculture, University of Chinese Academy of Sciences, Beijing, China
| | - Chenjie Wang
- School of Breeding and Multiplication, Hainan University, Sanya, China
| | - Nian Guo
- School of Breeding and Multiplication, Hainan University, Sanya, China
| | - Jianqin Hao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuehua Luo
- School of Breeding and Multiplication, Hainan University, Sanya, China
| | - Xudong Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.
| | - Yunhai Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agriculture, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
47
|
Jing Y, Yang Z, Yang Z, Bai W, Yang R, Zhang Y, Zhang K, Zhang Y, Sun J. Sequential activation of strigolactone and salicylate biosynthesis promotes leaf senescence. THE NEW PHYTOLOGIST 2024; 242:2524-2540. [PMID: 38641854 DOI: 10.1111/nph.19760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024]
Abstract
Leaf senescence is a complex process strictly regulated by various external and endogenous factors. However, the key signaling pathway mediating leaf senescence remains unknown. Here, we show that Arabidopsis SPX1/2 negatively regulate leaf senescence genetically downstream of the strigolactone (SL) pathway. We demonstrate that the SL receptor AtD14 and MAX2 mediate the age-dependent degradation of SPX1/2. Intriguingly, we uncover an age-dependent accumulation of SLs in leaves via transcriptional activation of SL biosynthetic genes by the transcription factors (TFs) SPL9/15. Furthermore, we reveal that SPX1/2 interact with the WRKY75 subclade TFs to inhibit their DNA-binding ability and thus repress transcriptional activation of salicylic acid (SA) biosynthetic gene SA Induction-Deficient 2, gating the age-dependent SA accumulation in leaves at the leaf senescence onset stage. Collectively, our new findings reveal a signaling pathway mediating sequential activation of SL and salicylate biosynthesis for the onset of leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Yexing Jing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ziyi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zongju Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Wanqing Bai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruizhen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Yunwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
48
|
Nahas Z, Ticchiarelli F, van Rongen M, Dillon J, Leyser O. The activation of Arabidopsis axillary buds involves a switch from slow to rapid committed outgrowth regulated by auxin and strigolactone. THE NEW PHYTOLOGIST 2024; 242:1084-1097. [PMID: 38503686 DOI: 10.1111/nph.19664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
Arabidopsis thaliana (Arabidopsis) shoot architecture is largely determined by the pattern of axillary buds that grow into lateral branches, the regulation of which requires integrating both local and systemic signals. Nodal explants - stem explants each bearing one leaf and its associated axillary bud - are a simplified system to understand the regulation of bud activation. To explore signal integration in bud activation, we characterised the growth dynamics of buds in nodal explants in key mutants and under different treatments. We observed that isolated axillary buds activate in two genetically and physiologically separable phases: a slow-growing lag phase, followed by a switch to rapid outgrowth. Modifying BRANCHED1 expression or the properties of the auxin transport network, including via strigolactone application, changed the length of the lag phase. While most interventions affected only the length of the lag phase, strigolactone treatment and a second bud also affected the rapid growth phase. Our results are consistent with the hypothesis that the slow-growing lag phase corresponds to the time during which buds establish canalised auxin transport out of the bud, after which they enter a rapid growth phase. Our work also hints at a role for auxin transport in influencing the maximum growth rate of branches.
Collapse
Affiliation(s)
- Zoe Nahas
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | | | - Martin van Rongen
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Jean Dillon
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| |
Collapse
|
49
|
Guillory A, Lopez-Obando M, Bouchenine K, Le Bris P, Lécureuil A, Pillot JP, Steinmetz V, Boyer FD, Rameau C, de Saint Germain A, Bonhomme S. SUPPRESSOR OF MAX2 1-LIKE (SMXL) homologs are MAX2-dependent repressors of Physcomitrium patens growth. THE PLANT CELL 2024; 36:1655-1672. [PMID: 38242840 PMCID: PMC11062456 DOI: 10.1093/plcell/koae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/21/2024]
Abstract
SUPPRESSOR OF MAX2 (SMAX)1-LIKE (SMXL) proteins are a plant-specific clade of type I HSP100/Clp-ATPases. SMXL genes are present in virtually all land plant genomes. However, they have mainly been studied in angiosperms. In Arabidopsis (Arabidopsis thaliana), 3 functional SMXL subclades have been identified: SMAX1/SMXL2, SMXL345, and SMXL678. Of these, 2 subclades ensure endogenous phytohormone signal transduction. SMAX1/SMXL2 proteins are involved in KAI2 ligand (KL) signaling, while SMXL678 proteins are involved in strigolactone (SL) signaling. Many questions remain regarding the mode of action of these proteins, as well as their ancestral roles. We addressed these questions by investigating the functions of the 4 SMXL genes in the moss Physcomitrium patens. We demonstrate that PpSMXL proteins are involved in the conserved ancestral MAX2-dependent KL signaling pathway and negatively regulate growth. However, PpSMXL proteins expressed in Arabidopsis cannot replace SMAX1 or SMXL2 function in KL signaling, whereas they can functionally replace SMXL4 and SMXL5 and restore root growth. Therefore, the molecular functions of SMXL proteins are conserved, but their interaction networks are not. Moreover, the PpSMXLC/D clade positively regulates SL signal transduction in P. patens. Overall, our data reveal that SMXL proteins in moss mediate crosstalk between the SL and KL signaling pathways.
Collapse
Affiliation(s)
- Ambre Guillory
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Mauricio Lopez-Obando
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
- Institut de biologie moléculaire des plantes (IBMP), CNRS, University of Strasbourg, 12 rue du Général Zimmer, 67000 Strasbourg, France
| | - Khalissa Bouchenine
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Philippe Le Bris
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Alain Lécureuil
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Jean-Paul Pillot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Vincent Steinmetz
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - François-Didier Boyer
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Catherine Rameau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Alexandre de Saint Germain
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Sandrine Bonhomme
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| |
Collapse
|
50
|
Puga MI, Poza-Carrión C, Martinez-Hevia I, Perez-Liens L, Paz-Ares J. Recent advances in research on phosphate starvation signaling in plants. JOURNAL OF PLANT RESEARCH 2024; 137:315-330. [PMID: 38668956 PMCID: PMC11081996 DOI: 10.1007/s10265-024-01545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Phosphorus is indispensable for plant growth and development, with its status crucial for determining crop productivity. Plants have evolved various biochemical, morphological, and developmental responses to thrive under conditions of low P availability, as inorganic phosphate (Pi), the primary form of P uptake, is often insoluble in soils. Over the past 25 years, extensive research has focused on understanding these responses, collectively forming the Pi starvation response system. This effort has not only expanded our knowledge of strategies to cope with Pi starvation (PS) but also confirmed their adaptive significance. Moreover, it has identified and characterized numerous components of the intricate regulatory network governing P homeostasis. This review emphasizes recent advances in PS signaling, particularly highlighting the physiological importance of local PS signaling in inhibiting primary root growth and uncovering the role of TORC1 signaling in this process. Additionally, advancements in understanding shoot-root Pi allocation and a novel technique for studying Pi distribution in plants are discussed. Furthermore, emerging data on the regulation of plant-microorganism interactions by the PS regulatory system, crosstalk between the signaling pathways of phosphate starvation, phytohormones and immunity, and recent studies on natural variation in Pi homeostasis are addressed.
Collapse
Affiliation(s)
- María Isabel Puga
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - César Poza-Carrión
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - Iris Martinez-Hevia
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - Laura Perez-Liens
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain.
| |
Collapse
|