1
|
Biviano MD, Jensen KH. Settling aerodynamics is a driver of symmetry in deciduous tree leaves. J R Soc Interface 2025; 22:20240654. [PMID: 40328297 PMCID: PMC12055283 DOI: 10.1098/rsif.2024.0654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/13/2024] [Accepted: 01/30/2025] [Indexed: 05/08/2025] Open
Abstract
Leaves shed by deciduous trees contain 40% of the annually sequestered carbon and include nutrients vital to the expansion and health of forest ecosystems. To achieve this, leaves must fall quickly to land near the parent tree-otherwise, they are lost to the wind, like pollen or gliding seeds. However, the link between leaf shape and sedimentation speed remains unclear. To gauge the relative performance of extant leaves, we developed an automated sedimentation apparatus capable of performing approximately 100 free-fall experiments per day on biomimetic paper leaves. The majority of 25 representative leaves settle at rates similar to our control (a circular disc). Strikingly, the Arabidopsis mutant asymmetric leaves1 (as1) fell 15% slower than the wild-type. Applying the as1-digital mutation to deciduous tree leaves revealed a similar speed reduction. Data correlating shape and settling across a broad range of natural, mutated and artificial leaves support the fast-leaf hypothesis: deciduous leaves are symmetric and relatively unlobed partly because this maximizes their settling speed and concomitant nutrient retention.
Collapse
|
2
|
Stroud JT, Ratcliff WC. Long-term studies provide unique insights into evolution. Nature 2025; 639:589-601. [PMID: 40108318 DOI: 10.1038/s41586-025-08597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/06/2025] [Indexed: 03/22/2025]
Abstract
From experimental evolution in the laboratory to sustained measurements of natural selection in the wild, long-term studies have revolutionized our understanding of evolution. By directly investigating evolutionary dynamics in real time, these approaches have provided unparallelled insights into the complex interplay between evolutionary process and pattern. These approaches can reveal oscillations, stochastic fluctuations and systematic trends that unfold over extended periods, expose critical time lags between environmental shifts and population responses, and illuminate how subtle effects may accumulate into significant evolutionary patterns. Long-term studies can also reveal otherwise cryptic trends that unfold over extended periods, and offer the potential for serendipity: observing rare events that spur new evolutionary hypotheses and research directions. Despite the challenges of conducting long-term research, exacerbated by modern funding landscapes favouring short-term projects, the contributions of long-term studies to evolutionary biology are indispensable. This is particularly true in our rapidly changing, human-dominated world, where such studies offer a crucial window into how environmental changes and altered species interactions shape evolutionary trajectories. In this Review article, we showcase the groundbreaking discoveries of long-term evolutionary studies, underscoring their crucial role in advancing our understanding of the complex nature of evolution across multiple systems and timescales.
Collapse
Affiliation(s)
- James T Stroud
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
3
|
Tong K, Datta S, Cheng V, Haas DJ, Gourisetti S, Yopp HL, Day TC, Lac DT, Khalil AS, Conlin PL, Bozdag GO, Ratcliff WC. Genome duplication in a long-term multicellularity evolution experiment. Nature 2025; 639:691-699. [PMID: 40044858 DOI: 10.1038/s41586-025-08689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/23/2025] [Indexed: 03/12/2025]
Abstract
Whole-genome duplication (WGD) is widespread across eukaryotes and can promote adaptive evolution1-4. However, given the instability of newly formed polyploid genomes5-7, understanding how WGDs arise in a population, persist, and underpin adaptations remains a challenge. Here, using our ongoing Multicellularity Long Term Evolution Experiment (MuLTEE)8, we show that diploid snowflake yeast (Saccharomyces cerevisiae) under selection for larger multicellular size rapidly evolve to be tetraploid. From their origin within the first 50 days of the experiment, tetraploids persisted for the next 950 days (nearly 5,000 generations, the current leading edge of our experiment) in 10 replicate populations, despite being genomically unstable. Using synthetic reconstruction, biophysical modelling and counter-selection, we found that tetraploidy evolved because it confers immediate fitness benefits under this selection, by producing larger, longer cells that yield larger clusters. The same selective benefit also maintained tetraploidy over long evolutionary timescales, inhibiting the reversion to diploidy that is typically seen in laboratory evolution experiments. Once established, tetraploidy facilitated novel genetic routes for adaptation, having a key role in the evolution of macroscopic multicellular size via the origin of evolutionarily conserved aneuploidy. These results provide unique empirical insights into the evolutionary dynamics and impacts of WGD, showing how it can initially arise due to its immediate adaptive benefits, be maintained by selection and fuel long-term innovations by creating additional dimensions of heritable genetic variation.
Collapse
Affiliation(s)
- Kai Tong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Biological Design Center, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Sayantan Datta
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Vivian Cheng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Daniella J Haas
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Saranya Gourisetti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Harley L Yopp
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas C Day
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Dung T Lac
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Peter L Conlin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Jung Y, Plumb-Reyes T, Lin HYG, Mahadevan L. Entanglement transition in random rod packings. Proc Natl Acad Sci U S A 2025; 122:e2401868122. [PMID: 39982741 PMCID: PMC11874019 DOI: 10.1073/pnas.2401868122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 12/12/2024] [Indexed: 02/22/2025] Open
Abstract
Random packings of stiff rods are self-supporting mechanical structures stabilized by long-range interactions induced by contacts. To understand the geometrical and topological complexity of the packings, we first deploy X-ray computerized tomography to unveil the structure of the packing. This allows us to directly visualize the spatial variations in density, orientational order, and the entanglement, a mesoscopic field that we define in terms of a local average crossing number, a measure of the topological complexity of the packing. We find that increasing the aspect ratio of the constituent rods in a packing leads to a proliferation of regions of strong entanglement that eventually percolate through the system and correlated with a sharp transition in the mechanical stability of the packing. To corroborate our experimental findings, we use numerical simulations of contacting elastic rods and characterize their stability to static and dynamic loadings. Our experiments and computations lead us to an entanglement phase diagram which we also populate using published experimental data from pneumatically tangled filaments, worm blobs, and bird nests along with additional numerical simulations using these datasets. Together, these show the regimes associated with mechanically stable entanglement as a function of the statistics of the packings and loading, with lessons for a range of systems from reconfigurable architectures and textiles to active morphable filamentous assemblies.
Collapse
Affiliation(s)
- Yeonsu Jung
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Thomas Plumb-Reyes
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Hao-Yu Greg Lin
- Center for Nanoscale Systems, Harvard University, Cambridge, MA02138
| | - L. Mahadevan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Department of Physics, Harvard University, Cambridge, MA02138
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
5
|
Stoy KS, MacGillivray KA, Burnetti AJ, Barrett C, Ratcliff WC. Multiple pathways to the evolution of positive assortment in aggregative multicellularity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638078. [PMID: 40027677 PMCID: PMC11870530 DOI: 10.1101/2025.02.17.638078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The evolutionary transition to multicellularity requires shifting the primary unit of selection from cells to multicellular collectives. How this occurs in aggregative organisms remains poorly understood. Clonal development provides a direct path to multicellular adaptation through genetic identity between cells, but aggregative organisms face a constraint: selection on collective-level traits cannot drive adaptation without positive genetic assortment. We leveraged experimental evolution of flocculating Saccharomyces cerevisiae to examine the evolution and role of genetic assortment in multicellular adaptation. After 840 generations of selection for rapid settling, 13 of 19 lineages evolved increased positive assortment relative to their ancestor. However, assortment provided no competitive advantage during settling selection, suggesting it arose as an indirect effect of selection on cell-level traits rather than through direct selection on collective-level properties. Genetic reconstruction experiments and protein structure modeling revealed two distinct pathways to assortment: kin recognition mediated by mutations in the FLO1 adhesion gene and generally enhanced cellular adhesion that improved flocculation efficiency independent of partner genotype. The evolution of assortment without immediate adaptive benefit suggests that key innovations enabling multicellular adaptation may arise indirectly through cell-level selection. Our results demonstrate fundamental constraints on aggregative multicellularity and help explain why aggregative lineages have remained simple.
Collapse
|
6
|
Li Z, Tang J, Zhou L, Mao J, Wang W, Huang Z, Zhang L, Wu J, Jiang X, Ding Z, Xi K, Cai F, Gu Y, Chen L. MicroSphere 3D Structures Delay Tissue Senescence through Mechanotransduction. ACS NANO 2025; 19:2695-2714. [PMID: 39787443 DOI: 10.1021/acsnano.4c14874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The extracellular matrix (ECM) stores signaling molecules and facilitates mechanical and biochemical signaling in cells. However, the influence of biomimetic "rejuvenation" ECM structures on aging- and degeneration-related cellular activities and tissue repair is not well understood. We combined physical extrusion and precise "on-off" alternating cross-linking methods to create anisotropic biomaterial microgels (MicroRod and MicroSphere) and explored how they regulate the cell activities of the nucleus pulposus (NP) and their potential antidegenerative effects on intervertebral discs. NP cells exhibited aligned growth along the surface of the MicroRod, enhanced proliferation, and reduced apoptosis. This suggests an adaptive cellular response involving adhesion and mechanosensing, which causes cytoskeletal extension via environmental cues. NP cells maintain nuclear membrane integrity through the YAP/TAZ pathway, which activates the cGAS-STING pathway to rectify the aging mechanisms. In vivo, MicroRod carries NP cells and reduces inflammatory factor and protease secretion in degenerated intervertebral discs, inhibiting degeneration and promoting NP tissue regeneration. Our findings highlight the role of mechanical stress in maintaining cellular activity and antiaging effects in harsh environments, providing a foundation for further research and development of antidegenerative biomaterials.
Collapse
Affiliation(s)
- Ziang Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Jincheng Tang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Liang Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Jiannan Mao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Wei Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Ziyan Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Lichen Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Jie Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Xinzhao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Zhouye Ding
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Kun Xi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Feng Cai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Yong Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Liang Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| |
Collapse
|
7
|
Lee JS, Kirkpatrick BE, Dhand AP, Hibbard LP, Nelson BR, Skillin NP, Johnson MC, Batan D, Fairbanks BD, White TJ, Bowman CN, Burdick JA, Anseth KS. Photodegradable polyacrylamide tanglemers enable spatiotemporal control over chain lengthening in high-strength and low-hysteresis hydrogels. J Mater Chem B 2025; 13:894-903. [PMID: 39648868 PMCID: PMC11626382 DOI: 10.1039/d4tb02149e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Covalent hydrogel networks suffer from a stiffness-toughness conflict, where increased crosslinking density enhances the modulus of the material but also leads to embrittlement and diminished extensibility. Recently, strategies have been developed to form highly entangled hydrogels, colloquially referred to as tanglemers, by optimizing polymerization conditions to maximize the density and length of polymer chains and minimize the crosslinker concentration. It is challenging to assess entanglements in crosslinked networks beyond approximating their theoretical contribution to mechanical properties; thus, in this work, we synthesize and characterize polyacrylamide tanglemers using a photolabile crosslinker, which allows for direct assessment of covalent trapping of entanglements under tension. Further, this chemistry allows tuning of the modulus in situ by crosslink photocleavage (from tensile modulus (ET) = 100 kPa to <25 kPa). Beyond cleavage of crosslinks, we demonstrate that even non-degradable tanglemer formulations can be photo-softened and completely degraded through Fe3+-mediated oxidation of the polyacrylamide backbone. While both photodegradation methods are useful for spatial patterning and result in softer gels with reduced fracture strength, only crosslink photocleavage improves gel extensibility via light-induced chain lengthening (εF = 700% to >1500%). Crosslink photocleavage in tanglemers also affords significant control over localized swelling and diffusivity. In sum, we introduce a simple and user-directed approach for probing entanglements and asserting spatiotemporal control over stress-strain responses and small molecule diffusivity in polyacrylamide tanglemers, suggesting a multitude of potential soft matter applications including controlled release and tunable bioadhesive interfaces.
Collapse
Affiliation(s)
- Joshua S Lee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, USA.
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Abhishek P Dhand
- Department of Bioengineering, University of Pennsylvania, Pennsylvania, USA
| | - Lea Pearl Hibbard
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, USA.
| | - Benjamin R Nelson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Nathaniel P Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Makayla C Johnson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, USA.
| | - Dilara Batan
- BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, USA
| | - Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, USA.
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, USA.
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, USA
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, USA.
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, USA
| | - Jason A Burdick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, USA
| |
Collapse
|
8
|
Karve S. Evolutionary Novelties in Bacteria and the Missing Backdrop of the Environment. Environ Microbiol 2025; 27:e70044. [PMID: 39868647 DOI: 10.1111/1462-2920.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
Evolutionary novelty has been one of the central themes in the field of evolutionary biology for many years. Structural and functional innovations such as scales in the reptiles, fins in the fishes and mammary glands in the mammals have been the focus of the studies. Insights obtained from these studies have shaped the criterion for the identification of novelty as well as provide the framework for studying novelty. In this article, I argue that unicellular organisms present an excellent opportunity for the investigation of evolutionary novelty. Even though bacteria share some fundamental aspects of novelty with higher organisms, there are definite departures. Here, I outline these departures in four different contexts: criterion for the identification of novelty, types of evolutionary novelties, level of biological complexity that bacteria embody and, most importantly, the role of the environment. Identifying the role of the environment allows the categorisation of novelty as probable or improbable and adaptive or latent. This categorisation of novel traits, based on the role of the environment, can facilitate the study of novelty in bacteria. Insights obtained from such studies are crucial for understanding the fundamental aspects of evolutionary novelty.
Collapse
Affiliation(s)
- Shraddha Karve
- Trivedi School of BioSciences and Koita Centre for Digital Health, Ashoka University, Sonipat, India
| |
Collapse
|
9
|
Madhani H, Nejad Kourki A. The Evolution of Complex Multicellularity in Land Plants. Genes (Basel) 2024; 15:1472. [PMID: 39596672 PMCID: PMC11593340 DOI: 10.3390/genes15111472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
The evolution of complex multicellularity in land plants represents a pivotal event in the history of life on Earth, characterized by significant increases in biological complexity. This transition, classified as a Major Evolutionary Transition (MET), is best understood through the framework of Evolutionary Transitions in Individuality (ETIs), which focuses on formerly independent entities forming higher-level units that lose their reproductive autonomy. While much of the ETI literature has concentrated on the early stages of multicellularity, such as the formation and maintenance stages, this paper seeks to address the less explored transformation stage. To do so, we apply an approach that we call Transitions in Structural Complexity (TSCs), which focuses on the emergence of new units of organization via the three key evolutionary processes of modularization, subfunctionalization, and integration to the evolution of land plants. To lay the groundwork, we first explore the relationships between sex, individuality, and units of selection to highlight a sexual life cycle-based perspective on ETIs by examining the early stages of the transition to multicellularity (formation) in the sexual life cycle of the unicellular common ancestor of land plants, emphasizing the differences between the transition to multicellularity in eumetazoans and land plants. We then directly apply the TSC approach in this group, identifying key evolutionary events such as the distinct evolutionary innovations like shoot, root, vascular systems, and specialized reproductive structures, arguing that bringing these under the broader rubric of TSCs affords a degree of explanatory unification. By examining these evolutionary processes, this paper provides a new perspective on the evolution of multicellularity in land plants, highlighting both parallels and distinctions with the animal kingdom.
Collapse
Affiliation(s)
- Hossein Madhani
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Arsham Nejad Kourki
- The Francis Crick Institute, London NW1 1AT, UK
- Department of History and Philosophy of Science, University of Cambridge, Cambridge CB2 3RH, UK
| |
Collapse
|
10
|
Pineau RM, Kahn PC, Lac DT, Belpaire TER, Denning MG, Wong W, Ratcliff WC, Bozdag GO. Experimental evolution of multicellularity via cuboidal cell packing in fission yeast. Evol Lett 2024; 8:695-704. [PMID: 39957727 PMCID: PMC11827335 DOI: 10.1093/evlett/qrae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/21/2024] [Accepted: 05/24/2024] [Indexed: 02/18/2025] Open
Abstract
The evolution of multicellularity represents a major transition in life's history, enabling the rise of complex organisms. Multicellular groups can evolve through multiple developmental modes, but a common step is the formation of permanent cell-cell attachments after division. The characteristics of the multicellular morphology that emerges have profound consequences for the subsequent evolution of a nascent multicellular lineage, but little prior work has investigated these dynamics directly. Here, we examine a widespread yet understudied emergent multicellular morphology: cuboidal packing. Extinct and extant multicellular organisms across the tree of life have evolved to form groups in which spherical cells divide but remain attached, forming approximately cubic subunits. To experimentally investigate the evolution of cuboidal cell packing, we used settling selection to favor the evolution of simple multicellularity in unicellular, spherical Schizosaccharomyces pombe yeast. Multicellular clusters with cuboidal organization rapidly evolved, displacing the unicellular ancestor. These clusters displayed key hallmarks of an evolutionary transition in individuality: groups possess an emergent life cycle driven by physical fracture, group size is heritable, and they respond to group-level selection via multicellular adaptation. In 2 out of 5 lineages, group formation was driven by mutations in the ace2 gene, preventing daughter cell separation after division. Remarkably, ace2 mutations also underlie the transition to multicellularity in Saccharomyces cerevisiae and Candida glabrata, lineages that last shared a common ancestor > 300 million years ago. Our results provide insight into the evolution of cuboidal cell packing, an understudied multicellular morphology, and highlight the deeply convergent potential for a transition to multicellular individuality within fungi.
Collapse
Affiliation(s)
- Rozenn M Pineau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Penelope C Kahn
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Dung T Lac
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Tom E R Belpaire
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, Leuven, Belgium
| | - Mia G Denning
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Whitney Wong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
11
|
Ren Y, Yang J, Fujita B, Zhang Y, Berro J. Cross-regulations of two connected domains form a mechanical circuit for steady force transmission during clathrin-mediated endocytosis. Cell Rep 2024; 43:114725. [PMID: 39276354 PMCID: PMC11476202 DOI: 10.1016/j.celrep.2024.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/01/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Mechanical forces are transmitted from the actin cytoskeleton to the membrane during clathrin-mediated endocytosis (CME) in the fission yeast Schizosaccharomyces pombe. End4p directly transmits force in CME by binding to both the membrane (through the AP180 N-terminal homology [ANTH] domain) and F-actin (through the talin-HIP1/R/Sla2p actin-tethering C-terminal homology [THATCH] domain). We show that 7 pN force is required for stable binding between THATCH and F-actin. We also characterized a domain in End4p, Rend (rod domain in End4p), that resembles R12 of talin. Membrane localization of Rend primes the binding of THATCH to F-actin, and force-induced unfolding of Rend at 15 pN terminates the transmission of force. We show that the mechanical properties (mechanical stability, unfolding extension, hysteresis) of Rend and THATCH are tuned to form a circuit for the initiation, transmission, and termination of force between the actin cytoskeleton and membrane. The mechanical circuit by Rend and THATCH may be conserved and coopted evolutionarily in cell adhesion complexes.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA.
| | - Jie Yang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Barbara Fujita
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA
| | - Yongli Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Bingham EP, Yunker PJ. Evolution of cell differentiation: Maintenance emerges from speedy models and simple rules. Curr Biol 2024; 34:R816-R818. [PMID: 39255763 DOI: 10.1016/j.cub.2024.07.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Can simple groups of cells maintain reproductive division of labor? Or will stochastic fracturing produce groups with a single cell type? A new study uses models and experiments to show that simple biophysical traits can maintain reproductive division of labor.
Collapse
Affiliation(s)
- Emma P Bingham
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Peter J Yunker
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
13
|
Doulcier G, Takacs P, Hammerschmidt K, Bourrat P. Stability of ecologically scaffolded traits during evolutionary transitions in individuality. Nat Commun 2024; 15:6566. [PMID: 39095362 PMCID: PMC11297203 DOI: 10.1038/s41467-024-50625-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Evolutionary transitions in individuality are events in the history of life leading to the emergence of new levels of individuality. Recent studies have described an ecological scaffolding scenario of such transitions focused on the evolutionary consequences of an externally imposed renewing meta-population structure with limited dispersal. One difficulty for such a scenario has been explaining the stability of collective-level traits when scaffolding conditions no longer apply. Here, we show that the stability of scaffolded traits can rely on evolutionary hysteresis: even if the environment is reverted to an ancestral state, collectives do not return to ancestral phenotypes. We describe this phenomenon using a stochastic meta-population model and adaptive dynamics. Further, we show that ecological scaffolding may be limited to Goldilocks zones of the environment. We conjecture that Goldilocks zones-even if they might be rare-could act as initiators of evolutionary transitions and help to explain the near ubiquity of collective-level individuality.
Collapse
Affiliation(s)
- Guilhem Doulcier
- Philosophy Department, Macquarie University, New South Wales 2109, Australia.
- Theoretical Biology Department, Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | - Peter Takacs
- Philosophy Department, Macquarie University, New South Wales 2109, Australia
- Department of Philosophy and Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | | | - Pierrick Bourrat
- Philosophy Department, Macquarie University, New South Wales 2109, Australia.
- Department of Philosophy and Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia.
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia.
| |
Collapse
|
14
|
Narayanasamy N, Bingham E, Fadero T, Ozan Bozdag G, Ratcliff WC, Yunker P, Thutupalli S. Metabolically-driven flows enable exponential growth in macroscopic multicellular yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599734. [PMID: 38948761 PMCID: PMC11213004 DOI: 10.1101/2024.06.19.599734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The ecological and evolutionary success of multicellular lineages is due in no small part to their increased size relative to unicellular ancestors. However, large size also poses biophysical challenges, especially regarding the transport of nutrients to all cells; these constraints are typically overcome through multicellular innovations (e.g., a circulatory system). Here we show that an emergent biophysical mechanism - spontaneous fluid flows arising from metabolically-generated density gradients - can alleviate constraints on nutrient transport, enabling exponential growth in nascent multicellular clusters of yeast lacking any multicellular adaptations for nutrient transport or fluid flow. Surprisingly, beyond a threshold size, the metabolic activity of experimentally-evolved snowflake yeast clusters drives large-scale fluid flows that transport nutrients throughout the cluster at speeds comparable to those generated by the cilia of extant multicellular organisms. These flows support exponential growth at macroscopic sizes that theory predicts should be diffusion limited. This work demonstrates how simple physical mechanisms can act as a 'biophysical scaffold' to support the evolution of multicellularity by opening up phenotypic possibilities prior to genetically-encoded innovations. More broadly, our findings highlight how co-option of conserved physical processes is a crucial but underappreciated facet of evolutionary innovation across scales.
Collapse
Affiliation(s)
- Nishant Narayanasamy
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bangalore, India
| | - Emma Bingham
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bangalore, India
- International Centre for Theoretical Sciences (TIFR), Bangalore, India
| |
Collapse
|
15
|
Nanda P, Barrere J, LaBar T, Murray AW. A dynamic network model predicts the phenotypes of multicellular clusters from cellular properties. Curr Biol 2024; 34:2672-2683.e4. [PMID: 38823384 PMCID: PMC11610506 DOI: 10.1016/j.cub.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/20/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
Cell division without cell separation produces multicellular clusters in budding yeast. Two fundamental characteristics of these clusters are their size (the number of cells per cluster) and cellular composition: the fractions of cells with different phenotypes. Using cells as nodes and links between mother and daughter cells as edges, we model cluster growth and breakage by varying three parameters: the cell division rate, the rate at which intercellular connections break, and the kissing number (the maximum number of connections to one cell). We find that the kissing number sets the maximum possible cluster size. Below this limit, the ratio of the cell division rate to the connection breaking rate determines the cluster size. If links have a constant probability of breaking per unit time, the probability that a link survives decreases exponentially with its age. Modeling this behavior recapitulates experimental data. We then use this framework to examine synthetic, differentiating clusters with two cell types, faster-growing germ cells and their somatic derivatives. The fraction of clusters that contain both cell types increases as either of two parameters increase: the kissing number and difference between the growth rate of germ and somatic cells. In a population of clusters, the variation in cellular composition is inversely correlated (r2 = 0.87) with the average fraction of somatic cells in clusters. Our results show how a small number of cellular features can control the phenotypes of multicellular clusters that were potentially the ancestors of more complex forms of multicellular development, organization, and reproduction.
Collapse
Affiliation(s)
- Piyush Nanda
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Julien Barrere
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thomas LaBar
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
16
|
Puri D, Allison KR. Escherichia coli self-organizes developmental rosettes. Proc Natl Acad Sci U S A 2024; 121:e2315850121. [PMID: 38814871 PMCID: PMC11161754 DOI: 10.1073/pnas.2315850121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Rosettes are self-organizing, circular multicellular communities that initiate developmental processes, like organogenesis and embryogenesis, in complex organisms. Their formation results from the active repositioning of adhered sister cells and is thought to distinguish multicellular organisms from unicellular ones. Though common in eukaryotes, this multicellular behavior has not been reported in bacteria. In this study, we found that Escherichia coli forms rosettes by active sister-cell repositioning. After division, sister cells "fold" to actively align at the 2- and 4-cell stages of clonal division, thereby producing rosettes with characteristic quatrefoil configuration. Analysis revealed that folding follows an angular random walk, composed of ~1 µm strokes and directional randomization. We further showed that this motion was produced by the flagellum, the extracellular tail whose rotation generates swimming motility. Rosette formation was found to require de novo flagella synthesis suggesting it must balance the opposing forces of Ag43 adhesion and flagellar propulsion. We went on to show that proper rosette formation was required for subsequent morphogenesis of multicellular chains, rpoS gene expression, and formation of hydrostatic clonal-chain biofilms. Moreover, we found self-folding rosette-like communities in the standard motility assay, indicating that this behavior may be a general response to hydrostatic environments in E. coli. These findings establish self-organization of clonal rosettes by a prokaryote and have implications for evolutionary biology, synthetic biology, and medical microbiology.
Collapse
Affiliation(s)
- Devina Puri
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA30322
| | - Kyle R. Allison
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA30322
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA30322
| |
Collapse
|
17
|
Root-Bernstein RS, Bernstein MI. 'Evolutionary poker': an agent-based model of interactome emergence and epistasis tested against Lenski's long-term E. coli experiments. J Physiol 2024; 602:2511-2535. [PMID: 37707489 DOI: 10.1113/jp284421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
A simple agent-based model is presented that produces results matching the experimental data found by Lenski's group for ≤50,000 generations of Escherichia coli bacteria under continuous selective pressure. Although various mathematical models have been devised previously to model the Lenski data, the present model has advantages in terms of overall simplicity and conceptual accessibility. The model also clearly illustrates a number of features of the evolutionary process that are otherwise not obvious, such as the roles of epistasis and historical contingency in adaptation and why evolution is time irreversible ('Dollo's law'). The reason for this irreversibility is that genomes become increasingly integrated or organized, and this organization becomes a novel selective factor itself, against which future generations must compete. Selection for integrated or synergistic networks, systems or sets of mutations or traits, not for individual mutations, confers the main adaptive advantage. The result is a punctuated form of evolution that follows a logarithmic occurrence probability, in which evolution proceeds very quickly when interactomes begin to form but which slows as interactomes become more robust and the difficulty of integrating new mutations increases. Sufficient parameters exist in the game to suggest not only how equilibrium or stasis is reached but also the conditions in which it will be punctuated, the factors governing the rate at which genomic organization occurs and novel traits appear, and how population size, genome size and gene variability affect these.
Collapse
Affiliation(s)
| | - Morton I Bernstein
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
18
|
Pineau RM, Libby E, Demory D, Lac DT, Day TC, Bravo P, Yunker PJ, Weitz JS, Bozdag GO, Ratcliff WC. Emergence and maintenance of stable coexistence during a long-term multicellular evolution experiment. Nat Ecol Evol 2024; 8:1010-1020. [PMID: 38486107 PMCID: PMC11090753 DOI: 10.1038/s41559-024-02367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
The evolution of multicellular life spurred evolutionary radiations, fundamentally changing many of Earth's ecosystems. Yet little is known about how early steps in the evolution of multicellularity affect eco-evolutionary dynamics. Through long-term experimental evolution, we observed niche partitioning and the adaptive divergence of two specialized lineages from a single multicellular ancestor. Over 715 daily transfers, snowflake yeast were subjected to selection for rapid growth, followed by selection favouring larger group size. Small and large cluster-forming lineages evolved from a monomorphic ancestor, coexisting for over ~4,300 generations, specializing on divergent aspects of a trade-off between growth rate and survival. Through modelling and experimentation, we demonstrate that coexistence is maintained by a trade-off between organismal size and competitiveness for dissolved oxygen. Taken together, this work shows how the evolution of a new level of biological individuality can rapidly drive adaptive diversification and the expansion of a nascent multicellular niche, one of the most historically impactful emergent properties of this evolutionary transition.
Collapse
Affiliation(s)
- Rozenn M Pineau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric Libby
- Integrated Science Lab, Umeå university, Umeå, Sweden.
- Department of Mathematics and Mathematical Statistics, Umeå university, Umeå, Sweden.
| | - David Demory
- CNRS, Sorbonne Université, USR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Dung T Lac
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas C Day
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Pablo Bravo
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter J Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biology, University of Maryland, College Park, MD, USA
- Department of Physics, University of Maryland, College Park, MD, USA
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Biology, University of Maryland, College Park, MD, USA.
| |
Collapse
|
19
|
Multicellularity drives ecological diversity in a long-term evolution experiment. Nat Ecol Evol 2024; 8:856-857. [PMID: 38519635 DOI: 10.1038/s41559-024-02391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
|
20
|
Tong K, Datta S, Cheng V, Haas DJ, Gourisetti S, Yopp HL, Day TC, Lac DT, Conlin PL, Bozdag GO, Ratcliff WC. Whole-genome duplication in the Multicellularity Long Term Evolution Experiment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.588554. [PMID: 38659912 PMCID: PMC11042302 DOI: 10.1101/2024.04.18.588554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Whole-genome duplication (WGD) is widespread across eukaryotes and can promote adaptive evolution1-4. However, given the instability of newly-formed polyploid genomes5-7, understanding how WGDs arise in a population, persist, and underpin adaptations remains a challenge. Using our ongoing Multicellularity Long Term Evolution Experiment (MuLTEE)8, we show that diploid snowflake yeast (Saccharomyces cerevisiae) under selection for larger multicellular size rapidly undergo spontaneous WGD. From its origin within the first 50 days of the experiment, tetraploids persist for the next 950 days (nearly 5,000 generations, the current leading edge of our experiment) in ten replicate populations, despite being genomically unstable. Using synthetic reconstruction, biophysical modeling, and counter-selection experiments, we found that tetraploidy evolved because it confers immediate fitness benefits in this environment, by producing larger, longer cells that yield larger clusters. The same selective benefit also maintained tetraploidy over long evolutionary timescales, inhibiting the reversion to diploidy that is typically seen in laboratory evolution experiments. Once established, tetraploidy facilitated novel genetic routes for adaptation, playing a key role in the evolution of macroscopic multicellular size via the origin of evolutionarily conserved aneuploidy. These results provide unique empirical insights into the evolutionary dynamics and impacts of WGD, showing how it can initially arise due to its immediate adaptive benefits, be maintained by selection, and fuel long-term innovations by creating additional dimensions of heritable genetic variation.
Collapse
Affiliation(s)
- Kai Tong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sayantan Datta
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Vivian Cheng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Daniella J. Haas
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Saranya Gourisetti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Harley L. Yopp
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas C. Day
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Dung T. Lac
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter L. Conlin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - G. Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
21
|
Montrose K, Lac DT, Burnetti AJ, Tong K, Bozdag GO, Hukkanen M, Ratcliff WC, Saarikangas J. Proteostatic tuning underpins the evolution of novel multicellular traits. SCIENCE ADVANCES 2024; 10:eadn2706. [PMID: 38457507 PMCID: PMC10923498 DOI: 10.1126/sciadv.adn2706] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the multicellularity long-term evolution experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by down-regulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.
Collapse
Affiliation(s)
- Kristopher Montrose
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Dung T. Lac
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anthony J. Burnetti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kai Tong
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences (QBioS), Georgia Institute of Technology, Atlanta, GA, USA
| | - G. Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mikaela Hukkanen
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Bozdag GO, Szeinbaum N, Conlin PL, Chen K, Fos SM, Garcia A, Penev PI, Schaible GA, Trubl G. Chapter 5: Major Biological Innovations in the History of Life on Earth. ASTROBIOLOGY 2024; 24:S107-S123. [PMID: 38498818 PMCID: PMC11071111 DOI: 10.1089/ast.2021.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/14/2023] [Indexed: 03/20/2024]
Abstract
All organisms living on Earth descended from a single, common ancestral population of cells, known as LUCA-the last universal common ancestor. Since its emergence, the diversity and complexity of life have increased dramatically. This chapter focuses on four key biological innovations throughout Earth's history that had a significant impact on the expansion of phylogenetic diversity, organismal complexity, and ecospace habitation. First is the emergence of the last universal common ancestor, LUCA, which laid the foundation for all life-forms on Earth. Second is the evolution of oxygenic photosynthesis, which resulted in global geochemical and biological transformations. Third is the appearance of a new type of cell-the eukaryotic cell-which led to the origin of a new domain of life and the basis for complex multicellularity. Fourth is the multiple independent origins of multicellularity, resulting in the emergence of a new level of complex individuality. A discussion of these four key events will improve our understanding of the intertwined history of our planet and its inhabitants and better inform the extent to which we can expect life at different degrees of diversity and complexity elsewhere.
Collapse
Affiliation(s)
- G. Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nadia Szeinbaum
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter L. Conlin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kimberly Chen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Santiago Mestre Fos
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Amanda Garcia
- Department of Bacteriology, University of Wisconsin–Madison, Wisconsin, USA
| | - Petar I. Penev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - George A. Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
23
|
Montrose K, Lac DT, Burnetti AJ, Tong K, Ozan Bozdag G, Hukkanen M, Ratcliff WC, Saarikangas J. Proteostatic tuning underpins the evolution of novel multicellular traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.31.543183. [PMID: 37333256 PMCID: PMC10274739 DOI: 10.1101/2023.05.31.543183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the Multicellularity Long Term Evolution Experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by downregulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.
Collapse
Affiliation(s)
- Kristopher Montrose
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki
- Faculty of Biological and Environmental Sciences, University of Helsinki
| | - Dung T. Lac
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anthony J. Burnetti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kai Tong
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki
- Faculty of Biological and Environmental Sciences, University of Helsinki
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences (QBioS)
| | - G. Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mikaela Hukkanen
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki
- Faculty of Biological and Environmental Sciences, University of Helsinki
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki
- Faculty of Biological and Environmental Sciences, University of Helsinki
| |
Collapse
|
24
|
Stock M, Gorochowski TE. Open-endedness in synthetic biology: A route to continual innovation for biological design. SCIENCE ADVANCES 2024; 10:eadi3621. [PMID: 38241375 PMCID: PMC11809665 DOI: 10.1126/sciadv.adi3621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Design in synthetic biology is typically goal oriented, aiming to repurpose or optimize existing biological functions, augmenting biology with new-to-nature capabilities, or creating life-like systems from scratch. While the field has seen many advances, bottlenecks in the complexity of the systems built are emerging and designs that function in the lab often fail when used in real-world contexts. Here, we propose an open-ended approach to biological design, with the novelty of designed biology being at least as important as how well it fulfils its goal. Rather than solely focusing on optimization toward a single best design, designing with novelty in mind may allow us to move beyond the diminishing returns we see in performance for most engineered biology. Research from the artificial life community has demonstrated that embracing novelty can automatically generate innovative and unexpected solutions to challenging problems beyond local optima. Synthetic biology offers the ideal playground to explore more creative approaches to biological design.
Collapse
Affiliation(s)
- Michiel Stock
- KERMIT & Biobix, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- BrisEngBio, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| |
Collapse
|
25
|
Sakurada K, Ishikawa T. Synthesis of causal and surrogate models by non-equilibrium thermodynamics in biological systems. Sci Rep 2024; 14:1001. [PMID: 38200211 PMCID: PMC10781949 DOI: 10.1038/s41598-024-51426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
We developed a model to represent the time evolution phenomena of life through physics constraints. To do this, we took into account that living organisms are open systems that exchange messages through intracellular communication, intercellular communication and sensory systems, and introduced the concept of a message force field. As a result, we showed that the maximum entropy generation principle is valid in time evolution. Then, in order to explain life phenomena based on this principle, we modelled the living system as a nonlinear oscillator coupled by a message and derived the governing equations. The governing equations consist of two laws: one states that the systems are synchronized when the variation of the natural frequencies between them is small or the coupling strength through the message is sufficiently large, and the other states that the synchronization is broken by the proliferation of biological systems. Next, to simulate the phenomena using data obtained from observations of the temporal evolution of life, we developed an inference model that combines physics constraints and a discrete surrogate model using category theory, and simulated the phenomenon of early embryogenesis using this inference model. The results show that symmetry creation and breaking based on message force fields can be widely used to model life phenomena.
Collapse
Affiliation(s)
- Kazuhiro Sakurada
- Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Tokyo, Japan.
- Open Systems Information Science Team, Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Tokyo, Japan.
| | - Tetsuo Ishikawa
- Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Medical Data Mathematical Reasoning Team, Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Yokohama, Japan
| |
Collapse
|
26
|
Day TC, Zamani-Dahaj SA, Bozdag GO, Burnetti AJ, Bingham EP, Conlin PL, Ratcliff WC, Yunker PJ. Morphological Entanglement in Living Systems. PHYSICAL REVIEW. X 2024; 14:011008. [PMID: 39479526 PMCID: PMC11524534 DOI: 10.1103/physrevx.14.011008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Many organisms exhibit branching morphologies that twist around each other and become entangled. Entanglement occurs when different objects interlock with each other, creating complex and often irreversible configurations. This physical phenomenon is well studied in nonliving materials, such as granular matter, polymers, and wires, where it has been shown that entanglement is highly sensitive to the geometry of the component parts. However, entanglement is not yet well understood in living systems, despite its presence in many organisms. In fact, recent work has shown that entanglement can evolve rapidly and play a crucial role in the evolution of tough, macroscopic multicellular groups. Here, through a combination of experiments, simulations, and numerical analyses, we show that growth generically facilitates entanglement for a broad range of geometries. We find that experimentally grown entangled branches can be difficult or even impossible to disassemble through translation and rotation of rigid components, suggesting that there are many configurations of branches that growth can access that agitation cannot. We use simulations to show that branching trees readily grow into entangled configurations. In contrast to nongrowing entangled materials, these trees entangle for a broad range of branch geometries. We, thus, propose that entanglement via growth is largely insensitive to the geometry of branched trees but, instead, depends sensitively on timescales, ultimately achieving an entangled state once sufficient growth has occurred. We test this hypothesis in experiments with snowflake yeast, a model system of undifferentiated, branched multicellularity, showing that lengthening the time of growth leads to entanglement and that entanglement via growth can occur for a wide range of geometries. Taken together, our work demonstrates that entanglement is more readily achieved in living systems than in their nonliving counterparts, providing a widely accessible and powerful mechanism for the evolution of novel biological material properties.
Collapse
Affiliation(s)
- Thomas C Day
- School of Physics, Georgia Institute of Technology
| | | | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology
| | | | | | - Peter L Conlin
- School of Biological Sciences, Georgia Institute of Technology
| | | | | |
Collapse
|
27
|
Larson BT. Perspectives on Principles of Cellular Behavior from the Biophysics of Protists. Integr Comp Biol 2023; 63:1405-1421. [PMID: 37496203 PMCID: PMC10755178 DOI: 10.1093/icb/icad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Cells are the fundamental unit of biological organization. Although it may be easy to think of them as little more than the simple building blocks of complex organisms such as animals, single cells are capable of behaviors of remarkable apparent sophistication. This is abundantly clear when considering the diversity of form and function among the microbial eukaryotes, the protists. How might we navigate this diversity in the search for general principles of cellular behavior? Here, we review cases in which the intensive study of protists from the perspective of cellular biophysics has driven insight into broad biological questions of morphogenesis, navigation and motility, and decision making. We argue that applying such approaches to questions of evolutionary cell biology presents rich, emerging opportunities. Integrating and expanding biophysical studies across protist diversity, exploiting the unique characteristics of each organism, will enrich our understanding of general underlying principles.
Collapse
Affiliation(s)
- Ben T Larson
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
28
|
Bich L. Integrating Multicellular Systems: Physiological Control and Degrees of Biological Individuality. Acta Biotheor 2023; 72:1. [PMID: 38151680 PMCID: PMC10752842 DOI: 10.1007/s10441-023-09476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
This paper focuses on physiological integration in multicellular systems, a notion often associated with biological individuality, but which has not received enough attention and needs a thorough theoretical treatment. Broadly speaking, physiological integration consists in how different components come together into a cohesive unit in which they are dependent on one another for their existence and activity. This paper argues that physiological integration can be understood by considering how the components of a biological multicellular system are controlled and coordinated in such a way that their activities can contribute to the maintenance of the system. The main implication of this perspective is that different ways of controlling their parts may give rise to multicellular organizations with different degrees of integration. After defining control, this paper analyses how control is realized in two examples of multicellular systems located at different ends of the spectrum of multicellularity: biofilms and animals. It focuses on differences in control ranges, and it argues that a high degree of integration implies control exerted at both medium and long ranges, and that insofar as biofilms lack long-range control (relative to their size) they can be considered as less integrated than other multicellular systems. It then discusses the implication of this account for the debate on physiological individuality and the idea that degrees of physiological integration imply degrees of individuality.
Collapse
Affiliation(s)
- Leonardo Bich
- Department of Philosophy, IAS-Research Centre for Life, Mind and Society, University of the Basque Country (UPV/EHU), Avenida de Tolosa 70, Donostia-San Sebastian, 20018, Spain.
| |
Collapse
|
29
|
Carlton JG, Baum B. Roles of ESCRT-III polymers in cell division across the tree of life. Curr Opin Cell Biol 2023; 85:102274. [PMID: 37944425 PMCID: PMC7615534 DOI: 10.1016/j.ceb.2023.102274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Every cell becomes two through a carefully orchestrated process of division. Prior to division, contractile machinery must first be assembled at the cell midzone to ensure that the cut, when it is made, bisects the two separated copies of the genetic material. Second, this contractile machinery must be dynamically tethered to the limiting plasma membrane so as to bring the membrane with it as it constricts. Finally, the connecting membrane must be severed to generate two physically separate daughter cells. In several organisms across the tree of life, Endosomal Sorting Complex Required for Transport (ESCRT)-III family proteins aid cell division by forming composite polymers that function together with the Vps4 AAA-ATPase to constrict and cut the membrane tube connecting nascent daughter cells from the inside. In this review, we discuss unique features of ESCRT-III that enable it to play this role in division in many archaea and eukaryotes.
Collapse
Affiliation(s)
- Jeremy Graham Carlton
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, London, SE1 1UL, UK; Organelle Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
30
|
Theodorou I, Charrier B. The shift to 3D growth during embryogenesis of kelp species, atlas of cell division and differentiation of Saccharina latissima. Development 2023; 150:dev201519. [PMID: 37882832 PMCID: PMC10660787 DOI: 10.1242/dev.201519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 09/12/2023] [Indexed: 10/27/2023]
Abstract
In most organisms, 3D growth takes place at the onset of embryogenesis. In some brown algae, 3D growth occurs later in development, when the organism consists of several hundred cells. We studied the cellular events that take place when 3D growth is established in the embryo of the brown alga Saccharina, a kelp species. Semi-thin sections, taken from where growth shifts from 2D to 3D, show that 3D growth first initiates from symmetrical cell division in the monolayered lamina, and then is enhanced through a series of asymmetrical cell divisions in a peripheral monolayer of cells called the meristoderm. Then, daughter cells rapidly differentiate into cortical and medullary cells, characterised by their position, size and shape. In essence, 3D growth in kelps is based on a series of differentiation steps that occur rapidly after the initiation of a bilayered lamina, followed by further growth of the established differentiated tissues. Our study depicts the cellular landscape necessary to study cell-fate programming in the context of a novel mode of 3D growth in an organism phylogenetically distant from plants and animals.
Collapse
Affiliation(s)
- Ioannis Theodorou
- Laboratory of Integrative Marine Models, Station Biologique de Roscoff, UMR8227, CNRS, Sorbonne University, Place Georges Teissier, 29680 Roscoff, France
- Plant Sciences Department, Faculty of Biosciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Bénédicte Charrier
- Laboratory of Integrative Marine Models, Station Biologique de Roscoff, UMR8227, CNRS, Sorbonne University, Place Georges Teissier, 29680 Roscoff, France
| |
Collapse
|
31
|
Pentz JT, MacGillivray K, DuBose JG, Conlin PL, Reinhardt E, Libby E, Ratcliff WC. Evolutionary consequences of nascent multicellular life cycles. eLife 2023; 12:e84336. [PMID: 37889142 PMCID: PMC10611430 DOI: 10.7554/elife.84336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
A key step in the evolutionary transition to multicellularity is the origin of multicellular groups as biological individuals capable of adaptation. Comparative work, supported by theory, suggests clonal development should facilitate this transition, although this hypothesis has never been tested in a single model system. We evolved 20 replicate populations of otherwise isogenic clonally reproducing 'snowflake' yeast (Δace2/∆ace2) and aggregative 'floc' yeast (GAL1p::FLO1 /GAL1p::FLO1) with daily selection for rapid growth in liquid media, which favors faster cell division, followed by selection for rapid sedimentation, which favors larger multicellular groups. While both genotypes adapted to this regime, growing faster and having higher survival during the group-selection phase, there was a stark difference in evolutionary dynamics. Aggregative floc yeast obtained nearly all their increased fitness from faster growth, not improved group survival; indicating that selection acted primarily at the level of cells. In contrast, clonal snowflake yeast mainly benefited from higher group-dependent fitness, indicating a shift in the level of Darwinian individuality from cells to groups. Through genome sequencing and mathematical modeling, we show that the genetic bottlenecks in a clonal life cycle also drive much higher rates of genetic drift-a result with complex implications for this evolutionary transition. Our results highlight the central role that early multicellular life cycles play in the process of multicellular adaptation.
Collapse
Affiliation(s)
| | - Kathryn MacGillivray
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of TechnologyAtlantaUnited States
| | - James G DuBose
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Peter L Conlin
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Emma Reinhardt
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
| | | | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
32
|
Shalev O, Ye X, Ratzke C. Replaying the evolution of multicellularity. Trends Ecol Evol 2023; 38:910-912. [PMID: 37586948 DOI: 10.1016/j.tree.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
The first organisms on Earth were presumably unicellular. At one point, evolution shaped these individual cells into multicellular organisms, which was a significant transition in the history of life on Earth. To investigate how this change happened, Bozdag et al. re-ran evolution in the lab and observed how single-celled yeast forms large multicellular aggregates.
Collapse
Affiliation(s)
- Or Shalev
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence EXC 2124 'Controlling Microbes to Fight Infections' (CMFI), University of Tübingen, Calwerstrasse 7/1, 72076 Tübingen, Germany
| | - Xiaozhou Ye
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence EXC 2124 'Controlling Microbes to Fight Infections' (CMFI), University of Tübingen, Calwerstrasse 7/1, 72076 Tübingen, Germany
| | - Christoph Ratzke
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence EXC 2124 'Controlling Microbes to Fight Infections' (CMFI), University of Tübingen, Calwerstrasse 7/1, 72076 Tübingen, Germany.
| |
Collapse
|
33
|
Zamani-Dahaj SA, Burnetti A, Day TC, Yunker PJ, Ratcliff WC, Herron MD. Spontaneous Emergence of Multicellular Heritability. Genes (Basel) 2023; 14:1635. [PMID: 37628687 PMCID: PMC10454505 DOI: 10.3390/genes14081635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The major transitions in evolution include events and processes that result in the emergence of new levels of biological individuality. For collectives to undergo Darwinian evolution, their traits must be heritable, but the emergence of higher-level heritability is poorly understood and has long been considered a stumbling block for nascent evolutionary transitions. Using analytical models, synthetic biology, and biologically-informed simulations, we explored the emergence of trait heritability during the evolution of multicellularity. Prior work on the evolution of multicellularity has asserted that substantial collective-level trait heritability either emerges only late in the transition or requires some evolutionary change subsequent to the formation of clonal multicellular groups. In a prior analytical model, we showed that collective-level heritability not only exists but is usually more heritable than the underlying cell-level trait upon which it is based, as soon as multicellular groups form. Here, we show that key assumptions and predictions of that model are borne out in a real engineered biological system, with important implications for the emergence of collective-level heritability.
Collapse
Affiliation(s)
- Seyed Alireza Zamani-Dahaj
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Georgia Institute of Technology, School of Physics, Atlanta, GA 30332, USA; (T.C.D.); (P.J.Y.)
| | - Anthony Burnetti
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (A.B.); (M.D.H.)
| | - Thomas C. Day
- Georgia Institute of Technology, School of Physics, Atlanta, GA 30332, USA; (T.C.D.); (P.J.Y.)
| | - Peter J. Yunker
- Georgia Institute of Technology, School of Physics, Atlanta, GA 30332, USA; (T.C.D.); (P.J.Y.)
| | - William C. Ratcliff
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (A.B.); (M.D.H.)
| | - Matthew D. Herron
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (A.B.); (M.D.H.)
| |
Collapse
|
34
|
Schulz AK, Schneider N, Zhang M, Singal K. A Year at the Forefront of Hydrostat Motion. Biol Open 2023; 12:bio059834. [PMID: 37566395 PMCID: PMC10434360 DOI: 10.1242/bio.059834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Currently, in the field of interdisciplinary work in biology, there has been a significant push by the soft robotic community to understand the motion and maneuverability of hydrostats. This Review seeks to expand the muscular hydrostat hypothesis toward new structures, including plants, and introduce innovative techniques to the hydrostat community on new modeling, simulating, mimicking, and observing hydrostat motion methods. These methods range from ideas of kirigami, origami, and knitting for mimic creation to utilizing reinforcement learning for control of bio-inspired soft robotic systems. It is now being understood through modeling that different mechanisms can inhibit traditional hydrostat motion, such as skin, nostrils, or sheathed layered muscle walls. The impact of this Review will highlight these mechanisms, including asymmetries, and discuss the critical next steps toward understanding their motion and how species with hydrostat structures control such complex motions, highlighting work from January 2022 to December 2022.
Collapse
Affiliation(s)
- Andrew K. Schulz
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nikole Schneider
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Margaret Zhang
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Krishma Singal
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
35
|
Chavhan Y, Dey S, Lind PA. Bacteria evolve macroscopic multicellularity by the genetic assimilation of phenotypically plastic cell clustering. Nat Commun 2023; 14:3555. [PMID: 37322016 PMCID: PMC10272148 DOI: 10.1038/s41467-023-39320-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
The evolutionary transition from unicellularity to multicellularity was a key innovation in the history of life. Experimental evolution is an important tool to study the formation of undifferentiated cellular clusters, the likely first step of this transition. Although multicellularity first evolved in bacteria, previous experimental evolution research has primarily used eukaryotes. Moreover, it focuses on mutationally driven (and not environmentally induced) phenotypes. Here we show that both Gram-negative and Gram-positive bacteria exhibit phenotypically plastic (i.e., environmentally induced) cell clustering. Under high salinity, they form elongated clusters of ~ 2 cm. However, under habitual salinity, the clusters disintegrate and grow planktonically. We used experimental evolution with Escherichia coli to show that such clustering can be assimilated genetically: the evolved bacteria inherently grow as macroscopic multicellular clusters, even without environmental induction. Highly parallel mutations in genes linked to cell wall assembly formed the genomic basis of assimilated multicellularity. While the wildtype also showed cell shape plasticity across high versus low salinity, it was either assimilated or reversed after evolution. Interestingly, a single mutation could genetically assimilate multicellularity by modulating plasticity at multiple levels of organization. Taken together, we show that phenotypic plasticity can prime bacteria for evolving undifferentiated macroscopic multicellularity.
Collapse
Affiliation(s)
- Yashraj Chavhan
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
| | - Sutirth Dey
- Indian Institute of Science Education and Research (IISER) Pune, Pune, India
| | - Peter A Lind
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| |
Collapse
|