1
|
Lenkiewicz J, Churas C, Hu M, Qian G, Jain M, Levinson MA, Al Manir S, Qin Y, Fong D, Ono K, Chen J, Gao C, Pratt D, Parker JA, Clark T, Ideker T, Schaffer LV. Cell Mapping Toolkit: an end-to-end pipeline for mapping subcellular organization. Bioinformatics 2025; 41:btaf205. [PMID: 40489639 PMCID: PMC12161986 DOI: 10.1093/bioinformatics/btaf205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/25/2025] [Accepted: 06/05/2025] [Indexed: 06/11/2025] Open
Abstract
SUMMARY Cells are organized as a hierarchy of macromolecular assemblies, ranging from small protein complexes to entire organelles. Various technologies have been developed to elucidate subcellular architecture at different scales, such as mass spectrometry approaches for mapping protein biophysical interactions and immunofluorescence imaging for mapping protein localization. We present the Cell Mapping Toolkit, which is designed to systematically integrate data from different modalities into unified hierarchical maps of subcellular organization. The toolkit facilitates an end-to-end pipeline including processing datasets, integrating modalities, and visualizing the final cell map with rich metadata including provenance documentation at each step. The Cell Mapping Toolkit provides researchers with tools for analyzing, integrating, and visualizing diverse protein datasets in a robust and reproducible framework. AVAILABILITY AND IMPLEMENTATION The code is freely available and is hosted on GitHub at https://github.com/idekerlab/cellmaps_pipeline. Comprehensive documentation and practical examples are provided at https://cellmaps-pipeline.readthedocs.io/.
Collapse
Affiliation(s)
- Joanna Lenkiewicz
- Department of Medicine, University of California San Diego, La Jolla, CA, 92037, United States
| | - Christopher Churas
- Department of Medicine, University of California San Diego, La Jolla, CA, 92037, United States
| | - Mengzhou Hu
- Department of Medicine, University of California San Diego, La Jolla, CA, 92037, United States
| | - Gege Qian
- Department of Medicine, University of California San Diego, La Jolla, CA, 92037, United States
| | - Mayank Jain
- Department of Medicine, University of California San Diego, La Jolla, CA, 92037, United States
| | - Maxwell Adam Levinson
- Department of Public Health Sciences (Biomedical Informatics), University of Virginia School of Medicine, Charlottesville, VA, 22903, United States
| | - Sadnan Al Manir
- Department of Public Health Sciences (Biomedical Informatics), University of Virginia School of Medicine, Charlottesville, VA, 22903, United States
| | - Yue Qin
- Department of Medicine, University of California San Diego, La Jolla, CA, 92037, United States
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Boston, MA, 02142, United States
| | - Dylan Fong
- Department of Medicine, University of California San Diego, La Jolla, CA, 92037, United States
| | - Keiichiro Ono
- Department of Medicine, University of California San Diego, La Jolla, CA, 92037, United States
| | - Jing Chen
- Department of Medicine, University of California San Diego, La Jolla, CA, 92037, United States
| | - Chengzhan Gao
- Department of Medicine, University of California San Diego, La Jolla, CA, 92037, United States
| | - Dexter Pratt
- Department of Medicine, University of California San Diego, La Jolla, CA, 92037, United States
| | - Jillian A Parker
- Department of Medicine, University of California San Diego, La Jolla, CA, 92037, United States
| | - Timothy Clark
- Department of Public Health Sciences (Biomedical Informatics), University of Virginia School of Medicine, Charlottesville, VA, 22903, United States
- Center for Advanced Medical Analytics, University of Virginia School of Medicine, Charlottesville, VA, 22903, United States
- University of Virginia School of Data Science, Charlottesville, VA, 22903, United States
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, 92037, United States
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, 92037, United States
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92037, United States
| | - Leah V Schaffer
- Department of Medicine, University of California San Diego, La Jolla, CA, 92037, United States
| |
Collapse
|
2
|
Zhu B, Gao S, Chen S, Wang Y, Yeung J, Bai Y, Huang AY, Yeo YY, Liao G, Mao S, Jiang ZG, Rodig SJ, Wong KC, Shalek AK, Nolan GP, Jiang S, Ma Z. CellLENS enables cross-domain information fusion for enhanced cell population delineation in single-cell spatial omics data. Nat Immunol 2025:10.1038/s41590-025-02163-1. [PMID: 40404817 DOI: 10.1038/s41590-025-02163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 04/14/2025] [Indexed: 05/24/2025]
Abstract
Delineating cell populations is crucial for understanding immune function in health and disease. Spatial omics technologies offer insights by capturing three complementary domains: single-cell molecular biomarker expression, cellular spatial relationships and tissue architecture. However, current computational methods often fail to fully integrate these multidimensional data, particularly for immune cell populations and intrinsic functional states. We introduce Cell Local Environment and Neighborhood Scan (CellLENS), a self-supervised computational method that learns cellular representations by fusing information across three spatial omics domains (expression, neighborhood and image). CellLENS markedly enhances de novo discovery of biologically relevant immune cell populations at fine granularity by integrating individual cells' molecular profiles with their neighborhood context and tissue localization. By applying CellLENS to diverse spatial proteomic and transcriptomic datasets across multiple tissue types and disease settings, we uncover unique immune cell populations functionally stratified according to their spatial contexts. Our work demonstrates the power of multi-domain data integration in spatial omics to reveal insights into immune cell heterogeneity and tissue-specific functions.
Collapse
Affiliation(s)
- Bokai Zhu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sheng Gao
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuxiao Chen
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuchen Wang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Computer Science, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Jason Yeung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yunhao Bai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Y Huang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yao Yu Yeo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Guanrui Liao
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shulin Mao
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Zhenghui G Jiang
- Division of Gastroenterology/Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Sizun Jiang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zongming Ma
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Luo B, Teng F, Tang G, Cen W, Liu X, Chen J, Qu C, Liu X, Liu X, Jiang W, Huang H, Feng Y, Zhang X, Jian M, Li M, Xi F, Li G, Liao S, Chen A, Yu W, Xu X, Zhang J. StereoMM: a graph fusion model for integrating spatial transcriptomic data and pathological images. Brief Bioinform 2025; 26:bbaf210. [PMID: 40407386 PMCID: PMC12100622 DOI: 10.1093/bib/bbaf210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/27/2025] [Accepted: 04/10/2025] [Indexed: 05/26/2025] Open
Abstract
Spatial omics technologies, generating high-throughput and multimodal data, have necessitated the development of advanced data integration methods to facilitate comprehensive biological and clinical treatment discoveries. Based on the cross-attention concept, we developed an AI learning based toolchain called StereoMM, a graph based fusion model that can incorporate omics data such as gene expression, histological images, and spatial location. StereoMM uses an attention module for omics data interaction and a graph autoencoder to integrate spatial positions and omics data in a self-supervised manner. Applying StereoMM across various cancer types and platforms has demonstrated its robust capability. StereoMM outperforms competitors in identifying spatial regions reflecting tumour progression and shows promise in classifying colorectal cancer patients into deficient mismatch repair and proficient mismatch repair groups. The comprehensive inter-modal integration and efficiency of StereoMM enable researchers to construct spatial views of integrated multimodal features efficiently, advancing thorough tissue and patient characterization.
Collapse
Affiliation(s)
- Bingying Luo
- BGI Research, Chongqing, No. 313, Jinyue road, Jiulongpo District, Chongqing 401329, China
- BGI Research, Shenzhen, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| | - Fei Teng
- BGI Research, Chongqing, No. 313, Jinyue road, Jiulongpo District, Chongqing 401329, China
- BGI Research, Shenzhen, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| | - Guo Tang
- BGI Research, Chongqing, No. 313, Jinyue road, Jiulongpo District, Chongqing 401329, China
| | - Weixuan Cen
- BGI Research, Shenzhen, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| | - Xing Liu
- BGI Research, Chongqing, No. 313, Jinyue road, Jiulongpo District, Chongqing 401329, China
- BGI Research, Shenzhen, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| | - Jinmiao Chen
- Center for Computational Biology and Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Chi Qu
- BGI Research, Chongqing, No. 313, Jinyue road, Jiulongpo District, Chongqing 401329, China
| | - Xuanzhu Liu
- BGI Research, Chongqing, No. 313, Jinyue road, Jiulongpo District, Chongqing 401329, China
- BGI Research, Shenzhen, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| | - Xin Liu
- BGI Research, Chongqing, No. 313, Jinyue road, Jiulongpo District, Chongqing 401329, China
| | - Wenyan Jiang
- BGI Research, Chongqing, No. 313, Jinyue road, Jiulongpo District, Chongqing 401329, China
| | - Huaqiang Huang
- BGI Research, Chongqing, No. 313, Jinyue road, Jiulongpo District, Chongqing 401329, China
| | - Yu Feng
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
- BGI Collaborative Center for Future Medicine, Shanxi Medical University, No. 1258, Xinjiannan Road, Yingze District, Taiyuan 030001, China
| | - Xue Zhang
- BGI Research, Chongqing, No. 313, Jinyue road, Jiulongpo District, Chongqing 401329, China
| | - Min Jian
- BGI Research, Shenzhen, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| | - Mei Li
- BGI Research, Shenzhen, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| | - Feng Xi
- BGI Research, Chongqing, No. 313, Jinyue road, Jiulongpo District, Chongqing 401329, China
| | - Guibo Li
- BGI Research, Chongqing, No. 313, Jinyue road, Jiulongpo District, Chongqing 401329, China
- BGI Research, Shenzhen, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| | - Sha Liao
- BGI Research, Shenzhen, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| | - Ao Chen
- BGI Research, Chongqing, No. 313, Jinyue road, Jiulongpo District, Chongqing 401329, China
- BGI Research, Shenzhen, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| | - Weimiao Yu
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xun Xu
- BGI Research, Chongqing, No. 313, Jinyue road, Jiulongpo District, Chongqing 401329, China
- BGI Research, Shenzhen, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
- BGI Research, Hangzhou, No. 203, Zhenzhong Road, Xihu District, Hangzhou 310030, China
| | - Jiajun Zhang
- BGI Research, Chongqing, No. 313, Jinyue road, Jiulongpo District, Chongqing 401329, China
- BGI Research, Shenzhen, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| |
Collapse
|
4
|
Huang Y, Yang F, Liu C, Wang J, Wang Y, Song G, Wang Z. Mechanical Analysis of Phellinus Linteus-Induced Apoptosis of Hepatoma Cells. Microsc Res Tech 2025; 88:1491-1500. [PMID: 39806945 DOI: 10.1002/jemt.24804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/23/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Liver cancer is prevalent with the third highest mortality rate globally. The biomechanical properties of cancer cells play a crucial role in their proliferation and differentiation. Studying the morphological and mechanical properties of individual living cells can be helpful for early diagnosis of cancers. Herein, atomic force microscopy (AFM) was used to investigate the effects of Phellinus linteus on hepatocyte cells (HL-7702) and hepatocellular carcinoma cells (SMCC-7721) in terms of morphological and mechanical changes at the nanoscale. The water extract of Phellinus linteus (PLWE) resulted in increased height and surface roughness of SMCC-7721 cells. Also, the PLWE-treated showed that the average adhesion decreased by 1.69 nN and the average Young's modulus increased by 0.379 kPa. Additionally, the SMCC-7721 cells treated with PLWE showed clearly reduced activity compared with HL-7702 cells. This study suggested that Phellinus Linteus could be a potential candidate for selective anti-cancer therapy, providing a new avenue for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yuxi Huang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Fan Yang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Chuanzhi Liu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Jianfei Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Ying Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Guicai Song
- College of Physics, Changchun University of Science and Technology, Changchun, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- JR3CN & IRAC, University of Bedfordshire, Luton, UK
| |
Collapse
|
5
|
Kang L, Zhang Q, Qian F, Liang J, Wu X. Benchmarking computational methods for detecting spatial domains and domain-specific spatially variable genes from spatial transcriptomics data. Nucleic Acids Res 2025; 53:gkaf303. [PMID: 40240000 PMCID: PMC12000868 DOI: 10.1093/nar/gkaf303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Advances in spatially resolved transcriptomics (SRT) have led to the emergence of numerous computational methods for identifying spatial domains and spatially variable genes (SVGs); however, a comprehensive assessment of existing methods is lacking. We comprehensively benchmarked 19 methods for detecting spatial domains and domain-specific SVGs from SRT data, using 30 real-world datasets covering six SRT technologies and 27 synthetic datasets. We first evaluated the performance of these methods on spatial domain identification in terms of accuracy, stability, generalizability, and scalability. Results reveal that there is no single method that works best for all datasets, and the optimal method depends on the data, especially the SRT platform. Further, we proposed a quantitative strategy to evaluate domain-specific SVG recognition results and assessed the impact of spatial domains on SVG detection. We found that SVG detection based on spatial domains identified by different GNN methods have high accuracy but low concordance. Generally, the more accurate the recognized spatial domains, the higher the number and accuracy of domain-specific SVGs detected. Moreover, integrating spatial clustering results from different methods can lead to more robust and better clustering and SVG results. Practical guidelines were provided for choosing appropriate methods for spatial domain and domain-specific SVG identification.
Collapse
Affiliation(s)
- Liping Kang
- Department of Hematology, Children's Hospital of Soochow University, Suzhou 215000, China
- Cancer Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Qinglong Zhang
- Cancer Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | | | - Junyao Liang
- Cancer Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Xiaohui Wu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou 215000, China
- Cancer Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215000, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215000, China
- Pediatric Hematology & Oncology Key Laboratory of Higher Education Institutions in Jiangsu Province, Suzhou 215000, China
| |
Collapse
|
6
|
Schaffer LV, Hu M, Qian G, Moon KM, Pal A, Soni N, Latham AP, Pontano Vaites L, Tsai D, Mattson NM, Licon K, Bachelder R, Cesnik A, Gaur I, Le T, Leineweber W, Palar A, Pulido E, Qin Y, Zhao X, Churas C, Lenkiewicz J, Chen J, Ono K, Pratt D, Zage P, Echeverria I, Sali A, Harper JW, Gygi SP, Foster LJ, Huttlin EL, Lundberg E, Ideker T. Multimodal cell maps as a foundation for structural and functional genomics. Nature 2025:10.1038/s41586-025-08878-3. [PMID: 40205054 DOI: 10.1038/s41586-025-08878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025]
Abstract
Human cells consist of a complex hierarchy of components, many of which remain unexplored1,2. Here we construct a global map of human subcellular architecture through joint measurement of biophysical interactions and immunofluorescence images for over 5,100 proteins in U2OS osteosarcoma cells. Self-supervised multimodal data integration resolves 275 molecular assemblies spanning the range of 10-8 to 10-5 m, which we validate systematically using whole-cell size-exclusion chromatography and annotate using large language models3. We explore key applications in structural biology, yielding structures for 111 heterodimeric complexes and an expanded Rag-Ragulator assembly. The map assigns unexpected functions to 975 proteins, including roles for C18orf21 in RNA processing and DPP9 in interferon signalling, and identifies assemblies with multiple localizations or cell type specificity. It decodes paediatric cancer genomes4, identifying 21 recurrently mutated assemblies and implicating 102 validated new cancer proteins. The associated Cell Visualization Portal and Mapping Toolkit provide a reference platform for structural and functional cell biology.
Collapse
Affiliation(s)
- Leah V Schaffer
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mengzhou Hu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gege Qian
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Kyung-Mee Moon
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abantika Pal
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Neelesh Soni
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Andrew P Latham
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Dorothy Tsai
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Nicole M Mattson
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Katherine Licon
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Robin Bachelder
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anthony Cesnik
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA
| | - Ishan Gaur
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA
| | - Trang Le
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA
| | | | - Aji Palar
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Ernst Pulido
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA
| | - Yue Qin
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Xiaoyu Zhao
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Christopher Churas
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joanna Lenkiewicz
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jing Chen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Keiichiro Ono
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Dexter Pratt
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Peter Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Leonard J Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Emma Lundberg
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA.
- Department of Pathology, Stanford University, Palo Alto, CA, USA.
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Bao X, Bai X, Liu X, Shi Q, Zhang C. Spatially informed graph transformers for spatially resolved transcriptomics. Commun Biol 2025; 8:574. [PMID: 40188303 PMCID: PMC11972348 DOI: 10.1038/s42003-025-08015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
Spatially resolved transcriptomics (SRT) has emerged as a powerful technique for mapping gene expression landscapes within spatial contexts. However, significant challenges persist in effectively integrating gene expression with spatial information to elucidate the heterogeneity of biological tissues. Here, we present a Spatially informed Graph Transformers framework, SpaGT, which leverages both node and edge channels to model spatially aware graph representation for denoising gene expression and identifying spatial domains. Unlike conventional graph neural networks, which rely on static, localized convolutional aggregation, SpaGT employs a structure-reinforced self-attention mechanism that iteratively evolves topological structural information and transcriptional signal representation. By replacing graph convolution with global self-attention, SpaGT enables the integration of both global and spatially localized information, thereby improving the detection of fine-grained spatial domains. We demonstrate that SpaGT achieves superior performance in identifying spatial domains and denoising gene expression data across diverse platforms and species. Furthermore, SpaGT facilitates the discovery of spatially variable genes with significant prognostic potential in cancer tissues. These findings establish SpaGT as a powerful tool for unraveling the complexities of biological tissues.
Collapse
Affiliation(s)
- Xinyu Bao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xiaosheng Bai
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xiaoping Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Qianqian Shi
- Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China.
| | - Chuanchao Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
8
|
Hallou A, He R, Simons BD, Dumitrascu B. A computational pipeline for spatial mechano-transcriptomics. Nat Methods 2025; 22:737-750. [PMID: 40097810 PMCID: PMC11978512 DOI: 10.1038/s41592-025-02618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
Advances in spatial profiling technologies are providing insights into how molecular programs are influenced by local signaling and environmental cues. However, cell fate specification and tissue patterning involve the interplay of biochemical and mechanical feedback. Here we develop a computational framework that enables the joint statistical analysis of transcriptional and mechanical signals in the context of spatial transcriptomics. To illustrate the application and utility of the approach, we use spatial transcriptomics data from the developing mouse embryo to infer the forces acting on individual cells, and use these results to identify mechanical, morphometric and gene expression signatures that are predictive of tissue compartment boundaries. In addition, we use geoadditive structural equation modeling to identify gene modules that predict the mechanical behavior of cells in an unbiased manner. This computational framework is easily generalized to other spatial profiling contexts, providing a generic scheme for exploring the interplay of biomolecular and mechanical cues in tissues.
Collapse
Affiliation(s)
- Adrien Hallou
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
- Gurdon Institute, University of Cambridge, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Ruiyang He
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
- New York Genome Center, New York City, NY, USA.
- Irving Institute for Cancer Dynamics, Columbia University, New York City, NY, USA.
| | - Benjamin D Simons
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Bianca Dumitrascu
- Irving Institute for Cancer Dynamics, Columbia University, New York City, NY, USA.
- Department of Statistics, Columbia University, New York City, NY, USA.
| |
Collapse
|
9
|
Wang Y, Liu Z, Ma X. MuCST: restoring and integrating heterogeneous morphology images and spatial transcriptomics data with contrastive learning. Genome Med 2025; 17:21. [PMID: 40082941 PMCID: PMC11907906 DOI: 10.1186/s13073-025-01449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
Spatially resolved transcriptomics (SRT) simultaneously measure spatial location, histology images, and transcriptional profiles of cells or regions in undissociated tissues. Integrative analysis of multi-modal SRT data holds immense potential for understanding biological mechanisms. Here, we present a flexible multi-modal contrastive learning for the integration of SRT data (MuCST), which joins denoising, heterogeneity elimination, and compatible feature learning. MuCST accurately identifies spatial domains and is applicable to diverse datasets platforms. Overall, MuCST provides an alternative for integrative analysis of multi-modal SRT data ( https://github.com/xkmaxidian/MuCST ).
Collapse
Affiliation(s)
- Yu Wang
- School of Computer Science and Technology, Xidian University, No.2 South Taibai Road, Xi'an, 710071, Shaanxi, China
- Key Laboratory of Smart Human-Computer Interaction and Wearable Technology of Shaanxi Province, Xidian University, No.2 South Taibai Road, Xi'an, 710071, Shaanxi, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China
| | - Xiaoke Ma
- School of Computer Science and Technology, Xidian University, No.2 South Taibai Road, Xi'an, 710071, Shaanxi, China.
- Key Laboratory of Smart Human-Computer Interaction and Wearable Technology of Shaanxi Province, Xidian University, No.2 South Taibai Road, Xi'an, 710071, Shaanxi, China.
| |
Collapse
|
10
|
Wang R, Qian Y, Guo X, Song F, Xiong Z, Cai S, Bian X, Wong MH, Cao Q, Cheng L, Lu G, Leung KS. STModule: identifying tissue modules to uncover spatial components and characteristics of transcriptomic landscapes. Genome Med 2025; 17:18. [PMID: 40033360 PMCID: PMC11874447 DOI: 10.1186/s13073-025-01441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Here we present STModule, a Bayesian method developed to identify tissue modules from spatially resolved transcriptomics that reveal spatial components and essential characteristics of tissues. STModule uncovers diverse expression signals in transcriptomic landscapes such as cancer, intraepithelial neoplasia, immune infiltration, outcome-related molecular features and various cell types, which facilitate downstream analysis and provide insights into tumor microenvironments, disease mechanisms, treatment development, and histological organization of tissues. STModule captures a broader spectrum of biological signals compared to other methods and detects novel spatial components. The tissue modules characterized by gene sets demonstrate greater robustness and transferability across different biopsies. STModule: https://github.com/rwang-z/STModule.git .
Collapse
Affiliation(s)
- Ran Wang
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong, 999077, China
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Yan Qian
- Department of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 519082, China
| | - Xiaojing Guo
- Health Data Science Center, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Fangda Song
- School of Data Science, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
| | - Zhiqiang Xiong
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Shirong Cai
- Department of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 519082, China
| | - Xiuwu Bian
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Man Hon Wong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Qin Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China.
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Lixin Cheng
- Health Data Science Center, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China.
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong, 999077, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Kwong Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Department of Applied Data Science, Hong Kong Shue Yan University, North Point, Hong Kong Island, Hong Kong, 999077, China.
| |
Collapse
|
11
|
Dougherty JD, Sarafinovska S, Chaturvedi SM, Law TE, Akinwe TM, Gabel HW. Single-cell technology grows up: Leveraging high-resolution omics approaches to understand neurodevelopmental disorders. Curr Opin Neurobiol 2025; 92:102990. [PMID: 40036988 DOI: 10.1016/j.conb.2025.102990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 03/06/2025]
Abstract
The identification of hundreds of neurodevelopmental disorder (NDD) genes in the last decade led to numerous genetic models for understanding NDD gene mutation consequences and delineating putative neurobiological mediators of disease. In parallel, single-cell and single-nucleus genomic technologies have been developed and implemented to create high-resolution atlases of cell composition, gene expression, and circuit connectivity in the brain. Here, we discuss the opportunities to leverage mutant models (or human tissue, where available) and genomics approaches to systematically define NDD etiology at cellular resolution. We review progress in applying single-cell and spatial transcriptomics to interrogate developmental trajectories, cellular composition, circuit activity, and connectivity across human tissue and NDD models. We discuss considerations for implementing these approaches at scale to maximize insights and facilitate reproducibility. Finally, we highlight how standardized application of these technologies promises to not only define etiologies of individual disorders but also identify molecular, cellular, and circuit level convergence across NDDs.
Collapse
Affiliation(s)
- Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Simona Sarafinovska
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sneha M Chaturvedi
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Travis E Law
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Titilope M Akinwe
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
12
|
Coleman K, Schroeder A, Loth M, Zhang D, Park JH, Sung JY, Blank N, Cowan AJ, Qian X, Chen J, Jiang J, Yan H, Samarah LZ, Clemenceau JR, Jang I, Kim M, Barnfather I, Rabinowitz JD, Deng Y, Lee EB, Lazar A, Gao J, Furth EE, Hwang TH, Wang L, Thaiss CA, Hu J, Li M. Resolving tissue complexity by multimodal spatial omics modeling with MISO. Nat Methods 2025; 22:530-538. [PMID: 39815104 DOI: 10.1038/s41592-024-02574-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/21/2024] [Indexed: 01/18/2025]
Abstract
Spatial molecular profiling has provided biomedical researchers valuable opportunities to better understand the relationship between cellular localization and tissue function. Effectively modeling multimodal spatial omics data is crucial for understanding tissue complexity and underlying biology. Furthermore, improvements in spatial resolution have led to the advent of technologies that can generate spatial molecular data with subcellular resolution, requiring the development of computationally efficient methods that can handle the resulting large-scale datasets. MISO (MultI-modal Spatial Omics) is a versatile algorithm for feature extraction and clustering, capable of integrating multiple modalities from diverse spatial omics experiments with high spatial resolution. Its effectiveness is demonstrated across various datasets, encompassing gene expression, protein expression, epigenetics, metabolomics and tissue histology modalities. MISO outperforms existing methods in identifying biologically relevant spatial domains, representing a substantial advancement in multimodal spatial omics analysis. Moreover, MISO's computational efficiency ensures its scalability to handle large-scale datasets generated by subcellular resolution spatial omics technologies.
Collapse
Affiliation(s)
- Kyle Coleman
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Amelia Schroeder
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melanie Loth
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daiwei Zhang
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeong Hwan Park
- Department of Pathology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Youn Sung
- Department of Pathology, College of Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Niklas Blank
- Department of Microbiology, Institute for Immunology, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Alexis J Cowan
- Department of Microbiology, Institute for Immunology, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xuyu Qian
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jianfeng Chen
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiahui Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hanying Yan
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laith Z Samarah
- Department of Chemistry, Lewis Sigler Institute for Integrative Genomics, and Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Jean R Clemenceau
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Inyeop Jang
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Minji Kim
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Isabel Barnfather
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Lewis Sigler Institute for Integrative Genomics, and Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Yanxiang Deng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emma E Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tae Hyun Hwang
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Christoph A Thaiss
- Department of Microbiology, Institute for Immunology, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jian Hu
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Mingyao Li
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Zhang P, Gao C, Zhang Z, Yuan Z, Zhang Q, Zhang P, Du S, Zhou W, Li Y, Li S. Systematic inference of super-resolution cell spatial profiles from histology images. Nat Commun 2025; 16:1838. [PMID: 39984438 PMCID: PMC11845739 DOI: 10.1038/s41467-025-57072-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Inferring cell spatial profiles from histology images is critical for cancer diagnosis and treatment in clinical settings. In this study, we report a weakly-supervised deep-learning method, HistoCell, to directly infer super-resolution cell spatial profiles consisting of cell types, cell states and their spatial network from histology images at the single-nucleus-level. Benchmark analysis demonstrates that HistoCell robustly achieves state-of-the-art performance in terms of cell type/states prediction solely from histology images across multiple cancer tissues. HistoCell can significantly enhance the deconvolution accuracy for the spatial transcriptomics data and enable accurate annotation of subtle cancer tissue architectures. Moreover, HistoCell is applied to de novo discovery of clinically relevant spatial organization indicators, including prognosis and drug response biomarkers, across diverse cancer types. HistoCell also enable image-based screening of cell populations that drives phenotype of interest, and is applied to discover the cell population and corresponding spatial organization indicators associated with gastric malignant transformation risk. Overall, HistoCell emerges as a powerful and versatile tool for cancer studies in histology image-only cohorts.
Collapse
Affiliation(s)
- Peng Zhang
- Institute of TCM-X/MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist/Department of Automation, Tsinghua University, Beijing, China
| | - Chaofei Gao
- Institute of TCM-X/MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist/Department of Automation, Tsinghua University, Beijing, China
| | - Zhuoyu Zhang
- Institute of TCM-X/MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist/Department of Automation, Tsinghua University, Beijing, China
| | - Zhiyuan Yuan
- Institute of Science and Technology for Brain-Inspired Intelligence; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Qian Zhang
- Institute of TCM-X/MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist/Department of Automation, Tsinghua University, Beijing, China
| | - Ping Zhang
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Shao Li
- Institute of TCM-X/MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist/Department of Automation, Tsinghua University, Beijing, China.
| |
Collapse
|
14
|
Reshef Y, Sood L, Curtis M, Rumker L, Stein DJ, Palshikar MG, Nayar S, Filer A, Jonsson AH, Korsunsky I, Raychaudhuri S. Powerful and accurate case-control analysis of spatial molecular data with deep learning-defined tissue microniches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637149. [PMID: 39975274 PMCID: PMC11839118 DOI: 10.1101/2025.02.07.637149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
As spatial molecular data grow in scope and resolution, there is a pressing need to identify key spatial structures associated with disease. Current approaches often rely on hand-crafted features such as local abundances of manually annotated, discrete cell types, which may overlook important signals. Here we introduce variational inference-based microniche analysis (VIMA), a method that combines deep learning with principled statistics to discover associated spatial features with greater flexibility and precision. VIMA uses a variational autoencoder to extract numerical "fingerprints" from small tissue patches that capture their biological content. It uses these fingerprints to define a large number of "microniches" - small, potentially overlapping groups of tissue patches with highly similar biology that span multiple samples. It then uses rigorous statistics to identify microniches whose abundance correlates with case-control status. We show in simulations that VIMA is well calibrated and more powerful and accurate than other approaches. We then apply VIMA to a 140-gene spatial transcriptomics dataset in Alzheimer's dementia, a 54-marker CO-Detection by indEXing (CODEX) dataset in ulcerative colitis (UC), and a 7-marker immunohistochemistry dataset in rheumatoid arthritis (RA), in each case recapitulating known biology and identifying novel spatial features of disease.
Collapse
Affiliation(s)
- Yakir Reshef
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Lakshay Sood
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Michelle Curtis
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Laurie Rumker
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel J. Stein
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Mukta G. Palshikar
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Saba Nayar
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- Birmingham Tissue Analytics, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Andrew Filer
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Anna Helena Jonsson
- University of Colorado Anschutz Medical Campus, Division of Rheumatology, Aurora, CO, USA
| | - Ilya Korsunsky
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Ge Y, Leng J, Tang Z, Wang K, U K, Zhang SM, Han S, Zhang Y, Xiang J, Yang S, Liu X, Song Y, Wang X, Li Y, Zhao J. Deep Learning-Enabled Integration of Histology and Transcriptomics for Tissue Spatial Profile Analysis. RESEARCH (WASHINGTON, D.C.) 2025; 8:0568. [PMID: 39830364 PMCID: PMC11739434 DOI: 10.34133/research.0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Abstract
Spatially resolved transcriptomics enable comprehensive measurement of gene expression at subcellular resolution while preserving the spatial context of the tissue microenvironment. While deep learning has shown promise in analyzing SCST datasets, most efforts have focused on sequence data and spatial localization, with limited emphasis on leveraging rich histopathological insights from staining images. We introduce GIST, a deep learning-enabled gene expression and histology integration for spatial cellular profiling. GIST employs histopathology foundation models pretrained on millions of histology images to enhance feature extraction and a hybrid graph transformer model to integrate them with transcriptome features. Validated with datasets from human lung, breast, and colorectal cancers, GIST effectively reveals spatial domains and substantially improves the accuracy of segmenting the microenvironment after denoising transcriptomics data. This enhancement enables more accurate gene expression analysis and aids in identifying prognostic marker genes, outperforming state-of-the-art deep learning methods with a total improvement of up to 49.72%. GIST provides a generalizable framework for integrating histology with spatial transcriptome analysis, revealing novel insights into spatial organization and functional dynamics.
Collapse
Affiliation(s)
- Yongxin Ge
- School of Big Data and Software Engineering,
Chongqing University, Chongqing, China
| | - Jiake Leng
- School of Big Data and Software Engineering,
Chongqing University, Chongqing, China
| | - Ziyang Tang
- Department of Computer and Information Technology,
Purdue University, West Lafayette, IN, USA
| | - Kanran Wang
- Radiation Oncology Center,
Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment,
Chongqing University Cancer Hospital, Chongqing, China
| | - Kaicheng U
- Tri-Institutional Computational Biology & Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sophia Meixuan Zhang
- College of Agriculture and Life Sciences,
Cornell University, Ithaca, NY, USA
- Harvard College,
Harvard University, Cambridge, MA, USA
| | - Sen Han
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Yiyan Zhang
- Department of Biostatistics,
University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics,
University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jinxi Xiang
- Department of Radiation Oncology,
Stanford University School of Medicine, Stanford, CA, USA
| | - Sen Yang
- Department of Radiation Oncology,
Stanford University School of Medicine, Stanford, CA, USA
| | - Xiang Liu
- Department of Biostatistics and Health Data Science,
Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yi Song
- Department of Neurosurgery,
Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xiyue Wang
- Department of Radiation Oncology,
Stanford University School of Medicine, Stanford, CA, USA
| | - Yuchen Li
- Department of Radiation Oncology,
Stanford University School of Medicine, Stanford, CA, USA
| | - Junhan Zhao
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biomedical Informatics,
Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Sun F, Li H, Sun D, Fu S, Gu L, Shao X, Wang Q, Dong X, Duan B, Xing F, Wu J, Xiao M, Zhao F, Han JDJ, Liu Q, Fan X, Li C, Wang C, Shi T. Single-cell omics: experimental workflow, data analyses and applications. SCIENCE CHINA. LIFE SCIENCES 2025; 68:5-102. [PMID: 39060615 DOI: 10.1007/s11427-023-2561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.
Collapse
Affiliation(s)
- Fengying Sun
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Haoyan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaliu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Lei Gu
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Qinqin Wang
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bin Duan
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Feiyang Xing
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Minmin Xiao
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Chen Li
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Tieliu Shi
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
17
|
Wang B, Zhang Y, Li H, Dou H, Guo Y, Deng Y. Biologically inspired heterogeneous learning for accurate, efficient and low-latency neural network. Natl Sci Rev 2025; 12:nwae301. [PMID: 39758128 PMCID: PMC11697980 DOI: 10.1093/nsr/nwae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 01/07/2025] Open
Abstract
The pursuit of artificial neural networks that mirror the accuracy, efficiency and low latency of biological neural networks remains a cornerstone of artificial intelligence (AI) research. Here, we incorporated recent neuroscientific findings of self-inhibiting autapse and neuron heterogeneity for innovating a spiking neural network (SNN) with enhanced learning and memorizing capacities. A bi-level programming paradigm was formulated to respectively learn neuron-level biophysical variables and network-level synapse weights for nested heterogeneous learning. We successfully demonstrated that our biologically inspired neuron model could reproduce neural statistics at both individual and group levels, contributing to the effective decoding of brain-computer interface data. Furthermore, the heterogeneous SNN showed higher accuracy (1%-10% improvement), superior efficiency (maximal 17.83-fold reduction in energy) and lower latency (maximal 5-fold improvement) in performing several AI tasks. For the first time, we benchmarked SNN for conducting cell type identification from scRNA-seq data. The proposed model correctly identified very rare cell types associated with severe brain diseases where typical SNNs failed.
Collapse
Affiliation(s)
- Bo Wang
- School of Astronautics, Beihang University, Beijing 100191, China
| | - Yuxuan Zhang
- School of Astronautics, Beihang University, Beijing 100191, China
| | - Hongjue Li
- School of Astronautics, Beihang University, Beijing 100191, China
| | - Hongkun Dou
- School of Astronautics, Beihang University, Beijing 100191, China
| | - Yuchen Guo
- Institute for Brain and Cognitive Sciences, BNRist, Tsinghua University, Beijing 100084, China
| | - Yue Deng
- School of Astronautics, Beihang University, Beijing 100191, China
- School of Artificial Intelligence, Beihang University, Beijing 100191, China
| |
Collapse
|
18
|
Pentimalli TM, Karaiskos N, Rajewsky N. Challenges and Opportunities in the Clinical Translation of High-Resolution Spatial Transcriptomics. ANNUAL REVIEW OF PATHOLOGY 2025; 20:405-432. [PMID: 39476415 DOI: 10.1146/annurev-pathmechdis-111523-023417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Pathology has always been fueled by technological advances. Histology powered the study of tissue architecture at single-cell resolution and remains a cornerstone of clinical pathology today. In the last decade, next-generation sequencing has become informative for the targeted treatment of many diseases, demonstrating the importance of genome-scale molecular information for personalized medicine. Today, revolutionary developments in spatial transcriptomics technologies digitalize gene expression at subcellular resolution in intact tissue sections, enabling the computational analysis of cell types, cellular phenotypes, and cell-cell communication in routinely collected and archival clinical samples. Here we review how such molecular microscopes work, highlight their potential to identify disease mechanisms and guide personalized therapies, and provide guidance for clinical study design. Finally, we discuss remaining challenges to the swift translation of high-resolution spatial transcriptomics technologies and how integration of multimodal readouts and deep learning approaches is bringing us closer to a holistic understanding of tissue biology and pathology.
Collapse
Affiliation(s)
- Tancredi Massimo Pentimalli
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; , ,
| | - Nikos Karaiskos
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; , ,
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; , ,
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
- National Center for Tumor Diseases, Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
| |
Collapse
|
19
|
Yau CN, Hung JTS, Campbell RAA, Wong TCY, Huang B, Wong BTY, Chow NKN, Zhang L, Tsoi EPL, Tan Y, Li JJX, Wing YK, Lai HM. INSIHGT: an accessible multi-scale, multi-modal 3D spatial biology platform. Nat Commun 2024; 15:10888. [PMID: 39738072 PMCID: PMC11685604 DOI: 10.1038/s41467-024-55248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/06/2024] [Indexed: 01/01/2025] Open
Abstract
Biological systems are complex, encompassing intertwined spatial, molecular and functional features. However, methodological constraints limit the completeness of information that can be extracted. Here, we report the development of INSIHGT, a non-destructive, accessible three-dimensional (3D) spatial biology method utilizing superchaotropes and host-guest chemistry to achieve homogeneous, deep penetration of macromolecular probes up to centimeter scales, providing reliable semi-quantitative signals throughout the tissue volume. Diverse antigens, mRNAs, neurotransmitters, and post-translational modifications are well-preserved and simultaneously visualized. INSIHGT also allows multi-round, highly multiplexed 3D molecular probing and is compatible with downstream traditional histology and nucleic acid sequencing. With INSIHGT, we map undescribed podocyte-to-parietal epithelial cell microfilaments in mouse glomeruli and neurofilament-intensive inclusion bodies in the human cerebellum, and identify NPY-proximal cell types defined by spatial morpho-proteomics in mouse hypothalamus. We anticipate that INSIHGT can form the foundations for 3D spatial multi-omics technology development and holistic systems biology studies.
Collapse
Affiliation(s)
- Chun Ngo Yau
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacky Tin Shing Hung
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Robert A A Campbell
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Thomas Chun Yip Wong
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bei Huang
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ben Tin Yan Wong
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nick King Ngai Chow
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lichun Zhang
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Eldric Pui Lam Tsoi
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuqi Tan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Joshua Jing Xi Li
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Yun Kwok Wing
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hei Ming Lai
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
20
|
Lin J, Deng W, Wei J, Zheng J, Chen K, Chai H, Zeng T, Tang H. GD-Net: An Integrated Multimodal Information Model Based on Deep Learning for Cancer Outcome Prediction and Informative Feature Selection. J Cell Mol Med 2024; 28:e70221. [PMID: 39628446 PMCID: PMC11615516 DOI: 10.1111/jcmm.70221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/27/2024] [Accepted: 11/08/2024] [Indexed: 12/08/2024] Open
Abstract
Multimodal information provides valuable resources for cancer prognosis and survival prediction. However, the computational integration of this heterogeneous data information poses significant challenges due to the complex interactions between molecules from different biological modalities and the limited sample size. Here, we introduce GD-Net, a Graph Deep learning algorithm to enhance the accuracy of survival prediction with an average accuracy of 72% by early fusing of multimodal information, which includes an interpretable and lightweight XGBoost module to efficiently extract informative features. First, we applied GD-Net to eight cancer datasets and achieved superior performance compared to benchmarking methods, with an average 7.9% higher C-index value. The ablation experiments strongly supported that multi-modal integration could significantly improve accuracy over the single-modality model. In the deep case study of liver cancer, 319 differential genes, 15 differential miRNAs and 155 methylated differential genes based on the predicted risk subgroups are identified as the informative features, and then we have statistically and biologically validated the efficacy of these key molecules in internal and external test datasets. The comprehensive independent validations demonstrated that GD-Net is accurate and competitive in predicting different cancer outcomes in real-time, and it is an effective tool for identifying new multimodal prognosis biomarkers.
Collapse
Affiliation(s)
- Junqi Lin
- School of MathematicsFoshan UniversityFoshanChina
| | - Weizhen Deng
- School of MathematicsFoshan UniversityFoshanChina
| | - Junyu Wei
- School of MathematicsFoshan UniversityFoshanChina
| | | | - Kenan Chen
- School of MathematicsFoshan UniversityFoshanChina
| | - Hua Chai
- School of MathematicsFoshan UniversityFoshanChina
| | - Tao Zeng
- Guangzhou National LaboratoryGuangzhouChina
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou LaboratoryGuangzhou Medical UniversityGuangzhouChina
| | - Hui Tang
- School of MathematicsFoshan UniversityFoshanChina
| |
Collapse
|
21
|
Li X. Deciphering cell to cell spatial relationship for pathology images using SpatialQPFs. Sci Rep 2024; 14:29585. [PMID: 39609630 PMCID: PMC11605059 DOI: 10.1038/s41598-024-81383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024] Open
Abstract
Understanding spatial dynamics within tissue microenvironments is crucial for deciphering cellular interactions and molecular signaling in living systems. These spatial characteristics govern cell distribution, extracellular matrix components, and signaling molecules, influencing local biochemical and biophysical conditions. Despite significant progress in analyzing digital pathology images, current methods for capturing spatial relationships are limited. They often rely on specific spatial features that only partially describe the complex spatial distributions of cells and are frequently tied to particular outcomes within predefined model frameworks. Furthermore, these methods are typically limited to field of view analysis, which restricts their capacity to capture spatial patterns across whole-slide images, thereby limiting their ability to fully address the complexities of tissue architecture. To address these limitations, we present SpatialQPFs (Spatial Quantitative Pathology Features), an R package designed to extract interpretable spatial features from cell imaging data using spatial statistical methodologies. Leveraging segmented cell information, our package offers a comprehensive toolkit for applying a range of spatial statistical methods within a stochastic process framework, including analyses of point process data, areal data, and geostatistical data. By decoupling feature extraction from specific outcome models, SpatialQPFs enables thorough large-scale spatial analyses applicable across diverse clinical and biological contexts. This approach enhances the depth and accuracy of spatial insights derived from tissue data, empowering researchers to conduct comprehensive spatial analyses efficiently and reproducibly. By providing a flexible and robust framework for spatial feature extraction, SpatialQPFs facilitates advanced spatial analyses, paving the way for new discoveries in tissue biology and pathology. SpatialQPFs code and documentation are publicly available at https://github.com/Genentech/SpatialQPFs .
Collapse
Affiliation(s)
- Xiao Li
- Computational Science and Informatics, Roche Diagnostics Solutions, Santa Clara, CA, 95050, USA.
| |
Collapse
|
22
|
Ren P, Bao H, Wang S, Wang Y, Bai Y, Lai J, Yi L, Liu Q, Li W, Zhang X, Sun L, Liu Q, Cui X, Zhang X, Liang P, Liang X. Multi-scale brain attributes contribute to the distribution of diffuse glioma subtypes. Int J Cancer 2024; 155:1670-1683. [PMID: 38949756 DOI: 10.1002/ijc.35068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/11/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Gliomas are primary brain tumors and are among the most malignant types. Adult-type diffuse gliomas can be classified based on their histological and molecular signatures as IDH-wildtype glioblastoma, IDH-mutant astrocytoma, and IDH-mutant and 1p/19q-codeleted oligodendroglioma. Recent studies have shown that each subtype of glioma has its own specific distribution pattern. However, the mechanisms underlying the specific distributions of glioma subtypes are not entirely clear despite partial explanations such as cell origin. To investigate the impact of multi-scale brain attributes on glioma distribution, we constructed cumulative frequency maps for diffuse glioma subtypes based on T1w structural images and evaluated the spatial correlation between tumor frequency and diverse brain attributes, including postmortem gene expression, functional connectivity metrics, cerebral perfusion, glucose metabolism, and neurotransmitter signaling. Regression models were constructed to evaluate the contribution of these factors to the anatomic distribution of different glioma subtypes. Our findings revealed that the three different subtypes of gliomas had distinct distribution patterns, showing spatial preferences toward different brain environmental attributes. Glioblastomas were especially likely to occur in regions enriched with synapse-related pathways and diverse neurotransmitter receptors. Astrocytomas and oligodendrogliomas preferentially occurred in areas enriched with genes associated with neutrophil-mediated immune responses. The functional network characteristics and neurotransmitter distribution also contributed to oligodendroglioma distribution. Our results suggest that different brain transcriptomic, neurotransmitter, and connectomic attributes are the factors that determine the specific distributions of glioma subtypes. These findings highlight the importance of bridging diverse scales of biological organization when studying neurological dysfunction.
Collapse
Affiliation(s)
- Peng Ren
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Institute of Science and Technology for Brain-Inspired Intelligence and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuai Wang
- Medical Imaging Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan Bai
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jiacheng Lai
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Liye Yi
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing Liu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenting Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinyu Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lili Sun
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qiuyi Liu
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xuehua Cui
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiushi Zhang
- Medical Imaging Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xia Liang
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
23
|
Wu Y, Zhou JY, Yao B, Cui G, Zhao YL, Gao CC, Yang Y, Zhang S, Yang YG. STASCAN deciphers fine-resolution cell distribution maps in spatial transcriptomics by deep learning. Genome Biol 2024; 25:278. [PMID: 39439006 PMCID: PMC11515765 DOI: 10.1186/s13059-024-03421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Spatial transcriptomics technologies have been widely applied to decode cellular distribution by resolving gene expression profiles in tissue. However, sequencing techniques still limit the ability to create a fine-resolved spatial cell-type map. To this end, we develop a novel deep-learning-based approach, STASCAN, to predict the spatial cellular distribution of captured or uncharted areas where only histology images are available by cell feature learning integrating gene expression profiles and histology images. STASCAN is successfully applied across diverse datasets from different spatial transcriptomics technologies and displays significant advantages in deciphering higher-resolution cellular distribution and resolving enhanced organizational structures.
Collapse
Affiliation(s)
- Ying Wu
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Yi Zhou
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bofei Yao
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanshen Cui
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong-Liang Zhao
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun-Chun Gao
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Yang
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Yun-Gui Yang
- China National Center for Bioinformation, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- College of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China.
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
24
|
Wang T, Zhu H, Zhou Y, Ding W, Ding W, Han L, Zhang X. Graph attention automatic encoder based on contrastive learning for domain recognition of spatial transcriptomics. Commun Biol 2024; 7:1351. [PMID: 39424696 PMCID: PMC11489439 DOI: 10.1038/s42003-024-07037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Spatial transcriptomics is an emerging technology that enables the profiling of gene expression in tissues while preserving spatial location information. This innovative approach is anticipated to provide a comprehensive understanding of the spatial distribution of different cells within tissues and facilitate in-depth analysis of tissue structure. To accurately recognize spatial domains from spatial transcriptomics, we have introduced a generalized deep learning method called GAAEST (Graph Attention-based Autoencoder for Spatial Transcriptomics). Our proposed approach effectively integrates both spatial location information and gene expression data from spatial transcriptomics. Specifically, it leverages spatial location details to construct a neighborhood graph and employs a graph attention network-based encoder to embed gene expression information into a spatially informed space. At the same time, to further optimize the learned potential embedding, self-supervised contrastive learning is introduced to capture spatial information at three levels: local, global and contextual feature of spots. Finally, the decoder reconstructs gene expressions, which are then clustered to identify spatial domains with similar expression patterns and spatial proximity. Based on our experiments conducted on multiple datasets, GAAEST consistently outperforms existing state-of-the-art methods. The proposed GAAEST demonstrates excellent capabilities in spatial domain recognition, positioning it as an ideal tool for advancing spatial transcriptomics research.
Collapse
Affiliation(s)
- Tianqi Wang
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Huitong Zhu
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Yunlan Zhou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weihong Ding
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weichao Ding
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China.
| | - Liangxiu Han
- School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, Manchester, UK
| | - Xueqin Zhang
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai, China.
| |
Collapse
|
25
|
Zhang Y, Wang M, Zhu Q, Guo Y, Liu B, Li J, Yao X, Kong C, Zhang Y, Huang Y, Qi H, Wu J, Guo ZV, Dai Q. Long-term mesoscale imaging of 3D intercellular dynamics across a mammalian organ. Cell 2024; 187:6104-6122.e25. [PMID: 39276776 DOI: 10.1016/j.cell.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/06/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
A comprehensive understanding of physio-pathological processes necessitates non-invasive intravital three-dimensional (3D) imaging over varying spatial and temporal scales. However, huge data throughput, optical heterogeneity, surface irregularity, and phototoxicity pose great challenges, leading to an inevitable trade-off between volume size, resolution, speed, sample health, and system complexity. Here, we introduce a compact real-time, ultra-large-scale, high-resolution 3D mesoscope (RUSH3D), achieving uniform resolutions of 2.6 × 2.6 × 6 μm3 across a volume of 8,000 × 6,000 × 400 μm3 at 20 Hz with low phototoxicity. Through the integration of multiple computational imaging techniques, RUSH3D facilitates a 13-fold improvement in data throughput and an orders-of-magnitude reduction in system size and cost. With these advantages, we observed premovement neural activity and cross-day visual representational drift across the mouse cortex, the formation and progression of multiple germinal centers in mouse inguinal lymph nodes, and heterogeneous immune responses following traumatic brain injury-all at single-cell resolution, opening up a horizon for intravital mesoscale study of large-scale intercellular interactions at the organ level.
Collapse
Affiliation(s)
- Yuanlong Zhang
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Mingrui Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518071, China
| | - Qiyu Zhu
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yuduo Guo
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518071, China
| | - Bo Liu
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Jiamin Li
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiao Yao
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Chui Kong
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Yi Zhang
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yuchao Huang
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Hai Qi
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Jiamin Wu
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| | - Zengcai V Guo
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Nasser R, Schaffer LV, Ideker T, Sharan R. Multi-modal contrastive learning of subcellular organization using DICE. Bioinformatics 2024; 40:ii105-ii110. [PMID: 39230695 PMCID: PMC11520230 DOI: 10.1093/bioinformatics/btae387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
The data deluge in biology calls for computational approaches that can integrate multiple datasets of different types to build a holistic view of biological processes or structures of interest. An emerging paradigm in this domain is the unsupervised learning of data embeddings that can be used for downstream clustering and classification tasks. While such approaches for integrating data of similar types are becoming common, there is scarcer work on consolidating different data modalities such as network and image information. Here, we introduce DICE (Data Integration through Contrastive Embedding), a contrastive learning model for multi-modal data integration. We apply this model to study the subcellular organization of proteins by integrating protein-protein interaction data and protein image data measured in HEK293 cells. We demonstrate the advantage of data integration over any single modality and show that our framework outperforms previous integration approaches. Availability: https://github.com/raminass/protein-contrastive Contact: raminass@gmail.com.
Collapse
Affiliation(s)
- Rami Nasser
- School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Leah V Schaffer
- Department of Medicine, University of California, San Diego, San Diego, CA 92037, United States
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, San Diego, CA 92037, United States
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA 92037, United States
- Moores Cancer Center, University of California, San Diego, San Diego, CA 92037, United States
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92037, United States
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
27
|
Sun X, Wu LF, Altschuler SJ, Hata AN. Targeting therapy-persistent residual disease. NATURE CANCER 2024; 5:1298-1304. [PMID: 39289594 DOI: 10.1038/s43018-024-00819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/26/2024] [Indexed: 09/19/2024]
Abstract
Disease relapse driven by acquired drug resistance limits the effectiveness of most systemic anti-cancer agents. Targeting persistent cancer cells in residual disease before relapse has emerged as a potential strategy for enhancing the efficacy and the durability of current therapies. However, barriers remain to implementing persister-directed approaches in the clinic. This Perspective discusses current preclinical and clinical complexities and outlines key steps toward the development of clinical strategies that target therapy-persistent residual disease.
Collapse
Affiliation(s)
- Xiaoxiao Sun
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
| | - Aaron N Hata
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Zhu S, Kubota N, Wang S, Wang T, Xiao G, Hoshida Y. STIE: Single-cell level deconvolution, convolution, and clustering in in situ capturing-based spatial transcriptomics. Nat Commun 2024; 15:7559. [PMID: 39214995 PMCID: PMC11364663 DOI: 10.1038/s41467-024-51728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
In in situ capturing-based spatial transcriptomics, spots of the same size and printed at fixed locations cannot precisely capture the randomly-located single cells, therefore inherently failing to profile transcriptome at the single-cell level. To this end, we present STIE, an Expectation Maximization algorithm that aligns the spatial transcriptome to its matched histology image-based nuclear morphology and recovers missing cells from ~70% gap area, thereby achieving the real single-cell level and whole-slide scale deconvolution, convolution, and clustering for both low- and high-resolution spots. STIE characterizes cell-type-specific gene expression and demonstrates outperforming concordance with true cell-type-specific transcriptomic signatures than the other spot- and subspot-level methods. Furthermore, STIE reveals the single-cell level insights, for instance, lower actual spot resolution than its reported spot size, unbiased evaluation of cell type colocalization, superior power of high-resolution spot in distinguishing nuanced cell types, and spatial cell-cell interactions at the single-cell level other than spot level.
Collapse
Affiliation(s)
- Shijia Zhu
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Naoto Kubota
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
29
|
Chang Y, Liu J, Jiang Y, Ma A, Yeo YY, Guo Q, McNutt M, Krull JE, Rodig SJ, Barouch DH, Nolan GP, Xu D, Jiang S, Li Z, Liu B, Ma Q. Graph Fourier transform for spatial omics representation and analyses of complex organs. Nat Commun 2024; 15:7467. [PMID: 39209833 PMCID: PMC11362340 DOI: 10.1038/s41467-024-51590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Spatial omics technologies decipher functional components of complex organs at cellular and subcellular resolutions. We introduce Spatial Graph Fourier Transform (SpaGFT) and apply graph signal processing to a wide range of spatial omics profiling platforms to generate their interpretable representations. This representation supports spatially variable gene identification and improves gene expression imputation, outperforming existing tools in analyzing human and mouse spatial transcriptomics data. SpaGFT can identify immunological regions for B cell maturation in human lymph nodes Visium data and characterize variations in secondary follicles using in-house human tonsil CODEX data. Furthermore, it can be integrated seamlessly into other machine learning frameworks, enhancing accuracy in spatial domain identification, cell type annotation, and subcellular feature inference by up to 40%. Notably, SpaGFT detects rare subcellular organelles, such as Cajal bodies and Set1/COMPASS complexes, in high-resolution spatial proteomics data. This approach provides an explainable graph representation method for exploring tissue biology and function.
Collapse
Affiliation(s)
- Yuzhou Chang
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Jixin Liu
- School of Mathematics, Shandong University, 250100, Jinan, China
| | - Yi Jiang
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, 43210, USA
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Yao Yu Yeo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, 20115, USA
| | - Qi Guo
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, 43210, USA
| | - Megan McNutt
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, 43210, USA
| | - Jordan E Krull
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Scott J Rodig
- Department of Pathology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Pathology, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sizun Jiang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, 20115, USA
- Department of Pathology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Bingqiang Liu
- School of Mathematics, Shandong University, 250100, Jinan, China.
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, 43210, USA.
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
30
|
Jiang J, Liu Y, Qin J, Chen J, Wu J, Pizzi MP, Lazcano R, Yamashita K, Xu Z, Pei G, Cho KS, Chu Y, Sinjab A, Peng F, Yan X, Han G, Wang R, Dai E, Dai Y, Czerniak BA, Futreal A, Maitra A, Lazar A, Kadara H, Jazaeri AA, Cheng X, Ajani J, Gao J, Hu J, Wang L. METI: deep profiling of tumor ecosystems by integrating cell morphology and spatial transcriptomics. Nat Commun 2024; 15:7312. [PMID: 39181865 PMCID: PMC11344794 DOI: 10.1038/s41467-024-51708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Recent advances in spatial transcriptomics (ST) techniques provide valuable insights into cellular interactions within the tumor microenvironment (TME). However, most analytical tools lack consideration of histological features and rely on matched single-cell RNA sequencing data, limiting their effectiveness in TME studies. To address this, we introduce the Morphology-Enhanced Spatial Transcriptome Analysis Integrator (METI), an end-to-end framework that maps cancer cells and TME components, stratifies cell types and states, and analyzes cell co-localization. By integrating spatial transcriptomics, cell morphology, and curated gene signatures, METI enhances our understanding of the molecular landscape and cellular interactions within the tissue. We evaluate the performance of METI on ST data generated from various tumor tissues, including gastric, lung, and bladder cancers, as well as premalignant tissues. We also conduct a quantitative comparison of METI with existing clustering and cell deconvolution tools, demonstrating METI's robust and consistent performance.
Collapse
Affiliation(s)
- Jiahui Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yunhe Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiangjiang Qin
- Department of Gastric Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jianfeng Chen
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingjing Wu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melissa P Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kohei Yamashita
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiyuan Xu
- Department of Gastric Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Guangsheng Pei
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyung Serk Cho
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yanshuo Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fuduan Peng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinmiao Yan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yibo Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
| | - Bogdan A Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander Lazar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiangdong Cheng
- Department of Gastric Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jaffer Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Hu
- Department of Human Genetics, Emory School of Medicine, Atlanta, GA, USA.
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA.
| |
Collapse
|
31
|
Li B, Bao F, Hou Y, Li F, Li H, Deng Y, Dai Q. Tissue characterization at an enhanced resolution across spatial omics platforms with deep generative model. Nat Commun 2024; 15:6541. [PMID: 39095360 PMCID: PMC11297205 DOI: 10.1038/s41467-024-50837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Recent advances in spatial omics have expanded the spectrum of profiled molecular categories beyond transcriptomics. However, many of these technologies are constrained by limited spatial resolution, hindering our ability to deeply characterize intricate tissue architectures. Existing computational methods primarily focus on the resolution enhancement of transcriptomics data, lacking the adaptability to address the emerging spatial omics technologies that profile various omics types. Here, we introduce soScope, a unified generative framework designed to enhance data quality and spatial resolution for molecular profiles obtained from diverse spatial technologies. soScope aggregates multimodal tissue information from omics, spatial relations and images, and jointly infers omics profiles at enhanced resolutions with omics-specific modeling through distribution priors. With comprehensive evaluations on diverse spatial omics platforms, including Visium, Xenium, spatial-CUT&Tag, and slide-DNA/RNA-seq, soScope improves performances in identifying biologically meaningful intestine and kidney architectures, revealing embryonic heart structure that cannot be resolved at the original resolution and correcting sample and technical biases arising from sequencing and sample processing. Furthermore, soScope extends to spatial multiomics technology spatial-CITE-seq and spatial ATAC-RNA-seq, leveraging cross-omics reference for simultaneous multiomics enhancement. soScope provides a versatile tool to improve the utilization of continually expanding spatial omics technologies and resources.
Collapse
Affiliation(s)
- Bohan Li
- School of Artificial Intelligence, Beihang University, Beijing, China
| | - Feng Bao
- Beijing National Research Center for Information Science and Technology (BNRist), Beijing, China
- Institute for Brain and Cognitive Science, Tsinghua University (THUIBCS), Beijing, China
- Department of Automation, Tsinghua University, Beijing, China
| | - Yimin Hou
- School of Artificial Intelligence, Beihang University, Beijing, China
| | - Fengji Li
- School of Artificial Intelligence, Beihang University, Beijing, China
| | - Hongjue Li
- School of Artificial Intelligence, Beihang University, Beijing, China
| | - Yue Deng
- School of Artificial Intelligence, Beihang University, Beijing, China.
| | - Qionghai Dai
- Beijing National Research Center for Information Science and Technology (BNRist), Beijing, China.
- Institute for Brain and Cognitive Science, Tsinghua University (THUIBCS), Beijing, China.
- Department of Automation, Tsinghua University, Beijing, China.
| |
Collapse
|
32
|
Cesnik A, Schaffer LV, Gaur I, Jain M, Ideker T, Lundberg E. Mapping the Multiscale Proteomic Organization of Cellular and Disease Phenotypes. Annu Rev Biomed Data Sci 2024; 7:369-389. [PMID: 38748859 PMCID: PMC11343683 DOI: 10.1146/annurev-biodatasci-102423-113534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
While the primary sequences of human proteins have been cataloged for over a decade, determining how these are organized into a dynamic collection of multiprotein assemblies, with structures and functions spanning biological scales, is an ongoing venture. Systematic and data-driven analyses of these higher-order structures are emerging, facilitating the discovery and understanding of cellular phenotypes. At present, knowledge of protein localization and function has been primarily derived from manual annotation and curation in resources such as the Gene Ontology, which are biased toward richly annotated genes in the literature. Here, we envision a future powered by data-driven mapping of protein assemblies. These maps can capture and decode cellular functions through the integration of protein expression, localization, and interaction data across length scales and timescales. In this review, we focus on progress toward constructing integrated cell maps that accelerate the life sciences and translational research.
Collapse
Affiliation(s)
- Anthony Cesnik
- Department of Bioengineering, Stanford University, Stanford, California, USA;
| | - Leah V Schaffer
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Ishan Gaur
- Department of Bioengineering, Stanford University, Stanford, California, USA;
| | - Mayank Jain
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Trey Ideker
- Departments of Computer Science and Engineering and Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Emma Lundberg
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Pathology, Stanford University, Palo Alto, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA;
| |
Collapse
|
33
|
Lv T, Zhang Y, Liu J, Kang Q, Liu L. Multi-omics integration for both single-cell and spatially resolved data based on dual-path graph attention auto-encoder. Brief Bioinform 2024; 25:bbae450. [PMID: 39293805 PMCID: PMC11410375 DOI: 10.1093/bib/bbae450] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
Single-cell multi-omics integration enables joint analysis at the single-cell level of resolution to provide more accurate understanding of complex biological systems, while spatial multi-omics integration is benefit to the exploration of cell spatial heterogeneity to facilitate more comprehensive downstream analyses. Existing methods are mainly designed for single-cell multi-omics data with little consideration of spatial information and still have room for performance improvement. A reliable multi-omics integration method designed for both single-cell and spatially resolved data is necessary and significant. We propose a multi-omics integration method based on dual-path graph attention auto-encoder (SSGATE). It can construct the neighborhood graphs based on single-cell expression profiles or spatial coordinates, enabling it to process single-cell data and utilize spatial information from spatially resolved data. It can also perform self-supervised learning for integration through the graph attention auto-encoders from two paths. SSGATE is applied to integration of transcriptomics and proteomics, including single-cell and spatially resolved data of various tissues from different sequencing technologies. SSGATE shows better performance and stronger robustness than competitive methods and facilitates downstream analysis.
Collapse
Affiliation(s)
- Tongxuan Lv
- BGI Research, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yong Zhang
- BGI Research, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| | - Junlin Liu
- BGI Research, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| | - Qiang Kang
- BGI Research, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| | - Lin Liu
- BGI Research, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| |
Collapse
|
34
|
Zhang Z, Melzer ME, Arun KM, Sun H, Eriksson CJ, Fabian I, Shaashua S, Kiani K, Oren Y, Goyal Y. Synthetic DNA barcodes identify singlets in scRNA-seq datasets and evaluate doublet algorithms. CELL GENOMICS 2024; 4:100592. [PMID: 38925122 PMCID: PMC11293576 DOI: 10.1016/j.xgen.2024.100592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/26/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) datasets contain true single cells, or singlets, in addition to cells that coalesce during the protocol, or doublets. Identifying singlets with high fidelity in scRNA-seq is necessary to avoid false negative and false positive discoveries. Although several methodologies have been proposed, they are typically tested on highly heterogeneous datasets and lack a priori knowledge of true singlets. Here, we leveraged datasets with synthetically introduced DNA barcodes for a hitherto unexplored application: to extract ground-truth singlets. We demonstrated the feasibility of our framework, "singletCode," to evaluate existing doublet detection methods across a range of contexts. We also leveraged our ground-truth singlets to train a proof-of-concept machine learning classifier, which outperformed other doublet detection algorithms. Our integrative framework can identify ground-truth singlets and enable robust doublet detection in non-barcoded datasets.
Collapse
Affiliation(s)
- Ziyang Zhang
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Madeline E Melzer
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Keerthana M Arun
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hanxiao Sun
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Carl-Johan Eriksson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Itai Fabian
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sagi Shaashua
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Karun Kiani
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yaara Oren
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; CZ Biohub Chicago, Chicago, IL, USA.
| |
Collapse
|
35
|
Jiang X, Wang S, Guo L, Zhu B, Wen Z, Jia L, Xu L, Xiao G, Li Q. iIMPACT: integrating image and molecular profiles for spatial transcriptomics analysis. Genome Biol 2024; 25:147. [PMID: 38844966 PMCID: PMC11514947 DOI: 10.1186/s13059-024-03289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
Current clustering analysis of spatial transcriptomics data primarily relies on molecular information and fails to fully exploit the morphological features present in histology images, leading to compromised accuracy and interpretability. To overcome these limitations, we have developed a multi-stage statistical method called iIMPACT. It identifies and defines histology-based spatial domains based on AI-reconstructed histology images and spatial context of gene expression measurements, and detects domain-specific differentially expressed genes. Through multiple case studies, we demonstrate iIMPACT outperforms existing methods in accuracy and interpretability and provides insights into the cellular spatial organization and landscape of functional genes within spatial transcriptomics data.
Collapse
Affiliation(s)
- Xi Jiang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Statistics and Data Science, Southern Methodist University, Dallas, TX, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bencong Zhu
- Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Zhuoyu Wen
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Liwei Jia
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Qiwei Li
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
36
|
Clark T, Mohan J, Schaffer L, Obernier K, Al Manir S, Churas CP, Dailamy A, Doctor Y, Forget A, Hansen JN, Hu M, Lenkiewicz J, Levinson MA, Marquez C, Nourreddine S, Niestroy J, Pratt D, Qian G, Thaker S, Bélisle-Pipon JC, Brandt C, Chen J, Ding Y, Fodeh S, Krogan N, Lundberg E, Mali P, Payne-Foster P, Ratcliffe S, Ravitsky V, Sali A, Schulz W, Ideker T. Cell Maps for Artificial Intelligence: AI-Ready Maps of Human Cell Architecture from Disease-Relevant Cell Lines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.589311. [PMID: 38826258 PMCID: PMC11142054 DOI: 10.1101/2024.05.21.589311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
This article describes the Cell Maps for Artificial Intelligence (CM4AI) project and its goals, methods, standards, current datasets, software tools , status, and future directions. CM4AI is the Functional Genomics Data Generation Project in the U.S. National Institute of Health's (NIH) Bridge2AI program. Its overarching mission is to produce ethical, AI-ready datasets of cell architecture, inferred from multimodal data collected for human cell lines, to enable transformative biomedical AI research.
Collapse
|
37
|
Zhu B, Gao S, Chen S, Yeung J, Bai Y, Huang AY, Yeo YY, Liao G, Mao S, Jiang ZG, Rodig SJ, Shalek AK, Nolan GP, Jiang S, Ma Z. Cross-domain information fusion for enhanced cell population delineation in single-cell spatial-omics data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593710. [PMID: 38798592 PMCID: PMC11118457 DOI: 10.1101/2024.05.12.593710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cell population delineation and identification is an essential step in single-cell and spatial-omics studies. Spatial-omics technologies can simultaneously measure information from three complementary domains related to this task: expression levels of a panel of molecular biomarkers at single-cell resolution, relative positions of cells, and images of tissue sections, but existing computational methods for performing this task on single-cell spatial-omics datasets often relinquish information from one or more domains. The additional reliance on the availability of "atlas" training or reference datasets limits cell type discovery to well-defined but limited cell population labels, thus posing major challenges for using these methods in practice. Successful integration of all three domains presents an opportunity for uncovering cell populations that are functionally stratified by their spatial contexts at cellular and tissue levels: the key motivation for employing spatial-omics technologies in the first place. In this work, we introduce Cell Spatio- and Neighborhood-informed Annotation and Patterning (CellSNAP), a self-supervised computational method that learns a representation vector for each cell in tissue samples measured by spatial-omics technologies at the single-cell or finer resolution. The learned representation vector fuses information about the corresponding cell across all three aforementioned domains. By applying CellSNAP to datasets spanning both spatial proteomic and spatial transcriptomic modalities, and across different tissue types and disease settings, we show that CellSNAP markedly enhances de novo discovery of biologically relevant cell populations at fine granularity, beyond current approaches, by fully integrating cells' molecular profiles with cellular neighborhood and tissue image information.
Collapse
Affiliation(s)
- Bokai Zhu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sheng Gao
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, PA, United States
| | - Shuxiao Chen
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, PA, United States
| | - Jason Yeung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yunhao Bai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Y Huang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yao Yu Yeo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Guanrui Liao
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shulin Mao
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Zhenghui G Jiang
- Division of Gastroenterology/Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Sizun Jiang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zongming Ma
- Department of Statistics and Data Science, Yale University, New Haven, CT, United States
| |
Collapse
|
38
|
Camunas-Soler J. Integrating single-cell transcriptomics with cellular phenotypes: cell morphology, Ca 2+ imaging and electrophysiology. Biophys Rev 2024; 16:89-107. [PMID: 38495444 PMCID: PMC10937895 DOI: 10.1007/s12551-023-01174-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/29/2023] [Indexed: 03/19/2024] Open
Abstract
I review recent technological advancements in coupling single-cell transcriptomics with cellular phenotypes including morphology, calcium signaling, and electrophysiology. Single-cell RNA sequencing (scRNAseq) has revolutionized cell type classifications by capturing the transcriptional diversity of cells. A new wave of methods to integrate scRNAseq and biophysical measurements is facilitating the linkage of transcriptomic data to cellular function, which provides physiological insight into cellular states. I briefly discuss critical factors of these phenotypical characterizations such as timescales, information content, and analytical tools. Dedicated sections focus on the integration with cell morphology, calcium imaging, and electrophysiology (patch-seq), emphasizing their complementary roles. I discuss their application in elucidating cellular states, refining cell type classifications, and uncovering functional differences in cell subtypes. To illustrate the practical applications and benefits of these methods, I highlight their use in tissues with excitable cell-types such as the brain, pancreatic islets, and the retina. The potential of combining functional phenotyping with spatial transcriptomics for a detailed mapping of cell phenotypes in situ is explored. Finally, I discuss open questions and future perspectives, emphasizing the need for a shift towards broader accessibility through increased throughput.
Collapse
Affiliation(s)
- Joan Camunas-Soler
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
39
|
Tao Y, Sun X, Wang F. BiGATAE: a bipartite graph attention auto-encoder enhancing spatial domain identification from single-slice to multi-slices. Brief Bioinform 2024; 25:bbae045. [PMID: 38385877 PMCID: PMC10883416 DOI: 10.1093/bib/bbae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Recent advancements in spatial transcriptomics technology have revolutionized our ability to comprehensively characterize gene expression patterns within the tissue microenvironment, enabling us to grasp their functional significance in a spatial context. One key field of research in spatial transcriptomics is the identification of spatial domains, which refers to distinct regions within the tissue where specific gene expression patterns are observed. Diverse methodologies have been proposed, each with its unique characteristics. As the availability of spatial transcriptomics data continues to expand, there is a growing need for methods that can integrate information from multiple slices to discover spatial domains. To extend the applicability of existing single-slice analysis methods to multi-slice clustering, we introduce BiGATAE (Bipartite Graph Attention Auto Encoder) that leverages gene expression information from adjacent tissue slices to enhance spatial transcriptomics data. BiGATAE comprises two steps: aligning slices to generate an adjacency matrix for different spots in consecutive slices and constructing a bipartite graph. Subsequently, it utilizes a graph attention network to integrate information across different slices. Then it can seamlessly integrate with pre-existing techniques. To evaluate the performance of BiGATAE, we conducted benchmarking analyses on three different datasets. The experimental results demonstrate that for existing single-slice clustering methods, the integration of BiGATAE significantly enhances their performance. Moreover, single-slice clustering methods integrated with BiGATAE outperform methods specifically designed for multi-slice integration. These results underscore the proficiency of BiGATAE in facilitating information transfer across multiple slices and its capacity to broaden the applicability and sustainability of pre-existing methods.
Collapse
Affiliation(s)
- Yuhao Tao
- Shanghai Key Lab of Intelligent Information Processing, Handan Street, 200433 Shanghai, China
- School of Computer Science and Technology, Fudan University Handan Street, 200433 Shanghai, China
| | - Xiaoang Sun
- Shanghai Key Lab of Intelligent Information Processing, Handan Street, 200433 Shanghai, China
- School of Computer Science and Technology, Fudan University Handan Street, 200433 Shanghai, China
| | - Fei Wang
- Shanghai Key Lab of Intelligent Information Processing, Handan Street, 200433 Shanghai, China
- School of Computer Science and Technology, Fudan University Handan Street, 200433 Shanghai, China
| |
Collapse
|
40
|
Xun D, Wang R, Zhang X, Wang Y. Microsnoop: A generalist tool for microscopy image representation. Innovation (N Y) 2024; 5:100541. [PMID: 38235187 PMCID: PMC10794109 DOI: 10.1016/j.xinn.2023.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024] Open
Abstract
Accurate profiling of microscopy images from small scale to high throughput is an essential procedure in basic and applied biological research. Here, we present Microsnoop, a novel deep learning-based representation tool trained on large-scale microscopy images using masked self-supervised learning. Microsnoop can process various complex and heterogeneous images, and we classified images into three categories: single-cell, full-field, and batch-experiment images. Our benchmark study on 10 high-quality evaluation datasets, containing over 2,230,000 images, demonstrated Microsnoop's robust and state-of-the-art microscopy image representation ability, surpassing existing generalist and even several custom algorithms. Microsnoop can be integrated with other pipelines to perform tasks such as superresolution histopathology image and multimodal analysis. Furthermore, Microsnoop can be adapted to various hardware and can be easily deployed on local or cloud computing platforms. We will regularly retrain and reevaluate the model using community-contributed data to consistently improve Microsnoop.
Collapse
Affiliation(s)
- Dejin Xun
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rui Wang
- State Key Lab of Computer-Aided Design & Computer Graphics, Zhejiang University, Hangzhou 310058, China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| |
Collapse
|
41
|
Zhu S, Kubota N, Wang S, Wang T, Xiao G, Hoshida Y. Single-cell level deconvolution, convolution, and clustering in spatial transcriptomics by aligning spot level transcriptome to nuclear morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.17.572084. [PMID: 38187541 PMCID: PMC10769305 DOI: 10.1101/2023.12.17.572084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In spot-based spatial transcriptomics, spots that are of the same size and printed at the fixed location cannot precisely capture the actual randomly located single cells, therefore failing to profile the transcriptome at the single-cell level. The current studies primarily focused on enhancing the spot resolution in size via computational imputation or technical improvement, however, they largely overlooked that single-cell resolution, i.e., resolution in cellular or even smaller size, does not equal single-cell level. Using both real and simulated spatial transcriptomics data, we demonstrated that even the high-resolution spatial transcriptomics still has a large number of spots partially covering multiple cells simultaneously, revealing the intrinsic non-single-cell level of spot-based spatial transcriptomics regardless of spot size. To this end, we present STIE, an EM algorithm that aligns the spatial transcriptome to its matched histology image-based nuclear morphology and recovers missing cells from up to ~70% gap area between spots via the nuclear morphological similarity and neighborhood information, thereby achieving the real single-cell level and whole-slide scale deconvolution/convolution and clustering for both low- and high-resolution spots. On both real and simulation spatial transcriptomics data, STIE characterizes the cell-type specific gene expression variation and demonstrates the outperforming concordance with the single-cell RNAseq-derived cell type transcriptomic signatures compared to the other spot- and subspot-level methods. Furthermore, STIE enabled us to gain novel insights that failed to be revealed by the existing methods due to the lack of single-cell level, for instance, lower actual spot resolution than its reported spot size, the additional contribution of cellular morphology to cell typing beyond transcriptome, unbiased evaluation of cell type colocalization, superior power of high-resolution spot in distinguishing nuanced cell types, and spatially resolved cell-cell interactions at the single-cell level other than spot level. The STIE code is publicly available as an R package at https://github.com/zhushijia/STIE.
Collapse
Affiliation(s)
- Shijia Zhu
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Naoto Kubota
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
42
|
Tippani M, Divecha HR, Catallini JL, Kwon SH, Weber LM, Spangler A, Jaffe AE, Hyde TM, Kleinman JE, Hicks SC, Martinowich K, Collado-Torres L, Page SC, Maynard KR. VistoSeg: Processing utilities for high-resolution images for spatially resolved transcriptomics data. BIOLOGICAL IMAGING 2023; 3:e23. [PMID: 38510173 PMCID: PMC10951916 DOI: 10.1017/s2633903x23000235] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 03/22/2024]
Abstract
Spatially resolved transcriptomics (SRT) is a growing field that links gene expression to anatomical context. SRT approaches that use next-generation sequencing (NGS) combine RNA sequencing with histological or fluorescent imaging to generate spatial maps of gene expression in intact tissue sections. These technologies directly couple gene expression measurements with high-resolution histological or immunofluorescent images that contain rich morphological information about the tissue under study. While broad access to NGS-based spatial transcriptomic technology is now commercially available through the Visium platform from the vendor 10× Genomics, computational tools for extracting image-derived metrics for integration with gene expression data remain limited. We developed VistoSeg as a MATLAB pipeline to process, analyze and interactively visualize the high-resolution images generated in the Visium platform. VistoSeg outputs can be easily integrated with accompanying transcriptomic data to facilitate downstream analyses in common programing languages including R and Python. VistoSeg provides user-friendly tools for integrating image-derived metrics from histological and immunofluorescent images with spatially resolved gene expression data. Integration of this data enhances the ability to understand the transcriptional landscape within tissue architecture. VistoSeg is freely available at http://research.libd.org/VistoSeg/.
Collapse
Affiliation(s)
- Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Heena R. Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Joseph L. Catallini
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sang H. Kwon
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Lukas M. Weber
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Abby Spangler
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephanie C. Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stephanie C. Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Kristen R. Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
43
|
Zhao S, Chen DP, Fu T, Yang JC, Ma D, Zhu XZ, Wang XX, Jiao YP, Jin X, Xiao Y, Xiao WX, Zhang HY, Lv H, Madabhushi A, Yang WT, Jiang YZ, Xu J, Shao ZM. Single-cell morphological and topological atlas reveals the ecosystem diversity of human breast cancer. Nat Commun 2023; 14:6796. [PMID: 37880211 PMCID: PMC10600153 DOI: 10.1038/s41467-023-42504-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Digital pathology allows computerized analysis of tumor ecosystem using whole slide images (WSIs). Here, we present single-cell morphological and topological profiling (sc-MTOP) to characterize tumor ecosystem by extracting the features of nuclear morphology and intercellular spatial relationship for individual cells. We construct a single-cell atlas comprising 410 million cells from 637 breast cancer WSIs and dissect the phenotypic diversity within tumor, inflammatory and stroma cells respectively. Spatially-resolved analysis identifies recurrent micro-ecological modules representing locoregional multicellular structures and reveals four breast cancer ecotypes correlating with distinct molecular features and patient prognosis. Further analysis with multiomics data uncovers clinically relevant ecosystem features. High abundance of locally-aggregated inflammatory cells indicates immune-activated tumor microenvironment and favorable immunotherapy response in triple-negative breast cancers. Morphological intratumor heterogeneity of tumor nuclei correlates with cell cycle pathway activation and CDK inhibitors responsiveness in hormone receptor-positive cases. sc-MTOP enables using WSIs to characterize tumor ecosystems at the single-cell level.
Collapse
Affiliation(s)
- Shen Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - De-Pin Chen
- Institute for Artificial Intelligence in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
| | - Tong Fu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jing-Cheng Yang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Greater Bay Area Institute of Precision Medicine, Guangzhou, China
| | - Ding Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiu-Zhi Zhu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiang-Xue Wang
- Institute for Artificial Intelligence in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yi-Ping Jiao
- Institute for Artificial Intelligence in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xi Jin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wen-Xuan Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hu-Yunlong Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hong Lv
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Anant Madabhushi
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA
| | - Wen-Tao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Jun Xu
- Institute for Artificial Intelligence in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
44
|
Guo T, Yuan Z, Pan Y, Wang J, Chen F, Zhang MQ, Li X. SPIRAL: integrating and aligning spatially resolved transcriptomics data across different experiments, conditions, and technologies. Genome Biol 2023; 24:241. [PMID: 37864231 PMCID: PMC10590036 DOI: 10.1186/s13059-023-03078-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Properly integrating spatially resolved transcriptomics (SRT) generated from different batches into a unified gene-spatial coordinate system could enable the construction of a comprehensive spatial transcriptome atlas. Here, we propose SPIRAL, consisting of two consecutive modules: SPIRAL-integration, with graph domain adaptation-based data integration, and SPIRAL-alignment, with cluster-aware optimal transport-based coordination alignment. We verify SPIRAL with both synthetic and real SRT datasets. By encoding spatial correlations to gene expressions, SPIRAL-integration surpasses state-of-the-art methods in both batch effect removal and joint spatial domain identification. By aligning spots cluster-wise, SPIRAL-alignment achieves more accurate coordinate alignments than existing methods.
Collapse
Affiliation(s)
- Tiantian Guo
- School of Software Engineering, Beijing Jiaotong University, Beijing, 100044, China
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Zhiyuan Yuan
- Institute of Science and Technology for Brain-Inspired Intelligence, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Yan Pan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jiakang Wang
- School of Software Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Fengling Chen
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson, TX, 75080-3021, USA.
| | - Xiangyu Li
- School of Software Engineering, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
45
|
Shi H, He Y, Zhou Y, Huang J, Maher K, Wang B, Tang Z, Luo S, Tan P, Wu M, Lin Z, Ren J, Thapa Y, Tang X, Chan KY, Deverman BE, Shen H, Liu A, Liu J, Wang X. Spatial atlas of the mouse central nervous system at molecular resolution. Nature 2023; 622:552-561. [PMID: 37758947 PMCID: PMC10709140 DOI: 10.1038/s41586-023-06569-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Spatially charting molecular cell types at single-cell resolution across the 3D volume is critical for illustrating the molecular basis of brain anatomy and functions. Single-cell RNA sequencing has profiled molecular cell types in the mouse brain1,2, but cannot capture their spatial organization. Here we used an in situ sequencing method, STARmap PLUS3,4, to profile 1,022 genes in 3D at a voxel size of 194 × 194 × 345 nm3, mapping 1.09 million high-quality cells across the adult mouse brain and spinal cord. We developed computational pipelines to segment, cluster and annotate 230 molecular cell types by single-cell gene expression and 106 molecular tissue regions by spatial niche gene expression. Joint analysis of molecular cell types and molecular tissue regions enabled a systematic molecular spatial cell-type nomenclature and identification of tissue architectures that were undefined in established brain anatomy. To create a transcriptome-wide spatial atlas, we integrated STARmap PLUS measurements with a published single-cell RNA-sequencing atlas1, imputing single-cell expression profiles of 11,844 genes. Finally, we delineated viral tropisms of a brain-wide transgene delivery tool, AAV-PHP.eB5,6. Together, this annotated dataset provides a single-cell resource that integrates the molecular spatial atlas, brain anatomy and the accessibility to genetic manipulation of the mammalian central nervous system.
Collapse
Affiliation(s)
- Hailing Shi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yichun He
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Yiming Zhou
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiahao Huang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kamal Maher
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computational and Systems Biology PhD Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brandon Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zefang Tang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shuchen Luo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peng Tan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Morgan Wu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zuwan Lin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jingyi Ren
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yaman Thapa
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xin Tang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Ken Y Chan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin E Deverman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hao Shen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Albert Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.
| | - Xiao Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
46
|
Tang Z, Li Z, Hou T, Zhang T, Yang B, Su J, Song Q. SiGra: single-cell spatial elucidation through an image-augmented graph transformer. Nat Commun 2023; 14:5618. [PMID: 37699885 PMCID: PMC10497630 DOI: 10.1038/s41467-023-41437-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
Recent advances in high-throughput molecular imaging have pushed spatial transcriptomics technologies to subcellular resolution, which surpasses the limitations of both single-cell RNA-seq and array-based spatial profiling. The multichannel immunohistochemistry images in such data provide rich information on the cell types, functions, and morphologies of cellular compartments. In this work, we developed a method, single-cell spatial elucidation through image-augmented Graph transformer (SiGra), to leverage such imaging information for revealing spatial domains and enhancing substantially sparse and noisy transcriptomics data. SiGra applies hybrid graph transformers over a single-cell spatial graph. SiGra outperforms state-of-the-art methods on both single-cell and spot-level spatial transcriptomics data from complex tissues. The inclusion of immunohistochemistry images improves the model performance by 37% (95% CI: 27-50%). SiGra improves the characterization of intratumor heterogeneity and intercellular communication and recovers the known microscopic anatomy. Overall, SiGra effectively integrates different spatial modality data to gain deep insights into spatial cellular ecosystems.
Collapse
Affiliation(s)
- Ziyang Tang
- Department of Computer and Information Technology, Purdue University, Indiana, USA
| | - Zuotian Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
- Department of Computer Graphics Technology, Purdue University, Indiana, USA
| | - Tieying Hou
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indiana, USA
| | - Tonglin Zhang
- Department of Statistics, Purdue University, Indiana, USA
| | - Baijian Yang
- Department of Computer and Information Technology, Purdue University, Indiana, USA.
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA.
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest University School of Medicine, North Carolina, USA.
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Florida, USA.
| |
Collapse
|
47
|
Huo Y, Guo Y, Wang J, Xue H, Feng Y, Chen W, Li X. Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network. J Genet Genomics 2023; 50:720-733. [PMID: 37356752 DOI: 10.1016/j.jgg.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Recent advances in spatially resolved transcriptomic technologies have enabled unprecedented opportunities to elucidate tissue architecture and function in situ. Spatial transcriptomics can provide multimodal and complementary information simultaneously, including gene expression profiles, spatial locations, and histology images. However, most existing methods have limitations in efficiently utilizing spatial information and matched high-resolution histology images. To fully leverage the multi-modal information, we propose a SPAtially embedded Deep Attentional graph Clustering (SpaDAC) method to identify spatial domains while reconstructing denoised gene expression profiles. This method can efficiently learn the low-dimensional embeddings for spatial transcriptomics data by constructing multi-view graph modules to capture both spatial location connectives and morphological connectives. Benchmark results demonstrate that SpaDAC outperforms other algorithms on several recent spatial transcriptomics datasets. SpaDAC is a valuable tool for spatial domain detection, facilitating the comprehension of tissue architecture and cellular microenvironment. The source code of SpaDAC is freely available at Github (https://github.com/huoyuying/SpaDAC.git).
Collapse
Affiliation(s)
- Yuying Huo
- School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Yilang Guo
- School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jiakang Wang
- School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Huijie Xue
- School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Yujuan Feng
- School of Software Engineering, Beijing University of Technology, Beijing 100124, China
| | | | - Xiangyu Li
- School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China.
| |
Collapse
|
48
|
Vandereyken K, Sifrim A, Thienpont B, Voet T. Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet 2023; 24:494-515. [PMID: 36864178 PMCID: PMC9979144 DOI: 10.1038/s41576-023-00580-2] [Citation(s) in RCA: 462] [Impact Index Per Article: 231.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 03/04/2023]
Abstract
The joint analysis of the genome, epigenome, transcriptome, proteome and/or metabolome from single cells is transforming our understanding of cell biology in health and disease. In less than a decade, the field has seen tremendous technological revolutions that enable crucial new insights into the interplay between intracellular and intercellular molecular mechanisms that govern development, physiology and pathogenesis. In this Review, we highlight advances in the fast-developing field of single-cell and spatial multi-omics technologies (also known as multimodal omics approaches), and the computational strategies needed to integrate information across these molecular layers. We demonstrate their impact on fundamental cell biology and translational research, discuss current challenges and provide an outlook to the future.
Collapse
Affiliation(s)
- Katy Vandereyken
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Alejandro Sifrim
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Bernard Thienpont
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Thierry Voet
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium.
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
49
|
O'Connor LM, O'Connor BA, Lim SB, Zeng J, Lo CH. Integrative multi-omics and systems bioinformatics in translational neuroscience: A data mining perspective. J Pharm Anal 2023; 13:836-850. [PMID: 37719197 PMCID: PMC10499660 DOI: 10.1016/j.jpha.2023.06.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 09/19/2023] Open
Abstract
Bioinformatic analysis of large and complex omics datasets has become increasingly useful in modern day biology by providing a great depth of information, with its application to neuroscience termed neuroinformatics. Data mining of omics datasets has enabled the generation of new hypotheses based on differentially regulated biological molecules associated with disease mechanisms, which can be tested experimentally for improved diagnostic and therapeutic targeting of neurodegenerative diseases. Importantly, integrating multi-omics data using a systems bioinformatics approach will advance the understanding of the layered and interactive network of biological regulation that exchanges systemic knowledge to facilitate the development of a comprehensive human brain profile. In this review, we first summarize data mining studies utilizing datasets from the individual type of omics analysis, including epigenetics/epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, and spatial omics, pertaining to Alzheimer's disease, Parkinson's disease, and multiple sclerosis. We then discuss multi-omics integration approaches, including independent biological integration and unsupervised integration methods, for more intuitive and informative interpretation of the biological data obtained across different omics layers. We further assess studies that integrate multi-omics in data mining which provide convoluted biological insights and offer proof-of-concept proposition towards systems bioinformatics in the reconstruction of brain networks. Finally, we recommend a combination of high dimensional bioinformatics analysis with experimental validation to achieve translational neuroscience applications including biomarker discovery, therapeutic development, and elucidation of disease mechanisms. We conclude by providing future perspectives and opportunities in applying integrative multi-omics and systems bioinformatics to achieve precision phenotyping of neurodegenerative diseases and towards personalized medicine.
Collapse
Affiliation(s)
- Lance M. O'Connor
- College of Biological Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Blake A. O'Connor
- School of Pharmacy, University of Wisconsin, Madison, WI, 53705, USA
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| |
Collapse
|
50
|
Grandi E, Navedo MF, Saucerman JJ, Bers DM, Chiamvimonvat N, Dixon RE, Dobrev D, Gomez AM, Harraz OF, Hegyi B, Jones DK, Krogh-Madsen T, Murfee WL, Nystoriak MA, Posnack NG, Ripplinger CM, Veeraraghavan R, Weinberg S. Diversity of cells and signals in the cardiovascular system. J Physiol 2023; 601:2547-2592. [PMID: 36744541 PMCID: PMC10313794 DOI: 10.1113/jp284011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
This white paper is the outcome of the seventh UC Davis Cardiovascular Research Symposium on Systems Approach to Understanding Cardiovascular Disease and Arrhythmia. This biannual meeting aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2022 Symposium was 'Cell Diversity in the Cardiovascular System, cell-autonomous and cell-cell signalling'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies, and challenges in examining cell and signal diversity, co-ordination and interrelationships involved in cardiovascular function. This paper originates from the topics of formal presentations and informal discussions from the Symposium, which aimed to develop a holistic view of how the multiple cell types in the cardiovascular system integrate to influence cardiovascular function, disease progression and therapeutic strategies. The first section describes the major cell types (e.g. cardiomyocytes, vascular smooth muscle and endothelial cells, fibroblasts, neurons, immune cells, etc.) and the signals involved in cardiovascular function. The second section emphasizes the complexity at the subcellular, cellular and system levels in the context of cardiovascular development, ageing and disease. Finally, the third section surveys the technological innovations that allow the interrogation of this diversity and advancing our understanding of the integrated cardiovascular function and dysfunction.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Ana M. Gomez
- Signaling and Cardiovascular Pathophysiology-UMR-S 1180, INSERM, Université Paris-Saclay, Orsay, France
| | - Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew A. Nystoriak
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, KY, 40202, USA
| | - Nikki G. Posnack
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | | | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| | - Seth Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|