1
|
Pagani I, Venturini A, Capurro V, Nonis A, Ghezzi S, Lena M, Alcalá-Franco B, Gianferro F, Guidone D, Colombo C, Pedemonte N, Bragonzi A, Cigana C, Galietta LJV, Vicenzi E. Distinct Responses of Cystic Fibrosis Epithelial Cells to SARS-CoV-2 and Influenza A Virus. Am J Respir Cell Mol Biol 2025; 72:308-319. [PMID: 39311876 PMCID: PMC11890075 DOI: 10.1165/rcmb.2024-0213oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/23/2024] [Indexed: 03/01/2025] Open
Abstract
The coronavirus disease (COVID-19) pandemic has underscored the impact of viral infections on individuals with cystic fibrosis (CF). Initial observations suggested lower COVID-19 rates among CF populations; however, subsequent clinical data have presented a more complex scenario. This study aimed to investigate how bronchial epithelial cells from individuals with and without CF, including various CFTR (CF transmembrane conductance regulator) mutations, respond to in vitro infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and SARS-CoV. Comparisons with the influenza A virus (IAV) were included based on evidence that patients with CF experience heightened morbidity from IAV infection. Our findings showed that CF epithelial cells exhibited reduced replication of SARS-CoV-2, regardless of the type of CFTR mutation or SARS-CoV-2 variant, as well as the original 2003 SARS-CoV. In contrast, these cells displayed more efficient IAV replication than non-CF cells. Interestingly, the reduced susceptibility to SARS-CoV-2 in CF was not linked to the expression of ACE2 (angiotensin-converting enzyme 2) receptor or to CFTR dysfunction, as pharmacological treatments to restore CFTR function did not normalize the viral response. Both SARS-CoV-2 infection and CFTR function influenced the concentrations of certain cytokines and chemokines, although these effects were not correlated. Overall, this study reveals a unique viral response in CF epithelial cells, characterized by reduced replication for some viruses like SARS-CoV-2, while showing increased susceptibility to others, such as IAV. This research offers a new perspective on CF and viral interactions, emphasizing the need for further investigation into the mechanisms underlying these differences.
Collapse
Affiliation(s)
| | - Arianna Venturini
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medical Sciences, University of Napoli Federico II, Naples, Italy
| | - Valeria Capurro
- Unit of Medical Genetics (UOC), IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Alessandro Nonis
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | | | - Mariateresa Lena
- Unit of Medical Genetics (UOC), IRCCS Giannina Gaslini Institute, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; and
| | - Beatriz Alcalá-Franco
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Gianferro
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medical Sciences, University of Napoli Federico II, Naples, Italy
| | - Carla Colombo
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicoletta Pedemonte
- Unit of Medical Genetics (UOC), IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Cigana
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luis J. V. Galietta
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medical Sciences, University of Napoli Federico II, Naples, Italy
| | | |
Collapse
|
2
|
Adamopoulos PG, Bartzoka N, Tsiakanikas P, Scorilas A. Characterization of novel ACE2 mRNA transcripts: The potential role of alternative splicing in SARS-CoV-2 infection. Gene 2025; 936:149092. [PMID: 39549777 DOI: 10.1016/j.gene.2024.149092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
The human angiotensin converting enzyme 2 (ACE2) gene encodes a type I transmembrane protein, which is homologous to angiotensin I-converting enzyme (ACE) and belongs to the angiotensin-converting enzyme family of dipeptidyl carboxypeptidases. As highlighted by the COVID-19 pandemic, ACE2 is not only crucial for the renin-angiotensin-aldosterone system (RAAS), but also displays great affinity with the SARS-CoV-2 spike protein, representing the major receptor of the virus. Given the significance of ACE2 in COVID-19, especially among cancer patients, the present study aims to explore the transcriptional landscape of ACE2 in human cancer and non-cancerous cell lines through the design and implementation of a custom targeted long-read sequencing approach. Bioinformatics analysis of the massive parallel sequencing data led to the identification of novel ACE2 mRNA splice variants (ACE2 sv.7-sv.12) that demonstrate previously uncharacterized exon-skipping events as well as 5' and/or 3' alternative splice sites. Demultiplexing of the sequencing data elucidated the differential expression profile of the identified splice variants in multiple human cell types, whereas in silico analysis suggests that some of the novel splice variants could produce truncated ACE2 isoforms with altered functionalities, potentially influencing their interaction with the SARS-CoV-2 spike protein. In summary, our study sheds light on the complex alternative splicing landscape of the ACE2 gene in cancer cell lines, revealing novel splice variants that could have significant implications for SARS-CoV-2 susceptibility in cancer patients. These findings contribute to the increased understanding of ACE2's role in COVID-19 and highlight the importance of considering alternative splicing as a key factor in viral pathogenesis. Undoubtably, further research is needed to explore the functional roles of these variants and their potential as therapeutic targets in the ongoing fight against COVID-19.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Natalia Bartzoka
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
3
|
Tabatabaei FS, Shafeghat M, Azimi A, Akrami A, Rezaei N. Endosomal Toll-Like Receptors intermediate negative impacts of viral diseases, autoimmune diseases, and inflammatory immune responses on the cardiovascular system. Expert Rev Clin Immunol 2025; 21:195-207. [PMID: 39137281 DOI: 10.1080/1744666x.2024.2392815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is the leading cause of morbidity globally, with chronic inflammation as a key modifiable risk factor. Toll-like receptors (TLRs), pivotal components of the innate immune system, including TLR-3, -7, -8, and -9 within endosomes, trigger intracellular cascades, leading to inflammatory cytokine production by various cell types, contributing to systemic inflammation and atherosclerosis. Recent research highlights the role of endosomal TLRs in recognizing self-derived nucleic acids during sterile inflammation, implicated in autoimmune conditions like myocarditis. AREAS COVERED This review explores the impact of endosomal TLRs on viral infections, autoimmunity, and inflammatory responses, shedding light on their intricate involvement in cardiovascular health and disease by examining literature on TLR-mediated mechanisms and their roles in CVD pathophysiology. EXPERT OPINION Removal of endosomal TLRs mitigates myocardial damage and immune reactions, applicable in myocardial injury. Targeting TLRs with agonists enhances innate immunity against fatal viruses, lowering viral loads and mortality. Prophylactic TLR agonist administration upregulates TLRs, protecting against fatal viruses and improving survival. TLRs play a complex role in CVDs like atherosclerosis and myocarditis, with therapeutic potential in modulating TLR reactions for cardiovascular health.
Collapse
Affiliation(s)
- Fatemeh Sadat Tabatabaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Melika Shafeghat
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Azimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashley Akrami
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
4
|
Shikama Y, Otsuka K, Shikama Y, Furukawa M, Ishimaru N, Matsushita K. Involvement of metformin and aging in salivary expression of ACE2 and TMPRSS2. Biofactors 2025; 51:e2154. [PMID: 39865553 PMCID: PMC11771682 DOI: 10.1002/biof.2154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/29/2024] [Indexed: 01/28/2025]
Abstract
SARS-CoV-2-related proteins, ACE2 and TMPRSS2, are determinants of SARS-CoV-2 infection. Although these proteins are expressed in oral-related tissues, their expression patterns and modulatory mechanisms in the salivary glands remain unknown. We herein showed that full-length ACE2, which has both a fully functional enzyme catalytic site and high-affinity SARS-CoV-2 spike S1-binding sites, was more highly expressed in salivary glands than in oral mucosal epithelial cells and the lungs. Regarding TMPRSS2, zymogen and the cleaved form were both expressed in the salivary glands, whereas only zymogen was expressed in murine lacrimal glands and the lungs. Metformin, an AMPK activator, increased stimulated saliva secretion and full-length ACE2 expression and decreased cleaved TMPRSS2 expression in the salivary glands, and exerted the same effects on soluble ACE2 (sACE2) and sTMPRSS2 in saliva. Moreover, metformin decreased the expression of beta-galactosidase, a senescence marker, and ADAM17, a sheddase of ACE2 to sACE2, in the salivary glands. In aged mice, the expression of ACE2 was decreased in the salivary glands, whereas that of sACE2 was increased in saliva, presumably by the up-regulated expression of ADAM17. The expression of TMPRSS2 in the salivary glands and sTMPRSS2 in saliva were both increased. Collectively, these results suggest that the protein expression patterns of ACE2 and TMPRSS2 in the salivary glands differ from those in other oral-related cells and tissues, and also that metformin and aging affect the salivary expression of ACE2 and TMPRSS2, which have the potential as targets for preventing the transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Yosuke Shikama
- Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan
- Department of Geriatric Oral Science, Graduate School of DentistryTohoku UniversitySendaiJapan
| | - Kunihiro Otsuka
- Department of Oral Molecular PathologyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Yuka Shikama
- Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan
| | - Masae Furukawa
- Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan
| | - Naozumi Ishimaru
- Department of Oral PathologyGraduate School of Medical and Dental Sciences, Institute of Science TokyoTokyoJapan
| | - Kenji Matsushita
- Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan
- Department of Geriatric Oral Science, Graduate School of DentistryTohoku UniversitySendaiJapan
| |
Collapse
|
5
|
Pasquesi GIM, Allen H, Ivancevic A, Barbachano-Guerrero A, Joyner O, Guo K, Simpson DM, Gapin K, Horton I, Nguyen LL, Yang Q, Warren CJ, Florea LD, Bitler BG, Santiago ML, Sawyer SL, Chuong EB. Regulation of human interferon signaling by transposon exonization. Cell 2024; 187:7621-7636.e19. [PMID: 39672162 PMCID: PMC11682929 DOI: 10.1016/j.cell.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/21/2024] [Accepted: 11/12/2024] [Indexed: 12/15/2024]
Abstract
Innate immune signaling is essential for clearing pathogens and damaged cells and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2. We demonstrated that the transposon-derived isoform of IFNAR2 is more highly expressed than the canonical isoform in almost all tissues and functions as a decoy receptor that potently inhibits interferon signaling, including in cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our findings uncover a primate-specific axis controlling interferon signaling and show how a transposon exonization event can be co-opted for immune regulation.
Collapse
Affiliation(s)
- Giulia Irene Maria Pasquesi
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Holly Allen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Olivia Joyner
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David M Simpson
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Keala Gapin
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Isabella Horton
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lily L Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Qing Yang
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cody J Warren
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Liliana D Florea
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin G Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sara L Sawyer
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Edward B Chuong
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
6
|
Khanal R, Heinen N, Bogomolova A, Meister TL, Herrmann ST, Westhoven S, Nocke MK, Todt D, Jockenhövel F, Klein IM, Hartmann L, Vondran FWR, Steinmann E, Zimmer G, Ott M, Brown RJP, Sharma AD, Pfaender S. MicroRNAs modulate SARS-CoV-2 infection of primary human hepatocytes by regulating the entry factors ACE2 and TMPRSS2. Liver Int 2024; 44:2983-2995. [PMID: 39175256 DOI: 10.1111/liv.16079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND AIMS Severe acute respiratory syndrome coronavirus (SARS-CoV-2) preferentially infects the respiratory tract; however, several studies have implicated a multi-organ involvement. Hepatic dysfunctions caused by SARS-CoV-2 infection have been increasingly recognized and described to correlate with disease severity. To elucidate molecular factors that could contribute towards hepatic infection, we concentrated on microRNAs (miRNAs), a class of small non-coding RNAs that modulate various cellular processes and which are reported to be differentially regulated during liver injury. We aimed to study the infection of primary human hepatocytes (PHH) with SARS-CoV-2 and to evaluate the potential of miRNAs for modulating viral infection. METHODS We analysed liver autopsies from a coronavirus disease 19 (COVID-19)-positive cohort for the presence of viral RNA using Nanopore sequencing. PHH were used for the infection with SARS-CoV-2. The candidate miRNAs targeting angiotensin converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) were identified using in silico approaches. To discover the potential regulatory mechanism, transfection experiments, qRT-PCRs, western blots and luciferase reporter assays were performed. RESULTS We could detect SARS-CoV-2 RNA in COVID-19-positive liver autopsies. We show that PHH express ACE2 and TMPRSS2 and can be readily infected with SARS-CoV-2, resulting in robust replication. Transfection of selected miRNA mimics reduced SARS-CoV-2 receptor expression and SARS-CoV-2 burden in PHH. In silico and biochemical analyses supported a potential direct binding of miR-141-3p to the SARS-CoV-2 genome. CONCLUSION We confirm that PHH are susceptible to SARS-CoV-2 infection and demonstrate selected miRNAs targeting SARS-CoV-2 entry factors and/or the viral genome reduce viral loads. These data provide novel insights into hepatic susceptibility to SARS-CoV-2 and associated dysfunctions in COVID-19.
Collapse
Affiliation(s)
- Rajendra Khanal
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Research Group Liver Regeneration & RNA Therapeutics, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Natalie Heinen
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Alexandra Bogomolova
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Research Group Liver Regeneration & RNA Therapeutics, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Toni L Meister
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Institute for Infection Research and Vaccine Development (IIRVD), Centre for Internal Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Simon T Herrmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Saskia Westhoven
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Maximilian K Nocke
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Freya Jockenhövel
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Isabel M Klein
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Laura Hartmann
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian W R Vondran
- Department of General, Visceral, Pediatric and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard J P Brown
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Research Group Liver Regeneration & RNA Therapeutics, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Stephanie Pfaender
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
- University of Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Bachtiar BM, Haerani N, Soeroso Y, Ismah N, Bachtiar EW. The presence of ACE2 and regulatory miRNAs (miR-200c-3p and miR-421-5p) in the saliva of periodontitis patients post-COVID-19 vaccination. FRONTIERS IN DENTAL MEDICINE 2024; 5:1438139. [PMID: 39917640 PMCID: PMC11797934 DOI: 10.3389/fdmed.2024.1438139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/19/2024] [Indexed: 01/03/2025] Open
Abstract
The effectiveness of COVID-19 mRNA vaccines in individuals with periodontitis is crucial. This study evaluated the efficacy of the BNT162b2 vaccine in individuals with periodontitis who had been vaccinated at least 6 months earlier. Using real-time PCR, the association between the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) and miRNA-200c-3p and miRNA-421-5p as well as interleukin-6 (IL-6) was examined in the saliva of moderate (G1, n = 10) and severe (G2, n = 10) periodontitis subjects. Participants without periodontitis were included as a control group. The transcription levels of soluble ACE2 and IL-6 were higher in periodontitis participants than in control participants, but within periodontitis groups, only IL-6 expression was higher in G2 than in G1. A positive strong correlation between ACE2 and IL-6 was only observed in the G2 group (p = 0.008). The expression of miR-200c-3p but not miR-421-5p was higher in periodontitis individuals. Their relationship was positive but a strong correlation was only observed in the G2 group. In all periodontitis groups, a strong inverse correlation was observed between the two microRNAs and ACE2. However, receiver operating characteristic (ROC) analysis showed that only the relationship between ACE2 and miR-4215p had potential as a biomarker for the efficacy of the mRNA vaccine, with areas under the ROC curve of 0.92 and 0.80 in the G1 and G2 groups, respectively. Our study revealed that active and non-active periodontitis conditions do not interfere with the efficacy of the BNT162b2 vaccine for at least 6 months post-vaccination. This suggests that in individuals with periodontitis, soluble ACE2 in the saliva may serve as a preliminary indicator of vaccine response.
Collapse
Affiliation(s)
- Boy M. Bachtiar
- Department of Oral Biology and Oral Science Research Center, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Natalina Haerani
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Yuniarti Soeroso
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Nada Ismah
- Department of Orthodontics, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Endang W. Bachtiar
- Department of Oral Biology and Oral Science Research Center, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
8
|
Timofeeva AM, Nikitin AO, Nevinsky GA. Circulating miRNAs in the Plasma of Post-COVID-19 Patients with Typical Recovery and Those with Long-COVID Symptoms: Regulation of Immune Response-Associated Pathways. Noncoding RNA 2024; 10:48. [PMID: 39311385 PMCID: PMC11417918 DOI: 10.3390/ncrna10050048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Following the acute phase of SARS-CoV-2 infection, certain individuals experience persistent symptoms referred to as long COVID. This study analyzed the patients categorized into three distinct groups: (1) individuals presenting rheumatological symptoms associated with long COVID, (2) patients who have successfully recovered from COVID-19, and (3) donors who have never contracted COVID-19. A notable decline in the expression of miR-200c-3p, miR-766-3p, and miR-142-3p was identified among patients exhibiting rheumatological symptoms of long COVID. The highest concentration of miR-142-3p was found in healthy donors. One potential way to reduce miRNA concentrations is through antibody-mediated hydrolysis. Not only can antibodies possessing RNA-hydrolyzing activity recognize the miRNA substrate specifically, but they also catalyze its hydrolysis. The analysis of the catalytic activity of plasma antibodies revealed that antibodies from patients with long COVID demonstrated lower hydrolysis activity against five fluorescently labeled oligonucleotide sequences corresponding to the Flu-miR-146b-5p, Flu-miR-766-3p, Flu-miR-4742-3p, and Flu-miR-142-3p miRNAs and increased activity against the Flu-miR-378a-3p miRNA compared to other patient groups. The changes in miRNA concentrations and antibody-mediated hydrolysis of miRNAs are assumed to have a complex regulatory mechanism that is linked to gene pathways associated with the immune system. We demonstrate that all six miRNAs under analysis are associated with a large number of signaling pathways associated with immune response-associated pathways.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Artem O. Nikitin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | - Georgy A. Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
9
|
Le Pen J, Paniccia G, Kinast V, Moncada-Velez M, Ashbrook AW, Bauer M, Hoffmann HH, Pinharanda A, Ricardo-Lax I, Stenzel AF, Rosado-Olivieri EA, Dinnon KH, Doyle WC, Freije CA, Hong SH, Lee D, Lewy T, Luna JM, Peace A, Schmidt C, Schneider WM, Winkler R, Yip EZ, Larson C, McGinn T, Menezes MR, Ramos-Espiritu L, Banerjee P, Poirier JT, Sànchez-Rivera FJ, Cobat A, Zhang Q, Casanova JL, Carroll TS, Glickman JF, Michailidis E, Razooky B, MacDonald MR, Rice CM. A genome-wide arrayed CRISPR screen identifies PLSCR1 as an intrinsic barrier to SARS-CoV-2 entry that recent virus variants have evolved to resist. PLoS Biol 2024; 22:e3002767. [PMID: 39316623 PMCID: PMC11486371 DOI: 10.1371/journal.pbio.3002767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/17/2024] [Accepted: 07/25/2024] [Indexed: 09/26/2024] Open
Abstract
Interferons (IFNs) play a crucial role in the regulation and evolution of host-virus interactions. Here, we conducted a genome-wide arrayed CRISPR knockout screen in the presence and absence of IFN to identify human genes that influence Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We then performed an integrated analysis of genes interacting with SARS-CoV-2, drawing from a selection of 67 large-scale studies, including our own. We identified 28 genes of high relevance in both human genetic studies of Coronavirus Disease 2019 (COVID-19) patients and functional genetic screens in cell culture, with many related to the IFN pathway. Among these was the IFN-stimulated gene PLSCR1. PLSCR1 did not require IFN induction to restrict SARS-CoV-2 and did not contribute to IFN signaling. Instead, PLSCR1 specifically restricted spike-mediated SARS-CoV-2 entry. The PLSCR1-mediated restriction was alleviated by TMPRSS2 overexpression, suggesting that PLSCR1 primarily restricts the endocytic entry route. In addition, recent SARS-CoV-2 variants have adapted to circumvent the PLSCR1 barrier via currently undetermined mechanisms. Finally, we investigate the functional effects of PLSCR1 variants present in humans and discuss an association between PLSCR1 and severe COVID-19 reported recently.
Collapse
Affiliation(s)
- Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Gabrielle Paniccia
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Department for Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Marcela Moncada-Velez
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - Alison W. Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Michael Bauer
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - H.-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ana Pinharanda
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ansgar F. Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Edwin A. Rosado-Olivieri
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, New York, United States of America
| | - Kenneth H. Dinnon
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - William C. Doyle
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Catherine A. Freije
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Danyel Lee
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Tyler Lewy
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Joseph M. Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Carltin Schmidt
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - William M. Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Roni Winkler
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Elaine Z. Yip
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Chloe Larson
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Timothy McGinn
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Miriam-Rose Menezes
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Lavoisier Ramos-Espiritu
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Priyam Banerjee
- Bio-Imaging Resource Center, The Rockefeller University, New York, New York, United States of America
| | - John T. Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York, United States of America
| | - Francisco J. Sànchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, United States of America
| | - Thomas S. Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York, United States of America
| | - J. Fraser Glickman
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
10
|
Thiede JM, Dick JK, Jarjour NN, Krishna VD, Qian L, Sangala J, Benzow K, Karanjeet K, Chin S, Rainwater O, Cheeran MCJ, Hogquist KA, Jameson SC, Hart GT, Bold TD, Koob MD. Human ACE2 Gene Replacement Mice Support SARS-CoV-2 Viral Replication and Nonlethal Disease Progression. Immunohorizons 2024; 8:712-720. [PMID: 39287601 PMCID: PMC11447706 DOI: 10.4049/immunohorizons.2400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
Many mouse models of SARS-CoV-2 infection involve expression of the human ACE2 protein, the entry receptor for SARS-CoV-2 Spike protein, in mouse tissues. However, most of these models suffer from nonphysiological regulation of ACE2 expression, which can lead to atypically severe infections and aberrant sites of viral replication. In this report, we developed and characterized an ACE2 gene replacement (ACE2-GR) mouse strain in which the mouse Ace2 genomic locus was replaced by the entire human ACE2 gene locus, and we investigated the ability of these animals to respond to SARS-CoV-2 infection. We show that ACE2-GR mice support SARS-CoV-2 viral replication, but, in stark contrast to the widely used K18-hACE2 transgenic model, this infection leads to a mild disease with no detectable involvement of the CNS. Thus, ACE2-GR mice provide a novel, to our knowledge, model to explore immune responses and long-term consequences of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Joshua M. Thiede
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Jenna K. Dick
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Nicholas N. Jarjour
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Venkatramana D. Krishna
- Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, MN
| | - Lily Qian
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Jules Sangala
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Kellie Benzow
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Kul Karanjeet
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Shine Chin
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Orion Rainwater
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Maxim C.-J. Cheeran
- Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, MN
| | - Kristin A. Hogquist
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Stephen C. Jameson
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Geoffrey T. Hart
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Tyler D. Bold
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Michael D. Koob
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
11
|
Marquis A, Hubing V, Ziemann C, Moriyama EN, Zhang L. The primate-specific presence of interferon regulatory factor-5 pseudogene 1. J Med Virol 2024; 96:e29879. [PMID: 39169736 DOI: 10.1002/jmv.29879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Interferon regulatory factor 5 (IRF5) is a key transcription factor in inflammatory and immune responses, with its dysregulation linked to autoimmune diseases. Using bioinformatic approaches, including Basic Local Alignment Search Tool (BLAST) for sequence similarity searches, BLAST-Like Alignment Tool (BLAT) for genome-wide alignments, and several phylogenetics software, such as Multiple Alignment using Fast Fourier Transform (MAFFT), for phylogenetic analyses, we characterized the structure, origin, and evolutionary history of the human IRF5 pseudogene 1 (IRF5P1). Our analyses reveal that IRF5P1 is a chimeric processed pseudogene containing sequences derived from multiple sources, including IRF5-like sequences from disparate organisms. We find that IRF5P1 is specific to higher primates, likely originating through an ancient retroviral integration event approximately 60 million years ago. Interestingly, IRF5P1 resides within the triple QxxK/R motif-containing (TRIQK) gene, and its antisense strand is predominantly expressed as part of the TRIQK pre-messenger RNA (mRNA). Analysis of publicly available RNA-seq data suggests potential expression of antisense IRF5P1 RNA. We hypothesize that this antisense RNA may regulate IRF5 expression through complementary binding to IRF5 mRNA, with human genetic variants potentially modulating this interaction. The conservation of IRF5P1 in the primate lineage suggests its positive effects on primate evolution and innate immunity. This study highlights the importance of investigating pseudogenes and their potential regulatory roles in shaping lineage-specific immune adaptations.
Collapse
Affiliation(s)
- Avery Marquis
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Vanessa Hubing
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Chanasei Ziemann
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Etsuko N Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska, USA
| | - Luwen Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
12
|
Giovannetti A, Lazzari S, Mangoni M, Traversa A, Mazza T, Parisi C, Caputo V. Exploring non-coding genetic variability in ACE2: Functional annotation and in vitro validation of regulatory variants. Gene 2024; 915:148422. [PMID: 38570058 DOI: 10.1016/j.gene.2024.148422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
The surge in human whole-genome sequencing data has facilitated the study of non-coding region variations, yet understanding their biological significance remains a challenge. We used a computational workflow to assess the regulatory potential of non-coding variants, with a particular focus on the Angiotensin Converting Enzyme 2 (ACE2) gene. This gene is crucial in physiological processes and serves as the entry point for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 19 (COVID-19). In our analysis, using data from the gnomAD population database and functional annotation, we identified 17 significant Single Nucleotide Variants (SNVs) in ACE2, particularly in its enhancers, promoters, and 3' untranslated regions (UTRs). We found preliminary evidence supporting the regulatory impact of some of these variants on ACE2 expression. Our detailed examination of two SNVs, rs147718775 and rs140394675, in the ACE2 promoter revealed that these co-occurring SNVs, when mutated, significantly enhance promoter activity, suggesting a possible increase in specific ACE2 isoform expression. This method proves effective in identifying and interpreting impactful non-coding variants, aiding in further studies and enhancing understanding of molecular bases of monogenic and complex traits.
Collapse
Affiliation(s)
- Agnese Giovannetti
- Clinical Genomics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, snc, 71013 S. Giovanni Rotondo (FG), Italy.
| | - Sara Lazzari
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy.
| | - Manuel Mangoni
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy; Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, snc, 71013 S. Giovanni Rotondo (FG), Italy.
| | - Alice Traversa
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy; Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi "Link Campus University", Via del Casale di San Pio V 44, 00165 Roma, Italy.
| | - Tommaso Mazza
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, snc, 71013 S. Giovanni Rotondo (FG), Italy.
| | - Chiara Parisi
- Institute of Biochemistry and Cell Biology, CNR-National Research Council, Via Ercole Ramarini, 32, 00015 Monterotondo Scalo (RM), Italy.
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy.
| |
Collapse
|
13
|
Abstract
The renin-angiotensin system is the most important peptide hormone system in the regulation of cardiovascular homeostasis. Its classical arm consists of the enzymes, renin, and angiotensin-converting enzyme, generating angiotensin II from angiotensinogen, which activates its AT1 receptor, thereby increasing blood pressure, retaining salt and water, and inducing cardiovascular hypertrophy and fibrosis. However, angiotensin II can also activate a second receptor, the AT2 receptor. Moreover, the removal of the C-terminal phenylalanine from angiotensin II by ACE2 (angiotensin-converting enzyme 2) yields angiotensin-(1-7), and this peptide interacts with its receptor Mas. When the aminoterminal Asp of angiotensin-(1-7) is decarboxylated, alamandine is generated, which activates the Mas-related G-protein-coupled receptor D, MrgD (Mas-related G-protein-coupled receptor type D). Since Mas, MrgD, and the AT2 receptor have opposing effects to the classical AT1 receptor, they and the enzymes and peptides activating them are called the alternative or protective arm of the renin-angiotensin system. This review will cover the historical aspects and the current standing of this recent addition to the biology of the renin-angiotensin system.
Collapse
Affiliation(s)
- Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité - University Medicine, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - U. Muscha Steckelings
- Institute for Molecular Medicine, Dept. of Cardiovascular & Renal Research, University of Southern Denmark, Odense, Denmark
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Robson A.S. Santos
- National Institute of Science and Technology in Nanobiopharmaceutics (Nanobiofar) - Department of Physiology and Biophysics, Institute of Biological Sciences - Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos M. Ferrario
- Laboratory of Translational Hypertension, Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| |
Collapse
|
14
|
Montenegro AFL, Clementino MAF, Yaochite JNU. Type I interferon pathway genetic variants in severe COVID-19. Virus Res 2024; 342:199339. [PMID: 38354910 PMCID: PMC10901847 DOI: 10.1016/j.virusres.2024.199339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by SARS-CoV-2. According to the World Health Organization (WHO), there have been over 760 million reported cases and over 6 million deaths caused by this disease worldwide. The severity of COVID-19 is based on symptoms presented by the patient and is divided as asymptomatic, mild, moderate, severe, and critical. The manifestations are interconnected with genetic variations. The innate immunity is the quickest response mechanism of an organism against viruses. Type I interferon pathway plays a key role in antiviral responses due to viral replication inhibition in infected cells and adaptive immunity stimulation induced by interferon molecules. Thus, variants in type I interferon pathway's genes are being studied in different COVID-19 manifestations. This review summarizes the role of variants in type I interferon pathway's genes on prognosis and severity progression of COVID-19.
Collapse
Affiliation(s)
- A F L Montenegro
- Laboratório de Imunologia Celular e Molecular, Departamento de Análises Clínicas e Toxicológicas da Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará - UFC, Rua Pastor Samuel Munguba, 1210 - Rodolfo Teófilo, Fortaleza, Ceará, Brasil
| | - M A F Clementino
- Laboratório de Toxinologia Molecular, NUBIMED - Núcleo de Biomedicina, Universidade Federal do Ceará - UFC. Fortaleza, Ceará, Brasil
| | - J N U Yaochite
- Laboratório de Imunologia Celular e Molecular, Departamento de Análises Clínicas e Toxicológicas da Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará - UFC, Rua Pastor Samuel Munguba, 1210 - Rodolfo Teófilo, Fortaleza, Ceará, Brasil.
| |
Collapse
|
15
|
Lebedin M, Ratswohl C, Garg A, Schips M, García CV, Spatt L, Thibeault C, Obermayer B, Weiner J, Velásquez IM, Gerhard C, Stubbemann P, Hanitsch LG, Pischon T, Witzenrath M, Sander LE, Kurth F, Meyer-Hermann M, de la Rosa K. Soluble ACE2 correlates with severe COVID-19 and can impair antibody responses. iScience 2024; 27:109330. [PMID: 38496296 PMCID: PMC10940809 DOI: 10.1016/j.isci.2024.109330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/25/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Identifying immune modulators that impact neutralizing antibody responses against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is of great relevance. We postulated that high serum concentrations of soluble angiotensin-converting enzyme 2 (sACE2) might mask the spike and interfere with antibody maturation toward the SARS-CoV-2-receptor-binding motif (RBM). We tested 717 longitudinal samples from 295 COVID-19 patients and showed a 2- to 10-fold increase of enzymatically active sACE2 (a-sACE2), with up to 1 μg/mL total sACE2 in moderate and severe patients. Fifty percent of COVID-19 sera inhibited ACE2 activity, in contrast to 1.3% of healthy donors and 4% of non-COVID-19 pneumonia patients. A mild inverse correlation of a-sACE2 with RBM-directed serum antibodies was observed. In silico, we show that sACE2 concentrations measured in COVID-19 sera can disrupt germinal center formation and inhibit timely production of high-affinity antibodies. We suggest that sACE2 is a biomarker for COVID-19 and that soluble receptors may contribute to immune suppression informing vaccine design.
Collapse
Affiliation(s)
- Mikhail Lebedin
- Max-Delbück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Ratswohl
- Max-Delbück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Free University of Berlin, Department of Biology, Chemistry and Pharmacy, 14195 Berlin, Berlin, Germany
| | - Amar Garg
- Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Marta Schips
- Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Clara Vázquez García
- Max-Delbück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lisa Spatt
- Max-Delbück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Charlotte Thibeault
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - January Weiner
- Core Unit Bioinformatics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ilais Moreno Velásquez
- Molecular Epidemiology Research Group, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Cathrin Gerhard
- Max-Delbück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Paula Stubbemann
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Leif-Gunnar Hanitsch
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Tobias Pischon
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- Molecular Epidemiology Research Group, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
- CAPNETZ STIFTUNG, 30625 Hannover, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
| | - Michael Meyer-Hermann
- Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kathrin de la Rosa
- Max-Delbück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
16
|
Lui KO, Ma Z, Dimmeler S. SARS-CoV-2 induced vascular endothelial dysfunction: direct or indirect effects? Cardiovasc Res 2024; 120:34-43. [PMID: 38159046 DOI: 10.1093/cvr/cvad191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024] Open
Abstract
Clinical evidence reveals that manifestations of endothelial dysfunction are widely observed in COVID-19 and long-COVID patients. However, whether these detrimental effects are caused by direct infection of the endothelium or are indirectly mediated by systemic inflammation has been a matter of debate. It has been well acknowledged that endothelial cells (ECs) of the cardiovascular system ubiquitously express the SARS-CoV-2 entry receptor angiotensin-converting enzyme 2 (ACE2), yet accumulating evidence suggests that it is more predominantly expressed by pericytes and vascular smooth muscle cells of the mammalian blood vessel. Besides, replicative infection of ECs by SARS-CoV-2 has yet to be demonstrated both in vitro and in vivo. In this study, we review latest research on endothelial ACE2 expression in different vascular beds, and the heterogeneity in various EC subsets with differential ACE2 expression in response to SARS-CoV-2. We also discuss ACE2-independent alternative mechanisms underlying endothelial activation in COVID-19, and the clinical manifestations of SARS-CoV-2-induced endothelial dysfunction. Altogether, understanding ACE2-dependent and ACE2-independent mechanisms driving SARS-CoV-2-induced vascular dysfunction would shed light on strategies of more effective therapies targeting cardiovascular complications associated with COVID-19.
Collapse
Affiliation(s)
- Kathy O Lui
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Sha Tin, New Territories, 999077 Hong Kong, China
| | - Zhangjing Ma
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Sha Tin, New Territories, 999077 Hong Kong, China
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, and Faculty of Biological Sciences, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
17
|
Tecalco-Cruz AC, Medina-Abreu KH, Oropeza-Martínez E, Zepeda-Cervantes J, Vázquez-Macías A, Macías-Silva M. Deregulation of interferon-gamma receptor 1 expression and its implications for lung adenocarcinoma progression. World J Clin Oncol 2024; 15:195-207. [PMID: 38455133 PMCID: PMC10915940 DOI: 10.5306/wjco.v15.i2.195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Interferon-gamma (IFN-γ) plays a dual role in cancer; it is both a pro- and an antitumorigenic cytokine, depending on the type of cancer. The deregulation of the IFN-γ canonic pathway is associated with several disorders, including vulnerability to viral infections, inflammation, and cancer progression. In particular, the interplay between lung adenocarcinoma (LUAD) and viral infections appears to exist in association with the deregulation of IFN-γ signaling. In this mini-review, we investigated the status of the IFN-γ signaling pathway and the expression level of its components in LUAD. Interestingly, a reduction in IFNGR1 expression seems to be associated with LUAD progression, affecting defenses against viruses such as severe acute respiratory syndrome coronavirus 2. In addition, alterations in the expression of IFNGR1 may inhibit the antiproliferative action of IFN-γ signaling in LUAD.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico
| | - Karen H Medina-Abreu
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico
| | | | - Jesus Zepeda-Cervantes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | - Aleida Vázquez-Macías
- Colegio de Ciencias y Humanidades, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico
| | - Marina Macías-Silva
- Instituo de Fisiología Celular, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| |
Collapse
|
18
|
Kellum CL, Kirkland LG, Nelson TK, Jewett SM, Rytkin E, Efimov IR, Hoover DB, Benson PV, Wagener BM. Sympathetic remodeling and altered angiotensin-converting enzyme 2 localization occur in patients with cardiac disease but are not exacerbated by severe COVID-19. Auton Neurosci 2024; 251:103134. [PMID: 38101169 PMCID: PMC10872860 DOI: 10.1016/j.autneu.2023.103134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE Remodeling of sympathetic nerves and ACE2 has been implicated in cardiac pathology, and ACE2 also serves as a receptor for SARS-CoV-2. However, there is limited histological knowledge about the transmural distribution of sympathetic nerves and the cellular localization and distribution of ACE2 in human left ventricles from normal or diseased hearts. Goals of this study were to establish the normal pattern for these parameters and determine changes that occurred in decedents with cardiovascular disease alone compared to those with cardiac pathology and severe COVID-19. METHODS We performed immunohistochemical analysis on sections of left ventricular wall from twenty autopsied human hearts consisting of a control group, a cardiovascular disease group, and COVID-19 ARDS, and COVID-19 non-ARDS groups. RESULTS Using tyrosine hydroxylase as a noradrenergic marker, we found substantial sympathetic nerve loss in cardiovascular disease samples compared to controls. Additionally, we found heterogeneous nerve loss in both COVID-19 groups. Using an ACE2 antibody, we observed robust transmural staining localized to pericytes in the control group. The cardiovascular disease hearts displayed regional loss of ACE2 in pericytes and regional increases in staining of cardiomyocytes for ACE2. Similar changes were observed in both COVID-19 groups. CONCLUSIONS Heterogeneity of sympathetic innervation, which occurs in cardiac disease and is not increased by severe COVID-19, could contribute to arrhythmogenesis. The dominant localization of ACE2 to pericytes suggests that these cells would be the primary target for potential cardiac infection by SARS-CoV-2. Regional changes in ACE2 staining by myocytes and pericytes could have complex effects on cardiac pathophysiology.
Collapse
Affiliation(s)
- Creighton L Kellum
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Logan G Kirkland
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Tasha K Nelson
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Seth M Jewett
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Eric Rytkin
- Department of Biomedical Engineering and Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Igor R Efimov
- Department of Biomedical Engineering and Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - Paul V Benson
- Department of Pathology, The University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL 35294, USA.
| |
Collapse
|
19
|
Fu J, He J, Zhang L, Cheng J, Zhang P, Wei C, Fu J, Li D. Comprehensive analysis and immunohistochemistry localization of NRP1 expression in pancancer and normal individual tissues in relation to SARS‑CoV‑2 susceptibility. Exp Ther Med 2024; 27:52. [PMID: 38234609 PMCID: PMC10790162 DOI: 10.3892/etm.2023.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Neuropilin 1 (NRP1/CD304) is a typical membrane-bound co-receptor for vascular endothelial growth factor, semaphorin family members and viral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, NRP1 expression levels across cancer types and the potential role of SARS-CoV-2 infection in patients with cancer are not clear. Online databases, such as The Cancer Genome Atlas database of Human Protein Atlas, Gene Expression Profiling Interactive Analysis and cBioPortal were used for the expression analysis in this study. Immunohistochemical (IHC) staining for NRP1 was performed in the tissues of patients with non-small cell carcinoma. As a result, it was found that NRP1 mRNA and protein expression levels were highest in the female reproductive tissues and the respiratory system, specifically in the nasopharynx, bronchus and fallopian tube, as well as in adipocytes, hepatic stellate cells, Sertoli cells, endothelial cells and dendritic cells. IHC showed that the NRP1 protein was mainly localized to the cytoplasm and membrane in the tissues of patients with non-small cell carcinoma, demonstrating its role in lung infection by SARS-CoV-2, due to invasion of cell membranes by the virus. Levels of NRP1 mRNA were significantly increased in lymphoid neoplasm diffuse large B-cell lymphoma, esophageal carcinoma, glioblastoma multiforme, head and neck squamous cell carcinoma, kidney renal clear cell carcinoma (KIRC), pancreatic adenocarcinoma, stomach adenocarcinoma and thymoma, and significantly decreased in cervical squamous cell carcinoma and endocervical adenocarcinoma, kidney chromophobe, lung squamous cell carcinoma, ovarian serous cystadenocarcinoma, uterine corpus endometrial carcinoma and uterine carcinosarcoma, compared with corresponding healthy tissues in pancancer, indicating roles for viral invasion in most cancer types. Moreover, low NRP1 expression was significantly associated with long overall survival (OS) time in adrenocortical carcinoma, brain lower grade glioma, stomach adenocarcinoma and uveal melanoma, but with short OS time in KIRC only. The ENST00000374867.6 (NRP1-202) isoform is most highly expressed in most cancer types and thus could be involved in tumorigenesis and SARS-CoV-2 invasion in cancer patients. NRP1 may be involved in SARS-CoV-2 invasion in patients with cancer, including those with lung cancer.
Collapse
Affiliation(s)
- Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jiayue He
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lianmei Zhang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Department of Pathology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Pengfei Zhang
- National Health Commission Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dabing Li
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
20
|
Yang D, Chan JFW, Yoon C, Luk TY, Shuai H, Hou Y, Huang X, Hu B, Chai Y, Yuen TTT, Liu Y, Zhu T, Liu H, Shi J, Wang Y, He Y, Sit KY, Au WK, Zhang AJ, Yuan S, Zhang BZ, Huang YW, Chu H. Type-II IFN inhibits SARS-CoV-2 replication in human lung epithelial cells and ex vivo human lung tissues through indoleamine 2,3-dioxygenase-mediated pathways. J Med Virol 2024; 96:e29472. [PMID: 38373201 DOI: 10.1002/jmv.29472] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/21/2024]
Abstract
Interferons (IFNs) are critical for immune defense against pathogens. While type-I and -III IFNs have been reported to inhibit SARS-CoV-2 replication, the antiviral effect and mechanism of type-II IFN against SARS-CoV-2 remain largely unknown. Here, we evaluate the antiviral activity of type-II IFN (IFNγ) using human lung epithelial cells (Calu3) and ex vivo human lung tissues. In this study, we found that IFNγ suppresses SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Moreover, IFNγ treatment does not significantly modulate the expression of SARS-CoV-2 entry-related factors and induces a similar level of pro-inflammatory response in human lung tissues when compared with IFNβ treatment. Mechanistically, we show that overexpression of indoleamine 2,3-dioxygenase 1 (IDO1), which is most profoundly induced by IFNγ, substantially restricts the replication of ancestral SARS-CoV-2 and the Alpha and Delta variants. Meanwhile, loss-of-function study reveals that IDO1 knockdown restores SARS-CoV-2 replication restricted by IFNγ in Calu3 cells. We further found that the treatment of l-tryptophan, a substrate of IDO1, partially rescues the IFNγ-mediated inhibitory effect on SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Collectively, these results suggest that type-II IFN potently inhibits SARS-CoV-2 replication through IDO1-mediated antiviral response.
Collapse
Affiliation(s)
- Dong Yang
- Xianghu Laboratory, Hangzhou, Zhejiang, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
- The University of Hong Kong, Hong Kong, China
- Department of Microbiology, Queen Mary Hospital, Hong Kong, China
- Guangzhou Laboratory, Guangdong Province, China
| | - Chaemin Yoon
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tsz-Yat Luk
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuanchen Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tianrenzheng Zhu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huan Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jialu Shi
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yang Wang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yixin He
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ko-Yung Sit
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wing-Kuk Au
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | | | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| |
Collapse
|
21
|
Wellford SA, Moseman EA. Olfactory immune response to SARS-CoV-2. Cell Mol Immunol 2024; 21:134-143. [PMID: 38143247 PMCID: PMC10806031 DOI: 10.1038/s41423-023-01119-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023] Open
Abstract
Numerous pathogens can infect the olfactory tract, yet the pandemic caused by SARS-CoV-2 has strongly emphasized the importance of the olfactory mucosa as an immune barrier. Situated in the nasal passages, the olfactory mucosa is directly exposed to the environment to sense airborne odorants; however, this also means it can serve as a direct route of entry from the outside world into the brain. As a result, olfactotropic infections can have serious consequences, including dysfunction of the olfactory system, CNS invasion, dissemination to the lower respiratory tract, and transmission between individuals. Recent research has shown that a distinctive immune response is needed to protect this neuronal and mucosal tissue. A better understanding of innate, adaptive, and structural immune barriers in the olfactory mucosa is needed to develop effective therapeutics and vaccines against olfactotropic microbes such as SARS-CoV-2. Here, we summarize the ramifications of SARS-CoV-2 infection of the olfactory mucosa, review the subsequent immune response, and discuss important areas of future research for olfactory immunity to infectious disease.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
22
|
Jakwerth CA, Grass V, Erb A, Pichlmair A, Boonen G, Butterweck V, Schmidt-Weber CB. Inhibition of SARS-CoV-2 infection and replication by Petasites hybridus CO2-extract (Ze 339). Biomed Pharmacother 2024; 170:115959. [PMID: 38061134 DOI: 10.1016/j.biopha.2023.115959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The intensified search for low-threshold herbal anti-viral drugs would be of great advantage in prevention of early stages of infection. Since the SARS-CoV-2 Omicron variant has prevailed in western countries, the course has only been mild, but there are still no widely available drugs that can alleviate or shorten disease progression and counteract the development of Long-COVID. This study aimed to investigate the antiviral effects of a CO2-extract from Petasites hybridus (Ze 339). METHODS We analyzed the infection and replication rate of SARS-CoV-2 in primary normal human bronchial epithelial cells (NHBEs) using a GFP-expressing version of the wild-type SARS-CoV-2 virus and live cell imaging. Upon infection with a clinical isolate of the Omicron variant, viral RNA content was quantified, and plaque assays were performed. In addition, the human transcriptome was analyzed after 4- and 24-hours post infection using whole genome microarrays. RESULTS Ze 339 had a protective effect on primary airway epithelial cells during SARS-CoV-2 infection and impeded SARS-CoV-2 infection and replication in NHBE. Notably, Ze 339 inhibited the expression of infection-induced IFNA10 by 8.6-fold (p < 0.05) and additionally reduced a wide range of other interferons (IFNA6, IFNA7, IFNA8, IFNA21, IFNE, IFNW1). CONCLUSION Thereby, Ze 339 attenuated epithelial infection by SARS-CoV-2 and modeled the IFN response. In conclusion, this study highlights Ze 339 as a potential treatment option for COVID-19 that limits infection-associated cell intrinsic immune responses.
Collapse
Affiliation(s)
- Constanze A Jakwerth
- Center of Allergy and Environment (ZAUM), Technical Universität and Helmholtz Center Munich, Munich, Germany; German Center for Lung Research (DZL), Germany.
| | - Vincent Grass
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Anna Erb
- Center of Allergy and Environment (ZAUM), Technical Universität and Helmholtz Center Munich, Munich, Germany; German Center for Lung Research (DZL), Germany
| | - Andreas Pichlmair
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Georg Boonen
- Medical Department, Max Zeller Soehne AG, Romanshorn, Switzerland
| | | | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical Universität and Helmholtz Center Munich, Munich, Germany; German Center for Lung Research (DZL), Germany
| |
Collapse
|
23
|
Barmada A, Handfield LF, Godoy-Tena G, de la Calle-Fabregat C, Ciudad L, Arutyunyan A, Andrés-León E, Hoo R, Porter T, Oszlanczi A, Richardson L, Calero-Nieto FJ, Wilson NK, Marchese D, Sancho-Serra C, Carrillo J, Presas-Rodríguez S, Ramo-Tello C, Ruiz-Sanmartin A, Ferrer R, Ruiz-Rodriguez JC, Martínez-Gallo M, Munera-Campos M, Carrascosa JM, Göttgens B, Heyn H, Prigmore E, Casafont-Solé I, Solanich X, Sánchez-Cerrillo I, González-Álvaro I, Raimondo MG, Ramming A, Martin J, Martínez-Cáceres E, Ballestar E, Vento-Tormo R, Rodríguez-Ubreva J. Single-cell multi-omics analysis of COVID-19 patients with pre-existing autoimmune diseases shows aberrant immune responses to infection. Eur J Immunol 2024; 54:e2350633. [PMID: 37799110 DOI: 10.1002/eji.202350633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
In COVID-19, hyperinflammatory and dysregulated immune responses contribute to severity. Patients with pre-existing autoimmune conditions can therefore be at increased risk of severe COVID-19 and/or associated sequelae, yet SARS-CoV-2 infection in this group has been little studied. Here, we performed single-cell analysis of peripheral blood mononuclear cells from patients with three major autoimmune diseases (rheumatoid arthritis, psoriasis, or multiple sclerosis) during SARS-CoV-2 infection. We observed compositional differences between the autoimmune disease groups coupled with altered patterns of gene expression, transcription factor activity, and cell-cell communication that substantially shape the immune response under SARS-CoV-2 infection. While enrichment of HLA-DRlow CD14+ monocytes was observed in all three autoimmune disease groups, type-I interferon signaling as well as inflammatory T cell and monocyte responses varied widely between the three groups of patients. Our results reveal disturbed immune responses to SARS-CoV-2 in patients with pre-existing autoimmunity, highlighting important considerations for disease treatment and follow-up.
Collapse
Affiliation(s)
- Anis Barmada
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | | | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | - Anna Arutyunyan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Eduardo Andrés-León
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Regina Hoo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Tarryn Porter
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Agnes Oszlanczi
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Fernando J Calero-Nieto
- Department of Haematology and Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nicola K Wilson
- Department of Haematology and Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Domenica Marchese
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carmen Sancho-Serra
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Silvia Presas-Rodríguez
- MS Unit, Department of Neurology, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Cristina Ramo-Tello
- MS Unit, Department of Neurology, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Adolfo Ruiz-Sanmartin
- Department of Intensive Care, Hospital Universitari Vall d'Hebron, Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Ricard Ferrer
- Department of Intensive Care, Hospital Universitari Vall d'Hebron, Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Juan Carlos Ruiz-Rodriguez
- Department of Intensive Care, Hospital Universitari Vall d'Hebron, Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Mónica Martínez-Gallo
- Division of Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Mónica Munera-Campos
- Dermatology Service, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
| | - Jose Manuel Carrascosa
- Dermatology Service, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
| | - Berthold Göttgens
- Department of Haematology and Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Ivette Casafont-Solé
- Department of Rheumatology, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Department of Infectious Diseases, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Xavier Solanich
- Department of Internal Medicine, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | - Maria Gabriella Raimondo
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Eva Martínez-Cáceres
- Division of Immunology, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma, Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| |
Collapse
|
24
|
Siratavičiūtė V, Pangonytė D, Utkienė L, Jusienė L, Marcinkevičienė J, Stanionienė Z, Radikė R. Myocardial Angiotensin-Converting Enzyme 2 Protein Expression in Ischemic Heart Failure. Int J Mol Sci 2023; 24:17145. [PMID: 38138974 PMCID: PMC10743033 DOI: 10.3390/ijms242417145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2)-angiotensin-(1-7)-Mas receptor axis plays a significant role in regulating myocardial remodeling and the development of heart failure (HF), with ACE2 being the primary focus. However, contemporary understanding of the membrane-bound form of the human ACE2 protein remains insufficient. The purpose of this study was to determine the expression of ACE2 protein in different cells of the left ventricular myocardium in non-diseased hearts and at various stages of ischemic HF. A total of 103 myocardial tissue samples from the left ventricle underwent quantitative and semi-quantitative immunohistochemical analysis. Upon assessing ACE2 immunostaining in all myocardial cells through unselective digital image analysis, there was no change in the stage A HF group. Nevertheless, the expression of ACE2 membrane protein in cardiomyocytes showed a tendency to increase, while non-cardiomyocyte ACE2 expression decreased significantly (p < 0.001). In the stage B HF group, the intensity of ACE2 immunostaining continued to increase with rising cardiomyocyte ACE2 expression (p < 0.001). Non-cardiomyocyte expression, in contrast, remained similar to that observed in the stage A HF group. In the stages C/D HF group, ACE2 expression reached its highest level in cardiomyocytes (p < 0.001), while ACE2 expression in non-cardiomyocytes was the lowest (p < 0.001). These changes in ACE2 protein levels are associated with left ventricular remodeling in ischemic HF.
Collapse
Affiliation(s)
| | - Dalia Pangonytė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.S.); (L.U.); (L.J.); (J.M.); (Z.S.); (R.R.)
| | | | | | | | | | | |
Collapse
|
25
|
Shoraka S, Mohebbi SR, Hosseini SM, Ghaemi A, Zali MR. SARS-CoV-2 and chronic hepatitis B: Focusing on the possible consequences of co-infection. JOURNAL OF CLINICAL VIROLOGY PLUS 2023; 3:100167. [DOI: 10.1016/j.jcvp.2023.100167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
26
|
Zhang W, Golynker I, Brosh R, Fajardo A, Zhu Y, Wudzinska AM, Ordoñez R, Ribeiro-Dos-Santos AM, Carrau L, Damani-Yokota P, Yeung ST, Khairallah C, Vela Gartner A, Chalhoub N, Huang E, Ashe HJ, Khanna KM, Maurano MT, Kim SY, tenOever BR, Boeke JD. Mouse genome rewriting and tailoring of three important disease loci. Nature 2023; 623:423-431. [PMID: 37914927 PMCID: PMC10632133 DOI: 10.1038/s41586-023-06675-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Genetically engineered mouse models (GEMMs) help us to understand human pathologies and develop new therapies, yet faithfully recapitulating human diseases in mice is challenging. Advances in genomics have highlighted the importance of non-coding regulatory genome sequences, which control spatiotemporal gene expression patterns and splicing in many human diseases1,2. Including regulatory extensive genomic regions, which requires large-scale genome engineering, should enhance the quality of disease modelling. Existing methods set limits on the size and efficiency of DNA delivery, hampering the routine creation of highly informative models that we call genomically rewritten and tailored GEMMs (GREAT-GEMMs). Here we describe 'mammalian switching antibiotic resistance markers progressively for integration' (mSwAP-In), a method for efficient genome rewriting in mouse embryonic stem cells. We demonstrate the use of mSwAP-In for iterative genome rewriting of up to 115 kb of a tailored Trp53 locus, as well as for humanization of mice using 116 kb and 180 kb human ACE2 loci. The ACE2 model recapitulated human ACE2 expression patterns and splicing, and notably, presented milder symptoms when challenged with SARS-CoV-2 compared with the existing K18-hACE2 model, thus representing a more human-like model of infection. Finally, we demonstrated serial genome writing by humanizing mouse Tmprss2 biallelically in the ACE2 GREAT-GEMM, highlighting the versatility of mSwAP-In in genome writing.
Collapse
Affiliation(s)
- Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Ilona Golynker
- Department of Microbiology, NYU Langone Health, New York, NY, USA
| | - Ran Brosh
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Alvaro Fajardo
- Department of Microbiology, NYU Langone Health, New York, NY, USA
| | - Yinan Zhu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Aleksandra M Wudzinska
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Raquel Ordoñez
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - André M Ribeiro-Dos-Santos
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Lucia Carrau
- Department of Microbiology, NYU Langone Health, New York, NY, USA
| | | | - Stephen T Yeung
- Department of Microbiology, NYU Langone Health, New York, NY, USA
| | | | - Antonio Vela Gartner
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Noor Chalhoub
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Emily Huang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Hannah J Ashe
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Kamal M Khanna
- Department of Microbiology, NYU Langone Health, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Matthew T Maurano
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Sang Yong Kim
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Benjamin R tenOever
- Department of Microbiology, NYU Langone Health, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York, NY, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
27
|
Ahmed R, Saba AA, Paul A, Nur J, Alam MS, Chakraborty S, Howlader MZH, Islam LN, Nabi AHMN. Intronic Variants of the Angiotensin-Converting Enzyme 2 Gene Modulate Plasma ACE2 Levels and Possibly Confer Protection against Severe COVID-19. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5705076. [PMID: 37929242 PMCID: PMC10622595 DOI: 10.1155/2023/5705076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 10/07/2023] [Indexed: 11/07/2023]
Abstract
Membrane-bound angiotensin-converting enzyme 2 (ACE2) receptor acts as the entry point for the novel coronavirus, SARS-CoV-2. Polymorphisms in the ACE2 gene may alter viral binding, regulate the expression of ACE2, and thus, affect disease severity. In this study, 68 COVID-19 patients with varying degrees of severity and 40 healthy controls were enrolled. The genetic landscape of the ACE2 gene was explored by whole exome sequencing of 29 individuals, and specific regions of ACE2 were analyzed for the rest of the participants via PCR, followed by barcode-tagged sequencing. The mean soluble ACE2 level in the plasma of healthy controls and patients did not vary significantly but was higher in the patient group (3.77 ± 1.55 ng/mL vs. 3.94 ± 1.42 ng/mL). Analysis of exon 1, exon 2, and exon 8 of the ACE2 gene revealed that these regions are highly conserved in our population. Investigation of exon 11 and its flanking intronic region revealed that deletions in a stretch of 18T nucleotides in the noncoding region significantly decrease ACE2 levels in plasma, as individuals harboring wild-type variants had higher plasma ACE2 levels compared to those harboring T1del, T2del, and T3del variants. However, the intronic variants were not found to be significantly associated with disease severity.
Collapse
Affiliation(s)
- Rubaiat Ahmed
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abdullah Al Saba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Anik Paul
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jasmin Nur
- Department of Immunology, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Shahbag, Dhaka, Bangladesh
| | - Md Sohrab Alam
- Department of Immunology, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Shahbag, Dhaka, Bangladesh
| | - Sajib Chakraborty
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Zakir Hossain Howlader
- Laboratory of Nutrition and Health Research, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Laila N. Islam
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - A. H. M. Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
28
|
Pasquesi GIM, Allen H, Ivancevic A, Barbachano-Guerrero A, Joyner O, Guo K, Simpson DM, Gapin K, Horton I, Nguyen L, Yang Q, Warren CJ, Florea LD, Bitler BG, Santiago ML, Sawyer SL, Chuong EB. Regulation of human interferon signaling by transposon exonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557241. [PMID: 37745311 PMCID: PMC10515820 DOI: 10.1101/2023.09.11.557241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Innate immune signaling is essential for clearing pathogens and damaged cells, and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2. We demonstrated that the transposon-derived isoform of IFNAR2 is more highly expressed than the canonical isoform in almost all tissues, and functions as a decoy receptor that potently inhibits interferon signaling including in cells infected with SARS-CoV-2. Our findings uncover a primate-specific axis controlling interferon signaling and show how a transposon exonization event can be co-opted for immune regulation.
Collapse
Affiliation(s)
- Giulia Irene Maria Pasquesi
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303
| | - Holly Allen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Olivia Joyner
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - David M. Simpson
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Keala Gapin
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Isabella Horton
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Lily Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Qing Yang
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
| | - Cody J. Warren
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- The Ohio State University College of Veterinary Medicine, Columbus, OH, 43210
| | - Liliana D. Florea
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Sara L. Sawyer
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Edward B. Chuong
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303
| |
Collapse
|
29
|
Do MH, Li H, Cho SY, Oh S, Jeong JH, Song MS, Jeong JM. Animal efficacy study of a plant extract complex (BEN815) as a potential treatment for COVID-19. PLoS One 2023; 18:e0291537. [PMID: 37708114 PMCID: PMC10501575 DOI: 10.1371/journal.pone.0291537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023] Open
Abstract
In a short time, several types of injectable and oral therapeutics have been developed and used to effectively manage patients with coronavirus disease 2019 (COVID-19). BEN815 is an improved mixture of three extracts (Psidium guajava, Camellia sinensis, and Rosa hybrida) recognized by the Ministry of Food and Drug Safety of Korea as a health food ingredient that alleviates allergic rhinitis. The current animal efficacy study was performed to assess its probability of improving COVID-19 symptoms. BEN815 treatment significantly increased the survival of K18-hACE2 transgenic mice and reduced viral titers in the lungs at 5 days post infection (DPI). Furthermore, the lungs of the treated mice showed mild tissue damage at 5 DPI and nearly complete recovery from COVID-19 at 14 DPI. BEN815 appears to be an effective and minimally toxic anti-SARS-CoV-2 agent in mice and has potential for clinical applications.
Collapse
Affiliation(s)
- Moon Ho Do
- Biotechnology Research Center, Ben’s Lab Co., Ltd., Anyang-si, Gyeonggi-do, Republic of Korea
| | - Hua Li
- Biotechnology Research Center, Ben’s Lab Co., Ltd., Anyang-si, Gyeonggi-do, Republic of Korea
| | - Su Yeon Cho
- Biotechnology Research Center, Ben’s Lab Co., Ltd., Anyang-si, Gyeonggi-do, Republic of Korea
| | - Subin Oh
- Biotechnology Research Center, Ben’s Lab Co., Ltd., Anyang-si, Gyeonggi-do, Republic of Korea
| | - Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Min-Suk Song
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jong-Moon Jeong
- Biotechnology Research Center, Ben’s Lab Co., Ltd., Anyang-si, Gyeonggi-do, Republic of Korea
- Department of Bioscience, The University of Suwon, Hwasung-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
30
|
Wang CW, Chuang HC, Tan TH. ACE2 in chronic disease and COVID-19: gene regulation and post-translational modification. J Biomed Sci 2023; 30:71. [PMID: 37608279 PMCID: PMC10464117 DOI: 10.1186/s12929-023-00965-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), a counter regulator of the renin-angiotensin system, provides protection against several chronic diseases. Besides chronic diseases, ACE2 is the host receptor for SARS-CoV or SARS-CoV-2 virus, mediating the first step of virus infection. ACE2 levels are regulated by transcriptional, post-transcriptional, and post-translational regulation or modification. ACE2 transcription is enhanced by transcription factors including Ikaros, HNFs, GATA6, STAT3 or SIRT1, whereas ACE2 transcription is reduced by the transcription factor Brg1-FoxM1 complex or ERRα. ACE2 levels are also regulated by histone modification or miRNA-induced destabilization. The protein kinase AMPK, CK1α, or MAP4K3 phosphorylates ACE2 protein and induces ACE2 protein levels by decreasing its ubiquitination. The ubiquitination of ACE2 is induced by the E3 ubiquitin ligase MDM2 or UBR4 and decreased by the deubiquitinase UCHL1 or USP50. ACE2 protein levels are also increased by the E3 ligase PIAS4-mediated SUMOylation or the methyltransferase PRMT5-mediated ACE2 methylation, whereas ACE2 protein levels are decreased by AP2-mediated lysosomal degradation. ACE2 is downregulated in several human chronic diseases like diabetes, hypertension, or lung injury. In contrast, SARS-CoV-2 upregulates ACE2 levels, enhancing host cell susceptibility to virus infection. Moreover, soluble ACE2 protein and exosomal ACE2 protein facilitate SARS-CoV-2 infection into host cells. In this review, we summarize the gene regulation and post-translational modification of ACE2 in chronic disease and COVID-19. Understanding the regulation and modification of ACE2 may help to develop prevention or treatment strategies for ACE2-mediated diseases.
Collapse
Affiliation(s)
- Chia-Wen Wang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| | - Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| |
Collapse
|
31
|
Romani A, Sergi D, Zauli E, Voltan R, Lodi G, Vaccarezza M, Caruso L, Previati M, Zauli G. Nutrients, herbal bioactive derivatives and commensal microbiota as tools to lower the risk of SARS-CoV-2 infection. Front Nutr 2023; 10:1152254. [PMID: 37324739 PMCID: PMC10267353 DOI: 10.3389/fnut.2023.1152254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
The SARS-CoV-2 outbreak has infected a vast population across the world, causing more than 664 million cases and 6.7 million deaths by January 2023. Vaccination has been effective in reducing the most critical aftermath of this infection, but some issues are still present regarding re-infection prevention, effectiveness against variants, vaccine hesitancy and worldwide accessibility. Moreover, although several old and new antiviral drugs have been tested, we still lack robust and specific treatment modalities. It appears of utmost importance, facing this continuously growing pandemic, to focus on alternative practices grounded on firm scientific bases. In this article, we aim to outline a rigorous scientific background and propose complementary nutritional tools useful toward containment, and ultimately control, of SARS-CoV-2 infection. In particular, we review the mechanisms of viral entry and discuss the role of polyunsaturated fatty acids derived from α-linolenic acid and other nutrients in preventing the interaction of SARS-CoV-2 with its entry gateways. In a similar way, we analyze in detail the role of herbal-derived pharmacological compounds and specific microbial strains or microbial-derived polypeptides in the prevention of SARS-CoV-2 entry. In addition, we highlight the role of probiotics, nutrients and herbal-derived compounds in stimulating the immunity response.
Collapse
Affiliation(s)
- Arianna Romani
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Domenico Sergi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Rebecca Voltan
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giada Lodi
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Maurizio Previati
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Castillo G, Mora-Díaz JC, Breuer M, Singh P, Nelli RK, Giménez-Lirola LG. Molecular mechanisms of human coronavirus NL63 infection and replication. Virus Res 2023; 327:199078. [PMID: 36813239 PMCID: PMC9944649 DOI: 10.1016/j.virusres.2023.199078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Human coronavirus NL63 (HCoV-NL63) is spread globally, causing upper and lower respiratory tract infections mainly in young children. HCoV-NL63 shares a host receptor (ACE2) with severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 but, unlike them, HCoV-NL63 primarily develops into self-limiting mild to moderate respiratory disease. Although with different efficiency, both HCoV-NL63 and SARS-like CoVs infect ciliated respiratory cells using ACE2 as receptor for binding and cell entry. Working with SARS-like CoVs require access to BSL-3 facilities, while HCoV-NL63 research can be performed at BSL-2 laboratories. Thus, HCoV-NL63 could be used as a safer surrogate for comparative studies on receptor dynamics, infectivity and virus replication, disease mechanism, and potential therapeutic interventions against SARS-like CoVs. This prompted us to review the current knowledge on the infection mechanism and replication of HCoV-NL63. Specifically, after a brief overview on the taxonomy, genomic organization and virus structure, this review compiles the current HCoV-NL63-related research in virus entry and replication mechanism, including virus attachment, endocytosis, genome translation, and replication and transcription. Furthermore, we reviewed cumulative knowledge on the susceptibility of different cells to HCoV-NL63 infection in vitro, which is essential for successful virus isolation and propagation, and contribute to address different scientific questions from basic science to the development and assessment of diagnostic tools, and antiviral therapies. Finally, we discussed different antiviral strategies that have been explored to suppress replication of HCoV-NL63, and other related human coronaviruses, by either targeting the virus or enhancing host antiviral mechanisms.
Collapse
Affiliation(s)
- Gino Castillo
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Mary Breuer
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Rahul K Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.
| |
Collapse
|
33
|
Marginean CM, Cinteza E, Vasile CM, Popescu M, Biciusca V, Docea AO, Mitrut R, Popescu MS, Mitrut P. Features of Liver Injury in COVID-19 Pathophysiological, Biological and Clinical Particularities. GASTROENTEROLOGY INSIGHTS 2023; 14:156-169. [DOI: 10.3390/gastroent14020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
The outbreak of the coronavirus pandemic in March 2020 has caused unprecedented pressure on public health and healthcare. The spectrum of COVID-19 onset is large, from mild cases with minor symptoms to severe forms with multi-organ dysfunction and death. In COVID-19, multiple organ damage has been described, including lung damage, acute kidney injury, liver damage, stroke, cardiovascular and digestive tract disorders. The aspects of liver injury are different, sometimes presenting with only a slight increase in liver enzymes, but sometimes with severe liver injury, leading to acute liver failure requiring liver transplantation. In patients with chronic liver disease, especially liver cirrhosis, immune dysfunction can increase the risk of infection. Immune dysfunction has a multifactorial physiopathological mechanism, implying a complement system and macrophage activation, lymphocyte and neutrophil activity dysfunction, and intestinal dysbiosis. This review aims to evaluate the most relevant studies published in the last years related to the etiopathogenetic, biochemical, and histological aspects of liver injury in patients diagnosed with COVID-19. Liver damage is more evident in patients with underlying chronic liver disease, with a significantly higher risk of developing severe outcomes of COVID-19 and death. Systemic inflammation, coagulation disorders, endothelial damage, and immune dysfunction explain the pathogenic mechanisms involved in impaired liver function. Although various mechanisms of action of SARS-CoV-2 on the liver cell have been studied, the impact of the direct viral effect on hepatocytes is not yet established.
Collapse
Affiliation(s)
- Cristina Maria Marginean
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Eliza Cinteza
- Pediatrics Department, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
- Department of Pediatric Cardiology, “Marie Curie” Emergency Children’s Hospital, 041451 Bucharest, Romania
| | - Corina Maria Vasile
- Department of Pediatric Cardiology, “Marie Curie” Emergency Children’s Hospital, 041451 Bucharest, Romania
- Department of Pediatric and Adult Congenital Cardiology, Bordeaux University Hospital, 33600 Pessac, France
| | - Mihaela Popescu
- Department of Endocrinology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Viorel Biciusca
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Radu Mitrut
- Department of Cardiology, University and Emergency Hospital, 050098 Bucharest, Romania
| | - Marian Sorin Popescu
- Ph.D. School Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Paul Mitrut
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
34
|
Barthe M, Hertereau L, Lamghari N, Osman-Ponchet H, Braud VM. Receptors and Cofactors That Contribute to SARS-CoV-2 Entry: Can Skin Be an Alternative Route of Entry? Int J Mol Sci 2023; 24:ijms24076253. [PMID: 37047226 PMCID: PMC10094153 DOI: 10.3390/ijms24076253] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
To prevent the spread of SARS-CoV-2, all routes of entry of the virus into the host must be mapped. The skin is in contact with the external environment and thus may be an alternative route of entry to transmission via the upper respiratory tract. SARS-CoV-2 cell entry is primarily dependent on ACE2 and the proteases TMPRSS2 or cathepsin L but other cofactors and attachment receptors have been identified that may play a more important role in specific tissues such as the skin. The continued emergence of new variants may also alter the tropism of the virus. In this review, we summarize current knowledge on these receptors and cofactors, their expression profile, factors modulating their expression and their role in facilitating SARS-CoV-2 infection. We discuss their expression in the skin and their possible involvement in percutaneous infection since the presence of the virus has been detected in the skin.
Collapse
Affiliation(s)
- Manon Barthe
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
| | - Leslie Hertereau
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
| | - Noura Lamghari
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
| | - Hanan Osman-Ponchet
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
- Correspondence: (H.O.-P.); (V.M.B.)
| | - Véronique M. Braud
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- Correspondence: (H.O.-P.); (V.M.B.)
| |
Collapse
|
35
|
Greaney AM, Raredon MSB, Kochugaeva MP, Niklason LE, Levchenko A. SARS-CoV-2 leverages airway epithelial protective mechanism for viral infection. iScience 2023; 26:106175. [PMID: 36788793 PMCID: PMC9912025 DOI: 10.1016/j.isci.2023.106175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Despite much concerted effort to better understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection, relatively little is known about the dynamics of early viral entry and infection in the airway. Here we analyzed a single-cell RNA sequencing dataset of early SARS-CoV-2 infection in a humanized in vitro model, to elucidate key mechanisms by which the virus triggers a cell-systems-level response in the bronchial epithelium. We find that SARS-CoV-2 virus preferentially enters the tissue via ciliated cell precursors, giving rise to a population of infected mature ciliated cells, which signal to basal cells, inducing further rapid differentiation. This feedforward loop of infection is mitigated by further cell-cell communication, before interferon signaling begins at three days post-infection. These findings suggest hijacking by the virus of potentially beneficial tissue repair mechanisms, possibly exacerbating the outcome. This work both elucidates the interplay between barrier tissues and viral infections and may suggest alternative therapeutic approaches targeting non-immune response mechanisms.
Collapse
Affiliation(s)
- Allison Marie Greaney
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06511, USA
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06511, USA
- Medical Scientist Training Program, Yale University, New Haven, CT 06511, USA
| | - Maria P. Kochugaeva
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Laura E. Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA
- Humacyte Inc., Durham, NC 27713, USA
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
36
|
COVID-19-Induced Myocarditis: Pathophysiological Roles of ACE2 and Toll-like Receptors. Int J Mol Sci 2023; 24:ijms24065374. [PMID: 36982447 PMCID: PMC10049267 DOI: 10.3390/ijms24065374] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
The clinical manifestations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection responsible for coronavirus disease 2019 (COVID-19) commonly include dyspnoea and fatigue, and they primarily involve the lungs. However, extra-pulmonary organ dysfunctions, particularly affecting the cardiovascular system, have also been observed following COVID-19 infection. In this context, several cardiac complications have been reported, including hypertension, thromboembolism, arrythmia and heart failure, with myocardial injury and myocarditis being the most frequent. These secondary myocardial inflammatory responses appear to be associated with a poorer disease course and increased mortality in patients with severe COVID-19. In addition, numerous episodes of myocarditis have been reported as a complication of COVID-19 mRNA vaccinations, especially in young adult males. Changes in the cell surface expression of angiotensin-converting enzyme 2 (ACE2) and direct injury to cardiomyocytes resulting from exaggerated immune responses to COVID-19 are just some of the mechanisms that may explain the pathogenesis of COVID-19-induced myocarditis. Here, we review the pathophysiological mechanisms underlying myocarditis associated with COVID-19 infection, with a particular focus on the involvement of ACE2 and Toll-like receptors (TLRs).
Collapse
|
37
|
New insights for infection mechanism and potential targets of COVID-19: Three Chinese patent medicines and three Chinese medicine formulas as promising therapeutic approaches. CHINESE HERBAL MEDICINES 2023; 15:157-168. [PMCID: PMC9993661 DOI: 10.1016/j.chmed.2022.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/08/2022] [Accepted: 06/11/2022] [Indexed: 03/11/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high pathogenicity and infectiousness has become a sudden and lethal pandemic worldwide. Currently, there is no accepted specific drug for COVID-19 treatment. Therefore, it is extremely urgent to clarify the pathogenic mechanism and develop effective therapies for patients with COVID-19. According to several reliable reports from China, traditional Chinese medicine (TCM), especially for three Chinese patent medicines and three Chinese medicine formulas, has been demonstrated to effectively alleviate the symptoms of COVID-19 either used alone or in combination with Western medicines. In this review, we systematically summarized and analyzed the pathogenesis of COVID-19, the detailed clinical practice, active ingredients investigation, network pharmacology prediction and underlying mechanism verification of three Chinese patent medicines and three Chinese medicine formulas in the COVID-19 combat. Additionally, we summarized some promising and high-frequency drugs of these prescriptions and discussed their regulatory mechanism, which provides guidance for the development of new drugs against COVID-19. Collectively, by addressing critical challenges, for example, unclear targets and complicated active ingredients of these medicines and formulas, we believe that TCM will represent promising and efficient strategies for curing COVID-19 and related pandemics.
Collapse
|
38
|
Porter LM, Guo W, Crozier TWM, Greenwood EJD, Ortmann B, Kottmann D, Nathan JA, Mahadeva R, Lehner PJ, McCaughan F. Cigarette smoke preferentially induces full length ACE2 expression in differentiated primary human airway cultures but does not alter the efficiency of cellular SARS-CoV-2 infection. Heliyon 2023; 9:e14383. [PMID: 36938474 PMCID: PMC10005841 DOI: 10.1016/j.heliyon.2023.e14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Cigarette smoking has many serious negative health consequences. The relationship between smoking and SARS-CoV-2 infection is controversial, specifically whether smokers are at increased risk of infection. We investigated the impact of cigarette smoke on ACE2 isoform expression and SARS-CoV-2 infection in differentiated primary human bronchial epithelial cells at the air-liquid-interface (ALI). We assessed the expression of ACE2 in response to CSE and therapeutics reported to modulate ACE2. We exposed ALI cultures to cigarette smoke extract (CSE) and then infected them with SARS-CoV-2. We measured cellular infection using flow cytometry and whole-transwell immunofluorescence. We found that CSE increased expression of full-length ACE2 (flACE2) but did not alter the expression of a Type I-interferon sensitive truncated isoform (dACE2) that lacks the capacity to bind SARS-CoV-2. CSE did not have a significant impact on key mediators of the innate immune response. Importantly, we show that, despite the increase in flACE2, CSE did not alter airway cell infection after CSE exposure. We found that nicotine does not significantly alter flACE2 expression but that NRF2 agonists do lead to an increase in flACE2 expression. This increase was not associated with an increase in SARS-CoV-2 infection. Our results are consistent with the epidemiological data suggesting that current smokers do not have an excess of SARS-CoV-2 infection. but that those with chronic respiratory or cardiovascular disease are more vulnerable to severe COVID-19. They suggest that, in differentiated conducting airway cells, flACE2 expression levels may not limit airway SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Linsey M. Porter
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 OQQ, UK
| | - Wenrui Guo
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 OQQ, UK
| | - Thomas WM. Crozier
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Edward JD. Greenwood
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Brian Ortmann
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Daniel Kottmann
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 OQQ, UK
| | - James A. Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ravindra Mahadeva
- Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 OQQ, UK
| | - Paul J. Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Frank McCaughan
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 OQQ, UK
| |
Collapse
|
39
|
Wei J, Patil A, Collings CK, Alfajaro MM, Liang Y, Cai WL, Strine MS, Filler RB, DeWeirdt PC, Hanna RE, Menasche BL, Ökten A, Peña-Hernández MA, Klein J, McNamara A, Rosales R, McGovern BL, Luis Rodriguez M, García-Sastre A, White KM, Qin Y, Doench JG, Yan Q, Iwasaki A, Zwaka TP, Qi J, Kadoch C, Wilen CB. Pharmacological disruption of mSWI/SNF complex activity restricts SARS-CoV-2 infection. Nat Genet 2023; 55:471-483. [PMID: 36894709 PMCID: PMC10011139 DOI: 10.1038/s41588-023-01307-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/23/2023] [Indexed: 03/11/2023]
Abstract
Identification of host determinants of coronavirus infection informs mechanisms of viral pathogenesis and can provide new drug targets. Here we demonstrate that mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) chromatin remodeling complexes, specifically canonical BRG1/BRM-associated factor (cBAF) complexes, promote severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and represent host-directed therapeutic targets. The catalytic activity of SMARCA4 is required for mSWI/SNF-driven chromatin accessibility at the ACE2 locus, ACE2 expression and virus susceptibility. The transcription factors HNF1A/B interact with and recruit mSWI/SNF complexes to ACE2 enhancers, which contain high HNF1A motif density. Notably, small-molecule mSWI/SNF ATPase inhibitors or degraders abrogate angiotensin-converting enzyme 2 (ACE2) expression and confer resistance to SARS-CoV-2 variants and a remdesivir-resistant virus in three cell lines and three primary human cell types, including airway epithelial cells, by up to 5 logs. These data highlight the role of mSWI/SNF complex activities in conferring SARS-CoV-2 susceptibility and identify a potential class of broad-acting antivirals to combat emerging coronaviruses and drug-resistant variants.
Collapse
Affiliation(s)
- Jin Wei
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ajinkya Patil
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Clayton K Collings
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yu Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Wesley L Cai
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Madison S Strine
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Peter C DeWeirdt
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruth E Hanna
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bridget L Menasche
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Arya Ökten
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Mario A Peña-Hernández
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Jon Klein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Andrew McNamara
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Briana L McGovern
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Luis Rodriguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiren Qin
- Huffington Center for Cell-based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Thomas P Zwaka
- Huffington Center for Cell-based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
40
|
Du J, Fu J, Zhang W, Zhang L, Chen H, Cheng J, He T, Fu J. Effect of DPP4/CD26 expression on SARS‑CoV‑2 susceptibility, immune response, adenosine (derivatives m 62A and CD) regulations on patients with cancer and healthy individuals. Int J Oncol 2023; 62:41. [PMID: 36799191 PMCID: PMC9946808 DOI: 10.3892/ijo.2023.5489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
The worldwide COVID‑19 pandemic was brought on by a new coronavirus (SARS Cov‑2). A marker/receptor called Dipeptidyl peptidase 4/CD26(DPP4/CD26) may be crucial in determining susceptibility to tumors and coronaviruses. However, the regulation of DPP4 in COVID‑invaded cancer patients and its role on small molecule compounds remain unclear. The present study used the Human Protein Atlas, Monaco, and Schmiedel databases to analyze the expression of DPP4 in human tissues and immune cells. The association between DPP4 expression and survival in various tumor tissues was compared using GEPIA 2. The DNMIVD database was used to analyze the correlation between DPP4 expression and promoter methylation in various tumors. On the cBioPortal network, the frequency of DPP4 DNA mutations in various cancers was analyzed. The correlation between DPP4 expression and immunomodulators was analyzed by TISIDB database. The inhibitory effects of cordycepin (CD), N6, N6‑dimethyladenosine (m62A) and adenosine (AD) on DPP4 in cancer cells were evaluated. DPP4 was mainly expressed in endocrine tissue, followed by gastrointestinal tract, female tissue (mainly in placenta), male tissue (mainly in prostate and seminal vesicle), proximal digestive tract, kidney, bladder, liver, gallbladder and respiratory system. In immune cells, DPP4 mRNA was mainly expressed in T cells, and its expression was upregulated in esophageal carcinoma, kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma, pancreatic adenocarcinoma, prostate adenocarcinoma, stomach adenocarcinoma, thyroid carcinoma and thymoma. However, it was downregulated in breast invasive carcinoma, kidney chromophobe, lung squamous cell carcinoma and skin cutaneous melanoma. Thus, DPP4 is involved in viral invasion in most types of cancer. The expression of DPP4 could be inhibited by CD, m62A and AD in different tumor cells. Moreover, CD significantly inhibited the formation of GFP‑positive syncytial cells. In vivo experiments with AD injection further showed that AD significantly inhibited lymphocyte activating factor 3 expression. These drugs may have potential to treat COVID‑19 by targeting DPP4. Thus, DPP4 may be medically significant for SARS‑CoV‑2‑infected cancer patients, providing prospective novel targets and concepts for the creation of drugs against COVID‑19.
Collapse
Affiliation(s)
- Jiaman Du
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenqian Zhang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lianmei Zhang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China,Department of Pathology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hanchun Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao He
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China,Institute for Cancer Medicine and Basic Medical School, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China,Correspondence to: Professor Junjiang Fu or Professor Tao He, Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, 3-319 Zhongshan Road, Luzhou, Sichuan 646000, P.R. China, E-mail: , E-mail:
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China,Correspondence to: Professor Junjiang Fu or Professor Tao He, Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, 3-319 Zhongshan Road, Luzhou, Sichuan 646000, P.R. China, E-mail: , E-mail:
| |
Collapse
|
41
|
Snouwaert JN, Jania LA, Nguyen T, Martinez DR, Schäfer A, Catanzaro NJ, Gully KL, Baric RS, Heise M, Ferris MT, Anderson E, Pressey K, Dillard JA, Taft-Benz S, Baxter VK, Ting JPY, Koller BH. Human ACE2 expression, a major tropism determinant for SARS-CoV-2, is regulated by upstream and intragenic elements. PLoS Pathog 2023; 19:e1011168. [PMID: 36812267 PMCID: PMC9987828 DOI: 10.1371/journal.ppat.1011168] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/06/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), part of the renin-angiotensin system (RAS), serves as an entry point for SARS-CoV-2, leading to viral proliferation in permissive cell types. Using mouse lines in which the Ace2 locus has been humanized by syntenic replacement, we show that regulation of basal and interferon induced ACE2 expression, relative expression levels of different ACE2 transcripts, and sexual dimorphism in ACE2 expression are unique to each species, differ between tissues, and are determined by both intragenic and upstream promoter elements. Our results indicate that the higher levels of expression of ACE2 observed in the lungs of mice relative to humans may reflect the fact that the mouse promoter drives expression of ACE2 in populous airway club cells while the human promoter drives expression in alveolar type 2 (AT2) cells. In contrast to transgenic mice in which human ACE2 is expressed in ciliated cells under the control of the human FOXJ1 promoter, mice expressing ACE2 in club cells under the control of the endogenous Ace2 promoter show a robust immune response after infection with SARS-CoV-2, leading to rapid clearance of the virus. This supports a model in which differential expression of ACE2 determines which cell types in the lung are infected, and this in turn modulates the host response and outcome of COVID-19.
Collapse
Affiliation(s)
- John N. Snouwaert
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Leigh A. Jania
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Trang Nguyen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David R. Martinez
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alexandra Schäfer
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nicholas J. Catanzaro
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kendra L. Gully
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth Anderson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katia Pressey
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jacob A. Dillard
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sharon Taft-Benz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Victoria K. Baxter
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Beverly H. Koller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
42
|
Stocker N, Radzikowska U, Wawrzyniak P, Tan G, Huang M, Ding M, Akdis CA, Sokolowska M. Regulation of angiotensin-converting enzyme 2 isoforms by type 2 inflammation and viral infection in human airway epithelium. Mucosal Immunol 2023; 16:5-16. [PMID: 36642382 PMCID: PMC9836991 DOI: 10.1016/j.mucimm.2022.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023]
Abstract
SARS-CoV-2 enters human cells through its main receptor, angiotensin-converting enzyme 2 (ACE2), which constitutes a limiting factor of infection. Recent findings demonstrating novel ACE2 isoforms implicate that this receptor is regulated in a more complex way than previously anticipated. However, it remains unknown how various inflammatory conditions influence the abundance of these ACE2 variants. Hence, we studied expression of ACE2 messenger RNA (mRNA) and protein isoforms, together with its glycosylation and spatial localization in primary human airway epithelium upon allergic inflammation and viral infection. We found that interleukin-13, the main type 2 cytokine, decreased expression of long ACE2 mRNA and reduced glycosylation of full-length ACE2 protein via alteration of N-linked glycosylation process, limiting its availability on the apical side of ciliated cells. House dust mite allergen did not affect the expression of ACE2. Rhinovirus infection increased short ACE2 mRNA, but it did not influence its protein expression. In addition, by screening other SARS-CoV-2 related host molecules, we found that interleukin-13 and rhinovirus significantly regulated mRNA, but not protein of transmembrane serine protease 2 and neuropilin 1. Regulation of ACE2 and other host proteins was comparable in healthy and asthmatic epithelium, underlining the lack of intrinsic differences but dependence on the inflammatory milieu in the airways.
Collapse
Affiliation(s)
- Nino Stocker
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Paulina Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mei Ding
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.
| |
Collapse
|
43
|
Tyrkalska SD, Candel S, Pedoto A, García-Moreno D, Alcaraz-Pérez F, Sánchez-Ferrer Á, Cayuela ML, Mulero V. Zebrafish models of COVID-19. FEMS Microbiol Rev 2023; 47:fuac042. [PMID: 36323404 PMCID: PMC9841970 DOI: 10.1093/femsre/fuac042] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Although COVID-19 has only recently appeared, research studies have already developed and implemented many animal models for deciphering the secrets of the disease and provided insights into the biology of SARS-CoV-2. However, there are several major factors that complicate the study of this virus in model organisms, such as the poor infectivity of clinical isolates of SARS-CoV-2 in some model species, and the absence of persistent infection, immunopathology, severe acute respiratory distress syndrome, and, in general, all the systemic complications which characterize COVID-19 clinically. Another important limitation is that SARS-CoV-2 mainly causes severe COVID-19 in older people with comorbidities, which represents a serious problem when attempting to use young and immunologically naïve laboratory animals in COVID-19 testing. We review here the main animal models developed so far to study COVID-19 and the unique advantages of the zebrafish model that may help to contribute to understand this disease, in particular to the identification and repurposing of drugs to treat COVID-19, to reveal the mechanism of action and side-effects of Spike-based vaccines, and to decipher the high susceptibility of aged people to COVID-19.
Collapse
Affiliation(s)
- Sylwia D Tyrkalska
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sergio Candel
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Annamaria Pedoto
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Diana García-Moreno
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisca Alcaraz-Pérez
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Grupo de Telomerasa, Cáncer y Envejecimiento (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Álvaro Sánchez-Ferrer
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Departmento de Bioloquímica y Biología Molecular A, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - María L Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Grupo de Telomerasa, Cáncer y Envejecimiento (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
44
|
Eldeen Bazid HAS, Marae AH, Tayel N, Zaid SG, Mostafa MI, Abd El Gayed EM. Study of serum level of kisspeptin and interferon-beta in genital wart patients. Indian J Sex Transm Dis AIDS 2023; 44:30-34. [PMID: 37457538 PMCID: PMC10343131 DOI: 10.4103/ijstd.ijstd_93_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 07/18/2023] Open
Abstract
Background Researchers are interested in genital wart (GW) studies due to their increased incidence. In a single experimental research, virally infected mouse models showed elevated kisspeptin levels and low interferon levels. Objective The objective of the study was to evaluate the serum levels of kisspeptin and interferon (INF)-beta in GW patients. Patients and Methods Forty patients with GWs and forty healthy participants of comparable age and sex as a control group were included in this case-control study. Serum levels of kisspeptin and IFN-beta were measured using ELISA during the period from December 2021 to April 2022. Results Kisspeptin was significantly higher among cases than controls, whereas IFN-beta level was lower among cases than controls (P < 0.001). There were no significant relations between kisspeptin and IFN-beta levels and the clinical data for the studied participants, and there was no significant correlation between both (P > 0.05). Conclusion The reported increased kisspeptin level which was associated with decreased interferon-beta level in patients with GWs might indicate a new insight into viral infection pathogenesis. Further research including all steps in kisspeptin/G protein-coupled receptor 54 pathway is required. Targeted therapy for this pathway may be of value for those patients.
Collapse
Affiliation(s)
| | - Alaa H. Marae
- Department of Dermatology and Andrology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Nermin Tayel
- Department of Molecular Diagnostics and Therapeutics, Genetic Engineering and Biotechnology Research Institute, Sadat City, Egypt
| | - Shereen G. Zaid
- Department of Dermatology and Andrology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Mohammed I. Mostafa
- Department of Clinical Pathology, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Eman Masoud Abd El Gayed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
45
|
Quarleri J, Delpino MV. Molecular mechanisms implicated in SARS-CoV-2 liver tropism. World J Gastroenterol 2022; 28:6875-6887. [PMID: 36632318 PMCID: PMC9827585 DOI: 10.3748/wjg.v28.i48.6875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/07/2022] [Accepted: 11/27/2022] [Indexed: 12/26/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hepatic involvement is common in SARS-CoV-2-infected individuals. It is currently accepted that the direct and indirect hepatic effects of SARS-CoV-2 infection play a significant role in COVID-19. In individuals with pre-existing infectious and non-infectious liver disease, who are at a remarkably higher risk of developing severe COVID-19 and death, this pathology is most medically relevant. This review emphasizes the current pathways regarded as contributing to the gastrointestinal and hepatic ailments linked to COVID-19-infected patients due to an imbalanced interaction among the liver, systemic inflammation, disrupted coagulation, and the lung.
Collapse
Affiliation(s)
- Jorge Quarleri
- Institute for Biomedical Research on Retroviruses and AIDS, Faculty of Medical Sciences, National Scientific and Technical Research Council-University of Buenos Aires, Buenos Aires 1121, Argentina
| | - M. Victoria Delpino
- Institute for Biomedical Research on Retroviruses and AIDS, Faculty of Medical Sciences, National Scientific and Technical Research Council-University of Buenos Aires, Buenos Aires 1121, Argentina
| |
Collapse
|
46
|
Domovitz T, Ayoub S, Werbner M, Alter J, Izhaki Tavor L, Yahalom-Ronen Y, Tikhonov E, Meirson T, Maman Y, Paran N, Israely T, Dessau M, Gal-Tanamy M. HCV Infection Increases the Expression of ACE2 Receptor, Leading to Enhanced Entry of Both HCV and SARS-CoV-2 into Hepatocytes and a Coinfection State. Microbiol Spectr 2022; 10:e0115022. [PMID: 36314945 PMCID: PMC9769977 DOI: 10.1128/spectrum.01150-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Recent studies suggest the enhancement of liver injury in COVID-19 patients infected with Hepatitis C virus (HCV). Hepatocytes express low levels of angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor, raising the possibility of HCV-SARS-CoV-2 coinfection in the liver. This work aimed to explore whether HCV and SARS-CoV-2 coinfect hepatocytes and the interplay between these viruses. We demonstrate that SARS-CoV-2 coinfects HCV-infected Huh7.5 (Huh7.5HCV) cells. Both viruses replicated efficiently in the coinfected cells, with HCV replication enhanced in coinfected compared to HCV-mono-infected cells. Strikingly, Huh7.5HCV cells were eight fold more susceptible to SARS-CoV-2 pseudoviruses than naive Huh7.5 cells, suggesting enhanced SARS-CoV-2 entry into HCV-preinfected hepatocytes. In addition, we observed increased binding of spike receptor-binding domain (RBD) protein to Huh7.5HCV cells, as well as enhanced cell-to-cell fusion of Huh7.5HCV cells with spike-expressing Huh7.5 cells. We explored the mechanism of enhanced SARS-CoV-2 entry and identified an increased ACE2 mRNA and protein levels in Huh7.5HCV cells, primary hepatocytes, and in data from infected liver biopsies obtained from database. Importantly, higher expression of ACE2 increased HCV infection by enhancing its binding to the host cell, underscoring its role in the HCV life cycle as well. Transcriptome analysis revealed that shared host signaling pathways were induced in HCV-SARS-CoV-2 coinfection. This study revealed complex interactions between HCV and SARS-CoV-2 infections in hepatocytes, which may lead to the increased liver damage recently reported in HCV-positive COVID-19 patients. IMPORTANCE Here, we provide the first experimental evidence for the coexistence of SARS-CoV-2 infection with HCV, and the interplay between them. The study revealed a complex relationship of enhancement between the two viruses, where HCV infection increased the expression of the SARS-CoV-2 entry receptor ACE2, thus facilitating SARS-CoV-2 entry, and potentially, also HCV entry. Thereafter, SARS-CoV-2 infection enhanced HCV replication in hepatocytes. This study may explain the aggravation of liver damage that was recently reported in COVID-19 patients with HCV coinfection and suggests preinfection with HCV as a risk factor for severe COVID-19. Moreover, it highlights the possible importance of HCV treatment for coinfected patients. In a broader view, these findings emphasize the importance of identifying coinfecting pathogens that increase the risk of SARS-CoV-2 infection and that may accelerate COVID-19-related co-morbidities.
Collapse
Affiliation(s)
- Tom Domovitz
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Samer Ayoub
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michal Werbner
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Joel Alter
- The Laboratory of Structural Biology of Infectious Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Lee Izhaki Tavor
- The Laboratory of Structural Biology of Infectious Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Evgeny Tikhonov
- The Lab of Genomic Instability and Cancer, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Tomer Meirson
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Davidoff Cancer Center, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Yaakov Maman
- The Lab of Genomic Instability and Cancer, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Moshe Dessau
- The Laboratory of Structural Biology of Infectious Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Meital Gal-Tanamy
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
47
|
Significance of Catecholamine Biosynthetic/Metabolic Pathway in SARS-CoV-2 Infection and COVID-19 Severity. Cells 2022; 12:cells12010012. [PMID: 36611805 PMCID: PMC9818320 DOI: 10.3390/cells12010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The SARS-CoV-2 infection was previously associated with the expression of the dopamine biosynthetic enzyme L-Dopa decarboxylase (DDC). Specifically, a negative correlation was detected between DDC mRNA and SARS-CoV-2 RNA levels in in vitro infected epithelial cells and the nasopharyngeal tissue of COVID-19 patients with mild/no symptoms. However, DDC, among other genes related to both DDC expression and SARS-CoV-2-infection (ACE2, dACE2, EPO), was upregulated in these patients, possibly attributed to an orchestrated host antiviral response. Herein, by comparing DDC expression in the nasopharyngeal swab samples of severe/critical to mild COVID-19 cases, we showed a 20 mean-fold reduction, highlighting the importance of the expression of this gene as a potential marker of COVID-19 severity. Moreover, we identified an association of SARS-CoV-2 infection with the expression of key catecholamine biosynthesis/metabolism-related genes, in whole blood samples from hospitalized patients and in cultured cells. Specifically, viral infection downregulated the biosynthetic part of the dopamine pathway (reduction in DDC expression up to 7.5 mean-fold), while enhanced the catabolizing part (increase in monoamine oxidases A and B expression up to 15 and 10 mean-fold, respectively) in vivo, irrespectively of the presence of comorbidities. In accordance, dopamine levels in the sera of severe cases were reduced (up to 3.8 mean-fold). Additionally, a moderate positive correlation between DDC and MAOA mRNA levels (r = 0.527, p < 00001) in the blood was identified upon SARS-CoV-2-infection. These observations were consistent to the gene expression data from SARS-CoV-2-infected Vero E6 and A549 epithelial cells. Furthermore, L-Dopa or dopamine treatment of infected cells attenuated the virus-derived cytopathic effect by 55% and 59%, respectively. The SARS-CoV-2 mediated suppression of dopamine biosynthesis in cell culture was, at least in part, attributed to hypoxia-like conditions triggered by viral infection. These findings suggest that L-Dopa/dopamine intake may have a preventive or therapeutic value for COVID-19 patients.
Collapse
|
48
|
Martínez-Colón GJ, Ratnasiri K, Chen H, Jiang S, Zanley E, Rustagi A, Verma R, Chen H, Andrews JR, Mertz KD, Tzankov A, Azagury D, Boyd J, Nolan GP, Schürch CM, Matter MS, Blish CA, McLaughlin TL. SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages. Sci Transl Med 2022; 14:eabm9151. [PMID: 36137009 PMCID: PMC9529056 DOI: 10.1126/scitranslmed.abm9151] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 09/09/2022] [Indexed: 01/11/2023]
Abstract
Obesity, characterized by chronic low-grade inflammation of the adipose tissue, is associated with adverse coronavirus disease 2019 (COVID-19) outcomes, yet the underlying mechanism is unknown. To explore whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of adipose tissue contributes to pathogenesis, we evaluated COVID-19 autopsy cases and deeply profiled the response of adipose tissue to SARS-CoV-2 infection in vitro. In COVID-19 autopsy cases, we identified SARS-CoV-2 RNA in adipocytes with an associated inflammatory infiltrate. We identified two distinct cellular targets of infection: adipocytes and a subset of inflammatory adipose tissue-resident macrophages. Mature adipocytes were permissive to SARS-CoV-2 infection; although macrophages were abortively infected, SARS-CoV-2 initiated inflammatory responses within both the infected macrophages and bystander preadipocytes. These data suggest that SARS-CoV-2 infection of adipose tissue could contribute to COVID-19 severity through replication of virus within adipocytes and through induction of local and systemic inflammation driven by infection of adipose tissue-resident macrophages.
Collapse
Affiliation(s)
| | - Kalani Ratnasiri
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Heping Chen
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Elizabeth Zanley
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Renu Verma
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Han Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jason R. Andrews
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kirsten D. Mertz
- Institute of Pathology, Cantonal Hospital Baselland, 4410, Liestal, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital of Basel, University of Basel, 4056, Basel, Switzerland
| | - Dan Azagury
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jack Boyd
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Garry P. Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Christian M. Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72070, Tübingen, Germany
| | - Matthias S. Matter
- Institute of Medical Genetics and Pathology, University Hospital of Basel, University of Basel, 4056, Basel, Switzerland
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Tracey L. McLaughlin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
49
|
Wu Q, Kumar N, Lafuse WP, Ahumada OS, Saljoughian N, Whetstone E, Zani A, Patton AK, El Refaey M, Webb A, Pietrzak M, Yu L, KC M, Peeples ME, Ganesan LP, Yount JS, Rajaram MV. Influenza A virus modulates ACE2 expression and SARS-CoV-2 infectivity in human cardiomyocytes. iScience 2022; 25:105701. [PMID: 36474635 PMCID: PMC9715453 DOI: 10.1016/j.isci.2022.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Influenza A virus (IAV) and SARS-CoV-2 virus are both acute respiratory viruses currently circulating in the human population. This study aims to determine the impact of IAV infection on SARS-CoV-2 pathogenesis and cardiomyocyte function. Infection of human bronchial epithelial cells (HBEC), A549 cells, lung fibroblasts (HLF), monocyte derived macrophages (MDMs), cardiac fibroblasts (HCF) and hiPSC-derived cardiomyocytes with IAV enhanced the expression of ACE2, the SARS-CoV-2 receptor. Similarly, IAV infection increased levels of ACE2 in the lungs of mice and humans. Of interest, we detected heavily glycosylated form of ACE2 in hiPSC-CMs and poorly glycosylated ACE2 in other cell types. Also, prior IAV infection enhances SARS-CoV-2 spike protein binding and viral entry in all cell types. However, efficient SARS-CoV-2 replication was uniquely inhibited in cardiomyocytes. Glycosylation of ACE2 correlated with enzymatic conversion of its substrate Ang II, induction of eNOS and nitric oxide production, may provide a potential mechanism for the restricted SARS-CoV-2 replication in cardiomyocytes.
Collapse
Affiliation(s)
- Qian Wu
- Department of Microbial Infection and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43209, USA
| | - Naresh Kumar
- Department of Microbial Infection and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43209, USA
| | - William P. Lafuse
- Department of Microbial Infection and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43209, USA
| | - Omar Santiagonunez Ahumada
- Department of Microbial Infection and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43209, USA
| | - Noushin Saljoughian
- Department of Microbial Infection and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43209, USA
| | - Elizabeth Whetstone
- Department of Microbial Infection and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43209, USA
| | - Ashley Zani
- Department of Microbial Infection and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43209, USA
| | - Ashley K. Patton
- Department of Pathology, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43209, USA
| | - Mona El Refaey
- Department of Surgery, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43209, USA
| | - Amy Webb
- Department of Biomedical Informatics, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43209, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43209, USA
| | - Lianbo Yu
- Department of Biomedical Informatics, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43209, USA
| | - Mahesh KC
- Department of Pediatrics, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43209, USA,Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43209, USA
| | - Mark E. Peeples
- Department of Pediatrics, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43209, USA,Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43209, USA
| | - Latha P. Ganesan
- Department of Internal Medicine College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43209, USA
| | - Murugesan V.S. Rajaram
- Department of Microbial Infection and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43209, USA,Corresponding author
| |
Collapse
|
50
|
Hönzke K, Obermayer B, Mache C, Fatykhova D, Kessler M, Dökel S, Wyler E, Baumgardt M, Löwa A, Hoffmann K, Graff P, Schulze J, Mieth M, Hellwig K, Demir Z, Biere B, Brunotte L, Mecate-Zambrano A, Bushe J, Dohmen M, Hinze C, Elezkurtaj S, Tönnies M, Bauer TT, Eggeling S, Tran HL, Schneider P, Neudecker J, Rückert JC, Schmidt-Ott KM, Busch J, Klauschen F, Horst D, Radbruch H, Radke J, Heppner F, Corman VM, Niemeyer D, Müller MA, Goffinet C, Mothes R, Pascual-Reguant A, Hauser AE, Beule D, Landthaler M, Ludwig S, Suttorp N, Witzenrath M, Gruber AD, Drosten C, Sander LE, Wolff T, Hippenstiel S, Hocke AC. Human lungs show limited permissiveness for SARS-CoV-2 due to scarce ACE2 levels but virus-induced expansion of inflammatory macrophages. Eur Respir J 2022; 60:2102725. [PMID: 35728978 PMCID: PMC9712848 DOI: 10.1183/13993003.02725-2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilises the angiotensin-converting enzyme 2 (ACE2) transmembrane peptidase as cellular entry receptor. However, whether SARS-CoV-2 in the alveolar compartment is strictly ACE2-dependent and to what extent virus-induced tissue damage and/or direct immune activation determines early pathogenesis is still elusive. METHODS Spectral microscopy, single-cell/-nucleus RNA sequencing or ACE2 "gain-of-function" experiments were applied to infected human lung explants and adult stem cell derived human lung organoids to correlate ACE2 and related host factors with SARS-CoV-2 tropism, propagation, virulence and immune activation compared to SARS-CoV, influenza and Middle East respiratory syndrome coronavirus (MERS-CoV). Coronavirus disease 2019 (COVID-19) autopsy material was used to validate ex vivo results. RESULTS We provide evidence that alveolar ACE2 expression must be considered scarce, thereby limiting SARS-CoV-2 propagation and virus-induced tissue damage in the human alveolus. Instead, ex vivo infected human lungs and COVID-19 autopsy samples showed that alveolar macrophages were frequently positive for SARS-CoV-2. Single-cell/-nucleus transcriptomics further revealed nonproductive virus uptake and a related inflammatory and anti-viral activation, especially in "inflammatory alveolar macrophages", comparable to those induced by SARS-CoV and MERS-CoV, but different from NL63 or influenza virus infection. CONCLUSIONS Collectively, our findings indicate that severe lung injury in COVID-19 probably results from a macrophage-triggered immune activation rather than direct viral damage of the alveolar compartment.
Collapse
Affiliation(s)
- Katja Hönzke
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Contributed equally
| | - Benedikt Obermayer
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioinformatics, Berlin, Germany
- Contributed equally
| | - Christin Mache
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Berlin, Germany
- Contributed equally
| | - Diana Fatykhova
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mirjana Kessler
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Gynecology and Obstetrics, Ludwig-Maximilian University, Munich, Germany
| | - Simon Dökel
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and IRI Life Sciences, Institute for Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Morris Baumgardt
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna Löwa
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Karen Hoffmann
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Patrick Graff
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jessica Schulze
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Berlin, Germany
| | - Maren Mieth
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Hellwig
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Zeynep Demir
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Barbara Biere
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Berlin, Germany
| | - Linda Brunotte
- Institute of Virology, Westfaelische Wilhelms Universität, Münster, Germany
| | | | - Judith Bushe
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Melanie Dohmen
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christian Hinze
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sefer Elezkurtaj
- Department of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mario Tönnies
- HELIOS Clinic Emil von Behring, Department of Pneumology and Department of Thoracic Surgery, Chest Hospital Heckeshorn, Berlin, Germany
| | - Torsten T Bauer
- HELIOS Clinic Emil von Behring, Department of Pneumology and Department of Thoracic Surgery, Chest Hospital Heckeshorn, Berlin, Germany
| | - Stephan Eggeling
- Department of Thoracic Surgery, Vivantes Clinics Neukölln, Berlin, Germany
| | - Hong-Linh Tran
- Department of Thoracic Surgery, Vivantes Clinics Neukölln, Berlin, Germany
| | - Paul Schneider
- Department for Thoracic Surgery, DRK Clinics, Berlin, Germany
| | - Jens Neudecker
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jens C Rückert
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kai M Schmidt-Ott
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jonas Busch
- Clinic for Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frederick Klauschen
- Department of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Horst
- Department of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helena Radbruch
- Institute for Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Josefine Radke
- Institute for Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Heppner
- Institute for Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcel A Müller
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ronja Mothes
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Anna Pascual-Reguant
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Anja Erika Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioinformatics, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and IRI Life Sciences, Institute for Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Stephan Ludwig
- Institute of Virology, Westfaelische Wilhelms Universität, Münster, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leif-Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thorsten Wolff
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas C Hocke
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|