1
|
Meneghelli L, Davidson S, Gineste A, El Guermah L, Kellouche-Gaillard S, Carreiras F, Carlier L, Nadal S, Larregola M, Pytkowicz J, Zanato C. Design and synthesis of a clickable cell-permeable pseudopeptide Pin1 inhibitor with antiproliferative effects on human multiple myeloma cell line. Chem Commun (Camb) 2025; 61:5774-5777. [PMID: 40125575 DOI: 10.1039/d4cc05968a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The synthesis of a library of minimal-backbone, cell-permeable, clickable pseudopeptide Pin1 ligands with potential applications in drug development and biochemical studies is reported. The ligands' affinity constants were evaluated using NMR. The lead compound 4b, demonstrated effective cell permeability, inhibitory activity, and an antiproliferative effect on a multiple myeloma cell line.
Collapse
Affiliation(s)
- Lorenzo Meneghelli
- BioCIS, UMR 8076, CY Cergy Paris Université, CNRS, 95000 Cergy Pontoise, France.
- BioCIS, UMR 8076, Université Paris-Saclay, CNRS, Orsay, France
| | - Stephanie Davidson
- CPCV, UMR 8228, Sorbonne Université, ENS, PSL, CNRS, 75005 Paris, France
| | - Anthony Gineste
- BioCIS, UMR 8076, CY Cergy Paris Université, CNRS, 95000 Cergy Pontoise, France.
- BioCIS, UMR 8076, Université Paris-Saclay, CNRS, Orsay, France
| | - Lamia El Guermah
- ERRMECe, MECuP, I-MAT, CY Cergy Paris Université, Cergy, 95000, France
| | | | - Franck Carreiras
- ERRMECe, MECuP, I-MAT, CY Cergy Paris Université, Cergy, 95000, France
| | - Ludovic Carlier
- CPCV, UMR 8228, Sorbonne Université, ENS, PSL, CNRS, 75005 Paris, France
| | - Simon Nadal
- BioCIS, UMR 8076, CY Cergy Paris Université, CNRS, 95000 Cergy Pontoise, France.
- BioCIS, UMR 8076, Université Paris-Saclay, CNRS, Orsay, France
| | - Maud Larregola
- BioCIS, UMR 8076, CY Cergy Paris Université, CNRS, 95000 Cergy Pontoise, France.
- BioCIS, UMR 8076, Université Paris-Saclay, CNRS, Orsay, France
- CPCV, UMR 8228, Sorbonne Université, ENS, PSL, CNRS, 75005 Paris, France
| | - Julien Pytkowicz
- BioCIS, UMR 8076, CY Cergy Paris Université, CNRS, 95000 Cergy Pontoise, France.
- BioCIS, UMR 8076, Université Paris-Saclay, CNRS, Orsay, France
| | - Chiara Zanato
- BioCIS, UMR 8076, CY Cergy Paris Université, CNRS, 95000 Cergy Pontoise, France.
- BioCIS, UMR 8076, Université Paris-Saclay, CNRS, Orsay, France
| |
Collapse
|
2
|
Hadipour H, Li YY, Sun Y, Deng C, Lac L, Davis R, Cardona ST, Hu P. GraphBAN: An inductive graph-based approach for enhanced prediction of compound-protein interactions. Nat Commun 2025; 16:2541. [PMID: 40102386 PMCID: PMC11920434 DOI: 10.1038/s41467-025-57536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 02/26/2025] [Indexed: 03/20/2025] Open
Abstract
Understanding compound-protein interactions is crucial for early drug discovery, offering insights into molecular mechanisms and potential therapeutic effects of compounds. Here, we introduce GraphBAN, a graph-based framework that inductively predicts these interactions using compound and protein feature information. GraphBAN effectively handles inductive link predictions for unseen nodes, providing a robust solution for predicting interactions between entirely unseen compounds and proteins. This capability enables GraphBAN to transcend the constraints of traditional methods that are typically limited to known contexts. GraphBAN employs a knowledge distillation architecture through a teacher-student learning model. The teacher block leverages network structure information, while the student block focuses on node attributes, enhancing learning and prediction accuracy. Additionally, GraphBAN incorporates a domain adaptation module, increasing its effectiveness across different dataset domains. Empirical tests on five benchmark datasets demonstrate that GraphBAN outperforms ten baseline models, while a case study analysis with the Pin1 protein further supports the model's effectiveness in real world scenarios, making it as a promising tool for early drug discovery.
Collapse
Affiliation(s)
- Hamid Hadipour
- Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada
| | - Yan Yi Li
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Yan Sun
- Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Computer Science, Western University, London, ON, Canada
- Department of Biochemistry, Western University, London, ON, Canada
| | - Chutong Deng
- Department of Computer Science, Western University, London, ON, Canada
| | - Leann Lac
- Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada
| | - Rebecca Davis
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Canada.
| | - Pingzhao Hu
- Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada.
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
- Department of Computer Science, Western University, London, ON, Canada.
- Department of Biochemistry, Western University, London, ON, Canada.
- Department of Oncology, Western University, London, ON, Canada.
| |
Collapse
|
3
|
Lei S, Luo M, Wang Y. Pin1 as a central node in oncogenic signaling: Mechanistic insights and clinical prospects (Review). Mol Med Rep 2025; 31:80. [PMID: 39886975 PMCID: PMC11795255 DOI: 10.3892/mmr.2025.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
Peptidyl‑prolyl cis‑trans isomerase NIMA-interacting 1 (Pin1) is a specific phosphorylated serine/threonine-proline cis-trans isomerase, which is involved in the regulation of a variety of physiological and pathological processes, including cell cycle progression, proliferation and apoptosis. Pin1 plays a key role in tumorigenesis and tumor development and it promotes the proliferation and metastasis of cancer cells by regulating the cell cycle, signaling pathways and the function of tumor suppressors. Upregulated expression of Pin1 is closely associated with a poor prognosis in several types of cancers. Thus, Pin1 is may have potential as a novel potential biomarker for tumor diagnosis and prognosis, as well as a promising anticancer target. The aim of the present review was to discuss the mechanism of Pin1 in tumors and recent research progress in this field.
Collapse
Affiliation(s)
- Shuning Lei
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Min Luo
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Yuxue Wang
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
4
|
Zhao Y, Yuan C, Shi Y, Liu X, Luo L, Zhang L, Pešić M, Yao H, Li L. Drug screening approaches for small-molecule compounds in cancer-targeted therapy. J Drug Target 2025; 33:368-383. [PMID: 39575843 DOI: 10.1080/1061186x.2024.2427185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 02/08/2025]
Abstract
Small-molecule compounds exhibit distinct pharmacological properties and clinical effectiveness. Over the past decade, advances in covalent drug discovery have led to successful small-molecule drugs, such as EGFR, BTK, and KRAS (G12C) inhibitors, for cancer therapy. Researchers are paying more attention to refining drug screening methods aiming for high throughput, fast speed, high specificity, and accuracy. Therefore, the discovery and development of small-molecule drugs has been facilitated by significantly reducing screening time and financial resources, and increasing promising lead compounds compared with traditional methods. This review aims to introduce classical and emerging methods for screening small-molecule compounds in targeted cancer therapy. It includes classification, principles, advantages, disadvantages, and successful applications, serving as valuable references for subsequent researchers.
Collapse
Affiliation(s)
- Yelin Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenyu Yuan
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuchen Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohong Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Xicheng District, Beijing, China
| | - Liaoxin Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Li Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research, 'Siniša Stanković'- National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Hongjuan Yao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liang Li
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Pu W, Shen X, Fan X, Zheng Y, Liu X, Li J, Zhou JK, He J, Wei R, Gong Y, Zheng Q, Luo Y, Guo Y, Ai M, Ming Y, Ye Z, Zhao Y, Wang C, Peng Y. Structure-Guided Optimization and Preclinical Evaluation of 6- O-Benzylguanine-Based Pin1 Inhibitor for Hepatocellular Carcinoma Treatment. J Med Chem 2025; 68:2869-2889. [PMID: 39868498 DOI: 10.1021/acs.jmedchem.4c02144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths globally, and the need for effective systemic therapies for HCC is urgent. Our previous work reveals that Pin1 is a potential anti-HCC target, which regulates miRNA biogenesis and identifies API-1 as a novel Pin1 inhibitor to suppresses HCC. However, a great demand in HCC therapy as well as the limited chemical stability and pharmacokinetic feature of API-1 motivated us to find improved Pin1 inhibitors. Herein, we designed and synthesized diverse 6-O-benzylguanine derivatives and discovered API-32 as a novel Pin1 inhibitor with better stability and pharmacokinetic property over API-1. API-32 directly interacted with the Pin1 PPIase domain to inhibit Pin1 activity. API-32 significantly suppressed the cell proliferation and migration of HCC cells by blocking Pin1's downstream signal. Moreover, API-32 exhibited an enhanced inhibitory function against the HCC tumor in mice models without obvious toxicity, making it a promising drug candidate for HCC treatment.
Collapse
Affiliation(s)
- Wenchen Pu
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xianyan Shen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xin Fan
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Yuanyuan Zheng
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xuesha Liu
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Jiao Li
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Jian-Kang Zhou
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
| | - Juan He
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Rong Wei
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Qingquan Zheng
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yao Luo
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yingli Guo
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Min Ai
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yue Ming
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Zixia Ye
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Chun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yong Peng
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| |
Collapse
|
6
|
Tian M, Wang X, Tang G, Cui G, Zhou J, Jin J, Xu B. Discovery of Novel Pyrimidine Derivatives as Human Pin1 Covalent Inhibitors. ACS Med Chem Lett 2025; 16:101-108. [PMID: 39811131 PMCID: PMC11726365 DOI: 10.1021/acsmedchemlett.4c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Pin1 (peptidyl-prolyl cis-trans isomerase NIMA-interacting 1) is a unique peptidyl-prolyl isomerase (PPIase), and inactivation of Pin1 with a covalent inhibitor is a potential strategy for developing anticancer agents. Herein, a series of sulfolane amino-substituted 2-chloro-5-nitropyrimidine derivatives were disclosed as structurally distinct covalent inhibitors toward Pin1, which were validated for their covalent binding to Cys113 of Pin1 by X-ray cocrystal structures of compounds 4a (IC50 = 11.55 μM) and 6a (IC50 = 3.15 μM). This work provided a new approach for covalent inhibition of Pin1 by taking advantage of the 2-chloro-5-nitropyrimidine as the electrophilic warhead, which might benefit the discovery of potent and drug-like Pin1 inhibitors.
Collapse
Affiliation(s)
- Meizhen Tian
- Beijing
Key Laboratory of Active Substances Discovery and Druggability Evaluation,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Wang
- Beijing
Key Laboratory of Active Substances Discovery and Druggability Evaluation,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guodong Tang
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guonan Cui
- Beijing
Key Laboratory of Active Substances Discovery and Druggability Evaluation,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Zhou
- Beijing
Key Laboratory of Active Substances Discovery and Druggability Evaluation,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Jin
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bailing Xu
- Beijing
Key Laboratory of Active Substances Discovery and Druggability Evaluation,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
7
|
Alboreggia G, Udompholkul P, Rodriguez I, Blaha G, Pellecchia M. Targeted degradation of Pin1 by protein-destabilizing compounds. Proc Natl Acad Sci U S A 2024; 121:e2403330121. [PMID: 39531501 PMCID: PMC11588135 DOI: 10.1073/pnas.2403330121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/04/2024] [Indexed: 11/16/2024] Open
Abstract
The concept of targeted protein degradation is at the forefront of modern drug discovery, which aims to eliminate disease-causing proteins using specific molecules. In this paper, we explored the idea to design protein degraders based on the section of ligands that cause protein destabilization, hence that facilitate the cellular breakdown of the target. Our studies present covalent agents targeting Pin1, a cis-trans prolyl isomerase that plays a crucial role in tumorigenesis. Our design strategy entailed iterative optimizations of agents for potency and Pin1 destabilization in vitro. Biophysical and cellular studies suggest that the agents may act like molecular crowbars, displacing protein-stabilizing interactions that open the structure for recognition by the proteasome degradation machinery. This approach resulted in a series of potent and effective Pin1 degraders with potential applications in target validation and in therapeutic development. We propose that our design strategy can identify molecular degraders without engineering bifunctional agents that artificially create interactions between a disease-causing protein and a ubiquitin ligase.
Collapse
Affiliation(s)
- Giulia Alboreggia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA92521
| | - Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA92521
| | - Isaac Rodriguez
- Department of Biochemistry, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA92521
| | - Gregor Blaha
- Department of Biochemistry, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA92521
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA92521
| |
Collapse
|
8
|
Chen X, Mercedes-Camacho AY, Wilson KA, Bouchard JJ, Peng JW, Etzkorn FA. Pin1 WW Domain Ligand Library Synthesized with an Easy Solid-Phase Phosphorylating Reagent. Biochemistry 2024; 63:2803-2815. [PMID: 39377814 PMCID: PMC11542186 DOI: 10.1021/acs.biochem.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
Cell cycle regulatory enzyme Pin1 both catalyzes pSer/Thr-cis/trans-Pro isomerization and binds the same motif separately in its WW domain. To better understand the function of Pin1, a way to separate these activities is needed. An unnatural peptide library, R1CO-pSer-Pro-NHR2, was designed to identify ligands specific for the Pin1 WW domain. A new solid-phase phosphorylating reagent (SPPR) containing a phosphoramidite functional group was synthesized in one step from Wang resin. The SPPR was used in the preparation of the library by parallel synthesis. The final 315-member library was screened with our WW-domain-specific, enzyme-linked enzyme-binding assay (ELEBA). Four of the best hits were resynthesized, and the competitive dissociation constants were measured by ELEBA. NMR chemical-shift perturbations (CSP) of ligands with 15N-labeled Pin1 were used to measure Kd for the best four ligands directly, demonstrating that they were specific Pin1 WW domain ligands. Models of the ligands bound to the Pin1 WW domain were used to visualize the mode of binding in the WW domain.
Collapse
Affiliation(s)
- Xingguo
R. Chen
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | | - Kimberly A. Wilson
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Jill J. Bouchard
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Jeffrey W. Peng
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Felicia A. Etzkorn
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
9
|
Zuniga NR, Frost DC, Kuhn K, Shin M, Whitehouse RL, Wei TY, He Y, Dawson SL, Pike I, Bomgarden RD, Gygi SP, Paulo JA. Achieving a 35-Plex Tandem Mass Tag Reagent Set through Deuterium Incorporation. J Proteome Res 2024; 23:5153-5165. [PMID: 39380184 DOI: 10.1021/acs.jproteome.4c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Mass spectrometry-based sample multiplexing with isobaric tags permits the development of high-throughput and precise quantitative biological assays with proteome-wide coverage and minimal missing values. Here, we nearly doubled the multiplexing capability of the TMTpro reagent set to a 35-plex through the incorporation of one deuterium isotope into the reporter group. Substituting deuterium frequently results in suboptimal peak coelution, which can compromise the accuracy of reporter ion-based quantification. To counteract the deuterium effect on quantitation, we implemented a strategy that necessitated the segregation of nondeuterium and deuterium-containing channels into distinct subplexes during normalization procedures, with reassembly through a common bridge channel. This multiplexing strategy of "design independent sub-plexes but acquire together" (DISAT) was used to compare protein expression differences between human cell lines and in a cysteine-profiling (i.e., chemoproteomics) experiment to identify compounds binding to cysteine-113 of Pin1.
Collapse
Affiliation(s)
- Nathan R Zuniga
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Dustin C Frost
- Thermo Fisher Scientific, Rockford, Illinois 61101, United States
| | | | - Myungsun Shin
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Rebecca L Whitehouse
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ting-Yu Wei
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yuchen He
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Shane L Dawson
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ian Pike
- Proteome Sciences, London KT15 2HJ, U.K
| | - Ryan D Bomgarden
- Thermo Fisher Scientific, Rockford, Illinois 61101, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Wang N, Chai T, Wang XR, Zheng YD, Sang CY, Yang JL. Pin1: Advances in pancreatic cancer therapeutic potential and inhibitors research. Bioorg Chem 2024; 153:107869. [PMID: 39418844 DOI: 10.1016/j.bioorg.2024.107869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/18/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
The peptidyl-prolyl cis/trans isomerase NIMA-interaction 1 (Pin1) catalyzes the transition of the proline ring from the cis to trans conformation, resulting in conformational and functional changes in proteins that are regulated by proline-guided serine/threonine phosphorylation. In recent years, Pin1 has emerged as a novel molecular target for the diagnosis and treatment of various malignant tumors. Notably, it has been found that Pin1 is highly expressed in pancreatic cancer. This article focuses on the mechanisms by which Pin1 orchestrates multiple oncogenic functions in the development of pancreatic cancer. By exploring the intricate interactions between Pin1 and the pancreatic tumor microenvironment, we provide an overview of Pin1's role in modifying glycolytic metabolism, redox balance, and the hypoxic microenvironment of pancreatic cancer. Furthermore, we summarize the potential anticancer effects of Pin1 inhibitors, aiming to elucidate Pin1's promise as a potential anticancer agent, particularly in the context of pancreatic cancer.
Collapse
Affiliation(s)
- Nan Wang
- College of Pharmacy, Gansu University of Chinese Medicine; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Tian Chai
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Xing-Rong Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Yi-Dan Zheng
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Chun-Yan Sang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Jun-Li Yang
- College of Pharmacy, Gansu University of Chinese Medicine; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China.
| |
Collapse
|
11
|
Wang J, Liang S, Zhu D, Ma X, Peng Q, Wang G, Wang Y, Chen T, Wu M, Hu TY, Zhang Y. Valence-Change MnO 2-Coated Arsenene Nanosheets as a Pin1 Inhibitor for Hepatocellular Carcinoma Treatment. J Am Chem Soc 2024; 146:21568-21582. [PMID: 39051165 PMCID: PMC11311233 DOI: 10.1021/jacs.4c05162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The heterogeneity of hepatocellular carcinoma (HCC) can prevent effective treatment, emphasizing the need for more effective therapies. Herein, we employed arsenene nanosheets coated with manganese dioxide and polyethylene glycol (AMPNs) for the degradation of Pin1, which is universally overexpressed in HCC. By employing an "AND gate", AMPNs exhibited responsiveness toward excessive glutathione and hydrogen peroxide within the tumor microenvironment, thereby selectively releasing AsxOy to mitigate potential side effects of As2O3. Notably, AMPNs induced the suppressing Pin1 expression while simultaneously upregulation PD-L1, thereby eliciting a robust antitumor immune response and enhancing the efficacy of anti-PD-1/anti-PD-L1 therapy. The combination of AMPNs and anti-PD-1 synergistically enhanced tumor suppression and effectively induced long-lasting immune memory. This approach did not reveal As2O3-associated toxicity, indicating that arsenene-based nanotherapeutic could be employed to amplify the response rate of anti-PD-1/anti-PD-L1 therapy to improve the clinical outcomes of HCC patients and potentially other solid tumors (e.g., breast cancer) that are refractory to anti-PD-1/anti-PD-L1 therapy.
Collapse
Affiliation(s)
- Jingguo Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Siping Liang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Dongdong Zhu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Xiaocao Ma
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Qin Peng
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Guanzhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong 510006, China
| | - Yuting Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Tiantian Chen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Tony Y Hu
- Center of Cellular and Molecular Diagnosis, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Yuanqing Zhang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong 510006, China
| |
Collapse
|
12
|
Algranati D, Oren R, Dassa B, Fellus-Alyagor L, Plotnikov A, Barr H, Harmelin A, London N, Ron G, Furth N, Shema E. Dual targeting of histone deacetylases and MYC as potential treatment strategy for H3-K27M pediatric gliomas. eLife 2024; 13:RP96257. [PMID: 39093942 PMCID: PMC11296706 DOI: 10.7554/elife.96257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Diffuse midline gliomas (DMGs) are aggressive and fatal pediatric tumors of the central nervous system that are highly resistant to treatments. Lysine to methionine substitution of residue 27 on histone H3 (H3-K27M) is a driver mutation in DMGs, reshaping the epigenetic landscape of these cells to promote tumorigenesis. H3-K27M gliomas are characterized by deregulation of histone acetylation and methylation pathways, as well as the oncogenic MYC pathway. In search of effective treatment, we examined the therapeutic potential of dual targeting of histone deacetylases (HDACs) and MYC in these tumors. Treatment of H3-K27M patient-derived cells with Sulfopin, an inhibitor shown to block MYC-driven tumors in vivo, in combination with the HDAC inhibitor Vorinostat, resulted in substantial decrease in cell viability. Moreover, transcriptome and epigenome profiling revealed synergistic effect of this drug combination in downregulation of prominent oncogenic pathways such as mTOR. Finally, in vivo studies of patient-derived orthotopic xenograft models showed significant tumor growth reduction in mice treated with the drug combination. These results highlight the combined treatment with PIN1 and HDAC inhibitors as a promising therapeutic approach for these aggressive tumors.
Collapse
Affiliation(s)
- Danielle Algranati
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of ScienceRehovotIsrael
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Alexander Plotnikov
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of ScienceRehovotIsrael
| | - Haim Barr
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of ScienceRehovotIsrael
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Nir London
- Department of Chemical and Structural Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Guy Ron
- Racah Institute of Physics, Hebrew UniversityJerusalemIsrael
| | - Noa Furth
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
13
|
Bailly C. Covalent binding of withanolides to cysteines of protein targets. Biochem Pharmacol 2024; 226:116405. [PMID: 38969301 DOI: 10.1016/j.bcp.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Withanolides represent an important category of natural products with a steroidal lactone core. Many of them contain an α,β-unsaturated carbonyl moiety with a high reactivity toward sulfhydryl groups, including protein cysteine thiols. Different withanolides endowed with marked antitumor and anti-inflammatory have been shown to form stable covalent complexes with exposed cysteines present in the active site of oncogenic kinases (BTK, IKKβ, Zap70), metabolism enzymes (Prdx-1/6, Pin1, PHGDH), transcription factors (Nrf2, NFκB, C/EBPβ) and other structural and signaling molecules (GFAP, β-tubulin, p97, Hsp90, vimentin, Mpro, IPO5, NEMO, …). The present review analyzed the covalent complexes formed through Michael addition alkylation reactions between six major withanolides (withaferin A, physalin A, withangulatin A, 4β-hydroxywithanolide E, withanone and tubocapsanolide A) and key cysteine residues of about 20 proteins and the resulting biological effects. The covalent conjugation of the α,β-unsaturated carbonyl system of withanolides with reactive protein thiols can occur with a large set of soluble and membrane proteins. It points to a general mechanism, well described with the leading natural product withaferin A, but likely valid for most withanolides harboring a reactive (electrophilic) enone moiety susceptible to react covalently with cysteinyl residues of proteins. The multiplicity of reactive proteins should be taken into account when studying the mechanism of action of new withanolides. Proteomic and network analyses shall be implemented to capture and compare the cysteine covalent-binding map for the major withanolides, so as to identify the protein targets at the origin of their activity and/or unwanted effects. Screening of the cysteinome will help understanding the mechanism of action and designing cysteine-reactive electrophilic drug candidates.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, University of Lille, F-59000 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France; OncoWitan, Scientific Consulting Office, F-59290 Lille, France.
| |
Collapse
|
14
|
Xing Y, Zhang H, Wang Y, Zong Z, Bogyo M, Chen S. DNA encoded peptide library for SARS-CoV-2 3CL protease covalent inhibitor discovery and profiling. RSC Chem Biol 2024; 5:691-702. [PMID: 38966676 PMCID: PMC11221529 DOI: 10.1039/d4cb00097h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Covalent protease inhibitors serve as valuable tools for modulating protease activity and are essential for investigating the functions of protease targets. These inhibitors typically consist of a recognition motif and a covalently reactive electrophile. Substrate peptides, featuring residues capable of fitting into the substrate pockets of proteases, undergo chemical modification at the carbonyl carbon of the P1 residue with an electrophile and have been widely applied in the development of covalent inhibitors. In this study, we utilized a DNA-encoded peptide library to replicate peptide binder sequences and introduced a vinyl sulfone warhead at the C-termini to construct the DNA-encoded peptide covalent inhibitor library (DEPCIL) for targeting cysteine proteases. Screening results toward 3CL protease demonstrated the efficacy of this library, not only in identifying protease inhibitors, but also in discovering amino acids that can conform to aligned protease pockets. The identified peptide sequences provide valuable insight into the amino acid preferences within substrate binding pockets, and our novel technology is indicative of the potential for similar strategies to discover covalent inhibitors and profile binding preferences of other proteases.
Collapse
Affiliation(s)
- Yuyu Xing
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Huiya Zhang
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Yanhui Wang
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Zhaoyun Zong
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine Stanford CA USA
| | - Shiyu Chen
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| |
Collapse
|
15
|
Lu KP, Zhou XZ. Pin1-catalyzed conformational regulation after phosphorylation: A distinct checkpoint in cell signaling and drug discovery. Sci Signal 2024; 17:eadi8743. [PMID: 38889227 PMCID: PMC11409840 DOI: 10.1126/scisignal.adi8743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Protein phosphorylation is one of the most common mechanisms regulating cellular signaling pathways, and many kinases and phosphatases are proven drug targets. Upon phosphorylation, protein functions can be further regulated by the distinct isomerase Pin1 through cis-trans isomerization. Numerous protein targets and many important roles have now been elucidated for Pin1. However, no tools are available to detect or target cis and trans conformation events in cells. The development of Pin1 inhibitors and stereo- and phospho-specific antibodies has revealed that cis and trans conformations have distinct and often opposing cellular functions. Aberrant conformational changes due to the dysregulation of Pin1 can drive pathogenesis but can be effectively targeted in age-related diseases, including cancers and neurodegenerative disorders. Here, we review advances in understanding the roles of Pin1 signaling in health and disease and highlight conformational regulation as a distinct signal transduction checkpoint in disease development and treatment.
Collapse
Affiliation(s)
- Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Robarts Research Institute, Schulich School of Medicine & Dentistry
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry
- Lawson Health Research Institute, Western University, London, ON N6G 2V4, Canada
| |
Collapse
|
16
|
Zhang P, Ye X, Wang JCK, Baddock HT, Jensvold Z, Foe IT, Loas A, Eaton DL, Hao Q, Nile AH, Pentelute BL. Reversibly Reactive Affinity Selection-Mass Spectrometry Enables Identification of Covalent Peptide Binders. J Am Chem Soc 2024; 146:15627-15639. [PMID: 38771982 DOI: 10.1021/jacs.4c05571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Covalent peptide binders have found applications as activity-based probes and as irreversible therapeutic inhibitors. Currently, there is no rapid, label-free, and tunable affinity selection platform to enrich covalent reactive peptide binders from synthetic libraries. We address this challenge by developing a reversibly reactive affinity selection platform termed ReAct-ASMS enabled by tandem high-resolution mass spectrometry (MS/MS) to identify covalent peptide binders to native protein targets. It uses mixed disulfide-containing peptides to build reversible peptide-protein conjugates that can enrich for covalent variants, which can be sequenced by MS/MS after reduction. Using this platform, we identified covalent peptide binders against two oncoproteins, human papillomavirus 16 early protein 6 (HPV16 E6) and peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 protein (Pin1). The resulting peptide binders efficiently and selectively cross-link Cys58 of E6 at 37 °C and Cys113 of Pin1 at room temperature, respectively. ReAct-ASMS enables the identification of highly selective covalent peptide binders for diverse molecular targets, introducing an applicable platform to assist preclinical therapeutic development pipelines.
Collapse
Affiliation(s)
- Peiyuan Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xiyun Ye
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - John C K Wang
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Hannah T Baddock
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Zena Jensvold
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Ian T Foe
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dan L Eaton
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Qi Hao
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Aaron H Nile
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
17
|
Ferreon JC, Ta HM, Yun H, Choi KJ, Quan MD, Tsoi PS, Kim C, Lee CW, Ferreon ACM. Stereospecific NANOG PEST Stabilization by Pin1. Biochemistry 2024; 63:1067-1074. [PMID: 38619104 PMCID: PMC12022813 DOI: 10.1021/acs.biochem.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
NANOG protein levels correlate with stem cell pluripotency. NANOG concentrations fluctuate constantly with low NANOG levels leading to spontaneous cell differentiation. Previous literature implicated Pin1, a phosphorylation-dependent prolyl isomerase, as a key player in NANOG stabilization. Here, using NMR spectroscopy, we investigate the molecular interactions of Pin1 with the NANOG unstructured N-terminal domain that contains a PEST sequence with two phosphorylation sites. Phosphorylation of NANOG PEST peptides increases affinity to Pin1. By systematically increasing the amount of cis PEST conformers, we show that the peptides bind tighter to the prolyl isomerase domain (PPIase) of Pin1. Phosphorylation and cis Pro enhancement at both PEST sites lead to a 5-10-fold increase in NANOG binding to the Pin1 WW domain and PPIase domain, respectively. The cis-populated NANOG PEST peptides can be potential inhibitors for disrupting Pin1-dependent NANOG stabilization in cancer stem cells.
Collapse
Affiliation(s)
- Josephine C. Ferreon
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Hai Minh Ta
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyoung-Jae Choi
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - My Diem Quan
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Phoebe S. Tsoi
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Choel Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Allan Chris M. Ferreon
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
18
|
Chen XR, Dixit K, Yang Y, McDermott MI, Imam HT, Bankaitis VA, Igumenova TI. A novel bivalent interaction mode underlies a non-catalytic mechanism for Pin1-mediated protein kinase C regulation. eLife 2024; 13:e92884. [PMID: 38687676 PMCID: PMC11060717 DOI: 10.7554/elife.92884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.
Collapse
Affiliation(s)
- Xiao-Ru Chen
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Karuna Dixit
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Yuan Yang
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Mark I McDermott
- Department of Cell Biology & Genetics, Texas A&M UniversityCollege StationUnited States
| | - Hasan Tanvir Imam
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Vytas A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M UniversityCollege StationUnited States
| | - Tatyana I Igumenova
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
- Department of Cell Biology & Genetics, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
19
|
Stewart R, Sharma S, Wu T, Okuda S, Xie G, Zhou XZ, Shilton B, Lu KP. The role of the master cancer regulator Pin1 in the development and treatment of cancer. Front Cell Dev Biol 2024; 12:1343938. [PMID: 38745861 PMCID: PMC11091292 DOI: 10.3389/fcell.2024.1343938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024] Open
Abstract
This review examines the complex role of Pin1 in the development and treatment of cancer. Pin1 is the only peptidyl-prolyl isomerase (PPIase) that can recognize and isomerize phosphorylated Ser/Thr-Pro peptide bonds. Pin1 catalyzes a structural change in phosphorylated Ser/Thr-Pro motifs that can modulate protein function and thereby impact cell cycle regulation and tumorigenesis. The molecular mechanisms by which Pin1 contributes to oncogenesis are reviewed, including Pin1 overexpression and its correlation with poor cancer prognosis, and the contribution of Pin1 to aggressive tumor phenotypes involved in therapeutic resistance is discussed, with an emphasis on cancer stem cells, the epithelial-to-mesenchymal transition (EMT), and immunosuppression. The therapeutic potential of Pin1 inhibition in cancer is discussed, along with the promise and the difficulties in identifying potent, drug-like, small-molecule Pin1 inhibitors. The available evidence supports the efficacy of targeting Pin1 as a novel cancer therapeutic by analyzing the role of Pin1 in a complex network of cancer-driving pathways and illustrating the potential of synergistic drug combinations with Pin1 inhibitors for treating aggressive and drug-resistant tumors.
Collapse
Affiliation(s)
- Robert Stewart
- Department of Biochemistry, Western University, London, ON, Canada
| | - Shaunik Sharma
- Department of Biochemistry, Western University, London, ON, Canada
| | - Timothy Wu
- Department of Biochemistry, Western University, London, ON, Canada
| | - Sho Okuda
- Department of Biochemistry, Western University, London, ON, Canada
| | - George Xie
- Department of Biochemistry, Western University, London, ON, Canada
| | - Xiao Zhen Zhou
- Department of Biochemistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Brian Shilton
- Department of Biochemistry, Western University, London, ON, Canada
| | - Kun Ping Lu
- Department of Biochemistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
| |
Collapse
|
20
|
Burton NR, Backus KM. Functionalizing tandem mass tags for streamlining click-based quantitative chemoproteomics. Commun Chem 2024; 7:80. [PMID: 38600184 PMCID: PMC11006884 DOI: 10.1038/s42004-024-01162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Mapping the ligandability or potential druggability of all proteins in the human proteome is a central goal of mass spectrometry-based covalent chemoproteomics. Achieving this ambitious objective requires high throughput and high coverage sample preparation and liquid chromatography-tandem mass spectrometry analysis for hundreds to thousands of reactive compounds and chemical probes. Conducting chemoproteomic screens at this scale benefits from technical innovations that achieve increased sample throughput. Here we realize this vision by establishing the silane-based cleavable linkers for isotopically-labeled proteomics-tandem mass tag (sCIP-TMT) proteomic platform, which is distinguished by early sample pooling that increases sample preparation throughput. sCIP-TMT pairs a custom click-compatible sCIP capture reagent that is readily functionalized in high yield with commercially available TMT reagents. Synthesis and benchmarking of a 10-plex set of sCIP-TMT reveal a substantial decrease in sample preparation time together with high coverage and high accuracy quantification. By screening a focused set of four cysteine-reactive electrophiles, we demonstrate the utility of sCIP-TMT for chemoproteomic target hunting, identifying 789 total liganded cysteines. Distinguished by its compatibility with established enrichment and quantification protocols, we expect sCIP-TMT will readily translate to a wide range of covalent chemoproteomic applications.
Collapse
Affiliation(s)
- Nikolas R Burton
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Keriann M Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles CA, USA.
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Bai Y, Yuan Z, Yuan S, He Z. Recent advances of Pin1 inhibitors as potential anticancer agents. Bioorg Chem 2024; 144:107171. [PMID: 38325131 DOI: 10.1016/j.bioorg.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Pin1 (proline isomerase peptidyl-prolyl isomerase NIMA-interacting-1), as a member of PPIase family, catalyzes cis-trans isomerization of pThr/Ser-Pro amide bonds of its substrate proteins, further regulating cell proliferation, division, apoptosis, and transformation. Pin1 is overexpressed in various cancers and is positively correlated with tumor initiation and progression. Pin1 inhibition can effectively reduce tumor growth and cancer stem cell expansion, block metastatic spread, and restore chemosensitivity, suggesting that targeting Pin1 may be an effective strategy for cancer treatment. Considering the promising therapeutic effects of Pin1 inhibitors on cancers, we herein are intended to comprehensively summarize the reported Pin1 inhibitors, mainly highlighting their structures, biological functions and binding modes, in hope of providing a reference for the future drug discovery.
Collapse
Affiliation(s)
- Yiru Bai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China.
| | - Zhangxu He
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China.
| |
Collapse
|
22
|
Chen XR, Dixit K, Yang Y, McDermott MI, Imam HT, Bankaitis VA, Igumenova TI. A novel bivalent interaction mode underlies a non-catalytic mechanism for Pin1-mediated Protein Kinase C regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558341. [PMID: 37781616 PMCID: PMC10541119 DOI: 10.1101/2023.09.18.558341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a compact conformation in which it engages two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, the latter being a non-canonical Pin1-interacting element. The structural information, combined with the results of extensive binding studies and in vivo experiments suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.
Collapse
|
23
|
Gurung D, Danielson JA, Tasnim A, Zhang JT, Zou Y, Liu JY. Proline Isomerization: From the Chemistry and Biology to Therapeutic Opportunities. BIOLOGY 2023; 12:1008. [PMID: 37508437 PMCID: PMC10376262 DOI: 10.3390/biology12071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Proline isomerization, the process of interconversion between the cis- and trans-forms of proline, is an important and unique post-translational modification that can affect protein folding and conformations, and ultimately regulate protein functions and biological pathways. Although impactful, the importance and prevalence of proline isomerization as a regulation mechanism in biological systems have not been fully understood or recognized. Aiming to fill gaps and bring new awareness, we attempt to provide a wholistic review on proline isomerization that firstly covers what proline isomerization is and the basic chemistry behind it. In this section, we vividly show that the cause of the unique ability of proline to adopt both cis- and trans-conformations in significant abundance is rooted from the steric hindrance of these two forms being similar, which is different from that in linear residues. We then discuss how proline isomerization was discovered historically followed by an introduction to all three types of proline isomerases and how proline isomerization plays a role in various cellular responses, such as cell cycle regulation, DNA damage repair, T-cell activation, and ion channel gating. We then explore various human diseases that have been linked to the dysregulation of proline isomerization. Finally, we wrap up with the current stage of various inhibitors developed to target proline isomerases as a strategy for therapeutic development.
Collapse
Affiliation(s)
- Deepti Gurung
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jacob A Danielson
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Afsara Tasnim
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| |
Collapse
|
24
|
Byun DP, Ritchie J, Jung Y, Holewinski R, Kim HR, Tagirasa R, Ivanic J, Weekley CM, Parker MW, Andresson T, Yoo E. Covalent Inhibition by a Natural Product-Inspired Latent Electrophile. J Am Chem Soc 2023; 145:11097-11109. [PMID: 37183434 PMCID: PMC10719761 DOI: 10.1021/jacs.3c00598] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Strategies to target specific protein cysteines are critical to covalent probe and drug discovery. 3-Bromo-4,5-dihydroisoxazole (BDHI) is a natural product-inspired, synthetically accessible electrophilic moiety that has previously been shown to react with nucleophilic cysteines in the active site of purified enzymes. Here, we define the global cysteine reactivity and selectivity of a set of BDHI-functionalized chemical fragments using competitive chemoproteomic profiling methods. Our study demonstrates that BDHIs capably engage reactive cysteine residues in the human proteome and the selectivity landscape of cysteines liganded by BDHI is distinct from that of haloacetamide electrophiles. Given its tempered reactivity, BDHIs showed restricted, selective engagement with proteins driven by interactions between a tunable binding element and the complementary protein sites. We validate that BDHI forms covalent conjugates with glutathione S-transferase Pi (GSTP1) and peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1), emerging anticancer targets. BDHI electrophile was further exploited in Bruton's tyrosine kinase (BTK) inhibitor design using a single-step late-stage installation of the warhead onto acrylamide-containing compounds. Together, this study expands the spectrum of optimizable chemical tools for covalent ligand discovery and highlights the utility of 3-bromo-4,5-dihydroisoxazole as a cysteine-reactive electrophile.
Collapse
Affiliation(s)
- David P Byun
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Jennifer Ritchie
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Yejin Jung
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Ronald Holewinski
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biochemical Research, Frederick, Maryland 21702, United States
| | - Hong-Rae Kim
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Ravichandra Tagirasa
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Joseph Ivanic
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21702, United States
| | - Claire M Weekley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biochemical Research, Frederick, Maryland 21702, United States
| | - Euna Yoo
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
25
|
Saeed H, Leibowitz BJ, Zhang L, Yu J. Targeting Myc-driven stress addiction in colorectal cancer. Drug Resist Updat 2023; 69:100963. [PMID: 37119690 DOI: 10.1016/j.drup.2023.100963] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
MYC is a proto-oncogene that encodes a powerful regulator of transcription and cellular programs essential for normal development, as well as the growth and survival of various types of cancer cells. MYC rearrangement and amplification is a common cause of hematologic malignancies. In epithelial cancers such as colorectal cancer, genetic alterations in MYC are rare. Activation of Wnt, ERK/MAPK, and PI3K/mTOR pathways dramatically increases Myc levels through enhanced transcription, translation, and protein stability. Elevated Myc promotes stress adaptation, metabolic reprogramming, and immune evasion to drive cancer development and therapeutic resistance through broad changes in transcriptional and translational landscapes. Despite intense interest and effort, Myc remains a difficult drug target. Deregulation of Myc and its targets has profound effects that vary depending on the type of cancer and the context. Here, we summarize recent advances in the mechanistic understanding of Myc-driven oncogenesis centered around mRNA translation and proteostress. Promising strategies and agents under development to target Myc are also discussed with a focus on colorectal cancer.
Collapse
Affiliation(s)
- Haris Saeed
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Brian J Leibowitz
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Chemical Biology and Pharmacology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Radiation Oncology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA.
| |
Collapse
|
26
|
Reddi RN, Rogel A, Gabizon R, Rawale DG, Harish B, Marom S, Tivon B, Arbel YS, Gurwicz N, Oren R, David K, Liu J, Duberstein S, Itkin M, Malitsky S, Barr H, Katz BZ, Herishanu Y, Shachar I, Shulman Z, London N. Sulfamate Acetamides as Self-Immolative Electrophiles for Covalent Ligand-Directed Release Chemistry. J Am Chem Soc 2023; 145:3346-3360. [PMID: 36738297 PMCID: PMC9936582 DOI: 10.1021/jacs.2c08853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 02/05/2023]
Abstract
Electrophiles for covalent inhibitors that are suitable for in vivo administration are rare. While acrylamides are prevalent in FDA-approved covalent drugs, chloroacetamides are considered too reactive for such purposes. We report sulfamate-based electrophiles that maintain chloroacetamide-like geometry with tunable reactivity. In the context of the BTK inhibitor ibrutinib, sulfamate analogues showed low reactivity with comparable potency in protein labeling, in vitro, and cellular kinase activity assays and were effective in a mouse model of CLL. In a second example, we converted a chloroacetamide Pin1 inhibitor to a potent and selective sulfamate acetamide with improved buffer stability. Finally, we show that sulfamate acetamides can be used for covalent ligand-directed release (CoLDR) chemistry, both for the generation of "turn-on" probes as well as for traceless ligand-directed site-specific labeling of proteins. Taken together, this chemistry represents a promising addition to the list of electrophiles suitable for in vivo covalent targeting.
Collapse
Affiliation(s)
- Rambabu N. Reddi
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adi Rogel
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ronen Gabizon
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dattatraya Gautam Rawale
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Battu Harish
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shir Marom
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Barr Tivon
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yamit Shorer Arbel
- Sackler
Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Neta Gurwicz
- Dept.
of Systems Immunology, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Roni Oren
- Department
of Veterinary Resources, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Keren David
- Dept.
of Systems Immunology, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Jingjing Liu
- Dept.
of Systems Immunology, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Shirly Duberstein
- Wohl
Institute for Drug Discovery of the Nancy and Stephen Grand Israel
National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maxim Itkin
- Life Sciences
Core Facilities, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Sergey Malitsky
- Life Sciences
Core Facilities, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Haim Barr
- Wohl
Institute for Drug Discovery of the Nancy and Stephen Grand Israel
National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ben-Zion Katz
- Sackler
Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
- Department
of Hematology, Tel Aviv Sourasky Medical
Center, Tel Aviv 6423906, Israel
| | - Yair Herishanu
- Sackler
Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
- Department
of Hematology, Tel Aviv Sourasky Medical
Center, Tel Aviv 6423906, Israel
| | - Idit Shachar
- Dept.
of Systems Immunology, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Ziv Shulman
- Dept.
of Systems Immunology, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Nir London
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
27
|
Mehta S, Buyanbat A, Orkin S, Nabet B. High-efficiency knock-in of degradable tags (dTAG) at endogenous loci in cell lines. Methods Enzymol 2023; 681:1-22. [PMID: 36764753 DOI: 10.1016/bs.mie.2022.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The dTAG system is a versatile strategy for tunable control of protein abundance and facilitates the time-resolved assessment of disease-associated protein function. A "co-opted" fusion-based degron peptide, the "dTAG" facilitates the study of endogenous protein function when knocked-in at the endogenous genetic loci of proteins of interest. We combine CRISPR/Cas9 mediated induction of double-strand breaks (DSB) with the delivery of a single-stranded DNA HDR-donor-template via crude preparations of recombinant adeno-associated virus (rAAV). Our approach to knock-in of large (1-2kb) DNA fragments via crude-rAAV mediated HDR donor delivery is rapid and inexpensive. It facilitates genetic modification of a variety of human as well as mouse cell lines at high efficiency and precision.
Collapse
Affiliation(s)
- Stuti Mehta
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, United States
| | - Altantsetseg Buyanbat
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, United States
| | - Stuart Orkin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, United States
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, United States.
| |
Collapse
|
28
|
Chen XR, Igumenova TI. Regulation of eukaryotic protein kinases by Pin1, a peptidyl-prolyl isomerase. Adv Biol Regul 2023; 87:100938. [PMID: 36496344 PMCID: PMC9992314 DOI: 10.1016/j.jbior.2022.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
The peptidyl-prolyl isomerase Pin1 cooperates with proline-directed kinases and phosphatases to regulate multiple oncogenic pathways. Pin1 specifically recognizes phosphorylated Ser/Thr-Pro motifs in proteins and catalyzes their cis-trans isomerization. The Pin1-catalyzed conformational changes determine the stability, activity, and subcellular localization of numerous protein substrates. We conducted a survey of eukaryotic protein kinases that are regulated by Pin1 and whose Pin1 binding sites have been identified. Our analyses reveal that Pin1 target sites in kinases do not fall exclusively within the intrinsically disordered regions of these enzymes. Rather, they fall into three groups based on their location: (i) within the catalytic kinase domain, (ii) in the C-terminal kinase region, and (iii) in regulatory domains. Some of the kinases downregulated by Pin1 activity are tumor-suppressing, and all kinases upregulated by Pin1 activity are functionally pro-oncogenic. These findings further reinforce the rationale for developing Pin1-specific inhibitors as attractive pharmaceuticals for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Ru Chen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
29
|
Wang SC, Hu XM, Xiong K. The regulatory role of Pin1 in neuronal death. Neural Regen Res 2023; 18:74-80. [PMID: 35799512 PMCID: PMC9241412 DOI: 10.4103/1673-5374.341043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
Regulated cell death predominantly involves apoptosis, autophagy, and regulated necrosis. It is vital that we understand how key regulatory signals can control the process of cell death. Pin1 is a cis-trans isomerase that catalyzes the isomerization of phosphorylated serine or threonine-proline motifs of a protein, thereby acting as a crucial molecular switch and regulating the protein functionality and the signaling pathways involved. However, we know very little about how Pin1-associated pathways might play a role in regulated cell death. In this paper, we review the role of Pin1 in regulated cell death and related research progress and summarize Pin1-related pathways in regulated cell death. Aside from the involvement of Pin1 in the apoptosis that accompanies neurodegenerative diseases, accumulating evidence suggests that Pin1 also plays a role in regulated necrosis and autophagy, thereby exhibiting distinct effects, including both neurotoxic and neuroprotective effects. Gaining an enhanced understanding of Pin1 in neuronal death may provide us with new options for the development of therapeutic target for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shu-Chao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| |
Collapse
|
30
|
Zhao J, Liu M, Zang J, Yang S, Chen R, Zhao X, Ding L. Molecular docking, 3D-QASR and molecular dynamics simulations of thiazoles Pin1 inhibitors. J Biomol Struct Dyn 2022; 40:12699-12713. [PMID: 34499020 DOI: 10.1080/07391102.2021.1975568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pin1 (protein interacting with never-in-mitosis akinase-1) is a member of the PPIase (peptidylprolyl cis-trans isomerase) family. It can interact with a variety of carcinogenic or tumor suppressive phosphorylated proteins. The interaction results in the conformational changes of target proteins, and ultimately regulates the activity of these proteins. These activity changes play a key role in tumorigenesis. Pin1 is an attractive target for cancer therapy due to its over-expression and/or activation in various types of cancer and the disorder of Proline directed phosphorylation. In this study, molecular docking, three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular dynamics (MD) simulations were performed to investigate the structure-activity relationship and binding mechanism of 45 thiazole-class Pin1 inhibitors. Molecular docking studies predict the binding mode and the interactions between the ligand and the receptor protein. The results of the 3 D-QSAR model show that electrostatic field, hydrophobic field and hydrogen bond play important roles in the binding process of inhibitors to protein. Molecular dynamics simulation results reveal that the complex of the ligand and the receptor protein are stable at 300 K. The binding free energy calculation and energy decomposition results show that His59, Cys113, Ser114, Ser115, Leu122, Met130, Gln131, Phe134, Ser154 and His157 may be the key to the inhibitor binding to Pin1 protein. This study provides an important theoretical basis for further development of the new Pin1 inhibitor design. These results can provide more useful information for our further drug design. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jiangheng Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jieying Zang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Shuangshuang Yang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Ruiyou Chen
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Xin Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Lina Ding
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
31
|
Li W, Gong H, Fu Y, Sun J, Wang Y. Novel pH-sensitive nanoparticles based on prodrug strategy to delivery All-Trans Retinoic Acid for breast cancer. Colloids Surf B Biointerfaces 2022; 219:112838. [PMID: 36148708 DOI: 10.1016/j.colsurfb.2022.112838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Developing chemotherapy with nanoparticle-based prodrugs provides promising strategies for improving the safety and delivery of anti-cancer drugs therapeutics and effective cancer treatment. Herein, we developed a pH-sensitive prodrug delivery system (All-Trans-Retinoic Acid (ATRA) grafted poly (β-amino esters) (PBAE) copolymers, ATRA-g-PBAE) for delivery of ATRA with some physicochemical and biological properties. The in vitro release of ATRA-g-PBAE prodrug nanoparticles (PNPs) was sustained-release and pH-sensitive. The cytotoxicity and uptake of different preparations in vitro were evaluated on MCF-7 cells at pH 7.4 and 5.5. The carrier PBAE had no cytotoxicity, and ATRA-g-PBAE PNPs could significantly inhibit cell growth at pH 5.5. MCF-7 cells treated with Cy5.5 grafted PBAE (Cy5.5-PBAE) showed stronger fluorescence signals at pH 5.5. Meanwhile, ATRA-g-PBAE PNPs entered the cell via a clathrin-mediated endocytic pathway. Subsequently, PBAE protonation facilitated the escape of PNPs from the lysosome and released the drug. ATRA-g-PBAE seems promising as a novel pH-sensitive prodrug to overcome the limitations of ATRA for breast cancer therapy.
Collapse
Affiliation(s)
- Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China
| | - HeXin Gong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China
| | - Yuhan Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China
| | - Jialin Sun
- Biological Science and Technology Department, Heilongjiang Vocational College for Nationalities, Harbin 150066, People's Republic of China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China.
| |
Collapse
|
32
|
Targeting prolyl isomerase Pin1 as a promising strategy to overcome resistance to cancer therapies. Pharmacol Res 2022; 184:106456. [PMID: 36116709 DOI: 10.1016/j.phrs.2022.106456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/22/2022]
Abstract
The development of tumor therapeutic resistance is one of the important reasons for the failure of antitumor therapy. Starting with multiple targets and multiple signaling pathways is helpful in understanding the mechanism of tumor resistance. The overexpression of prolyl isomerase Pin1 is highly correlated with the malignancy of cancer, since Pin1 controls many oncogenes and tumor suppressors, as well as a variety of cancer-driving signaling pathways. Strikingly, numerous studies have shown that Pin1 is directly involved in therapeutic resistance. In this review, we mainly summarize the functions and mechanisms of Pin1 in therapeutic resistance of multifarious cancers, such as breast, liver, and pancreatic carcinomas. Furtherly, from the perspective of Pin1-driven cancer signaling pathways including Raf/MEK/ERK, PI3K/Akt, Wnt/β-catenin, NF-κB, as well as Pin1 inhibitors containing juglone, epigallocatechin-3-gallate (EGCG), all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), it is better to demonstrate the important potential role and mechanism of Pin1 in resistance and sensitization to cancer therapies. It will provide new therapeutic approaches for clinical reversal and prevention of tumor resistance by employing synergistic administration of Pin1 inhibitors and chemotherapeutics, implementing combination therapy of Pin1-related cancer signaling pathway inhibitors and Pin1 inhibitors, and exploiting novel Pin1-specific inhibitors.
Collapse
|
33
|
Experimental spectroscopic investigations, solute-solvent interactions, topological analysis and biological evaluations of N-(9-Fluorenylmethoxycarbonyloxy)succinimide: An effective agent in anti-breast cancer activity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Lee YM, Teoh DEJ, Yeung K, Liou YC. The kingdom of the prolyl-isomerase Pin1: The structural and functional convergence and divergence of Pin1. Front Cell Dev Biol 2022; 10:956071. [PMID: 36111342 PMCID: PMC9468764 DOI: 10.3389/fcell.2022.956071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
More than 20 years since its discovery, our understanding of Pin1 function in various diseases continues to improve. Pin1 plays a crucial role in pathogenesis and has been implicated in metabolic disorders, cardiovascular diseases, inflammatory diseases, viral infection, cancer and neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s disease. In particular, the role of Pin1 in neurodegenerative diseases and cancer has been extensively studied. Our understanding of Pin1 in cancer also led to the development of cancer therapeutic drugs targeting Pin1, with some currently in clinical trial phases. However, identifying a Pin1-specific drug with good cancer therapeutic effect remains elusive, thus leading to the continued efforts in Pin1 research. The importance of Pin1 is highlighted by the presence of Pin1 orthologs across various species: from vertebrates to invertebrates and Kingdom Animalia to Plantae. Among these Pin1 orthologs, their sequence and structural similarity demonstrate the presence of conservation. Moreover, their similar functionality between species further highlights the conservancy of Pin1. As researchers continue to unlock the mysteries of Pin1 in various diseases, using different Pin1 models might shed light on how to better target Pin1 for disease therapeutics. This review aims to highlight the various Pin1 orthologs in numerous species and their divergent functional roles. We will examine their sequence and structural similarities and discuss their functional similarities and uniqueness to demonstrate the interconnectivity of Pin1 orthologs in multiple diseases.
Collapse
|
35
|
Thirunavukkarasu M, Balaji G, Prabakaran P, Basha SJ, Irfan A, Javed SS, Muthu S. Spectral characterization, solvation effects on topological aspects, and biological attributes of Fmoc-L-glutamic acid 5-tert-butyl ester: An effective reagent in anticancer evaluations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Kline GM, Nugroho K, Kelly JW. Inverse Drug Discovery identifies weak electrophiles affording protein conjugates. Curr Opin Chem Biol 2022; 67:102113. [PMID: 35065430 PMCID: PMC8940698 DOI: 10.1016/j.cbpa.2021.102113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023]
Abstract
Traditional biochemical target-based and phenotypic cell-based screening approaches to drug discovery have produced the current covalent and non-covalent pharmacopoeia. Strategies to expand the druggable proteome include Inverse Drug Discovery, which involves incubating one weak organic electrophile at a time with the proteins of a living cell to identify the conjugates formed. An alkyne substructure in each organic electrophile enables affinity chromatography-mass spectrometry, which produces a list of proteins that each distinct compound reacts with. Herein, we review Inverse Drug Discovery in the context of organic compounds of intermediate complexity harboring Sulfur(VI)-fluoride exchange (SuFEx) electrophiles used to expand the cellular proteins that can be targeted covalently.
Collapse
Affiliation(s)
- Gabriel M Kline
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Karina Nugroho
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
37
|
Rothweiler EM, Brennan PE, Huber KVM. Covalent fragment-based ligand screening approaches for identification of novel ubiquitin proteasome system modulators. Biol Chem 2022; 403:391-402. [PMID: 35191283 DOI: 10.1515/hsz-2021-0396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Abstract
Ubiquitination is a key regulatory mechanism vital for maintenance of cellular homeostasis. Protein degradation is induced by E3 ligases via attachment of ubiquitin chains to substrates. Pharmacological exploitation of this phenomenon via targeted protein degradation (TPD) can be achieved with molecular glues or bifunctional molecules facilitating the formation of ternary complexes between an E3 ligase and a given protein of interest (POI), resulting in ubiquitination of the substrate and subsequent proteolysis by the proteasome. Recently, the development of novel covalent fragment screening approaches has enabled the identification of first-in-class ligands for E3 ligases and deubiquitinases revealing so far unexplored binding sites which highlights the potential of these methods to uncover and expand druggable space for new target classes.
Collapse
Affiliation(s)
- Elisabeth M Rothweiler
- Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford OX3 7FZ, UK.,Nuffield Department of Medicine, Target Discovery Institute, Oxford OX3 7FZ, UK
| | - Paul E Brennan
- Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford OX3 7FZ, UK.,Nuffield Department of Medicine, Target Discovery Institute, Oxford OX3 7FZ, UK.,Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, Oxford OX3 7FZ, UK
| | - Kilian V M Huber
- Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford OX3 7FZ, UK.,Nuffield Department of Medicine, Target Discovery Institute, Oxford OX3 7FZ, UK
| |
Collapse
|
38
|
Liu L, Zhu R, Li J, Pei Y, Wang S, Xu P, Wang M, Wen Y, Zhang H, Du D, Ding H, Jiang H, Chen K, Zhou B, Yu L, Luo C. Computational and Structure-Based Development of High Potent Cell-Active Covalent Inhibitor Targeting the Peptidyl-Prolyl Isomerase NIMA-Interacting-1 (Pin1). J Med Chem 2022; 65:2174-2190. [PMID: 35089030 DOI: 10.1021/acs.jmedchem.1c01686] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The unique proline isomerase peptidyl-prolyl isomerase NIMA-interacting-1 (Pin1) is reported to activate numerous cancer-driving pathways simultaneously, and aberrant Pin1 activation is present in many human cancers. Here, we identified a novel hit compound, ZL-Pin01, that covalently modified Pin1 at Cys113 with an half-maximal inhibitory concentration (IC50) of 1.33 ± 0.07 μM through screening an in-house library. Crystallographic study drove the process of structure-guided optimization and led to the potent inhibitor ZL-Pin13 with an IC50 of 0.067 ± 0.03 μM. We obtained four co-crystal structures of Pin1 complexed with inhibitors that elucidated the detailed binding mode of the derivatives with Pin1. Interestingly, the co-crystal of Pin1 with ZL-Pin13 obtained by co-crystallization revealed the conformational change of Gln129 induced by the inhibitor. Furthermore, ZL-Pin13 effectively inhibited the proliferation and downregulated the Pin1 substrates in MDA-MB-231 cells. Collectively, we developed a potent covalent inhibitor of Pin1, ZL-Pin13, which could be an effective probe for studying the functional roles of Pin1.
Collapse
Affiliation(s)
- Liping Liu
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Rui Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Jiacheng Li
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuan Pei
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Shuangshuang Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Pan Xu
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingyu Wang
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yu Wen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Hao Zhang
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Daohai Du
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hong Ding
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Kaixian Chen
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
| | - Bing Zhou
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lifang Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Cheng Luo
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.,School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
39
|
Llombart V, Mansour MR. Therapeutic targeting of "undruggable" MYC. EBioMedicine 2022; 75:103756. [PMID: 34942444 PMCID: PMC8713111 DOI: 10.1016/j.ebiom.2021.103756] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
c-MYC controls global gene expression and regulates cell proliferation, cell differentiation, cell cycle, metabolism and apoptosis. According to some estimates, MYC is dysregulated in ≈70% of human cancers and strong evidence implicates aberrantly expressed MYC in both tumor initiation and maintenance. In vivo studies show that MYC inhibition elicits a prominent anti-proliferative effect and sustained tumor regression while any alteration on healthy tissue remains reversible. This opens an exploitable window for treatment that makes MYC one of the most appealing therapeutic targets for cancer drug development. This review describes the main functional and structural features of the protein structure of MYC and provides a general overview of the most relevant or recently identified interactors that modulate MYC oncogenic activity. This review also summarizes the different approaches aiming to abrogate MYC oncogenic function, with a particular focus on the prototype inhibitors designed for the direct and indirect targeting of MYC.
Collapse
Affiliation(s)
- Victor Llombart
- UCL Cancer Institute, University College London, Department of Haematology, London WC1E 6DD, UK
| | - Marc R Mansour
- UCL Cancer Institute, University College London, Department of Haematology, London WC1E 6DD, UK; UCL Great Ormond Street Institute of Child Health, Developmental Biology and Cancer, London, UK.
| |
Collapse
|
40
|
Kumari A, Kumar C, Pergu R, Kumar M, Mahale SP, Wasnik N, Mylavarapu SVS. Phosphorylation and Pin1 binding to the LIC1 subunit selectively regulate mitotic dynein functions. J Cell Biol 2021; 220:212736. [PMID: 34709360 PMCID: PMC8562849 DOI: 10.1083/jcb.202005184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 05/13/2021] [Accepted: 09/22/2021] [Indexed: 01/31/2023] Open
Abstract
The dynein motor performs multiple functions in mitosis by engaging with a wide cargo spectrum. One way to regulate dynein's cargo-binding selectivity is through the C-terminal domain (CTD) of its light intermediate chain 1 subunit (LIC1), which binds directly with cargo adaptors. Here we show that mitotic phosphorylation of LIC1-CTD at its three cdk1 sites is required for proper mitotic progression, for dynein loading onto prometaphase kinetochores, and for spindle assembly checkpoint inactivation in human cells. Mitotic LIC1-CTD phosphorylation also engages the prolyl isomerase Pin1 predominantly to Hook2-dynein-Nde1-Lis1 complexes, but not to dynein-spindly-dynactin complexes. LIC1-CTD dephosphorylation abrogates dynein-Pin1 binding, promotes prophase centrosome-nuclear envelope detachment, and impairs metaphase chromosome congression and mitotic Golgi fragmentation, without affecting interphase membrane transport. Phosphomutation of a conserved LIC1-CTD SP site in zebrafish leads to early developmental defects. Our work reveals that LIC1-CTD phosphorylation differentially regulates distinct mitotic dynein pools and suggests the evolutionary conservation of this phosphoregulation.
Collapse
Affiliation(s)
- Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| | - Chandan Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India
| | - Rajaiah Pergu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| | - Megha Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Habsiguda, Hyderabad, Telangana, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Sagar P Mahale
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| | - Neeraj Wasnik
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| |
Collapse
|
41
|
Lepore A, Choy PM, Lee NCW, Carella MA, Favicchio R, Briones-Orta MA, Glaser SS, Alpini G, D'Santos C, Tooze RM, Lorger M, Syn WK, Papakyriakou A, Giamas G, Bubici C, Papa S. Phosphorylation and Stabilization of PIN1 by JNK Promote Intrahepatic Cholangiocarcinoma Growth. Hepatology 2021; 74:2561-2579. [PMID: 34048060 DOI: 10.1002/hep.31983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/30/2021] [Accepted: 05/16/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive type of liver cancer in urgent need of treatment options. Aberrant activation of the c-Jun N-terminal kinase (JNK) pathway is a key feature in ICC and an attractive candidate target for its treatment. However, the mechanisms by which constitutive JNK activation promotes ICC growth, and therefore the key downstream effectors of this pathway, remain unknown for their applicability as therapeutic targets. Our aim was to obtain a better mechanistic understanding of the role of JNK signaling in ICC that could open up therapeutic opportunities. APPROACH AND RESULTS Using loss-of-function and gain-of-function studies in vitro and in vivo, we show that activation of the JNK pathway promotes ICC cell proliferation by affecting the protein stability of peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1), a key driver of tumorigenesis. PIN1 is highly expressed in ICC primary tumors, and its expression positively correlates with active JNK. Mechanistically, the JNK kinases directly bind to and phosphorylate PIN1 at Ser115, and this phosphorylation prevents PIN1 mono-ubiquitination at Lys117 and its proteasomal degradation. Moreover, pharmacological inhibition of PIN1 through all-trans retinoic acid, a Food and Drug Administration-approved drug, impairs the growth of both cultured and xenografted ICC cells. CONCLUSIONS Our findings implicate the JNK-PIN1 regulatory axis as a functionally important determinant for ICC growth, and provide a rationale for therapeutic targeting of JNK activation through PIN1 inhibition.
Collapse
Affiliation(s)
- Alessio Lepore
- Leeds Institute of Medical Research at St. James', Faculty of Medicine and Health, University of Leeds, St. James' University Hospital, Leeds, United Kingdom
| | - Pui Man Choy
- Institute of Hepatology, Foundation for Liver Research and Birkbeck University of London, London, United Kingdom
| | - Nathan C W Lee
- Leeds Institute of Medical Research at St. James', Faculty of Medicine and Health, University of Leeds, St. James' University Hospital, Leeds, United Kingdom
| | - Maria Annunziata Carella
- Center for Genome Engineering and Maintenance, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Rosy Favicchio
- Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Marco A Briones-Orta
- Institute of Hepatology, Foundation for Liver Research and Birkbeck University of London, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
| | - Shannon S Glaser
- Department of Medical Physiology, Texas A&M University, Bryan, TX
| | - Gianfranco Alpini
- Division of Gastroenterology, Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University, Indianapolis, IN
| | - Clive D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Reuben M Tooze
- Leeds Institute of Medical Research at St. James', Faculty of Medicine and Health, University of Leeds, St. James' University Hospital, Leeds, United Kingdom
| | - Mihaela Lorger
- Leeds Institute of Medical Research at St. James', Faculty of Medicine and Health, University of Leeds, St. James' University Hospital, Leeds, United Kingdom
| | - Wing-Kin Syn
- Institute of Hepatology, Foundation for Liver Research and Birkbeck University of London, London, United Kingdom
- Section of Gastroenterology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Leioa, Spain
| | - Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Center for Scientific Research, Athens, Greece
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Concetta Bubici
- Center for Genome Engineering and Maintenance, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Salvatore Papa
- Leeds Institute of Medical Research at St. James', Faculty of Medicine and Health, University of Leeds, St. James' University Hospital, Leeds, United Kingdom
- Institute of Hepatology, Foundation for Liver Research and Birkbeck University of London, London, United Kingdom
| |
Collapse
|
42
|
Dubiella C, Pinch BJ, Koikawa K, Zaidman D, Poon E, Manz TD, Nabet B, He S, Resnick E, Rogel A, Langer EM, Daniel CJ, Seo HS, Chen Y, Adelmant G, Sharifzadeh S, Ficarro SB, Jamin Y, Martins da Costa B, Zimmerman MW, Lian X, Kibe S, Kozono S, Doctor ZM, Browne CM, Yang A, Stoler-Barak L, Shah RB, Vangos NE, Geffken EA, Oren R, Koide E, Sidi S, Shulman Z, Wang C, Marto JA, Dhe-Paganon S, Look T, Zhou XZ, Lu KP, Sears RC, Chesler L, Gray NS, London N. Sulfopin is a covalent inhibitor of Pin1 that blocks Myc-driven tumors in vivo. Nat Chem Biol 2021; 17:954-963. [PMID: 33972797 PMCID: PMC9119696 DOI: 10.1038/s41589-021-00786-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
The peptidyl-prolyl isomerase, Pin1, is exploited in cancer to activate oncogenes and inactivate tumor suppressors. However, despite considerable efforts, Pin1 has remained an elusive drug target. Here, we screened an electrophilic fragment library to identify covalent inhibitors targeting Pin1's active site Cys113, leading to the development of Sulfopin, a nanomolar Pin1 inhibitor. Sulfopin is highly selective, as validated by two independent chemoproteomics methods, achieves potent cellular and in vivo target engagement and phenocopies Pin1 genetic knockout. Pin1 inhibition had only a modest effect on cancer cell line viability. Nevertheless, Sulfopin induced downregulation of c-Myc target genes, reduced tumor progression and conferred survival benefit in murine and zebrafish models of MYCN-driven neuroblastoma, and in a murine model of pancreatic cancer. Our results demonstrate that Sulfopin is a chemical probe suitable for assessment of Pin1-dependent pharmacology in cells and in vivo, and that Pin1 warrants further investigation as a potential cancer drug target.
Collapse
Affiliation(s)
- Christian Dubiella
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Benika J Pinch
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Department of Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Kazuhiro Koikawa
- Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel Zaidman
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Theresa D Manz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbruecken, Germany
| | - Behnam Nabet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shuning He
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Efrat Resnick
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Adi Rogel
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Ellen M Langer
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Colin J Daniel
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ying Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shabnam Sharifzadeh
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | | | - Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Xiaolan Lian
- Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shin Kibe
- Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shingo Kozono
- Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zainab M Doctor
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Christopher M Browne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Discovery Biology, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Annan Yang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Liat Stoler-Barak
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Richa B Shah
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas E Vangos
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ezekiel A Geffken
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Roni Oren
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - Eriko Koide
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Samuel Sidi
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ziv Shulman
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Chu Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Pediatric Hematology/Oncology Boston Children's Hospital, Boston, MA, USA
| | - Xiao Zhen Zhou
- Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kun Ping Lu
- Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
| | - Nir London
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
43
|
Musa A, Elmaidomy AH, Sayed AM, Alzarea SI, Al-Sanea MM, Mostafa EM, Hendawy OM, Abdelgawad MA, Youssif KA, Refaat H, Alaaeldin E, Abdelmohsen UR. Cytotoxic Potential, Metabolic Profiling, and Liposomes of Coscinoderma sp. Crude Extract Supported by in silico Analysis. Int J Nanomedicine 2021; 16:3861-3874. [PMID: 34113103 PMCID: PMC8187037 DOI: 10.2147/ijn.s310720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/06/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Sponge-Coscinoderma sp. (Family: Spongiidae) is a coastal sponge that possesses a broad variety of natural-products. However, the exact chemical constituents and cytotoxic activity of the extract are still undefinable. Methodology In the present study, the metabolomic profiling of Coscinoderma sp. dereplicated 20 compounds, utilizing liquid chromatography coupled with high-resolution mass spectrometry (LC-HRESIMS). Coscinoderma-derived crude extract, before and after encapsulation within nanosized liposomes, was in vitro screened against hepatic, breast, and colorectal carcinoma human cell lines (HepG2, MCF-7, and Caco-2, respectively). Results The identified metabolites were fit to diverse chemical classes, covering diterpenes, an indole alkaloid, sesterterpenoid, sterol, and methylherbipoline salt. Comprehensive in silico experiments predicted several compounds in the sponge-derived extract (eg, compounds 1-15) to have an anticancer potential via targeting multiple targets. The crude extract showed moderate antiproliferative activities towards studied cell lines with IC50 values range from 10.7 to 12.4 µg/mL. The formulated extract-containing liposomes (size 141±12.3nm, PDI 0.222, zeta potential 20.8 ± 2.3), significantly enhanced the in vitro anticancer activity of the entrapped extract (IC50 values ranged from 1.7 to 4.1 µg/mL). Discussion Encapsulation of both the hydrophilic and the lipophilic components of the extract within the lipid-based nanovesicles enhanced the cellular uptake and accessibility of the entrapped cargo. This study introduces liposomal nano-vesicles as a promising approach to improve the therapeutic potential of sponge-derived extracts.
Collapse
Affiliation(s)
- Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, 72341, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371, Egypt
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| | - Mohammad M Al-Sanea
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| | - Ehab M Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, 72341, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371, Egypt
| | - Omina Magdy Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia.,Department of Clinical Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, 62513, Egypt
| | - Mohamed A Abdelgawad
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| | - Khayrya A Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Hesham Refaat
- Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia, 61111, Egypt
| | - Eman Alaaeldin
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.,Department of Clinical Pharmacy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia, 61111, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia, 61111, Egypt
| |
Collapse
|
44
|
Crowley VM, Thielert M, Cravatt BF. Functionalized Scout Fragments for Site-Specific Covalent Ligand Discovery and Optimization. ACS CENTRAL SCIENCE 2021; 7:613-623. [PMID: 34056091 PMCID: PMC8155467 DOI: 10.1021/acscentsci.0c01336] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 05/14/2023]
Abstract
Covalent ligands are a versatile class of chemical probes and drugs that can target noncanonical sites on proteins and display differentiated pharmacodynamic properties. Chemical proteomic methods have been introduced that leverage electrophilic fragments to globally profile the covalent ligandability of nucleophilic residues, such as cysteine and lysine, in native biological systems. Further optimization of these initial ligandability events without resorting to the time-consuming process of individualized protein purification and functional assay development, however, presents a persistent technical challenge. Here, we show that broadly reactive electrophilic fragments, or "scouts", can be converted into site-specific target engagement probes for screening small molecules against a wide array of proteins in convenient gel- and ELISA-based assay formats. We use these assays to expediently optimize a weak potency fragment hit into a sub-μM inhibitor that selectively engages an active-site cysteine in the retinaldehyde reductase AKR1B10. Our findings provide a road map to optimize covalent fragments into more advanced chemical probes without requiring protein purification or structural analysis.
Collapse
|
45
|
Wan W, Huang Y, Xia Q, Bai Y, Chen Y, Jin W, Wang M, Shen D, Lyu H, Tang Y, Dong X, Gao Z, Zhao Q, Zhang L, Liu Y. Covalent Probes for Aggregated Protein Imaging via Michael Addition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wang Wan
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yanan Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yulong Bai
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yuwen Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wenhan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Mengdie Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Di Shen
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Haochen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yuqi Tang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xuepeng Dong
- The Second Hospital of Dalian Medical University 467 Zhongshan Road Dalian 116044 China
| | - Zhenming Gao
- The Second Hospital of Dalian Medical University 467 Zhongshan Road Dalian 116044 China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
46
|
Wan W, Huang Y, Xia Q, Bai Y, Chen Y, Jin W, Wang M, Shen D, Lyu H, Tang Y, Dong X, Gao Z, Zhao Q, Zhang L, Liu Y. Covalent Probes for Aggregated Protein Imaging via Michael Addition. Angew Chem Int Ed Engl 2021; 60:11335-11343. [DOI: 10.1002/anie.202015988] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/04/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Wang Wan
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yanan Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yulong Bai
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yuwen Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wenhan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Mengdie Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Di Shen
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Haochen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yuqi Tang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xuepeng Dong
- The Second Hospital of Dalian Medical University 467 Zhongshan Road Dalian 116044 China
| | - Zhenming Gao
- The Second Hospital of Dalian Medical University 467 Zhongshan Road Dalian 116044 China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
47
|
Spradlin JN, Zhang E, Nomura DK. Reimagining Druggability Using Chemoproteomic Platforms. Acc Chem Res 2021; 54:1801-1813. [PMID: 33733731 DOI: 10.1021/acs.accounts.1c00065] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
One of the biggest bottlenecks in modern drug discovery efforts is in tackling the undruggable proteome. Currently, over 85% of the proteome is still considered undruggable because most proteins lack well-defined binding pockets that can be functionally targeted with small molecules. Tackling the undruggable proteome necessitates innovative approaches for ligand discovery against undruggable proteins as well as the development of new therapeutic modalities to functionally manipulate proteins of interest. Chemoproteomic platforms, in particular activity-based protein profiling (ABPP), have arisen to tackle the undruggable proteome by using reactivity-based chemical probes and advanced quantitative mass spectrometry-based proteomic approaches to enable the discovery of "ligandable hotspots" or proteome-wide sites that can be targeted with small-molecule ligands. These sites can subsequently be pharmacologically targeted with covalent ligands to rapidly discover functional or nonfunctional binders against therapeutic proteins of interest. Chemoproteomic approaches have also revealed unique insights into ligandability such as the discovery of unique allosteric sites or intrinsically disordered regions of proteins that can be pharmacologically and selectively targeted for biological modulation and therapeutic benefit. Chemoproteomic platforms have also expanded the scope of emerging therapeutic modalities for targeted protein degradation and proteolysis-targeting chimeras (PROTACs) through the discovery of several new covalent E3 ligase recruiters. Looking into the future, chemoproteomic approaches will unquestionably have a major impact in further expansion of existing efforts toward proteome-wide ligandability mapping, targeted ligand discovery efforts against high-value undruggable therapeutic targets, further expansion of the scope of targeted protein degradation platforms, the discovery of new molecular glue scaffolds that enable unique modulation of protein function, and perhaps most excitingly the development of next-generation small-molecule induced-proximity-based therapeutic modalities that go beyond degradation. Exciting days lie ahead in this field as chemical biology becomes an increasingly major driver in drug discovery, and chemoproteomic approaches are sure to be a mainstay in developing next-generation therapeutics.
Collapse
Affiliation(s)
- Jessica N. Spradlin
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, California 94720, United States
| | - Erika Zhang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, California 94720, United States
| | - Daniel K. Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, California 94720, United States
- Departments of Molecular and Cell Biology and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
48
|
Yan G, Zhong X, Pu C, Yue L, Shan H, Lan S, Zhou M, Hou X, Yang J, Li D, Fan S, Li R. Targeting Cysteine Located Outside the Active Site: An Effective Strategy for Covalent ALKi Design. J Med Chem 2021; 64:1558-1569. [PMID: 33471528 DOI: 10.1021/acs.jmedchem.0c01707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Potent inhibitors of ALK are highly desired because of the occurrence of drug resistance. We herein firstly report the development of a rationally designed inhibitor, Con B-1, which can covalently bind to Cys1259, a cysteine located outside the ALK active site by linking a warhead with Ceritinib through a 2,2'-Oxybis(ethylamine) linker. The in vitro and in vivo assays showed ConB-1 is a potent selective ALKi with low toxicity to normal cells. In addition, the molecule showed significant improvement of anticancer activities and potential antidrug resistant activity compared with Ceritinib, demonstrating the covalent inhibitor of ALK can be a promising drug candidate for the treatment of NSCLC. This work may provide a novel perspective on the design of covalent inhibitors.
Collapse
Affiliation(s)
- Guoyi Yan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China.,Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, 450000, China
| | - Xinxin Zhong
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Chunlan Pu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Lin Yue
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Huifang Shan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Suke Lan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Meng Zhou
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550000, China
| | - Xueyan Hou
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453000, China
| | - Jie Yang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Deyu Li
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, 450000, China
| | - Shilong Fan
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100000, China
| | - Rui Li
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| |
Collapse
|
49
|
Li J, Mo C, Guo Y, Zhang B, Feng X, Si Q, Wu X, Zhao Z, Gong L, He D, Shao J. Roles of peptidyl-prolyl isomerase Pin1 in disease pathogenesis. Theranostics 2021; 11:3348-3358. [PMID: 33537091 PMCID: PMC7847688 DOI: 10.7150/thno.45889] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
Pin1 belongs to the peptidyl-prolyl cis-trans isomerases (PPIases) superfamily and catalyzes the cis-trans conversion of proline in target substrates to modulate diverse cellular functions including cell cycle progression, cell motility, and apoptosis. Dysregulation of Pin1 has wide-ranging influences on the fate of cells; therefore, it is closely related to the occurrence and development of various diseases. This review summarizes the current knowledge of Pin1 in disease pathogenesis.
Collapse
Affiliation(s)
- Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Chunfen Mo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yifan Guo
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Bowen Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Xiao Feng
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Qiuyue Si
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Xiaobo Wu
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Zhe Zhao
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Lixin Gong
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Dan He
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Jichun Shao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| |
Collapse
|
50
|
Du L, Wang X, Cui G, Xu B. Design, synthesis and biological evaluation of novel thiazole-based derivatives as human Pin1 inhibitors. Bioorg Med Chem 2021; 29:115878. [PMID: 33246256 DOI: 10.1016/j.bmc.2020.115878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/24/2022]
Abstract
Pin1 is a peptidyl prolyl cis-trans isomerase (PPIase) and inhibiting Pin1 is a potential way for discovering anti-tumor agents. With an aim to find potent Pin1 inhibitors with a novel scaffold, a series of thiazole derivatives with an alicyclic heterocycles on the 2-position were designed, synthesized and tested against human Pin1. Compound 9p bearing a 2-oxa-6-azaspiro [3,3] heptane moiety on the thiazole scaffold was identified as the most potent Pin1 inhibitor of this series with an IC50 value of 0.95 μM. The structure-activity relationship (SAR) and molecular modeling study indicated that introducing an alicyclic ring with an H-bond acceptor would be a viable way to improve the binding affinity.
Collapse
Affiliation(s)
- Lifei Du
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guonan Cui
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|