1
|
Nunez H, Nieto PA, Mars RA, Ghavami M, Sew Hoy C, Sukhum K. Early life gut microbiome and its impact on childhood health and chronic conditions. Gut Microbes 2025; 17:2463567. [PMID: 39916516 PMCID: PMC11810090 DOI: 10.1080/19490976.2025.2463567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/20/2024] [Accepted: 02/02/2025] [Indexed: 02/12/2025] Open
Abstract
The development of the gut microbiome is crucial to human health, particularly during the first three years of life. Given its role in immune development, disturbances in the establishment process of the gut microbiome may have long term consequences. This review summarizes evidence for these claims, highlighting compositional changes of the gut microbiome during this critical period of life as well as factors that affect gut microbiome development. Based on human and animal data, we conclude that the early-life microbiome is a determinant of long-term health, impacting physiological, metabolic, and immune processes. The early-life gut microbiome field faces challenges. Some of these challenges are technical, such as lack of standardized stool collection protocols, inconsistent DNA extraction methods, and outdated sequencing technologies. Other challenges are methodological: small sample sizes, lack of longitudinal studies, and poor control of confounding variables. To address these limitations, we advocate for more robust research methodologies to better understand the microbiome's role in health and disease. Improved methods will lead to more reliable microbiome studies and a deeper understanding of its impact on health outcomes.
Collapse
Affiliation(s)
- Harold Nunez
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
| | | | - Ruben A. Mars
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
2
|
Tüsüz Önata E, Özdemir Ö. Fecal microbiota transplantation in allergic diseases. World J Methodol 2025; 15:101430. [DOI: 10.5662/wjm.v15.i2.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024] Open
Abstract
Microorganisms such as bacteria, fungi, viruses, parasites living in the human intestine constitute the human intestinal microbiota. Dysbiosis refers to compositional and quantitative changes that negatively affect healthy gut microbiota. In recent years, with the demonstration that many diseases are associated with dysbiosis, treatment strategies targeting the correction of dysbiosis in the treatment of these diseases have begun to be investigated. Faecal microbiota transplantation (FMT) is the process of transferring faeces from a healthy donor to another recipient in order to restore the gut microbiota and provide a therapeutic benefit. FMT studies have gained popularity after probiotic, prebiotic, symbiotic studies in the treatment of dysbiosis and related diseases. FMT has emerged as a potential new therapy in the treatment of allergic diseases as it is associated with the maintenance of intestinal microbiota and immunological balance (T helper 1/T helper 2 cells) and thus suppression of allergic responses. In this article, the definition, application, safety and use of FMT in allergic diseases will be discussed with current data.
Collapse
Affiliation(s)
- Ece Tüsüz Önata
- Division of Pediatric Allergy and Immunology, Medical Faculty, Sakarya University, Adapazarı 54100, Sakarya, Türkiye
| | - Öner Özdemir
- Division of Pediatric Allergy and Immunology, Medical Faculty, Sakarya University, Adapazarı 54100, Sakarya, Türkiye
| |
Collapse
|
3
|
Shen Y, Fan N, Ma S, Cheng X, Yang X, Wang G. Gut Microbiota Dysbiosis: Pathogenesis, Diseases, Prevention, and Therapy. MedComm (Beijing) 2025; 6:e70168. [PMID: 40255918 PMCID: PMC12006732 DOI: 10.1002/mco2.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/22/2025] Open
Abstract
Dysbiosis refers to the disruption of the gut microbiota balance and is the pathological basis of various diseases. The main pathogenic mechanisms include impaired intestinal mucosal barrier function, inflammation activation, immune dysregulation, and metabolic abnormalities. These mechanisms involve dysfunctions in the gut-brain axis, gut-liver axis, and others to cause broader effects. Although the association between diseases caused by dysbiosis has been extensively studied, many questions remain regarding the specific pathogenic mechanisms and treatment strategies. This review begins by examining the causes of gut microbiota dysbiosis and summarizes the potential mechanisms of representative diseases caused by microbiota imbalance. It integrates clinical evidence to explore preventive and therapeutic strategies targeting gut microbiota dysregulation, emphasizing the importance of understanding gut microbiota dysbiosis. Finally, we summarized the development of artificial intelligence (AI) in the gut microbiota research and suggested that it will play a critical role in future studies on gut dysbiosis. The research combining multiomics technologies and AI will further uncover the complex mechanisms of gut microbiota dysbiosis. It will drive the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Yao Shen
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
| | - Nairui Fan
- Basic Medical College of Jiamusi UniversityHeilongjiangChina
| | - Shu‐xia Ma
- Basic Medical College of Jiamusi UniversityHeilongjiangChina
| | - Xin Cheng
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
- International SchoolGuangzhou Huali College, ZengchengGuangzhouChina
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryGuangdong Second Provincial General HospitalSchool of MedicineJinan UniversityGuangzhouChina
| |
Collapse
|
4
|
Gurel DI, Anagnostou A, Fiocchi A, Sharon C, Sahiner U, Sindher S, Arasi S. New approaches in childhood IgE-mediated food allergy treatment. Curr Opin Allergy Clin Immunol 2025; 25:115-122. [PMID: 39868477 DOI: 10.1097/aci.0000000000001058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of the current and future treatment options for children with food allergies (FAs), highlighting the latest research findings and the potential impact of these new approaches on improving patients' and caregivers' quality of life. RECENT FINDINGS In the last decade, many promising approaches have emerged as an alternative to the standard avoidance of the culprit food with the risk of severe accidental reactions. Desensitization through oral immunotherapy has been introduced in clinical settings as a therapeutic approach, and more recently also omalizumab. In addition, alternative routes of administration for immunotherapy, other biologics, small molecules, probiotics or prebiotics, microbiota transplantation therapy, IGNX001, and PVX108 are being investigated. SUMMARY The portfolio of available treatment options for food allergies is increasing but several relevant unmet needs remain. This review aims to provide a brief overview of the existing and future treatment options for IgE-mediated food allergies.
Collapse
Affiliation(s)
- Deniz Ilgun Gurel
- Translational Research in Pediatric Specialities, Division of Allergy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Hacettepe University Ihsan Dogramaci Children's Hospital, Division of Pediatric Allergy and Immunology, Ankara, Turkey
| | | | - Alessandro Fiocchi
- Translational Research in Pediatric Specialities, Division of Allergy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chinthrajah Sharon
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California, USA
| | - Umit Sahiner
- Hacettepe University Ihsan Dogramaci Children's Hospital, Division of Pediatric Allergy and Immunology, Ankara, Turkey
| | - Sayantani Sindher
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California, USA
| | - Stefania Arasi
- Translational Research in Pediatric Specialities, Division of Allergy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
5
|
Zhang X, Chen H, Wang Y, Xu Q, Qiu X, Cheng L, Xiao Q, Liu Y, Zhang J, Zhang H, Wu H. Gut microbiota signatures in food allergy children without and with malnutrition: a cross-sectional study. BMC Pediatr 2025; 25:220. [PMID: 40108561 PMCID: PMC11924646 DOI: 10.1186/s12887-025-05578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Altered gut microbiota (GM) profiles have been documented in children with food allergies (FA) and experiencing malnutrition. This study explored the GM composition in children with FA across varying degrees of malnutrition including those without malnutrition and those with different severity levels. METHODS Fresh faecal samples were collected from 120 children aged 1-6 years, including 40 FA children with adequate weight (FANM), 40 FA children with malnutrition (FAM), and 40 healthy controls. The hypervariable region of the 16 S rDNA gene was subsequently sequenced to assess bacterial communities. RESULTS Compared with healthy controls, the FANM group displayed a greater increase in the alpha diversity index. The FAM group exhibited an increase in seven genera, including Alistipes and Parabacteroides, compared to the control group, whereas nine genera were enriched in the FANM group. An analysis of clinical characteristics revealed a positive correlation between the relative abundance of the genus Faecalibacterium and the total IgE level. Fourteen pivotal microbial markers demonstrated substantial classification potential (AUC: 89.86%, 95% CI: 76.40-99.73% for FAM; AUC: 88.92%, 95% CI: 73.58-99.65% for FANM). CONCLUSION FA children exhibit distinct GM profiles depending on the presence of malnutrition, which suggests the need for tailored microbiota-targeted therapies.
Collapse
Affiliation(s)
- Xiaojiao Zhang
- Department of Child Health Care, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Hengying Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiyuan Wang
- Department of Child Health Care, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Qiujin Xu
- Cuixiang Community Health Center, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Xinzu Qiu
- Department of Child Health Care, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Li Cheng
- Department of Child Health Care, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Qizhi Xiao
- Department of Medical Genetics and Prenatal Diagnosis, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Yanhong Liu
- Department of Research and Development, BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, Guangdong, China
| | - Jianduan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongzhong Zhang
- Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China.
| | - Hongyuan Wu
- Department of Child Health Care, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China.
| |
Collapse
|
6
|
Li S, Huang J, Xie Y, Wang D, Tan X, Wang Y. Investigation of gut microbiota in pediatric patients with peanut allergy in outpatient settings. Front Pediatr 2025; 13:1509275. [PMID: 40013109 PMCID: PMC11861553 DOI: 10.3389/fped.2025.1509275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/06/2025] [Indexed: 02/28/2025] Open
Abstract
Objective Investigate the diversity of the gut microbiota in children with peanut allergies and assess its association with allergic reactions. Identify potential gut microbial biomarkers for the diagnosis and treatment of peanut allergies. Methods Twenty-nine children with peanut allergy who visited the hospital from December 2020 to December 2022 were selected as the test group (PA), and twenty-seven healthy children who underwent physical examination during the same period and tested negative for peanut IgE were selected as the control group (Ctl). The differences in gut microbiota between the two groups were compared. The study enrolled 29 children with peanut allergy (PA group) and 27 healthy children (Ctl group) from December 2020 to December 2022. The PA group was defined by a positive reaction to peanut-specific IgE tests, while the Ctl group tested negative for peanut IgE and had no history of allergies. Fecal samples were collected and genomic DNA was extracted for 16S rRNA gene sequencing to assess gut microbiota composition. Alpha diversity indices, including the sob, ace, chao, shannon, and simpson indices, were calculated to assess microbial community richness and diversity. Beta diversity was analyzed using Principal Coordinate Analysis (PCoA) and Partial Least Squares Discriminant Analysis (PLS-DA) to compare microbial community structures between the PA and Ctl groups. Results The study identified significant differences in gut microbiota diversity between children with peanut allergy (PA group) and healthy controls (Ctl group). The PA group exhibited reduced alpha diversity, indicated by lower sob, ace, and chao indices (FDR ≤ 0.05), and a significantly lower Shannon index (FDR ≤ 0.01). Beta diversity analysis revealed distinct microbial community structures between the two groups. Notably, the PA group showed an increase in Proteobacteria and a decrease in Firmicutes and Bacteroidetes, with significant changes at the genus level, including lower relative abundance of Bacteroides and Faecalibacterium, and higher relative abundance of Bifidobacterium and Lactobacillus (FDR ≤ 0.05 or FDR ≤ 0.01). Correlation analysis highlighted a strong negative correlation between IgE levels and specific microbial groups, such as Alistipes and CAG-352 (FDR ≤ 0.001), and a positive correlation with Veillonella. Blood routine indicators were also found to be correlated with gut microbiota composition. Conclusion The findings of this study provide compelling evidence that gut microbiota diversity and composition are significantly altered in children with peanut allergy. The observed shifts in microbial communities, particularly the increase in Proteobacteria and the decrease in beneficial bacteria such as Firmicutes and Bacteroidetes, underscore the potential role of the gut microbiome in the pathogenesis of peanut allergy. These results suggest that modulating the gut microbiota may be a viable therapeutic strategy for managing peanut allergy and highlight the need for further research to explore the clinical implications of these microbial changes.
Collapse
Affiliation(s)
- Shouming Li
- Department of Child Health Care, Jiangxi Children’s Hospital, Nanchang, China
| | - Jingyi Huang
- School of Pediatrics, Medical College of Nanchang University, Nanchang, China
| | - Yunyun Xie
- Department of Child Health Care, Jiangxi Children’s Hospital, Nanchang, China
| | - Di Wang
- School of Pediatrics, Medical College of Nanchang University, Nanchang, China
| | - Xin Tan
- School of Pediatrics, Medical College of Nanchang University, Nanchang, China
| | - Yufan Wang
- School of Pediatrics, Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Wardell CM, Boardman DA, Levings MK. Harnessing the biology of regulatory T cells to treat disease. Nat Rev Drug Discov 2025; 24:93-111. [PMID: 39681737 DOI: 10.1038/s41573-024-01089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
Regulatory T (Treg) cells are a suppressive subset of CD4+ T cells that maintain immune homeostasis and restrain inflammation. Three decades after their discovery, the promise of strategies to harness Treg cells for therapy has never been stronger. Multiple clinical trials seeking to enhance endogenous Treg cells or deliver them as a cell-based therapy have been performed and hint at signs of success, as well as to important limitations and unanswered questions. Strategies to deplete Treg cells in cancer are also in active clinical testing. Furthermore, multi-dimensional methods to interrogate the biology of Treg cells are leading to a refined understanding of Treg cell biology and new approaches to harness tissue-specific functions for therapy. A new generation of Treg cell clinical trials is now being fuelled by advances in nanomedicine and synthetic biology, seeking more precise ways to tailor Treg cell function. This Review will discuss recent advances in our understanding of human Treg cell biology, with a focus on mechanisms of action and strategies to assess outcomes of Treg cell-targeted therapies. It highlights results from recent clinical trials aiming to enhance or inhibit Treg cell activity in a variety of diseases, including allergy, transplantation, autoimmunity and cancer, and discusses ongoing strategies to refine these approaches.
Collapse
Affiliation(s)
- Christine M Wardell
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic A Boardman
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
8
|
Stephen-Victor E, Kuziel GA, Martinez-Blanco M, Jugder BE, Benamar M, Wang Z, Chen Q, Lozano GL, Abdel-Gadir A, Cui Y, Fong J, Saint-Denis E, Chang I, Nadeau KC, Phipatanakul W, Zhang A, Farraj FA, Holder-Niles F, Zeve D, Breault DT, Schmitz-Abe K, Rachid R, Crestani E, Rakoff-Nahoum S, Chatila TA. RELMβ sets the threshold for microbiome-dependent oral tolerance. Nature 2025; 638:760-768. [PMID: 39843735 PMCID: PMC11996044 DOI: 10.1038/s41586-024-08440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/21/2024] [Indexed: 01/24/2025]
Abstract
Tolerance to dietary antigens is critical for avoiding deleterious type 2 immune responses resulting in food allergy (FA) and anaphylaxis1,2. However, the mechanisms resulting in both the maintenance and failure of tolerance to food antigens are poorly understood. Here we demonstrate that the goblet-cell-derived resistin-like molecule β (RELMβ)3,4 is a critical regulator of oral tolerance. RELMβ is abundant in the sera of both patients with FA and mouse models of FA. Deletion of RELMβ protects mice from FA and the development of food-antigen-specific IgE and anaphylaxis. RELMβ disrupts food tolerance through the modulation of the gut microbiome and depletion of indole-metabolite-producing Lactobacilli and Alistipes. Tolerance is maintained by the local production of indole derivatives driving FA protective RORγt+ regulatory T (Treg) cells5 through activation of the aryl hydrocarbon receptor. RELMβ antagonism in the peri-weaning period restores oral tolerance and protects genetically prone offspring from developing FA later in life. Together, we show that RELMβ mediates a gut immune-epithelial circuit regulating tolerance to food antigens-a novel mode of innate control of adaptive immunity through microbiome editing-and identify targetable candidates in this circuit for prevention and treatment of FA.
Collapse
Affiliation(s)
- Emmanuel Stephen-Victor
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Gavin A Kuziel
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Monica Martinez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Bat-Erdene Jugder
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Ziwei Wang
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Gabriel L Lozano
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Azza Abdel-Gadir
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Ye Cui
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Jason Fong
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Elisa Saint-Denis
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - Iris Chang
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wanda Phipatanakul
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Angela Zhang
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Farida Abi Farraj
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Faye Holder-Niles
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Division of General Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Daniel Zeve
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - David T Breault
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Klaus Schmitz-Abe
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL, USA
| | - Rima Rachid
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Elena Crestani
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Seth Rakoff-Nahoum
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
9
|
Zhang L, Chun Y, Grishina G, Lo T, Reed K, Wang J, Sicherer S, Berin MC, Bunyavanich S. Oral and Gut Microbial Hubs Associated With Reaction Threshold Interact With Circulating Immune Factors in Peanut Allergy. Allergy 2025. [PMID: 39887792 DOI: 10.1111/all.16481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 02/01/2025]
Abstract
BACKGROUND Among peanut-allergic individuals, there is high variability in the amount of peanut that triggers reactions (i.e., reaction threshold) that is not predictable or well-understood. We conducted this study to characterize relationships between the oral and gut microbiomes and systemic processes associated with reaction threshold in peanut allergy (PA). METHODS In a cohort of 120 children with suspected PA who underwent double-blind, placebo-controlled food challenges, we generated and analyzed parallel profiles of the oral microbiome, gut microbiome, peripheral blood transcriptome, peripheral blood cytometry, and serum antibody levels to identify threshold-associated markers and their inter-relationships. RESULTS The 120 participants included 23 children with no PA, 74 with high-threshold PA (reacting to ≥ 443 mg cumulative peanut protein), and 23 with low-threshold PA (reacting to < 443 mg cumulative peanut protein). Ten hub microbes were each identified in saliva and stool microbiome networks that were constructed, including the hub microbes Rothia aeria in saliva and Bacteroides sp. in stool that were associated with reaction threshold. These hub microbes were also associated with peripheral blood transcript levels for threshold-associated key drivers of FcγR-mediated phagocytosis and TLR signaling. Correlation network construction with additional data on threshold-associated peripheral blood neutrophil abundance and peanut-specific serum IgE and Ara h 2 antibody levels revealed central roles for saliva Rothia aeria and stool Bacteroides sp. in local-systemic networks for IgE- and IgG-mediated peanut allergy. CONCLUSIONS This integrated study of oral and stool microbiomes, blood transcriptome, cellular profiles, and peanut-specific serum antibodies revealed new relationships between local microbiota and systemic measures associated with reaction threshold in peanut allergy.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yoojin Chun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Galina Grishina
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tracy Lo
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kyle Reed
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julie Wang
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Scott Sicherer
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - M Cecilia Berin
- Division of Allergy and Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Illinois, USA
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
10
|
Valitutti F, Mennini M, Monacelli G, Fagiolari G, Piccirillo M, Di Nardo G, Di Cara G. Intestinal permeability, food antigens and the microbiome: a multifaceted perspective. FRONTIERS IN ALLERGY 2025; 5:1505834. [PMID: 39850945 PMCID: PMC11754301 DOI: 10.3389/falgy.2024.1505834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
The gut barrier encompasses several interactive, physical, and functional components, such as the gut microbiota, the mucus layer, the epithelial layer and the gut mucosal immunity. All these contribute to homeostasis in a well-regulated manner. Nevertheless, this frail balance might be disrupted for instance by westernized dietary habits, infections, pollution or exposure to antibiotics, thus diminishing protective immunity and leading to the onset of chronic diseases. Several gaps of knowledge still exist as regards this multi-level interaction. In this review we aim to summarize current evidence linking food antigens, microbiota and gut permeability interference in diverse disease conditions such as celiac disease (CeD), non-celiac wheat sensitivity (NCWS), food allergies (FA), eosinophilic gastrointestinal disorder (EOGID) and irritable bowel syndrome (IBS). Specific food elimination diets are recommended for CeD, NCWS, FA and in some cases for EOGID. Undoubtfully, each of these conditions is very different and quite unique, albeit food antigens/compounds, intestinal permeability and specific microbiota signatures orchestrate immune response and decide clinical outcomes for all of them.
Collapse
Affiliation(s)
- Francesco Valitutti
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Maurizio Mennini
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Gianluca Monacelli
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| | - Giulia Fagiolari
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| | - Marisa Piccirillo
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Giovanni Di Nardo
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Giuseppe Di Cara
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| |
Collapse
|
11
|
Cerovic V, Pabst O, Mowat AM. The renaissance of oral tolerance: merging tradition and new insights. Nat Rev Immunol 2025; 25:42-56. [PMID: 39242920 DOI: 10.1038/s41577-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/09/2024]
Abstract
Oral tolerance is the process by which feeding of soluble proteins induces antigen-specific systemic immune unresponsiveness. Oral tolerance is thought to have a central role in suppressing immune responses to 'harmless' food antigens, and its failure can lead to development of pathologies such as food allergies or coeliac disease. However, on the basis of long-standing experimental observations, the relevance of oral tolerance in human health has achieved new prominence recently following the discovery that oral administration of peanut proteins prevents the development of peanut allergy in at-risk human infants. In this Review, we summarize the new mechanistic insights into three key processes necessary for the induction of tolerance to oral antigens: antigen uptake and transport across the small intestinal epithelial barrier to the underlying immune cells; the processing, transport and presentation of fed antigen by different populations of antigen-presenting cells; and the development of immunosuppressive T cell populations that mediate antigen-specific tolerance. In addition, we consider how related but distinct processes maintain tolerance to bacterial antigens in the large intestine. Finally, we outline the molecular mechanisms and functional consequences of failure of oral tolerance and how these may be modulated to enhance clinical outcomes and prevent disease.
Collapse
Affiliation(s)
- Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Allan McI Mowat
- School of Infection and Immunity, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
12
|
Ionescu E, Nagler CR. The role of intestinal bacteria in promoting tolerance to food. Curr Opin Immunol 2024; 91:102492. [PMID: 39326201 DOI: 10.1016/j.coi.2024.102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
The global prevalence of atopic diseases, including food allergy, is increasing and correlates with shifts in the commensal microbiota triggered by modern lifestyle factors. Current research focuses on the immunological mechanisms and microbial cues that regulate mucosal immunity and prevent allergic responses to food. We review the identification and characterization of novel antigen-presenting cell subsets that may be critical for the establishment and maintenance of tolerance to both food and intestinal bacteria. Microbially derived products, particularly from the Lachnospiraceae family of Clostridia, regulate intestinal homeostasis through a variety of mechanisms. Here, we highlight recent work on Clostridial metabolites and products that mediate protection against allergic responses to food.
Collapse
Affiliation(s)
- Edward Ionescu
- Pritzker School of Molecular Engineering, University of Chicago, USA.
| | - Cathryn R Nagler
- Pritzker School of Molecular Engineering, University of Chicago, USA; Biological Sciences Division, University of Chicago, 924 E 57th Street, R402, Chicago, IL, 60637, USA
| |
Collapse
|
13
|
Feng L, Guo Z, Yao W, Mu G, Zhu X. Metagenomics and Untargeted Metabolomics Analysis Revealed the Probiotic and Postbiotic Derived from Lactiplantibacillus plantarum DPUL F232 Alleviate Whey Protein-Induced Food Allergy by Reshaping Gut Microbiota and Regulating Key Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25436-25448. [PMID: 39485064 DOI: 10.1021/acs.jafc.4c08203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Postbiotics have emerged as a promising alternative to probiotics. However, it remains unclear whether postbiotics can exert regulatory effects on intestinal flora and metabolism as probiotics. Thus, we investigated the effects of probiotic and postbiotic in rats with whey protein-induced food allergy, which demonstrated that postbiotic intervention effectively alleviated allergy symptoms, reduced serum immunoglobulin E (IgE) and mast cell protease-1 (mMCP-1) levels, and regulated the type helper 1 cell/2 cell (Th1/Th2) balance in both serum and spleen. Metagenomic analysis revealed that postbiotics induced more significant changes in intestinal flora. Untargeted metabolomics analysis showed that both probiotics and postbiotics significantly up-regulated various differential metabolites, which were negatively correlated with immune indices, including malvidin-3-glucoside, 3,4-dihydroxymandelic acid, nicotinamide, triterpenoids, pirbuterol, and 4-hydroxybenzoic acid. This study confirms that postbiotics can alleviate food allergies and regulate intestinal flora and metabolites, which provides a valuable reference for the use of postbiotics in mitigating allergic diseases through gut microbiota and metabolite modulation.
Collapse
Affiliation(s)
- Lu Feng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P. R. China
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian, Liaoning 116034, P. R. China
| | - Zihao Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P. R. China
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian, Liaoning 116034, P. R. China
| | - Wenpu Yao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P. R. China
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian, Liaoning 116034, P. R. China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P. R. China
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian, Liaoning 116034, P. R. China
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P. R. China
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian, Liaoning 116034, P. R. China
| |
Collapse
|
14
|
Augustine T, Murugesan S, Badri F, Gentilcore G, Grivel JC, Akobeng A, Elawad M, Adeli M, Al Khodor S, van Panhuys N. Immunoglobulin-coating patterns reveal altered humoral responses to gut bacteria in pediatric cow milk allergies. J Transl Med 2024; 22:1021. [PMID: 39533360 PMCID: PMC11558889 DOI: 10.1186/s12967-024-05850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Pediatric cow milk allergies (CMA) can occur in immunoglobulin (Ig) E and non-IgE-mediated forms. Unlike IgE-mediated allergies, the mechanisms of disease pathogenesis in non-IgE-mediated food allergy and an association with microbiome has not been well established. Previous studies have identified the presence of altered humoral responses to gut bacteria in IgE mediated allergies. Here, we analyzed IgA, IgE and IgG responses to gut bacteria in subjects with either IgE or non-IgE mediated CMA to identify relative proportions of Ig-coated bacteria and characterize unique disease specific microbial signatures. METHODS Multi-parametric flow cytometry analysis was used to identify IgA, IgE and IgG responses to gut bacteria in CMA patients. Cell sorting of Ig coated gut bacteria was subsequently performed followed by high throughput 16S rRNA gene sequencing and specific patterns of humoral responses to gut bacteria assessed in each study group. RESULTS We identified significant alterations in IgA and IgG gut bacterial coating patterns in CMA subjects. Proportions of IgA-coated bacteria were decreased in IgE mediated CMA subjects without atopic dermatitis (ALL) and non-IgE mediated CMA subjects (ENP), compared to healthy controls (CON). In comparison, IgG-coated bacteria was significantly elevated in CMA subjects with atopic dermatitis (AD). Alpha and beta diversities displayed significant differences in IgA-, IgE-, and IgG-coated bacteria in AD and ENP groups. Significant differences in bacteria coated by IgA, IgE and IgG were detected at Phyla, Genus and Species levels and associated bacterial dysbiosis in IgE and non-IgE mediated allergies were identified. Linear discriminant analysis (LDA) effect size (LEFse) revealed unique disease associated bacterial signatures, including several pathogenic bacteria namely Bacteroides fragilis, Ruminococcus gnavus, Eubacterium dolichum, Fusobacterium, Clostridium neonatale and Robinsoniella peoriensis. Receiver operating characteristic curve analysis confirmed the efficiency of using the bacterial signatures identified as biomarkers for disease. CONCLUSIONS Altered IgA and IgG responses to gut bacteria were identified in CMA subjects. The disease-specific responses were associated with alterations in bacterial diversity and concomitant dysbiosis of Ig-coated bacteria in IgE-mediated and non-IgE-mediated CMA pediatric subjects. The identification of pathogenic bacteria uniquely associated with different classes of allergic disease indicates a role of these bacteria in driving disease-specific pathological phenotypes.
Collapse
Affiliation(s)
| | | | - Fariada Badri
- Laboratory of Immunoregulation, Sidra Medicine, Doha, Qatar
| | | | | | | | - Mamoun Elawad
- Department of Gastroenterology, Sidra Medicine, Doha, Qatar
| | - Mehdi Adeli
- Department of Allergy/Immunology, Sidra Medicine, Doha, Qatar
| | - Souhaila Al Khodor
- Microbiome and Host-Microbes Interactions Laboratory, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
15
|
Geiselhöringer AL, Kolland D, Patt AJ, Hammann L, Köhler A, Kreft L, Wichmann N, Hils M, Ruedl C, Riemann M, Biedermann T, Anz D, Diefenbach A, Voehringer D, Schmidt-Weber CB, Straub T, Pasztoi M, Ohnmacht C. Dominant immune tolerance in the intestinal tract imposed by RelB-dependent migratory dendritic cells regulates protective type 2 immunity. Nat Commun 2024; 15:9143. [PMID: 39443450 PMCID: PMC11500181 DOI: 10.1038/s41467-024-53112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Dendritic cells (DCs) are crucial for initiating protective immune responses and have also been implicated in the generation and regulation of Foxp3+ regulatory T cells (Treg cells). Here, we show that in the lamina propria of the small intestine, the alternative NF-κB family member RelB is necessary for the differentiation of cryptopatch and isolated lymphoid follicle-associated DCs (CIA-DCs). Moreover, single-cell RNA sequencing reveals a RelB-dependent signature in migratory DCs in mesenteric lymph nodes favoring DC-Treg cell interaction including elevated expression and release of the chemokine CCL22 from RelB-deficient conventional DCs (cDCs). In line with the key role of CCL22 to facilitate DC-Treg cell interaction, RelB-deficient DCs have a selective advantage to interact with Treg cells in an antigen-specific manner. In addition, DC-specific RelB knockout animals show increased total Foxp3+ Treg cell numbers irrespective of inflammatory status. Consequently, DC-specific RelB knockout animals fail to mount protective Th2-dominated immune responses in the intestine after infection with Heligmosomoides polygyrus bakeri. Thus, RelB expression in cDCs acts as a rheostat to establish a tolerogenic set point that is maintained even during strong type 2 immune conditions and thereby is a key regulator of intestinal homeostasis.
Collapse
Affiliation(s)
- Anna-Lena Geiselhöringer
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Daphne Kolland
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Arisha Johanna Patt
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Linda Hammann
- Division of Clinical Pharmacology, LMU University Hospital, LMU, Munich, Germany
| | - Amelie Köhler
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Luisa Kreft
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076, Tuebingen, Germany
| | - Nina Wichmann
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Marc Riemann
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - David Anz
- Division of Clinical Pharmacology, LMU University Hospital, LMU, Munich, Germany
- Department of Medicine II, LMU University Hospital, LMU, Munich, Germany
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, 12203, Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, 91054, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
- Member of the German Center of Lung Research (DZL), Partner Site Munich, Munich, Germany
| | - Tobias Straub
- Bioinformatics Core Unit, Biomedical Center, Ludwig-Maximilians-University, 82152, Planegg, Germany
| | - Maria Pasztoi
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany.
| |
Collapse
|
16
|
Han K, Xie F, Animasahun O, Nenwani M, Kitamoto S, Kim Y, Phoo MT, Xu J, Wuchu F, Omoloja K, Achreja A, Choppara S, Li Z, Gong W, Cho YS, Dobson H, Ahn J, Zhou X, Huang X, An X, Kim A, Xu Y, Wu Q, Lee SH, O'Konek JJ, Xie Y, Lei YL, Kamada N, Nagrath D, Moon JJ. Inulin-gel-based oral immunotherapy remodels the small intestinal microbiome and suppresses food allergy. NATURE MATERIALS 2024; 23:1444-1455. [PMID: 38977883 PMCID: PMC11442122 DOI: 10.1038/s41563-024-01909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/30/2024] [Indexed: 07/10/2024]
Abstract
Despite the potential of oral immunotherapy against food allergy, adverse reactions and loss of desensitization hinder its clinical uptake. Dysbiosis of the gut microbiota is implicated in the increasing prevalence of food allergy, which will need to be regulated to enable for an effective oral immunotherapy against food allergy. Here we report an inulin gel formulated with an allergen that normalizes the dysregulated ileal microbiota and metabolites in allergic mice, establishes allergen-specific oral tolerance and achieves robust oral immunotherapy efficacy with sustained unresponsiveness in food allergy models. These positive outcomes are associated with enhanced allergen uptake by antigen-sampling dendritic cells in the small intestine, suppressed pathogenic type 2 immune responses, increased interferon-γ+ and interleukin-10+ regulatory T cell populations, and restored ileal abundances of Eggerthellaceae and Enterorhabdus in allergic mice. Overall, our findings underscore the therapeutic potential of the engineered allergen gel as a suitable microbiome-modulating platform for food allergy and other allergic diseases.
Collapse
Affiliation(s)
- Kai Han
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Fang Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Olamide Animasahun
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Minal Nenwani
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sho Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yeji Kim
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - May Thazin Phoo
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fulei Wuchu
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kehinde Omoloja
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Abhinav Achreja
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Srinadh Choppara
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhaoheng Li
- Graduate Program in Biostatistics, University of Washington, Seattle, WA, USA
| | - Wang Gong
- Departments of Head and Neck Surgery and of Cancer Biology, the University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Young Seok Cho
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Hannah Dobson
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jinsung Ahn
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xuehui Huang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xinran An
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Yao Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Qi Wu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Yuying Xie
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Statistics and Probability, Michigan State University, East Lansang, MI, USA
| | - Yu Leo Lei
- Departments of Head and Neck Surgery and of Cancer Biology, the University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Deepak Nagrath
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Chen Y, Wen Y, Zhao R, Zhu Y, Chen Z, Zhao C, Mu W. Human milk oligosaccharides in preventing food allergy: A review through gut microbiota and immune regulation. Int J Biol Macromol 2024; 278:134868. [PMID: 39163965 DOI: 10.1016/j.ijbiomac.2024.134868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Food allergy (FA) has increasingly attracted global attention in past decades. However, the mechanism and effect of FA are complex and varied, rendering it hard to prevention and management. Most of the allergens identified so far are macromolecular proteins in food and may have potential cross-reactions. Human milk oligosaccharides (HMOs) have been regarded as an ideal nutrient component for infants, as they can enhance the immunomodulatory capacity to inhibit the progress of FA. HMOs may intervene in the development of allergies by modifying gut microbiota and increasing specific short-chain fatty acids levels. Additionally, HMOs could improve the intestinal permeability and directly or indirectly regulate the balance of T helper cells and regulatory T cells by enhancing the inflammatory signaling pathways to combat FA. This review will discuss the influence factors of FA, key species of gut microbiota involved in FA, types of FA, and profiles of HMOs and provide evidence for future research trends to advance HMOs as potential therapeutic aids in preventing the progress of FA.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
| | - Runfan Zhao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhengxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
18
|
Huang J, Wang X, Zhang J, Li Q, Zhang P, Wu C, Jia Y, Su H, Sun X. Fecal microbiota transplantation alleviates food allergy in neonatal mice via the PD-1/PD-L1 pathway and change of the microbiota composition. World Allergy Organ J 2024; 17:100969. [PMID: 39403173 PMCID: PMC11471638 DOI: 10.1016/j.waojou.2024.100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/08/2024] [Accepted: 08/24/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Food allergy (FA) is a common disorder in children and affects the health of children worldwide. The gut microbiota is closely related to the occurrence and development of FA. Fecal microbiota transplantation (FMT) is a way to treat diseases by reconstituting the microbiota; however, the role and mechanisms of FA have not been validated. METHODS In this study, we established an ovalbumin (OVA)-induced juvenile mouse model and used 16S RNA sequencing, pathological histological staining, molecular biology, and flow-through techniques to evaluate the protective effects of FMT treatment on FA and to explore the mechanisms. RESULTS OVA-induced dysregulation of the gut microbiota led to impaired intestinal function and immune dysregulation in FA mice. FMT treatment improved the structure, diversity, and composition of the gut microbiota and restored it to a near-donor state. FMT treatment reduced levels of Th2-associated inflammatory factors, decreased intestinal tissue inflammation, and reduced IgE production. In addition, FMT reduced the number of mast cells and eosinophils and suppressed OVA-specific antibodies. Further mechanistic studies revealed that FMT treatment induced immune tolerance by inducing the expression of CD103+DCs and programmed cell death ligand 1 (PD-L1) in mesenteric lymph nodes and promoting the production of Treg through the programmed cell death protein 1 (PD-1)/PD-L1 pathway. Meanwhile, Th2 cytokines, OVA-specific antibodies, and PD-1/PD-L1 showed a significant correlation with the gut microbiota. CONCLUSIONS FMT could regulate the gut microbiota and Th1/Th2 immune balance and might inhibit FA through the PD-1/PD-L1 pathway, which would provide a new idea for the treatment of FA.
Collapse
Affiliation(s)
- Jinli Huang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xingzhi Wang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Juan Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qiuhong Li
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Panpan Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Cheng Wu
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yuanyuan Jia
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
19
|
Davis KL, Claudio-Etienne E, Frischmeyer-Guerrerio PA. Atopic dermatitis and food allergy: More than sensitization. Mucosal Immunol 2024; 17:1128-1140. [PMID: 38906220 PMCID: PMC11471387 DOI: 10.1016/j.mucimm.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The increased risk of food allergy in infants with atopic dermatitis (AD) has long been recognized; an epidemiologic phenomenon termed "the atopic march." Current literature supports the hypothesis that food antigen exposure through the disrupted skin barrier in AD leads to food antigen-specific immunoglobulin E production and food sensitization. However, there is growing evidence that inflammation in the skin drives intestinal remodeling via circulating inflammatory signals, microbiome alterations, metabolites, and the nervous system. We explore how this skin-gut axis helps to explain the link between AD and food allergy beyond sensitization.
Collapse
Affiliation(s)
- Katelin L Davis
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Comparative Biomedical Scientist Training Program, The Molecular Pathology Unit, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, The National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Comparative Pathobiology Department, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Estefania Claudio-Etienne
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Zeng H, Xu L, Liu J, Mo L, Li M, Song S, Xu X, Miao S, Zhao M, Yang P. Regulation of Tert methylation alleviates food allergy via regulating the Tert-IL10 signal pathway. Immunol Res 2024; 72:1018-1029. [PMID: 39034374 DOI: 10.1007/s12026-024-09504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The cause of food allergy (FA) is still a mystery. Telomerases are involved in the regulation of immune responses. This study aims to gain an understanding of the contribution of telomerase reverse transcriptase (TERT) to the pathogenesis of FA. METHODS A murine FA model was established with ovalbumin as the specific antigen. The role of TERT in regulating dendritic cell (DC) immune tolerogenic functions was evaluated in this murine model. RESULTS We observed that the Tert promoter was at demethylation status and the Tert expression was elevated in DCs of FA mice. The Tert expression in DCs had a positive correlation with the FA response. TERT prevented the induction of Il10 expression in DCs. The immune tolerogenic functions of DCs were diminished by TERT. The immune tolerogenic functions of DC were restored by CpG by boosting the Tert promoter methylation. Administration of CpG promoted the therapeutic effects of allergen specific immunotherapy in FA mice. CONCLUSIONS Low levels of Il10 expression and high levels of Tert expression were observed in intestinal DCs of FA mice. CpG exposure restored the expression of Il10 and increased the therapeutic benefits of allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Haotao Zeng
- Department of Allergy, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Lingzhi Xu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Jiangqi Liu
- Department of Allergy, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Lihua Mo
- State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University and Institute of Allergy & Immunology of Shenzhen University, Room A7-509 at Lihu Campus of Shenzhen University. 1066 Xueyuan Blvd, Shenzhen, 518055, China
- Department of General Practice Medicine, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Minyao Li
- State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University and Institute of Allergy & Immunology of Shenzhen University, Room A7-509 at Lihu Campus of Shenzhen University. 1066 Xueyuan Blvd, Shenzhen, 518055, China
- Department of General Practice Medicine, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Shuo Song
- State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University and Institute of Allergy & Immunology of Shenzhen University, Room A7-509 at Lihu Campus of Shenzhen University. 1066 Xueyuan Blvd, Shenzhen, 518055, China
- Department of General Practice Medicine, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Xuejie Xu
- State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University and Institute of Allergy & Immunology of Shenzhen University, Room A7-509 at Lihu Campus of Shenzhen University. 1066 Xueyuan Blvd, Shenzhen, 518055, China
| | - Shihan Miao
- Shenzhen Senior High School Group, Shenzhen, China
| | - Miao Zhao
- Department of Allergy, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China.
| | - Pingchang Yang
- State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University and Institute of Allergy & Immunology of Shenzhen University, Room A7-509 at Lihu Campus of Shenzhen University. 1066 Xueyuan Blvd, Shenzhen, 518055, China.
| |
Collapse
|
21
|
Farnetano M, Carucci L, Coppola S, Oglio F, Masino A, Cozzolino M, Nocerino R, Berni Canani R. Gut microbiome features in pediatric food allergy: a scoping review. FRONTIERS IN ALLERGY 2024; 5:1438252. [PMID: 39386092 PMCID: PMC11461474 DOI: 10.3389/falgy.2024.1438252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024] Open
Abstract
Increasing evidence suggests that alterations in the gut microbiome (GM) play a pivotal role in the pathogenesis of pediatric food allergy (FA). This scoping review analyzes the current evidence on GM features associated with pediatric FAs and highlights the importance of the GM as a potential target of intervention for preventing and treating this common condition in the pediatric age. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, we searched PubMed and Embase using the keywords (gut microbiome OR dysbiosis OR gut microbiota OR microbiome signatures) AND (food allergy OR IgE-mediated food allergy OR food protein-induced allergic proctocolitis OR food protein-induced enterocolitis OR non-IgE food allergy OR cow milk allergy OR hen egg allergy OR peanut allergy OR fish allergy OR shellfish allergy OR tree nut allergy OR soy allergy OR wheat allergy OR rice allergy OR food sensitization). We included 34 studies reporting alterations in the GM in children affected by FA compared with healthy controls. The GM in pediatric FAs is characterized by a higher abundance of harmful microorganisms (e.g., Enterobacteriaceae, Clostridium sensu stricto, Ruminococcus gnavus, and Blautia spp.) and lower abundance of beneficial bacteria (e.g., Bifidobacteriaceae, Lactobacillaceae, some Bacteroides species). Moreover, we provide an overview of the mechanisms of action elicited by these bacterial species in regulating immune tolerance and of the main environmental factors that can modulate the composition and function of the GM in early life. Altogether, these data improve our knowledge of the pathogenesis of FA and can open the way to innovative diagnostic, preventive, and therapeutic strategies for managing these conditions.
Collapse
Affiliation(s)
- Margherita Farnetano
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Antonio Masino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Marica Cozzolino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
| |
Collapse
|
22
|
Bai T, Shao H, Yang F, Zhang X, Tong P, Meng X, Wu Y, Chen H, Li X. Maternal High-Fat Diet Exacerbates Epicutaneous Sensitization and Oral Challenge-Induced Food Allergy to Ovalbumin in Offspring Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21240-21253. [PMID: 39261017 DOI: 10.1021/acs.jafc.4c05373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Dietary factors have been associated with an increased prevalence of food allergy (FA). However, little is known about how an unhealthy diet in early life affects FA reactions in offspring. The objective of this study is to provide a scientific foundation for developing and promoting healthy dietary patterns in early life. In this study, we found that maternal high-fat diet (HFD) during pregnancy and lactation exacerbates FA (HFD-FA) in offspring mice, leading to increased serum levels of mast cell protease 1. First, we studied the systemic immunity of the HFD-FA mice and observed elevated levels of proinflammatory cytokines (IL-4, IL-6, and IL-1β) and a reduced frequency of Treg cells in splenocytes. Additionally, the HFD-FA mice showed increased gut permeability, accumulation of intestinal mast cells, and a decrease in the Treg cell frequency in the mesenteric lymph nodes. Furthermore, our findings also indicated a reduction in gut microbial diversity and abundance in HFD-FA mice. Importantly, lipid metabolism profiling revealed unique lipid profiles in the HFD-FA mice, with significant upregulation of triglycerides and downregulation of sphingolipids. Taken together, our results suggest that maternal HFD alters intestinal homeostasis and increases FA susceptibility in offspring mice.
Collapse
Affiliation(s)
- Tianliang Bai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Huming Shao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Fan Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330000, Jiangxi, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330000, Jiangxi, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330000, Jiangxi, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
23
|
Zitvogel L, Fidelle M, Kroemer G. Long-distance microbial mechanisms impacting cancer immunosurveillance. Immunity 2024; 57:2013-2029. [PMID: 39151425 DOI: 10.1016/j.immuni.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 08/19/2024]
Abstract
The intestinal microbiota determines immune responses against extraintestinal antigens, including tumor-associated antigens. Indeed, depletion or gross perturbation of the microbiota undermines the efficacy of cancer immunotherapy, thereby compromising the clinical outcome of cancer patients. In this review, we discuss the long-distance effects of the gut microbiota and the mechanisms governing antitumor immunity, such as the translocation of intestinal microbes into tumors, migration of leukocyte populations from the gut to the rest of the body, including tumors, as well as immunomodulatory microbial products and metabolites. The relationship between these pathways is incompletely understood, in particular the significance of the tumor microbiota with respect to the identification of host and/or microbial products that regulate the egress of bacteria and immunocytes toward tumor beds.
Collapse
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Équipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France.
| | - Marine Fidelle
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Équipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Université Paris-Saclay, Ile-de-France, France
| | - Guido Kroemer
- Gustave Roussy Cancer Campus, Villejuif, France; Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
24
|
Qiao C, Bian S, Huang H, Xiao H, Ma L, Han R. Impact of ovalbumin allergy on oral and gut microbiome dynamics in 6-week-old BALB/c mice. Front Microbiol 2024; 15:1439452. [PMID: 39290514 PMCID: PMC11406088 DOI: 10.3389/fmicb.2024.1439452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Background The gut microbiota is known to have a significant impact on the development of food allergy, and several recent studies have suggested that both oral microbiota, which first come into contact with allergenic foods, may have a profound influence on the development of food allergy. Methods In this study, we have established an ovalbumin-sensitive mice model by utilizing ovalbumin as a sensitizing agent. Subsequently, we performed a comprehensive analysis of the gut and oral microbiota in ovalbumin-sensitive mice and the control mice using full-length 16S rRNA sequencing analysis. Results Interestingly, both the gut and oral microbiota of ovalbumin-sensitized mice exhibited significant dysbiosis. The relative abundance of s__Lactobacillus_intestinalis in the gut microbiota of ovalbumin-sensitive mice exhibited a significant decrease, whereas the abundance of s__Agrobacterium_radiobacter and s__Acinetobacter_sp__CIP_56_2 displayed a significant increase. Furthermore, the relative abundance of s__unclassified_g__Staphylococcus, s__Streptococcus_hyointestinalis, and s__unclassified_g__Dechloromonas in the oral microbiota of ovalbumin-sensitive mice revealed a significant decrease. In contrast, the abundance of 63 other species, including s__Proteiniclasticum_ruminis, s__Guggenheimella_bovis, and s__Romboutsia_timonensis, demonstrated a significant increase. The random forest classifier achieved the best accuracy in predicting the outcome of food allergy using three gut and three oral biomarkers, with accuracies of 94.12 and 100%, respectively. Based on the predictions of the PICRUSt2 analysis, the only consistent finding observed across multiple samples from both the groups of mice was a significant up-regulation of the nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway in the ovalbumin-sensitized mice. Conclusion Our study demonstrates that ovalbumin-sensitized mice experience substantial alterations in both gut and oral microbial composition and structure, and specific strains identified in this study may serve as potential biomarkers for food allergy screening. Moreover, our findings highlight that the oral environment, under the same experimental conditions, exhibited greater precision in detecting a larger number of species. Additionally, it is worth noting that the NOD-like receptor signaling pathway plays a vital role in the pathogenesis of OVA (ovalbumin)-induced allergy. These findings will generate novel concepts and strategies in the realm of food allergy prevention and treatment.
Collapse
Affiliation(s)
- Chuanyue Qiao
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Stomatology, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, China
| | - Shuang Bian
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Hao Huang
- Department of Stomatology, Qingdao Eighth People's Hospital, Qingdao, China
| | - Han Xiao
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Lei Ma
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Rui Han
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Lee HY, Nazmul T, Lan J, Oyoshi MK. Maternal influences on offspring food allergy. Immunol Rev 2024; 326:130-150. [PMID: 39275992 PMCID: PMC11867100 DOI: 10.1111/imr.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
The prevalence of allergies has been globally escalating. While allergies could appear at any age, they often develop in early life. However, the significant knowledge gap in the field is the mechanisms by which allergies affect certain people but not others. Investigating early factors and events in neonatal life that have a lasting impact on determining the susceptibilities of children to develop allergies is a significant area of the investigation as it promotes the understanding of neonatal immune system that mediates tolerance versus allergies. This review focuses on the research over the recent 10 years regarding the potential maternal factors that influence offspring allergies with a view to food allergy, a potentially life-threatening cause of anaphylaxis. The role of breast milk, maternal diet, maternal antibodies, and microbiota that have been suggested as key maternal factors regulating offspring allergies are discussed here. We also suggest future research area to expand our knowledge of maternal-offspring interactions on the pathogenesis of food allergy.
Collapse
Affiliation(s)
- Hwa Yeong Lee
- Division of Pediatric Allergy, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Tanuza Nazmul
- Division of Pediatric Allergy, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA
| | - Jinggang Lan
- Division of Pediatric Allergy, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA
| | - Michiko K. Oyoshi
- Division of Pediatric Allergy, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Catassi G, Lener E, Grattagliano MM, Motuz S, Zavarella MA, Bibbò S, Cammarota G, Gasbarrini A, Ianiro G, Catassi C. The role of microbiome in the development of gluten-related disorders. Best Pract Res Clin Gastroenterol 2024; 72:101951. [PMID: 39645285 DOI: 10.1016/j.bpg.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 12/09/2024]
Abstract
Gluten-related disorders (GRD) include celiac disease (CD), non celiac gluten sensitivity (NCGS) and wheat allergy (WA), conditions that are associated with the ingestion of gluten-containing food. Gut microbiota composition and function may be involved in the pathogenesis of GRD. In untreated CD the microbiota is characterized by a reduction in beneficial microbes like Lactobacillus and Bifidobacterium and an increase in pathogenic ones such as Bacteroides and E. coli. Dysbiosis is a hallmark of CD, persists across various disease stages and is only partially corrected by a gluten-free diet. NCGS patients show a different microbial profile, with a notable decrease in microbial richness, and an increase of Ruminococcaceae and decrease of Bacteroidetes and Fusobacteria. The increase of certain bacterial groups such as Clostridium and Anaerobacter, in contrast with the decline of Bacteroides and Clostridium XVIII, marks a distinctive microbial signature associated with allergic responses to food. Mechanisms linking the gut microbiota to the development of GRD include effects on the gut barrier function, microbiota-mediated immune response to gluten, and an impact of microbial metabolites on gluten digestion and tolerance. Although the gluten-free diet is the primary therapy of GRDs, treatment with probiotics may contribute to improve the natural history of these disorders, for instance by minimizing the damaging effects of gluten contamination and accelerating the catch-up growth at the beginning of the dietary treatment of CD. Additional high-quality trials are still needed to identify and standardize the use of probiotics/prebiotics in GRDs.
Collapse
Affiliation(s)
- Giulia Catassi
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome - Umberto I Hospital, Rome, Italy
| | - Elena Lener
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Maria Maddalena Grattagliano
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Sofya Motuz
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Maria Antonietta Zavarella
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Stefano Bibbò
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Carlo Catassi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, USA.
| |
Collapse
|
27
|
Miranda-Waldetario MC, Curotto de Lafaille MA. Oral tolerance to dietary antigens and Foxp3 + regulatory T cells. Immunol Rev 2024; 326:8-16. [PMID: 39054615 PMCID: PMC11436310 DOI: 10.1111/imr.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Immune tolerance to foods develops in the intestine upon food ingestion and is essential to prevent IgE-mediated food allergy and gut inflammation. In homeostasis, the intestine is a tolerogenic environment that favors the formation of food-specific Foxp3+ regulatory T cells. A tolerogenic intestinal environment depends on colonization by diverse microbiota and exposure to solid foods at a critical period in early life. These early immune responses lead to the induction of antigen-specific Foxp3+ regulatory T cells in draining mesenteric lymph nodes. These peripherally induced regulatory cells circulate and seed the lamina propria of the gut, exerting suppressive function systemically and locally in the intestine. Successful establishment of a tolerogenic intestinal environment in early life sets the stage for oral tolerance to new antigens in adult life.
Collapse
Affiliation(s)
- Mariana C.G. Miranda-Waldetario
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, and Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria A. Curotto de Lafaille
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, and Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
28
|
Light SH, Nagler CR. Regulation of immune responses to food by commensal microbes. Immunol Rev 2024; 326:203-218. [PMID: 39285525 PMCID: PMC11472335 DOI: 10.1111/imr.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The increasing prevalence of immune-mediated non-communicable chronic diseases, such as food allergies, has prompted a deeper investigation into the role of the gut microbiome in modulating immune responses. Here, we explore the complex interactions between commensal microbes and the host immune system, highlighting the critical role of gut bacteria in maintaining immune homeostasis. We examine how modern lifestyle practices and environmental factors have disrupted co-evolved host-microbe interactions and discuss how changes in microbiome composition impact epithelial barrier function, responses to food allergens, and susceptibility to allergic diseases. Finally, we examine the potential of bioengineered microbiome-based therapies, and live biotherapeutic products, for reestablishing immune homeostasis to prevent or treat food allergies.
Collapse
Affiliation(s)
- Samuel H. Light
- Department of Microbiology, University of Chicago, Chicago IL, 60637
| | - Cathryn R. Nagler
- Department of Pathology, University of Chicago, Chicago IL, 60637
- Department of Biological Sciences Division, Pritzker School of Molecular Engineering, University of Chicago, Chicago IL, 60637
| |
Collapse
|
29
|
Hung L, Zientara B, Berin MC. Contribution of T cell subsets to different food allergic diseases. Immunol Rev 2024; 326:35-47. [PMID: 39054597 DOI: 10.1111/imr.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Food allergies occur due to a lack of tolerance to the proteins found in foods. While IgE- and non-IgE-mediated food allergies have different clinical manifestations, epidemiology, pathophysiology, and management, they share dysregulated T cell responses. Recent studies have shed light on the contributions of different T cell subsets to the development and persistence of different food allergic diseases. This review discusses the role of T cells in both IgE- and non-IgE-mediated food allergies and considers the potential future investigations in this context.
Collapse
Affiliation(s)
- Lisa Hung
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brianna Zientara
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - M Cecilia Berin
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
30
|
Davis EC, Monaco CL, Insel R, Järvinen KM. Gut microbiome in the first 1000 days and risk for childhood food allergy. Ann Allergy Asthma Immunol 2024; 133:252-261. [PMID: 38494114 PMCID: PMC11344696 DOI: 10.1016/j.anai.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVE To summarize recent data on the association between gut microbiome composition and food allergy (FA) in early childhood and highlight potential host-microbiome interactions that reinforce or abrogate oral tolerance. DATA SOURCES PubMed search of English-language articles related to FA, other atopic disease, and the gut microbiome in pregnancy and early childhood. STUDY SELECTIONS Human studies published after 2015 assessing the relationship between the gut bacteriome and virome in the first 2 years of life and FA or food sensitization development in early childhood were prioritized. Additional human studies conducted on the prenatal gut microbiome or other atopic diseases and preclinical studies are also discussed. RESULTS Children who developed FA harbored lower abundances of Bifidobacterium and Clostridia species and had a less mature microbiome during infancy. The early bacterial microbiome protects against FA through production of anti-inflammatory metabolites and induction of T regulatory cells and may also affect FA risk through a role in trained immunity. Infant enteric phage communities are related to childhood asthma development, though no data are available for FA. Maternal gut microbiome during pregnancy is associated with childhood FA risk, potentially through transplacental delivery of maternal bacterial metabolites, though human studies are lacking. CONCLUSION The maternal and infant microbiomes throughout the first 1000 days of life influence FA risk through a number of proposed mechanisms. Further large, longitudinal cohort studies using taxonomic, functional, and metabolomic analysis of the bacterial and viral microbiomes are needed to provide further insight on the host-microbe interactions underlying FA pathogenesis in childhood.
Collapse
Affiliation(s)
- Erin C Davis
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York
| | - Cynthia L Monaco
- Division of Infectious Disease, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Richard Insel
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York; Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.
| |
Collapse
|
31
|
Martinez-Blanco M, Mukhatayev Z, Chatila TA. Pathogenic mechanisms in the evolution of food allergy. Immunol Rev 2024; 326:219-226. [PMID: 39285835 PMCID: PMC11488529 DOI: 10.1111/imr.13398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The early development of the neonatal immune system is profoundly influenced by exposure to dietary and microbial antigens, which shapes mucosal tolerance. Successful oral tolerance induction is crucially dependent on microbially imprinted immune cells, most notably the RORγt+ regulatory T (Treg) and antigen presenting cells and is essential for preventing food allergy (FA). The development of FA can be envisioned to result from disruptions at key checkpoints (CKPTs) that govern oral tolerance induction. These include gut epithelial sensory and effector circuits that when dysregulated promote pro-allergic gut dysbiosis. They also include microbially imprinted immune regulatory circuits that are disrupted by dysbiosis and pro-allergic immune responses unleashed by the dysregulation of the aforementioned cascades. Understanding these checkpoints is essential for developing therapeutic strategies to restore immune homeostasis in FA.
Collapse
Affiliation(s)
- Monica Martinez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhussipbek Mukhatayev
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Ferček I, Ozretić P, Tambić-Andrašević A, Trajanoski S, Ćesić D, Jelić M, Geber G, Žaja O, Paić J, Lugović-Mihić L, Čivljak R. Comparison of the Skin Microbiota in the Periocular Region between Patients with Inflammatory Skin Diseases and Healthy Participants: A Preliminary Study. Life (Basel) 2024; 14:1091. [PMID: 39337875 PMCID: PMC11433335 DOI: 10.3390/life14091091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
(1) Background: Periocular or periorbital dermatitis is a common term for all inflammatory skin diseases affecting the area of skin around the eyes. The clear etiopathogenesis of periocular dermatitis is still not fully understood. Advances in molecular techniques for studying microorganisms living in and on our bodies have highlighted the microbiome as a possible contributor to disease, as well as a promising diagnostic marker and target for innovative treatments. The aim of this study was to compare the composition and diversity of the skin microbiota in the periocular region between healthy individuals and individuals affected by the specific entity of periocular dermatitis. (2) Methods: A total of 35 patients with periocular dermatitis and 39 healthy controls were enrolled in the study. After a skin swab from the periocular region was taken from all participants, DNA extraction and 16S rRNA gene amplicon sequencing using Illumina NovaSeq technology were performed. (3) Results: Staphylococcus and Corynebacterium were the most abundant bacterial genera in the microbiota of healthy skin. Analysis of alpha diversity revealed a statistically significant change (p < 0.05) in biodiversity based on the Faith's PD index between patients and healthy individuals. We did not observe changes in beta diversity. The linear discriminant analysis effect size (LEfSe) revealed that Rothia, Corynebacterium, Bartonella, and Paracoccus were enriched in patients, and Anaerococcus, Bacteroides, Porphyromonas, and Enhydrobacter were enriched in healthy controls. (4) Conclusions: According to the results obtained, we assume that the observed changes in the bacterial microbiota on the skin, particularly Gram-positive anaerobic cocci and skin commensals of the genus Corynebacterium, could be one of the factors in the pathogenesis of the investigated inflammatory diseases. The identified differences in the microbiota between healthy individuals and patients with periocular dermatitis should be further investigated.
Collapse
Affiliation(s)
- Iva Ferček
- Department of Ophthalmology, Zabok General Hospital and Croatian Veterans’ Hospital, 49210 Zabok, Croatia
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Arjana Tambić-Andrašević
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.T.-A.); (G.G.); (O.Ž.); (L.L.-M.)
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Center for Medical Research, Medical University Graz, 8010 Graz, Austria;
| | - Diana Ćesić
- Department of Dermatology and Venereology, Medikol Clinic, 10000 Zagreb, Croatia;
| | - Marko Jelić
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Goran Geber
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.T.-A.); (G.G.); (O.Ž.); (L.L.-M.)
- Department of Otorhinolaryngology and Head and Neck Surgery, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Orjena Žaja
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.T.-A.); (G.G.); (O.Ž.); (L.L.-M.)
- Department of Pediatrics, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Josipa Paić
- Department of Ophthalmology and Optometry, Šibenik General Hospital, 22000 Šibenik, Croatia;
| | - Liborija Lugović-Mihić
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.T.-A.); (G.G.); (O.Ž.); (L.L.-M.)
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Rok Čivljak
- Department for Respiratory Infections, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
33
|
Yang J, Ge S, Tan S, Liu H, Yang M, Liu W, Zhang K, Zhang Z, Liu J, Shi J, Wang ZH, Li J. Modified montmorillonite armed probiotics with enhanced on-site mucus-depleted intestinal colonization and H 2S scavenging for colitis treatment. J Control Release 2024; 374:140-153. [PMID: 39117113 DOI: 10.1016/j.jconrel.2024.07.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Inflammatory bowel diseases (IBD) are often associated with dysregulated gut microbiota and excessive inflammatory microenvironment. Probiotic therapy combined with inflammation management is a promising approach to alleviate IBD, but the efficacy is hindered by the inferior colonization of probiotics in mucus-depleted inflammatory bowel segments. Here, we present modified montmorillonite armed probiotic Escherichia coli Nissle 1917 (MMT-Fe@EcN) with enhanced intestinal colonization and hydrogen sulfide (H2S) scavenging for synergistic alleviation of IBD. The montmorillonite layer that can protect EcN against environmental assaults in oral delivery and improve on-site colonization of EcN in the mucus-depleted intestinal segment due to its strong adhesive capability and electronegativity, with a 22.6-fold increase in colonization efficiency compared to EcN. Meanwhile, MMT-Fe@EcN can manage inflammation by scavenging H2S, which allows for enhancing probiotic viability and colonization for restoring the gut microbiota. As a result, MMT-Fe@EcN exhibits extraordinary therapeutic effects in the dextran sulfate sodium-induced mouse colitis models, including alleviating intestinal inflammation and restoring disrupted intestinal barrier function, and gut microbiota. These findings provide a promising strategy for clinical IBD treatment and potentially other mucus-depletion-related diseases.
Collapse
Affiliation(s)
- Jiali Yang
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266021, PR China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shengchan Ge
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shaochong Tan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mingzhu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Wei Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Jitian Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), 100 Yongping Road, Zhengzhou 450000, China.
| |
Collapse
|
34
|
Aslam R, Herrles L, Aoun R, Pioskowik A, Pietrzyk A. Link between gut microbiota dysbiosis and childhood asthma: Insights from a systematic review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100289. [PMID: 39105129 PMCID: PMC11298874 DOI: 10.1016/j.jacig.2024.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 08/07/2024]
Abstract
Asthma, a chronic inflammatory disorder of the airways, is a prevalent childhood chronic disease with a substantial global health burden. The complex etiology and pathogenesis of asthma involve genetic and environmental factors, posing challenges in diagnosis, severity prediction, and therapeutic strategies. Recent studies have highlighted the significant role of the gut microbiota and its interaction with the immune system in the development of asthma. Dysbiosis, an imbalance in microbial composition, has been associated with respiratory diseases through the gut-lung axis. This axis is an interaction between the gut and lungs, allowing microbial metabolites to influence the host immune system. This systematic review examines the association between gut microbiota composition, measured using 16S rRNA sequencing, during infancy and childhood, and the subsequent development of atopic wheeze and asthma. The results suggest that higher alpha diversity of bacteria such as Bifidobacterium, Faecalibacterium, and Roseburia may have protective effects against asthmatic outcomes. Conversely, lower relative abundances of bacteria like Bacteroides and certain fungi, including Malassezia, were associated with asthma. These findings highlight the potential of early screening and risk assessment of gut microbiota to identify individuals at risk of asthma. Furthermore, investigations targeting gut microbiota, such as dietary modifications and probiotic supplementation, may hold promise for asthma prevention and management. Future research should focus on identifying specific microbial signatures associated with asthma susceptibility and further investigate approaches like fecal microbiota transplantation. Understanding the role of gut microbiota in asthma pathogenesis can contribute to early detection and development of interventions to mitigate the risk of asthmatic pathogenesis in childhood.
Collapse
Affiliation(s)
- Rabbiya Aslam
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Laura Herrles
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Raquel Aoun
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Pioskowik
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Pietrzyk
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
35
|
Ponda P, Cerise JE, Navetta-Modrov B, Kiehm J, Covelli GM, Weiss J, Lee AT. The age-specific microbiome of children with milk, egg, and peanut allergy. Ann Allergy Asthma Immunol 2024; 133:203-210.e6. [PMID: 38697287 DOI: 10.1016/j.anai.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Immune regulation by gut microbiota is affected by dysbiosis and may precede food allergy onset. Prior studies lacked comparisons stratified by age and clinical phenotype. OBJECTIVE To assess the microbiome of children with food allergy (<3 years, 3-18 years) compared with similar aged children without food allergy. METHODS A real-world prospective cross-sectional study performed from 2014 to 2019 recruited children highly likely to have milk, egg, or peanut allergy defined by history and serum IgE or confirmed by food challenge. 16S ribosomal RNA sequencing identified stool microbial DNA. Alpha and beta diversity was compared between groups with food allergy and healthy controls stratified by age. Differential abundance for non a priori taxa was accepted at absolute fold-change greater than 2 and q value less than 0.05. RESULTS A total of 70 patients were included (56 with food allergy and 14 healthy controls). Groups were not significantly different in age, gender at birth, race, mode of delivery, breastfeeding duration, or antibiotic exposure. Younger children with food allergy had similar alpha diversity compared with controls. Beta diversity was significantly different by age (P = .001). There was differential abundance of several a priori (P < .05) taxa (including Clostridia) only in younger children. Both a priori (including Coprococcus and Clostridia) and non a priori (q < 0.05) Acidobacteria_Gp15, Aestuariispira, Tindallia, and Desulfitispora were significant in older children with food allergy, especially with peanut allergy. CONCLUSION Dysbiosis associates with food allergy, most prominent in older children with peanut allergy. Younger children with and without food allergy have fewer differences in gut microbiota. This correlates with clinical observations of persistence of peanut allergy and improved efficacy and safety of oral immunotherapy in younger children. Age younger than 3 years should be considered when initiating therapeutic interventions.
Collapse
Affiliation(s)
- Punita Ponda
- Northwell, New Hyde Park, New York; Division of Allergy and Immunology, Cohen Children's Medical Center, New Hyde Park, New York.
| | - Jane E Cerise
- Biostatistics Unit, Office of Academic Affairs, Northwell Health, New Hyde Park, New York
| | - Brianne Navetta-Modrov
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York
| | - Jamie Kiehm
- Los Angeles County Department of Health Services, Los Angeles, California
| | - Grace M Covelli
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Jared Weiss
- Department of Psychiatry, New York University School of Medicine, New York, New York
| | - Annette T Lee
- Northwell, New Hyde Park, New York; Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York
| |
Collapse
|
36
|
Hesser LA, Puente AA, Arnold J, Ionescu E, Mirmira A, Talasani N, Lopez J, Maccio-Maretto L, Mimee M, Nagler CR. A synbiotic of Anaerostipes caccae and lactulose prevents and treats food allergy in mice. Cell Host Microbe 2024; 32:1163-1176.e6. [PMID: 38906158 PMCID: PMC11239278 DOI: 10.1016/j.chom.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
Depletion of beneficial microbes by modern lifestyle factors correlates with the rising prevalence of food allergies. Re-introduction of allergy-protective bacteria may be an effective treatment strategy. We characterized the fecal microbiota of healthy and food-allergic infants and found that the anaerobe Anaerostipes caccae (A. caccae) was representative of the protective capacity of the healthy microbiota. We isolated a strain of A. caccae from the feces of a healthy infant and identified lactulose as a prebiotic to optimize butyrate production by A. caccae in vitro. Administration of a synbiotic composed of our isolated A. caccae strain and lactulose increased luminal butyrate in gnotobiotic mice colonized with feces from an allergic infant and in antibiotic-treated specific pathogen-free (SPF) mice, and prevented or treated an anaphylactic response to allergen challenge. The synbiotic's efficacy in two models and microbial contexts suggests that it may be a promising approach for the treatment of food allergy.
Collapse
Affiliation(s)
- Lauren A Hesser
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Armando A Puente
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jack Arnold
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Edward Ionescu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Anjali Mirmira
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Nidhi Talasani
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Jacqueline Lopez
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | - Mark Mimee
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA; Committee on Microbiology, The University of Chicago, Chicago, IL, USA
| | - Cathryn R Nagler
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA; Department of Pathology, The University of Chicago, Chicago, IL, USA; Committee on Immunology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
37
|
Contreras-Castillo E, García-Rasilla VY, García-Patiño MG, Licona-Limón P. Stability and plasticity of regulatory T cells in health and disease. J Leukoc Biol 2024; 116:33-53. [PMID: 38428948 DOI: 10.1093/jleuko/qiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
The mechanisms that negatively regulate inflammation upon a pathogenic stimulus are crucial for the maintenance of tissue integrity and organ function. T regulatory cells are one of the main drivers in controlling inflammation. The ability of T regulatory cells to adapt to different inflammatory cues and suppress inflammation is one of the relevant features of T regulatory cells. During this process, T regulatory cells express different transcription factors associated with their counterparts, Th helper cells, including Tbx21, GATA-3, Bcl6, and Rorc. The acquisition of this transcription factor helps the T regulatory cells to suppress and migrate to the different inflamed tissues. Additionally, the T regulatory cells have different mechanisms that preserve stability while acquiring a particular T regulatory cell subtype. This review focuses on describing T regulatory cell subtypes and the mechanisms that maintain their identity in health and diseases.
Collapse
Affiliation(s)
- Eugenio Contreras-Castillo
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Verónica Yutsil García-Rasilla
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - María Guadalupe García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| |
Collapse
|
38
|
Huang H, Liu X, Lang Y, Cui J, Zhong D, Zhou M. Breaking barriers: bacterial-microalgae symbiotic systems as a probiotic delivery system. J Nanobiotechnology 2024; 22:371. [PMID: 38918805 PMCID: PMC11197275 DOI: 10.1186/s12951-024-02647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
The gut microbiota is one of the essential contributors of the pathogenesis and progress of inflammatory bowel disease (IBD). Compared with first-line drug therapy, probiotic supplementation has emerged as a viable and secure therapeutic approach for managing IBD through the regulation of both the immune system and gut microbiota. Nevertheless, the efficacy of oral probiotic supplements is hindered by their susceptibility to the gastrointestinal barrier, leading to diminished bioavailability and restricted intestinal colonization. Here, we developed a bacteria-microalgae symbiosis system (EcN-SP) for targeted intestinal delivery of probiotics and highly effective treatment of colitis. The utilization of mircroalge Spirulina platensis (SP) as a natural carrier for the probiotic Escherichia coli Nissle 1917 (EcN) demonstrated potential benefits in promoting EcN proliferation, facilitating effective intestinal delivery and colonization. The alterations in the binding affinity of EcN-SP within the gastrointestinal environment, coupled with the distinctive structural properties of the SP carrier, served to overcome gastrointestinal barriers, minimizing transgastric EcN loss and enabling sustained intestinal retention and colonization. The oral administration of EcN-SP could effectively treat IBD by reducing the expression of intestinal inflammatory factors, maintaining the intestinal barrier and regulating the balance of gut microbiota. This probiotic delivery approach is inspired by symbiotic interactions found in nature and offers advantages in terms of feasibility, safety, and efficacy, thus holding significant promise for the management of gastrointestinal disorders.
Collapse
Affiliation(s)
- Hui Huang
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xiaoyang Liu
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yutong Lang
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Zhejiang University-University of Edinburgh Institute (ZJE), Zhejiang University, Haining, 314400, China
| | - Jiarong Cui
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Danni Zhong
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Min Zhou
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China.
- Zhejiang University-University of Edinburgh Institute (ZJE), Zhejiang University, Haining, 314400, China.
- State Key Laboratory (SKL) of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
39
|
Furiness KN, El Ansari YS, Oettgen HC, Kanagaratham C. Allergen-specific IgA and IgG antibodies as inhibitors of mast cell function in food allergy. FRONTIERS IN ALLERGY 2024; 5:1389669. [PMID: 38919913 PMCID: PMC11196826 DOI: 10.3389/falgy.2024.1389669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Food allergy, a group of adverse immune responses to normally innocuous food protein antigens, is an increasingly prevalent public health issue. The most common form is IgE-mediated food allergy in which food antigen-induced crosslinking of the high-affinity IgE-receptor, FcεRI, on the surface of mast cells triggers the release of inflammatory mediators that contribute to a wide range of clinical manifestations, including systemic anaphylaxis. Mast cells also play a critical function in adaptive immunity to foods, acting as adjuvants for food-antigen driven Th2 cell responses. While the diagnosis and treatment of food allergy has improved in recent years, no curative treatments are currently available. However, there is emerging evidence to suggest that both allergen-specific IgA and IgG antibodies can counter the activating effects of IgE antibodies on mast cells. Most notably, both antigen-specific IgA and IgG antibodies are induced in the course of oral immunotherapy. In this review, we highlight the role of mast cells in food allergy, both as inducers of immediate hypersensitivity reactions and as adjuvants for type 2 adaptive immune responses. Furthermore, we summarize current understanding of the immunomodulatory effects of antigen-specific IgA and IgG antibodies on IgE-induced mast cell activation and effector function. A more comprehensive understanding of the regulatory role of IgA and IgG in food allergy may provide insights into physiologic regulation of immune responses to ingested antigens and could seed novel strategies to treat allergic disease.
Collapse
Affiliation(s)
- Kameryn N. Furiness
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Yasmeen S. El Ansari
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Cynthia Kanagaratham
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
40
|
Li H, Dai J, Zhao C, Hu T, Zhao G, Wang Q, Zhang L. Gut Subdoligranulum variabile ameliorates rheumatoid arthritis by promoting TSG-6 synthesis from joint cells. Front Immunol 2024; 15:1418717. [PMID: 38979426 PMCID: PMC11229780 DOI: 10.3389/fimmu.2024.1418717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
Background A burgeoning body of evidence has substantiated the association between alterations in the composition of the gut microbiota and rheumatoid arthritis (RA). Nevertheless, our understanding of the intricate mechanisms underpinning this association is limited. Methods To investigate whether the gut microbiota influences the pathogenesis of RA through metabolism or immunity, we performed rigorous synthesis analyses using aggregated statistics from published genome-wide association studies (GWAS) using two-sample Mendelian randomization (MR) and mediated MR techniques, including two-step MR and multivariate MR analyses. Subsequently, we conducted in vitro cellular validation of the analyzed Microbial-Cytokine-RA pathway. We determined the optimal culture conditions through co-culture experiments involving concentration and time. Cell Counting Kit-8 (CCK-8) assays were employed to assess cellular viability, and enzyme-linked immunosorbent assays (ELISA) were performed to assess tumor necrosis factor-inducible gene 6 protein (TSG-6) and tumor necrosis factor-α (TNF-α) levels. Results Our univariable MR results confirmed 15 microbial traits, 7 metabolites and 2 cytokines that may be causally associated with RA (P FDR < 0.05). Mediation analysis revealed that microbial traits influence the risk of RA through metabolite or cytokine (proportion mediated: 7.75% - 58.22%). In vitro experiments demonstrated that TSG-6 was highly expressed in the Subdoligranulum variabile treatment group and was correlated with decreased RA severity (reduced TNF-α expression). Silencing the TSG-6 gene significantly increased TNF-α expression, regardless of treatment with S. variabile. Additionally, S. variabile-secreted exosomes exhibited the same effect. Conclusion The results of this study suggest that S. variabile has the potential to promote TSG-6 secretion, thereby reducing RA inflammation.
Collapse
Affiliation(s)
- Hongfeng Li
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Health Inspection and Quarantine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Junhui Dai
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changying Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianqi Hu
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoping Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qinghua Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
41
|
Chen HY, Zhou YC, Liu Y, Huang JY, Liu H, Liu CF, Liu WH, Liu GM, Liu QM. Fermented Gracilaria lemaneiformis polysaccharides alleviate food allergy by regulating Treg cells and gut microbiota. Int J Biol Macromol 2024; 269:132215. [PMID: 38729482 DOI: 10.1016/j.ijbiomac.2024.132215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/20/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Food allergy has a significant impact on the health and well-being of individuals, affecting both their physical and mental states. Research on natural bioactive compounds, such as polysaccharides extracted from seaweeds, holds great promise in the treatment of food allergies. In this study, fermented Gracilaria lemaneiformis polysaccharides (F-GLSP) were prepared using probiotic fermentation. Probiotic fermentation of Gracilaria lemaneiformis reduces the particle size of polysaccharides. To compare the anti-allergic activity of F-GLSP with unfermented Gracilaria lemaneiformis polysaccharides (UF-GLSP), an OVA-induced mouse food allergy model was established. F-GLSP exhibited a significant reduction in OVA-specific IgE and mMCP levels in allergic mice. Moreover, it significantly inhibited Th2 differentiation and IL-4 production and significantly promoted Treg differentiation and IL-10 production in allergic mice. In contrast, UF-GLSP only reduced OVA-specific IgE and mMCP in the serum of allergic mice. Furthermore, F-GLSP demonstrated a more pronounced regulation of intestinal flora abundance compared to UF-GLSP, significantly influencing the populations of Firmicutes, Bacteroidetes, Lactobacillus, and Clostridiales in the intestines of mice with food allergy. These findings suggest that F-GLSP may regulate food allergies in mice through multiple pathways. In summary, this study has promoted further development of functional foods with anti-allergic properties based on red algae polysaccharides.
Collapse
Affiliation(s)
- Hui-Ying Chen
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Yu-Chen Zhou
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Yan Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Jia-Yu Huang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Hong Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Chen-Feng Liu
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei 230031, Anhui, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China; Xiamen Ocean Vocational college, Xiamen, Fujian 361102, China.
| | - Qing-Mei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China.
| |
Collapse
|
42
|
Parisotto YF, Cabric V, Park T, Akagbosu B, Zhao Z, Lo Y, Fisher L, Shibu G, Paucar Iza YA, Leslie C, Brown CC. Thetis cells induce food-specific Treg cell differentiation and oral tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.592952. [PMID: 38766121 PMCID: PMC11100678 DOI: 10.1101/2024.05.08.592952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The intestinal immune system must establish tolerance to food antigens to prevent onset of allergic and inflammatory diseases. Peripherally generated regulatory T (pTreg) cells play an essential role in suppressing inflammatory responses to allergens; however, the antigen-presenting cell (APC) that instructs food-specific pTreg cells is not known. Here, we show that antigen presentation and TGF-β activation by a subset of RORγt + antigen-presenting cells (APC), Thetis cells IV (TC IV), is required for food-induced pTreg cell differentiation and oral tolerance. By contrast, antigen presentation by dendritic cells (DCs) was dispensable for pTreg induction but required for T H 1 effector responses, highlighting a division of labor between tolerogenic TCs and pro-inflammatory DCs. While antigen presentation by TCs was required for food-specific pTreg generation both in early life and adulthood, the increased abundance of TCs in the peri-weaning period was associated with a window of opportunity for enhanced pTreg differentiation. These findings establish a critical role for TCs in oral tolerance and suggest that these cells may represent a key therapeutic target for the treatment of food-associated allergic and inflammatory diseases.
Collapse
|
43
|
Lee SY, Park YM, Yoo HJ, Hong SJ. Metabolomic pathways in food allergy. Pediatr Allergy Immunol 2024; 35:e14133. [PMID: 38727629 DOI: 10.1111/pai.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 07/12/2024]
Abstract
Food allergy (FA) is a widespread issue, affecting as many as 10% of the population. Over the past two to three decades, the prevalence of FA has been on the rise, particularly in industrialized and westernized countries. FA is a complex, multifactorial disease mediated by type 2 immune responses and involving environmental and genetic factors. However, the precise mechanisms remain inadequately understood. Metabolomics has the potential to identify disease endotypes, which could beneficially promote personalized prevention and treatment. A metabolome approach would facilitate the identification of surrogate metabolite markers reflecting the disease activity and prognosis. Here, we present a literature overview of recent metabolomic studies conducted on children with FA.
Collapse
Affiliation(s)
| | - Yoon Mee Park
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Respiratory Allergy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Chen T, Shi S, Li X, Zhou L, Yu Y, Cai Y, Wang J, Kan H, Xu Y, Huang C, Tan Y, Meng X, Zhao Z. Improved ambient air quality is associated with decreased prevalence of childhood asthma and infancy shortly after weaning is a sensitive exposure window. Allergy 2024; 79:1166-1179. [PMID: 37458141 DOI: 10.1111/all.15815] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/30/2023] [Accepted: 05/22/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The urban ambient air quality has been largely improved in the past decade. It is unknown whether childhood asthma prevalence is still increasing in ever top-ranking city of Shanghai, whether the improved air quality is beneficial for children's asthma and what time window of exposure plays critical roles. METHODS Using a repeat cross-sectional design, we analyzed the association between early life exposure to particles and wheezing/asthma in each individual and combined surveys in 2011 and 2019, respectively, in 11,825 preschool children in Shanghai. RESULTS A significantly lower prevalence of doctor-diagnosed asthma (DDA) (6.6% vs. 10.5%, p < 0.001) and wheezing (10.5% vs. 23.2%, p < 0.001) was observed in 2019 compared to 2011. Exposure to fine particulate matter (PM2.5), coarse particles (PM2.5-10) and inhalable particles (PM10) was decreased in 2019 by 6.3%, 35.4%, and 44.7% in uterus and 24.3%, 20.2%, and 31.8% in infancy, respectively. Multilevel log-binomial regression analysis showed exposure in infancy had independent association with wheezing/DDA adjusting for exposure in uterus. For each interquartile range (IQR) increase of infancy PM2.5, PM2.5-10 and PM10 exposure, the odds ratios were 1.39 (95% confidence interval (CI): 1.24-1.56), 1.51 (95% CI:1.15-1.98) and 1.53 (95% CI:1.27-1.85) for DDA, respectively. The distributed lag non-linear model showed the sensitive exposure window (SEW) was 5.5-11 months after birth. Stratified analysis showed the SEWs were at or shortly after weaning, but only in those with <6 months of exclusive breastfeeding. CONCLUSIONS Improved ambient PM benefits in decreasing childhood asthma prevalence. We firstly reported the finding of SEW to PM at or closely after weaning on childhood asthma.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Environmental Health, School of Public Health, the Key Laboratory of Public Health Safety of the Ministry of Education, and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Su Shi
- Department of Environmental Health, School of Public Health, the Key Laboratory of Public Health Safety of the Ministry of Education, and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xinyue Li
- Department of Environmental Health, School of Public Health, the Key Laboratory of Public Health Safety of the Ministry of Education, and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Lu Zhou
- Department of Environmental Health, School of Public Health, the Key Laboratory of Public Health Safety of the Ministry of Education, and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yongfu Yu
- Department of Biostatistics, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yunfei Cai
- Department of General Management and Statistics, Shanghai Environment Monitoring Center, Shanghai, China
| | - Jing Wang
- Pudong New Area Center for Disease Control and Prevention, Shanghai, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, the Key Laboratory of Public Health Safety of the Ministry of Education, and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
- Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health WMO/IGAC MAP-AQ Asian Office Shanghai, Fudan University, Shanghai, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, the Key Laboratory of Public Health Safety of the Ministry of Education, and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
- Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health WMO/IGAC MAP-AQ Asian Office Shanghai, Fudan University, Shanghai, China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongqiang Tan
- Department of Pediatrics, Chongming Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xia Meng
- Department of Environmental Health, School of Public Health, the Key Laboratory of Public Health Safety of the Ministry of Education, and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
- Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health WMO/IGAC MAP-AQ Asian Office Shanghai, Fudan University, Shanghai, China
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, the Key Laboratory of Public Health Safety of the Ministry of Education, and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
- Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health WMO/IGAC MAP-AQ Asian Office Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Zhu L, Yu T, Wang W, Xu T, Geng W, Li N, Zan X. Responsively Degradable Nanoarmor-Assisted Super Resistance and Stable Colonization of Probiotics for Enhanced Inflammation-Targeted Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308728. [PMID: 38241751 DOI: 10.1002/adma.202308728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/09/2023] [Indexed: 01/21/2024]
Abstract
Manipulation of the gut microbiota using oral microecological preparations has shown great promise in treating various inflammatory disorders. However, delivering these preparations while maintaining their disease-site specificity, stability, and therapeutic efficacy is highly challenging due to the dynamic changes associated with pathological microenvironments in the gastrointestinal tract. Herein, a superior armored probiotic with an inflammation-targeting capacity is developed to enhance the efficacy and timely action of bacterial therapy against inflammatory bowel disease (IBD). The coating strategy exhibits suitability for diverse probiotic strains and has negligible influence on bacterial viability. This study demonstrates that these armored probiotics have ultraresistance to extreme intraluminal conditions and stable mucoadhesive capacity. Notably, the HA-functionalized nanoarmor equips the probiotics with inflamed-site targetability through multiple interactions, thus enhancing their efficacy in IBD therapy. Moreover, timely "awakening" of ingested probiotics through the responsive transferrin-directed degradation of the nanoarmor at the site of inflammation is highly beneficial for bacterial therapy, which requires the bacterial cells to be fully functional. Given its easy preparation and favorable biocompatibility, the developed single-cell coating approach provides an effective strategy for the advanced delivery of probiotics for biomedical applications at the cellular level.
Collapse
Affiliation(s)
- Limeng Zhu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tiantian Yu
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Wenchao Wang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tong Xu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wujun Geng
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Na Li
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| |
Collapse
|
46
|
Porcari S, Fusco W, Spivak I, Fiorani M, Gasbarrini A, Elinav E, Cammarota G, Ianiro G. Fine-tuning the gut ecosystem: the current landscape and outlook of artificial microbiome therapeutics. Lancet Gastroenterol Hepatol 2024; 9:460-475. [PMID: 38604200 DOI: 10.1016/s2468-1253(23)00357-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 04/13/2024]
Abstract
The gut microbiome is acknowledged as a key determinant of human health, and technological progress in the past two decades has enabled the deciphering of its composition and functions and its role in human disorders. Therefore, manipulation of the gut microbiome has emerged as a promising therapeutic option for communicable and non-communicable disorders. Full exploitation of current therapeutic microbiome modulators (including probiotics, prebiotics, and faecal microbiota transplantation) is hindered by several factors, including poor precision, regulatory and safety issues, and the impossibility of providing reproducible and targeted treatments. Artificial microbiota therapeutics (which include a wide range of products, such as microbiota consortia, bacteriophages, bacterial metabolites, and engineered probiotics) have appeared as an evolution of current microbiota modulators, as they promise safe and reproducible effects, with variable levels of precision via different pathways. We describe the landscape of artificial microbiome therapeutics, from those already on the market to those still in the pipeline, and outline the major challenges for positioning these therapeutics in clinical practice.
Collapse
Affiliation(s)
- Serena Porcari
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - William Fusco
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Igor Spivak
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel; Medical Clinic III, University Hospital Aachen, Aachen, Germany
| | - Marcello Fiorani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel; Microbiome and Cancer Division, DKFZ, Heidelberg, Germany
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
47
|
Li Y, Ning X, Zhao Z, He X, Xue Q, Zhou M, Li W, Li M. Core fucosylation of maternal milk N-glycans imparts early-life immune tolerance through gut microbiota-dependent regulation in RORγt + Treg cells. Food Funct 2024; 15:4140-4153. [PMID: 38445991 DOI: 10.1039/d4fo00230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Milk glycans play key roles in shaping and maintaining a healthy infant gut microbiota. Core fucosylation catalyzed by fucosyltransferase (Fut8) is the major glycosylation pattern on human milk N-glycan, which was crucial for promoting the colonization and dominant growth of Bifidobacterium and Lactobacillus spp. in neonates. However, the influence of core-fucose in breast milk on the establishment of early-life immune tolerance remains poorly characterized. In this study, we found that the deficiency of core-fucose in the milk of maternal mice caused by Fut8 gene heterozygosity (Fut8+/-) resulted in poor immune tolerance towards the ovalbumin (OVA) challenge, accompanied by a reduced proportion of intestinal RORγt+ Treg cells and the abundance of Lactobacillus spp., especially L. reuteri and L. johnsonii, in their breast-fed neonates. The administration of the L. reuteri and L. johnsonii mixture to neonatal mice compromised the OVA-induced allergy and up-regulated the intestinal RORγt+ Treg cell proportions. However, Lactobacillus mixture supplementation did not alleviate allergic responses in RORγt+ Treg cell-deficient mice caused by Rorc gene heterozygosity (Rorc+/-) post OVA challenge, indicating that the intervention effects depend on the RORγt+ Treg cells. Interestingly, instead of L. reuteri and L. johnsonii, we found that the relative abundance of another Lactobacillus spp., L. murinus, in the gut of the offspring mice was significantly promoted by intervention, which showed enhancing effects on the proliferation of splenic and intestinal RORγt+ Treg cells in in vitro studies. The above results indicate that core fucosylation of breast milk N-glycans is beneficial for the establishment of RORγt+ Treg cell mediated early-life immune tolerance through the manipulation of symbiotic bacteria in mice.
Collapse
Affiliation(s)
- Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China.
| | - Xixi Ning
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Zihui Zhao
- Pelvic Floor Repair Center, Dalian Women and Children's Medical Group, Dalian, China
| | - Xi He
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Qidi Xue
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Manlin Zhou
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Wenzhe Li
- Shantou University Medical College, Shantou, Guangdong, China.
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| |
Collapse
|
48
|
Wang Z, Zhang J, Yuan J, Min F, Gao J, Liu W, Huang M, Wu Y, Chen H. Oral administration of egg ovalbumin allergen induces dysregulation of tryptophan metabolism in sensitized BALB/c mice. Food Funct 2024; 15:4375-4388. [PMID: 38546528 DOI: 10.1039/d3fo05300h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Food allergy (FA), triggered by specific dietary allergens, has emerged as a substantial global concern for food safety and public health. While studies have elucidated changes in immune cells and cytokines associated with allergen exposure, a comprehensive analysis of the host's metabolic features and the interaction between metabolites and the gut microbiota has not been conducted. In this study, egg allergen ovalbumin (OVA) was administered by the oral route to sensitized BALB/c mice to faithfully replicate key aspects of human FA, including severe allergic diarrhea, mast cell infiltration, and elevated levels of serum IgE, mMCPT-1, and Th2 cell hallmark cytokines (such as IL-4, IL-5, and IL-13). Furthermore, the untargeted and targeted metabolomic analyses indicated that FA in mice precipitated a substantial decrease in the tryptophan metabolites indole-3-acrylic acid (IA) and indole-3-lactic acid (ILA). The integration of shotgun metagenome and metabolome data further unveiled that the dysregulation of indole metabolism is related to a decline in the abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium. Additionally, disruption of the tryptophan indole derivative pathway compromises the maintenance of intestinal mucosal function through the AHR signaling pathway, manifested by decreased expression of Reg3g and IL22. Taken together, this study demonstrated that the anaphylaxis triggered by oral ingestion of food allergens can lead to disruptions in tryptophan metabolism, consequently impairing intestinal immune homeostasis.
Collapse
Affiliation(s)
- Zhongliang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| | - Jie Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Animal Science and Technology Center, Jiangxi University of Traditional Medicine, Nanchang 330004, China
| | - Jin Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| | - Fangfang Min
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| | - Jinyan Gao
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| | - Wenfeng Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| | - Meijia Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
49
|
Sun M, Ju J, Xu H, Luo M, Li Z, Wang Y. Antibiotics influence the risk of anti-drug antibody formation during anti-TNF therapy in Chinese inflammatory bowel disease patients. Front Pharmacol 2024; 15:1360835. [PMID: 38655181 PMCID: PMC11035825 DOI: 10.3389/fphar.2024.1360835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
Aims: The formation of anti-drug antibodies (ADAs) during anti-tumor necrosis factor (anti-TNF) therapy is reported to lead to reducing serum drug levels, which may bring about a loss of response to treatment. Previous research has suggested an association between specific antibiotic classes and ADA formation during anti-TNF therapy. However, there are few studies specifically examining this association in Chinese inflammatory bowel disease (IBD) patients. Therefore, our study aimed to evaluate the possible effect of antibiotic use on ADA formation to anti-TNF therapy in Chinese patients with IBD. Methods: A total of 166 patients with IBD, including 149 with Crohn's disease (CD) and 17 with ulcerative colitis (UC), were included in this retrospective analysis. These patients were initially treated with anti-TNF therapy (infliximab or adalimumab) after January 2018 and reviewed with available ADA levels before October 2023. After univariable analysis of all the variables, a multivariate Cox proportional hazards model was used to assess the association between antibiotic use and ADA development. Results: Among 166 IBD patients treated with infliximab (108/166, 65.1%) or adalimumab (58/166, 34.9%), 31 patients (18.7%) were measured as positive ADA levels. Cox proportional hazard model demonstrated an increased risk of ADA formation in IBD patients who used β-lactam-β-lactamase inhibitor combinations (BL-BLIs) (HR = 5.143, 95%CI 1.136-23.270, p = 0.033), or nitroimidazoles (HR = 4.635, 95%CI 1.641-13.089, p = 0.004) during 12 months before the ADA test. On the contrary, a reduced risk was noted in patients treated with fluoroquinolones (HR = 0.258, 95% CI 0.072-0.924, p = 0.037). Moreover, the median serum infliximab or adalimumab concentration in patients with positive ADA levels was significantly lower than that in patients with negative ADA levels (infliximab: 0.30 vs. 1.85 μg/mL, p < 0.0001; adalimumab: 0.45 vs. 7.55 μg/mL, p = 0.0121). Conclusion: ADA development is associated with various antibiotic classes. BL-BLIs and nitroimidazoles might increase the risk of ADA formation during anti-TNF therapy in Chinese IBD patients, while the treatment with fluoroquinolones could probably reduce such risk. There were certain limitations in the retrospective analysis of the study, therefore, the results are just for reference, and other studies are needed to further confirm our findings.
Collapse
Affiliation(s)
| | | | | | | | | | - Yufang Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Bunyavanich S, Becker PM, Altman MC, Lasky-Su J, Ober C, Zengler K, Berdyshev E, Bonneau R, Chatila T, Chatterjee N, Chung KF, Cutcliffe C, Davidson W, Dong G, Fang G, Fulkerson P, Himes BE, Liang L, Mathias RA, Ogino S, Petrosino J, Price ND, Schadt E, Schofield J, Seibold MA, Steen H, Wheatley L, Zhang H, Togias A, Hasegawa K. Analytical challenges in omics research on asthma and allergy: A National Institute of Allergy and Infectious Diseases workshop. J Allergy Clin Immunol 2024; 153:954-968. [PMID: 38295882 PMCID: PMC10999353 DOI: 10.1016/j.jaci.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.
Collapse
Affiliation(s)
| | - Patrice M Becker
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | | | - Jessica Lasky-Su
- Brigham & Women's Hospital and Harvard Medical School, Boston, Mass
| | | | | | | | | | - Talal Chatila
- Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | | | | | | | - Wendy Davidson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Gang Dong
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Gang Fang
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Patricia Fulkerson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | | | - Liming Liang
- Harvard T. H. Chan School of Public Health, Boston, Mass
| | | | - Shuji Ogino
- Brigham & Women's Hospital and Harvard Medical School, Boston, Mass; Harvard T. H. Chan School of Public Health, Boston, Mass; Broad Institute of MIT and Harvard, Boston, Mass
| | | | | | - Eric Schadt
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Max A Seibold
- National Jewish Health, Denver, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Hanno Steen
- Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Lisa Wheatley
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Hongmei Zhang
- School of Public Health, University of Memphis, Memphis, Tenn
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Kohei Hasegawa
- Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| |
Collapse
|