1
|
Maciel EVS, Eisert J, Dederer V, Berwanger A, Knapp S, Empting M, Mathea S, Jensen H, Lermyte F. Native Flow-Induced Dispersion Analysis - Mass Spectrometry Enables Automated, Multiplexed Ligand Screening from Conventional, Nonvolatile Buffers. Anal Chem 2025; 97:10388-10395. [PMID: 40324204 DOI: 10.1021/acs.analchem.5c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Native electrospray ionization mass spectrometry has become an important method for the discovery and validation of noncovalent ligands for therapeutic targets. As a label-free method combining high sensitivity and chemical specificity, it is ideally suited for this application. However, the performance of the method is severely impacted by the presence of nonvolatile buffers and salts, and there is a risk of ion suppression if a target protein is coincubated with multiple candidate ligands. These factors, along with the fairly labor-intensive nature, required operator skill, and limited throughput of most implementations, represent significant obstacles to the widespread adoption of native mass spectrometry-based ligand discovery. Here, we demonstrate the combination of flow-induced dispersion analysis with native mass spectrometry for screening of ligands for an E3 ligase and two kinases of pharmacological relevance. Importantly, this approach avoids ion suppression and formation of salt adducts without the need for offline desalting or buffer exchange, and each multiplexed measurement of a sample consisting of a target protein and a mixture of more than 20 candidate ligands took only a few minutes. Because the method is largely automated, this screening technology represents a potentially important step toward making native mass spectrometry a mainstream biophysical technique in drug discovery.
Collapse
Affiliation(s)
- Edvaldo Vasconcelos Soares Maciel
- Department of Chemistry, Clemens-Schöpf-Institute of Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Jonathan Eisert
- Department of Chemistry, Clemens-Schöpf-Institute of Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Verena Dederer
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Aylin Berwanger
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus E8 1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus E8 1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
| | - Sebastian Mathea
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Henrik Jensen
- Fida Biosystems Aps, Generatorvej 6, 2860 Soborg, Denmark
| | - Frederik Lermyte
- Department of Chemistry, Clemens-Schöpf-Institute of Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| |
Collapse
|
2
|
Lau AHC, Tsui VTK, Hung KI, Le TMH, Liu CWS, Tse SPK, Kong HK. Evaluating allergenicity of protein fragments and peptides in partially hydrolysed infant formulas available in Hong Kong. Food Chem 2025; 487:144758. [PMID: 40409078 DOI: 10.1016/j.foodchem.2025.144758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/28/2025] [Accepted: 05/12/2025] [Indexed: 05/25/2025]
Abstract
Partially hydrolysed infant formula (pHF) is designed as a cow's milk substitute for the infants with cow's milk protein allergy (CMPA) and consuming pHFs for preventing allergenic diseases is still under debate. Possibly, differences in protein fragment and peptide profiles among different brands of pHFs are the key confounder in the cohort studies. Thus, top-down and bottom-up proteomic analysis were conducted to identify the profiles of 4 brands of pHFs available in Hong Kong. Subsequently, allergenicities of the profiles were evaluated in silico. The analysis revealed that pHF-A and pHF-B contains large allergenic fragments of β-lactoglobulin and α-lactalbumin with molecular weights over 14 kDa. Most of peptides in pHF-D were less than 2 kDa and considered as non-allergenic. As the allergenicities varies a lot among different brands of pHFs in Hong Kong, so people need to be well informed before consuming for better managements of CMPA.
Collapse
Affiliation(s)
- Anson Hin-Chuen Lau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Victoria Tsz-Ki Tsui
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kylie Ip Hung
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tiffany Man-Hei Le
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Cheryl Wing-Sum Liu
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sirius Pui-Kam Tse
- University Research Facility in Chemical and Environmental Analysis, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hang-Kin Kong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute of Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
3
|
Khristenko NA, Nagornov KO, Garcia C, Gasilova N, Gant M, Druart K, Kozhinov AN, Menin L, Chamot-Rooke J, Tsybin YO. Top-Down and Middle-Down Mass Spectrometry of Antibodies. Mol Cell Proteomics 2025:100989. [PMID: 40368137 DOI: 10.1016/j.mcpro.2025.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025] Open
Abstract
Therapeutic antibodies, primarily immunoglobulin G-based monoclonal antibodies, are developed to treat cancer, autoimmune disorders, and infectious diseases. Their large size, structural complexity, and heterogeneity pose significant analytical challenges, requiring the use of advanced characterization techniques. This review traces the 30-year evolution of top-down (TD) and middle-down (MD) mass spectrometry (MS) for antibody analysis, beginning with their initial applications and highlighting key advances and challenges throughout this period. TD MS allows for the analysis of intact antibodies, and MD MS performs analysis of the antibody subunits, even in complex biological samples. Both approaches preserve critical quality attributes such as sequence integrity, post-translational modifications (PTMs), disulfide bonds, and glycosylation patterns. Key milestones in TD and MD MS of antibodies include the use of structure-specific enzymes for subunit generation, the implementation of high-resolution mass spectrometers, and the adoption of non-ergodic ion activation methods such as electron transfer dissociation (ETD), electron capture dissociation (ECD), ultraviolet photodissociation (UVPD), and matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD). The combination of complementary dissociation methods and the use of consecutive ion activation approaches has further enhanced TD/MD MS performance. The current TD MS record of antibody sequencing with terminal product ions is about 60% sequence coverage obtained using the activated ion-ETD approach on a high-resolution MS platform. Current MD MS analyses with about 95% sequence coverage were achieved using combinations of ion activation and dissociation techniques. The review explores TD and MD MS analysis of novel mAb modalities, including antibody-drug conjugates, bispecific antibodies, and endogenous antibodies from biofluids as well as immunoglobulin A and M-type classes. Content.
Collapse
Affiliation(s)
| | | | - Camille Garcia
- Institut Pasteur, Université Paris Cité, and CNRS UAR2024, Paris, France
| | - Natalia Gasilova
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Megan Gant
- Institut Pasteur, Université Paris Cité, and CNRS UAR2024, Paris, France
| | - Karen Druart
- Institut Pasteur, Université Paris Cité, and CNRS UAR2024, Paris, France
| | | | - Laure Menin
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, and CNRS UAR2024, Paris, France
| | - Yury O Tsybin
- Spectrotech, 69006 Lyon, France; Spectroswiss, 1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Kanao E, Ishihama Y. StageTip: a little giant unveiling the potential of mass spectrometry-based proteomics. ANAL SCI 2025; 41:667-675. [PMID: 40138149 PMCID: PMC12064472 DOI: 10.1007/s44211-025-00749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025]
Abstract
This review highlights the growing impact of StageTips (Stop and Go Extraction Tips), a pipette tip-based LC column in MS-based proteomics. By packing standard pipette tips with reversed-phase, ion-exchange, or metal oxide materials, StageTips enable efficient peptide desalting, fractionation, selective enrichment, and in-tip reactions with minimal sample loss. Recent improvements, including new resin designs and integrated workflows, have further expanded the applications to phosphoproteomics, protein terminomics, and single-cell proteomics. With their simplicity, high reproducibility, and low cost, StageTips offer a versatile platform that can be seamlessly integrated into automated pipelines, increasing the throughput and the depth of proteome analysis. As materials and protocols continue to evolve, StageTips will continue to develop as an essential keystone for robust sample preparation in next-generation proteomics research.
Collapse
Affiliation(s)
- Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
- Laboratory of Proteomics for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
- Laboratory of Proteomics for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.
| |
Collapse
|
5
|
Brockbals L, Ueland M, Fu S, Padula MP. Development and thorough evaluation of a multi-omics sample preparation workflow for comprehensive LC-MS/MS-based metabolomics, lipidomics and proteomics datasets. Talanta 2025; 286:127442. [PMID: 39740651 DOI: 10.1016/j.talanta.2024.127442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
The importance of sample preparation selection if often overlooked particularly for untargeted multi-omics approaches that gained popularity in recent years. To minimize issues with sample heterogeneity and additional freeze-thaw cycles during sample splitting, multiple -omics datasets (e.g. metabolomics, lipidomics and proteomics) should ideally be generated from the same set of samples. For sample extraction, commonly biphasic organic solvent systems are used that require extensive multi-step protocols. Individual studies have recently also started to investigate monophasic (all-in-one) extraction procedures. The aim of the current study was to develop and systematically compare ten different mono- and biphasic extraction solvent mixtures for their potential to aid in the most comprehensive metabolomics, lipidomics and proteomics datasets. As the focus was on human postmortem tissue samples (muscle and liver tissue), four tissue homogenization parameters were also evaluated. Untargeted liquid chromatography mass spectrometry-based metabolomics, lipidomic and proteomics methods were utilized along with 1D sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and bicinchoninic acid (BCA) assay results. Optimal homogenization was found to be achieved by bead-homogenizing 20 mg of muscle or liver tissue with 200 μL (1:10 ratio) Water:Methanol (1:2) using 3 × 30 s pulses. The supernatant of the homogenate was further extracted. Comprehensive ranking, taking nine different processing parameters into account, showed that the monophasic extraction solvents, overall, showed better scores compared to the biphasic solvent systems, despite their recommendation for one or all of the -omics extractions. The optimal extraction solvent was found to be Methanol:Acetone (9:1), resulting in the most comprehensive metabolomics, lipidomics and proteomics datasets, showing the potential to be automated, hence, allowing for high-throughput analysis of samples and opening the door for comprehensive multi-omics results from routine clinical cases in the future.
Collapse
Affiliation(s)
- Lana Brockbals
- Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, 2007 NSW, Australia; Department of Forensic Pharmacology and Toxicology, Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057 Zurich, Switzerland.
| | - Maiken Ueland
- Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, 2007 NSW, Australia; Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, 2007 NSW, Australia
| | - Shanlin Fu
- Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, 2007 NSW, Australia
| | - Matthew P Padula
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, 2007 NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, 2007 NSW, Australia
| |
Collapse
|
6
|
Kaulich PT, Tholey A. Top-Down Proteomics: Why and When? Proteomics 2025:e202400338. [PMID: 40289405 DOI: 10.1002/pmic.202400338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
Manifold biological processes at all levels of transcription and translation can lead to the formation of a high number of different protein species (i.e., proteoforms), which outnumber the sequences encoded in the genome by far. Due to the large number of protein molecules formed in this way, which span an enormous range of different physicochemical properties, proteoforms are the functional drivers of all biological processes, creating the need for powerful analytical approaches to decipher this language of life. While bottom-up proteomics has become the most widely used approach, providing features such as high sensitivity, depth of analysis, and throughput, it has its limitations when it comes to identifying, quantifying, and characterizing proteoforms. In particular, the major bottleneck is to assign peptide-level information to the original proteoforms. In contrast, top-down proteomics (TDP) targets the direct analysis of intact proteoforms. Despite being characterized by a number of technological challenges, the TDP community has established numerous protocols that allow easy implementation in any proteomics laboratory. In this viewpoint, we compare both approaches, argue that it is worth embedding TDP experiments, and show fields of research in which TDP can be successfully implemented to perform integrative multi-level proteoformics.
Collapse
Affiliation(s)
- Philipp T Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
7
|
Nortz SP, Gupta V, Dick JE. The impact of common redox mediators on cellular health: a comprehensive study. Analyst 2025; 150:1795-1806. [PMID: 40176531 PMCID: PMC11966090 DOI: 10.1039/d5an00017c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/12/2025] [Indexed: 04/04/2025]
Abstract
Electrochemistry has become a key technique for studying biomolecular reactions and dynamics of living systems by using electron-transfer reactions to probe the complex interactions between biological redox molecules and their surrounding environments. To enable such measurements, redox mediators such as ferro/ferricyanide, ferrocene methanol, and tris(bipyridine) ruthenium(II) chloride are used. However, the impact of these exogeneous redox mediators on the health of cell cultures remains underexplored. Herein, we present the effects of three common redox mediators on the health of four of the most commonly used cell lines (Panc1, HeLa, U2OS, and MDA-MB-231) in biological studies. Cell health was assessed using three independent parameters: reactive oxygen species quantification by fluorescence flow cytometry, cell migration through scratch assays, and cell growth via luminescence assays. We show that as the concentration of mediator exceeds 1 mM, ROS increases in all cell types while cell viability plumets. In contrast, cell migration was only hindered at the highest concentration of each mediator. Our observations highlight the crucial role that optimized mediator concentrations play in ensuring accuracy when studying biological systems by electrochemical methods. As such, these findings provide a critical reference for selecting redox mediator concentrations for bioanalytical studies on live cells.
Collapse
Affiliation(s)
- Samuel P Nortz
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Vanshika Gupta
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
8
|
Zhang S, Li Z, Peng W, Chen Y, Wu Y. A deep learning framework for enhanced mass spectrometry data analysis and biomarker screening. Comput Methods Biomech Biomed Engin 2025:1-13. [PMID: 40232885 DOI: 10.1080/10255842.2025.2488501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/14/2025] [Accepted: 03/30/2025] [Indexed: 04/17/2025]
Abstract
Mass spectrometry (MS) serves as a powerful analytical technique in metabolomics. Traditional MS analysis workflows are heavily reliant on operator experience and are prone to be influenced by complex, high-dimensional MS data. This study introduces a deep learning framework designed to enhance the classification of complex MS data and facilitate biomarker screening. The proposed framework integrates preprocessing, classification, and biomarker selection, addressing challenges in high-dimensional MS analysis. Experimental results demonstrate significant improvements in classification tasks compared to other machine learning approaches. Additionally, the proposed peak-preprocessing module is validated for its potential in biomarker screening, identifying potential biomarkers from high-dimensional data.
Collapse
Affiliation(s)
- Shuyu Zhang
- Machine Intelligence Lab, College of Computer Science, Sichuan University, Chengdu, China
| | - Zhiyu Li
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Weili Peng
- Machine Intelligence Lab, College of Computer Science, Sichuan University, Chengdu, China
| | - Yuanyuan Chen
- Machine Intelligence Lab, College of Computer Science, Sichuan University, Chengdu, China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Zhang T, He Y, Li C, Yao H, Zhang M, Li Y. Intelligent decoding platform for peptide sequences: SERS detection via high affinity self-assembled silver nanoparticles and machine learning analysis. Anal Chim Acta 2025; 1347:343797. [PMID: 40024661 DOI: 10.1016/j.aca.2025.343797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Peptides are compounds formed by the dehydration-condensation reaction of two or more amino acids which play an important role in the life functions of the organism. Changes in the structure of amino acids and peptides are vital for elucidating the process of disease development. However, the existing methods make it difficult to accurately recognize slight variations in peptide sequences, which becomes a difficult detection task. Therefore, the necessity of novel, accurate, comprehensive and deep strategies for peptide sequence identification is imperative. RESULTS Here, an intelligent decoding system was developed, which synthesized a substrate (Ag/BDHA) with high affinity and self-assembly capabilities by double reduction method and utilized surface-enhanced Raman scattering (SERS) to achieve label-free, high-affinity and accurate capturing of peptide sequences. The platform can recognize peptide chains with the same molecular weight but different amino acid sequences, filling the loopholes of mass spectroscopy. Interestingly, it can also distinguish peptide chains with different amino acid lengths, different amino acid positions and different amino acid mutations. And further combined with machine learning methods to simplify the output of detection results, including thermogram, confusion matrix, principal component analysis and hierarchical cluster analysis, which was more suitable for practical applications. More importantly, to explore the potential for application, real influenza A viruses were selected and analyzed and successfully identifying mutations and subtypes of viruses. SIGNIFICANCE In sum, the original, versatile and intelligent detection system based on surface-enhanced Raman scattering we proposed provides a promising method and strategy for the precise and valid analysis of different variations of peptide sequences, which is of great significance for explaining life processes, exploring disease pathogenesis, and developing innovative drugs.
Collapse
Affiliation(s)
- Ting Zhang
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China; Department of Inorganic Chemistry and Physical Chemistry, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Yingying He
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Chengming Li
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Huan Yao
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Mingxu Zhang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Yang Li
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China; Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Finland.
| |
Collapse
|
10
|
Tabatabaeian Nimavard R, Sadeghi SA, Mahmoudi M, Zhu G, Sun L. Top-Down Proteomic Profiling of Protein Corona by High-Throughput Capillary Isoelectric Focusing-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:778-786. [PMID: 40025702 PMCID: PMC11964827 DOI: 10.1021/jasms.4c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/06/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
In the rapidly evolving field of nanomedicine, understanding the interactions between nanoparticles (NPs) and biological systems is crucial. A pivotal aspect of these interactions is the formation of a protein corona when NPs are exposed to biological fluids (e.g., human plasma), which significantly influences their behavior and functionality. This study introduces an advanced capillary isoelectric focusing tandem mass spectrometry (cIEF-MS/MS) platform designed to enable high-throughput and reproducible top-down proteomic analysis of protein corona. Our cIEF-MS/MS technique completed each analysis within 30 min. It produced reproducible proteoform measurements of protein corona for at least 50 runs regarding the proteoforms' migration time [relative standard deviations (RSDs) <4%], the proteoforms' intensity (Pearson's correlation coefficients between any two runs >0.90), the number of proteoform identifications (71 ± 10), and the number of proteoform-spectrum matches (PrSMs) (196 ± 30). Of the 53 identified genes, 33 are potential biomarkers of various diseases (e.g., cancer, cardiovascular disease, and Alzheimer's disease). We identified 1-102 proteoforms per potential protein biomarker, containing various sequence variations or post-translational modifications. Delineating proteoforms in protein corona by our cIEF-MS/MS in a reproducible and high-throughput fashion will benefit our understanding of nanobiointeractions and advance both diagnostic and therapeutic nanomedicine technologies.
Collapse
Affiliation(s)
| | - Seyed Amirhossein Sadeghi
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Morteza Mahmoudi
- Precision
Health Program, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Radiology, College of Human Medicine, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Guijie Zhu
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
11
|
Sun C, Zhang W, Zhou M, Myu M, Xu W. Full Window Data-Independent Acquisition Method for Deeper Top-Down Proteomics. Anal Chem 2025; 97:6620-6628. [PMID: 40119838 DOI: 10.1021/acs.analchem.4c06471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Top-down proteomics (TDP) is emerging as a vital tool for the comprehensive characterization of proteoforms. However, as its core technology, top-down mass spectrometry (TDMS) still faces significant analytical challenges. While data-independent acquisition (DIA) has revolutionized bottom-up proteomics and metabolomics, they are rarely employed in TDP. The unique feature of protein ions in an electrospray mass spectrum as well as the data complexity require the development of new DIA strategies. This study introduces a machine learning-assisted Full Window DIA (FW-DIA) method that eliminates precursor ion isolation, making it compatible with a wide range of commercial mass spectrometers. Moreover, FW-DIA leverages all precursor protein ions to generate high-quality tandem mass spectra, enhancing signal intensities by ∼50-fold and protein sequence coverage by 3-fold in a modular protein analysis. The method was successfully applied to the analysis of a five-protein mixture under native conditions and Escherichia coli ribosomal proteoform characterization.
Collapse
Affiliation(s)
- Chen Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Wenjing Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Mowei Zhou
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Martin Myu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Wei Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
12
|
Searfoss RM, Zahn E, Lin Z, Garcia BA. Establishing a Top-Down Proteomics Platform on a Time-of-Flight Instrument with Electron-Activated Dissociation. J Proteome Res 2025; 24:1230-1240. [PMID: 39957600 DOI: 10.1021/acs.jproteome.4c00874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Top-down proteomics is the study of intact proteins and their post-translational modifications with mass spectrometry. Historically, this field is more challenging than its bottom-up counterpart because the species are much bigger and have a larger number of possible combinations of sequences and modifications; thus, there is a great need for technological development. With improvements in instrumentation and a multiplicity of fragmentation modes available, top-down proteomics is quickly gaining in popularity with renewed attention on increasing confidence in identification and quantification. Here, we systematically evaluated the Sciex ZenoTOF 7600 system for top-down proteomics, applying standards in the field to validate the platform and further experimenting with its capabilities in electron-activated dissociation and post-translational modification site localization. The instrument demonstrated robustness in standard proteins for platform QC, as aided by zeno trapping. We were also able to apply this to histone post-translational modifications, achieving high sequence coverage that allowed PTM's site localization across protein sequences with optimized EAD fragmentation. We demonstrated the ability to analyze proteins spanning the mass range and included analysis of glycosylated proteins. This is a reference point for future top-down proteomics experiments to be conducted on the ZenoTOF 7600 system.
Collapse
Affiliation(s)
- Richard M Searfoss
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Emily Zahn
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
13
|
Hossain MA, Brahme RR, Miller BC, Amin J, de Barros M, Schneider JL, Auclair JR, Mattos C, Wang Q, Agar NYR, Greenblatt DJ, Manetsch R, Agar JN. Mass spectrometry methods and mathematical PK/PD model for decision tree-guided covalent drug development. Nat Commun 2025; 16:1777. [PMID: 39971904 PMCID: PMC11839910 DOI: 10.1038/s41467-025-56985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Covalent drug discovery efforts are growing rapidly but have major unaddressed limitations. These include high false positive rates during hit-to-lead identification; the inherent uncoupling of covalent drug concentration and effect [i.e., uncoupling of pharmacokinetics (PK) and pharmacodynamics (PD)]; and a lack of bioanalytical and modeling methods for determining PK and PD parameters. We present a covalent drug discovery workflow that addresses these limitations. Our bioanalytical methods are based upon a mass spectrometry (MS) assay that can measure the percentage of drug-target protein conjugation (% target engagement) in biological matrices. Further we develop an intact protein PK/PD model (iPK/PD) that outputs PK parameters (absorption and distribution) as well as PD parameters (mechanism of action, protein metabolic half-lives, dose, regimen, effect) based on time-dependent target engagement data. Notably, the iPK/PD model is applicable to any measurement (e.g., bottom-up MS and other drug binding studies) that yields % of target engaged. A Decision Tree is presented to guide researchers through the covalent drug development process. Our bioanalytical methods and the Decision Tree are applied to two approved drugs (ibrutinib and sotorasib); the most common plasma off-target, human serum albumin; three protein targets (KRAS, BTK, SOD1), and to a promising SOD1-targeting ALS drug candidates.
Collapse
Affiliation(s)
- Md Amin Hossain
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA
- Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School;Boston, Massachusetts, 02115, USA
| | - Rutali R Brahme
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA
| | - Brandon C Miller
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
| | - Jakal Amin
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA
| | - Marcela de Barros
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
| | - Jaime L Schneider
- Massachusetts General Hospital Cancer Center, Harvard Medical School;Boston, Massachusetts, 02114, USA
| | - Jared R Auclair
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
| | - Qingping Wang
- Sanofi US, Drug Metabolism and Pharmacokinetics;Cambridge, Massachusetts, 02141, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School;Boston, Massachusetts, 02115, USA
| | | | - Roman Manetsch
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Department of Pharmaceutical Sciences, Northeastern University;Boston, Massachusetts, 02115, USA
| | - Jeffrey N Agar
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA.
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA.
- Department of Pharmaceutical Sciences, Northeastern University;Boston, Massachusetts, 02115, USA.
| |
Collapse
|
14
|
Gensberger-Reigl S, Zenker HE. Detection of intact bovine milk proteins after simulated gastrointestinal infant digestion using UHPLC - HRMS. Food Chem 2025; 465:142034. [PMID: 39571429 DOI: 10.1016/j.foodchem.2024.142034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024]
Abstract
This study demonstrates the development and application of an ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) method for the rapid and sensitive identification of intact bovine milk proteins following simulated gastrointestinal infant digestion. The new method enables the differentiation between partially hydrolysed/modified and fully intact proteins. In the raw milk, intact α-lactalbumin was visible on SDS - PAGE until the end of the gastrointestinal digestion, while it was not detected with UHPLC-HRMS. Analysis of both raw and heated milk samples revealed that the method is applicable to various milk types. Interestingly, heated milk showed additional signals in the mass spectrum, indicating non-enzymatic post-translational modifications. The relative abundance of these proteoforms could be followed along digestion. These findings highlight the versatility and sensitivity of UHPLC-HRMS in elucidating protein structures and modifications, providing valuable insights into how simulated digestion affects milk protein composition.
Collapse
Affiliation(s)
- Sabrina Gensberger-Reigl
- Chair of Food Chemistry, Department Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| | - Hannah E Zenker
- Chair of Food Chemistry, Department Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
15
|
Scrosati PM, MacKay-Barr EH, Konermann L. Umbrella Sampling MD Simulations for Retention Prediction in Peptide Reversed-phase Liquid Chromatography. Anal Chem 2025; 97:828-837. [PMID: 39705373 DOI: 10.1021/acs.analchem.4c05428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Reversed-phase liquid chromatography (RPLC) is an essential tool for separating complex mixtures such as proteolytic digests in bottom-up proteomics. There is growing interest in methods that can predict the RPLC retention behavior of peptides and other analytes. Already, existing algorithms provide excellent performance based on empirical rules or large sets of RPLC training data. Here we explored a new type of retention prediction strategy that relies on first-principles modeling of peptide interactions with a C18 stationary phase. We recently demonstrated that molecular dynamics (MD) simulations can provide atomistic insights into the behavior of peptides under RPLC conditions (Anal. Chem. 2023, 95, 3892). However, the current work found that it is problematic to use conventional MD data for retention prediction, evident from a poor correlation between experimental retention times and MD-generated "fraction bound" values. We thus turned to umbrella sampling MD, a complementary technique that has previously been applied to probe noncovalent contacts in other types of systems. By restraining the peptide dynamic motions at various positions inside a C18-lined pore, we determined the free energy of the system as a function of peptide-stationary phase distance. ΔGbinding values determined in this way under various mobile phase conditions were linearly correlated with experimental retention times of tryptic test peptides. This work opens retention prediction avenues for novel types of stationary and mobile phases, and for peptides (or other analytes) having arbitrary chemical properties, without the need for RPLC reference data. Umbrella sampling can be used as a stand-alone tool, or it may serve to enhance existing retention prediction algorithms.
Collapse
Affiliation(s)
- Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Evelyn H MacKay-Barr
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
16
|
van den Wildenberg SH, Genet SAAM, Broeren MAC, van Dongen JLJ, van den Oetelaar MC, Brunsveld L, Scharnhorst V, van de Kerkhof D. Immunoaffinity Intact Top-Down Mass Spectrometry for Quantification of Neuron-Specific Enolase Gamma, a Low-Abundance Protein Biomarker. Anal Chem 2025; 97:516-525. [PMID: 39710932 PMCID: PMC11740178 DOI: 10.1021/acs.analchem.4c04677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/12/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
Quantification of intact proteins in serum by liquid chromatography high-resolution mass spectrometry (HRMS) may be a useful alternative to bottom-up LC-MS or conventional ligand binding assays, due to reduced assay complexity and by providing additional information, such as isoform differentiation or detection of post-translational modifications. The 47.2 kDa lung cancer tumor marker neuron-specific enolase γ (NSEγ) was quantified in a clinically relevant concentration range of 6.25 to 100 ng/mL in NSE-depleted human serum using magnetic bead immunoprecipitation coupled to LC-high-resolution quadrupole-time-of-flight MS. The novelty of the described approach is in the combined setup of immunoaffinity extraction and the use of a full-length NSEγ calibrator and labeled NSEγ internal standard (IS) to reliably quantify the post-translationally acetylated form of this protein tumor marker in a top-down proteomics workflow. Isolation parameters and quantification using deconvolution and reconstructed extracted ion chromatograms were evaluated, and the development of a suitable liquid chromatography method was demonstrated. Various validation parameters were determined using both quantification methods, both showing acceptable performance. Additionally, deconvolution-based quantification enabled an accurate mass determination. The developed method was compared to a commercially available ECLIA and showed good correlation in sera of patients suspected of lung cancer. This assay may form the starting point for the development of a reference method for the standardization of immunoassays.
Collapse
Affiliation(s)
- Sebastian
A. H. van den Wildenberg
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Clinical
Laboratory, Catharina Hospital Eindhoven, Eindhoven 5623 EJ, The Netherlands
- Expert Center
Clinical Chemistry Eindhoven, Eindhoven 5600 MB, The Netherlands
| | - Sylvia A. A. M. Genet
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Clinical
Laboratory, Catharina Hospital Eindhoven, Eindhoven 5623 EJ, The Netherlands
- Expert Center
Clinical Chemistry Eindhoven, Eindhoven 5600 MB, The Netherlands
| | - Maarten A. C. Broeren
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Expert Center
Clinical Chemistry Eindhoven, Eindhoven 5600 MB, The Netherlands
- Clinical
Laboratory, Máxima Medical Center Eindhoven, Veldhoven 5504 DB, The Netherlands
| | - Joost L. J. van Dongen
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Expert Center
Clinical Chemistry Eindhoven, Eindhoven 5600 MB, The Netherlands
| | - Maxime C.M. van den Oetelaar
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Luc Brunsveld
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Expert Center
Clinical Chemistry Eindhoven, Eindhoven 5600 MB, The Netherlands
| | - Volkher Scharnhorst
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Clinical
Laboratory, Catharina Hospital Eindhoven, Eindhoven 5623 EJ, The Netherlands
- Expert Center
Clinical Chemistry Eindhoven, Eindhoven 5600 MB, The Netherlands
| | - Daan van de Kerkhof
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Clinical
Laboratory, Catharina Hospital Eindhoven, Eindhoven 5623 EJ, The Netherlands
- Expert Center
Clinical Chemistry Eindhoven, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
17
|
Basharat A, Xiong X, Xu T, Zang Y, Sun L, Liu X. TopDIA: A Software Tool for Top-Down Data-Independent Acquisition Proteomics. J Proteome Res 2025; 24:55-64. [PMID: 39641251 PMCID: PMC11705214 DOI: 10.1021/acs.jproteome.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/06/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Top-down mass spectrometry is widely used for proteoform identification, characterization, and quantification owing to its ability to analyze intact proteoforms. In the past decade, top-down proteomics has been dominated by top-down data-dependent acquisition mass spectrometry (TD-DDA-MS), and top-down data-independent acquisition mass spectrometry (TD-DIA-MS) has not been well studied. While TD-DIA-MS produces complex multiplexed tandem mass spectrometry (MS/MS) spectra, which are challenging to confidently identify, it selects more precursor ions for MS/MS analysis and has the potential to increase proteoform identifications compared with TD-DDA-MS. Here we present TopDIA, the first software tool for proteoform identification by TD-DIA-MS. It generates demultiplexed pseudo MS/MS spectra from TD-DIA-MS data and then searches the pseudo MS/MS spectra against a protein sequence database for proteoform identification. We compared the performance of TD-DDA-MS and TD-DIA-MS using Escherichia coli K-12 MG1655 cells and demonstrated that TD-DIA-MS with TopDIA increased proteoform and protein identifications compared with TD-DDA-MS.
Collapse
Affiliation(s)
- Abdul
Rehman Basharat
- Department
of BioHealth Informatics, Luddy School of Informatics, Computing and
Engineering, Indiana University-Purdue University
Indianapolis, Indianapolis, Indiana 46202, United States
| | - Xingzhao Xiong
- Deming
Department of Medicine, Tulane University
School of Medicine, New Orleans, Louisiana 70112, United States
| | - Tian Xu
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yong Zang
- Department
of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Liangliang Sun
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaowen Liu
- Deming
Department of Medicine, Tulane University
School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
18
|
Chen A, Aquino RM, Vidal HA, Wong CV, Luo RY. A liquid chromatography-high-resolution mass spectrometry method for separation and identification of hemoglobin variant subunits with mass shifts less than 1 Da. J Mass Spectrom Adv Clin Lab 2025; 35:1-7. [PMID: 39995439 PMCID: PMC11847268 DOI: 10.1016/j.jmsacl.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/18/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Background Identification of hemoglobin (Hb) variants is valuable in clinical testing. A common issue with conventional methods for identifying Hb variants is their subpar ability to provide structural breakdowns of the variants. Reports have surfaced of high-resolution mass spectrometry (HR-MS) methods that improve on traditional methods; however, ambiguities may arise without separation of Hb subunits prior to HR-MS analysis. Methods We report a liquid chromatography-high-resolution mass spectrometry (LC-HR-MS) method to separate several pairs of normal and variant Hb subunits with mass shifts of less than 1 Da and successfully identify them in intact-protein and top-down analyses. LC separation was facilitated by a C4 reversed-phase column. Results Seven heterozygous Hb variant samples (Hb C with α-thalassemia trait, Hb E, Hb D-Punjab, Hb G-Accra, Hb G-Siriraj, Hb Tarrant, and Hb G-Waimanalo) were selected to demonstrate the LC separation of Hb variant and normal subunits with mass shifts of less than 1 Da. The analytes could be explicitly observed in the deconvoluted MS1 mass spectra. The top-down analysis matched the amino acid sequences of the correct Hb variant subunits. Conclusions The LC-HR-MS method described can effectively separate and identify Hb subunits, especially when the variant subunits have mass deviations of less than 1 Da from their corresponding normal subunits. With further evaluation to prove the clinical utility, the HR-MS methods including CE-HR-MS have the potential to complement or partially replace conventional methods of Hb variant identification in clinical laboratories.
Collapse
Affiliation(s)
- Ainslie Chen
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ryan M. Aquino
- Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| | - Hector A. Vidal
- Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| | - Carolyn V. Wong
- Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| | - Ruben Y. Luo
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
- Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| |
Collapse
|
19
|
Kanao E, Tanaka S, Tomioka A, Ogata K, Tanigawa T, Kubo T, Ishihama Y. High-Recovery Desalting Tip Columns for a Wide Variety of Peptides in Mass Spectrometry-Based Proteomics. Anal Chem 2024; 96:20390-20397. [PMID: 39679664 PMCID: PMC11696827 DOI: 10.1021/acs.analchem.4c03753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024]
Abstract
In mass spectrometry-based proteomics, loss-minimized peptide purification techniques play a key role in improving sensitivity and coverage. We have developed a desalting tip column packed with thermoplastic polymer-coated chromatographic particles, named ChocoTip, to achieve high recoveries in peptide purification by pipet-tip-based LC with centrifugation (tipLC). ChocoTip identified more than twice as many peptides from 20 ng of tryptic peptides from Hela cell lysate compared to a typical StageTip packed with chromatographic particles entangled in a Teflon mesh in tipLC. The high recovery of ChocoTip in tipLC was maintained for peptides with a wide variety of physical properties over the entire retention time range of the LC-MS/MS analysis, and was especially noteworthy for peptides with long retention times. These excellent properties are attributable to the unique morphology of ChocoTip, in which the thermoplastic polymer covers the pores, thereby inhibiting irreversible adsorption of peptides into mesopores of the chromatographic particles. ChocoTip is expected to find applications, especially in clinical proteomics and single-cell proteomics, where sample amounts are limited.
Collapse
Affiliation(s)
- Eisuke Kanao
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Kyoto 606−8501, Japan
- Laboratory
of Proteomics for Drug Discovery, National
Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Shunsuke Tanaka
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Kyoto 606−8501, Japan
| | - Ayana Tomioka
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Kyoto 606−8501, Japan
| | - Kosuke Ogata
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Kyoto 606−8501, Japan
| | - Tetsuya Tanigawa
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Kyoto 606−8501, Japan
| | - Takuya Kubo
- Graduate
School of Life and Environmental Science, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yasushi Ishihama
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Kyoto 606−8501, Japan
- Laboratory
of Proteomics for Drug Discovery, National
Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
20
|
Pahl V, Lubrano P, Troßmann F, Petras D, Link H. Intact protein barcoding enables one-shot identification of CRISPRi strains and their metabolic state. CELL REPORTS METHODS 2024; 4:100908. [PMID: 39603242 PMCID: PMC11704613 DOI: 10.1016/j.crmeth.2024.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Detecting strain-specific barcodes with mass spectrometry can facilitate the screening of genetically engineered bacterial libraries. Here, we introduce intact protein barcoding, a method to measure protein-based library barcodes and metabolites using flow injection mass spectrometry (FI-MS). Protein barcodes are based on ubiquitin with N-terminal tags of six amino acids. We demonstrate that FI-MS detects intact ubiquitin proteins and identifies the mass of N-terminal barcodes. In the same analysis, we measured relative concentrations of primary metabolites. We constructed six ubiquitin-barcoded CRISPR interference (CRISPRi) strains targeting metabolic enzymes and analyzed their metabolic profiles and ubiquitin barcodes. FI-MS detected barcodes and distinct metabolome changes in CRISPRi-targeted pathways. We demonstrate the scalability of intact protein barcoding by measuring 132 ubiquitin barcodes in microtiter plates. These results show that intact protein barcoding enables fast and simultaneous detection of library barcodes and intracellular metabolites, opening up new possibilities for mass spectrometry-based barcoding.
Collapse
Affiliation(s)
- Vanessa Pahl
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, 72076 Tübingen, Germany
| | - Paul Lubrano
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, 72076 Tübingen, Germany; M3 Research Center, University of Tübingen, 72076 Tübingen, Germany
| | - Felicia Troßmann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, 72076 Tübingen, Germany; M3 Research Center, University of Tübingen, 72076 Tübingen, Germany
| | - Daniel Petras
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, 72076 Tübingen, Germany; Department of Biochemistry, University of California, Riverside, 169 Aberdeen Dr., Riverside, CA 92507, USA
| | - Hannes Link
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, 72076 Tübingen, Germany; M3 Research Center, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
21
|
Britt H, Ben-Younis A, Page N, Thalassinos K. A Conformation-Specific Approach to Native Top-down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:3203-3213. [PMID: 39453623 PMCID: PMC11622372 DOI: 10.1021/jasms.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Native top-down mass spectrometry is a powerful approach for characterizing proteoforms and has recently been applied to provide similarly powerful insights into protein conformation. Current approaches, however, are limited such that structural insights can only be obtained for the entire conformational landscape in bulk or without any direct conformational measurement. We report a new ion-mobility-enabled method for performing native top-down MS in a conformation-specific manner. Our approach identified conformation-linked differences in backbone dissociation for the model protein calmodulin, which simultaneously informs upon proteoform variations and provides structural insights. We also illustrate that our method can be applied to protein-ligand complexes, either to identify components or to probe ligand-induced structural changes.
Collapse
Affiliation(s)
- Hannah
M. Britt
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
| | - Aisha Ben-Younis
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
| | - Nathanael Page
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
- LGC
Group, Teddington TW11 0LY, United Kingdom
| | - Konstantinos Thalassinos
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
- Institute
of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United
Kingdom
| |
Collapse
|
22
|
Habeck T, Brown KA, Des Soye B, Lantz C, Zhou M, Alam N, Hossain MA, Jung W, Keener JE, Volny M, Wilson JW, Ying Y, Agar JN, Danis PO, Ge Y, Kelleher NL, Li H, Loo JA, Marty MT, Paša-Tolić L, Sandoval W, Lermyte F. Top-down mass spectrometry of native proteoforms and their complexes: a community study. Nat Methods 2024; 21:2388-2396. [PMID: 38744918 PMCID: PMC11561160 DOI: 10.1038/s41592-024-02279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
The combination of native electrospray ionization with top-down fragmentation in mass spectrometry (MS) allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and cofactors. Although this approach is powerful, both native MS and top-down MS are not yet well standardized, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics initiated a study to develop and test protocols for native MS combined with top-down fragmentation of proteins and protein complexes across 11 instruments in nine laboratories. Here we report the summary of the outcomes to provide robust benchmarks and a valuable entry point for the scientific community.
Collapse
Affiliation(s)
- Tanja Habeck
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Kyle A Brown
- University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Mowei Zhou
- Pacific Northwest National Laboratory, Richland, WA, USA
- Zhejiang University, Zhejiang, China
| | | | | | | | | | | | - Jesse W Wilson
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yujia Ying
- Sun Yat-sen University, Guangzhou, China
| | - Jeffrey N Agar
- Northeastern University, Boston, MA, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Paul O Danis
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Ying Ge
- University of Wisconsin-Madison, Madison, WI, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Neil L Kelleher
- Northwestern University, Evanston, IL, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Huilin Li
- Sun Yat-sen University, Guangzhou, China
| | - Joseph A Loo
- University of California, Los Angeles, CA, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | | | - Ljiljana Paša-Tolić
- Pacific Northwest National Laboratory, Richland, WA, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | | | | |
Collapse
|
23
|
Kaulich PT, Jeong K, Kohlbacher O, Tholey A. Influence of different sample preparation approaches on proteoform identification by top-down proteomics. Nat Methods 2024; 21:2397-2407. [PMID: 39438734 PMCID: PMC11621018 DOI: 10.1038/s41592-024-02481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Top-down proteomics using mass spectrometry facilitates the identification of intact proteoforms, that is, all molecular forms of proteins. Multiple past advances have lead to the development of numerous sample preparation workflows. Here we systematically investigated the influence of different sample preparation steps on proteoform and protein identifications, including cell lysis, reduction and alkylation, proteoform enrichment, purification and fractionation. We found that all steps in sample preparation influence the subset of proteoforms identified (for example, their number, confidence, physicochemical properties and artificially generated modifications). The various sample preparation strategies resulted in complementary identifications, substantially increasing the proteome coverage. Overall, we identified 13,975 proteoforms from 2,720 proteins of human Caco-2 cells. The results presented can serve as suggestions for designing and adapting top-down proteomics sample preparation strategies to particular research questions. Moreover, we expect that the sampling bias and modifications identified at the intact protein level will also be useful in improving bottom-up proteomics approaches.
Collapse
Affiliation(s)
- Philipp T Kaulich
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Kyowon Jeong
- Applied Bioinformatics, Computer Science Department, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Computer Science Department, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
24
|
Arad M, Frey C, Balagtas R, Hare R, Ku K, Jereb D, Nestman Z, Sidhu A, Shi Y, Fordwour O, Moon KM, Foster LJ, Ghafourifar G. Development of an Automated, Ultra-Rapid Bottom-Up Proteomics Workflow Utilizing Alginate-Based Hydrogels. Anal Chem 2024; 96:18880-18889. [PMID: 39528415 PMCID: PMC11603402 DOI: 10.1021/acs.analchem.4c04846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
A new approach to sample preparation and enzymatic digestion in bottom-up proteomics has been developed using alginate-based hydrogel entrapment of enzymes. This hydrogel facilitates rapid and room-temperature digestions with multienzyme capabilities. Three methodologies were tested: within microcentrifuge tubes, in situ pipette tips, and automated robotic liquid handling. Factorial experimental design identified a 1 h, room temperature, pepsin-trypsin dual-enzyme digestion as optimal for sequence coverage and protein group identification, comparable to a gold-standard overnight proteomic protocol. This method promises significant advancements in proteomic analysis by enhancing reusability, speed, throughput, convenience, and cost-effectiveness, without hindering digestion efficiency.
Collapse
Affiliation(s)
- Maor Arad
- Department
of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department
of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M7, Canada
| | - Connor Frey
- Department
of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M7, Canada
- Department
of Medicine, University of British Columbia, 2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Ronald Balagtas
- Department
of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M7, Canada
| | - Rhien Hare
- Department
of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M7, Canada
- Faculty of
Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A
1S6, Canada
| | - Kenneth Ku
- Department
of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M7, Canada
| | - Dario Jereb
- Department
of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M7, Canada
| | - Zach Nestman
- Department
of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M7, Canada
| | - Anoop Sidhu
- Department
of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M7, Canada
| | - Yuming Shi
- Department
of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Osei Fordwour
- Department
of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kyung-Mee Moon
- Department
of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Leonard J. Foster
- Department
of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Golfam Ghafourifar
- Department
of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M7, Canada
| |
Collapse
|
25
|
Ramirez-Sagredo A, Sunny AT, Cupp-Sutton KA, Chowdhury T, Zhao Z, Wu S, Chiao YA. Characterizing age-related changes in intact mitochondrial proteoforms in murine hearts using quantitative top-down proteomics. Clin Proteomics 2024; 21:57. [PMID: 39343872 PMCID: PMC11440756 DOI: 10.1186/s12014-024-09509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and the prevalence of CVDs increases markedly with age. Due to the high energetic demand, the heart is highly sensitive to mitochondrial dysfunction. The complexity of the cardiac mitochondrial proteome hinders the development of effective strategies that target mitochondrial dysfunction in CVDs. Mammalian mitochondria are composed of over 1000 proteins, most of which can undergo post-translational modifications (PTMs). Top-down proteomics is a powerful technique for characterizing and quantifying proteoform sequence variations and PTMs. However, there are still knowledge gaps in the study of age-related mitochondrial proteoform changes using this technique. In this study, we used top-down proteomics to identify intact mitochondrial proteoforms in young and old hearts and determined changes in protein abundance and PTMs in cardiac aging. METHODS Intact mitochondria were isolated from the hearts of young (4-month-old) and old (24-25-month-old) mice. The mitochondria were lysed, and mitochondrial lysates were subjected to denaturation, reduction, and alkylation. For quantitative top-down analysis, there were 12 runs in total arising from 3 biological replicates in two conditions, with technical duplicates for each sample. The collected top-down datasets were deconvoluted and quantified, and then the proteoforms were identified. RESULTS From a total of 12 LC-MS/MS runs, we identified 134 unique mitochondrial proteins in the different sub-mitochondrial compartments (OMM, IMS, IMM, matrix). 823 unique proteoforms in different mass ranges were identified. Compared to cardiac mitochondria of young mice, 7 proteoforms exhibited increased abundance and 13 proteoforms exhibited decreased abundance in cardiac mitochondria of old mice. Our analysis also detected PTMs of mitochondrial proteoforms, including N-terminal acetylation, lysine succinylation, lysine acetylation, oxidation, and phosphorylation. Data are available via ProteomeXchange with the identifier PXD051505. CONCLUSION By combining mitochondrial protein enrichment using mitochondrial fractionation with quantitative top-down analysis using ultrahigh-pressure liquid chromatography (UPLC)-MS and label-free quantitation, we successfully identified and quantified intact proteoforms in the complex mitochondrial proteome. Using this approach, we detected age-related changes in abundance and PTMs of mitochondrial proteoforms in the heart.
Collapse
Affiliation(s)
- Andrea Ramirez-Sagredo
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, MS21, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Anju Teresa Sunny
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA
| | - Trishika Chowdhury
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA
| | - Zhitao Zhao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA.
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA.
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, MS21, 825 NE 13th St, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
26
|
Chen FH, Cheng CY, Chou SW, Yang CH, Lu IC, Yeh ML. High-Resolution Intact Protein Analysis via Phase-Modulated, Stepwise Frequency Scan Ion Trap Mass Spectrometry. Anal Chem 2024; 96:14867-14876. [PMID: 39238447 PMCID: PMC11411492 DOI: 10.1021/acs.analchem.4c02775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Mass spectrometry (MS) using an electron multiplier for intact protein analysis remains limited. Because of the massive size and complex structure of proteins, the slow flight speed of their ions results in few secondary electrons and thus low detection sensitivity and poor spectral resolution. Thus, we present a compact ion trap-mass spectrometry approach to directly detect ion packets and obtain the high-resolution molecular signature of proteins. The disturbances causing deviations of ion motion and mass conversion have been clarified in advance. The radio frequency waveform used to manipulate ions is proposed to be a sequence of constant-frequency steps, interconnected by short time-outs, resulting in least dispersive distortion. Furthermore, more such constant-phase conjunctions are arranged in each step to compensate for fluctuations resulting from defects in the system and operation. In addition, two auxiliary pulses are generated in the right phase of each step to select ions of a specific secular state to detect one clean and sharp spectral line.This study demonstrates a top-down approach for the MS measurement of cytochrome C molecules, resulting in a spectral profile of the protein in its natural state at a resolution of 20 Da. Additionally, quick MS scans of other proteins were performed.
Collapse
Affiliation(s)
- Fang-Hsu Chen
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan
City 701, Taiwan
| | - Chun-Yen Cheng
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan
City 701, Taiwan
- AcroMass
Technologies Inc., Hukou, Hsinchu 30352, Taiwan
| | - Szu-Wei Chou
- AcroMass
Technologies Inc., Hukou, Hsinchu 30352, Taiwan
| | - Cheng-Han Yang
- Department
of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan
| | - I-Chung Lu
- Department
of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Ming-Long Yeh
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan
City 701, Taiwan
- Medical
Device Innovation Center, National Cheng
Kung University, Tainan City, 701, Taiwan
| |
Collapse
|
27
|
Sadeghi S, Ashkarran AA, Wang Q, Zhu G, Mahmoudi M, Sun L. Mass Spectrometry-Based Top-Down Proteomics in Nanomedicine: Proteoform-Specific Measurement of Protein Corona. ACS NANO 2024; 18. [PMID: 39276099 PMCID: PMC11440641 DOI: 10.1021/acsnano.4c04675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Conventional mass spectrometry (MS)-based bottom-up proteomics (BUP) analysis of the protein corona [i.e., an evolving layer of biomolecules, mostly proteins, formed on the surface of nanoparticles (NPs) during their interactions with biomolecular fluids] enabled the nanomedicine community to partly identify the biological identity of NPs. Such an approach, however, fails to pinpoint the specific proteoforms─distinct molecular variants of proteins in the protein corona. The proteoform-level information could potentially advance the prediction of the biological fate and pharmacokinetics of nanomedicines. Recognizing this limitation, this study pioneers a robust and reproducible MS-based top-down proteomics (TDP) technique for characterizing proteoforms in the protein corona. Our TDP approach has successfully identified about 900 proteoforms in the protein corona of polystyrene NPs, ranging from 2 to 70 kDa, revealing proteoforms of 48 protein biomarkers with combinations of post-translational modifications, signal peptide cleavages, and/or truncations─details that BUP could not fully discern. This advancement in MS-based TDP offers a more advanced approach to characterize NP protein coronas, deepening our understanding of NPs' biological identities. We, therefore, propose using both TDP and BUP strategies to obtain more comprehensive information about the protein corona, which, in turn, can further enhance the diagnostic and therapeutic efficacy of nanomedicine technologies.
Collapse
Affiliation(s)
- Seyed
Amirhossein Sadeghi
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Ali Akbar Ashkarran
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Qianyi Wang
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Guijie Zhu
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Morteza Mahmoudi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
28
|
Oates RN, Lieu LB, Srzentić K, Damoc E, Fornelli L. Characterization of a Monoclonal Antibody by Native and Denaturing Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2197-2208. [PMID: 39105725 PMCID: PMC11774622 DOI: 10.1021/jasms.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Established in recent years as an important approach to unraveling the heterogeneity of intact monoclonal antibodies, native mass spectrometry has been rarely utilized for sequencing these complex biomolecules via tandem mass spectrometry. Typically, top-down mass spectrometry has been performed starting from highly charged precursor ions obtained via electrospray ionization under denaturing conditions (i.e., in the presence of organic solvents and acidic pH). Here we systematically benchmark four distinct ion dissociation methods─namely, higher-energy collisional dissociation, electron transfer dissociation, electron transfer dissociation/higher-energy collisional dissociation, and 213 nm ultraviolet photodissociation─in their capability to characterize a therapeutic monoclonal antibody, trastuzumab, starting from denatured and native-like precursor ions. Interestingly, native top-down mass spectrometry results in higher sequence coverage than the experiments carried out under denaturing conditions, with the exception of ultraviolet photodissociation. Globally, electron transfer dissociation followed by collision-based activation of product ions generates the largest number of backbone cleavages in disulfide protected regions, including the complementarity determining regions, regardless of electrospray ionization conditions. Overall, these findings suggest that native mass spectrometry can certainly be used for the gas-phase sequencing of whole monoclonal antibodies, although the dissociation of denatured precursor ions still returns a few backbone cleavages not identified in native experiments. Finally, a comparison of the fragmentation maps obtained under denaturing and native conditions strongly points toward disulfide bonds as the primary reason behind the largely overlapping dissociation patterns.
Collapse
Affiliation(s)
- Ryan N. Oates
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019 USA
| | - Linda B. Lieu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019 USA
| | | | - Eugen Damoc
- Thermo Fisher Scientific, Bremen, DE-HB 28199 Germany
| | - Luca Fornelli
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019 USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019 USA
| |
Collapse
|
29
|
Fowowe M, Yu A, Wang J, Onigbinde S, Nwaiwu J, Bennett A, Mechref Y. Suppressing the background of LC-ESI-MS analysis of permethylated glycans using the active background ion reduction device. Electrophoresis 2024; 45:1469-1478. [PMID: 38573014 PMCID: PMC11438568 DOI: 10.1002/elps.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Mass spectrometry (MS) has revolutionized analytical chemistry, enabling precise identification and quantification of chemical species, which is pivotal for biomarker discovery and understanding complex biological systems. Despite its versatility, the presence of background ions in MS analysis hinders the sensitive detection of low-abundance analytes. Therefore, studies aimed at lowering background ion levels have become increasingly important. Here, we utilized the commercially available Active Background Ion Reduction Device (ABIRD) to suppress background ions and assess its effect on the liquid chromatography-electrospray ionization (LC-ESI)-MS analyses of N-glycans on the Q Exactive HF mass spectrometer. We also investigated the effect of different solvent vapors in the ESI source on N-glycan analysis by MS. ABIRD generally had no effect on high-mannose and neutral structures but reduced the intensity of some structures that contained sialic acid, fucose, or both when methanol vapor filled the ESI source. Based on our findings on the highest number of identified N-glycans from human serum, methanol vapor in the ion source compartment may enhance N-glycan LC-ESI-MS analyses by improving the desolvation of droplets formed during the ESI process due to its high volatility. This protocol may be further validated and extended to advanced bottom-up proteomic/glycoproteomic studies for the analysis of peptide/glycopeptide ions by MS.
Collapse
Affiliation(s)
- Mojibola Fowowe
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock TX, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock TX, USA
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock TX, USA
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock TX, USA
| | - Judith Nwaiwu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock TX, USA
| | - Andy Bennett
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock TX, USA
| |
Collapse
|
30
|
Wang CR, McFarlane LO, Pukala TL. Exploring snake venoms beyond the primary sequence: From proteoforms to protein-protein interactions. Toxicon 2024; 247:107841. [PMID: 38950738 DOI: 10.1016/j.toxicon.2024.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Snakebite envenomation has been a long-standing global issue that is difficult to treat, largely owing to the flawed nature of current immunoglobulin-based antivenom therapy and the complexity of snake venoms as sophisticated mixtures of bioactive proteins and peptides. Comprehensive characterisation of venom compositions is essential to better understanding snake venom toxicity and inform effective and rationally designed antivenoms. Additionally, a greater understanding of snake venom composition will likely unearth novel biologically active proteins and peptides that have promising therapeutic or biotechnological applications. While a bottom-up proteomic workflow has been the main approach for cataloguing snake venom compositions at the toxin family level, it is unable to capture snake venom heterogeneity in the form of protein isoforms and higher-order protein interactions that are important in driving venom toxicity but remain underexplored. This review aims to highlight the importance of understanding snake venom heterogeneity beyond the primary sequence, in the form of post-translational modifications that give rise to different proteoforms and the myriad of higher-order protein complexes in snake venoms. We focus on current top-down proteomic workflows to identify snake venom proteoforms and further discuss alternative or novel separation, instrumentation, and data processing strategies that may improve proteoform identification. The current higher-order structural characterisation techniques implemented for snake venom proteins are also discussed; we emphasise the need for complementary and higher resolution structural bioanalytical techniques such as mass spectrometry-based approaches, X-ray crystallography and cryogenic electron microscopy, to elucidate poorly characterised tertiary and quaternary protein structures. We envisage that the expansion of the snake venom characterisation "toolbox" with top-down proteomics and high-resolution protein structure determination techniques will be pivotal in advancing structural understanding of snake venoms towards the development of improved therapeutic and biotechnology applications.
Collapse
Affiliation(s)
- C Ruth Wang
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Lewis O McFarlane
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
31
|
Agostini M, Traldi P, Hamdan M. Proteomic Investigation of Immune Checkpoints and Some of Their Inhibitors. Int J Mol Sci 2024; 25:9276. [PMID: 39273224 PMCID: PMC11395526 DOI: 10.3390/ijms25179276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Immune checkpoints are crucial molecules for the maintenance of antitumor immune responses. The activation or inhibition of these molecules is dependent on the interactions between receptors and ligands; such interactions can provide inhibitory or stimulatory signals to the various components of the immune system. Over the last 10 years, the inhibition of immune checkpoints, such as cytotoxic T lymphocyte antigen-4, programmed cell death-1, and programmed cell death ligand-1, has taken a leading role in immune therapy. This relatively recent therapy regime is based on the use of checkpoint inhibitors, which enhance the immune response towards various forms of cancer. For a subset of patients with specific forms of cancer, these inhibitors can induce a durable response to therapy; however, the medium response rate to such therapy remains relatively poor. Recent research activities have demonstrated that the disease response to this highly promising therapy resembles the response of many forms of cancer to chemotherapy, where an encouraging initial response is followed by acquired resistance to treatment and progress of the disease. That said, these inhibitors are now used as single agents or in combination with chemotherapies as first or second lines of treatment for about 50 types of cancer. The prevailing opinion regarding immune therapy suggests that for this approach of therapy to deliver on its promise, a number of challenges have to be circumvented. These challenges include understanding the resistance mechanisms to immune checkpoint blockade, the identification of more efficient inhibitors, extending their therapeutic benefits to a wider audience of cancer patients, better management of immune-related adverse side effects, and, more urgently the identification of biomarkers, which would help treating oncologists in the identification of patients who are likely to respond positively to the immune therapies and, last but not least, the prices of therapy which can be afforded by the highest number of patients. Numerous studies have demonstrated that understanding the interaction between these checkpoints and the immune system is essential for the development of efficient checkpoint inhibitors and improved immune therapies. In the present text, we discuss some of these checkpoints, their inhibitors, and some works in which mass spectrometry-based proteomic analyses were applied.
Collapse
Affiliation(s)
- Marco Agostini
- Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35100 Padova, Italy
| | - Pietro Traldi
- Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35100 Padova, Italy
| | - Mahmoud Hamdan
- Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35100 Padova, Italy
| |
Collapse
|
32
|
Jiang Y, Rex DA, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Hegeman AD, Mayta M, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:338-417. [PMID: 39193565 PMCID: PMC11348894 DOI: 10.1021/acsmeasuresciau.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 08/29/2024]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Devasahayam Arokia
Balaya Rex
- Center for
Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
- Department
of Biology, Institute of Molecular Biology
and Biophysics, ETH Zurich, Zurich 8093, Switzerland
- Laboratory
of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical
Sciences Division, National Institute of
Standards and Technology, NIST, Charleston, South Carolina 29412, United States
| | - Germán L. Rosano
- Mass
Spectrometry
Unit, Institute of Molecular and Cellular
Biology of Rosario, Rosario, 2000 Argentina
| | - Norbert Volkmar
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Trenton M. Peters-Clarke
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California, 94158, United States
| | - Susan B. Egbert
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Simion Kreimer
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Emma H. Doud
- Center
for Proteome Analysis, Indiana University
School of Medicine, Indianapolis, Indiana, 46202-3082, United States
| | - Oliver M. Crook
- Oxford
Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United
Kingdom
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | | | - Adrian D. Hegeman
- Departments
of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota 55108, United States
| | - Martín
L. Mayta
- School
of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martin 3103, Argentina
- Molecular
Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas M. Riley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems biology, Seattle, Washington 98109, United States
| | - Jesse G. Meyer
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| |
Collapse
|
33
|
Li Y, Cavet G, Zare RN, Driver T. Fragment correlation mass spectrometry: Determining the structures of biopolymers in a complex mixture without isolating individual components. Proc Natl Acad Sci U S A 2024; 121:e2409676121. [PMID: 39074273 PMCID: PMC11317569 DOI: 10.1073/pnas.2409676121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/30/2024] [Indexed: 07/31/2024] Open
Abstract
Fragment correlation mass spectrometry correlates ion pairs generated from the same fragmentation pathway, achieved by covariance mapping of tandem mass spectra generated with an unmodified linear ion trap without preseparation. We enable the identification of different precursors at different charge states in a complex mixture from a large isolation window, empowering an analytical approach for data-independent acquisition. The method resolves and matches isobaric fragments, internal ions, and disulfide bond fragments. We suggest that this method represents a major advance for analyzing structures of biopolymers in mixtures.
Collapse
Affiliation(s)
- Yangjie Li
- Department of Chemistry, Stanford University, Stanford, CA94305
| | | | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Taran Driver
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA94025
| |
Collapse
|
34
|
Popova L, Carr RA, Carabetta VJ. Recent Contributions of Proteomics to Our Understanding of Reversible N ε-Lysine Acylation in Bacteria. J Proteome Res 2024; 23:2733-2749. [PMID: 38442041 PMCID: PMC11296938 DOI: 10.1021/acs.jproteome.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Post-translational modifications (PTMs) have been extensively studied in both eukaryotes and prokaryotes. Lysine acetylation, originally thought to be a rare occurrence in bacteria, is now recognized as a prevalent and important PTM in more than 50 species. This expansion in interest in bacterial PTMs became possible with the advancement of mass spectrometry technology and improved reagents such as acyl-modification specific antibodies. In this Review, we discuss how mass spectrometry-based proteomic studies of lysine acetylation and other acyl modifications have contributed to our understanding of bacterial physiology, focusing on recently published studies from 2018 to 2023. We begin with a discussion of approaches used to study bacterial PTMs. Next, we discuss newly characterized acylomes, including acetylomes, succinylomes, and malonylomes, in different bacterial species. In addition, we examine proteomic contributions to our understanding of bacterial virulence and biofilm formation. Finally, we discuss the contributions of mass spectrometry to our understanding of the mechanisms of acetylation, both enzymatic and nonenzymatic. We end with a discussion of the current state of the field and possible future research avenues to explore.
Collapse
Affiliation(s)
- Liya Popova
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| | - Rachel A Carr
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| | - Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| |
Collapse
|
35
|
van den Wildenberg SAH, Genet SAAM, Broeren MAC, van Dongen JLJ, Brunsveld L, Scharnhorst V, van de Kerkhof D. Immunoaffinity Intact-Mass Spectrometry for the Detection of Endogenous Concentrations of the Acetylated Protein Tumor Biomarker Neuron Specific Enolase. J Proteome Res 2024; 23:3726-3730. [PMID: 39013105 DOI: 10.1021/acs.jproteome.4c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Intact-mass spectrometry has huge potential for clinical application, as it enables both quantitative and qualitative analysis of intact proteins and possibly unlocks additional pathophysiological information via, e.g., detection of specific post-translational modifications (PTMs). Such valuable and clinically useful selectivity is typically lost during conventional bottom-up mass spectrometry. We demonstrate an innovative immunoprecipitation protein enrichment assay coupled to ultrahigh performance liquid chromatography quadrupole time-of-flight high resolution mass spectrometry (UPLC-QToF-HRMS) for the fast and simple identification of the protein tumor marker Neuron Specific Enolase Gamma (NSEγ) at low endogenous concentrations in human serum. Additionally, using the combination of immunoaffinity purification with intact mass spectrometry, the presence of NSEγ in an acetylated form in human serum was detected. This highlights the unique potential of immunoaffinity intact mass spectrometry in clinical diagnostics.
Collapse
Affiliation(s)
- Sebastian A H van den Wildenberg
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Clinical Laboratory, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, 5612 AZ Eindhoven, The Netherlands
| | - Sylvia A A M Genet
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Clinical Laboratory, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, 5612 AZ Eindhoven, The Netherlands
| | - Maarten A C Broeren
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, 5612 AZ Eindhoven, The Netherlands
- Clinical Laboratory, Máxima Medical Center, 5504 DB Veldhoven, The Netherlands
| | - Joost L J van Dongen
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, 5612 AZ Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, 5612 AZ Eindhoven, The Netherlands
| | - Volkher Scharnhorst
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Clinical Laboratory, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, 5612 AZ Eindhoven, The Netherlands
| | - Daan van de Kerkhof
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Clinical Laboratory, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
36
|
Rodriguez-Aponte SA, Naranjo CA, Johnston RS, Dalvie NC, Crowell LE, Bajoria S, Kumru OS, Joshi SB, Volkin DB, Love JC. Minimal purification method enables developability assessment of recombinant proteins. Biotechnol Bioeng 2024; 121:2423-2434. [PMID: 36929469 DOI: 10.1002/bit.28385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Analytical characterization of proteins is a critical task for developing therapeutics and subunit vaccine candidates. Assessing candidates with a battery of biophysical assays can inform the selection of one that exhibits properties consistent with a given target product profile (TPP). Such assessments, however, require several milligrams of purified protein, and ideal assessments of the physicochemical attributes of the proteins should not include unnatural modifications like peptide tags for purification. Here, we describe a fast two-stage minimal purification process for recombinant proteins secreted by the yeast host Komagataella phaffii from a 20 mL culture supernatant. This method comprises a buffer exchange and filtration with a Q-membrane filter and we demonstrate sufficient removal of key supernatant impurities including host-cell proteins (HCPs) and DNA with yields of 1-2 mg and >60% purity. This degree of purity enables characterizing the resulting proteins using affinity binding, mass spectrometry, and differential scanning calorimetry. We first evaluated this method to purify an engineered SARS-CoV-2 subunit protein antigen and compared the purified protein to a conventional two-step chromatographic process. We then applied this method to compare several SARS-CoV-2 RBD sequences. Finally, we show this simple process can be applied to a range of other proteins, including a single-domain antibody, a rotavirus protein subunit, and a human growth hormone. This simple and fast developability methodology obviates the need for genetic tagging or full chromatographic development when assessing and comparing early-stage protein therapeutics and vaccine candidates produced in K. phaffii.
Collapse
Affiliation(s)
- Sergio A Rodriguez-Aponte
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Christopher A Naranjo
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ryan S Johnston
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Neil C Dalvie
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Laura E Crowell
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sakshi Bajoria
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, USA
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, USA
| | - J Christopher Love
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
37
|
Venter AR. Protein analysis by desorption electrospray ionization mass spectrometry. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39056172 DOI: 10.1002/mas.21900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
This review presents progress made in the ambient analysis of proteins, in particular by desorption electrospray ionization-mass spectrometry (DESI-MS). Related ambient ionization techniques are discussed in comparison to DESI-MS only to illustrate the larger context of protein analysis by ambient ionization mass spectrometry. The review describes early and current approaches for the analysis of undigested proteins, native proteins, tryptic digests, and indirect protein determination through reporter molecules. Applications to mass spectrometry imaging for protein spatial distributions, the identification of posttranslational modifications, determination of binding stoichiometries, and enzymatic transformations are discussed. The analytical capabilities of other ambient ionization techniques such as LESA and nano-DESI currently exceed those of DESI-MS for in situ surface sampling of intact proteins from tissues. This review shows, however, that despite its many limitations, DESI-MS is making valuable contributions to protein analysis. The challenges in sensitivity, spatial resolution, and mass range are surmountable obstacles and further development and improvements to DESI-MS is justified.
Collapse
Affiliation(s)
- Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA
| |
Collapse
|
38
|
Xu T, Wang Q, Wang Q, Sun L. Mass spectrometry-intensive top-down proteomics: an update on technology advancements and biomedical applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4664-4682. [PMID: 38973469 PMCID: PMC11257149 DOI: 10.1039/d4ay00651h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Proteoforms are all forms of protein molecules from the same gene because of variations at the DNA, RNA, and protein levels, e.g., alternative splicing and post-translational modifications (PTMs). Delineation of proteins in a proteoform-specific manner is crucial for understanding their biological functions. Mass spectrometry (MS)-intensive top-down proteomics (TDP) is promising for comprehensively characterizing intact proteoforms in complex biological systems. It has achieved substantial progress in technological development, including sample preparation, proteoform separations, MS instrumentation, and bioinformatics tools. In a single TDP study, thousands of proteoforms can be identified and quantified from a cell lysate. It has also been applied to various biomedical research to better our understanding of protein function in regulating cellular processes and to discover novel proteoform biomarkers of diseases for early diagnosis and therapeutic development. This review covers the most recent technological development and biomedical applications of MS-intensive TDP.
Collapse
Affiliation(s)
- Tian Xu
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA.
| | - Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA.
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA.
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA.
| |
Collapse
|
39
|
Szabo R, Gyemant G, Nagy C, Andrasi M, Gaspar A. Taylor-Aris Dispersion-Assisted Mass Spectrometry for the Analysis of Native Proteins. Anal Chem 2024; 96:11309-11317. [PMID: 38946421 DOI: 10.1021/acs.analchem.4c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
As has recently been shown, Taylor-Aris dispersion-assisted mass spectrometry (TADA-MS) can offer direct injection MS determinations in fields where the targets of the analyses are large molecules present in a matrix that would otherwise cause serious interferences. In the present study, we demonstrated the exceptional utility of TADA-MS in native protein analysis: (i) a dramatic improvement in detection sensitivity was found due to its ability to strongly reduce matrix interferences, (ii) more "native-like" conditions can be used during analyses, (iii) the direct injection of non-MS-compatible matrices is allowed into MS, and (iv) a considerable simplification and economization of the workflow is ensured. We investigated the behavior of different types of proteins and protein complexes present under native conditions, demonstrating the unambiguous benefits and simplicity of the method.
Collapse
Affiliation(s)
- Ruben Szabo
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen 4032, Hungary
| | - Gyongyi Gyemant
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen 4032, Hungary
| | - Cynthia Nagy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen 4032, Hungary
| | - Melinda Andrasi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen 4032, Hungary
| | - Attila Gaspar
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
40
|
Beaufort N, Ingendahl L, Merdanovic M, Schmidt A, Podlesainski D, Richter T, Neumann T, Kuszner M, Vetter IR, Stege P, Burston SG, Filipovic A, Ruiz-Blanco YB, Bravo-Rodriguez K, Mieres-Perez J, Beuck C, Uebel S, Zobawa M, Schillinger J, Malik R, Todorov-Völgyi K, Rey J, Roberti A, Hagemeier B, Wefers B, Müller SA, Wurst W, Sanchez-Garcia E, Zimmermann A, Hu XY, Clausen T, Huber R, Lichtenthaler SF, Schmuck C, Giese M, Kaiser M, Ehrmann M, Dichgans M. Rational correction of pathogenic conformational defects in HTRA1. Nat Commun 2024; 15:5944. [PMID: 39013852 PMCID: PMC11252331 DOI: 10.1038/s41467-024-49982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
Loss-of-function mutations in the homotrimeric serine protease HTRA1 cause cerebral vasculopathy. Here, we establish independent approaches to achieve the functional correction of trimer assembly defects. Focusing on the prototypical R274Q mutation, we identify an HTRA1 variant that promotes trimer formation thus restoring enzymatic activity in vitro. Genetic experiments in Htra1R274Q mice further demonstrate that expression of this protein-based corrector in trans is sufficient to stabilize HtrA1-R274Q and restore the proteomic signature of the brain vasculature. An alternative approach employs supramolecular chemical ligands that shift the monomer-trimer equilibrium towards proteolytically active trimers. Moreover, we identify a peptidic ligand that activates HTRA1 monomers. Our findings open perspectives for tailored protein repair strategies.
Collapse
Affiliation(s)
- Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Linda Ingendahl
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Melisa Merdanovic
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Andree Schmidt
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), LMU Munich, Munich, Germany
| | - David Podlesainski
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Tim Richter
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Thorben Neumann
- Organic Chemistry, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Michael Kuszner
- Center of Medical Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Ingrid R Vetter
- Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Patricia Stege
- Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Steven G Burston
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol, UK
| | - Anto Filipovic
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Yasser B Ruiz-Blanco
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Kenny Bravo-Rodriguez
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Joel Mieres-Perez
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Department of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, Germany
| | - Christine Beuck
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Stephan Uebel
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Monika Zobawa
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Jasmin Schillinger
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katalin Todorov-Völgyi
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Juliana Rey
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Annabell Roberti
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Birte Hagemeier
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Developmental Genetics (IDG), Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Developmental Genetics (IDG), Helmholtz Zentrum München, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Technische Universität München-Weihenstephan, Freising, Germany
| | - Elsa Sanchez-Garcia
- Department of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, Germany
| | - Alexander Zimmermann
- Center of Medical Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Xiao-Yu Hu
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Robert Huber
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carsten Schmuck
- Center of Medical Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Michael Giese
- Organic Chemistry, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany.
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
41
|
Rincon Pabon JP, Akbar Z, Politis A. MSe Collision Energy Optimization for the Analysis of Membrane Proteins Using HDX-cIMS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1383-1389. [PMID: 38842540 PMCID: PMC11228973 DOI: 10.1021/jasms.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) has evolved as an essential technique in structural proteomics. The use of ion mobility separation (IMS) coupled to HDX-MS has increased the applicability of the technique to more complex systems and has been shown to improve data quality and robustness. The first step when running any HDX-MS workflow is to confirm the sequence and retention time of the peptides resulting from the proteolytic digestion of the nondeuterated protein. Here, we optimized the collision energy ramp of HDMSE experiments for membrane proteins using a Waters SELECT SERIES cIMS-QTOF system following an HDX workflow using Phosphorylase B, XylE transporter, and Smoothened receptor (SMO) as model systems. Although collision energy (CE) ramp 10-50 eV gave the highest amount of positive identified peptides when using Phosphorylase B, XylE, and SMO, results suggest optimal CE ramps are protein specific, and different ramps can produce a unique set of peptides. We recommend cIMS users use different CE ramps in their HDMSE experiments and pool the results to ensure maximum peptide identifications. The results show how selecting an appropriate CE ramp can change the sequence coverage of proteins ranging from 4 to 94%.
Collapse
Affiliation(s)
- Juan Pablo Rincon Pabon
- Faculty of Biology, Medicine and Health, Division of Molecular and Cellular Function, The University of Manchester, Manchester M13 9PT, U.K
- Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, U.K
| | - Zulaikha Akbar
- Faculty of Biology, Medicine and Health, Division of Molecular and Cellular Function, The University of Manchester, Manchester M13 9PT, U.K
- Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, U.K
| | - Argyris Politis
- Faculty of Biology, Medicine and Health, Division of Molecular and Cellular Function, The University of Manchester, Manchester M13 9PT, U.K
- Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
42
|
LIU W, WENG L, GAO M, ZHANG X. [Applications of high performance liquid chromatography-mass spectrometry in proteomics]. Se Pu 2024; 42:601-612. [PMID: 38966969 PMCID: PMC11224944 DOI: 10.3724/sp.j.1123.2023.11006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 07/06/2024] Open
Abstract
Proteomics profiling plays an important role in biomedical studies. Proteomics studies are much more complicated than genome research, mainly because of the complexity and diversity of proteomic samples. High performance liquid chromatography-mass spectrometry (HPLC-MS) is a fundamental tool in proteomics research owing to its high speed, resolution, and sensitivity. Proteomics research targets from the peptides and individual proteins to larger protein complexes, the molecular weight of which gradually increases, leading to sustained increases in structural and compositional complexity and alterations in molecular properties. Therefore, the selection of various separation strategies and stationary-phase parameters is crucial when dealing with the different targets in proteomics research for in-depth proteomics analysis. This article provides an overview of commonly used chromatographic-separation strategies in the laboratory, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), hydrophobic interaction chromatography (HIC), ion-exchange chromatography (IEC), and size-exclusion chromatography (SEC), as well as their applications and selectivity in the context of various biomacromolecules. At present, no single chromatographic or electrophoretic technology features the peak capacity required to resolve such complex mixtures into individual components. Multidimensional liquid chromatography (MDLC), which combines different orthogonal separation modes with MS, plays an important role in proteomics research. In the MDLC strategy, IEC, together with RPLC, remains the most widely used separation mode in proteomics analysis; other chromatographic methods are also frequently used for peptide/protein fractionation. MDLC technologies and their applications in a variety of proteomics analyses have undergone great development. Two strategies in MDLC separation systems are mainly used in proteomics profiling: the "bottom-up" approach and the "top-down" approach. The "shotgun" method is a typical "bottom-up" strategy that is based on the RPLC or MDLC separation of whole-protein-sample digests coupled with MS; it is an excellent technique for identifying a large number of proteins. "Top-down" analysis is based on the separation of intact proteins and provides their detailed molecular information; thus, this technique may be advantageous for analyzing the post-translational modifications (PTMs) of proteins. In this paper, the "bottom-up" "top-down" and protein-protein interaction (PPI) analyses of proteome samples are briefly reviewed. The diverse combinations of different chromatographic modes used to set up MDLC systems are described, and compatibility issues between mobile phases and analytes, between mobile phases and MS, and between mobile phases in different separation modes in multidimensional chromatography are analyzed. Novel developments in MDLC techniques, such as high-abundance protein depletion and chromatography arrays, are further discussed. In this review, the solutions proposed by researchers when encountering compatibility issues are emphasized. Moreover, the applications of HPLC-MS combined with various sample pretreatment methods in the study of exosomal and single-cell proteomics are examined. During exosome isolation, the combined use of ultracentrifugation and SEC can yield exosomes of higher purity. The use of SEC with ultra-large-pore-size packing materials (200 nm) enables the isolation of exosomal subgroups, and proteomics studies have revealed significant differences in protein composition and function between these subgroups. In the field of single-cell proteomics, researchers have addressed challenges related to reducing sample processing volumes, preventing sample loss, and avoiding contamination during sample preparation. Innovative methods and improvements, such as the utilization of capillaries for sample processing and microchips as platforms to minimize the contact area of the droplets, have been proposed. The integration of these techniques with HPLC-MS shows some progress. In summary, this article focuses on the recent advances in HPLC-MS technology for proteomics analysis and provides a comprehensive reference for future research in the field of proteomics.
Collapse
|
43
|
Roberts DS, Loo JA, Tsybin YO, Liu X, Wu S, Chamot-Rooke J, Agar JN, Paša-Tolić L, Smith LM, Ge Y. Top-down proteomics. NATURE REVIEWS. METHODS PRIMERS 2024; 4:38. [PMID: 39006170 PMCID: PMC11242913 DOI: 10.1038/s43586-024-00318-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
Proteoforms, which arise from post-translational modifications, genetic polymorphisms and RNA splice variants, play a pivotal role as drivers in biology. Understanding proteoforms is essential to unravel the intricacies of biological systems and bridge the gap between genotypes and phenotypes. By analysing whole proteins without digestion, top-down proteomics (TDP) provides a holistic view of the proteome and can decipher protein function, uncover disease mechanisms and advance precision medicine. This Primer explores TDP, including the underlying principles, recent advances and an outlook on the future. The experimental section discusses instrumentation, sample preparation, intact protein separation, tandem mass spectrometry techniques and data collection. The results section looks at how to decipher raw data, visualize intact protein spectra and unravel data analysis. Additionally, proteoform identification, characterization and quantification are summarized, alongside approaches for statistical analysis. Various applications are described, including the human proteoform project and biomedical, biopharmaceutical and clinical sciences. These are complemented by discussions on measurement reproducibility, limitations and a forward-looking perspective that outlines areas where the field can advance, including potential future applications.
Collapse
Affiliation(s)
- David S Roberts
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California - Los Angeles, Los Angeles, CA, USA
| | | | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, USA
| | | | - Jeffrey N Agar
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ljiljana Paša-Tolić
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Biology, Human Proteomics Program, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
44
|
Zhai Z, Mavridou D, Damian M, Mutti FG, Schoenmakers PJ, Gargano AFG. Characterization of Complex Proteoform Mixtures by Online Nanoflow Ion-Exchange Chromatography-Native Mass Spectrometry. Anal Chem 2024; 96:8880-8885. [PMID: 38771719 PMCID: PMC11154664 DOI: 10.1021/acs.analchem.4c01760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/23/2024]
Abstract
The characterization of proteins and complexes in biological systems is essential to establish their critical properties and to understand their unique functions in a plethora of bioprocesses. However, it is highly difficult to analyze low levels of intact proteins in their native states (especially those exceeding 30 kDa) with liquid chromatography (LC)-mass spectrometry (MS). Herein, we describe for the first time the use of nanoflow ion-exchange chromatography directly coupled with native MS to resolve mixtures of intact proteins. Reference proteins and protein complexes with molecular weights between 10 and 150 kDa and a model cell lysate were separated using a salt-mediated pH gradient method with volatile additives. The method allowed for low detection limits (0.22 pmol of monoclonal antibodies), while proteins presented nondenatured MS (low number of charges and limited charge state distributions), and the oligomeric state of the complexes analyzed was mostly kept. Excellent chromatographic separations including the resolution of different proteoforms of large proteins (>140 kDa) and a peak capacity of 82 in a 30 min gradient were obtained. The proposed setup and workflows show great potential for analyzing diverse proteoforms in native top-down proteomics, opening unprecedented opportunities for clinical studies and other sample-limited applications.
Collapse
Affiliation(s)
- Ziran Zhai
- Analytical
Chemistry Group and Biocatalysis Group, Van’t Hoff Institute
for Molecular Sciences (HIMS), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Van’t Hoff Institute for
Molecular Sciences (HIMS), University of
Amsterdam, Science Park
904, 1098 XH Amsterdam, The Netherlands
| | - Despoina Mavridou
- Analytical
Chemistry Group and Biocatalysis Group, Van’t Hoff Institute
for Molecular Sciences (HIMS), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Van’t Hoff Institute for
Molecular Sciences (HIMS), University of
Amsterdam, Science Park
904, 1098 XH Amsterdam, The Netherlands
| | - Matteo Damian
- Analytical
Chemistry Group and Biocatalysis Group, Van’t Hoff Institute
for Molecular Sciences (HIMS), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Francesco G. Mutti
- Analytical
Chemistry Group and Biocatalysis Group, Van’t Hoff Institute
for Molecular Sciences (HIMS), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Peter J. Schoenmakers
- Analytical
Chemistry Group and Biocatalysis Group, Van’t Hoff Institute
for Molecular Sciences (HIMS), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Van’t Hoff Institute for
Molecular Sciences (HIMS), University of
Amsterdam, Science Park
904, 1098 XH Amsterdam, The Netherlands
| | - Andrea F. G. Gargano
- Analytical
Chemistry Group and Biocatalysis Group, Van’t Hoff Institute
for Molecular Sciences (HIMS), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Van’t Hoff Institute for
Molecular Sciences (HIMS), University of
Amsterdam, Science Park
904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
45
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 PMCID: PMC11996003 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M. Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | | |
Collapse
|
46
|
Basharat AR, Xiong X, Xu T, Zang Y, Sun L, Liu X. TopDIA: A Software Tool for Top-Down Data-Independent Acquisition Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588302. [PMID: 38645171 PMCID: PMC11030422 DOI: 10.1101/2024.04.05.588302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Top-down mass spectrometry is widely used for proteoform identification, characterization, and quantification owing to its ability to analyze intact proteoforms. In the last decade, top-down proteomics has been dominated by top-down data-dependent acquisition mass spectrometry (TD-DDA-MS), and top-down data-independent acquisition mass spectrometry (TD-DIA-MS) has not been well studied. While TD-DIA-MS produces complex multiplexed tandem mass spectrometry (MS/MS) spectra, which are challenging to confidently identify, it selects more precursor ions for MS/MS analysis and has the potential to increase proteoform identifications compared with TD-DDA-MS. Here we present TopDIA, the first software tool for proteoform identification by TD-DIA-MS. It generates demultiplexed pseudo MS/MS spectra from TD-DIA-MS data and then searches the pseudo MS/MS spectra against a protein sequence database for proteoform identification. We compared the performance of TD-DDA-MS and TD-DIA-MS using Escherichia coli K-12 MG1655 cells and demonstrated that TD-DIA-MS with TopDIA increased proteoform and protein identifications compared with TD-DDA-MS.
Collapse
Affiliation(s)
- Abdul Rehman Basharat
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Xingzhao Xiong
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Tian Xu
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Yong Zang
- Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Xiaowen Liu
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
47
|
Szabo R, Nagy C, Gaspar A. Direct Injection Electrospray Ionization Mass Spectrometry (ESI-MS) Analysis of Proteins with High Matrix Content:Utilizing Taylor-Aris Dispersion. Angew Chem Int Ed Engl 2024; 63:e202318225. [PMID: 38294363 DOI: 10.1002/anie.202318225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
This is the first work demonstrating the utility of the Taylor-Aris (TA) dispersion in avoiding serious interference issues commonly occurring in the electrospray ionization-mass spectrometric (ESI-MS) determination of therapeutic protein pharmaceuticals undergoing no pre-separation or sample purification. It was also pointed out that the TA dispersion conditions and its analytical utilization for proteomics can be easily accomplished in a commercial CE-MS instrument. In the proposed Taylor-Aris dispersion-assisted mass spectrometry (TADA-MS) analysis 0.5 μL sample is injected into a 65 cm long 50 μm i.d. capillary and pumped with 1 bar toward the MS. The procedure is efficient for the direct injection analysis of components having low diffusion coefficients (proteins) that are present in complex matrices of small organic and inorganic compounds.
Collapse
Affiliation(s)
- Ruben Szabo
- Department of Inorganic and Analytical Chemistry, Institute of Chemistry, University of Debrecen, Debrecen, 4032, Hungary
| | - Cynthia Nagy
- Department of Inorganic and Analytical Chemistry, Institute of Chemistry, University of Debrecen, Debrecen, 4032, Hungary
| | - Attila Gaspar
- Department of Inorganic and Analytical Chemistry, Institute of Chemistry, University of Debrecen, Debrecen, 4032, Hungary
| |
Collapse
|
48
|
Chapman EA, Li BH, Krichel B, Chan HJ, Buck KM, Roberts DS, Ge Y. Native Top-Down Mass Spectrometry for Characterizing Sarcomeric Proteins Directly from Cardiac Tissue Lysate. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:738-745. [PMID: 38422011 PMCID: PMC11098619 DOI: 10.1021/jasms.3c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Native top-down mass spectrometry (nTDMS) has emerged as a powerful structural biology tool that can localize post-translational modifications (PTMs), explore ligand-binding interactions, and elucidate the three-dimensional structure of proteins and protein complexes in the gas-phase. Fourier-transform ion cyclotron resonance (FTICR) MS offers distinct capabilities for nTDMS, owing to its ultrahigh resolving power, mass accuracy, and robust fragmentation techniques. Previous nTDMS studies using FTICR have mainly been applied to overexpressed recombinant proteins and protein complexes. Here, we report the first nTDMS study that directly analyzes human heart tissue lysate by direct infusion FTICR MS without prior chromatographic separation strategies. We have achieved comprehensive nTDMS characterization of cardiac contractile proteins that play critical roles in heart contraction and relaxation. Specifically, our results reveal structural insights into ventricular myosin light chain 2 (MLC-2v), ventricular myosin light chain 1 (MLC-1v), and alpha-tropomyosin (α-Tpm) in the sarcomere, the basic contractile unit of cardiac muscle. Furthermore, we verified the calcium (Ca2+) binding domain in MLC-2v. In summary, our nTDMS platform extends the application of FTICR MS to directly characterize the structure, PTMs, and metal-binding of endogenous proteins from heart tissue lysate without prior separation methods.
Collapse
Affiliation(s)
- Emily A. Chapman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Brad H. Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Boris Krichel
- School of Life Sciences, University of Siegen, 57076, Germany
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Hsin-Ju Chan
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kevin M. Buck
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
49
|
Mydy LS, Hungerford J, Chigumba DN, Konwerski JR, Jantzi SC, Wang D, Smith JL, Kersten RD. An intramolecular macrocyclase in plant ribosomal peptide biosynthesis. Nat Chem Biol 2024; 20:530-540. [PMID: 38355722 PMCID: PMC11049724 DOI: 10.1038/s41589-024-01552-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
The biosynthetic dogma of ribosomally synthesized and posttranslationally modified peptides (RiPP) involves enzymatic intermolecular modification of core peptide motifs in precursor peptides. The plant-specific BURP-domain protein family, named after their four founding members, includes autocatalytic peptide cyclases involved in the biosynthesis of side-chain-macrocyclic plant RiPPs. Here we show that AhyBURP, a representative of the founding Unknown Seed Protein-type BURP-domain subfamily, catalyzes intramolecular macrocyclizations of its core peptide during the sequential biosynthesis of monocyclic lyciumin I via glycine-tryptophan crosslinking and bicyclic legumenin via glutamine-tyrosine crosslinking. X-ray crystallography of AhyBURP reveals the BURP-domain fold with two type II copper centers derived from a conserved stapled-disulfide and His motif. We show the macrocyclization of lyciumin-C(sp3)-N-bond formation followed by legumenin-C(sp3)-O-bond formation requires dioxygen and radical involvement based on enzyme assays in anoxic conditions and isotopic labeling. Our study expands enzymatic intramolecular modifications beyond catalytic moiety and chromophore biogenesis to RiPP biosynthesis.
Collapse
Affiliation(s)
- Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Jordan Hungerford
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Desnor N Chigumba
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Sarah C Jantzi
- Plasma Chemistry Laboratory, Center for Applied Isotope Studies, University of Georgia, Athens, GA, USA
| | - Di Wang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
50
|
Helms A, Brodbelt JS. Mass Spectrometry Strategies for O-Glycoproteomics. Cells 2024; 13:394. [PMID: 38474358 PMCID: PMC10930906 DOI: 10.3390/cells13050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Glycoproteomics has accelerated in recent decades owing to numerous innovations in the analytical workflow. In particular, new mass spectrometry strategies have contributed to inroads in O-glycoproteomics, a field that lags behind N-glycoproteomics due to several unique challenges associated with the complexity of O-glycosylation. This review will focus on progress in sample preparation, enrichment strategies, and MS/MS techniques for the identification and characterization of O-glycoproteins.
Collapse
Affiliation(s)
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA;
| |
Collapse
|