1
|
Ma H, Qin R, Yao Q, Li Y, Cong X, Wu W, Zhao Q, Ye H, Wu K. Application of HEMA-AAm copolymer to achieve faster optical tissue transparency for 2D/3D fluorescence imaging. Sci Rep 2025; 15:11406. [PMID: 40181114 PMCID: PMC11969017 DOI: 10.1038/s41598-025-94479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/13/2025] [Indexed: 04/05/2025] Open
Abstract
Optical transparency methods can facilitate biological tissue optical imaging, which enabled accurate three-dimensional (3D) signal visualization and quantification of complex biological structures. Unfortunately, existing optical clearing approaches present a compromise between maximizing clearing capability, the preservation of fluorescent protein emission and the speed of sample processing. To address this challenge, we synthesis of a 2-hydroxyethyl methacrylate (HEMA)-acrylamide (AAm) copolymer using antipyrine (ATP) and 2,2'-thiodiethanol (TDE) as solvent, which could embed tissue samples rapidly and highly transparent, and compatible with multiple fluorescence labeling. It can enable volumetric imaging of tissue up to the scale of mice organs, shrinkage duration of the clearing and preserve emission from fluorescent proteins and dyes. This copolymer with suitable toughness and plasticity allows the tissue of interest to be sectioned into thin slices, and histological techniques provide high-resolution two-dimensional (2D) images of cells and subcellular structures. Furthermore, HEMA-AAm copolymer -tissue transparent could distinguish cell structures between healthy and diabetic disease in dye-labeled liver tissues, which provides new insights into pathological diagnosis and analysis. Copolymer provides an environment to facilitate high-resolution 3D/2D fluorescence imaging, which enables the study of cellular and tissue morphology in experimental and clinical conditions of interest.
Collapse
Affiliation(s)
- Hui Ma
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, People's Republic of China
| | - Ruixiu Qin
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, People's Republic of China
| | - Qiufeng Yao
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, People's Republic of China
| | - Yier Li
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, People's Republic of China
| | - Xingshun Cong
- Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, Zaozhuang University, Shandong, 277160, China
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Qi Zhao
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China.
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, People's Republic of China.
| | - Hua Ye
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China.
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, People's Republic of China.
| | - Kefeng Wu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China.
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, People's Republic of China.
| |
Collapse
|
2
|
Zhang M, Li R, Fu S, Kumar S, Mcginty J, Qin Y, Chen L. Deep learning enhanced light sheet fluorescence microscopy for in vivo 4D imaging of zebrafish heart beating. LIGHT, SCIENCE & APPLICATIONS 2025; 14:92. [PMID: 39994185 PMCID: PMC11850918 DOI: 10.1038/s41377-024-01710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/09/2024] [Accepted: 12/02/2024] [Indexed: 02/26/2025]
Abstract
Time-resolved volumetric fluorescence imaging over an extended duration with high spatial/temporal resolution is a key driving force in biomedical research for investigating spatial-temporal dynamics at organism-level systems, yet it remains a major challenge due to the trade-off among imaging speed, light exposure, illumination power, and image quality. Here, we present a deep-learning enhanced light sheet fluorescence microscopy (LSFM) approach that addresses the restoration of rapid volumetric time-lapse imaging with less than 0.03% light exposure and 3.3% acquisition time compared to a typical standard acquisition. We demonstrate that the convolutional neural network (CNN)-transformer network developed here, namely U-net integrated transformer (UI-Trans), successfully achieves the mitigation of complex noise-scattering-coupled degradation and outperforms state-of-the-art deep learning networks, due to its capability of faithfully learning fine details while comprehending complex global features. With the fast generation of appropriate training data via flexible switching between confocal line-scanning LSFM (LS-LSFM) and conventional LSFM, this method achieves a three- to five-fold signal-to-noise ratio (SNR) improvement and ~1.8 times contrast improvement in ex vivo zebrafish heart imaging and long-term in vivo 4D (3D morphology + time) imaging of heartbeat dynamics at different developmental stages with ultra-economical acquisitions in terms of light dosage and acquisition time.
Collapse
Affiliation(s)
- Meng Zhang
- School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
| | - Renjian Li
- School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Songnian Fu
- Institute of Advanced Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Sunil Kumar
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - James Mcginty
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Yuwen Qin
- Institute of Advanced Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou, 51006, China.
| | - Lingling Chen
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
3
|
Lacko LA, Choi T, de Silva N, Liu Y, Jamies EA, Evans T, Hurtado R. 3D imaging with superior resolution using Atacama Clear. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.22.576689. [PMID: 38328217 PMCID: PMC10849539 DOI: 10.1101/2024.01.22.576689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
3-dimensional (3D) imaging is a powerful tool for interrogation of intact tissues, but can suffer from poor resolution due to impediments such as high tissue autofluorescence that remains a significant challenge in imaging cleared samples, including human clinical specimens. We developed Atacama Clear (ATC), a 3D imaging technology that increases signal-to-noise ratios (SNRs) while simultaneously augmenting the capacity of tissue to be cleared. ATC exhibited SNRs that are up to 200% of widely used 3D imaging methods, potentiated all tested optical clearing solutions by up to 600%, decreased the time of optical clearing by up to a factor of 8, and enabled detection of poorly recognized antigens with a remarkable 4-fold increase in signal detection while using up to 10-fold lower antibody concentrations. Strikingly, ATC produced up to a 5x increase in transgenic fluorescent reporter protein signal detection, which is instead often diminished with currently used 3D imaging methods. This increased imaging efficacy enabled multiplex interrogation of tough fibrous tissue and specimens that naturally exhibit high levels of background noise, including the heart, kidney, and human biopsies. Indeed, ATC facilitated the use of AI based auto-segmentation with simple low tech stereo fluorescence microscopy, visualization of previously undocumented adjacent nephron segments that exhibit notoriously high autofluorescence, elements of the cardiac conduction system, and distinct human glomerular tissue layers, with cellular resolution. Taken together, these studies establish ATC as a platform for complex 3D imaging studies of basic and clinical specimens with superior resolution.
Collapse
Affiliation(s)
- Lauretta A. Lacko
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Human Therapeutic Organoid Core Facility, Weill Cornell Medicine, New York, NY USA
| | - Tansol Choi
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | | | - Ying Liu
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Edgar A. Jamies
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Center for Genomic Health
| | - Romulo Hurtado
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Yu T, Zhong X, Li D, Zhu J, Tuchin VV, Zhu D. Delivery and kinetics of immersion optical clearing agents in tissues: Optical imaging from ex vivo to in vivo. Adv Drug Deliv Rev 2024; 215:115470. [PMID: 39481483 DOI: 10.1016/j.addr.2024.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Advanced optical imaging provides a powerful tool for the structural and functional analysis of tissues with high resolution and contrast, but the imaging performance decreases as light propagates deeper into the tissue. Tissue optical clearing technique demonstrates an innovative way to realize deep-tissue imaging and have emerged substantially in the last two decades. Here, we briefly reviewed the basic principles of tissue optical clearing techniques in the view of delivery strategies via either free diffusion or external forces-driven advection, and the commonly-used optical techniques for monitoring kinetics of clearing agents in tissue, as well as their ex vivo to in vivo applications in multiple biomedical research fields. With future efforts on the even distribution of both clearing agents and probes, excavation of more effective clearing agents, and automation of tissue clearing processes, tissue optical clearing should provide more insights into the fundamental questions in biological events clinical diagnostics.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Xiang Zhong
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Valery V Tuchin
- Institute of Physics and Science Medical Center, Saratov State University, Saratov 410012, Russia; Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk 634050, Russia; Institute of Precision Mechanics and Control, FRS "Saratov Scientific Centre of the RAS", Saratov 410028, Russia
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| |
Collapse
|
5
|
Suh J, Liu Y, Smith J, Watanabe M, Rollins AM, Jenkins MW. A Simple and Fast Optical Clearing Method for Whole-Mount Fluorescence In Situ Hybridization (FISH) Imaging. JOURNAL OF BIOPHOTONICS 2024:e202400258. [PMID: 39389582 DOI: 10.1002/jbio.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
We report a single-step optical clearing method that is compatible with RNA fluorescence in situ hybridization (FISH) imaging. We previously demonstrated microscopy imaging with immunohistochemistry and genetic reporters using a technique called lipid-preserving refractive index matching for prolonged imaging depth (LIMPID). Our protocol reliably produces high-resolution three-dimensional (3D) images with minimal aberrations using high magnification objectives, captures large field-of-view images of whole-mount tissues, and supports co-labeling with antibody and FISH probes. We also custom-designed FISH probes for quail embryos, demonstrating the ease of fabricating probes for use with less common animal models. Furthermore, we show high-quality 3D images using a conventional fluorescence microscope, without using more advanced depth sectioning instruments such as confocal or light-sheet microscopy. For broader adoption, we simplified and optimized 3D-LIMPID-FISH to minimize the barrier to entry, and we provide a detailed protocol to aid users with navigating the thick and thin of 3D microscopy.
Collapse
Affiliation(s)
- Junwoo Suh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jordan Smith
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michiko Watanabe
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Feng R, Xie J, Gao L. EDTP enhances and protects the fluorescent signal of GFP in cleared and expanded tissues. Sci Rep 2024; 14:15279. [PMID: 38961181 PMCID: PMC11222453 DOI: 10.1038/s41598-024-66398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Advanced 3D high-resolution imaging techniques are essential for investigating biological challenges, such as neural circuit analysis and tumor microenvironment in intact tissues. However, the fluorescence signal emitted by endogenous fluorescent proteins in cleared or expanded biological samples gradually diminishes with repeated irradiation and prolonged imaging, compromising its ability to accurately depict the underlying scientific problem. We have developed a strategy to preserve fluorescence in cleared and expanded tissue samples during prolonged high-resolution three-dimensional imaging. We evaluated various compounds at different concentrations to determine their ability to enhance fluorescence intensity and resistance to photobleaching while maintaining the structural integrity of the tissue. Specifically, we investigated the impact of EDTP utilization on GFP, as it has been observed to significantly improve fluorescence intensity, resistance to photobleaching, and maintain fluorescence during extended room temperature storage. This breakthrough will facilitate extended hydrophilic and hydrogel-based clearing and expansion methods for achieving long-term high-resolution 3D imaging of cleared biological tissues by effectively safeguarding fluorescent proteins within the tissue.
Collapse
Affiliation(s)
- Ruili Feng
- Fudan University, Shanghai, 200433, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
| | - Jiongfang Xie
- Fudan University, Shanghai, 200433, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| | - Liang Gao
- Fudan University, Shanghai, 200433, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| |
Collapse
|
7
|
He C, Yuan Y, Gong C, Wang X, Lyu G. Applications of Tissue Clearing in Central and Peripheral Nerves. Neuroscience 2024; 546:104-117. [PMID: 38570062 DOI: 10.1016/j.neuroscience.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The techniques of tissue clearing have been proposed and applied in anatomical and biomedical research since the 19th century. As we all know, the original study of the nervous system relied on serial ultrathin sections and stereoscopic techniques. The 3D visualization of the nervous system was established by software splicing and reconstruction. With the development of science and technology, microscope equipment had constantly been upgraded. Despite the great progress that has been made in this field, the workload is too complex, and it needs high technical requirements. Abundant mistakes due to manual sections were inescapable and structural integrity remained questionable. According to the classification of tissue transparency methods, we introduced the latest application of transparency methods in central and peripheral nerve research from optical imaging, molecular markers and data analysis. This review summarizes the application of transparent technology in neural pathways. We hope to provide some inspiration for the continuous optimization of tissue clearing methods.
Collapse
Affiliation(s)
- Cheng He
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Ye Yuan
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Chuanhui Gong
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Xueying Wang
- Medical School of Nantong University, Nantong, China
| | - Guangming Lyu
- Department of Anatomy, Medical School of Nantong University, Nantong, China; Department of Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
8
|
D'Cruz R, Kim YK, Mulder J, Ibeh N, Jiang N, Tian Y, Rosenblum ND. Hedgehog signalling in Foxd1+ embryonic kidney stromal progenitors controls nephron formation via Cxcl12 and Wnt5a. J Pathol 2023; 261:385-400. [PMID: 37772431 DOI: 10.1002/path.6195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 09/30/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are characterised by a spectrum of structural and histologic abnormalities and are the major cause of childhood kidney failure. During kidney morphogenesis, the formation of a critical number of nephrons is an embryonic process supported, in part, by signalling between nephrogenic precursors and Foxd1-positive stromal progenitor cells. Low nephron number and abnormal patterning of the stroma are signature pathological features among CAKUT phenotypes with decreased kidney function. Despite their critical contribution to CAKUT pathogenesis, the mechanisms that underlie a low nephron number and the functional contribution of a disorganised renal stroma to nephron number are both poorly defined. Here, we identify a primary pathogenic role for increased Hedgehog signalling in embryonic renal stroma in the genesis of congenital low nephron number. Pharmacologic activation of Hedgehog (Hh) signalling in human kidney organoid tissue decreased the number of nephrons and generated excess stroma. The mechanisms underlying these pathogenic effects were delineated in genetic mouse models in which Hh signalling was constitutively activated in a cell lineage-specific manner. Cre-mediated excision of Ptch1 in Foxd1+ stromal progenitor cells, but not in Six2+ nephrogenic precursor cells, generated kidney malformation, identifying the stroma as a driver of low nephron number. Single-cell RNA sequencing analysis identified Cxcl12 and Wnt5a as downstream targets of increased stromal Hh signalling, findings supported by analysis in human kidney organoids. In vivo deficiency of Cxcl12 or Wnt5a in mice with increased stromal Hh signalling improved nephron endowment. These results demonstrate that dysregulated Hh signalling in embryonic renal stromal cells inhibits nephron formation in a manner dependent on Cxcl12 and Wnt5a. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Robert D'Cruz
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Jaap Mulder
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
- Division of Nephrology, Hospital for Sick Children, Toronto, Canada
| | - Neke Ibeh
- Princess Margaret Cancer Centre, Unity Health Network, Toronto, Canada
| | - Nan Jiang
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Yilin Tian
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Division of Nephrology, Hospital for Sick Children, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Pediatrics, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Jiang T, Gong H, Yuan J. Whole-brain Optical Imaging: A Powerful Tool for Precise Brain Mapping at the Mesoscopic Level. Neurosci Bull 2023; 39:1840-1858. [PMID: 37715920 PMCID: PMC10661546 DOI: 10.1007/s12264-023-01112-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 09/18/2023] Open
Abstract
The mammalian brain is a highly complex network that consists of millions to billions of densely-interconnected neurons. Precise dissection of neural circuits at the mesoscopic level can provide important structural information for understanding the brain. Optical approaches can achieve submicron lateral resolution and achieve "optical sectioning" by a variety of means, which has the natural advantage of allowing the observation of neural circuits at the mesoscopic level. Automated whole-brain optical imaging methods based on tissue clearing or histological sectioning surpass the limitation of optical imaging depth in biological tissues and can provide delicate structural information in a large volume of tissues. Combined with various fluorescent labeling techniques, whole-brain optical imaging methods have shown great potential in the brain-wide quantitative profiling of cells, circuits, and blood vessels. In this review, we summarize the principles and implementations of various whole-brain optical imaging methods and provide some concepts regarding their future development.
Collapse
Affiliation(s)
- Tao Jiang
- Huazhong University of Science and Technology-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute, Suzhou, 215123, China
| | - Hui Gong
- Huazhong University of Science and Technology-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute, Suzhou, 215123, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Yuan
- Huazhong University of Science and Technology-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute, Suzhou, 215123, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
10
|
Dellaquila A, Dujardin C, Le Bao C, Chaumeton C, Carré A, Le Guilcher C, Lam F, Simon-Yarza T. Fibroblasts mediate endothelium response to angiogenic cues in a newly developed 3D stroma engineered model. BIOMATERIALS ADVANCES 2023; 154:213636. [PMID: 37778292 DOI: 10.1016/j.bioadv.2023.213636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Three-dimensional stroma engineered models would enable fundamental and applicative studies of human tissues interaction and remodeling in both physiological and pathological conditions. In this work, we propose a 3D vascularized stroma model to be used as in vitro platform for drug testing. A pullulan/dextran-based porous scaffold containing pre-patterned microchannels of 100 μm diameter is used for co-culturing of fibroblasts within the matrix pores and endothelial cells to form the lumen. Optical clearing of the constructs by hyperhydration allows for in-depth imaging of the model up to 1 mm by lightsheet and confocal microscopy. Our 3D vascularized stroma model allows for higher viability, metabolism and cytokines expression compared to a monocultured vascular model. Stroma-endothelium cross-talk is then investigated by exposing the system to pro and anti-angiogenic molecules. The results highlight the protective role played by fibroblasts on the vasculature, as demonstrated by decreased cytotoxicity, restoration of nitric oxide levels upon challenge, and sustained expression of endothelial markers CD31, vWF and VEGF. Our tissue model provides a 3D engineered platform for in vitro studies of stroma remodeling in angiogenesis-driven events, known to be a leading mechanism in diseased conditions, such as metastatic cancers, retinopathies and ischemia, and to investigate related potential therapies.
Collapse
Affiliation(s)
- Alessandra Dellaquila
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France.
| | - Chloé Dujardin
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Chau Le Bao
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Chloé Chaumeton
- Sorbonne Université, Institute of Biology Paris-Seine, Paris 75005, France
| | - Albane Carré
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Camille Le Guilcher
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - France Lam
- Sorbonne Université, Institute of Biology Paris-Seine, Paris 75005, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France.
| |
Collapse
|
11
|
Zhang Y, Liu G, Li X, Gong H, Luo Q, Yang X. On-line clearing and staining method for the efficient optical imaging of large volume samples at the cellular resolution. BIOMEDICAL OPTICS EXPRESS 2023; 14:4800-4813. [PMID: 37791250 PMCID: PMC10545182 DOI: 10.1364/boe.499115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 10/05/2023]
Abstract
Optical microscopy is a powerful tool for exploring the structure and function of organisms. However, the three-dimensional (3D) imaging of large volume samples is time-consuming and difficult. In this manuscript, we described an on-line clearing and staining method for efficient imaging of large volume samples at the cellular resolution. The optimized cocktail can increase staining and imaging depth to reduce the sectioning and scanning time, more than doubling the operational efficiency of the system. Using this method, we demonstrated the rapid acquisition of Aβ plaques in whole mouse brain and obtained a complete set of cytoarchitecture images of an adult porcine hemisphere at 1.625 × 1.625 × 10 µm3 voxel resolution for about 49 hours.
Collapse
Affiliation(s)
- Yunfei Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangcai Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| |
Collapse
|
12
|
Frenkel N, Poghosyan S, van Wijnbergen JW, van den Bent L, Wiljer L, Verheem A, Borel Rinkes I, Kranenburg O, Hagendoorn J. Tissue clearing and immunostaining to visualize the spatial organization of vasculature and tumor cells in mouse liver. Front Oncol 2023; 13:1062926. [PMID: 37077833 PMCID: PMC10108913 DOI: 10.3389/fonc.2023.1062926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The liver has a complex and hierarchical segmental organization of arteries, portal veins, hepatic veins and lymphatic vessels. In-depth imaging of liver vasculature and malignancies could improve knowledge on tumor micro-environment, local tumor growth, invasion, as well as metastasis. Non-invasive imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI) and positron-emission transmission (PET) are routine for clinical imaging, but show inadequate resolution at cellular and subcellular level. In recent years, tissue clearing – a technique rendering tissues optically transparent allowing enhanced microscopy imaging – has made great advances. While mainly used in the neurobiology field, recently more studies have used clearing techniques for imaging other organ systems as well as tumor tissues. In this study, our aim was to develop a reproducible tissue clearing and immunostaining model for visualizing intrahepatic blood microvasculature and tumor cells in murine colorectal liver metastases. CLARITY and 3DISCO/iDISCO+ are two established clearing methods that have been shown to be compatible with immunolabelling, most often in neurobiology research. In this study, CLARITY unfortunately resulted in damaged tissue integrity of the murine liver lobes and no specific immunostaining. Using the 3DISCO/iDISCO+ method, liver samples were successfully rendered optically transparent. After which, successful immunostaining of the intrahepatic microvasculature using panendothelial cell antigen MECA-32 and colorectal cancer cells using epithelial cell adhesion molecule (EpCAM) was established. This approach for tumor micro-environment tissue clearing would be especially valuable for allowing visualization of spatial heterogeneity and complex interactions of tumor cells and their environment in future studies.
Collapse
|
13
|
Lopes MM, Paysan J, Rino J, Lopes SM, Pereira de Almeida L, Cortes L, Nobre RJ. A new protocol for whole-brain biodistribution analysis of AAVs by tissue clearing, light-sheet microscopy and semi-automated spatial quantification. Gene Ther 2022; 29:665-679. [PMID: 36316447 DOI: 10.1038/s41434-022-00372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/23/2022]
Abstract
Recombinant adeno-associated virus (rAAV) has become one of the most promising gene delivery systems for both in vitro and in vivo applications. However, a key challenge is the lack of suitable imaging technologies to evaluate delivery, biodistribution and tropism of rAAVs and efficiently monitor disease amelioration promoted by AAV-based therapies at a whole-organ level with single-cell resolution. Therefore, we aimed to establish a new pipeline for the biodistribution analysis of natural and new variants of AAVs at a whole-brain level by tissue clearing and light-sheet fluorescence microscopy (LSFM). To test this platform, neonatal C57BL/6 mice were intravenously injected with rAAV9 encoding EGFP and, after sacrifice, brains were processed by standard immunohistochemistry and a recently released aqueous-based clearing procedure. This clearing technique required no dedicated equipment and rendered highly cleared brains, while simultaneously preserving endogenous fluorescence. Moreover, three-dimensional imaging by LSFM allowed the quantitative analysis of EGFP at a whole-brain level, as well as the reconstruction of Purkinje cells for the retrieval of valuable morphological information inaccessible by standard immunohistochemistry. In conclusion, the pipeline herein described takes the AAVs to a new level when coupled to LSFM, proving its worth as a bioimaging tool in tropism and gene therapy studies.
Collapse
Affiliation(s)
- Miguel M Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | | | - José Rino
- iMM - Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara M Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- ViraVector - Viral Vectors for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal.
- FFUC - Faculty of Pharmacy of the University of Coimbra, Coimbra, Portugal.
| | - Luísa Cortes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
- MICC-CNC - Microscopy Imaging Center of Coimbra - CNC, University of Coimbra, Coimbra, Portugal.
| | - Rui Jorge Nobre
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
- ViraVector - Viral Vectors for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
14
|
Li D, Deng L, Hu Z, Li Y, Yu T, Zhong X, Zhu J, Zhu D. Optical clearing imaging assisted evaluation of urokinase thrombolytic therapy on cerebral vessels with different sizes. BIOMEDICAL OPTICS EXPRESS 2022; 13:3243-3258. [PMID: 35781944 PMCID: PMC9208601 DOI: 10.1364/boe.457912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Ischemic stroke is caused by occlusion of the blood vessels in the brain, where intravenous thrombolytic therapy is the most effective treatment. Urokinase is a commonly used drug for intravenous thrombolytic therapy, while the effect of vessel size has not been thoroughly studied on urokinase. In this work, using the thrombin-combined photothrombosis model and craniotomy-free skull optical clearing window, we studied the recanalization of different cortical vessels after urokinase treatment. The results demonstrated that, compared to small vessels in distal middle cerebral artery (MCA) and large MCA, urokinase has the best therapeutic effect on secondary branches of MCA. This study holds potential to provide references for the clinical applications of urokinase.
Collapse
Affiliation(s)
- Dongyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Lu Deng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Zhengwu Hu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Yusha Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Xiang Zhong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
15
|
Woo J, Lee EY, Lee M, Ku S, Park JY, Cho YE. Comparative Analyses of Clearing Efficacies of Tissue Clearing Protocols by Using a Punching Assisted Clarity Analysis. Front Bioeng Biotechnol 2022; 9:784626. [PMID: 35155401 PMCID: PMC8831720 DOI: 10.3389/fbioe.2021.784626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/30/2021] [Indexed: 02/03/2023] Open
Abstract
The advent of tissue clearing methods, in conjunction with novel high-resolution imaging techniques, has enabled the visualization of three-dimensional structures with unprecedented depth and detail. Although a variety of clearing protocols have been developed, little has been done to quantify their efficacies in a systematic, reproducible fashion. Here, we present two simple assays, Punching-Assisted Clarity Analysis (PACA)-Light and PACA-Glow, which use easily accessible spectroscopy and gel documentation systems to quantify the transparency of multiple cleared tissues simultaneously. We demonstrate the use of PACA-Light and PACA-Glow to compare twenty-eight tissue clearing protocols on rodent brains. We also show that regional differences exist in tissue transparency in the rodent brain, with cerebellar tissue consistently achieving lower clearing levels compared to the prefrontal or cerebral cortex across all protocols. This represents the largest comparative study of tissue clearing protocols to date, made possible by the high-throughput nature of our PACA platforms.
Collapse
Affiliation(s)
- Jiwon Woo
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Biohedron Therapeutics Co., Ltd., Seoul, South Korea
| | - Eunice Yoojin Lee
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Mirae Lee
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Jeong-Yoon Park
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Eun Cho
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Liu L, Xia X, Xiang F, Gao Y, Li X, Li H, Zheng W. F-CUBIC: a rapid optical clearing method optimized by quantitative evaluation. BIOMEDICAL OPTICS EXPRESS 2022; 13:237-251. [PMID: 35154867 PMCID: PMC8803013 DOI: 10.1364/boe.442976] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
In recent decades, various powerful optical clearing methods have emerged to facilitate deep-tissue imaging. However, a rapid and safe protocol for millimeter-thick specimens is still desired. In this study, we propose a simple and economical chemical screening method that uses porcine small intestine tissue as the testing sample to quantify the clearing speed of different optical clearing reagents. By screening with this method, we developed a fast and versatile clearing protocol, termed F-CUBIC (adding formamide to CUBIC). F-CUBIC allows easy clearing of millimeter-thick tissues within 2-20 min by one-step immersion at room temperature. It introduces negligible tissue distortion and shows high compatibility with various fluorescent labeling techniques. Based on endoscopic human colon specimens, we successfully demonstrated the potential of F-CUBIC for nondestructive three-dimensional (3D) biopsy in combination with two-photon microscopy. This study would substantially benefit rapid 3D tissue mapping in biomedical research and clinics, such as instant histopathological examinations.
Collapse
Affiliation(s)
- Lina Liu
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Authors contributed equally to this work
| | - Xianyuan Xia
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Authors contributed equally to this work
| | - Feng Xiang
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yufeng Gao
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xi Li
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shen Zhen 518036, China
| | - Hui Li
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Zheng
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
17
|
Sands GB, Ashton JL, Trew ML, Baddeley D, Walton RD, Benoist D, Efimov IR, Smith NP, Bernus O, Smaill BH. It's clearly the heart! Optical transparency, cardiac tissue imaging, and computer modelling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 168:18-32. [PMID: 34126113 PMCID: PMC12076525 DOI: 10.1016/j.pbiomolbio.2021.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022]
Abstract
Recent developments in clearing and microscopy enable 3D imaging with cellular resolution up to the whole organ level. These methods have been used extensively in neurobiology, but their uptake in other fields has been much more limited. Application of this approach to the human heart and effective use of the data acquired present challenges of scale and complexity. Four interlinked issues need to be addressed: 1) efficient clearing and labelling of heart tissue, 2) fast microscopic imaging of human-scale samples, 3) handling and processing of multi-terabyte 3D images, and 4) extraction of structural information in computationally tractable structure-based models of cardiac function. Preliminary studies show that each of these requirements can be achieved with the appropriate application and development of existing technologies.
Collapse
Affiliation(s)
- Gregory B Sands
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | - Jesse L Ashton
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Mark L Trew
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - David Baddeley
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Cell Biology, Yale University, New Haven CT, 06520, USA
| | - Richard D Walton
- IHU Liryc, Fondation Bordeaux Université, Bordeaux, France; Univ. Bordeaux, Inserm, Centre de Recherche Cardio-Thoracique, U1045, 33000, Bordeaux, France
| | - David Benoist
- IHU Liryc, Fondation Bordeaux Université, Bordeaux, France; Univ. Bordeaux, Inserm, Centre de Recherche Cardio-Thoracique, U1045, 33000, Bordeaux, France
| | - Igor R Efimov
- IHU Liryc, Fondation Bordeaux Université, Bordeaux, France; Department of Biomedical Engineering, The George Washington University, Washington DC, 20052, USA
| | - Nicolas P Smith
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Queensland University of Technology, Brisbane 4000, Australia
| | - Olivier Bernus
- IHU Liryc, Fondation Bordeaux Université, Bordeaux, France; Univ. Bordeaux, Inserm, Centre de Recherche Cardio-Thoracique, U1045, 33000, Bordeaux, France
| | - Bruce H Smaill
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Richardson DS, Guan W, Matsumoto K, Pan C, Chung K, Ertürk A, Ueda HR, Lichtman JW. TISSUE CLEARING. NATURE REVIEWS. METHODS PRIMERS 2021; 1:84. [PMID: 35128463 PMCID: PMC8815095 DOI: 10.1038/s43586-021-00080-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 12/16/2022]
Abstract
Tissue clearing of gross anatomical samples was first described over a century ago and has only recently found widespread use in the field of microscopy. This renaissance has been driven by the application of modern knowledge of optical physics and chemical engineering to the development of robust and reproducible clearing techniques, the arrival of new microscopes that can image large samples at cellular resolution and computing infrastructure able to store and analyze large data volumes. Many biological relationships between structure and function require investigation in three dimensions and tissue clearing therefore has the potential to enable broad discoveries in the biological sciences. Unfortunately, the current literature is complex and could confuse researchers looking to begin a clearing project. The goal of this Primer is to outline a modular approach to tissue clearing that allows a novice researcher to develop a customized clearing pipeline tailored to their tissue of interest. Further, the Primer outlines the required imaging and computational infrastructure needed to perform tissue clearing at scale, gives an overview of current applications, discusses limitations and provides an outlook on future advances in the field.
Collapse
Affiliation(s)
- Douglas S. Richardson
- Harvard Center for Biological Imaging, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Webster Guan
- Department of Chemical Engineering, MIT, Cambridge, MA, USA
| | - Katsuhiko Matsumoto
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Chenchen Pan
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Kwanghun Chung
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Nano Biomedical Engineering (Nano BME) Graduate Program, Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Hiroki R. Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Jeff W. Lichtman
- Harvard Center for Biological Imaging, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
19
|
Almagro J, Messal HA, Zaw Thin M, van Rheenen J, Behrens A. Tissue clearing to examine tumour complexity in three dimensions. Nat Rev Cancer 2021; 21:718-730. [PMID: 34331034 DOI: 10.1038/s41568-021-00382-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The visualization of whole organs and organisms through tissue clearing and fluorescence volumetric imaging has revolutionized the way we look at biological samples. Its application to solid tumours is changing our perception of tumour architecture, revealing signalling networks and cell interactions critical in tumour progression, and provides a powerful new strategy for cancer diagnostics. This Review introduces the latest advances in tissue clearing and three-dimensional imaging, examines the challenges in clearing epithelia - the tissue of origin of most malignancies - and discusses the insights that tissue clearing has brought to cancer research, as well as the prospective applications to experimental and clinical oncology.
Collapse
Affiliation(s)
- Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Hendrik A Messal
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - May Zaw Thin
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK.
- Convergence Science Centre and Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
20
|
Willows JW, Blaszkiewicz M, Lamore A, Borer S, Dubois AL, Garner E, Breeding WP, Tilbury KB, Khalil A, Townsend KL. Visualization and analysis of whole depot adipose tissue neural innervation. iScience 2021; 24:103127. [PMID: 34622172 PMCID: PMC8479257 DOI: 10.1016/j.isci.2021.103127] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/11/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022] Open
Abstract
Little is known about the diversity and function of adipose tissue nerves, due in part to the inability to effectively visualize the tissue’s diverse nerve subtypes and the patterns of innervation across an intact depot. The tools to image and quantify adipose tissue innervation are currently limited. Here, we present a method of tissue processing that decreases tissue thickness in the z-axis while leaving cells intact for subsequent immunostaining. This was combined with autofluorescence quenching techniques to permit intact whole tissues to be mounted on slides and imaged by confocal microscopy, with a complementary means to perform whole tissue neurite density quantification after capture of tiled z-stack images. Additionally, we demonstrate how to visualize nerve terminals (the neuro-adipose nexus) in intact blocks of adipose tissue without z-depth reduction. We have included examples of data demonstrating nerve subtypes, neurovascular interactions, label-free imaging of collagen, and nerve bundle digital cross-sections. Whole depot adipose tissue innervation was imaged and quantified by a novel method Numerous aspects of adipose nerve heterogeneity were observed by microscopy We have identified a nerve terminal in adipose, the neuro-adipose nexus
Collapse
Affiliation(s)
- Jake W Willows
- School of Biology and Ecology, University of Maine, Orono, ME, USA.,Department of Neurological Surgery, The Ohio State University, 1014 Biomedical Research Tower, 460 W. 12 Avenue, Columbus, OH, USA
| | - Magdalena Blaszkiewicz
- School of Biology and Ecology, University of Maine, Orono, ME, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.,Department of Neurological Surgery, The Ohio State University, 1014 Biomedical Research Tower, 460 W. 12 Avenue, Columbus, OH, USA
| | - Amy Lamore
- School of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Samuel Borer
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Amanda L Dubois
- School of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Emma Garner
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - William P Breeding
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Karissa B Tilbury
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Andre Khalil
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.,CompuMAINE Laboratory, University of Maine, Orono, ME, USA
| | - Kristy L Townsend
- School of Biology and Ecology, University of Maine, Orono, ME, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.,School of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.,Department of Neurological Surgery, The Ohio State University, 1014 Biomedical Research Tower, 460 W. 12 Avenue, Columbus, OH, USA
| |
Collapse
|
21
|
Zhu J, Liu X, Deng Y, Li D, Yu T, Zhu D. Tissue optical clearing for 3D visualization of vascular networks: A review. Vascul Pharmacol 2021; 141:106905. [PMID: 34506969 DOI: 10.1016/j.vph.2021.106905] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
Reconstruction of the vasculature of intact tissues/organs down to the capillary level is essential for understanding the development and remodeling of vascular networks under physiological and pathological conditions. Optical imaging techniques can provide sufficient resolution to distinguish small vessels with several microns, but the imaging depth is somewhat limited due to the high light scattering of opaque tissue. Recently, various tissue optical clearing methods have been developed to overcome light attenuation and improve the imaging depth both for ex-vivo and in-vivo visualizations. Tissue clearing combined with vessel labeling techniques and advanced optical tomography enables successful mapping of the vasculature of different tissues/organs, as well as dynamically monitoring vessel function under normal and pathological conditions. Here, we briefly introduce the commonly-used labeling strategies for entire vascular networks, the current tissue optical clearing techniques available for various tissues, as well as the advanced optical imaging techniques for fast, high-resolution structural and functional imaging for blood vessels. We also discuss the applications of these techniques in the 3D visualization of vascular networks in normal tissues, and the vascular remodeling in several typical pathological models in clinical research. This review is expected to provide valuable insights for researchers to study the potential mechanisms of various vessel-associated diseases using tissue optical clearing pipeline.
Collapse
Affiliation(s)
- Jingtan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaomei Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yating Deng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
22
|
Matryba P, Łukasiewicz K, Pawłowska M, Tomczuk J, Gołąb J. Can Developments in Tissue Optical Clearing Aid Super-Resolution Microscopy Imaging? Int J Mol Sci 2021; 22:ijms22136730. [PMID: 34201632 PMCID: PMC8268743 DOI: 10.3390/ijms22136730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
The rapid development of super-resolution microscopy (SRM) techniques opens new avenues to examine cell and tissue details at a nanometer scale. Due to compatibility with specific labelling approaches, in vivo imaging and the relative ease of sample preparation, SRM appears to be a valuable alternative to laborious electron microscopy techniques. SRM, however, is not free from drawbacks, with the rapid quenching of the fluorescence signal, sensitivity to spherical aberrations and light scattering that typically limits imaging depth up to few micrometers being the most pronounced ones. Recently presented and robustly optimized sets of tissue optical clearing (TOC) techniques turn biological specimens transparent, which greatly increases the tissue thickness that is available for imaging without loss of resolution. Hence, SRM and TOC are naturally synergistic techniques, and a proper combination of these might promptly reveal the three-dimensional structure of entire organs with nanometer resolution. As such, an effort to introduce large-scale volumetric SRM has already started; in this review, we discuss TOC approaches that might be favorable during the preparation of SRM samples. Thus, special emphasis is put on TOC methods that enhance the preservation of fluorescence intensity, offer the homogenous distribution of molecular probes, and vastly decrease spherical aberrations. Finally, we review examples of studies in which both SRM and TOC were successfully applied to study biological systems.
Collapse
Affiliation(s)
- Paweł Matryba
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.T.); (J.G.)
- The Doctoral School of the Medical University of Warsaw, Medical University of Warsaw, 02-097 Warsaw, Poland
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland;
- Correspondence:
| | - Kacper Łukasiewicz
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Monika Pawłowska
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland;
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Jacek Tomczuk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.T.); (J.G.)
| | - Jakub Gołąb
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.T.); (J.G.)
| |
Collapse
|
23
|
Yu T, Li D, Zhu D. Tissue Optical Clearing for Biomedical Imaging: From In Vitro to In Vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 3233:217-255. [PMID: 34053030 DOI: 10.1007/978-981-15-7627-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tissue optical clearing technique provides a prospective solution for the application of advanced optical methods in life sciences. This chapter firstly gives a brief introduction to mechanisms of tissue optical clearing techniques, from the physical mechanism to chemical mechanism, which is the most important foundation to develop tissue optical clearing methods. During the past years, in vitro and in vivo tissue optical clearing methods were developed. In vitro tissue optical clearing techniques, including the solvent-based clearing methods and the hydrophilic reagents-based clearing methods, combined with labeling technique and advanced microscopy, can be applied to image 3D microstructure of tissue blocks or whole organs such as brain and spinal cord with high resolution. In vivo skin or skull optical clearing, promise various optical imaging techniques to detect cutaneous or cortical cell and vascular structure and function without surgical window.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
24
|
Weiss KR, Voigt FF, Shepherd DP, Huisken J. Tutorial: practical considerations for tissue clearing and imaging. Nat Protoc 2021; 16:2732-2748. [PMID: 34021294 PMCID: PMC10542857 DOI: 10.1038/s41596-021-00502-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Tissue clearing has become a powerful technique for studying anatomy and morphology at scales ranging from entire organisms to subcellular features. With the recent proliferation of tissue-clearing methods and imaging options, it can be challenging to determine the best clearing protocol for a particular tissue and experimental question. The fact that so many clearing protocols exist suggests there is no one-size-fits-all approach to tissue clearing and imaging. Even in cases where a basic level of clearing has been achieved, there are many factors to consider, including signal retention, staining (labeling), uniformity of transparency, image acquisition and analysis. Despite reviews citing features of clearing protocols, it is often unknown a priori whether a protocol will work for a given experiment, and thus some optimization is required by the end user. In addition, the capabilities of available imaging setups often dictate how the sample needs to be prepared. After imaging, careful evaluation of volumetric image data is required for each combination of clearing protocol, tissue type, biological marker, imaging modality and biological question. Rather than providing a direct comparison of the many clearing methods and applications available, in this tutorial we address common pitfalls and provide guidelines for designing, optimizing and imaging in a successful tissue-clearing experiment with a focus on light-sheet fluorescence microscopy (LSFM).
Collapse
Affiliation(s)
- Kurt R Weiss
- Morgridge Institute for Research, Madison, WI, USA
| | - Fabian F Voigt
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Douglas P Shepherd
- Department of Physics, Arizona State University, Tempe, AZ, USA
- Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - Jan Huisken
- Morgridge Institute for Research, Madison, WI, USA.
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
25
|
Chen Y, Li X, Zhang D, Wang C, Feng R, Li X, Wen Y, Xu H, Zhang XS, Yang X, Chen Y, Feng Y, Zhou B, Chen BC, Lei K, Cai S, Jia JM, Gao L. A Versatile Tiling Light Sheet Microscope for Imaging of Cleared Tissues. Cell Rep 2021; 33:108349. [PMID: 33147464 DOI: 10.1016/j.celrep.2020.108349] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/13/2020] [Accepted: 10/13/2020] [Indexed: 01/14/2023] Open
Abstract
We present a tiling light sheet microscope compatible with all tissue clearing methods for rapid multicolor 3D imaging of cleared tissues with micron-scale (4 × 4 × 10 μm3) to submicron-scale (0.3 × 0.3 × 1 μm3) spatial resolution. The resolving ability is improved to sub-100 nm (70 × 70 × 200 nm3) via tissue expansion. The microscope uses tiling light sheets to achieve higher spatial resolution and better optical sectioning ability than conventional light sheet microscopes. The illumination light is phase modulated to adjust the position and intensity profile of the light sheet based on the desired spatial resolution and imaging speed and to keep the microscope aligned. The ability of the microscope to align via phase modulation alone also ensures its accuracy for multicolor 3D imaging and makes the microscope reliable and easy to operate. Here we describe the working principle and design of the microscope. We demonstrate its utility by imaging various cleared tissues.
Collapse
Affiliation(s)
- Yanlu Chen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Xiaoliang Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Dongdong Zhang
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Chunhui Wang
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Ruili Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Xuzhao Li
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Yao Wen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Hao Xu
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Xinyi Shirley Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yongyi Chen
- Department of Clinical laboratory, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Bo Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Kai Lei
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Shang Cai
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| | - Jie-Min Jia
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| | - Liang Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
26
|
Collart C, Ciccarelli A, Ivanovitch K, Rosewell I, Kumar S, Kelly G, Edwards A, Smith JC. The migratory pathways of the cells that form the endocardium, dorsal aortae, and head vasculature in the mouse embryo. BMC DEVELOPMENTAL BIOLOGY 2021; 21:8. [PMID: 33752600 PMCID: PMC7986287 DOI: 10.1186/s12861-021-00239-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 11/25/2022]
Abstract
Background Vasculogenesis in amniotes is often viewed as two spatially and temporally distinct processes, occurring in the yolk sac and in the embryo. However, the spatial origins of the cells that form the primary intra-embryonic vasculature remain uncertain. In particular, do they obtain their haemato-endothelial cell fate in situ, or do they migrate from elsewhere? Recently developed imaging techniques, together with new Tal1 and existing Flk1 reporter mouse lines, have allowed us to investigate this question directly, by visualising cell trajectories live and in three dimensions. Results We describe the pathways that cells follow to form the primary embryonic circulatory system in the mouse embryo. In particular, we show that Tal1-positive cells migrate from within the yolk sac, at its distal border, to contribute to the endocardium, dorsal aortae and head vasculature. Other Tal1 positive cells, similarly activated within the yolk sac, contribute to the yolk sac vasculature. Using single-cell transcriptomics and our imaging, we identify VEGF and Apela as potential chemo-attractants that may regulate the migration into the embryo. The dorsal aortae and head vasculature are known sites of secondary haematopoiesis; given the common origins that we observe, we investigate whether this is also the case for the endocardium. We discover cells budding from the wall of the endocardium with high Tal1 expression and diminished Flk1 expression, indicative of an endothelial to haematopoietic transition. Conclusions In contrast to the view that the yolk sac and embryonic circulatory systems form by two separate processes, our results indicate that Tal1-positive cells from the yolk sac contribute to both vascular systems. It may be that initial Tal1 activation in these cells is through a common mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-021-00239-3.
Collapse
Affiliation(s)
- C Collart
- Developmental Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - A Ciccarelli
- Advanced Light Microscopy Facility, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - K Ivanovitch
- Developmental Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - I Rosewell
- Genetic Modification Service, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - S Kumar
- Advanced Light Microscopy Facility, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Photonics Group, 606 Blackett Laboratory, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - G Kelly
- Bioinformatics and Biostatistics Facility, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - A Edwards
- Advanced Sequencing Facility, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - J C Smith
- Developmental Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
27
|
Abstract
Advanced optical methods combined with various probes pave the way toward molecular imaging within living cells. However, major challenges are associated with the need to enhance the imaging resolution even further to the subcellular level for the imaging of larger tissues, as well as for in vivo studies. High scattering and absorption of opaque tissues limit the penetration of light into deep tissues and thus the optical imaging depth. Tissue optical clearing technique provides an innovative way to perform deep-tissue imaging. Recently, various optical clearing methods have been developed, which provide tissue clearing based on similar physical principles via different chemical approaches. Here, we introduce the mechanisms of the current clearing methods from fundamental physical and chemical perspectives, including the main physical principle, refractive index matching via various chemical approaches, such as dissociation of collagen, delipidation, decalcification, dehydration, and hyperhydration, to reduce scattering, as well as decolorization to reduce absorption.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
28
|
Avilov SV. Navigating across multi-dimensional space of tissue clearing parameters. Methods Appl Fluoresc 2021; 9:022001. [PMID: 33592593 DOI: 10.1088/2050-6120/abe6fb] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Optical tissue clearing refers to physico-chemical treatments which make thick biological samples transparent by removal of refractive index gradients and light absorbing substances. Although tissue clearing was first reported in 1914, it was not widely used in light microscopy until 21th century, because instrumentation of that time did not permit to acquire and handle images of thick (mm to cm) samples as whole. Rapid progress in optical instrumentation, computers and software over the last decades made micrograph acquisition of centimeter-thick samples feasible. This boosted tissue clearing use and development. Numerous diverse protocols have been developed. They use organic solvents or water-miscible substances, such as detergents and chaotropic agents; some protocols require application of electric field or perfusion with special devices. There is no 'best-for-all' tissue clearing method. Depending on the case, one or another protocol is more suitable. Most of protocols require days or even weeks to complete, thus choosing an unsuitable protocol may cause an important waste of time. Several inter-dependent parameters should be taken into account to choose a tissue clearing protocol, such as: (1) required image quality (resolution, contrast, signal to noise ratio etc), (2) nature and size of the sample, (3) type of labels, (4) characteristics of the available instrumentation, (5) budget, (6) time budget, and (7) feasibility. Present review focusses on the practical aspects of various tissue clearing techniques. It is aimed to help non-experts to choose tissue clearing techniques which are optimal for their particular cases.
Collapse
Affiliation(s)
- Sergiy V Avilov
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
29
|
Tian T, Yang Z, Li X. Tissue clearing technique: Recent progress and biomedical applications. J Anat 2021; 238:489-507. [PMID: 32939792 PMCID: PMC7812135 DOI: 10.1111/joa.13309] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/19/2020] [Accepted: 08/24/2020] [Indexed: 02/03/2023] Open
Abstract
Organisms are inherently three dimensional, thus comprehensive understanding of the complicated biological system requires analysis of organs or even whole bodies in the context of three dimensions. However, this is a tremendous task since the biological specimens are naturally opaque, a major obstacle in whole-body and whole-organ imaging. Tissue clearing technique provides a prospective solution and has become a powerful tool for three-dimensional imaging and quantification of organisms. Tissue clearing technique aims to make tissue transparent by minimizing light scattering and light absorption, thus allowing deep imaging of large volume samples. When combined with diverse molecular labeling methods and high-throughput optical sectioning microscopes, tissue clearing technique enables whole-body and whole-organ imaging at cellular or subcellular resolution, providing detailed and comprehensive information about the intact biological systems. Here, we give an overview of recent progress and biomedical applications of tissue clearing technique. We introduce the mechanisms and basic principles of tissue clearing, and summarize the current tissue clearing methods. Moreover, the available imaging techniques and software packages for data processing are also presented. Finally, we introduce the recent advances in applications of tissue clearing in biomedical fields. Tissue clearing contributes to the investigation of structure-function relationships in intact mammalian organs, and opens new avenues for cellular and molecular mapping of intact human organs. We hope this review contributes to a better understanding of tissue clearing technique and can help researchers to select the best-suited clearing protocol for their experiments.
Collapse
Affiliation(s)
- Ting Tian
- Beijing Key Laboratory for Biomaterials and Neural RegenerationSchool of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Zhaoyang Yang
- Department of NeurobiologySchool of Basic Medical SciencesCapital Medical UniversityBeijingChina,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural RegenerationBeijing Advanced Innovation Center for Biomedical EngineeringBeihang UniversityBeijingChina
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural RegenerationSchool of Biological Science and Medical EngineeringBeihang UniversityBeijingChina,Department of NeurobiologySchool of Basic Medical SciencesCapital Medical UniversityBeijingChina,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural RegenerationBeijing Advanced Innovation Center for Biomedical EngineeringBeihang UniversityBeijingChina
| |
Collapse
|
30
|
Urea-based amino sugar agent clears murine liver and preserves protein fluorescence and lipophilic dyes. Biotechniques 2021; 70:72-80. [PMID: 33467918 PMCID: PMC7983039 DOI: 10.2144/btn-2020-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Five established clearing protocols were compared with a modified and simplified method to determine an optimal clearing reagent for three-dimensionally visualizing fluorophores in the murine liver, a challenging organ to clear. We report successful clearing of whole liver lobes by modification of an established protocol (UbasM) using only Ub-1, a urea-based amino sugar reagent, in a simpler protocol that requires only a 24-h processing time. With Ub-1 alone, we observed sufficiently preserved liver tissue structure in three dimensions along with excellent preservation of fluorophore emissions from endogenous protein reporters and lipophilic tracer dyes. This streamlined technique can be used for 3D cell lineage tracing and fluoroprobe-based reporter gene expression to compare various experimental conditions. This study presents a simplified protocol for optically clearing murine liver tissue in only 24 h using one simple urea-based amino sugar solution and a single incubation. This method preserves fluorescence of transgenically expressed proteins and lipophilic tracer dyes within the context of native spatial morphology.
Collapse
|
31
|
Zhao J, Lai HM, Qi Y, He D, Sun H. Current Status of Tissue Clearing and the Path Forward in Neuroscience. ACS Chem Neurosci 2021; 12:5-29. [PMID: 33326739 DOI: 10.1021/acschemneuro.0c00563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Due to the complexity and limited availability of human brain tissues, for decades, pathologists have sought to maximize information gained from individual samples, based on which (patho)physiological processes could be inferred. Recently, new understandings of chemical and physical properties of biological tissues and multiple chemical profiling have given rise to the development of scalable tissue clearing methods allowing superior optical clearing of across-the-scale samples. In the past decade, tissue clearing techniques, molecular labeling methods, advanced laser scanning microscopes, and data visualization and analysis have become commonplace. Combined, they have made 3D visualization of brain tissues with unprecedented resolution and depth widely accessible. To facilitate further advancements and applications, here we provide a critical appraisal of these techniques. We propose a classification system of current tissue clearing and expansion methods that allows users to judge the applicability of individual ones to their questions, followed by a review of the current progress in molecular labeling, optical imaging, and data processing to demonstrate the whole 3D imaging pipeline based on tissue clearing and downstream techniques for visualizing the brain. We also raise the path forward of tissue-clearing-based imaging technology, that is, integrating with state-of-the-art techniques, such as multiplexing protein imaging, in situ signal amplification, RNA detection and sequencing, super-resolution imaging techniques, multiomics studies, and deep learning, for drawing the complete atlas of the human brain and building a 3D pathology platform for central nervous system disorders.
Collapse
Affiliation(s)
- Jiajia Zhao
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
| | - Hei Ming Lai
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Yuwei Qi
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
| | - Dian He
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
| | - Haitao Sun
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
32
|
Campbell-Thompson M, Tang SC. Pancreas Optical Clearing and 3-D Microscopy in Health and Diabetes. Front Endocrinol (Lausanne) 2021; 12:644826. [PMID: 33981285 PMCID: PMC8108133 DOI: 10.3389/fendo.2021.644826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Although first described over a hundred years ago, tissue optical clearing is undergoing renewed interest due to numerous advances in optical clearing methods, microscopy systems, and three-dimensional (3-D) image analysis programs. These advances are advantageous for intact mouse tissues or pieces of human tissues because samples sized several millimeters can be studied. Optical clearing methods are particularly useful for studies of the neuroanatomy of the central and peripheral nervous systems and tissue vasculature or lymphatic system. Using examples from solvent- and aqueous-based optical clearing methods, the mouse and human pancreatic structures and networks will be reviewed in 3-D for neuro-insular complexes, parasympathetic ganglia, and adipocyte infiltration as well as lymphatics in diabetes. Optical clearing with multiplex immunofluorescence microscopy provides new opportunities to examine the role of the nervous and circulatory systems in pancreatic and islet functions by defining their neurovascular anatomy in health and diabetes.
Collapse
Affiliation(s)
- Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- *Correspondence: Martha Campbell-Thompson, ; Shiue-Cheng Tang,
| | - Shiue-Cheng Tang
- Department of Medical Science and Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- *Correspondence: Martha Campbell-Thompson, ; Shiue-Cheng Tang,
| |
Collapse
|
33
|
Fumoto S, Kinoshita E, Ohta K, Nakamura KI, Hirayama T, Nagasawa H, Hu D, Okami K, Kato R, Shimokawa S, Ohira N, Nishimura K, Miyamoto H, Tanaka T, Kawakami S, Nishida K. A pH-Adjustable Tissue Clearing Solution That Preserves Lipid Ultrastructures: Suitable Tissue Clearing Method for DDS Evaluation. Pharmaceutics 2020; 12:pharmaceutics12111070. [PMID: 33182398 PMCID: PMC7698078 DOI: 10.3390/pharmaceutics12111070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Visualizing biological events and states to resolve biological questions is challenging. Tissue clearing permits three-dimensional multicolor imaging. Here, we describe a pH-adjustable tissue clearing solution, Seebest (SEE Biological Events and States in Tissues), which preserves lipid ultrastructures at an electron microscopy level. Adoption of polyethylenimine was required for a wide pH range adjustment of the tissue clearing solution. The combination of polyethylenimine and urea had a good tissue clearing ability for multiple tissues within several hours. Blood vessels stained with lipophilic carbocyanine dyes were deeply visible using the solution. Adjusting the pH of the solution was important to maximize the fluorescent intensity and suppress dye leakage during tissue clearing. The spatial distribution of doxorubicin and oxidative stress were observable using the solution. Moreover, spatial distribution of liposomes in the liver was visualized. Hence, the Seebest solution provides pH-adjustable, rapid, sufficient tissue clearing, while preserving lipid ultrastructures, which is suitable for drug delivery system evaluations.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (E.K.); (D.H.); (K.O.); (R.K.); (S.S.); (N.O.); (K.N.); (H.M.); (T.T.); (S.K.); (K.N.)
- Correspondence: ; Tel.: +81-95-819-8568
| | - Eriko Kinoshita
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (E.K.); (D.H.); (K.O.); (R.K.); (S.S.); (N.O.); (K.N.); (H.M.); (T.T.); (S.K.); (K.N.)
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.O.); (K.-i.N.)
| | - Kei-ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.O.); (K.-i.N.)
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical & Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigakunishi, Gifu 501-1196, Japan; (T.H.); (H.N.)
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical & Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigakunishi, Gifu 501-1196, Japan; (T.H.); (H.N.)
| | - Die Hu
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (E.K.); (D.H.); (K.O.); (R.K.); (S.S.); (N.O.); (K.N.); (H.M.); (T.T.); (S.K.); (K.N.)
| | - Kazuya Okami
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (E.K.); (D.H.); (K.O.); (R.K.); (S.S.); (N.O.); (K.N.); (H.M.); (T.T.); (S.K.); (K.N.)
| | - Riku Kato
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (E.K.); (D.H.); (K.O.); (R.K.); (S.S.); (N.O.); (K.N.); (H.M.); (T.T.); (S.K.); (K.N.)
| | - Shojiro Shimokawa
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (E.K.); (D.H.); (K.O.); (R.K.); (S.S.); (N.O.); (K.N.); (H.M.); (T.T.); (S.K.); (K.N.)
| | - Naho Ohira
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (E.K.); (D.H.); (K.O.); (R.K.); (S.S.); (N.O.); (K.N.); (H.M.); (T.T.); (S.K.); (K.N.)
| | - Koyo Nishimura
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (E.K.); (D.H.); (K.O.); (R.K.); (S.S.); (N.O.); (K.N.); (H.M.); (T.T.); (S.K.); (K.N.)
| | - Hirotaka Miyamoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (E.K.); (D.H.); (K.O.); (R.K.); (S.S.); (N.O.); (K.N.); (H.M.); (T.T.); (S.K.); (K.N.)
| | - Takashi Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (E.K.); (D.H.); (K.O.); (R.K.); (S.S.); (N.O.); (K.N.); (H.M.); (T.T.); (S.K.); (K.N.)
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (E.K.); (D.H.); (K.O.); (R.K.); (S.S.); (N.O.); (K.N.); (H.M.); (T.T.); (S.K.); (K.N.)
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (E.K.); (D.H.); (K.O.); (R.K.); (S.S.); (N.O.); (K.N.); (H.M.); (T.T.); (S.K.); (K.N.)
| |
Collapse
|
34
|
Li DY, Zheng Z, Yu TT, Tang BZ, Fei P, Qian J, Zhu D. Visible-near infrared-II skull optical clearing window for in vivo cortical vasculature imaging and targeted manipulation. JOURNAL OF BIOPHOTONICS 2020; 13:e202000142. [PMID: 32589789 DOI: 10.1002/jbio.202000142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Skull optical clearing window permits us to perform in vivo cortical imaging without craniotomy, but mainly limits to visible (vis)-near infrared (NIR)-I light imaging. If the skull optical clearing window is available for NIR-II, the imaging depth will be further enhanced. Herein, we developed a vis-NIR-II skull optical clearing agents with deuterium oxide instead of water, which could make the skull transparent in the range of visible to NIR-II. Using a NIR-II excited third harmonic generation microscope, the cortical vasculature of mice could be clearly distinguished even at the depth of 650 μm through the vis-NIR-II skull clearing window. The imaging depth after clearing is close to that without skull, and increases by three times through turbid skull. Furthermore, the new skull optical clearing window promises to realize NIR-II laser-induced targeted injury of cortical single vessel. This work enhances the ability of NIR-II excited nonlinear imaging techniques for accessing to cortical neurovasculature in deep tissue.
Collapse
Affiliation(s)
- Dong-Yu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Zheng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Ting-Ting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ben-Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Peng Fei
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
35
|
Gómez-Gaviro MV, Sanderson D, Ripoll J, Desco M. Biomedical Applications of Tissue Clearing and Three-Dimensional Imaging in Health and Disease. iScience 2020; 23:101432. [PMID: 32805648 PMCID: PMC7452225 DOI: 10.1016/j.isci.2020.101432] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022] Open
Abstract
Three-dimensional (3D) optical imaging techniques can expand our knowledge about physiological and pathological processes that cannot be fully understood with 2D approaches. Standard diagnostic tests frequently are not sufficient to unequivocally determine the presence of a pathological condition. Whole-organ optical imaging requires tissue transparency, which can be achieved by using tissue clearing procedures enabling deeper image acquisition and therefore making possible the analysis of large-scale biological tissue samples. Here, we review currently available clearing agents, methods, and their application in imaging of physiological or pathological conditions in different animal and human organs. We also compare different optical tissue clearing methods discussing their advantages and disadvantages and review the use of different 3D imaging techniques for the visualization and image acquisition of cleared tissues. The use of optical tissue clearing resources for large-scale biological tissues 3D imaging paves the way for future applications in translational and clinical research.
Collapse
Affiliation(s)
- Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Jorge Ripoll
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
36
|
Fenlon M, Short C, Xu J, Malkoff N, Mahdi E, Hough M, Glazier A, Lee C, Asahina K, Wang KS. Prominin-1-expressing hepatic progenitor cells induce fibrogenesis in murine cholestatic liver injury. Physiol Rep 2020; 8:e14508. [PMID: 32686913 PMCID: PMC7370750 DOI: 10.14814/phy2.14508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 01/13/2023] Open
Abstract
Cholestatic liver injury is associated with intrahepatic biliary fibrosis, which can progress to cirrhosis. Resident hepatic progenitor cells (HPCs) expressing Prominin-1 (Prom1 or CD133) become activated and participate in the expansion of cholangiocytes known as the ductular reaction. Previously, we demonstrated that in biliary atresia, Prom1(+) HPCs are present within developing fibrosis and that null mutation of Prom1 significantly abrogates fibrogenesis. Here, we hypothesized that these activated Prom1-expressing HPCs promote fibrogenesis in cholestatic liver injury. Using Prom1CreERT2-nLacZ/+ ;Rosa26Lsl-GFP/+ mice, we traced the fate of Prom1-expressing HPCs in the growth of the neonatal and adult livers and in biliary fibrosis induced by bile duct ligation (BDL). Prom1-expressing cell lineage labeling with Green Fluorescent Protein (GFP) on postnatal day 1 exhibited an expanded population as well as bipotent differentiation potential toward both hepatocytes and cholangiocytes at postnatal day 35. However, in the adult liver, they lost hepatocyte differentiation potential. Upon cholestatic liver injury, adult Prom1-expressing HPCs gave rise to both PROM1(+) and PROM1(-) cholangiocytes contributing to ductular reaction without hepatocyte or myofibroblast differentiation. RNA-sequencing analysis of GFP(+) Prom1-expressing HPC lineage revealed a persistent cholangiocyte phenotype and evidence of Transforming Growth Factor-β pathway activation. When Prom1-expressing cells were ablated with induced Diphtheria toxin in Prom1CreERT-nLacZ/+ ;Rosa26DTA/+ mice, we observed a decrease in ductular reactions and biliary fibrosis typically present in BDL as well as decreased expression of numerous fibrogenic gene markers. Our data indicate that Prom1-expressing HPCs promote biliary fibrosis associated with activation of myofibroblasts in cholestatic liver injury.
Collapse
Affiliation(s)
- Michael Fenlon
- Developmental Biology, Regenerative Medicine, and Stem Cell ProgramThe Saban Research InstituteChildren’s Hospital of Los AngelesLos AngelesCAUSA
| | - Celia Short
- Developmental Biology, Regenerative Medicine, and Stem Cell ProgramThe Saban Research InstituteChildren’s Hospital of Los AngelesLos AngelesCAUSA
| | - Jiabo Xu
- Developmental Biology, Regenerative Medicine, and Stem Cell ProgramThe Saban Research InstituteChildren’s Hospital of Los AngelesLos AngelesCAUSA
| | - Nicolas Malkoff
- Developmental Biology, Regenerative Medicine, and Stem Cell ProgramThe Saban Research InstituteChildren’s Hospital of Los AngelesLos AngelesCAUSA
| | - Elaa Mahdi
- Developmental Biology, Regenerative Medicine, and Stem Cell ProgramThe Saban Research InstituteChildren’s Hospital of Los AngelesLos AngelesCAUSA
| | - Michelle Hough
- Developmental Biology, Regenerative Medicine, and Stem Cell ProgramThe Saban Research InstituteChildren’s Hospital of Los AngelesLos AngelesCAUSA
| | - Alison Glazier
- Developmental Biology, Regenerative Medicine, and Stem Cell ProgramThe Saban Research InstituteChildren’s Hospital of Los AngelesLos AngelesCAUSA
| | - Calvin Lee
- Developmental Biology, Regenerative Medicine, and Stem Cell ProgramThe Saban Research InstituteChildren’s Hospital of Los AngelesLos AngelesCAUSA
| | - Kinji Asahina
- Southern California Research Center for ALPD & CirrhosisDepartment of PathologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Kasper S. Wang
- Developmental Biology, Regenerative Medicine, and Stem Cell ProgramThe Saban Research InstituteChildren’s Hospital of Los AngelesLos AngelesCAUSA
| |
Collapse
|
37
|
Tan Y, Chiam CPL, Zhang Y, Tey HL, Ng LG. Research Techniques Made Simple: Optical Clearing and Three-Dimensional Volumetric Imaging of Skin Biopsies. J Invest Dermatol 2020; 140:1305-1314.e1. [PMID: 32571496 DOI: 10.1016/j.jid.2020.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 11/25/2022]
Abstract
Skin histology is traditionally carried out using two-dimensional tissue sections, which allows for rapid staining, but these sections cannot accurately represent three-dimensional structures in skin such as nerves, vasculature, hair follicles, and sebaceous glands. Although it may be ideal to image skin in a three-dimensional manner, it is technically challenging to image deep into tissue because of light scattering from collagen fibrils in the dermis and refractive index mismatch owing to the presence of differing biological materials such as cytoplasm, and lipids in the skin. Different optical clearing methods have been developed recently, making it possible to render tissues transparent using different approaches. Here, we discuss the steps involved in tissue preparation for three-dimensional volumetric imaging and provide a brief overview of the different optical clearing methods as well as different imaging modalities for three-dimensional imaging.
Collapse
Affiliation(s)
- Yingrou Tan
- Department of Research, National Skin Centre, Singapore; Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Carolyn Pei Lyn Chiam
- School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Yuning Zhang
- Faculty of Science, National University of Singapore, Singapore
| | - Hong Liang Tey
- Department of Research, National Skin Centre, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore.
| |
Collapse
|
38
|
Li R, Liu A, Wu T, Xiao W, Tang LI, Chen L. Digital scanned laser light-sheet fluorescence lifetime microscopy with wide-field time-gated imaging. J Microsc 2020; 279:69-76. [PMID: 32307699 DOI: 10.1111/jmi.12898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/21/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023]
Abstract
We develop a multidimensional fluorescence imaging technique by implementing a wide-field time-gated fluorescence lifetime imaging into digital scanned laser light-sheet microscopy (FLIM-DSLM) to measure 3D fluorescence lifetime distribution in mesoscopic specimens with high resolution. This is achieved by acquiring a series of time-gated images at different relative time delays with respect of excitation pulses at different depths. The lifetime is determined for each voxel by iteratively fitting to single exponential decay. The performance of the developed system is evaluated with the measurements of a lifetime reference Rhodamine 6G solution and a subresolution fluorescent bead phantom. We also demonstrate the application performances of this system to ex vivo and in vivo imaging of Tg(kdrl:EGFP) transgenic zebrafish embryos, illustrating the lifetime differences between the GFP signal and the autofluorescence signal. The results show that FLIM-DSLM can be used for sample size up to a few millimetres and can be utilised as a powerful and robust method for biomedical research, for example as a readout of protein-protein interactions via Förster resonance energy transfer.
Collapse
Affiliation(s)
- R Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China.,College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
| | - A Liu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China.,College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
| | - T Wu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China.,College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
| | - W Xiao
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China.,College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
| | - L I Tang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China.,College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
| | - Lingling Chen
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China.,College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
39
|
Ueda HR, Dodt HU, Osten P, Economo MN, Chandrashekar J, Keller PJ. Whole-Brain Profiling of Cells and Circuits in Mammals by Tissue Clearing and Light-Sheet Microscopy. Neuron 2020; 106:369-387. [PMID: 32380050 PMCID: PMC7213014 DOI: 10.1016/j.neuron.2020.03.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/11/2020] [Accepted: 03/04/2020] [Indexed: 01/12/2023]
Abstract
Tissue clearing and light-sheet microscopy have a 100-year-plus history, yet these fields have been combined only recently to facilitate novel experiments and measurements in neuroscience. Since tissue-clearing methods were first combined with modernized light-sheet microscopy a decade ago, the performance of both technologies has rapidly improved, broadening their applications. Here, we review the state of the art of tissue-clearing methods and light-sheet microscopy and discuss applications of these techniques in profiling cells and circuits in mice. We examine outstanding challenges and future opportunities for expanding these techniques to achieve brain-wide profiling of cells and circuits in primates and humans. Such integration will help provide a systems-level understanding of the physiology and pathology of our central nervous system.
Collapse
Affiliation(s)
- Hiroki R Ueda
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN BDR, Suita, Osaka 565-0871, Japan.
| | - Hans-Ulrich Dodt
- Department of Bioelectronics, FKE, Vienna University of Technology-TU Wien, Vienna, Austria; Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Pavel Osten
- Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724, USA
| | - Michael N Economo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
40
|
Lloyd-Lewis B. Multidimensional Imaging of Mammary Gland Development: A Window Into Breast Form and Function. Front Cell Dev Biol 2020; 8:203. [PMID: 32296702 PMCID: PMC7138012 DOI: 10.3389/fcell.2020.00203] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
An in-depth appreciation of organ form and function relies on the ability to image intact tissues across multiple scales. Difficulties associated with imaging deep within organs, however, can preclude high-resolution multidimensional imaging of live and fixed tissues. This is particularly challenging in the mammary gland, where the epithelium lies deeply encased within a stromal matrix. Recent advances in deep-tissue and live imaging methodologies are increasingly facilitating the visualization of complex cellular structures within their native environment. Alongside, refinements in optical tissue clearing and immunostaining methods are enabling 3D fluorescence imaging of whole organs at unprecedented resolutions. Collectively, these methods are illuminating the dynamic biological processes underlying tissue morphogenesis, homeostasis, and disease. This review provides a snapshot of the current and state-of-the-art multidimensional imaging techniques applied to the postnatal mammary gland, illustrating how these approaches have revealed important new insights into mammary gland ductal development and lactation. Continual evolution of multidimensional image acquisition and analysis methods will undoubtedly offer further insights into mammary gland biology that promises to shed new light on the perturbations leading to breast cancer.
Collapse
Affiliation(s)
- Bethan Lloyd-Lewis
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
41
|
Porter DDL, Morton PD. Clearing techniques for visualizing the nervous system in development, injury, and disease. J Neurosci Methods 2020; 334:108594. [PMID: 31945400 PMCID: PMC10674098 DOI: 10.1016/j.jneumeth.2020.108594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/05/2023]
Abstract
Modern clearing techniques enable high resolution visualization and 3D reconstruction of cell populations and their structural details throughout large biological samples, including intact organs and even entire organisms. In the past decade, these methods have become more tractable and are now being utilized to provide unforeseen insights into the complexities of the nervous system. While several iterations of optical clearing techniques have been developed, some are more suitable for specific applications than others depending on the type of specimen under study. Here we review findings from select studies utilizing clearing methods to visualize the developing, injured, and diseased nervous system within numerous model systems and species. We note trends and imbalances in the types of research questions being addressed with clearing methods across these fields in neuroscience. In addition, we discuss restrictions in applying optical clearing methods for postmortem tissue from humans and large animals and emphasize the lack in continuity between studies of these species. We aim for this review to serve as a key outline of available tissue clearing methods used successfully to address issues across neuronal development, injury/repair, and aging/disease.
Collapse
Affiliation(s)
- Demisha D L Porter
- Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Paul D Morton
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
42
|
Bossolani GDP, Pintelon I, Detrez JD, Buckinx R, Thys S, Zanoni JN, De Vos WH, Timmermans JP. Comparative analysis reveals Ce3D as optimal clearing method for in toto imaging of the mouse intestine. Neurogastroenterol Motil 2019; 31:e13560. [PMID: 30761698 DOI: 10.1111/nmo.13560] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/26/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The intestinal wall has a complex topographical architecture. The multi-layered network of the enteric nervous system and its intercellular interactions are difficult to map using traditional section-based or whole-mount histology. With the advent of optical clearing techniques, it has become feasible to visualize intact tissue and organs in 3D. However, as yet, a gap still needs to be filled in that no in-depth analysis has been performed yet on the potential of different clearing techniques for the small intestine. AIM The goal of this study was to identify an optimal clearing protocol for in toto imaging of mouse intestinal tissue. METHODS Five aqueous-based clearing protocols (SeeDB2, CUBIC, ScaleS, Ce3D, and UbasM) and four organic reagent-based clearing protocols (3DISCO, iDISCO+, uDISCO, and Visikol® ) were assessed in segments of small intestine from CX3CR1GFP/GFP and wild-type mice. Following clearing, optical transparency, tissue morphology, green fluorescent protein (GFP) fluorescence retention, and compatibility with (immuno-)labeling were analyzed. KEY RESULTS All organic reagent-based clearing protocols-except for Visikol-rendered tissue highly transparent but led to substantial tissue shrinkage and deformation. Of the aqueous-based protocols, only Ce3D yielded full-thickness tissue transparency. In addition, Ce3D displayed excellent GFP retention and preservation of tissue morphology. CONCLUSIONS Ce3D emerged as a most efficient protocol for enabling rapid full-thickness 3D mapping of the mouse intestinal wall.
Collapse
Affiliation(s)
- Gleison D P Bossolani
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.,Department of Morphological Sciences, State University of Maringá, Maringá, Brasil
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Jan D Detrez
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Roeland Buckinx
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Sofie Thys
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
43
|
LIU A, XIAO W, LI R, LIU L, CHEN L. Comparison of optical projection tomography and light‐sheet fluorescence microscopy. J Microsc 2019; 275:3-10. [DOI: 10.1111/jmi.12796] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/21/2023]
Affiliation(s)
- A. LIU
- College of Health Science and Environmental EngineeringShenzhen Technology University Shenzhen China
- College of Optoelectronics EngineeringShenzhen University Shenzhen China
| | - W. XIAO
- College of Health Science and Environmental EngineeringShenzhen Technology University Shenzhen China
- College of Optoelectronics EngineeringShenzhen University Shenzhen China
| | - R. LI
- College of Health Science and Environmental EngineeringShenzhen Technology University Shenzhen China
- College of Optoelectronics EngineeringShenzhen University Shenzhen China
| | - L. LIU
- College of Health Science and Environmental EngineeringShenzhen Technology University Shenzhen China
- College of Optoelectronics EngineeringShenzhen University Shenzhen China
| | - L. CHEN
- College of Health Science and Environmental EngineeringShenzhen Technology University Shenzhen China
- College of Optoelectronics EngineeringShenzhen University Shenzhen China
| |
Collapse
|
44
|
Rios AC, Capaldo BD, Vaillant F, Pal B, van Ineveld R, Dawson CA, Chen Y, Nolan E, Fu NY, Jackling FC, Devi S, Clouston D, Whitehead L, Smyth GK, Mueller SN, Lindeman GJ, Visvader JE. Intraclonal Plasticity in Mammary Tumors Revealed through Large-Scale Single-Cell Resolution 3D Imaging. Cancer Cell 2019; 35:618-632.e6. [PMID: 30930118 DOI: 10.1016/j.ccell.2019.02.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/31/2018] [Accepted: 02/26/2019] [Indexed: 12/31/2022]
Abstract
Breast tumors are inherently heterogeneous, but the evolving cellular organization through neoplastic progression is poorly understood. Here we report a rapid, large-scale single-cell resolution 3D imaging protocol based on a one-step clearing agent that allows visualization of normal tissue architecture and entire tumors at cellular resolution. Imaging of multicolor lineage-tracing models of breast cancer targeted to either basal or luminal progenitor cells revealed profound clonal restriction during progression. Expression profiling of clones arising in Pten/Trp53-deficient tumors identified distinct molecular signatures. Strikingly, most clones harbored cells that had undergone an epithelial-to-mesenchymal transition, indicating widespread, inherent plasticity. Hence, an integrative pipeline that combines lineage tracing, 3D imaging, and clonal RNA sequencing technologies offers a comprehensive path for studying mechanisms underlying heterogeneity in whole tumors.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Lineage/genetics
- Cell Plasticity/genetics
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genetic Heterogeneity
- Humans
- Imaging, Three-Dimensional
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Microscopy, Confocal
- Sequence Analysis, RNA
- Single-Cell Analysis/methods
- Transcriptome
- Tumor Burden
Collapse
Affiliation(s)
- Anne C Rios
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands.
| | - Bianca D Capaldo
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - François Vaillant
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Bhupinder Pal
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ravian van Ineveld
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Caleb A Dawson
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yunshun Chen
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Emma Nolan
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nai Yang Fu
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | -
- 3D Tissue Clearing and Lightsheet Microscopy Group, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Felicity C Jackling
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sapna Devi
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3050, Australia; The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC 3000, Australia
| | | | - Lachlan Whitehead
- Centre for Dynamic Imaging, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3050, Australia; The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Geoffrey J Lindeman
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Oncology, The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Medicine, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jane E Visvader
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
45
|
Chen L, Li G, Tang L, Zhang M, Liu L, Liu A, McGinty J, Ruan S. Hyperspectral scanning laser optical tomography. JOURNAL OF BIOPHOTONICS 2019; 12:e201800221. [PMID: 30187691 DOI: 10.1002/jbio.201800221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
In order to study physical relationships within tissue volumes or even organism-level systems, the spatial distribution of multiple fluorescent markers needs to be resolved efficiently in three dimensions. Here, rather than acquiring discrete spectral images sequentially using multiple emission filters, a hyperspectral scanning laser optical tomography system is developed to obtain hyperspectral volumetric data sets with 2-nm spectral resolution of optically transparent mesoscopic (millimeter-centimeter) specimens. This is achieved by acquiring a series of point-scanning hyperspectral extended depth of field images at different angles and subsequently tomographically reconstructing the 3D intensity distribution for each wavelength. This technique is demonstrated to provide robust measurements via the comparison of spectral and intensity profiles of fluorescent bead phantoms. Due to its enhanced spectral resolving ability, this technique is also demonstrated to resolve largely overlapping fluorophores, as demonstrated by the 3D fluorescence hyperspectral reconstruction of a dual-labeled mouse thymus gland sample and the ability to distinguish tumorous and normal tissues of an unlabeled mouse intestine sample.
Collapse
Affiliation(s)
- Lingling Chen
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
- College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
- Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen Technology University, Shenzhen, China
| | - Guiye Li
- College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
- Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen Technology University, Shenzhen, China
| | - Li Tang
- College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
- Department of Medicine, Shenzhen University, Shenzhen, China
| | - Meng Zhang
- School of Electronics and information Engineering, Beihang University, Beijing, China
| | - Lina Liu
- College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
| | - Ang Liu
- College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
| | - James McGinty
- Photonics Group, Department of Physics, Imperial College London, London, UK
| | - Shuangchen Ruan
- Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
46
|
Alexandrovskaya YM, Evtushenko EG, Obrezkova MM, Tuchin VV, Sobol EN. Control of optical transparency and infrared laser heating of costal cartilage via injection of iohexol. JOURNAL OF BIOPHOTONICS 2018; 11:e201800195. [PMID: 30043483 DOI: 10.1002/jbio.201800195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/21/2016] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Infrared (IR) laser impact has no analogues for rapid and safe cartilage reshaping. For better penetration of radiation optical clearing agents (OCAs) can be applied. In present work, the effect of low-osmolality agent iohexol on costal cartilage is studied. Specifically, it is shown that ½ of total increase of optical transparency occurs in 20 minutes of immersion. Maximally, cartilage transparency on 1560 nm can be increased in 1.5 times. Injection of iohexol results in increased tissue hygroscopicity, lower drying rate and higher percentage of bound water. Effective diffusion coefficients of water liberation at 21°C are (5.3 ± 0.4) × 10-7 and (3.3 ± 0.1) × 10-7 cm2 /s for untreated and iohexol-modified tissue, respectively. Raman spectroscopy of irradiated iohexol solution reveals its photo and thermo-stability under clinically used IR laser energies up to 350 W/cm2 for exposure times of several seconds. At energies higher than 500 W/cm2 [Correction added on 5 September 2018, after first online publication: This unit has been changed] decomposition of iohexol occurs rapidly through formation of molecular iodine and fluorescent residue.
Collapse
Affiliation(s)
- Yulia M Alexandrovskaya
- Institute of Photon Technologies, Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow, Russia
| | | | | | - Valery V Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control RAS, Saratov, Russia
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
| | - Emil N Sobol
- Institute of Photon Technologies, Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow, Russia
- IPG Medical Corporation, Marlborough, Massachusetts
| |
Collapse
|
47
|
Masoumi S, Ansari MA, Mohajerani E, Genina EA, Tuchin VV. Combination of analytical and experimental optical clearing of rodent specimen for detecting beta-carotene: phantom study. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-7. [PMID: 30215244 DOI: 10.1117/1.jbo.23.9.095002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/24/2018] [Indexed: 05/03/2023]
Abstract
Recently, compression optical clearing (OC) was applied to detect dermal carotenoid using reflection spectroscopy. To enhance the precision and accuracy of reflection spectroscopy to better detect the spectral absorption of beta-carotene inside biological phantom, here, we simultaneously use compression and immersion OC using dimethyl sulfoxide. In addition, we analytically extract the absorption coefficient of beta-carotene using diffuse reflectance spectroscopy (as an analytical OC). Our results show that the presented analytical OC can be applied alone as a noninvasive method to measure cutaneous chromophores at deep tissues. Finally, we also improve the ability of the analytical clearing method mediated with experimental OC. Our result demonstrates that the combination of analytical and experimental clearing methods enhance the ability of diffuse reflection spectroscopy for extracting the absorption coefficient of beta-carotene as one of the chromospheres inside biological phantom.
Collapse
Affiliation(s)
- Shadi Masoumi
- Shahid Beheshti University, Laser and Plasma Research Institute, Tehran, Iran
| | - Mohammad Ali Ansari
- Shahid Beheshti University, Laser and Plasma Research Institute, Tehran, Iran
| | - Ezeddin Mohajerani
- Shahid Beheshti University, Laser and Plasma Research Institute, Tehran, Iran
| | - Elina A Genina
- Saratov State University (National Research University), Research-Educational Institute of Optics an, Russia
- Tomsk State University (National Research University), Interdisciplinary Laboratory of Biophotonics,, Russia
| | - Valery V Tuchin
- Saratov State University (National Research University), Research-Educational Institute of Optics an, Russia
- Tomsk State University (National Research University), Interdisciplinary Laboratory of Biophotonics,, Russia
- Institute of Precision Mechanics and Control RAS, Laboratory of Laser Diagnostics of Technical and L, Russia
| |
Collapse
|
48
|
Zhang C, Feng W, Zhao Y, Yu T, Li P, Xu T, Luo Q, Zhu D. A large, switchable optical clearing skull window for cerebrovascular imaging. Theranostics 2018; 8:2696-2708. [PMID: 29774069 PMCID: PMC5957003 DOI: 10.7150/thno.23686] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
Rationale: Intravital optical imaging is a significant method for investigating cerebrovascular structure and function. However, its imaging contrast and depth are limited by the turbid skull. Tissue optical clearing has a great potential for solving this problem. Our goal was to develop a transparent skull window, without performing a craniotomy, for use in assessing cerebrovascular structure and function. Methods: Skull optical clearing agents were topically applied to the skulls of mice to create a transparent window within 15 min. The clearing efficacy, repeatability, and safety of the skull window were then investigated. Results: Imaging through the optical clearing skull window enhanced both the contrast and the depth of intravital imaging. The skull window could be used on 2-8-month-old mice and could be expanded from regional to bi-hemispheric. In addition, the window could be repeatedly established without inducing observable inflammation and metabolic toxicity. Conclusion: We successfully developed an easy-to-handle, large, switchable, and safe optical clearing skull window. Combined with various optical imaging techniques, cerebrovascular structure and function can be observed through this optical clearing skull window. Thus, it has the potential for use in basic research on the physiopathologic processes of cortical vessels.
Collapse
Affiliation(s)
- Chao Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wei Feng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yanjie Zhao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Pengcheng Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tonghui Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|