1
|
McGeachan RI, Meftah S, Taylor LW, Catterson JH, Negro D, Bonthron C, Holt K, Tulloch J, Rose JL, Gobbo F, Chang YY, Elliott J, McLay L, King D, Liaquat I, Spires-Jones TL, Booker SA, Brennan PM, Durrant CS. Divergent actions of physiological and pathological amyloid-β on synapses in live human brain slice cultures. Nat Commun 2025; 16:3753. [PMID: 40307257 PMCID: PMC12044016 DOI: 10.1038/s41467-025-58879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
In Alzheimer's disease, amyloid beta (Aβ) and tau pathology are thought to drive synapse loss. However, there is limited information on how endogenous levels of tau, Aβ and other biomarkers relate to patient characteristics, or how manipulating physiological levels of Aβ impacts synapses in living adult human brain. Using live human brain slice cultures, we report that Aβ1-40 and tau release levels vary with donor age and brain region, respectively. Release of other biomarkers such as KLK-6, NCAM-1, and Neurogranin vary between brain region, while TDP-43 and NCAM-1 release is impacted by sex. Pharmacological manipulation of Aβ in either direction results in a loss of synaptophysin puncta, with increased physiological Aβ triggering potentially compensatory synaptic transcript changes. In contrast, treatment with Aβ-containing Alzheimer's disease brain extract results in post-synaptic Aβ uptake and pre-synaptic puncta loss without affecting synaptic transcripts. These data reveal distinct effects of physiological and pathological Aβ on synapses in human brain tissue.
Collapse
Affiliation(s)
- Robert I McGeachan
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- The Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Soraya Meftah
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Lewis W Taylor
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - James H Catterson
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Danilo Negro
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Calum Bonthron
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Kristján Holt
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jane Tulloch
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jamie L Rose
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Ya Yin Chang
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jamie Elliott
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Lauren McLay
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Declan King
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Imran Liaquat
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Sam A Booker
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, The University of Edinburgh, Edinburgh, UK
| | - Paul M Brennan
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
- Translational Neurosurgery, The Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Brain Tumour Centre of Excellence, CRUK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Scarpetta V, Ho KH, Trapp M, Patrizi A. Choroid plexus: Insights from distinct epithelial cellular components. Curr Opin Neurobiol 2025; 93:103028. [PMID: 40267629 DOI: 10.1016/j.conb.2025.103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/25/2025]
Abstract
The choroid plexus (ChP) serves as a vital interface between blood and cerebrospinal fluid (CSF), playing a pivotal role in central nervous system (CNS) development and communication with the body. This review mainly summarizes how the ChP epithelial cells respond to physiological and pathological stimuli, emphasizing the role of distinct organelles and key molecular signaling pathways. Additionally, we discuss the roles of ChP cilia, an evolutionary conserved organelle whose function is still under investigation. Understanding these processes is essential for elucidating how ChP function modulates intrinsic and extrinsic stimuli, which are crucial for maintaining CNS and body homeostasis.
Collapse
Affiliation(s)
- Valentina Scarpetta
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin 10126, Italy
| | - Kim Hoa Ho
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany
| | - Marleen Trapp
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Interdisciplinary Center for Neuroscience, Heidelberg University, Heidelberg 69120, Germany.
| |
Collapse
|
3
|
Almeida GM, Silva BM, Arruda E, Sebollela A. Human brain tissue cultures: a unique ex vivo model to unravel the pathogenesis of neurotropic arboviruses. Curr Opin Virol 2025; 70:101453. [PMID: 39954607 DOI: 10.1016/j.coviro.2025.101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/17/2025]
Abstract
Arboviruses are transmitted by arthropods, and their spread from endemic to nonendemic regions has been accelerated by deforestation, climate change, and global mobility. Arbovirus infection in human results in symptoms ranging from mild to life-threatening, with the impairment of central nervous system functions being reported in severe cases. Despite its clinical relevance, the mechanisms by which arboviruses led to neural dysfunction are still poorly understood. The lack of a widespread human central nervous system model to study the virus-host interaction challenges the advance of our knowledge on these mechanisms. In this context, human brain-derived ex vivo models have the advantage of preserving cellular diversity, cell connections, and tissue cytoarchitecture found in human brain, raising them as a powerful strategy to elucidate the cellular-molecular alterations underlying brain diseases. Here, we review recent advances in the field of neurotropic arboviruses obtained using ex vivo human brain tissue as the experimental model.
Collapse
Affiliation(s)
- Glaucia M Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruna M Silva
- Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Translational Medicine Research Plataform, Oswaldo Cruz Foundation, University of São Paulo, Ribeirão Preto, Brazil
| | - Eurico Arruda
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Adriano Sebollela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
4
|
McGinnis JP, Ortiz-Guzman J, Mallannagari S, Guevara MC, Belfort BDW, Bao S, Srivastava S, Morkas M, Ji E, Katlowitz KA, Addison A, Tantry EK, Blessing MM, Mohila CA, Gadgil N, McClugage SG, Bauer DF, Whitehead WE, Aldave G, Tanweer O, Jaleel N, Jalali A, Patel AJ, Sheth SA, Weiner HL, Gopinath S, Rao G, Harmanci AS, Curry D, Arenkiel BR. Cell type transcriptional identities are maintained in cultured ex vivo human brain tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629223. [PMID: 39763930 PMCID: PMC11702615 DOI: 10.1101/2024.12.19.629223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
It is becoming more broadly accepted that human-based models are needed to better understand the complexities of the human nervous system and its diseases. The recently developed human brain organotypic culture model is one highly promising model that requires the involvement of neurosurgeons and neurosurgical patients. Studies have investigated the electrophysiological properties of neurons in such ex vivo human tissues, but the maintenance of other cell types within explanted brain remains largely unknown. Here, using single-nucleus RNA sequencing, we systematically evaluate the transcriptional identities of the various cell types found in six patient samples after fourteen days in culture (83,501 nuclei from day 0 samples and 45,738 nuclei from day 14 samples). We used two pediatric temporal lobectomy samples, an adult frontal cortex sample, two IDH wild-type glioblastoma samples, and one medulloblastoma sample. We found remarkably high correlations of day 14 transcriptional identities to day 0 tissue, especially in tumor cells (r = 0.90 to 0.93), though microglia (r = 0.86), oligodendrocytes (r = 0.80), pericytes (r = 0.77), endothelial cells (r = 0.78), and fibroblasts (r = 0.76) showed strong preservation of their transcriptional profiles as well. Astrocytes and excitatory neurons showed more moderate preservation (r = 0.66 and 0.47, respectively). Because the main difficulty with organotypic brain cultures is the acquisition of human tissue, which is readily available to neurosurgeons, this model is easily accessible to neurosurgeon-scientists and neurosurgeons affiliated with research laboratories. Broad uptake of this more representative model should prompt advances in our understanding of many uniquely human diseases, lead to more reliable clinical trial performance, and ultimately yield better therapies for our patients.
Collapse
Affiliation(s)
- JP McGinnis
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX,77030, USA
| | - Joshua Ortiz-Guzman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX,77030, USA
| | - Sai Mallannagari
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX,77030, USA
| | - Maria Camila Guevara
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX,77030, USA
| | - Benjamin D. W. Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX,77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Suyang Bao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Snigdha Srivastava
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX,77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria Morkas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
| | - Emily Ji
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
| | - Kalman A. Katlowitz
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Angela Addison
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Evelyne K. Tantry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX,77030, USA
| | - Melissa M. Blessing
- Department of Pathology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carrie A. Mohila
- Department of Pathology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nisha Gadgil
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Samuel G. McClugage
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - David F. Bauer
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - William E. Whitehead
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guillermo Aldave
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Omar Tanweer
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Naser Jaleel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akash J. Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Howard L. Weiner
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shankar Gopinath
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akdes Serin Harmanci
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX,77030, USA
| | - Daniel Curry
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX,77030, USA
| |
Collapse
|
5
|
McGinnis JP, Ortiz-Guzman J, Guevara MC, Mallannagari S, Belfort BDW, Bao S, Srivastava S, Morkas M, Ji E, Addison A, Tantry EK, Chen S, Wang Y, Chen Z, Katlowitz KA, Lange JJ, Blessing MM, Mohila CA, Ljungberg MC, Aldave G, Jalali A, Patel A, Sheth SA, Weiner HL, Gopinath S, Rao G, Harmanci AS, Curry D, Arenkiel BR. Common AAV gene therapy vectors show indiscriminate transduction of living human brain cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623624. [PMID: 39605617 PMCID: PMC11601464 DOI: 10.1101/2024.11.14.623624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The development of cell-type-specific gene therapy vectors for treating neurological diseases holds great promise, but has relied on animal models with limited translational utility. We have adapted an ex vivo organotypic model to evaluate adeno-associated virus (AAV) transduction properties in living slices of human brain tissue. Using fluorescent reporter expression and single-nucleus RNA sequencing, we found that common AAV vectors show broad transduction of normal cell types, with protein expression most apparent in astrocytes; this work introduces a pipeline for identifying and optimizing AAV gene therapy vectors in human brain samples.
Collapse
Affiliation(s)
- JP McGinnis
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Joshua Ortiz-Guzman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Maria Camila Guevara
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sai Mallannagari
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Benjamin D. W. Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Suyang Bao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Snigdha Srivastava
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria Morkas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Emily Ji
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Angela Addison
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Evelyne K. Tantry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Sarah Chen
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Ying Wang
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Zihong Chen
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Kalman A. Katlowitz
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Melissa M. Blessing
- Department of Pathology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carrie A. Mohila
- Department of Pathology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - M. Cecilia Ljungberg
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
- Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guillermo Aldave
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akash Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Howard L. Weiner
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shankar Gopinath
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akdes Serin Harmanci
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Daniel Curry
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| |
Collapse
|
6
|
Brown R, Rabeling A, Goolam M. Progress and potential of brain organoids in epilepsy research. Stem Cell Res Ther 2024; 15:361. [PMID: 39396038 PMCID: PMC11470583 DOI: 10.1186/s13287-024-03944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024] Open
Abstract
Epilepsies are disorders of the brain characterised by an imbalance in electrical activity, linked to a disruption in the excitation and inhibition of neurons. Progress in the epilepsy research field has been hindered by the lack of an appropriate model, with traditionally used 2D primary cell culture assays and animal models having a number of limitations which inhibit their ability to recapitulate the developing brain and the mechanisms behind epileptogenesis. As a result, the mechanisms behind the pathogenesis of epilepsy are largely unknown. Brain organoids are 3D aggregates of neural tissue formed in vitro and have been shown to recapitulate the gene expression patterns of the brain during development, and can successfully model a range of epilepsies and drug responses. They thus present themselves as a novel tool to advance studies into epileptogenesis. In this review, we discuss the formation of brain organoids, their recent application in studying genetic epilepsies, hyperexcitability dynamics and oxygen glucose deprivation as a hyperexcitability agent, their use as an epilepsy drug testing and development platform, as well as the limitations of their use in epilepsy research and how these can be mitigated.
Collapse
Affiliation(s)
- Rachel Brown
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| | - Alexa Rabeling
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| | - Mubeen Goolam
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.
- UCT Neuroscience Institute, Cape Town, South Africa.
| |
Collapse
|
7
|
Nevelchuk S, Brawek B, Schwarz N, Valiente-Gabioud A, Wuttke TV, Kovalchuk Y, Koch H, Höllig A, Steiner F, Figarella K, Griesbeck O, Garaschuk O. Morphotype-specific calcium signaling in human microglia. J Neuroinflammation 2024; 21:175. [PMID: 39020359 PMCID: PMC11256502 DOI: 10.1186/s12974-024-03169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Key functions of Ca2+ signaling in rodent microglia include monitoring the brain state as well as the surrounding neuronal activity and sensing the danger or damage in their vicinity. Microglial Ca2+ dyshomeostasis is a disease hallmark in many mouse models of neurological disorders but the Ca2+ signal properties of human microglia remain unknown. METHODS We developed a novel genetically-encoded ratiometric Ca2+ indicator, targeting microglial cells in the freshly resected human tissue, organotypically cultured tissue slices and analyzed in situ ongoing Ca2+ signaling of decades-old microglia dwelling in their native microenvironment. RESULTS The data revealed marked compartmentalization of Ca2+ signals, with signal properties differing across the compartments and resident morphotypes. The basal Ca2+ levels were low in ramified and high in ameboid microglia. The fraction of cells with ongoing Ca2+ signaling, the fraction and the amplitude of process Ca2+ signals and the duration of somatic Ca2+ signals decreased when moving from ramified via hypertrophic to ameboid microglia. In contrast, the size of active compartments, the fraction and amplitude of somatic Ca2+ signals and the duration of process Ca2+ signals increased along this pathway.
Collapse
Affiliation(s)
- Sofia Nevelchuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Keplerstr. 15, 72074, Tübingen, Germany
| | - Bianca Brawek
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Keplerstr. 15, 72074, Tübingen, Germany
| | - Niklas Schwarz
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ariel Valiente-Gabioud
- Tools for Bio-Imaging, Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Thomas V Wuttke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Yury Kovalchuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Keplerstr. 15, 72074, Tübingen, Germany
| | - Henner Koch
- Department of Epileptology, Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Anke Höllig
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Frederik Steiner
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Keplerstr. 15, 72074, Tübingen, Germany
| | - Katherine Figarella
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Keplerstr. 15, 72074, Tübingen, Germany
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Oliver Griesbeck
- Tools for Bio-Imaging, Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Keplerstr. 15, 72074, Tübingen, Germany.
| |
Collapse
|
8
|
Van Duyne R, Irollo E, Lin A, Johnson JA, Guillem AM, O’Brien EV, Merja L, Nash B, Jackson JG, Sarkar A, Klase ZA, Meucci O. Adult Human Brain Tissue Cultures to Study NeuroHIV. Cells 2024; 13:1127. [PMID: 38994979 PMCID: PMC11240386 DOI: 10.3390/cells13131127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
HIV-associated neurocognitive disorders (HAND) persist under antiretroviral therapy as a complex pathology that has been difficult to study in cellular and animal models. Therefore, we generated an ex vivo human brain slice model of HIV-1 infection from surgically resected adult brain tissue. Brain slice cultures processed for flow cytometry showed >90% viability of dissociated cells within the first three weeks in vitro, with parallel detection of astrocyte, myeloid, and neuronal populations. Neurons within brain slices showed stable dendritic spine density and mature spine morphologies in the first weeks in culture, and they generated detectable activity in multi-electrode arrays. We infected cultured brain slices using patient-matched CD4+ T-cells or monocyte-derived macrophages (MDMs) that were exposed to a GFP-expressing R5-tropic HIV-1 in vitro. Infected slice cultures expressed viral RNA and developed a spreading infection up to 9 days post-infection, which were significantly decreased by antiretrovirals. We also detected infected myeloid cells and astrocytes within slices and observed minimal effect on cellular viability over time. Overall, this human-centered model offers a promising resource to study the cellular mechanisms contributing to HAND (including antiretroviral toxicity, substance use, and aging), infection of resident brain cells, and new neuroprotective therapeutics.
Collapse
Affiliation(s)
- Rachel Van Duyne
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Angel Lin
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James A. Johnson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Alain M. Guillem
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Erick V. O’Brien
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Laura Merja
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Joshua G. Jackson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Atom Sarkar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Neurosurgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Global Neurosciences Institute, LLC, Philadelphia, PA 19107, USA
| | - Zachary A. Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Diseases, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Diseases, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
9
|
Plug BC, Revers IM, Breur M, González GM, Timmerman JA, Meijns NRC, Hamberg D, Wagendorp J, Nutma E, Wolf NI, Luchicchi A, Mansvelder HD, van Til NP, van der Knaap MS, Bugiani M. Human post-mortem organotypic brain slice cultures: a tool to study pathomechanisms and test therapies. Acta Neuropathol Commun 2024; 12:83. [PMID: 38822428 PMCID: PMC11140981 DOI: 10.1186/s40478-024-01784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/16/2024] [Indexed: 06/03/2024] Open
Abstract
Human brain experimental models recapitulating age- and disease-related characteristics are lacking. There is urgent need for human-specific tools that model the complex molecular and cellular interplay between different cell types to assess underlying disease mechanisms and test therapies. Here we present an adapted ex vivo organotypic slice culture method using human post-mortem brain tissue cultured at an air-liquid interface to also study brain white matter. We assessed whether these human post-mortem brain slices recapitulate the in vivo neuropathology and if they are suitable for pathophysiological, experimental and pre-clinical treatment development purposes, specifically regarding leukodystrophies. Human post-mortem brain tissue and cerebrospinal fluid were obtained from control, psychiatric and leukodystrophy donors. Slices were cultured up to six weeks, in culture medium with or without human cerebrospinal fluid. Human post-mortem organotypic brain slice cultures remained viable for at least six weeks ex vivo and maintained tissue structure and diversity of (neural) cell types. Supplementation with cerebrospinal fluid could improve slice recovery. Patient-derived organotypic slice cultures recapitulated and maintained known in vivo neuropathology. The cultures also showed physiologic multicellular responses to lysolecithin-induced demyelination ex vivo, indicating their suitability to study intrinsic repair mechanisms upon injury. The slice cultures were applicable for various experimental studies, as multi-electrode neuronal recordings. Finally, the cultures showed successful cell-type dependent transduction with gene therapy vectors. These human post-mortem organotypic brain slice cultures represent an adapted ex vivo model suitable for multifaceted studies of brain disease mechanisms, boosting translation from human ex vivo to in vivo. This model also allows for assessing potential treatment options, including gene therapy applications. Human post-mortem brain slice cultures are thus a valuable tool in preclinical research to study the pathomechanisms of a wide variety of brain diseases in living human tissue.
Collapse
Affiliation(s)
- Bonnie C Plug
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Ilma M Revers
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Marjolein Breur
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Gema Muñoz González
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam University Medical Centre, VU University, Amsterdam Neuroscience, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Jaap A Timmerman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Niels R C Meijns
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam University Medical Centre, VU University, Amsterdam Neuroscience, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Daniek Hamberg
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Jikke Wagendorp
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Erik Nutma
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
| | - Nicole I Wolf
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Antonio Luchicchi
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam University Medical Centre, VU University, Amsterdam Neuroscience, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Niek P van Til
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Marjo S van der Knaap
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Marianna Bugiani
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.
| |
Collapse
|
10
|
Shen Y, Shao M, Hao ZZ, Huang M, Xu N, Liu S. Multimodal Nature of the Single-cell Primate Brain Atlas: Morphology, Transcriptome, Electrophysiology, and Connectivity. Neurosci Bull 2024; 40:517-532. [PMID: 38194157 PMCID: PMC11003949 DOI: 10.1007/s12264-023-01160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/23/2023] [Indexed: 01/10/2024] Open
Abstract
Primates exhibit complex brain structures that augment cognitive function. The neocortex fulfills high-cognitive functions through billions of connected neurons. These neurons have distinct transcriptomic, morphological, and electrophysiological properties, and their connectivity principles vary. These features endow the primate brain atlas with a multimodal nature. The recent integration of next-generation sequencing with modified patch-clamp techniques is revolutionizing the way to census the primate neocortex, enabling a multimodal neuronal atlas to be established in great detail: (1) single-cell/single-nucleus RNA-seq technology establishes high-throughput transcriptomic references, covering all major transcriptomic cell types; (2) patch-seq links the morphological and electrophysiological features to the transcriptomic reference; (3) multicell patch-clamp delineates the principles of local connectivity. Here, we review the applications of these technologies in the primate neocortex and discuss the current advances and tentative gaps for a comprehensive understanding of the primate neocortex.
Collapse
Affiliation(s)
- Yuhui Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Mingting Shao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Mengyao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Nana Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
11
|
Bak A, Koch H, van Loo KMJ, Schmied K, Gittel B, Weber Y, Ort J, Schwarz N, Tauber SC, Wuttke TV, Delev D. Human organotypic brain slice cultures: a detailed and improved protocol for preparation and long-term maintenance. J Neurosci Methods 2024; 404:110055. [PMID: 38184112 DOI: 10.1016/j.jneumeth.2023.110055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/11/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
The investigation of the human brain at cellular and microcircuit level remains challenging due to the fragile viability of neuronal tissue, inter- and intra-variability of the samples and limited availability of human brain material. Especially brain slices have proven to be an excellent source to investigate brain physiology and disease at cellular and small network level, overcoming the temporal limits of acute slices. Here we provide a revised, detailed protocol of the production and in-depth knowledge on long-term culturing of such human organotypic brain slice cultures for research purposes. We highlight the critical pitfalls of the culturing process of the human brain tissue and present exemplary results on viral expression, single-cell Patch-Clamp recordings, as well as multi-electrode array recordings as readouts for culture viability, enabling the use of organotypic brain slice cultures of these valuable tissue samples for basic neuroscience and disease modeling (Fig. 1).
Collapse
Affiliation(s)
- Aniella Bak
- Department of Epileptology, Neurology, RWTH Aachen University Hospital, Aachen, Germany.
| | - Henner Koch
- Department of Epileptology, Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Karen M J van Loo
- Department of Epileptology, Neurology, RWTH Aachen University Hospital, Aachen, Germany; Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Katharina Schmied
- Department of Epileptology, Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Birgit Gittel
- Department of Epileptology, Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Yvonne Weber
- Department of Epileptology, Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jonas Ort
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Niklas Schwarz
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Simone C Tauber
- Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Thomas V Wuttke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Daniel Delev
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany; Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, Aachen, Germany; Department of Neurosurgery, University of Erlangen, Erlangen, Germany
| |
Collapse
|
12
|
Taylor LW, Simzer EM, Pimblett C, Lacey-Solymar OTT, McGeachan RI, Meftah S, Rose JL, Spires-Jones MP, Holt K, Catterson JH, Koch H, Liaquat I, Clarke JH, Skidmore J, Smith C, Booker SA, Brennan PM, Spires-Jones TL, Durrant CS. p-tau Ser356 is associated with Alzheimer's disease pathology and is lowered in brain slice cultures using the NUAK inhibitor WZ4003. Acta Neuropathol 2024; 147:7. [PMID: 38175261 PMCID: PMC10766794 DOI: 10.1007/s00401-023-02667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Tau hyperphosphorylation and aggregation is a common feature of many dementia-causing neurodegenerative diseases. Tau can be phosphorylated at up to 85 different sites, and there is increasing interest in whether tau phosphorylation at specific epitopes, by specific kinases, plays an important role in disease progression. The AMP-activated protein kinase (AMPK)-related enzyme NUAK1 has been identified as a potential mediator of tau pathology, whereby NUAK1-mediated phosphorylation of tau at Ser356 prevents the degradation of tau by the proteasome, further exacerbating tau hyperphosphorylation and accumulation. This study provides a detailed characterisation of the association of p-tau Ser356 with progression of Alzheimer's disease pathology, identifying a Braak stage-dependent increase in p-tau Ser356 protein levels and an almost ubiquitous presence in neurofibrillary tangles. We also demonstrate, using sub-diffraction-limit resolution array tomography imaging, that p-tau Ser356 co-localises with synapses in AD postmortem brain tissue, increasing evidence that this form of tau may play important roles in AD progression. To assess the potential impacts of pharmacological NUAK inhibition in an ex vivo system that retains multiple cell types and brain-relevant neuronal architecture, we treated postnatal mouse organotypic brain slice cultures from wildtype or APP/PS1 littermates with the commercially available NUAK1/2 inhibitor WZ4003. Whilst there were no genotype-specific effects, we found that WZ4003 results in a culture-phase-dependent loss of total tau and p-tau Ser356, which corresponds with a reduction in neuronal and synaptic proteins. By contrast, application of WZ4003 to live human brain slice cultures results in a specific lowering of p-tau Ser356, alongside increased neuronal tubulin protein. This work identifies differential responses of postnatal mouse organotypic brain slice cultures and adult human brain slice cultures to NUAK1 inhibition that will be important to consider in future work developing tau-targeting therapeutics for human disease.
Collapse
Affiliation(s)
- Lewis W Taylor
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Elizabeth M Simzer
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Claire Pimblett
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Robert I McGeachan
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- The Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Soraya Meftah
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jamie L Rose
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | | | - Kristján Holt
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - James H Catterson
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Henner Koch
- Department of Neurology, Epileptology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Imran Liaquat
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | - Jonathan H Clarke
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | - John Skidmore
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | - Colin Smith
- The Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Sam A Booker
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, The University of Edinburgh, Edinburgh, UK
| | - Paul M Brennan
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
- The Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Brain Tumour Centre of Excellence, CRUK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
13
|
Morris G, Avoli M, Bernard C, Connor K, de Curtis M, Dulla CG, Jefferys JGR, Psarropoulou C, Staley KJ, Cunningham MO. Can in vitro studies aid in the development and use of antiseizure therapies? A report of the ILAE/AES Joint Translational Task Force. Epilepsia 2023; 64:2571-2585. [PMID: 37642296 DOI: 10.1111/epi.17744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
In vitro preparations (defined here as cultured cells, brain slices, and isolated whole brains) offer a variety of approaches to modeling various aspects of seizures and epilepsy. Such models are particularly amenable to the application of anti-seizure compounds, and consequently are a valuable tool to screen the mechanisms of epileptiform activity, mode of action of known anti-seizure medications (ASMs), and the potential efficacy of putative new anti-seizure compounds. Despite these applications, all disease models are a simplification of reality and are therefore subject to limitations. In this review, we summarize the main types of in vitro models that can be used in epilepsy research, describing key methodologies as well as notable advantages and disadvantages of each. We argue that a well-designed battery of in vitro models can form an effective and potentially high-throughput screening platform to predict the clinical usefulness of ASMs, and that in vitro models are particularly useful for interrogating mechanisms of ASMs. To conclude, we offer several key recommendations that maximize the potential value of in vitro models in ASM screening. This includes the use of multiple in vitro tests that can complement each other, carefully combined with in vivo studies, the use of tissues from chronically epileptic (rather than naïve wild-type) animals, and the integration of human cell/tissue-derived preparations.
Collapse
Affiliation(s)
- Gareth Morris
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Christophe Bernard
- Inserm, INS, Institut de Neurosciences des Systèmes, Aix Marseille Univ, Marseille, France
| | - Kate Connor
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - John G R Jefferys
- Department of Physiology, 2nd Medical School, Motol, Charles University, Prague, Czech Republic
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Caterina Psarropoulou
- Laboratory of Animal and Human Physiology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Kevin J Staley
- Neurology Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
14
|
Kim MH, Radaelli C, Thomsen ER, Monet D, Chartrand T, Jorstad NL, Mahoney JT, Taormina MJ, Long B, Baker K, Bakken TE, Campagnola L, Casper T, Clark M, Dee N, D'Orazi F, Gamlin C, Kalmbach BE, Kebede S, Lee BR, Ng L, Trinh J, Cobbs C, Gwinn RP, Keene CD, Ko AL, Ojemann JG, Silbergeld DL, Sorensen SA, Berg J, Smith KA, Nicovich PR, Jarsky T, Zeng H, Ting JT, Levi BP, Lein E. Target cell-specific synaptic dynamics of excitatory to inhibitory neuron connections in supragranular layers of human neocortex. eLife 2023; 12:e81863. [PMID: 37249212 PMCID: PMC10332811 DOI: 10.7554/elife.81863] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/29/2023] [Indexed: 05/31/2023] Open
Abstract
Rodent studies have demonstrated that synaptic dynamics from excitatory to inhibitory neuron types are often dependent on the target cell type. However, these target cell-specific properties have not been well investigated in human cortex, where there are major technical challenges in reliably obtaining healthy tissue, conducting multiple patch-clamp recordings on inhibitory cell types, and identifying those cell types. Here, we take advantage of newly developed methods for human neurosurgical tissue analysis with multiple patch-clamp recordings, post-hoc fluorescent in situ hybridization (FISH), machine learning-based cell type classification and prospective GABAergic AAV-based labeling to investigate synaptic properties between pyramidal neurons and PVALB- vs. SST-positive interneurons. We find that there are robust molecular differences in synapse-associated genes between these neuron types, and that individual presynaptic pyramidal neurons evoke postsynaptic responses with heterogeneous synaptic dynamics in different postsynaptic cell types. Using molecular identification with FISH and classifiers based on transcriptomically identified PVALB neurons analyzed by Patch-seq, we find that PVALB neurons typically show depressing synaptic characteristics, whereas other interneuron types including SST-positive neurons show facilitating characteristics. Together, these data support the existence of target cell-specific synaptic properties in human cortex that are similar to rodent, thereby indicating evolutionary conservation of local circuit connectivity motifs from excitatory to inhibitory neurons and their synaptic dynamics.
Collapse
Affiliation(s)
- Mean-Hwan Kim
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | - Deja Monet
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | | | | | - Brian Long
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | | | - Tamara Casper
- Allen Institute for Brain ScienceSeattleUnited States
| | - Michael Clark
- Allen Institute for Brain ScienceSeattleUnited States
| | - Nick Dee
- Allen Institute for Brain ScienceSeattleUnited States
| | | | - Clare Gamlin
- Allen Institute for Brain ScienceSeattleUnited States
| | - Brian E Kalmbach
- Allen Institute for Brain ScienceSeattleUnited States
- Department of Physiology & Biophysics, School of Medicine, University of WashingtonSeattleUnited States
| | - Sara Kebede
- Allen Institute for Brain ScienceSeattleUnited States
| | - Brian R Lee
- Allen Institute for Brain ScienceSeattleUnited States
| | - Lindsay Ng
- Allen Institute for Brain ScienceSeattleUnited States
| | - Jessica Trinh
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | - C Dirk Keene
- Department of Laboratory Medicine & Pathology, School of Medicine, University of WashingtonSeattleUnited States
| | - Andrew L Ko
- Department of Neurological Surgery, School of Medicine, University of WashingtonSeattleUnited States
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, School of Medicine, University of WashingtonSeattleUnited States
| | - Daniel L Silbergeld
- Department of Neurological Surgery, School of Medicine, University of WashingtonSeattleUnited States
| | | | - Jim Berg
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | - Tim Jarsky
- Allen Institute for Brain ScienceSeattleUnited States
| | - Hongkui Zeng
- Allen Institute for Brain ScienceSeattleUnited States
| | - Jonathan T Ting
- Allen Institute for Brain ScienceSeattleUnited States
- Department of Physiology & Biophysics, School of Medicine, University of WashingtonSeattleUnited States
| | - Boaz P Levi
- Allen Institute for Brain ScienceSeattleUnited States
| | - Ed Lein
- Allen Institute for Brain ScienceSeattleUnited States
- Department of Laboratory Medicine & Pathology, School of Medicine, University of WashingtonSeattleUnited States
- Department of Neurological Surgery, School of Medicine, University of WashingtonSeattleUnited States
| |
Collapse
|
15
|
Degl’Innocenti E, Dell’Anno MT. Human and mouse cortical astrocytes: a comparative view from development to morphological and functional characterization. Front Neuroanat 2023; 17:1130729. [PMID: 37139179 PMCID: PMC10150887 DOI: 10.3389/fnana.2023.1130729] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
The vision of astroglia as a bare scaffold to neuronal circuitry has been largely overturned. Astrocytes exert a neurotrophic function, but also take active part in supporting synaptic transmission and in calibrating blood circulation. Many aspects of their functioning have been unveiled from studies conducted in murine models, however evidence is showing many differences between mouse and human astrocytes starting from their development and encompassing morphological, transcriptomic and physiological variations when they achieve complete maturation. The evolutionary race toward superior cognitive abilities unique to humans has drastically impacted neocortex structure and, together with neuronal circuitry, astrocytes have also been affected with the acquisition of species-specific properties. In this review, we summarize diversities between murine and human astroglia, with a specific focus on neocortex, in a panoramic view that starts with their developmental origin to include all structural and molecular differences that mark the uniqueness of human astrocytes.
Collapse
Affiliation(s)
- Elisa Degl’Innocenti
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maria Teresa Dell’Anno
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- *Correspondence: Maria Teresa Dell’Anno,
| |
Collapse
|
16
|
Qian Y, Li J, Zhao S, Matthews EA, Adoff M, Zhong W, An X, Yeo M, Park C, Yang X, Wang BS, Southwell DG, Huang ZJ. Programmable RNA sensing for cell monitoring and manipulation. Nature 2022; 610:713-721. [PMID: 36198803 PMCID: PMC10348343 DOI: 10.1038/s41586-022-05280-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 08/26/2022] [Indexed: 12/22/2022]
Abstract
RNA is a central and universal mediator of genetic information underlying the diversity of cell types and cell states, which together shape tissue organization and organismal function across species and lifespans. Despite numerous advances in RNA sequencing technologies and the massive accumulation of transcriptome datasets across the life sciences1,2, the dearth of technologies that use RNAs to observe and manipulate cell types remains a bottleneck in biology and medicine. Here we describe CellREADR (Cell access through RNA sensing by Endogenous ADAR), a programmable RNA-sensing technology that leverages RNA editing mediated by ADAR to couple the detection of cell-defining RNAs with the translation of effector proteins. Viral delivery of CellREADR conferred specific cell-type access in mouse and rat brains and in ex vivo human brain tissues. Furthermore, CellREADR enabled the recording and control of specific types of neurons in behaving mice. CellREADR thus highlights the potential for RNA-based monitoring and editing of animal cells in ways that are specific, versatile, simple and generalizable across organ systems and species, with wide applications in biology, biotechnology and programmable RNA medicine.
Collapse
Affiliation(s)
- Yongjun Qian
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Jiayun Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Elizabeth A Matthews
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Michael Adoff
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Weixin Zhong
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Xu An
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Michele Yeo
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Christine Park
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Xiaolu Yang
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Bor-Shuen Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Derek G Southwell
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Z Josh Huang
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC, USA.
| |
Collapse
|
17
|
Moore H, Lega BC, Konopka G. Riding brain "waves" to identify human memory genes. Curr Opin Cell Biol 2022; 78:102118. [PMID: 35947942 DOI: 10.1016/j.ceb.2022.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/31/2023]
Abstract
While there is extensive research on memory-related oscillations and brain gene expression, the relationship between oscillations and gene expression has rarely been studied. Recently, progress has been made to identify specific genes associated with oscillations that are correlated with episodic memory. Neocortical regions, in particular the temporal pole, have been examined in this line of research due to their accessibility during neurosurgical procedures. By harnessing this accessibility, a unique and powerful study design has allowed gene expression and intracranial oscillatory data to be sourced from the same human patients. These studies have identified a plethora of understudied gene targets that should be further characterized with respect to human brain function. Future work should extend to other brain regions to increase our understanding of the genetic signatures of oscillations and, ultimately, human cognition.
Collapse
Affiliation(s)
- Haley Moore
- Department of Neuroscience, UT Southwestern Medical Center, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, USA; Department of Neurosurgery, UT Southwestern Medical Center, USA
| | - Bradley C Lega
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, USA; Department of Neurosurgery, UT Southwestern Medical Center, USA.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, USA.
| |
Collapse
|
18
|
Richardson A, Morris G. Cross Talk opposing view: Animal models of epilepsy are more useful than human tissue-based approaches. J Physiol 2022; 600:4575-4578. [PMID: 36148995 DOI: 10.1113/jp282186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 06/22/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Amy Richardson
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Gareth Morris
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.,Department of Physiology and Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland.,FutureNeuro, the SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine & Health Sciences
| |
Collapse
|
19
|
Iafrate L, Benedetti MC, Donsante S, Rosa A, Corsi A, Oreffo ROC, Riminucci M, Ruocco G, Scognamiglio C, Cidonio G. Modelling skeletal pain harnessing tissue engineering. IN VITRO MODELS 2022; 1:289-307. [PMID: 36567849 PMCID: PMC9766883 DOI: 10.1007/s44164-022-00028-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/27/2022]
Abstract
Bone pain typically occurs immediately following skeletal damage with mechanical distortion or rupture of nociceptive fibres. The pain mechanism is also associated with chronic pain conditions where the healing process is impaired. Any load impacting on the area of the fractured bone will stimulate the nociceptive response, necessitating rapid clinical intervention to relieve pain associated with the bone damage and appropriate mitigation of any processes involved with the loss of bone mass, muscle, and mobility and to prevent death. The following review has examined the mechanisms of pain associated with trauma or cancer-related skeletal damage focusing on new approaches for the development of innovative therapeutic interventions. In particular, the review highlights tissue engineering approaches that offer considerable promise in the application of functional biomimetic fabrication of bone and nerve tissues. The strategic combination of bone and nerve tissue engineered models provides significant potential to develop a new class of in vitro platforms, capable of replacing in vivo models and testing the safety and efficacy of novel drug treatments aimed at the resolution of bone-associated pain. To date, the field of bone pain research has centred on animal models, with a paucity of data correlating to the human physiological response. This review explores the evident gap in pain drug development research and suggests a step change in approach to harness tissue engineering technologies to recapitulate the complex pathophysiological environment of the damaged bone tissue enabling evaluation of the associated pain-mimicking mechanism with significant therapeutic potential therein for improved patient quality of life. Graphical abstract Rationale underlying novel drug testing platform development. Pain detected by the central nervous system and following bone fracture cannot be treated or exclusively alleviated using standardised methods. The pain mechanism and specificity/efficacy of pain reduction drugs remain poorly understood. In vivo and ex vivo models are not yet able to recapitulate the various pain events associated with skeletal damage. In vitro models are currently limited by their inability to fully mimic the complex physiological mechanisms at play between nervous and skeletal tissue and any disruption in pathological states. Robust innovative tissue engineering models are needed to better understand pain events and to investigate therapeutic regimes.
Collapse
Affiliation(s)
- Lucia Iafrate
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Maria Cristina Benedetti
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Richard O. C. Oreffo
- Bone and Joint Research Group, Stem Cells and Regeneration, Institute of Developmental Sciences, Centre for Human Development, University of Southampton, Southampton, UK
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Chiara Scognamiglio
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Gianluca Cidonio
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Bone and Joint Research Group, Stem Cells and Regeneration, Institute of Developmental Sciences, Centre for Human Development, University of Southampton, Southampton, UK
| |
Collapse
|
20
|
Iram T, Kern F, Kaur A, Myneni S, Morningstar AR, Shin H, Garcia MA, Yerra L, Palovics R, Yang AC, Hahn O, Lu N, Shuken SR, Haney MS, Lehallier B, Iyer M, Luo J, Zetterberg H, Keller A, Zuchero JB, Wyss-Coray T. Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17. Nature 2022; 605:509-515. [PMID: 35545674 PMCID: PMC9377328 DOI: 10.1038/s41586-022-04722-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 04/04/2022] [Indexed: 12/15/2022]
Abstract
Recent understanding of how the systemic environment shapes the brain throughout life has led to numerous intervention strategies to slow brain ageing1-3. Cerebrospinal fluid (CSF) makes up the immediate environment of brain cells, providing them with nourishing compounds4,5. We discovered that infusing young CSF directly into aged brains improves memory function. Unbiased transcriptome analysis of the hippocampus identified oligodendrocytes to be most responsive to this rejuvenated CSF environment. We further showed that young CSF boosts oligodendrocyte progenitor cell (OPC) proliferation and differentiation in the aged hippocampus and in primary OPC cultures. Using SLAMseq to metabolically label nascent mRNA, we identified serum response factor (SRF), a transcription factor that drives actin cytoskeleton rearrangement, as a mediator of OPC proliferation following exposure to young CSF. With age, SRF expression decreases in hippocampal OPCs, and the pathway is induced by acute injection with young CSF. We screened for potential SRF activators in CSF and found that fibroblast growth factor 17 (Fgf17) infusion is sufficient to induce OPC proliferation and long-term memory consolidation in aged mice while Fgf17 blockade impairs cognition in young mice. These findings demonstrate the rejuvenating power of young CSF and identify Fgf17 as a key target to restore oligodendrocyte function in the ageing brain.
Collapse
Affiliation(s)
- Tal Iram
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA,Correspondence to or
| | - Fabian Kern
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.,Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, Saarbrücken, Germany
| | - Achint Kaur
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Saket Myneni
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Allison R. Morningstar
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Heather Shin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Miguel A. Garcia
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Lakshmi Yerra
- Palo Alto Veterans Institute for Research, Palo Alto, CA 94304
| | - Robert Palovics
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Andrew C. Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Nannan Lu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Steven R. Shuken
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA,Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Michael s. Haney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Benoit Lehallier
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Jian Luo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Palo Alto Veterans Institute for Research, Palo Alto, CA 94304
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Andreas Keller
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.,Center for Bioinformatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - J. Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California, USA.,Correspondence to or
| |
Collapse
|
21
|
Park TIH, Smyth LCD, Aalderink M, Woolf ZR, Rustenhoven J, Lee K, Jansson D, Smith A, Feng S, Correia J, Heppner P, Schweder P, Mee E, Dragunow M. Routine culture and study of adult human brain cells from neurosurgical specimens. Nat Protoc 2022; 17:190-221. [PMID: 35022619 DOI: 10.1038/s41596-021-00637-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022]
Abstract
When modeling disease in the laboratory, it is important to use clinically relevant models. Patient-derived human brain cells grown in vitro to study and test potential treatments provide such a model. Here, we present simple, highly reproducible coordinated procedures that can be used to routinely culture most cell types found in the human brain from single neurosurgically excised brain specimens. The cell types that can be cultured include dissociated cultures of neurons, astrocytes, microglia, pericytes and brain endothelial and neural precursor cells, as well as explant cultures of the leptomeninges, cortical slice cultures and brain tumor cells. The initial setup of cultures takes ~2 h, and the cells are ready for further experiments within days to weeks. The resulting cells can be studied as purified or mixed population cultures, slice cultures and explant-derived cultures. This protocol therefore enables the investigation of human brain cells to facilitate translation of neuroscience research to the clinic.
Collapse
Affiliation(s)
- Thomas I-H Park
- Hugh Green Biobank & Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Neurosurgical Research Unit, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Leon C D Smyth
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Miranda Aalderink
- Hugh Green Biobank & Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Zoe R Woolf
- Hugh Green Biobank & Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Justin Rustenhoven
- Center for Brain Immunology and Glia (BIG), Washington University, St. Louis, MO, USA
| | - Kevin Lee
- Department of Physiology, Faculty of Medical Science and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Deidre Jansson
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine VISN 20 Mental Illness Research, Education and Clinical Centre (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA
| | - Amy Smith
- Hugh Green Biobank & Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Sheryl Feng
- Hugh Green Biobank & Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jason Correia
- Neurosurgical Research Unit, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Peter Heppner
- Neurosurgical Research Unit, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Patrick Schweder
- Neurosurgical Research Unit, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Edward Mee
- Neurosurgical Research Unit, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Mike Dragunow
- Hugh Green Biobank & Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
- Neurosurgical Research Unit, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
22
|
Functional Characterization of Human Pluripotent Stem Cell-Derived Models of the Brain with Microelectrode Arrays. Cells 2021; 11:cells11010106. [PMID: 35011667 PMCID: PMC8750870 DOI: 10.3390/cells11010106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived neuron cultures have emerged as models of electrical activity in the human brain. Microelectrode arrays (MEAs) measure changes in the extracellular electric potential of cell cultures or tissues and enable the recording of neuronal network activity. MEAs have been applied to both human subjects and hPSC-derived brain models. Here, we review the literature on the functional characterization of hPSC-derived two- and three-dimensional brain models with MEAs and examine their network function in physiological and pathological contexts. We also summarize MEA results from the human brain and compare them to the literature on MEA recordings of hPSC-derived brain models. MEA recordings have shown network activity in two-dimensional hPSC-derived brain models that is comparable to the human brain and revealed pathology-associated changes in disease models. Three-dimensional hPSC-derived models such as brain organoids possess a more relevant microenvironment, tissue architecture and potential for modeling the network activity with more complexity than two-dimensional models. hPSC-derived brain models recapitulate many aspects of network function in the human brain and provide valid disease models, but certain advancements in differentiation methods, bioengineering and available MEA technology are needed for these approaches to reach their full potential.
Collapse
|
23
|
Weitz JR, Tiriac H, Hurtado de Mendoza T, Wascher A, Lowy AM. Using Organotypic Tissue Slices to Investigate the Microenvironment of Pancreatic Cancer: Pharmacotyping and Beyond. Cancers (Basel) 2021; 13:cancers13194991. [PMID: 34638476 PMCID: PMC8507648 DOI: 10.3390/cancers13194991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) has the highest mortality rate of all major cancers and, disappointingly, neither immune- nor stroma-directed therapies are found to improve upon the current standard of care. Among the most challenging aspects of PDAC biology which impede clinical success are the physiological features of the pancreatic cancer microenvironment (TME), including the presence of a highly fibrotic extracellular matrix marked by perineural invasion and an immunosuppressive milieu. Many current strategies for PDAC therapy are focused on altering these features to improve therapeutic efficacy. This review discusses the recent investigations using organotypic tumor slices as a model system to study cellular and extracellular interactions of the pancreatic TME. Future studies utilizing such models may provide new insights into the TME by identifying mechanisms of communication between multiple cell types and investigating novel therapeutic approaches for personalized cancer therapy. Abstract Organotypic tissue slices prepared from patient tumors are a semi-intact ex vivo preparation that recapitulates many aspects of the tumor microenvironment (TME). While connections to the vasculature and nervous system are severed, the integral functional elements of the tumor remain intact for many days during the slice culture. During this window of time, the slice platforms offer a suite of molecular, biomechanical and functional tools to investigate PDAC biology. In this review, we first briefly discuss the development of pancreatic tissue slices as a model system. Next, we touch upon using slices as an orthogonal approach to study the TME as compared to other established 3D models, such as organoids. Distinct from most other models, the pancreatic slices contain autologous immune and other stromal cells. Taking advantage of the existing immune cells within the slices, we will discuss the breakthrough studies which investigate the immune compartment in the pancreas slices. These studies will provide an important framework for future investigations seeking to exploit or reprogram the TME for cancer therapy.
Collapse
Affiliation(s)
- Jonathan Robert Weitz
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA; (J.R.W.); (H.T.); (T.H.d.M.); (A.W.)
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Herve Tiriac
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA; (J.R.W.); (H.T.); (T.H.d.M.); (A.W.)
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Tatiana Hurtado de Mendoza
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA; (J.R.W.); (H.T.); (T.H.d.M.); (A.W.)
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexis Wascher
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA; (J.R.W.); (H.T.); (T.H.d.M.); (A.W.)
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Andrew M. Lowy
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA; (J.R.W.); (H.T.); (T.H.d.M.); (A.W.)
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
- Correspondence: ; Tel.: +1-858-822-2124
| |
Collapse
|
24
|
Roth JG, Huang MS, Li TL, Feig VR, Jiang Y, Cui B, Greely HT, Bao Z, Paşca SP, Heilshorn SC. Advancing models of neural development with biomaterials. Nat Rev Neurosci 2021; 22:593-615. [PMID: 34376834 PMCID: PMC8612873 DOI: 10.1038/s41583-021-00496-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells have emerged as a promising in vitro model system for studying the brain. Two-dimensional and three-dimensional cell culture paradigms have provided valuable insights into the pathogenesis of neuropsychiatric disorders, but they remain limited in their capacity to model certain features of human neural development. Specifically, current models do not efficiently incorporate extracellular matrix-derived biochemical and biophysical cues, facilitate multicellular spatio-temporal patterning, or achieve advanced functional maturation. Engineered biomaterials have the capacity to create increasingly biomimetic neural microenvironments, yet further refinement is needed before these approaches are widely implemented. This Review therefore highlights how continued progression and increased integration of engineered biomaterials may be well poised to address intractable challenges in recapitulating human neural development.
Collapse
Affiliation(s)
- Julien G Roth
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle S Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Thomas L Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Vivian R Feig
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Henry T Greely
- Stanford Law School, Stanford University, Stanford, CA, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Sergiu P Paşca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
25
|
Barth M, Bacioglu M, Schwarz N, Novotny R, Brandes J, Welzer M, Mazzitelli S, Häsler LM, Schweighauser M, Wuttke TV, Kronenberg-Versteeg D, Fog K, Ambjørn M, Alik A, Melki R, Kahle PJ, Shimshek DR, Koch H, Jucker M, Tanriöver G. Microglial inclusions and neurofilament light chain release follow neuronal α-synuclein lesions in long-term brain slice cultures. Mol Neurodegener 2021; 16:54. [PMID: 34380535 PMCID: PMC8356412 DOI: 10.1186/s13024-021-00471-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/06/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Proteopathic brain lesions are a hallmark of many age-related neurodegenerative diseases including synucleinopathies and develop at least a decade before the onset of clinical symptoms. Thus, understanding of the initiation and propagation of such lesions is key for developing therapeutics to delay or halt disease progression. METHODS Alpha-synuclein (αS) inclusions were induced in long-term murine and human slice cultures by seeded aggregation. An αS seed-recognizing human antibody was tested for blocking seeding and/or spreading of the αS lesions. Release of neurofilament light chain (NfL) into the culture medium was assessed. RESULTS To study initial stages of α-synucleinopathies, we induced αS inclusions in murine hippocampal slice cultures by seeded aggregation. Induction of αS inclusions in neurons was apparent as early as 1week post-seeding, followed by the occurrence of microglial inclusions in vicinity of the neuronal lesions at 2-3 weeks. The amount of αS inclusions was dependent on the type of αS seed and on the culture's genetic background (wildtype vs A53T-αS genotype). Formation of αS inclusions could be monitored by neurofilament light chain protein release into the culture medium, a fluid biomarker of neurodegeneration commonly used in clinical settings. Local microinjection of αS seeds resulted in spreading of αS inclusions to neuronally connected hippocampal subregions, and seeding and spreading could be inhibited by an αS seed-recognizing human antibody. We then applied parameters of the murine cultures to surgical resection-derived adult human long-term neocortical slice cultures from 22 to 61-year-old donors. Similarly, in these human slice cultures, proof-of-principle induction of αS lesions was achieved at 1week post-seeding in combination with viral A53T-αS expressions. CONCLUSION The successful translation of these brain cultures from mouse to human with the first reported induction of human αS lesions in a true adult human brain environment underlines the potential of this model to study proteopathic lesions in intact mouse and now even aged human brain environments.
Collapse
Affiliation(s)
- Melanie Barth
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Graduate Training Center of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Mehtap Bacioglu
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Graduate Training Center of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Niklas Schwarz
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Renata Novotny
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Janine Brandes
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Marc Welzer
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Graduate Training Center of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Sonia Mazzitelli
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Lisa M. Häsler
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Manuel Schweighauser
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Thomas V. Wuttke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Department of Neurosurgery, University of Tuebingen, 72076 Tuebingen, Germany
| | - Deborah Kronenberg-Versteeg
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Karina Fog
- Division of Neuroscience, H. Lundbeck A/S, 2500 Valby, Denmark
| | - Malene Ambjørn
- Division of Neuroscience, H. Lundbeck A/S, 2500 Valby, Denmark
| | - Ania Alik
- MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Institut François Jacob, 92265 Fontenay-aux-Roses, France
| | - Ronald Melki
- MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Institut François Jacob, 92265 Fontenay-aux-Roses, France
| | - Philipp J. Kahle
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie-Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Derya R. Shimshek
- Neuroscience Research, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Henner Koch
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Department of Epileptology, Neurology, RWTH Aachen University, Aachen, Germany
| | - Mathias Jucker
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Gaye Tanriöver
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
26
|
Izsak J, Seth H, Theiss S, Hanse E, Illes S. Human Cerebrospinal Fluid Promotes Neuronal Circuit Maturation of Human Induced Pluripotent Stem Cell-Derived 3D Neural Aggregates. Stem Cell Reports 2021; 14:1044-1059. [PMID: 32521247 PMCID: PMC7355159 DOI: 10.1016/j.stemcr.2020.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 01/09/2023] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived in vitro neural and organoid models resemble fetal, rather than adult brain properties, indicating that currently applied cultivation media and supplements are insufficient to achieve neural maturation beyond the fetal stage. In vivo, cerebrospinal fluid molecules are regulating the transition of the immature fetal human brain into a mature adult brain. By culturing hiPSC-3D neural aggregates in human cerebrospinal fluid (hCSF) obtained from healthy adult individuals, we demonstrate that hCSF rapidly triggers neurogenesis, gliogenesis, synapse formation, neurite outgrowth, suppresses proliferation of residing neural stem cells, and results in the formation of synchronously active neuronal circuits in vitro within 3 days. Thus, a physiologically relevant and adult brain-like milieu triggers maturation of hiPSC-3D neural aggregates into highly functional neuronal circuits in vitro. The approach presented here opens a new avenue to identify novel physiological factors for the improvement of hiPSC neural in vitro models. Human CSF triggers rapidly multiple maturation processes in human 3D neural models Human CSF triggers human neurogenesis and suppresses neural stem cell proliferation Human CSF triggers human astrocyte development, neurite growth, and synapse formation Human CSF triggers the maturation of neurons into highly functional neuronal circuits
Collapse
Affiliation(s)
- Julia Izsak
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Henrik Seth
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Result Medical GmbH, Düsseldorf, Germany
| | - Eric Hanse
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Illes
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
27
|
Kvist G. Derivation of Adult Human Cortical Organotypic Slice Cultures for Coculture with Reprogrammed Neuronal Cells. Methods Mol Biol 2021; 2352:253-259. [PMID: 34324192 DOI: 10.1007/978-1-0716-1601-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Adult human cortical organotypic slice culture is an attractive model system to explore mechanisms of human brain pathology as well as to test drug candidates for treatment of neurodegeneration. Acute studies in human brain slices are limited by the lifetime of the tissue and focus mainly on hippocampus slice preparation. Here we describe the derivation of human organotypic slice cultures of cortical origin, which can be kept in culture for up to 6 weeks. This method enabled us to test the system in coculture with reprogrammed neurons and show its feasibility in neuronal cell integration experiments in human-to-human grafting situation.
Collapse
Affiliation(s)
- Giedre Kvist
- Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
28
|
Greely HT. Human Brain Surrogates Research: The Onrushing Ethical Dilemma. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2021; 21:34-45. [PMID: 33373556 DOI: 10.1080/15265161.2020.1845853] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Human brain research is moving into a dilemma. The best way to understand how the human brain works is to study living human brains in living human beings, but ethical and legal standards make it difficult to do powerful research with actual human beings. So neuroscientists have developed four types of surrogates for living human brains in human bodies: genetically edited non-human animals, human/non-human brain chimeras, human neural organoids, and living ex vivo human brain tissues. These new and rapidly improving models offer the hope of understanding human brain function better. If we make our models "too good," they may themselves deserve some of the kinds of ethical and legal respect that have limited brain research in human beings. This article is an initial effort to outline that dilemma.
Collapse
|
29
|
Dur AH, Tang T, Viviano S, Sekuri A, Willsey HR, Tagare HD, Kahle KT, Deniz E. In Xenopus ependymal cilia drive embryonic CSF circulation and brain development independently of cardiac pulsatile forces. Fluids Barriers CNS 2020; 17:72. [PMID: 33308296 PMCID: PMC7731788 DOI: 10.1186/s12987-020-00234-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hydrocephalus, the pathological expansion of the cerebrospinal fluid (CSF)-filled cerebral ventricles, is a common, deadly disease. In the adult, cardiac and respiratory forces are the main drivers of CSF flow within the brain ventricular system to remove waste and deliver nutrients. In contrast, the mechanics and functions of CSF circulation in the embryonic brain are poorly understood. This is primarily due to the lack of model systems and imaging technology to study these early time points. Here, we studied embryos of the vertebrate Xenopus with optical coherence tomography (OCT) imaging to investigate in vivo ventricular and neural development during the onset of CSF circulation. METHODS Optical coherence tomography (OCT), a cross-sectional imaging modality, was used to study developing Xenopus tadpole brains and to dynamically detect in vivo ventricular morphology and CSF circulation in real-time, at micrometer resolution. The effects of immobilizing cilia and cardiac ablation were investigated. RESULTS In Xenopus, using OCT imaging, we demonstrated that ventriculogenesis can be tracked throughout development until the beginning of metamorphosis. We found that during Xenopus embryogenesis, initially, CSF fills the primitive ventricular space and remains static, followed by the initiation of the cilia driven CSF circulation where ependymal cilia create a polarized CSF flow. No pulsatile flow was detected throughout these tailbud and early tadpole stages. As development progressed, despite the emergence of the choroid plexus in Xenopus, cardiac forces did not contribute to the CSF circulation, and ciliary flow remained the driver of the intercompartmental bidirectional flow as well as the near-wall flow. We finally showed that cilia driven flow is crucial for proper rostral development and regulated the spatial neural cell organization. CONCLUSIONS Our data support a paradigm in which Xenopus embryonic ventriculogenesis and rostral brain development are critically dependent on ependymal cilia-driven CSF flow currents that are generated independently of cardiac pulsatile forces. Our work suggests that the Xenopus ventricular system forms a complex cilia-driven CSF flow network which regulates neural cell organization. This work will redirect efforts to understand the molecular regulators of embryonic CSF flow by focusing attention on motile cilia rather than other forces relevant only to the adult.
Collapse
Affiliation(s)
- A H Dur
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - T Tang
- Department of Radiology and Biomedical Imaging, Yale University, 300 Cedar St, New Haven, CT, 06510, USA
| | - S Viviano
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - A Sekuri
- Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - H R Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - H D Tagare
- Department of Radiology and Biomedical Imaging, Yale University, 300 Cedar St, New Haven, CT, 06510, USA
| | - K T Kahle
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Neurosurgery and Cellular & Molecular Physiology, and Centers for Mendelian Genomics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - E Deniz
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
30
|
Lovett ML, Nieland TJ, Dingle YTL, Kaplan DL. Innovations in 3-Dimensional Tissue Models of Human Brain Physiology and Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909146. [PMID: 34211358 PMCID: PMC8240470 DOI: 10.1002/adfm.201909146] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Indexed: 05/04/2023]
Abstract
3-dimensional (3D) laboratory tissue cultures have emerged as an alternative to traditional 2-dimensional (2D) culture systems that do not recapitulate native cell behavior. The discrepancy between in vivo and in vitro tissue-cell-molecular responses impedes understanding of human physiology in general and creates roadblocks for the discovery of therapeutic solutions. Two parallel approaches have emerged for the design of 3D culture systems. The first is biomedical engineering methodology, including bioengineered materials, bioprinting, microfluidics and bioreactors, used alone or in combination, to mimic the microenvironments of native tissues. The second approach is organoid technology, in which stem cells are exposed to chemical and/or biological cues to activate differentiation programs that are reminiscent of human (prenatal) development. This review article describes recent technological advances in engineering 3D cultures that more closely resemble the human brain. The contributions of in vitro 3D tissue culture systems to new insights in neurophysiology, neurological diseases and regenerative medicine are highlighted. Perspectives on designing improved tissue models of the human brain are offered, focusing on an integrative approach merging biomedical engineering tools with organoid biology.
Collapse
Affiliation(s)
- Michael L. Lovett
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Thomas J.F. Nieland
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Yu-Ting L. Dingle
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| |
Collapse
|
31
|
Park TIH, Schweder P, Lee K, Dieriks BV, Jung Y, Smyth L, Rustenhoven J, Mee E, Heppner P, Turner C, Curtis MA, Faull RLM, Montgomery JM, Dragunow M. Isolation and culture of functional adult human neurons from neurosurgical brain specimens. Brain Commun 2020; 2:fcaa171. [PMID: 33215086 PMCID: PMC7660143 DOI: 10.1093/braincomms/fcaa171] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
The ability to characterize and study primary neurons isolated directly from the adult human brain would greatly advance neuroscience research. However, significant challenges such as accessibility of human brain tissue and the lack of a robust neuronal cell culture protocol have hampered its progress. Here, we describe a simple and reproducible method for the isolation and culture of functional adult human neurons from neurosurgical brain specimens. In vitro, adult human neurons form a dense network and express a plethora of mature neuronal and synaptic markers. Most importantly, for the first time, we demonstrate the re-establishment of mature neurophysiological properties in vitro, such as repetitive fast-spiking action potentials, and spontaneous and evoked synaptic activity. Together, our dissociated and slice culture systems enable studies of adult human neurophysiology and gene expression under normal and pathological conditions and provide a high-throughput platform for drug testing on brain cells directly isolated from the adult human brain.
Collapse
Affiliation(s)
- Thomas I-H Park
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Patrick Schweder
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Kevin Lee
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Birger V Dieriks
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Yewon Jung
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Leon Smyth
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Justin Rustenhoven
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Edward Mee
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Peter Heppner
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Michael Dragunow
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
de Sonnaville SFAM, van Strien ME, Middeldorp J, Sluijs JA, van den Berge SA, Moeton M, Donega V, van Berkel A, Deering T, De Filippis L, Vescovi AL, Aronica E, Glass R, van de Berg WDJ, Swaab DF, Robe PA, Hol EM. The adult human subventricular zone: partial ependymal coverage and proliferative capacity of cerebrospinal fluid. Brain Commun 2020; 2:fcaa150. [PMID: 33376983 PMCID: PMC7750937 DOI: 10.1093/braincomms/fcaa150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
Neurogenesis continues throughout adulthood in specialized regions of the brain. One of these regions is the subventricular zone. During brain development, neurogenesis is regulated by a complex interplay of intrinsic and extrinsic cues that control stem-cell survival, renewal and cell lineage specification. Cerebrospinal fluid (CSF) is an integral part of the neurogenic niche in development as it is in direct contact with radial glial cells, and it is important in regulating proliferation and migration. Yet, the effect of CSF on neural stem cells in the subventricular zone of the adult human brain is unknown. We hypothesized a persistent stimulating effect of ventricular CSF on neural stem cells in adulthood, based on the literature, describing bulging accumulations of subventricular cells where CSF is in direct contact with the subventricular zone. Here, we show by immunohistochemistry on post-mortem adult human subventricular zone sections that neural stem cells are in close contact with CSF via protrusions through both intact and incomplete ependymal layers. We are the first to systematically quantify subventricular glial nodules denuded of ependyma and consisting of proliferating neural stem and progenitor cells, and showed that they are present from foetal age until adulthood. Neurosphere, cell motility and differentiation assays as well as analyses of RNA expression were used to assess the effects of CSF of adult humans on primary neural stem cells and a human immortalized neural stem cell line. We show that human ventricular CSF increases proliferation and decreases motility of neural stem cells. Our results also indicate that adult CSF pushes neural stem cells from a relative quiescent to a more active state and promotes neuronal over astrocytic lineage differentiation. Thus, CSF continues to stimulate neural stem cells throughout aging.
Collapse
Affiliation(s)
- Sophia F A M de Sonnaville
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Miriam E van Strien
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Simone A van den Berge
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Martina Moeton
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Vanessa Donega
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Annemiek van Berkel
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Tasmin Deering
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Lidia De Filippis
- Department of Regenerative Medicine, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angelo L Vescovi
- Department of Regenerative Medicine, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Eleonora Aronica
- Department of (Neuro)pathology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Rainer Glass
- Department of Neurosurgical Research, Clinic for Neurosurgery, Ludwig Maximilian University of Munich, Munich, Germany
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam University Medical Centre, Location VU, Amsterdam, The Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Pierre A Robe
- Department of Neurosurgery, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| |
Collapse
|
33
|
Hernandez-Ronquillo L, Miranzadeh Mahabadi H, Moien-Afshari F, Wu A, Auer R, Zherebitskiy V, Borowsky R, Mickleborough M, Huntsman R, Vrbancic M, Cayabyab FS, Taghibiglou C, Carter A, Tellez-Zenteno JF. The Concept of an Epilepsy Brain Bank. Front Neurol 2020; 11:833. [PMID: 32973652 PMCID: PMC7468480 DOI: 10.3389/fneur.2020.00833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/03/2020] [Indexed: 12/31/2022] Open
Abstract
Epilepsy comprises more than 40 clinical syndromes affecting millions of patients and families worldwide. To decode the molecular and pathological framework of epilepsy researchers, need reliable human epilepsy and control brain samples. Brain bank organizations collecting and supplying well-documented clinically and pathophysiologically tissue specimens are important for high-quality neurophysiology and neuropharmacology studies for epilepsy and other neurological diseases. New development in molecular mechanism and new treatment methods for neurological disorders have evoked increased demands for human brain tissue. An epilepsy brain bank is a storage source for both the frozen samples as well as the formaldehyde fixed paraffin embedded (FFPE) tissue from epilepsy surgery resections. In 2014, the University of Saskatchewan have started collecting human epilepsy brain tissues for the first time in Canada. This review highlights the necessity and importance of Epilepsy Brain bank that provides unique access for research to valuable source of brain tissue and blood samples from epilepsy patients.
Collapse
Affiliation(s)
- Lizbeth Hernandez-Ronquillo
- Saskatchewan Epilepsy Program, Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hajar Miranzadeh Mahabadi
- Department of Anatomy, Physiology and Pharmacology, College of Medicine University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Adam Wu
- Division of Neurosurgery, Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada
| | - Roland Auer
- Department of Pathology and Laboratory Medicine, Royal University Hospital, Saskatchewan Health Region, University of Saskatchewan, Saskatoon, SK, Canada
| | - Viktor Zherebitskiy
- Department of Pathology and Laboratory Medicine, Royal University Hospital, Saskatchewan Health Region, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ron Borowsky
- Cognitive Neuroscience Laboratory, Department of Psychology, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Marla Mickleborough
- Cognitive Neuroscience Laboratory, Department of Psychology, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Richard Huntsman
- Division of Pediatric Neurology, Department of Pediatrics, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mirna Vrbancic
- Department of Clinical Health Psychology, Ellis Hall, Royal University Hospital, Saskatoon, SK, Canada
| | - Francisco S Cayabyab
- Division of Neurosurgery, Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada
| | - Changiz Taghibiglou
- Department of Anatomy, Physiology and Pharmacology, College of Medicine University of Saskatchewan, Saskatoon, SK, Canada
| | - Alexandra Carter
- Saskatchewan Epilepsy Program, Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jose F Tellez-Zenteno
- Saskatchewan Epilepsy Program, Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
34
|
Fame RM, Lehtinen MK. Emergence and Developmental Roles of the Cerebrospinal Fluid System. Dev Cell 2020; 52:261-275. [PMID: 32049038 DOI: 10.1016/j.devcel.2020.01.027] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
We summarize recent work illuminating how cerebrospinal fluid (CSF) regulates brain function. More than a protective fluid cushion and sink for waste, the CSF is an integral CNS component with dynamic and diverse roles emerging in parallel with the developing CNS. This review examines the current understanding about early CSF and its maturation and roles during CNS development and discusses open questions in the field. We focus on developmental changes in the ventricular system and CSF sources (including neural progenitors and choroid plexus). We also discuss concepts related to the development of fluid dynamics including flow, perivascular transport, drainage, and barriers.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Kaiser K, Bryja V. Choroid Plexus: The Orchestrator of Long-Range Signalling Within the CNS. Int J Mol Sci 2020; 21:E4760. [PMID: 32635478 PMCID: PMC7369786 DOI: 10.3390/ijms21134760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 01/24/2023] Open
Abstract
Cerebrospinal fluid (CSF) is the liquid that fills the brain ventricles. CSF represents not only a mechanical brain protection but also a rich source of signalling factors modulating diverse processes during brain development and adulthood. The choroid plexus (CP) is a major source of CSF and as such it has recently emerged as an important mediator of extracellular signalling within the brain. Growing interest in the CP revealed its capacity to release a broad variety of bioactive molecules that, via CSF, regulate processes across the whole central nervous system (CNS). Moreover, CP has been also recognized as a sensor, responding to altered composition of CSF associated with changes in the patterns of CNS activity. In this review, we summarize the recent advances in our understanding of the CP as a signalling centre that mediates long-range communication in the CNS. By providing a detailed account of the CP secretory repertoire, we describe how the CP contributes to the regulation of the extracellular environment-in the context of both the embryonal as well as the adult CNS. We highlight the role of the CP as an important regulator of CNS function that acts via CSF-mediated signalling. Further studies of CP-CSF signalling hold the potential to provide key insights into the biology of the CNS, with implications for better understanding and treatment of neuropathological conditions.
Collapse
Affiliation(s)
- Karol Kaiser
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
36
|
Grønning Hansen M, Laterza C, Palma-Tortosa S, Kvist G, Monni E, Tsupykov O, Tornero D, Uoshima N, Soriano J, Bengzon J, Martino G, Skibo G, Lindvall O, Kokaia Z. Grafted human pluripotent stem cell-derived cortical neurons integrate into adult human cortical neural circuitry. Stem Cells Transl Med 2020; 9:1365-1377. [PMID: 32602201 PMCID: PMC7581452 DOI: 10.1002/sctm.20-0134] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory, motor, and cognitive impairments. Studies in different animal models have raised the possibility that transplantation of human cortical neuronal progenitors, generated from pluripotent stem cells, might be developed into a novel therapeutic strategy for disorders affecting cerebral cortex. For example, we have shown that human long‐term neuroepithelial‐like stem (lt‐NES) cell‐derived cortical neurons, produced from induced pluripotent stem cells and transplanted into stroke‐injured adult rat cortex, improve neurological deficits and establish both afferent and efferent morphological and functional connections with host cortical neurons. So far, all studies with human pluripotent stem cell‐derived neurons have been carried out using xenotransplantation in animal models. Whether these neurons can integrate also into adult human brain circuitry is unknown. Here, we show that cortically fated lt‐NES cells, which are able to form functional synaptic networks in cell culture, differentiate to mature, layer‐specific cortical neurons when transplanted ex vivo onto organotypic cultures of adult human cortex. The grafted neurons are functional and establish both afferent and efferent synapses with adult human cortical neurons in the slices as evidenced by immuno‐electron microscopy, rabies virus retrograde monosynaptic tracing, and whole‐cell patch‐clamp recordings. Our findings provide the first evidence that pluripotent stem cell‐derived neurons can integrate into adult host neural networks also in a human‐to‐human grafting situation, thereby supporting their potential future clinical use to promote recovery by neuronal replacement in the patient's diseased brain.
Collapse
Affiliation(s)
| | - Cecilia Laterza
- Lund Stem Cell Center, Lund University, Lund, Sweden.,Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sara Palma-Tortosa
- Lund Stem Cell Center, Lund University, Lund, Sweden.,Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Giedre Kvist
- Lund Stem Cell Center, Lund University, Lund, Sweden.,Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Emanuela Monni
- Lund Stem Cell Center, Lund University, Lund, Sweden.,Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Oleg Tsupykov
- Bogomoletz Institute of Physiology and State Institute of Genetic and Regenerative Medicine, Kyiv, Ukraine
| | - Daniel Tornero
- Laboratory of Stem Cells and Regenerative Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Naomi Uoshima
- Lund Stem Cell Center, Lund University, Lund, Sweden.,Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
| | - Johan Bengzon
- Lund Stem Cell Center, Lund University, Lund, Sweden.,Division of Neurosurgery, Department of Clinical Sciences Lund, University Hospital, Lund, Sweden
| | - Gianvito Martino
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Galyna Skibo
- Bogomoletz Institute of Physiology and State Institute of Genetic and Regenerative Medicine, Kyiv, Ukraine
| | - Olle Lindvall
- Lund Stem Cell Center, Lund University, Lund, Sweden.,Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Zaal Kokaia
- Lund Stem Cell Center, Lund University, Lund, Sweden.,Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
37
|
Hedrich UBS, Lauxmann S, Lerche H. SCN2A channelopathies: Mechanisms and models. Epilepsia 2020; 60 Suppl 3:S68-S76. [PMID: 31904120 DOI: 10.1111/epi.14731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/21/2019] [Indexed: 01/01/2023]
Abstract
Variants in the SCN2A gene, encoding the voltage-gated sodium channel NaV 1.2, cause a variety of neuropsychiatric syndromes with different severity ranging from self-limiting epilepsies with early onset to developmental and epileptic encephalopathy with early or late onset and intellectual disability (ID), as well as ID or autism without seizures. Functional analysis of channel defects demonstrated a genotype-phenotype correlation and suggested effective treatment options for one group of affected patients carrying gain-of-function variants. Here, we sum up the functional mechanisms underlying different phenotypes of patients with SCN2A channelopathies and present currently available models that can help in understanding SCN2A-related disorders.
Collapse
Affiliation(s)
- Ulrike B S Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Stephan Lauxmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
38
|
Wickham J, Corna A, Schwarz N, Uysal B, Layer N, Honegger JB, Wuttke TV, Koch H, Zeck G. Human Cerebrospinal Fluid Induces Neuronal Excitability Changes in Resected Human Neocortical and Hippocampal Brain Slices. Front Neurosci 2020; 14:283. [PMID: 32372899 PMCID: PMC7186381 DOI: 10.3389/fnins.2020.00283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
Human cerebrospinal fluid (hCSF) has proven advantageous over conventional medium for culturing both rodent and human brain tissue. In addition, increased activity and synchrony, closer to the dynamic states exclusively recorded in vivo, were reported in rodent slices and cell cultures switching from artificial cerebrospinal fluid (aCSF) to hCSF. This indicates that hCSF possesses properties that are not matched by the aCSF, which is generally used for most electrophysiological recordings. To evaluate the possible significance of using hCSF as an electrophysiological recording medium, also for human brain tissue, we compared the network and single-cell firing properties of human brain slice cultures during perfusion with hCSF and aCSF. For measuring the overall activity from a majority of neurons within neocortical and hippocampal human slices, we used a microelectrode array (MEA) recording technique with 252 electrodes covering an area of 3.2 × 3.2 mm2. A second CMOS-based MEA with 4225 sensors on a 2 × 2 mm2 area was used for detailed mapping of action potential waveforms and cell identification. We found that hCSF increased the number of active electrodes and neurons and the firing rate of the neurons in the slices and induced an increase in the numbers of single channel and population bursts. Interestingly, not only an increase in the overall activity in the slices was observed, but a reconfiguration of the network could also be detected with specific activation and inactivation of subpopulations of neuronal ensembles. In conclusion, hCSF is an important component to consider for future human brain slice studies, especially for experiments designed to mimic parts of physiology and disease observed in vivo.
Collapse
Affiliation(s)
- Jenny Wickham
- Neurophysics, Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Andrea Corna
- Neurophysics, Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
- Graduate School of Neural Information Processing/International Max Planck Research School, Tübingen, Germany
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Niklas Schwarz
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Betül Uysal
- Graduate School of Neural Information Processing/International Max Planck Research School, Tübingen, Germany
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Nikolas Layer
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | - Thomas V. Wuttke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Henner Koch
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Epileptology, Neurology, RWTH Aachen University, Aachen, Germany
| | - Günther Zeck
- Neurophysics, Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| |
Collapse
|
39
|
Humpel C. Organotypic Brain Slices of ADULT Transgenic Mice: A Tool to Study Alzheimer's Disease. Curr Alzheimer Res 2020; 16:172-181. [PMID: 30543174 DOI: 10.2174/1567205016666181212153138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 01/21/2023]
Abstract
Transgenic mice have been extensively used to study the Alzheimer pathology. In order to reduce, refine and replace (3Rs) the number of animals, ex vivo cultures are used and optimized. Organotypic brain slices are the most potent ex vivo slice culture models, keeping the 3-dimensional structure of the brain and being closest to the in vivo situation. Organotypic brain slice cultures have been used for many decades but were mainly prepared from postnatal (day 8-10) old rats or mice. More recent work (including our lab) now aims to culture organotypic brain slices from adult mice including transgenic mice. Especially in Alzheimer´s disease research, brain slices from adult transgenic mice will be useful to study beta-amyloid plaques, tau pathology and glial activation. This review will summarize the studies using organotypic brain slice cultures from adult mice to mimic Alzheimer's disease and will highlight advantages and also pitfalls using this technique.
Collapse
Affiliation(s)
- Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
40
|
Sanchez-Aguilera A, Menendez de la Prida L. The Beauty and the Dish: Brain Organoids Go Active. Epilepsy Curr 2020; 20:105-107. [PMID: 32313507 PMCID: PMC7160880 DOI: 10.1177/1535759720901502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Complex Oscillatory Waves Emerging From Cortical Organoids Model Early Human Brain Network Development Trujillo CA, Gao R, Negraes PD, et al. Cell Stem Cell . 2019;25(4):558-569.e7. doi:10.1016/j.stem.2019.08.002 . Structural and transcriptional changes during early brain maturation follow fixed developmental programs defined by genetics. However, whether this is true for functional network activity remains unknown, primarily due to experimental inaccessibility of the initial stages of the living human brain. Here, we developed human cortical organoids that dynamically change cellular populations during maturation and exhibited consistent increases in electrical activity over the span of several months. The spontaneous network formation displayed periodic and regular oscillatory events that were dependent on glutamatergic and GABAergic signaling. The oscillatory activity transitioned to more spatiotemporally irregular patterns, and synchronous network events resembled features similar to those observed in preterm human electroencephalography. These results show that the development of structured network activity in a human neocortex model may follow stable genetic programming. Our approach provides opportunities for investigating and manipulating the role of network activity in the developing human cortex.
Collapse
|
41
|
Lee K, Park TIH, Heppner P, Schweder P, Mee EW, Dragunow M, Montgomery JM. Human in vitro systems for examining synaptic function and plasticity in the brain. J Neurophysiol 2020; 123:945-965. [PMID: 31995449 DOI: 10.1152/jn.00411.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human brain shows remarkable complexity in its cellular makeup and function, which are distinct from nonhuman species, signifying the need for human-based research platforms for the study of human cellular neurophysiology and neuropathology. However, the use of adult human brain tissue for research purposes is hampered by technical, methodological, and accessibility challenges. One of the major problems is the limited number of in vitro systems that, in contrast, are readily available from rodent brain tissue. With recent advances in the optimization of protocols for adult human brain preparations, there is a significant opportunity for neuroscientists to validate their findings in human-based systems. This review addresses the methodological aspects, advantages, and disadvantages of human neuron in vitro systems, focusing on the unique properties of human neurons and synapses in neocortical microcircuits. These in vitro models provide the incomparable advantage of being a direct representation of the neurons that have formed part of the human brain until the point of recording, which cannot be replicated by animal models nor human stem-cell systems. Important distinct cellular mechanisms are observed in human neurons that may underlie the higher order cognitive abilities of the human brain. The use of human brain tissue in neuroscience research also raises important ethical, diversity, and control tissue limitations that need to be considered. Undoubtedly however, these human neuron systems provide critical information to increase the potential of translation of treatments from the laboratory to the clinic in a way animal models are failing to provide.
Collapse
Affiliation(s)
- Kevin Lee
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, New Zealand
| | - Thomas I-H Park
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Peter Heppner
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Patrick Schweder
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Edward W Mee
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Michael Dragunow
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, New Zealand
| |
Collapse
|
42
|
Schwarz N, Uysal B, Welzer M, Bahr JC, Layer N, Löffler H, Stanaitis K, Pa H, Weber YG, Hedrich UB, Honegger JB, Skodras A, Becker AJ, Wuttke TV, Koch H. Long-term adult human brain slice cultures as a model system to study human CNS circuitry and disease. eLife 2019; 8:48417. [PMID: 31498083 PMCID: PMC6733599 DOI: 10.7554/elife.48417] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022] Open
Abstract
Most of our knowledge on human CNS circuitry and related disorders originates from model organisms. How well such data translate to the human CNS remains largely to be determined. Human brain slice cultures derived from neurosurgical resections may offer novel avenues to approach this translational gap. We now demonstrate robust preservation of the complex neuronal cytoarchitecture and electrophysiological properties of human pyramidal neurons in long-term brain slice cultures. Further experiments delineate the optimal conditions for efficient viral transduction of cultures, enabling ‘high throughput’ fluorescence-mediated 3D reconstruction of genetically targeted neurons at comparable quality to state-of-the-art biocytin fillings, and demonstrate feasibility of long term live cell imaging of human cells in vitro. This model system has implications toward a broad spectrum of translational studies, regarding the validation of data obtained in non-human model systems, for therapeutic screening and genetic dissection of human CNS circuitry.
Collapse
Affiliation(s)
- Niklas Schwarz
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Betül Uysal
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Marc Welzer
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jacqueline C Bahr
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Nikolas Layer
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Heidi Löffler
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Kornelijus Stanaitis
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Harshad Pa
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Yvonne G Weber
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Ulrike Bs Hedrich
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jürgen B Honegger
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Angelos Skodras
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Albert J Becker
- Department of Neuropathology, Section for Translational Epilepsy Research, University Bonn Medical Center, Bonn, Germany
| | - Thomas V Wuttke
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Henner Koch
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
43
|
Czolk R, Schwarz N, Koch H, Schötterl S, Wuttke TV, Holm PS, Huber SM, Naumann U. Irradiation enhances the therapeutic effect of the oncolytic adenovirus XVir-N-31 in brain tumor initiating cells. Int J Mol Med 2019; 44:1484-1494. [PMID: 31432139 PMCID: PMC6713431 DOI: 10.3892/ijmm.2019.4296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022] Open
Abstract
Virotherapy using oncolytic viruses is an upcoming therapy strategy for cancer treatment. A variety of preclinical and clinical trials have indicated that adenoviruses may be used as potent agents in the treatment of a variety of cancers, and also for the treatment of brain tumors. In these studies, it has also been shown that oncovirotherapy is safe in terms of toxicity and side effects. In addition, previous studies have presented evidence for a significant role of oncovirotherapy in the activation of anti‑tumor immune responses. With regard to oncolytic adenoviruses, we have demonstrated previously that the multifunctional protein Y‑box binding protein‑1 (YB‑1) is a potent factor that was used to develop an YB‑1‑dependent oncolytic adenovirus (XVir‑N‑31). XVir‑N‑31 provides the opportunity for tumor‑selective replication and exhibited marked oncolytic properties in a mouse glioma tumor model using therapy‑resistant brain tumor initiating cells (BTICs). In a number of, but not all, patients with glioma, YB‑1 is primarily located in the nucleus; this promotes XVir‑N‑31‑replication and subsequently tumor cell lysis. However, in certain BTICs, only a small amount of YB‑1 has been identified to be nuclear, and therefore virus replication is suboptimal. YB‑1 in BTICs was demonstrated to be translocated into the nucleus following irradiation, which was accompanied by an enhancement in XVir‑N‑31 production. R28 glioma spheres implanted in living organotypic human brain slices exhibited a significantly delayed growth rate when pre‑irradiated prior to XVir‑N‑31‑infection as compared with single treatment methods. Consistent with the in vitro data, R28 glioma‑bearing mice exhibited a prolonged mean and median survival following single tumor irradiation prior to intratumoral XVir‑N‑31 injection, compared with the single treatment methods. In conclusion, the present study demonstrated that in an experimental glioma model, tumor irradiation strengthened the effect of an XVir‑N‑31‑based oncovirotherapy.
Collapse
Affiliation(s)
- Rebecca Czolk
- Department of Vascular Neurology, Laboratory for Molecular Neuro‑Oncology, Hertie Institute for Clinical Brain Research, Tübingen NeuroCampus, University of Tübingen, D‑72076 Tübingen, Germany
| | - Niklas Schwarz
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Tübingen NeuroCampus, University of Tübingen, D‑72076 Tübingen, Germany
| | - Henner Koch
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Tübingen NeuroCampus, University of Tübingen, D‑72076 Tübingen, Germany
| | - Sonja Schötterl
- Department of Vascular Neurology, Laboratory for Molecular Neuro‑Oncology, Hertie Institute for Clinical Brain Research, Tübingen NeuroCampus, University of Tübingen, D‑72076 Tübingen, Germany
| | - Thomas V Wuttke
- Department of Neurosurgery, University Hospital Tübingen, D‑72076 Tübingen, Germany
| | - Per S Holm
- Department of Urology, Hospital 'Rechts der Isar', Technical University of Munich, D‑81675 Munich, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University Hospital Tübingen, D‑72076 Tübingen, Germany
| | - Ulrike Naumann
- Department of Vascular Neurology, Laboratory for Molecular Neuro‑Oncology, Hertie Institute for Clinical Brain Research, Tübingen NeuroCampus, University of Tübingen, D‑72076 Tübingen, Germany
| |
Collapse
|
44
|
Pyatin VF, Tuturov AO. [Significance of the composition of conduit internal environment for the activation of axon growth in patients with extended peripheral nerve defects]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:100-105. [PMID: 31156230 DOI: 10.17116/jnevro2019119041100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The recovery of peripheral nerves after injury is an urgent medical problem. Despite the advances in microsurgery techniques, it is still not possible to achieve complete holistic and functional recovery. It is more difficult to repair neural tissue after injury if there is a diastasis between the injured ends nerves. In this case, neurorraphy can not be carried out due to the eruption of the filaments in tension and convergence of proximal and distal ends of the axon. Modern tactics of restoration of extended defects of nerves involves the use of conduits - cylindrical conductors, overlapping posttraumatic diastasis, in order to create a vector of regeneration from the proximal part of the nerve to the distal. An ideal conduit should contain an internal environment that stimulates the recovery processes of nerve fibers. At present, there is no unified approach involving the use of a certain natural or artificial conduit environment. The review analyzes the regenerative potential of the internal environments of conduits as the most promising in modern biotechnologies for the reconstruction of extended peripheral nerve defects.
Collapse
Affiliation(s)
- V F Pyatin
- Samara State Medical University, Samara, Russia
| | - A O Tuturov
- Samara State Medical University, Samara, Russia
| |
Collapse
|
45
|
Inhibition and oscillations in the human brain tissue in vitro. Neurobiol Dis 2019; 125:198-210. [DOI: 10.1016/j.nbd.2019.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/22/2018] [Accepted: 02/07/2019] [Indexed: 01/22/2023] Open
|
46
|
In vitro neuronal network activity as a new functional diagnostic system to detect effects of Cerebrospinal fluid from autoimmune encephalitis patients. Sci Rep 2019; 9:5591. [PMID: 30944364 PMCID: PMC6447720 DOI: 10.1038/s41598-019-41849-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/14/2019] [Indexed: 12/31/2022] Open
Abstract
The intent of this study was to investigate if cerebrospinal fluid (CSF) from autoimmune encephalitis (AE) patients regulates in vitro neuronal network activity differentially to healthy human control CSF (hCSF). To this end, electrophysiological effects of CSF from AE patients or hCSF were measured by in vitro neuronal network activity (ivNNA) recorded with microelectrode arrays (MEA). CSF from patients with either N-methyl-D-aspartate-receptor-antibody (pCSFNMDAR, n = 7) or Leucine-rich-glioma-inactivated-1-Ab (pCSFLGI1, n = 6) associated AE suppressed global spiking activity of neuronal networks by a factor of 2.17 (p < 0.05) or 2.42 (p < 0.05) compared to hCSF. The former also suppressed synchronous network bursting by a factor of 1.93 (p < 0.05) in comparison to hCSF (n = 13). As a functional diagnostic test, this parameter reached a sensitivity of 86% for NMDAR-Ab- and 100% for LGI1-Ab-associated AE vs. hCSF at a specificity of 85%. To explore if modulation at the NMDAR influences effects of hCSF or pathological CSF, we applied the NMDAR-antagonist 2-Amino-5-phosphono-pentanoic acid (AP5). In CSF from NMDAR-Ab-associated AE patients, spike rate reduction by AP5 was more than 2-fold larger than in hCSF (p < 0.05), and network burst rate reduction more than 18-fold (p < 0.01). Recording ivNNA might help discriminating between functional effects of CSF from AE patients and hCSF, and thus could be used as a functional diagnostic test in AE. The pronounced suppression of ivNNA by CSF from NMDAR-Ab-associated AE patients and simultaneous antagonism at the NMDAR by AP5, particularly in burst activity, compared to hCSF plus AP5, confirms that the former contains additional ivNNA-suppressing factors.
Collapse
|
47
|
Qi XR, Verwer RWH, Bao AM, Balesar RA, Luchetti S, Zhou JN, Swaab DF. Human Brain Slice Culture: A Useful Tool to Study Brain Disorders and Potential Therapeutic Compounds. Neurosci Bull 2019; 35:244-252. [PMID: 30604279 PMCID: PMC6426918 DOI: 10.1007/s12264-018-0328-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/19/2018] [Indexed: 01/07/2023] Open
Abstract
Investigating the pathophysiological mechanisms underlying brain disorders is a priority if novel therapeutic strategies are to be developed. In vivo studies of animal models and in vitro studies of cell lines/primary cell cultures may provide useful tools to study certain aspects of brain disorders. However, discrepancies among these studies or unsuccessful translation from animal/cell studies to human/clinical studies often occur, because these models generally represent only some symptoms of a neuropsychiatric disorder rather than the complete disorder. Human brain slice cultures from postmortem tissue or resected tissue from operations have shown that, in vitro, neurons and glia can stay alive for long periods of time, while their morphological and physiological characteristics, and their ability to respond to experimental manipulations are maintained. Human brain slices can thus provide a close representation of neuronal networks in vivo, be a valuable tool for investigation of the basis of neuropsychiatric disorders, and provide a platform for the evaluation of novel pharmacological treatments of human brain diseases. A brain bank needs to provide the necessary infrastructure to bring together donors, hospitals, and researchers who want to investigate human brain slices in cultures of clinically and neuropathologically well-documented material.
Collapse
Affiliation(s)
- Xin-Rui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China.
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands.
| | - Ronald W H Verwer
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Ai-Min Bao
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Rawien A Balesar
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Sabina Luchetti
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Jiang-Ning Zhou
- Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, 230026, China
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| |
Collapse
|
48
|
Romero-Leguizamón CR, Elnagar MR, Kristiansen U, Kohlmeier KA. Increasing cellular lifespan with a flow system in organotypic culture of the Laterodorsal Tegmentum (LDT). Sci Rep 2019; 9:1486. [PMID: 30728375 PMCID: PMC6365664 DOI: 10.1038/s41598-018-37606-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022] Open
Abstract
Organotypic brain culture is an experimental tool widely used in neuroscience studies. One major drawback of this technique is reduced neuronal survival across time, which is likely exacerbated by the loss of blood flow. We have designed a novel, tube flow system, which is easily incorporated into the commonly-used, standard semi-permeable membrane culture methodology which has significantly enhanced neuronal survival in a brain stem nucleus involved in control of motivated and arousal states: the laterodorsal tegmental nucleus (LDT). Our automated system provides nutrients and removes waste in a comparatively aseptic environment, while preserving temperature, and oxygen levels. Using immunohistochemistry and electrophysiology, our system was found superior to standard techniques in preserving tissue quality and survival of LDT cells for up to 2 weeks. In summary, we provide evidence for the first time that the LDT can be preserved in organotypic slice culture, and further, our technical improvements of adding a flow system, which likely enhanced perfusion to the slice, were associated with enhanced neuronal survival. Our perfusion system is expected to facilitate organotypic experiments focused on chronic stimulations and multielectrode recordings in the LDT, as well as enhance neuronal survival in slice cultures originating from other brain regions.
Collapse
Affiliation(s)
- César R Romero-Leguizamón
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Mohamed R Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Uffe Kristiansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark.
| |
Collapse
|
49
|
Grainger AI, King MC, Nagel DA, Parri HR, Coleman MD, Hill EJ. In vitro Models for Seizure-Liability Testing Using Induced Pluripotent Stem Cells. Front Neurosci 2018; 12:590. [PMID: 30233290 PMCID: PMC6127295 DOI: 10.3389/fnins.2018.00590] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
The brain is the most complex organ in the body, controlling our highest functions, as well as regulating myriad processes which incorporate the entire physiological system. The effects of prospective therapeutic entities on the brain and central nervous system (CNS) may potentially cause significant injury, hence, CNS toxicity testing forms part of the “core battery” of safety pharmacology studies. Drug-induced seizure is a major reason for compound attrition during drug development. Currently, the rat ex vivo hippocampal slice assay is the standard option for seizure-liability studies, followed by primary rodent cultures. These models can respond to diverse agents and predict seizure outcome, yet controversy over the relevance, efficacy, and cost of these animal-based methods has led to interest in the development of human-derived models. Existing platforms often utilize rodents, and so lack human receptors and other drug targets, which may produce misleading data, with difficulties in inter-species extrapolation. Current electrophysiological approaches are typically used in a low-throughput capacity and network function may be overlooked. Human-derived induced pluripotent stem cells (iPSCs) are a promising avenue for neurotoxicity testing, increasingly utilized in drug screening and disease modeling. Furthermore, the combination of iPSC-derived models with functional techniques such as multi-electrode array (MEA) analysis can provide information on neuronal network function, with increased sensitivity to neurotoxic effects which disrupt different pathways. The use of an in vitro human iPSC-derived neural model for neurotoxicity studies, combined with high-throughput techniques such as MEA recordings, could be a suitable addition to existing pre-clinical seizure-liability testing strategies.
Collapse
Affiliation(s)
| | - Marianne C King
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - David A Nagel
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - H Rheinallt Parri
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Michael D Coleman
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Eric J Hill
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
50
|
Mendes ND, Fernandes A, Almeida GM, Santos LE, Selles MC, Lyra E Silva NM, Machado CM, Horta-Júnior JAC, Louzada PR, De Felice FG, Alves-Leon S, Marcondes J, Assirati JA, Matias CM, Klein WL, Garcia-Cairasco N, Ferreira ST, Neder L, Sebollela A. Free-floating adult human brain-derived slice cultures as a model to study the neuronal impact of Alzheimer's disease-associated Aβ oligomers. J Neurosci Methods 2018; 307:203-209. [PMID: 29859877 DOI: 10.1016/j.jneumeth.2018.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Slice cultures have been prepared from several organs. With respect to the brain, advantages of slice cultures over dissociated cell cultures include maintenance of the cytoarchitecture and neuronal connectivity. Slice cultures from adult human brain have been reported and constitute a promising method to study neurological diseases. Despite this potential, few studies have characterized in detail cell survival and function along time in short-term, free-floating cultures. NEW METHOD We used tissue from adult human brain cortex from patients undergoing temporal lobectomy to prepare 200 μm-thick slices. Along the period in culture, we evaluated neuronal survival, histological modifications, and neurotransmitter release. The toxicity of Alzheimer's-associated Aβ oligomers (AβOs) to cultured slices was also analyzed. RESULTS Neurons in human brain slices remain viable and neurochemically active for at least four days in vitro, which allowed detection of binding of AβOs. We further found that slices exposed to AβOs presented elevated levels of hyperphosphorylated Tau, a hallmark of Alzheimer's disease. COMPARISON WITH EXISTING METHOD(S) Although slice cultures from adult human brain have been previously prepared, this is the first report to analyze cell viability and neuronal activity in short-term free-floating cultures as a function of days in vitro. CONCLUSIONS Once surgical tissue is available, the current protocol is easy to perform and produces functional slices from adult human brain. These slice cultures may represent a preferred model for translational studies of neurodegenerative disorders when long term culturing in not required, as in investigations on AβO neurotoxicity.
Collapse
Affiliation(s)
- Niele D Mendes
- Dept. Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, SP, Brazil; Dept. Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of Sao Paulo, SP, Brazil
| | - Artur Fernandes
- Dept. Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, SP, Brazil; Dept. Physiology, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Glaucia M Almeida
- Dept. Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, SP, Brazil
| | - Luis E Santos
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, RJ, Brazil
| | - Maria Clara Selles
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, RJ, Brazil
| | - N M Lyra E Silva
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, RJ, Brazil
| | - Carla M Machado
- Department of Anatomy, Institute of Biosciences, São Paulo State University, SP, Brazil
| | - José A C Horta-Júnior
- Department of Anatomy, Institute of Biosciences, São Paulo State University, SP, Brazil
| | - Paulo R Louzada
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, RJ, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, RJ, Brazil; Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Soniza Alves-Leon
- Hospital Universitário Clementino Fraga Filho, Federal University of Rio de Janeiro, RJ, Brazil
| | - Jorge Marcondes
- Hospital Universitário Clementino Fraga Filho, Federal University of Rio de Janeiro, RJ, Brazil
| | - João Alberto Assirati
- Ribeirão Preto Medical School Clinical Hospital, University of São Paulo, SP, Brazil
| | - Caio M Matias
- Ribeirão Preto Medical School Clinical Hospital, University of São Paulo, SP, Brazil
| | - William L Klein
- Department of Neurobiology, Northwestern University, IL, USA
| | | | - Sergio T Ferreira
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, RJ, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, RJ, Brazil
| | - Luciano Neder
- Dept. Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of Sao Paulo, SP, Brazil; Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Adriano Sebollela
- Dept. Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, SP, Brazil.
| |
Collapse
|