1
|
Ippolito JE, Hartig JP, Bejar K, Nakhoul H, Sehn JK, Weimholt C, Grimsley G, Nunez E, Trikalinos NA, Chatterjee D, Kim EH, Mehta AS, Angel PM, Troyer DA, Leach RJ, Corey E, Wu JD, Drake RR. N-Linked Fucosylated Glycans Are Biomarkers for Prostate Cancer with a Neuroendocrine and Metastatic Phenotype. Mol Cancer Res 2025; 23:59-70. [PMID: 39417716 PMCID: PMC11694069 DOI: 10.1158/1541-7786.mcr-24-0660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
Prostate cancer is a heterogeneous disease with a spectrum of pathology and outcomes ranging from indolent to lethal. Although there have been recent advancements in prognostic tissue biomarkers, limitations still exist. We leveraged matrix-assisted laser desorption/ionization imaging of formalin-fixed, paraffin embedded prostate cancer specimens to determine if N-linked glycans expressed in the extracellular matrix of lethal neuroendocrine prostate cancer were also expressed in conventional prostate adenocarcinomas that were associated with poor outcomes. We found that N-glycan fucosylation was abundant in neuroendocrine prostate cancer as well as adenocarcinomas at the time of prostatectomy that eventually developed recurrent metastatic disease. Analysis of patient-derived xenografts revealed that this fucosylation signature was enriched differently across metastatic disease organ sites, with the highest abundance in liver metastases. These data suggest that N-linked fucosylated glycans could be an early tissue biomarker for poor prostate cancer outcomes. Implications: These studies identify that hyper-fucosylated N-linked glycans are enriched in neuroendocrine prostate cancer and conventional prostate adenocarcinomas that progress to metastatic disease, thus advancing biomarker discovery and providing insights into mechanisms underlying metastatic disease.
Collapse
Affiliation(s)
- Joseph E. Ippolito
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Jordan P. Hartig
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Kaitlyn Bejar
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, Texas
| | - Hani Nakhoul
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer K. Sehn
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Cody Weimholt
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri
| | - Grace Grimsley
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Elena Nunez
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Nikolaos A. Trikalinos
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Deyali Chatterjee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric H. Kim
- Department of Surgery, University of Nevada, Reno, Nevada
- Department of Physiology and Cell Biology, University of Nevada, Reno, Nevada
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Dean A. Troyer
- Department of Microbiology, Eastern Virginia Medical School, San Antonio, Texas
- Department of Molecular Cell Biology and Pathology, Eastern Virginia Medical School, San Antonio, Texas
- Department of Pathology, UT Health, San Antonio, Texas
| | - Robin J. Leach
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, Texas
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Jennifer D. Wu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
2
|
Jang JY, Moon C, Kim K, Park CS, Jang L, Jeong CM, Lee HS, Byeon H, Kim HH. Structural and quantitative characterization of membrane N-glycans from MIN6 mouse pancreatic beta cells using liquid chromatography-quadrupole-Orbitrap tandem mass spectrometry. J Pharm Biomed Anal 2025; 252:116494. [PMID: 39369550 DOI: 10.1016/j.jpba.2024.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
MIN6, a mouse pancreatic beta cell line, is used in diabetes research, and the cellular N-glycoproteins in membrane are important in regulating the metabolism of insulin secretion. However, the identities of N-glycans in MIN6 cells are yet to be fully elucidated. In this study, the structures of N-glycans were analyzed using liquid chromatography-electrospray ionization-higher energy collisional dissociation-tandem mass spectrometry. The abundances (%) of each N-glycan relative to the total N-glycans (100 %) were also obtained. Fifty N-glycans (with relative abundance of each > 0.5 %) were obtained, revealing 22 bisecting N-acetylglucosamine (GlcNAc; associated with cell adhesion and growth; sum of relative abundance of each: 27.1 %), 21 core-fucosylated (associated with glucose sensing and insulin secretion regulation; 28.3 %), and 16 sialylated (N-acetylneuraminic acid; related to the expression of glucose transporters and diabetes;15.5 %) N-glycans. Membranes contained higher bisecting GlcNAc and core-fucosylation, similar sialylation, but less high-mannosylation than the lysate (the cellular contents). Notably, all bisecting GlcNAc N-glycans were categorized into structures with (16.6 %) or without (10.5 %) core-fucosylation and with (6.9 %) or without (20.2 %) sialylation. The bisecting GlcNAc structures were not found in human islets; moreover, sialylation levels were 6.9 times higher than for human islets. These structural characteristics of N-glycans affect their cell adhesion and distribution through homologous interactions between beta cells, leading to increased insulin secretion efficiency. This study is the first to identify the structures and quantities of 50 N-glycans in MIN6 cell membranes that may play an important role in regulating the functions of pancreatic beta cells.
Collapse
Affiliation(s)
- Ji Yeon Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chulmin Moon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Kyuran Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chi Soo Park
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Leeseul Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chang Myeong Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Han Seul Lee
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Haeun Byeon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ha Hyung Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
3
|
Reyes-Oliveras A, Ellis AE, Sheldon RD, Haab B. Metabolomics and 13C labelled glucose tracing to identify carbon incorporation into aberrant cell membrane glycans in cancer. Commun Biol 2024; 7:1576. [PMID: 39592729 PMCID: PMC11599571 DOI: 10.1038/s42003-024-07277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Cell membrane glycans contribute to immune recognition, signaling, and cellular adhesion and migration, and altered membrane glycosylation is a feature of cancer cells that contributes to cancer progression. The uptake and metabolism of glucose and other nutrients essential for glycan synthesis could underlie altered membrane glycosylation, but the relationship between shifts in nutrient metabolism and the effects on glycans have not been directly examined. We developed a method that combines stable isotope tracing with metabolomics to enable direct observations of glucose allocation to nucleotide sugars and cell-membrane glycans. We compared the glucose allocation to membrane glycans of two pancreatic cancer cell lines that are genetically identical but have differing energy requirements. The 8988-S cells had higher glucose allocation to membrane glycans and intracellular pathways relating to glycan synthesis, but the 8988-T cells had higher glucose uptake and commitment of glucose to non-glycosylation pathways. The cell lines differed in the requirements of glucose for energy production, resulting in differences in glucose bioavailability for glycan synthesis. The workflow demonstrated here enables studies on the effects of metabolic shifts on the commitment of nutrients to cell-membrane glycans. The results suggest that cell-membrane glycans are remodeled through shifts in glucose commitment to non-glycosylation pathways.
Collapse
Affiliation(s)
- Alfredo Reyes-Oliveras
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA
| | - Abigail E Ellis
- Mass Spectrometry Core, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA
| | - Ryan D Sheldon
- Mass Spectrometry Core, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA
| | - Brian Haab
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA.
| |
Collapse
|
4
|
Ochoa-Rios S, Grauzam SE, Gregory R, Angel PM, Drake RR, Helke KL, Mehta AS. Spatial Omics Reveals that Cancer-Associated Glycan Changes Occur Early in Liver Disease Development in a Western Diet Mouse Model of MASLD. J Proteome Res 2024; 23:786-796. [PMID: 38206822 DOI: 10.1021/acs.jproteome.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive disease and comprises different stages of liver damage; it is significantly associated with obese and overweight patients. Untreated MASLD can progress to life-threatening end-stage conditions, such as cirrhosis and liver cancer. N-Linked glycosylation is one of the most common post-translational modifications in the cell surface and secreted proteins. N-Linked glycan alterations have been established to be signatures of liver diseases. However, the N-linked glycan changes during the progression of MASLD to liver cancer are still unknown. Here, we induced different stages of MASLD in mice and liver-cancer-related phenotypes and elucidated the N-glycome profile during the progression of MASLD by quantitative and qualitative profiling in situ using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS). Importantly, we identified specific N-glycan structures including fucosylated and highly branched N-linked glycans at very early stages of liver injury (steatosis), which in humans are associated with cancer development, establishing the importance of these modifications with disease progression. Finally, we report that N-linked glycan alterations can be observed in our models by MALDI-IMS before liver injury is identified by histological analysis. Overall, we propose these findings as promising biomarkers for the early diagnosis of liver injury in MASLD.
Collapse
Affiliation(s)
- Shaaron Ochoa-Rios
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Stéphane Elie Grauzam
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Rebecca Gregory
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
5
|
Xu M, Liu Z, Hu W, Han Y, Wu Z, Chen S, Xia P, DU J, Zhang X, Hao P, Xia J, Yang S. Mass spectrometry analysis of intact protein N-glycosylation signatures of cells and sera in pancreatic adenocarcinomas. J Zhejiang Univ Sci B 2024; 25:51-64. [PMID: 38163666 PMCID: PMC10758206 DOI: 10.1631/jzus.b2200652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/12/2023] [Indexed: 01/03/2024]
Abstract
Pancreatic cancer is among the most malignant cancers, and thus early intervention is the key to better survival outcomes. However, no methods have been derived that can reliably identify early precursors of development into malignancy. Therefore, it is urgent to discover early molecular changes during pancreatic tumorigenesis. As aberrant glycosylation is closely associated with cancer progression, numerous efforts have been made to mine glycosylation changes as biomarkers for diagnosis; however, detailed glycoproteomic information, especially site-specific N-glycosylation changes in pancreatic cancer with and without drug treatment, needs to be further explored. Herein, we used comprehensive solid-phase chemoenzymatic glycoproteomics to analyze glycans, glycosites, and intact glycopeptides in pancreatic cancer cells and patient sera. The profiling of N-glycans in cancer cells revealed an increase in the secreted glycoproteins from the primary tumor of MIA PaCa-2 cells, whereas human sera, which contain many secreted glycoproteins, had significant changes of glycans at their specific glycosites. These results indicated the potential role for tumor-specific glycosylation as disease biomarkers. We also found that AMG-510, a small molecule inhibitor against Kirsten rat sarcoma viral oncogene homolog (KRAS) G12C mutation, profoundly reduced the glycosylation level in MIA PaCa-2 cells, suggesting that KRAS plays a role in the cellular glycosylation process, and thus glycosylation inhibition contributes to the anti-tumor effect of AMG-510.
Collapse
Affiliation(s)
- Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zhaoliang Liu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wenhua Hu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ying Han
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Sufeng Chen
- Department of Clinical Laboratory Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Peng Xia
- Department of Clinical Laboratory Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Jing DU
- Department of Clinical Laboratory Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun Xia
- Department of Clinical Laboratory Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China. ,
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
6
|
Wallace EN, West CA, McDowell CT, Lu X, Bruner E, Mehta AS, Aoki-Kinoshita KF, Angel PM, Drake RR. An N-glycome tissue atlas of 15 human normal and cancer tissue types determined by MALDI-imaging mass spectrometry. Sci Rep 2024; 14:489. [PMID: 38177192 PMCID: PMC10766640 DOI: 10.1038/s41598-023-50957-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024] Open
Abstract
N-glycosylation is an abundant post-translational modification of most cell-surface proteins. N-glycans play a crucial role in cellular functions like protein folding, protein localization, cell-cell signaling, and immune detection. As different tissue types display different N-glycan profiles, changes in N-glycan compositions occur in tissue-specific ways with development of disease, like cancer. However, no comparative atlas resource exists for documenting N-glycome alterations across various human tissue types, particularly comparing normal and cancerous tissues. In order to study a broad range of human tissue N-glycomes, N-glycan targeted MALDI imaging mass spectrometry was applied to custom formalin-fixed paraffin-embedded tissue microarrays. These encompassed fifteen human tissue types including bladder, breast, cervix, colon, esophagus, gastric, kidney, liver, lung, pancreas, prostate, sarcoma, skin, thyroid, and uterus. Each array contained both normal and tumor cores from the same pathology block, selected by a pathologist, allowing more in-depth comparisons of the N-glycome differences between tumor and normal and across tissue types. Using established MALDI-IMS workflows and existing N-glycan databases, the N-glycans present in each tissue core were spatially profiled and peak intensity data compiled for comparative analyses. Further structural information was determined for core fucosylation using endoglycosidase F3, and differentiation of sialic acid linkages through stabilization chemistry. Glycan structural differences across the tissue types were compared for oligomannose levels, branching complexity, presence of bisecting N-acetylglucosamine, fucosylation, and sialylation. Collectively, our research identified the N-glycans that were significantly increased and/or decreased in relative abundance in cancer for each tissue type. This study offers valuable information on a wide scale for both normal and cancerous tissues, serving as a reference for future studies and potential diagnostic applications of MALDI-IMS.
Collapse
Affiliation(s)
- Elizabeth N Wallace
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Connor A West
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Colin T McDowell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaowei Lu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Evelyn Bruner
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - Peggi M Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
7
|
Toudic C, Maurer M, St-Pierre G, Xiao Y, Bannert N, Lafond J, Rassart É, Sato S, Barbeau B. Galectin-1 Modulates the Fusogenic Activity of Placental Endogenous Retroviral Envelopes. Viruses 2023; 15:2441. [PMID: 38140682 PMCID: PMC10747188 DOI: 10.3390/v15122441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Syncytin-1 and -2 are glycoproteins encoded by human endogenous retrovirus (hERV) that, through their fusogenic properties, are needed for the formation of the placental syncytiotrophoblast. Previous studies suggested that these proteins, in addition to the EnvP(b) envelope protein, are also involved in other cell fusion events. Since galectin-1 is a β-galactoside-binding protein associated with cytotrophoblast fusion during placental development, we previously tested its effect on Syncytin-mediated cell fusion and showed that this protein differently modulates the fusogenic potential of Syncytin-1 and -2. Herein, we were interested in comparing the impact of galectin-1 on hERV envelope proteins in different cellular contexts. Using a syncytium assay, we first demonstrated that galectin-1 increased the fusion of Syncytin-2- and EnvP(b)-expressing cells. We then tested the infectivity of Syncytin-1 and -2 vs. VSV-G-pseudotyped viruses toward Cos-7 and various human cell lines. In the presence of galectin-1, infection of Syncytin-2-pseudotyped viruses augmented for all cell lines. In contrast, the impact of galectin-1 on the infectivity of Syncytin-1-pseudotyped viruses varied, being cell- and dose-dependent. In this study, we report the functional associations between three hERV envelope proteins and galectin-1, which should provide information on the fusogenic activity of these proteins in the placenta and other biological and pathological processes.
Collapse
Affiliation(s)
- Caroline Toudic
- Département des Sciences Biologiques and Centre d’excellence en Recherche sur les Maladies Orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada; (C.T.); (Y.X.); (J.L.); (É.R.)
| | - Maike Maurer
- Robert-Koch Institute, 13353 Berlin, Germany; (M.M.); (N.B.)
| | - Guillaume St-Pierre
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases and Axe Maladies Infectieuses et Immunitaires, Laval University, Quebec City, QC G1V 0A6, Canada; (G.S.-P.); (S.S.)
| | - Yong Xiao
- Département des Sciences Biologiques and Centre d’excellence en Recherche sur les Maladies Orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada; (C.T.); (Y.X.); (J.L.); (É.R.)
| | - Norbert Bannert
- Robert-Koch Institute, 13353 Berlin, Germany; (M.M.); (N.B.)
| | - Julie Lafond
- Département des Sciences Biologiques and Centre d’excellence en Recherche sur les Maladies Orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada; (C.T.); (Y.X.); (J.L.); (É.R.)
| | - Éric Rassart
- Département des Sciences Biologiques and Centre d’excellence en Recherche sur les Maladies Orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada; (C.T.); (Y.X.); (J.L.); (É.R.)
| | - Sachiko Sato
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases and Axe Maladies Infectieuses et Immunitaires, Laval University, Quebec City, QC G1V 0A6, Canada; (G.S.-P.); (S.S.)
| | - Benoit Barbeau
- Département des Sciences Biologiques and Centre d’excellence en Recherche sur les Maladies Orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada; (C.T.); (Y.X.); (J.L.); (É.R.)
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec, Montréal, QC H2X 1E3, Canada
| |
Collapse
|
8
|
Lu X, McDowell CT, Blaschke CRK, Liu L, Grimsley G, Wisniewski L, Gao C, Mehta AS, Haab BB, Angel PM, Drake RR. Bioorthogonal Chemical Labeling Probes Targeting Sialic Acid Isomers for N-Glycan MALDI Imaging Mass Spectrometry of Tissues, Cells, and Biofluids. Anal Chem 2023; 95:7475-7486. [PMID: 37126482 PMCID: PMC10193362 DOI: 10.1021/acs.analchem.2c04882] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023]
Abstract
Sialic acid isomers attached in either α2,3 or α2,6 linkage to glycan termini confer distinct chemical, biological, and pathological properties, but they cannot be distinguished by mass differences in traditional mass spectrometry experiments. Multiple derivatization strategies have been developed to stabilize and facilitate the analysis of sialic acid isomers and their glycoconjugate carriers by high-performance liquid chromatography, capillary electrophoresis, and mass spectrometry workflows. Herein, a set of novel derivatization schemes are described that result in the introduction of bioorthogonal click chemistry alkyne or azide groups into α2,3- and α2,8-linked sialic acids. These chemical modifications were validated and structurally characterized using model isomeric sialic acid conjugates and model protein carriers. Use of an alkyne-amine, propargylamine, as the second amidation reagent effectively introduces an alkyne functional group into α2,3-linked sialic acid glycoproteins. In tissues, serum, and cultured cells, this allows for the detection and visualization of N-linked glycan sialic acid isomers by imaging mass spectrometry approaches. Formalin-fixed paraffin-embedded prostate cancer tissues and pancreatic cancer cell lines were used to characterize the numbers and distribution of alkyne-modified α2,3-linked sialic acid N-glycans. An azide-amine compound with a poly(ethylene glycol) linker was evaluated for use in histochemical staining. Formalin-fixed pancreatic cancer tissues were amidated with the azide amine, reacted with biotin-alkyne and copper catalyst, and sialic acid isomers detected by streptavidin-peroxidase staining. The direct chemical introduction of bioorthogonal click chemistry reagents into sialic acid-containing glycans and glycoproteins provides a new glycomic tool set to expand approaches for their detection, labeling, visualization, and enrichment.
Collapse
Affiliation(s)
- Xiaowei Lu
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Colin T. McDowell
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Calvin R. K. Blaschke
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Liping Liu
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Grace Grimsley
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Luke Wisniewski
- Department
of Cell Biology, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| | - ChongFeng Gao
- Department
of Cell Biology, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| | - Anand S. Mehta
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Brian B. Haab
- Department
of Cell Biology, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| | - Peggi M. Angel
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Richard R. Drake
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| |
Collapse
|
9
|
McDowell CT, Lu X, Mehta AS, Angel PM, Drake RR. Applications and continued evolution of glycan imaging mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:674-705. [PMID: 34392557 PMCID: PMC8946722 DOI: 10.1002/mas.21725] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is an important posttranslational modifier of proteins and lipid conjugates critical for the stability and function of these macromolecules. Particularly important are N-linked glycans attached to asparagine residues in proteins. N-glycans have well-defined roles in protein folding, cellular trafficking and signal transduction, and alterations to them are implicated in a variety of diseases. However, the non-template driven biosynthesis of these N-glycans leads to significant structural diversity, making it challenging to identify the most biologically and clinically relevant species using conventional analyses. Advances in mass spectrometry instrumentation and data acquisition, as well as in enzymatic and chemical sample preparation strategies, have positioned mass spectrometry approaches as powerful analytical tools for the characterization of glycosylation in health and disease. Imaging mass spectrometry expands upon these strategies by capturing the spatial component of a glycan's distribution in-situ, lending additional insight into the organization and function of these molecules. Herein we review the ongoing evolution of glycan imaging mass spectrometry beginning with widely adopted tissue imaging approaches and expanding to other matrices and sample types with potential research and clinical implications. Adaptations of these techniques, along with their applications to various states of disease, are discussed. Collectively, glycan imaging mass spectrometry analyses broaden our understanding of the biological and clinical relevance of N-glycosylation to human disease.
Collapse
Affiliation(s)
- Colin T. McDowell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaowei Lu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
10
|
Hořejší K, Jin C, Vaňková Z, Jirásko R, Strouhal O, Melichar B, Teneberg S, Holčapek M. Comprehensive characterization of complex glycosphingolipids in human pancreatic cancer tissues. J Biol Chem 2023; 299:102923. [PMID: 36681125 PMCID: PMC9976472 DOI: 10.1016/j.jbc.2023.102923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common causes of cancer-related deaths worldwide, accounting for 90% of primary pancreatic tumors with an average 5-year survival rate of less than 10%. PDAC exhibits aggressive biology, which, together with late detection, results in most PDAC patients presenting with unresectable, locally advanced, or metastatic disease. In-depth lipid profiling and screening of potential biomarkers currently appear to be a promising approach for early detection of PDAC or other cancers. Here, we isolated and characterized complex glycosphingolipids (GSL) from normal and tumor pancreatic tissues of patients with PDAC using a combination of TLC, chemical staining, carbohydrate-recognized ligand-binding assay, and LC/ESI-MS2. The major neutral GSL identified were GSL with the terminal blood groups A, B, H, Lea, Leb, Lex, Ley, P1, and PX2 determinants together with globo- (Gb3 and Gb4) and neolacto-series GSL (nLc4 and nLc6). We also revealed that the neutral GSL profiles and their relative amounts differ between normal and tumor tissues. Additionally, the normal and tumor pancreatic tissues differ in type 1/2 core chains. Sulfatides and GM3 gangliosides were the predominant acidic GSL along with the minor sialyl-nLc4/nLc6 and sialyl-Lea/Lex. The comprehensive analysis of GSL in human PDAC tissues extends the GSL coverage and provides an important platform for further studies of GSL alterations; therefore, it could contribute to the development of new biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Karel Hořejší
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, , Pardubice, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Science, Department of Chemistry, České Budějovice, Czech Republic
| | - Chunsheng Jin
- University of Gothenburg, Sahlgrenska Academy, Proteomics Core Facility, Göteborg, Sweden
| | - Zuzana Vaňková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, , Pardubice, Czech Republic
| | - Robert Jirásko
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, , Pardubice, Czech Republic
| | - Ondřej Strouhal
- Palacký University Olomouc, Faculty of Medicine and Dentistryand University Hospital, Department of Oncology, Olomouc, Czech Republic
| | - Bohuslav Melichar
- Palacký University Olomouc, Faculty of Medicine and Dentistryand University Hospital, Department of Oncology, Olomouc, Czech Republic
| | - Susann Teneberg
- University of Gothenburg, Sahlgrenska Academy, Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Göteborg, Sweden.
| | - Michal Holčapek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, , Pardubice, Czech Republic.
| |
Collapse
|
11
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
13
|
Lageveen‐Kammeijer GSM, Kuster B, Reusch D, Wuhrer M. High sensitivity glycomics in biomedicine. MASS SPECTROMETRY REVIEWS 2022; 41:1014-1039. [PMID: 34494287 PMCID: PMC9788051 DOI: 10.1002/mas.21730] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 05/15/2023]
Abstract
Many analytical challenges in biomedicine arise from the generally high heterogeneity and complexity of glycan- and glycoconjugate-containing samples, which are often only available in minute amounts. Therefore, highly sensitive workflows and detection methods are required. In this review mass spectrometric workflows and detection methods are evaluated for glycans and glycoproteins. Furthermore, glycomic methodologies and innovations that are tailored for enzymatic treatments, chemical derivatization, purification, separation, and detection at high sensitivity are highlighted. The discussion is focused on the analysis of mammalian N-linked and GalNAc-type O-linked glycans.
Collapse
Affiliation(s)
| | - Bernhard Kuster
- Chair for Proteomics and BioanalyticsTechnical University of MunichFreisingGermany
| | - Dietmar Reusch
- Pharma Technical Development EuropeRoche Diagnostics GmbHPenzbergGermany
| | - Manfred Wuhrer
- Leiden University Medical CenterCenter for Proteomics and MetabolomicsLeidenThe Netherlands
| |
Collapse
|
14
|
Marciel MP, Haldar B, Hwang J, Bhalerao N, Bellis SL. Role of tumor cell sialylation in pancreatic cancer progression. Adv Cancer Res 2022; 157:123-155. [PMID: 36725107 PMCID: PMC11342334 DOI: 10.1016/bs.acr.2022.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies and is currently the third leading cause of cancer death. The aggressiveness of PDAC stems from late diagnosis, early metastasis, and poor efficacy of current chemotherapies. Thus, there is an urgent need for effective biomarkers for early detection of PDAC and development of new therapeutic strategies. It has long been known that cellular glycosylation is dysregulated in pancreatic cancer cells, however, tumor-associated glycans and their cognate glycosylating enzymes have received insufficient attention as potential clinical targets. Aberrant glycosylation affects a broad range of pathways that underpin tumor initiation, metastatic progression, and resistance to cancer treatment. One of the prevalent alterations in the cancer glycome is an enrichment in a select group of sialylated glycans including sialylated, branched N-glycans, sialyl Lewis antigens, and sialylated forms of truncated O-glycans such as the sialyl Tn antigen. These modifications affect the activity of numerous cell surface receptors, which collectively impart malignant characteristics typified by enhanced cell proliferation, migration, invasion and apoptosis-resistance. Additionally, sialic acids on tumor cells engage inhibitory Siglec receptors on immune cells to dampen anti-tumor immunity, further promoting cancer progression. The goal of this review is to summarize the predominant changes in sialylation occurring in pancreatic cancer, the biological functions of sialylated glycoproteins in cancer pathogenesis, and the emerging strategies for targeting sialoglycans and Siglec receptors in cancer therapeutics.
Collapse
Affiliation(s)
- Michael P Marciel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Barnita Haldar
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nikita Bhalerao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
15
|
Delafield DG, Miles HN, Liu Y, Ricke WA, Li L. Complementary proteome and glycoproteome access revealed through comparative analysis of reversed phase and porous graphitic carbon chromatography. Anal Bioanal Chem 2022; 414:5461-5472. [PMID: 35137243 PMCID: PMC9246830 DOI: 10.1007/s00216-022-03934-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 11/01/2022]
Abstract
Continual developments in instrumental and analytical techniques have aided in establishing rigorous connections between protein glycosylation and human illness. These illnesses, such as various forms of cancer, are often associated with poor prognoses, prompting the need for more comprehensive characterization of the glycoproteome. While innovative instrumental and computational strategies have largely benefited glycoproteomic analyses, less attention is given to benefits gained through alternative, optimized chromatographic techniques. Porous graphitic carbon (PGC) chromatography has gained considerable interest in glycomics research due to its mobile phase flexibility, increased retention of polar analytes, and improved structural elucidation at higher temperatures. PGC has yet to be systematically compared against or in tandem with standard reversed phase liquid chromatography (RPLC) in high-throughput bottom-up glycoproteomic experiments, leaving the potential benefits unexplored. Performing comparative analysis of single and biphasic separation regimes at a range of column temperatures illustrates complementary advantages for each method. PGC separation is shown to selectively retain shorter, more hydrophilic glycopeptide species, imparting higher average charge, and exhibiting greater microheterogeneity coverage for identified glycosites. Additionally, we demonstrate that liquid-phase separation of glycopeptide isomers may be achieved through both single and biphasic PGC separations, providing a means towards facile, multidimensional glycopeptide characterization. Beyond this, we demonstrate how utilization of multiple separation regimes and column temperatures can aid in profiling the glycoproteome in tumorigenic and aggressive prostate cancer cells. RAW MS proteomic and glycoproteomic datasets have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD024196 (10.6019/PXD024196) and PXD024195, respectively.
Collapse
Affiliation(s)
- Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hannah N Miles
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA
| | - Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA
| | - William A Ricke
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA
- George M. O'Brien Urology Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA.
| |
Collapse
|
16
|
Lumibao JC, Tremblay JR, Hsu J, Engle DD. Altered glycosylation in pancreatic cancer and beyond. J Exp Med 2022; 219:e20211505. [PMID: 35522218 PMCID: PMC9086500 DOI: 10.1084/jem.20211505] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the deadliest cancers and is projected to soon be the second leading cause of cancer death. Median survival of PDA patients is 6-10 mo, with the majority of diagnoses occurring at later, metastatic stages that are refractory to treatment and accompanied by worsening prognoses. Glycosylation is one of the most common types of post-translational modifications. The complex landscape of glycosylation produces an extensive repertoire of glycan moieties, glycoproteins, and glycolipids, thus adding a dynamic and tunable level of intra- and intercellular signaling regulation. Aberrant glycosylation is a feature of cancer progression and influences a broad range of signaling pathways to promote disease onset and progression. However, despite being so common, the functional consequences of altered glycosylation and their potential as therapeutic targets remain poorly understood and vastly understudied in the context of PDA. In this review, the functionality of glycans as they contribute to hallmarks of PDA are highlighted as active regulators of disease onset, tumor progression, metastatic capability, therapeutic resistance, and remodeling of the tumor immune microenvironment. A deeper understanding of the functional consequences of altered glycosylation will facilitate future hypothesis-driven studies and identify novel therapeutic strategies in PDA.
Collapse
Affiliation(s)
| | | | - Jasper Hsu
- Salk Institute for Biological Studies, La Jolla, CA
| | | |
Collapse
|
17
|
Levink IJM, Klatte DCF, Hanna-Sawires RG, Vreeker GCM, Ibrahim IS, van der Burgt YEM, Overbeek KA, Koopmann BDM, Cahen DL, Fuhler GM, Wuhrer M, Bonsing BA, Tollenaar RAEM, Vleggaar FP, Vasen HFA, van Leerdam ME, Bruno MJ, Mesker WE. Longitudinal changes of serum protein N-Glycan levels for earlier detection of pancreatic cancer in high-risk individuals. Pancreatology 2022; 22:497-506. [PMID: 35414481 DOI: 10.1016/j.pan.2022.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Surveillance of individuals at risk of developing pancreatic ductal adenocarcinoma (PDAC) has the potential to improve survival, yet early detection based on solely imaging modalities is challenging. We aimed to identify changes in serum glycosylation levels over time to earlier detect PDAC in high-risk individuals. METHODS Individuals with a hereditary predisposition to develop PDAC were followed in two surveillance programs. Those, of which at least two consecutive serum samples were available, were included. Mass spectrometry analysis was performed to determine the total N-glycome for each consecutive sample. Potentially discriminating N-glycans were selected based on our previous cross-sectional analysis and relative abundances were calculated for each glycosylation feature. RESULTS 165 individuals ("FPC-cohort" N = 119; Leiden cohort N = 46) were included. In total, 97 (59%) individuals had a genetic predisposition (77 CDKN2A, 15 BRCA1/2, 5 STK11) and 68 (41%) a family history of PDAC without a known genetic predisposition (>10-fold increased risk of developing PDAC). From each individual, a median number of 3 serum samples (IQR 3) was collected. Ten individuals (6%) developed PDAC during 35 months of follow-up; nine (90%) of these patients carried a CDKN2A germline mutation. In PDAC cases, compared to all controls, glycosylation characteristics were increased (fucosylation, tri- and tetra-antennary structures, specific sialic linkage types), others decreased (complex-type diantennary and bisected glycans). The largest change over time was observed for tri-antennary fucosylated glycans, which were able to differentiate cases from controls with a specificity of 92%, sensitivity of 49% and accuracy of 90%. CONCLUSION Serum N-glycan monitoring may support early detection in a pancreas surveillance program.
Collapse
Affiliation(s)
- I J M Levink
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - D C F Klatte
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - R G Hanna-Sawires
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - G C M Vreeker
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - I S Ibrahim
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Y E M van der Burgt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - K A Overbeek
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - B D M Koopmann
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - D L Cahen
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - G M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - B A Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - R A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - F P Vleggaar
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - H F A Vasen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - M E van Leerdam
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands; Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - M J Bruno
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - W E Mesker
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
18
|
Jin Y, Wang W, Wang Q, Zhang Y, Zahid KR, Raza U, Gong Y. Alpha-1-antichymotrypsin as a novel biomarker for diagnosis, prognosis, and therapy prediction in human diseases. Cancer Cell Int 2022; 22:156. [PMID: 35439996 PMCID: PMC9019971 DOI: 10.1186/s12935-022-02572-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
The glycoprotein alpha-1-antichymotrypsin (AACT), a serine protease inhibitor, is mainly synthesized in the liver and then secreted into the blood and is involved in the acute phase response, inflammation, and proteolysis. The dysregulation of AACT and its glycosylation levels are associated with tumor progression and recurrence, and could be used as a biomarker for tumor monitoring. In this review, we summarized the expression level, glycosylation modification, and biological characteristics of AACT during inflammation, neurodegenerative or other elderly diseases, and tumorigenesis, as well as, focused on the biological roles of AACT in cancer. The aberrant expression of AACT in cancer might be due to genetic alterations and/or immune by bioinformatics analysis. Moreover, AACT may serve as a diagnostic or prognostic biomarker or therapeutic target in tumors. Furthermore, we found that the expression of AACT was associated with the overall survival of patients with human cancers. Decreased AACT expression was associated with poor survival in patients with liver cancer, increased AACT expression was associated with shorter survival in patients with pancreatic cancer, and decreased AACT expression was associated with shorter survival in patients with early lung cancer. The review confirmed the key roles of AACT in tumorigenesis, suggesting that the glycoprotein AACT may serve as a biomarker for tumor diagnosis and prognosis, and could be a potential therapeutic target for human diseases.
Collapse
Affiliation(s)
- Yanxia Jin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, No. 11 Cihu Road, Huangshi District, Huangshi, 435002, China
| | - Weidong Wang
- College of Life Sciences, Hubei Normal University, No. 11 Cihu Road, Huangshi District, Huangshi, 435002, China.
| | - Qiyun Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, No. 11 Cihu Road, Huangshi District, Huangshi, 435002, China
| | - Yueyang Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, No. 11 Cihu Road, Huangshi District, Huangshi, 435002, China
| | - Kashif Rafiq Zahid
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science and Oceanography, Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), PWD Campus, Rawalpindi, Pakistan
| | - Yongsheng Gong
- Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, No.26 Daoqian Street, Suzhou, 215002, China.
| |
Collapse
|
19
|
Zhang J, Zhang Z, Holst S, Blöchl C, Madunic K, Wuhrer M, Ten Dijke P, Zhang T. Transforming growth factor-β challenge alters the N-, O-, and glycosphingolipid glycomes in PaTu-S pancreatic adenocarcinoma cells. J Biol Chem 2022; 298:101717. [PMID: 35151689 PMCID: PMC8914387 DOI: 10.1016/j.jbc.2022.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor prognosis and high mortality. Transforming growth factor-β (TGF-β) plays a key role in PDAC tumor progression, which is often associated with aberrant glycosylation. However, how PDAC cells respond to TGF-β and the role of glycosylation therein is not well known. Here, we investigated the TGF-β-mediated response and glycosylation changes in the PaTu-8955S (PaTu-S) cell line deficient in SMA-related and MAD-related protein 4 (SMAD4), a signal transducer of the TGF-β signaling. PaTu-S cells responded to TGF-β by upregulating SMAD2 phosphorylation and target gene expression. We found that TGF-β induced expression of the mesenchymal marker N-cadherin but did not significantly affect epithelial marker E-cadherin expression. We also examined differences in N-glycans, O-glycans, and glycosphingolipid-linked glycans in PaTu-S cells upon TGF-β stimulation. TGF-β treatment primarily induced N-glycome aberrations involving elevated levels of branching, core fucosylation, and sialylation in PaTu-S cells, in agreement with TGF-β-induced changes in the expression of glycosylation-associated genes. In addition, we observed differences in O glycosylation and glycosphingolipid glycosylation profiles after TGF-β treatment, including lower levels of sialylated Tn antigen and neoexpression of globosides. Furthermore, the expression of transcription factor sex-determining region Y-related high-mobility group box 4 was upregulated upon TGF-β stimulation, and its depletion blocked TGF-β-induced N-glycomic changes. Thus, TGF-β-induced N-glycosylation changes can occur in a sex-determining region Y-related high-mobility group box 4–dependent and SMAD4-independent manner in the pancreatic PaTu-S cancer cell line. Our results open up avenues to study the relevance of glycosylation in TGF-β signaling in SMAD4-inactivated PDAC.
Collapse
Affiliation(s)
- Jing Zhang
- Oncode Institute and Department of Cell Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zejian Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Constantin Blöchl
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Katarina Madunic
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
20
|
Lavado-García J, Zhang T, Cervera L, Gòdia F, Wuhrer M. Differential N- and O-glycosylation signatures of HIV-1 Gag virus-like particles and coproduced extracellular vesicles. Biotechnol Bioeng 2022; 119:1207-1221. [PMID: 35112714 PMCID: PMC9303603 DOI: 10.1002/bit.28051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Abstract
HIV-1 virus-like particles (VLPs) are nanostructures derived from the self-assembly and cell budding of Gag polyprotein. Mimicking the native structure of the virus and being non-infectious, they represent promising candidates for the development of new vaccines as they elicit a strong immune response. In addition to this, the bounding membrane can be functionalized with exogenous antigens to target different diseases. Protein glycosylation depends strictly on the production platform and expression system used and the displayed glycosylation patterns may influence down-stream processing as well as the immune response. One of the main challenges for the development of Gag VLP production bioprocess is the separation of VLPs and coproduced extracellular vesicles (EVs). In this work, porous graphitized carbon separation method coupled with mass spectrometry was used to characterize the N- and O- glycosylation profiles of Gag VLPs produced in HEK293 cells. We identified differential glycan signatures between VLPs and EVs that could pave the way for further separation and purification strategies in order to optimize downstream processing and move forward in VLP-based vaccine production technology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Cervera
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
21
|
Malaker SA, Quanico J, Raffo-Romero A, Kobeissy F, Aboulouard S, Tierny D, Bertozzi CR, Fournier I, Salzet M. On-tissue spatially resolved glycoproteomics guided by N-glycan imaging reveal global dysregulation of canine glioma glycoproteomic landscape. Cell Chem Biol 2022; 29:30-42.e4. [PMID: 34102146 PMCID: PMC8617081 DOI: 10.1016/j.chembiol.2021.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/06/2021] [Accepted: 05/10/2021] [Indexed: 01/22/2023]
Abstract
Here, we present an approach to identify N-linked glycoproteins and deduce their spatial localization using a combination of matrix-assisted laser desorption ionization (MALDI) N-glycan mass spectrometry imaging (MSI) and spatially resolved glycoproteomics. We subjected glioma biopsies to on-tissue PNGaseF digestion and MALDI-MSI and found that the glycan HexNAc4-Hex5-NeuAc2 was predominantly expressed in necrotic regions of high-grade canine gliomas. To determine the underlying sialo-glycoprotein, various regions in adjacent tissue sections were subjected to microdigestion and manual glycoproteomic analysis. Results identified haptoglobin as the protein associated with HexNAc4-Hex5-NeuAc2, thus directly linking glycan imaging with intact glycopeptide identification. In total, our spatially resolved glycoproteomics technique identified over 400 N-, O-, and S- glycopeptides from over 30 proteins, demonstrating the diverse array of glycosylation present on the tissue slices and the sensitivity of our technique. Ultimately, this proof-of-principle work demonstrates that spatially resolved glycoproteomics greatly complement MALDI-MSI in understanding dysregulated glycosylation.
Collapse
Affiliation(s)
- Stacy Alyse Malaker
- Université de Lille 1, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000 Lille, France,Department of Chemistry and ChEM-H, Stanford University, Stanford, CA 94035, USA,Present address: Department of Chemistry, Yale University, New Haven, CT 06511, USA,These authors contributed equally
| | - Jusal Quanico
- Université de Lille 1, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000 Lille, France,Present address: Center for Proteomics, Antwerp University,Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerp, Belgium,These authors contributed equally
| | - Antonella Raffo-Romero
- Université de Lille 1, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000 Lille, France
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Soulaimane Aboulouard
- Université de Lille 1, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000 Lille, France
| | - Dominique Tierny
- OCR (Oncovet Clinical Research), Parc Eurasanté Lille Métropole, 80 rue du Dr Yersin, 59120 Loos, France
| | - Carolyn Ruth Bertozzi
- Department of Chemistry and ChEM-H, Stanford University, Stanford, CA 94035, USA,Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Isabelle Fournier
- Université de Lille 1, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000 Lille, France,Correspondence: (I.F.), (M.S.)
| | - Michel Salzet
- Université de Lille 1, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000 Lille, France,Lead contact,Correspondence: (I.F.), (M.S.)
| |
Collapse
|
22
|
Integrated N- and O-Glycomics of Acute Myeloid Leukemia (AML) Cell Lines. Cells 2021; 10:cells10113058. [PMID: 34831278 PMCID: PMC8616353 DOI: 10.3390/cells10113058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by a dysregulated expansion of poorly differentiated myeloid cells. Although patients are usually treated effectively by chemotherapy, a high rate of relapsed or refractory disease poses a major hurdle in its treatment. Recently, several studies have proposed implications of protein glycosylation in the pathobiology of AML including chemoresistance. Accordingly, associations have been found between specific glycan epitopes and the outcome of the disease. To advance this poorly studied field, we performed an exploratory glycomics study characterizing 21 widely used AML cell lines. Exploiting the benefits of porous graphitized carbon chromatography coupled to tandem mass spectrometry (PGC nano-LC-MS2), we qualitatively and quantitatively profiled N- and O-linked glycans. AML cell lines exhibited distinct glycan fingerprints differing in relevant glycan traits correlating with their cellular phenotype as classified by the FAB system. By implementing transcriptomics data, specific glycosyltransferases and hematopoietic transcription factors were identified, which are candidate drivers of the glycan phenotype of these cells. In conclusion, we report the varying expression of glycan structures across a high number of AML cell lines, including those associated with poor prognosis, identified underlying glycosyltransferases and transcription factors, and provide insights into the regulation of the AML glycan repertoire.
Collapse
|
23
|
Tabang DN, Cui Y, Tremmel DM, Ford M, Li Z, Sackett SD, Odorico JS, Li L. Analysis of pancreatic extracellular matrix protein post-translational modifications via electrostatic repulsion-hydrophilic interaction chromatography coupled with mass spectrometry. Mol Omics 2021; 17:652-664. [PMID: 34318855 PMCID: PMC8511275 DOI: 10.1039/d1mo00104c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pancreas is a vital organ with digestive and endocrine roles, and diseases of the pancreas affect millions of people yearly. A better understanding of the pancreas proteome and its dynamic post-translational modifications (PTMs) is necessary to engineer higher fidelity tissue analogues for use in transplantation. The extracellular matrix (ECM) has major roles in binding and signaling essential to the viability of insulin-producing islets of Langerhans. To characterize PTMs in the pancreas, native and decellularized tissues from four donors were analyzed. N-Glycosylated and phosphorylated peptides were simultaneously enriched via electrostatic repulsion-hydrophilic interaction chromatography and analyzed with mass spectrometry, maximizing PTM information from one workflow. A modified surfactant and chaotropic agent assisted sequential extraction/on-pellet digestion was used to maximize solubility of the ECM. The analysis resulted in the confident identification of 3650 proteins, including 517 N-glycoproteins and 148 phosphoproteins. We identified 214 ECM proteins, of which 99 were N-glycosylated, 18 were phosphorylated, and 9 were found to have both modifications. Collagens, a major component of the ECM, were the most highly glycosylated of the ECM proteins and several were also heavily phosphorylated, raising the possibility of structural and thus functional changes resulting from these modifications. To our knowledge, this work represents the first characterization of PTMs in pancreatic ECM proteins. This work provides a basal profile of PTMs in the healthy human pancreatic ECM, laying the foundation for future investigations to determine disease-specific changes such as in diabetes and pancreatic cancer, and potentially helping to guide the development of tissue replacement constructs. Data are available via ProteomeXchange with identifier PXD025048.
Collapse
Affiliation(s)
- Dylan Nicholas Tabang
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI, 53706, USA.
| | - Yusi Cui
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI, 53706, USA.
| | - Daniel M Tremmel
- Department of Surgery, Division of Transplantation, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Megan Ford
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zihui Li
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI, 53706, USA.
| | - Sara Dutton Sackett
- Department of Surgery, Division of Transplantation, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jon S Odorico
- Department of Surgery, Division of Transplantation, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI, 53706, USA.
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
24
|
Tabang DN, Ford M, Li L. Recent Advances in Mass Spectrometry-Based Glycomic and Glycoproteomic Studies of Pancreatic Diseases. Front Chem 2021; 9:707387. [PMID: 34368082 PMCID: PMC8342852 DOI: 10.3389/fchem.2021.707387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Modification of proteins by glycans plays a crucial role in mediating biological functions in both healthy and diseased states. Mass spectrometry (MS) has emerged as the most powerful tool for glycomic and glycoproteomic analyses advancing knowledge of many diseases. Such diseases include those of the pancreas which affect millions of people each year. In this review, recent advances in pancreatic disease research facilitated by MS-based glycomic and glycoproteomic studies will be examined with a focus on diabetes and pancreatic cancer. The last decade, and especially the last five years, has witnessed developments in both discovering new glycan or glycoprotein biomarkers and analyzing the links between glycans and disease pathology through MS-based studies. The strength of MS lies in the specificity and sensitivity of liquid chromatography-electrospray ionization MS for measuring a wide range of biomolecules from limited sample amounts from many sample types, greatly enhancing and accelerating the biomarker discovery process. Furthermore, imaging MS of glycans enabled by matrix-assisted laser desorption/ionization has proven useful in complementing histology and immunohistochemistry to monitor pancreatic disease progression. Advances in biological understanding and analytical techniques, as well as challenges and future directions for the field, will be discussed.
Collapse
Affiliation(s)
- Dylan Nicholas Tabang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Megan Ford
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
25
|
Qu Y, Dubiak KM, Peuchen EH, Champion MM, Zhang Z, Hebert AS, Wright S, Coon JJ, Huber PW, Dovichi NJ. Quantitative capillary zone electrophoresis-mass spectrometry reveals the N-glycome developmental plan during vertebrate embryogenesis. Mol Omics 2021; 16:210-220. [PMID: 32149324 DOI: 10.1039/d0mo00005a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycans are known to be involved in many biological processes, while little is known about the expression of N-glycans during vertebrate development. We now report the first quantitative studies of both the expression of N-linked glycans at six early development stages and the expression of N-glycosylated peptides at two early development stages in Xenopus laevis, the African clawed frog. N-Glycans were labeled with isobaric tandem mass tags, pooled, separated by capillary electrophoresis, and characterized using tandem mass spectrometry. We quantified 110 N-glycan compositions that spanned four orders of magnitude in abundance. Capillary electrophoresis was particularly useful in identifying charged glycans; over 40% of the observed glycan compositions were sialylated. The glycan expression was relatively constant until the gastrula-neurula transition (developmental stage 13), followed by massive reprogramming. An increase in oligomannosidic and a decrease in the paucimannosidic and phosphorylated oligomannosidic glycans were observed at the late tailbud stage (developmental stage 41). Two notable and opposing regulation events were detected for sialylated glycans. LacdiNAc and Lewis antigen features distinguished down-regulated sialylation from up-regulated species. The level of Lewis antigen decreased at later stages, which was validated by Aleuria aurantia lectin (AAL) and Ulex europaeus lectin (UEA-I) blots. We also used HPLC coupled with tandem mass spectrometry to identify 611 N-glycosylation sites on 350 N-glycoproteins at the early stage developmental stage 1 (fertilized egg), and 1682 N-glycosylation sites on 1023 N-glycoproteins at stage 41 (late tailbud stage). Over two thirds of the N-glycoproteins identified in the late tailbud stage are associated with neuron projection morphogenesis, suggesting a vital role of the N-glycome in neuronal development.
Collapse
Affiliation(s)
- Yanyan Qu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Kyle M Dubiak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Elizabeth H Peuchen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Zhenbin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Alex S Hebert
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, WI 53706, USA
| | - Sarah Wright
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Joshua J Coon
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, WI 53706, USA
| | - Paul W Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
26
|
Exosome-mediated diagnosis of pancreatic cancer using lectin-conjugated nanoparticles bound to selective glycans. Biosens Bioelectron 2021; 177:112980. [DOI: 10.1016/j.bios.2021.112980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/21/2022]
|
27
|
Ricciardiello F, Bergamaschi L, De Vitto H, Gang Y, Zhang T, Palorini R, Chiaradonna F. Suppression of the HBP Function Increases Pancreatic Cancer Cell Sensitivity to a Pan-RAS Inhibitor. Cells 2021; 10:cells10020431. [PMID: 33670598 PMCID: PMC7923121 DOI: 10.3390/cells10020431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death and the search for a resolutive therapy is still a challenge. Since KRAS is commonly mutated in PDAC and is one of the main drivers of PDAC progression, its inhibition should be a key strategy for treatment, especially considering the recent development of specific KRAS inhibitors. Nevertheless, the effects of KRAS inhibition can be increased through the co-inhibition of other nodes important for cancer development. One of them could be the hexosamine biosynthetic pathway (HBP), whose enhancement is considered fundamental for PDAC. Here, we demonstrate that PDAC cells expressing oncogenic KRAS, owing to an increase in the HBP flux, become strongly reliant on HBP for both proliferation and survival. In particular, upon treatment with two different compounds, 2-deoxyglucose and FR054, inhibiting both HBP and protein N-glycosylation, these cells undergo apoptosis significantly more than PDAC cells expressing wild-type KRAS. Importantly, we also show that the combined treatment between FR054 and the pan-RAS inhibitor BI-2852 has an additive negative effect on cell proliferation and survival by means of the suppression of both Akt activity and cyclin D1 expression. Thus, co-inhibition of HBP and oncogenic RAS may represent a novel therapy for PDAC patients.
Collapse
Affiliation(s)
- Francesca Ricciardiello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (L.B.); (H.D.V.)
| | - Laura Bergamaschi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (L.B.); (H.D.V.)
| | - Humberto De Vitto
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (L.B.); (H.D.V.)
| | - Yang Gang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.G.); (T.Z.)
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.G.); (T.Z.)
| | - Roberta Palorini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (L.B.); (H.D.V.)
- Correspondence: (R.P.); (F.C.)
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (L.B.); (H.D.V.)
- Correspondence: (R.P.); (F.C.)
| |
Collapse
|
28
|
A mass spectrometry-based glycotope-centric cellular glycomics is the more fruitful way forward to see the forest for the trees. Biochem Soc Trans 2021; 49:55-69. [PMID: 33492355 DOI: 10.1042/bst20190861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023]
Abstract
The nature of protein glycosylation renders cellular glycomics a very challenging task in having to deal with all the disparate glycans carried on membrane glycoproteins. Rapid mapping by mass spectrometry analysis provides only a coarse sketch of the glycomic complexity based primarily on glycosyl compositions, whereby the missing high-resolution structural details require a combination of multi-mode separations and multi-stages of induced fragmentation to gain sufficiently discriminative precision, often at the expenses of throughput and sensitivity. Given the available technology and foreseeable advances in the near future, homing in on resolving the terminal fucosylated, sialylated and/or sulfated structural units, or glycotopes, maybe a more pragmatic and ultimately more rewarding approach to gain insights into myriad biological processes mediated by these terminal coding units carried on important glycoproteins, to be decoded by a host of endogenous glycan-binding proteins and antibodies. A broad overview of recent technical advances and limitations in cellular glycomics is first provided as a backdrop to the propounded glycotope-centric approach based on advanced nanoLC-MS2/MS3 analysis of permethylated glycans. To prioritize analytical focus on the more tangible glycotopes is akin to first identifying the eye-catching and characteristic-defining flowers and fruits of the glyco-forest, to see the forest for the trees. It has the best prospects of attaining the much-needed balance in sensitivity, structural precision and analytical throughput to match advances in other omics.
Collapse
|
29
|
McDowell CT, Klamer Z, Hall J, West CA, Wisniewski L, Powers TW, Angel PM, Mehta AS, Lewin DN, Haab BB, Drake RR. Imaging Mass Spectrometry and Lectin Analysis of N-Linked Glycans in Carbohydrate Antigen-Defined Pancreatic Cancer Tissues. Mol Cell Proteomics 2020; 20:100012. [PMID: 33581409 PMCID: PMC8724603 DOI: 10.1074/mcp.ra120.002256] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
The early detection of pancreatic ductal adenocarcinoma (PDAC) is a complex clinical obstacle yet is key to improving the overall likelihood of patient survival. Current and prospective carbohydrate biomarkers carbohydrate antigen 19-9 (CA19-9) and sialylated tumor-related antigen (sTRA) are sufficient for surveilling disease progression yet are not approved for delineating PDAC from other abdominal cancers and noncancerous pancreatic pathologies. To further understand these glycan epitopes, an imaging mass spectrometry (IMS) approach was used to assess the N-glycome of the human pancreas and pancreatic cancer in a cohort of patients with PDAC represented by tissue microarrays and whole-tissue sections. Orthogonally, these same tissues were characterized by multiround immunofluorescence that defined expression of CA19-9 and sTRA as well as other lectins toward carbohydrate epitopes with the potential to improve PDAC diagnosis. These analyses revealed distinct differences not only in N-glycan spatial localization across both healthy and diseased tissues but importantly between different biomarker-categorized tissue samples. Unique sulfated biantennary N-glycans were detected specifically in normal pancreatic islets. N-glycans from CA19-9-expressing tissues tended to be biantennary, triantennary, and tetra-antennary structures with both core and terminal fucose residues and bisecting GlcNAc. These N-glycans were detected in less abundance in sTRA-expressing tumor tissues, which favored triantennary and tetra-antennary structures with polylactosamine extensions. Increased sialylation of N-glycans was detected in all tumor tissues. A candidate new biomarker derived from IMS was further explored by fluorescence staining with selected lectins on the same tissues. The lectins confirmed the expression of the epitopes in cancer cells and revealed different tumor-associated staining patterns between glycans with bisecting GlcNAc and those with terminal GlcNAc. Thus, the combination of lectin-immunohistochemistry and lectin-IMS techniques produces more complete information for tumor classification than the individual analyses alone. These findings potentiate the development of early assessment technologies to rapidly and specifically identify PDAC in the clinic that may directly impact patient outcomes.
Collapse
Affiliation(s)
- Colin T McDowell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Zachary Klamer
- Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Johnathan Hall
- Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Connor A West
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Thomas W Powers
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David N Lewin
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Brian B Haab
- Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
30
|
Huang L, Bockorny B, Paul I, Akshinthala D, Frappart PO, Gandarilla O, Bose A, Sanchez-Gonzalez V, Rouse EE, Lehoux SD, Pandell N, Lim CM, Clohessy JG, Grossman J, Gonzalez R, Del Pino SP, Daaboul G, Sawhney MS, Freedman SD, Kleger A, Cummings RD, Emili A, Muthuswamy LB, Hidalgo M, Muthuswamy SK. PDX-derived organoids model in vivo drug response and secrete biomarkers. JCI Insight 2020; 5:135544. [PMID: 32990680 PMCID: PMC7710298 DOI: 10.1172/jci.insight.135544] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Patient-derived organoid models are proving to be a powerful platform for both basic and translational studies. Here we conduct a methodical analysis of pancreatic ductal adenocarcinoma (PDAC) tumor organoid drug response in paired patient-derived xenograft (PDX) and PDX-derived organoid (PXO) models grown under WNT-free culture conditions. We report a specific relationship between area under the curve value of organoid drug dose response and in vivo tumor growth, irrespective of the drug treatment. In addition, we analyzed the glycome of PDX and PXO models and demonstrate that PXOs recapitulate the in vivo glycan landscape. In addition, we identify a core set of 57 N-glycans detected in all 10 models that represent 50%-94% of the relative abundance of all N-glycans detected in each of the models. Last, we developed a secreted biomarker discovery pipeline using media supernatant of organoid cultures and identified potentially new extracellular vesicle (EV) protein markers. We validated our findings using plasma samples from patients with PDAC, benign gastrointestinal diseases, and chronic pancreatitis and discovered that 4 EV proteins are potential circulating biomarkers for PDAC. Thus, we demonstrate the utility of organoid cultures to not only model in vivo drug responses but also serve as a powerful platform for discovering clinically actionable serologic biomarkers.
Collapse
Affiliation(s)
- Ling Huang
- Cancer Center and
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruno Bockorny
- Cancer Center and
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Indranil Paul
- Departments of Biology and Biochemistry, Boston University, Boston, Massachusetts, USA
| | - Dipikaa Akshinthala
- Cancer Center and
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Omar Gandarilla
- Cancer Center and
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Arindam Bose
- Cancer Center and
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Nicole Pandell
- Cancer Center and
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine M. Lim
- Cancer Center and
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - John G. Clohessy
- Cancer Center and
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Grossman
- Cancer Center and
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Raul Gonzalez
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sofia Perea Del Pino
- Cancer Center and
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Mandeep S. Sawhney
- Cancer Center and
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven D. Freedman
- Cancer Center and
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander Kleger
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | | - Andrew Emili
- Departments of Biology and Biochemistry, Boston University, Boston, Massachusetts, USA
| | - Lakshmi B. Muthuswamy
- Cancer Center and
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Manuel Hidalgo
- Cancer Center and
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Senthil K. Muthuswamy
- Cancer Center and
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Discovery of N-glycan Biomarkers for the Canine Osteoarthritis. Life (Basel) 2020; 10:life10090199. [PMID: 32937769 PMCID: PMC7555374 DOI: 10.3390/life10090199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
Protein glycosylation is a post-translational modification that impacts on protein activity, stability, and interactions. It was sensitively altered by the cellular state and, therefore, is now used for a diagnostic or prognostic indicator of various human diseases such as cancer. To evaluate the clinical feasibility in the veterinary area, the N-glycan biomarkers were discovered from canine serum for the diagnosis of osteoarthritis (OA), which is one of the most common diseases of dogs. N-glycome was obtained from 20 μL of canine serum by the enzymatic cleavage followed by the purification and enrichment using solid-phase extraction. Independent compositions of 163 and 463 N-glycans were found from healthy control (n = 41) and osteoarthritis patients (n = 92), respectively. Initially, 31 of the potential biomarkers were screened by the p-values below 1.0 × 10−10 from ANOVA. Then, the area under the curve (AUC) and the intensity ratio between OA patient and healthy control (P/C ratio) were calculated. Considering the diagnostic efficacy, the AUC bigger than 0.9 and the P/C ratio larger than 3.0 were used to discover 16 N-glycans as diagnostic biomarkers. Particularly, five of the diagnostic biomarkers were AUC above 0.99 and three of N-glycans had AUC 1.0. The results suggest a clear possibility for N-glycan biomarkers to be used as a clinical tool in the veterinary medical area enabling to provide objective and non-invasive diagnostic information.
Collapse
|
32
|
Abstract
Worldwide, approximately half a million people are diagnosed with pancreatic cancer every year, with mortality rates of more than 90%. T cells within pancreatic tumors are generally infrequent and incapable of eliciting antitumor immunity. Thus, pancreatic cancer is considered an "immunologically cold" tumor. However, recent studies clearly show that when T-cell immunity in pancreatic cancer is sufficiently induced, T cells become effective weapons. This fact suggests that to improve pancreatic cancer patients' clinical outcomes, we need to unveil the complex immune biology of this disease. In this review, we discuss the elements of tumor immunogenicity in the specific context of pancreatic malignancy.
Collapse
|
33
|
Proteomic Analysis of Cell Lines and Primary Tumors in Pancreatic Cancer Identifies Proteins Expressed Only In Vitro and Only In Vivo. Pancreas 2020; 49:1109-1116. [PMID: 32833945 DOI: 10.1097/mpa.0000000000001633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES A limited repertoire of good pancreatic ductal adenocarcinoma (PDAC) models is one of the main barriers in developing effective new PDAC treatments. We aimed to characterize 6 commonly used PDAC cell lines and compare them with PDAC patient tumor samples using proteomics. METHODS Proteomic methods were used to generate an extensive catalog of proteins from 10 PDAC surgical specimens, 9 biopsies of adjacent normal tissue, and 6 PDAC cell lines. Protein lists were interrogated to determine what extent the proteome of the cell lines reflects the proteome of primary pancreatic tumors. RESULTS We identified 7973 proteins from the cell lines, 5680 proteins from the tumor tissues, and 4943 proteins from the adjacent normal tissues. We identified 324 proteins unique to the cell lines, some of which may play a role in survival of cells in culture. Conversely, a list of 63 proteins expressed only in the patient samples, whose expression is lost in culture, may place limitations on the degree to which these model systems reflect tumor biology in vivo. CONCLUSIONS Our work offers a catalog of proteins detected in each of the PDAC cell lines, providing a useful guide for researchers seeking model systems for PDAC functional studies.
Collapse
|
34
|
Guerrero PE, Miró L, Wong BS, Massaguer A, Martínez-Bosch N, de Llorens R, Navarro P, Konstantopoulos K, Llop E, Peracaula R. Knockdown of α2,3-Sialyltransferases Impairs Pancreatic Cancer Cell Migration, Invasion and E-selectin-Dependent Adhesion. Int J Mol Sci 2020; 21:ijms21176239. [PMID: 32872308 PMCID: PMC7503936 DOI: 10.3390/ijms21176239] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant sialylation is frequently found in pancreatic ductal adenocarcinoma (PDA). α2,3-Sialyltransferases (α2,3-STs) ST3GAL3 and ST3GAL4 are overexpressed in PDA tissues and are responsible for increased biosynthesis of sialyl-Lewis (sLe) antigens, which play an important role in metastasis. This study addresses the effect of α2,3-STs knockdown on the migratory and invasive phenotype of PDA cells, and on E-selectin-dependent adhesion. Characterization of the cell sialome, the α2,3-STs and fucosyltransferases involved in the biosynthesis of sLe antigens, using a panel of human PDA cells showed differences in the levels of sialylated determinants and α2,3-STs expression, reflecting their phenotypic heterogeneity. Knockdown of ST3GAL3 and ST3GAL4 in BxPC-3 and Capan-1 cells, which expressed moderate to high levels of sLe antigens and α2,3-STs, led to a significant reduction in sLex and in most cases in sLea, with slight increases in the α2,6-sialic acid content. Moreover, ST3GAL3 and ST3GAL4 downregulation resulted in a significant decrease in cell migration and invasion. Binding and rolling to E-selectin, which represent key steps in metastasis, were also markedly impaired in the α2,3-STs knockdown cells. Our results indicate that inhibition of ST3GAL3 and ST3GAL4 may be a novel strategy to block PDA metastasis, which is one of the reasons for its dismal prognosis.
Collapse
Affiliation(s)
- Pedro Enrique Guerrero
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, 17003 Girona, Spain; (P.E.G.); (L.M.); (A.M.); (R.d.L.)
| | - Laura Miró
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, 17003 Girona, Spain; (P.E.G.); (L.M.); (A.M.); (R.d.L.)
| | - Bin S. Wong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (B.S.W.); (K.K.)
| | - Anna Massaguer
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, 17003 Girona, Spain; (P.E.G.); (L.M.); (A.M.); (R.d.L.)
| | - Neus Martínez-Bosch
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, 08003 Barcelona, Spain; (N.M.-B.); (P.N.)
| | - Rafael de Llorens
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, 17003 Girona, Spain; (P.E.G.); (L.M.); (A.M.); (R.d.L.)
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, 08003 Barcelona, Spain; (N.M.-B.); (P.N.)
- Institute of Biomedical Research of Barcelona (IIBB)-CSIC, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (B.S.W.); (K.K.)
| | - Esther Llop
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, 17003 Girona, Spain; (P.E.G.); (L.M.); (A.M.); (R.d.L.)
- Correspondence: (E.L.); (R.P.); Tel.: +972-418370 (R.P.); Fax: +972-41-82-41 (R.P.)
| | - Rosa Peracaula
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, 17003 Girona, Spain; (P.E.G.); (L.M.); (A.M.); (R.d.L.)
- Correspondence: (E.L.); (R.P.); Tel.: +972-418370 (R.P.); Fax: +972-41-82-41 (R.P.)
| |
Collapse
|
35
|
Meleady P, Abdul Rahman R, Henry M, Moriarty M, Clynes M. Proteomic analysis of pancreatic ductal adenocarcinoma. Expert Rev Proteomics 2020; 17:453-467. [PMID: 32755290 DOI: 10.1080/14789450.2020.1803743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC), which represents approximately 80% of all pancreatic cancers, is a highly aggressive malignant disease and one of the most lethal among all cancers. Overall, the 5-year survival rate among all pancreatic cancer patients is less than 9%; these rates have shown little change over the past 30 years. A more comprehensive understanding of the molecular mechanisms underlying this complex disease is crucial to the development of new diagnostic tools for early detection and disease monitoring, as well as to identify new and more effective therapeutics to improve patient outcomes. AREA COVERED We summarize recent advances in proteomic strategies and mass spectrometry to identify new biomarkers for early detection and monitoring of disease progression, predict response to therapy, and to identify novel proteins that have the potential to be 'druggable' therapeutic targets. An overview of proteomic studies that have been conducted to further our mechanistic understanding of metastasis and chemotherapy resistance in PDAC disease progression will also be discussed. EXPERT COMMENTARY The results from these PDAC proteomic studies on a variety of PDAC sample types (e.g., blood, tissue, cell lines, exosomes, etc.) provide great promise of having a significant clinical impact and improving patient outcomes.
Collapse
Affiliation(s)
- Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University , Dublin, Ireland
| | - Rozana Abdul Rahman
- St. Vincent's University Hospital , Dublin, Ireland.,St. Luke's Hospital , Dublin, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University , Dublin, Ireland
| | - Michael Moriarty
- National Institute for Cellular Biotechnology, Dublin City University , Dublin, Ireland.,St. Luke's Hospital , Dublin, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University , Dublin, Ireland
| |
Collapse
|
36
|
Zhang T, van Die I, Tefsen B, van Vliet SJ, Laan LC, Zhang J, Ten Dijke P, Wuhrer M, Belo AI. Differential O- and Glycosphingolipid Glycosylation in Human Pancreatic Adenocarcinoma Cells With Opposite Morphology and Metastatic Behavior. Front Oncol 2020; 10:732. [PMID: 32582529 PMCID: PMC7280451 DOI: 10.3389/fonc.2020.00732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/16/2020] [Indexed: 01/15/2023] Open
Abstract
Changes in the glycosylation profile of cancer cells have been strongly associated with cancer progression. To increase our insights into the role of glycosylation in human pancreatic ductal adenocarcinoma (PDAC), we performed a study on O-glycans and glycosphingolipid (GSL) glycans of the PDAC cell lines Pa-Tu-8988T (PaTu-T) and Pa-Tu-8988S (PaTu-S). These cell lines are derived from the same patient, but show an almost opposite phenotype, morphology and capacity to metastasize, and may thus provide an attractive model to study the role of glycosylation in progression of PDAC. Gene-array analysis revealed that 24% of the glycosylation-related genes showed a ≥ 1.5-fold difference in expression level between the two cell lines. Subsequent validation of the data by porous graphitized carbon nano-liquid chromatography coupled to a tandem ion trap mass spectrometry and flow cytometry established major differences in O-glycans and GSL-glycans between the cell lines, including lower levels of T and sialylated Tn (sTn) antigens, neoexpression of globosides (Gb3 and Gb4), and higher levels of gangliosides in the mesenchymal-like PaTu-T cells compared to the epithelial-like PaTu-S. In addition, PaTu-S cells demonstrated a significantly higher binding of the immune-lectins macrophage galactose-type lectin and galectin-4 compared to PaTu-T. In summary, our data provide a comprehensive and differential glycan profile of two PDAC cell lines with disparate phenotypes and metastatic behavior. This will allow approaches to modulate and monitor the glycosylation of these PDAC cell lines, which opens up avenues to study the biology and metastatic behavior of PDAC.
Collapse
Affiliation(s)
- Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Boris Tefsen
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lisa C Laan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jing Zhang
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Ana I Belo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
37
|
Zhang T, Madunić K, Holst S, Zhang J, Jin C, Ten Dijke P, Karlsson NG, Stavenhagen K, Wuhrer M. Development of a 96-well plate sample preparation method for integrated N- and O-glycomics using porous graphitized carbon liquid chromatography-mass spectrometry. Mol Omics 2020; 16:355-363. [PMID: 32281997 DOI: 10.1039/c9mo00180h] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Changes in glycosylation signatures of cells have been associated with pathological processes in cancer as well as infectious and autoimmune diseases. The current protocols for comprehensive analysis of N-glycomics and O-glycomics derived from cells and tissues often require a large amount of biological material. They also only allow the processing of very limited numbers of samples at a time. Here we established a workflow for sequential release of N-glycans and O-glycans based on PVDF membrane immobilization in 96-well format from 5 × 105 cells. Released glycans are reduced, desalted, purified, and reconstituted, all in 96-well format plates, without additional staining or derivatization. Glycans are then analyzed with porous graphitized carbon nano-liquid chromatography coupled to tandem mass spectrometry using negative-mode electrospray ionization, enabling the chromatographic resolution and structural elucidation of glycan species including many compositional isomers. The approach was demonstrated using glycoprotein standards and further applied to analyze the glycosylation of the murine mammary gland NMuMG cell line. The developed protocol allows the analysis of N- and O-glycans from relatively large numbers of samples in a less time consuming way with high repeatability. Inter- and intraday repeatability of the fetuin N-glycan analysis showed two median intraday coefficients of variations (CVs) of 7.6% and 8.0%, and a median interday CV of 9.8%. Median CVs of 7.9% and 8.7% for the main peaks of N- and O-glycans released from the NMuMG cell line indicate a very good repeatability. The method is applicable to purified glycoproteins as well as to biofluids and cell- or tissue-based samples.
Collapse
Affiliation(s)
- Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Drake RR, McDowell C, West C, David F, Powers TW, Nowling T, Bruner E, Mehta AS, Angel PM, Marlow LA, Tun HW, Copland JA. Defining the human kidney N-glycome in normal and cancer tissues using MALDI imaging mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4490. [PMID: 31860772 PMCID: PMC7187388 DOI: 10.1002/jms.4490] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 05/03/2023]
Abstract
Clear-cell renal cell carcinoma (ccRCC) presents challenges to clinical management because of late-stage detection, treatment resistance, and frequent disease recurrence. Metabolically, ccRCC has a well-described Warburg effect utilization of glucose, but how this affects complex carbohydrate synthesis and alterations to protein and cell surface glycosylation is poorly defined. Using an imaging mass spectrometry approach, N-glycosylation patterns and compositional differences were assessed between tumor and nontumor regions of formalin-fixed clinical ccRCC specimens and tissue microarrays. Regions of normal kidney tissue samples were also evaluated for N-linked glycan-based distinctions between cortex, medullar, glomeruli, and proximal tubule features. Most notable was the proximal tubule localized detection of abundant multiantennary N-glycans with bisecting N-acetylglucosamine and multziple fucose residues. These glycans are absent in ccRCC tissues, while multiple tumor-specific N-glycans were detected with tri- and tetra-antennary structures and varying levels of fucosylation and sialylation. A polycystic kidney disease tissue was also characterized for N-glycan composition, with specific nonfucosylated glycans detected in the cyst fluid regions. Complementary to the imaging mass spectrometry analyses was an assessment of transcriptomic gene array data focused on the fucosyltransferase gene family and other glycosyltransferase genes. The transcript levels of the FUT3 and FUT6 genes responsible for the enzymes that add fucose to N-glycan antennae were significantly decreased in all ccRCC tissues relative to matching nontumor tissues. These striking differences in glycosylation associated with ccRCC could lead to new mechanistic insight into the glycobiology underpinning kidney malignancies and suggest the potential for new therapeutic interventions and diagnostic markers.
Collapse
Affiliation(s)
- Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Colin McDowell
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Connor West
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Fred David
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Thomas W. Powers
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Tamara Nowling
- Department of Medicine, Division of Rheumatology and ImmunologyMedical University of South CarolinaCharlestonSC29425USA
| | - Evelyn Bruner
- Department of Pathology and Laboratory MedicineMedical University of South CarolinaCharlestonSC29425USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Laura A. Marlow
- Department of Cancer BiologyMayo ClinicJacksonvilleFL32224USA
| | - Han W. Tun
- Department of Cancer BiologyMayo ClinicJacksonvilleFL32224USA
- Division of Hematology/Oncology, Internal Medicine DepartmentMayo ClinicJacksonvilleFL32224USA
| | - John A. Copland
- Department of Cancer BiologyMayo ClinicJacksonvilleFL32224USA
| |
Collapse
|
39
|
Affiliation(s)
| | | | - Ronghu Wu
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
40
|
Uprety T, Spurlin BB, Antony L, Sreenivasan C, Young A, Li F, Hildreth MB, Kaushik RS. Development and characterization of a stable bovine intestinal sub-epithelial myofibroblast cell line from ileum of a young calf. In Vitro Cell Dev Biol Anim 2019; 55:533-547. [PMID: 31183683 DOI: 10.1007/s11626-019-00365-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Intestinal sub-epithelial myofibroblasts (ISEMFs) are mesenchymal cells that do not express cytokeratin but express α-smooth muscle actin and vimentin. Despite being cells with diverse functions, there is a paucity of knowledge about their origin and functions primarily due to the absence of a stable cell line. Although myofibroblast in vitro models for human, mouse, and pig are available, there is no ISEMF cell line available from young calves. We isolated and developed an ileal ISEMF cell line from a 2-d-old calf that expressed α-smooth muscle actin and vimentin but no cytokeratin indicating true myofibroblast cells. To overcome replicative senescence, we immortalized primary cells with SV40 large T antigen. We characterized and compared both primary and immortalized ileal ISEMF cells for surface glycan and Toll-like-receptor (TLR) expression by lectin-binding assay and real-time quantitative PCR (RT-qPCR) assay respectively. SV40 immortalization significantly decreased surface lectin binding for lectins GSL-I, PHA-L, ECL, Jacalin, Con-A, LCA, and LEL. Both cell types expressed TLRs 1-9 and showed no significant differences in TLR expression. Thus, these cells can be useful in vitro model to study ISEMF's origin, physiology, and functions.
Collapse
Affiliation(s)
- Tirth Uprety
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Brionna B Spurlin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Linto Antony
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Chithra Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Alan Young
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Michael B Hildreth
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
41
|
Mancera-Arteu M, Giménez E, Balmaña M, Barrabés S, Albiol-Quer M, Fort E, Peracaula R, Sanz-Nebot V. Multivariate data analysis for the detection of human alpha-acid glycoprotein aberrant glycosylation in pancreatic ductal adenocarcinoma. J Proteomics 2019; 195:76-87. [PMID: 30641231 DOI: 10.1016/j.jprot.2019.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/24/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022]
Abstract
Relative quantification of human alpha-acid glycoprotein (hAGP) glycan isomers using [12C6]/[13C6]-aniline in combination with multivariate data analysis is proposed as an efficient method for the identification of pancreatic ductal adenocarcinoma (PDAC) glycan biomarkers in serum samples. Intact and desialylated glycans from hAGP, purified from serum samples of patients with PDAC and chronic pancreatitis (ChrP), were labeled with aniline and analyzed by μZIC-HILIC-MS. Afterwards, partial least squares discriminant analysis (PLS-DA) was applied to the relative areas obtained for all glycan isomers in the different samples: pathological (ChrP or PDAC) versus healthy samples. Seven intact glycan isomers with α2-6 linked sialic acids, five of them also fucosylated, were the most meaningful to distinguish between PDAC and ChrP patients. The desialylated glycan isomers also identified by PLS-DA as potential biomarker candidates confirmed that antenna but also core fucosylation could be involved in PDAC. The analysis of intact and desialylated glycan isomers in combination with the multivariate data analysis revealed that the triantennary glycan with two fucoses of hAGP could have in the future a relevant role in the differentiation of patients with PDAC from those with ChrP. SIGNIFICANCE: Multivariate data analysis is currently being used in many omics fields for biomarker discovery. However, to date, no glycomics studies have applied chemometric tools combined with mass spectrometry in a preclinical research. In this work, this methodology has been used to identify altered glycosylation of human alpha-acid glycoprotein in pancreatic ductal adenocarcinoma (PDAC). The obtained results reveal that the triantennary glycan with two fucoses could have a great biomarker potential as it was relevant to differentiate PDAC and chronic pancreatitis (ChrP) patients.
Collapse
Affiliation(s)
- Montserrat Mancera-Arteu
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| | - Estela Giménez
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain.
| | - Meritxell Balmaña
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain; Glycobiology in Cancer Group, i3S - Instituto de Investigação e Inovação em Saúde, Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Sílvia Barrabés
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain; Biomedical Research Institute of Girona (IdIBGi), Salt, Spain
| | - Maite Albiol-Quer
- Department of Surgery, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Esther Fort
- Department of Gastroenterology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain; Biomedical Research Institute of Girona (IdIBGi), Salt, Spain
| | - Victòria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Sun F, Suttapitugsakul S, Wu R. Enzymatic Tagging of Glycoproteins on the Cell Surface for Their Global and Site-Specific Analysis with Mass Spectrometry. Anal Chem 2019; 91:4195-4203. [PMID: 30794380 PMCID: PMC6518397 DOI: 10.1021/acs.analchem.9b00441] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cell surface is normally covered with sugars that are bound to lipids or proteins. Surface glycoproteins play critically important roles in many cellular events, including cell-cell communications, cell-matrix interactions, and response to environmental cues. Aberrant protein glycosylation on the cell surface is often a hallmark of human diseases such as cancer and infectious diseases. Global analysis of surface glycoproteins will result in a better understanding of glycoprotein functions and the molecular mechanisms of diseases and the discovery of surface glycoproteins as biomarkers and drug targets. Here, an enzyme is exploited to tag surface glycoproteins, generating a chemical handle for their selective enrichment prior to mass spectrometric (MS) analysis. The enzymatic reaction is very efficient, and the reaction conditions are mild, which are well-suited for surface glycoprotein tagging. For biologically triplicate experiments, on average 953 N-glycosylation sites on 393 surface glycoproteins per experiment were identified in MCF7 cells. Integrating chemical and enzymatic reactions with MS-based proteomics, the current method is highly effective to globally and site-specifically analyze glycoproteins only located on the cell surface. Considering the importance of surface glycoproteins, this method is expected to have extensive applications to advance glycoscience.
Collapse
Affiliation(s)
- Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
43
|
Scott DA, Casadonte R, Cardinali B, Spruill L, Mehta AS, Carli F, Simone N, Kriegsmann M, Del Mastro L, Kriegsmann J, Drake RR. Increases in Tumor N-Glycan Polylactosamines Associated with Advanced HER2-Positive and Triple-Negative Breast Cancer Tissues. Proteomics Clin Appl 2019; 13:e1800014. [PMID: 30592377 PMCID: PMC8913074 DOI: 10.1002/prca.201800014] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 12/11/2018] [Indexed: 01/09/2023]
Abstract
PURPOSE Using a recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method, human breast cancer formalin-fixed paraffin-embedded (FFPE) tissue sections and tissue microarrays (TMA) are evaluated for N-linked glycan distribution in the tumor microenvironment. EXPERIMENTAL DESIGN Tissue sections representing multiple human epidermal growth factor receptor 2 (HER2) receptor-positive and triple-negative breast cancers (TNBC) in both TMA and FFPE slide format are processed for high resolution N-glycan MALDI-IMS. An additional FFPE tissue cohort of primary and metastatic breast tumors from the same donors are also evaluated. RESULTS The cumulative N-glycan MALDI-IMS analysis of breast cancer FFPE tissues and TMAs indicate the distribution of specific glycan structural classes to stromal, necrotic, and tumor regions. A series of high-mannose, branched and fucosylated glycans are detected predominantly within tumor regions. Additionally, a series of polylactosamine glycans are detected in advanced HER2+, TNBC, and metastatic breast cancer tissues. Comparison of tumor N-glycan species detected in paired primary and metastatic tissues indicate minimal changes between the two conditions. CONCLUSIONS AND CLINICAL RELEVANCE The prevalence of tumor-associated polylactosamine glycans in primary and metastatic breast cancer tissues indicates new mechanistic insights into the development and progression of breast cancers. The presence of these glycans could be targeted for therapeutic strategies and further evaluation as potential prognostic biomarkers.
Collapse
Affiliation(s)
- Danielle A. Scott
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics and MUSC Proteomics Center Medical University of South Carolina Charleston, 29425, SC, USA
| | | | - Barbara Cardinali
- Department of Medical Oncology Ospedale Policlinico San Martino Genova, 16132, GE, Italy
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston, 29425, SC, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics and MUSC Proteomics Center Medical University of South Carolina Charleston, 29425, SC, USA
| | - Franca Carli
- Department of Surgical Pathology Ospedale Policlinico San Martino Genova, 16132, GE, Italy
| | - Nicole Simone
- Department of Radiation Oncology Thomas Jefferson University Philadelphia, 19107, PA, USA
| | | | - Lucia Del Mastro
- Department of Internal Medicine University of Genova Genova, 16132, GE, Italy
| | - Joerg Kriegsmann
- Institute of Pathology University of Heidelberg Heidelberg, 69117, Germany
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics and MUSC Proteomics Center Medical University of South Carolina Charleston, 29425, SC, USA
| |
Collapse
|
44
|
Peng W, Zhao J, Dong X, Banazadeh A, Huang Y, Hussien A, Mechref Y. Clinical application of quantitative glycomics. Expert Rev Proteomics 2018; 15:1007-1031. [PMID: 30380947 PMCID: PMC6647030 DOI: 10.1080/14789450.2018.1543594] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aberrant glycosylation has been associated with many diseases. Decades of research activities have reported many reliable glycan biomarkers of different diseases which enable effective disease diagnostics and prognostics. However, none of the glycan markers have been approved for clinical diagnosis. Thus, a review of these studies is needed to guide the successful clinical translation. Area covered: In this review, we describe and discuss advances in analytical methods enabling clinical glycan biomarker discovery, focusing only on studies of released glycans. This review also summarizes the different glycobiomarkers identified for cancers, Alzheimer's disease, diabetes, hepatitis B and C, and other diseases. Expert commentary: Along with the development of techniques in quantitative glycomics, more glycans or glycan patterns have been reported as better potential biomarkers of different diseases and proved to have greater diagnostic/diagnostic sensitivity and specificity than existing markers. However, to successfully apply glycan markers in clinical diagnosis, more studies and verifications on large biological cohorts need to be performed. In addition, faster and more efficient glycomic strategies need to be developed to shorten the turnaround time. Thus, glycan biomarkers have an immense chance to be used in clinical prognosis and diagnosis of many diseases in the near future.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Ahmed Hussien
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
- Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, 21526, Egypt
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| |
Collapse
|
45
|
Interplay between Endoplasmic Reticular Stress and Survivin in Colonic Epithelial Cells. Cells 2018; 7:cells7100171. [PMID: 30326660 PMCID: PMC6210275 DOI: 10.3390/cells7100171] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Sustained endoplasmic reticular stress (ERS) is implicated in aggressive metastasis of cancer cells and increased tumor cell proliferation. Cancer cells activate the unfolded protein response (UPR), which aids in cellular survival and adaptation to harsh conditions. Inhibition of apoptosis, in contrast, is a mechanism adopted by cancer cells with the help of the inhibitor of an apoptosis (IAP) class of proteins such as Survivin to evade cell death and gain a proliferative advantage. In this study, we aimed to reveal the interrelation between ERS and Survivin. We initially verified the expression of Survivin in Winnie (a mouse model of chronic ERS) colon tissues by using immunohistochemistry (IHC) and immunofluorescence (IF) in comparison with wild type Blk6 mice. Additionally, we isolated the goblet cells and determined the expression of Survivin by IF and protein validation. Tunicamycin was utilized at a concentration of 10 µg/mL to induce ERS in the LS174T cell line and the gene expression of the ERS markers was measured. This was followed by determination of inflammatory cytokines. Inhibition of ERS was carried out by 4Phenyl Butyric acid (4PBA) at a concentration of 10 mM to assess whether there was a reciprocation effect. The downstream cell death assays including caspase 3/7, Annexin V, and poly(ADP-ribose) polymerase (PARP) cleavage were evaluated in the presence of ERS and absence of ERS, which was followed by a proliferative assay (EdU click) with and without ERS. Correspondingly, we inhibited Survivin by YM155 at a concentration of 100 nM and observed the succeeding ERS markers and inflammatory markers. We also verified the caspase 3/7 assay. Our results demonstrate that ERS inhibition not only significantly reduced the UPR genes (Grp78, ATF6, PERK and XBP1) along with Survivin but also downregulated the inflammatory markers such as IL8, IL4, and IL6, which suggests a positive correlation between ERS and the inhibition of apoptosis. Furthermore, we provided evidence that ERS inhibition promoted apoptosis in LS174T cells and shortened the proliferation rate. Moreover, Survivin inhibition by YM155 led to a comparable effect as that of ERS inhibition, which includes attenuation of ERS genes and inflammatory markers as well as the promotion of programmed cell death via the caspase 3/7 pathway. Together, our results propose the interrelation between ERS and inhibition of apoptosis assigning a molecular and therapeutic target for cancer treatment.
Collapse
|
46
|
Llop E, Guerrero PE, Duran A, Barrabés S, Massaguer A, Ferri MJ, Albiol-Quer M, de Llorens R, Peracaula R. Glycoprotein biomarkers for the detection of pancreatic ductal adenocarcinoma. World J Gastroenterol 2018; 24:2537-2554. [PMID: 29962812 PMCID: PMC6021768 DOI: 10.3748/wjg.v24.i24.2537] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/04/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PaC) shows a clear tendency to increase in the next years and therefore represents an important health and social challenge. Currently, there is an important need to find biomarkers for PaC early detection because the existing ones are not useful for that purpose. Recent studies have indicated that there is a large window of time for PaC early detection, which opens the possibility to find early biomarkers that could greatly improve the dismal prognosis of this tumor. The present manuscript reviews the state of the art of the existing PaC biomarkers. It focuses on the anomalous glycosylation process and its role in PaC. Glycan structures of glycoconjugates such as glycoproteins are modified in tumors and these modifications can be detected in biological fluids of the cancer patients. Several studies have found serum glycoproteins with altered glycan chains in PaC patients, but they have not shown enough specificity for PaC. To find more specific cancer glycoproteins we propose to analyze the glycan moieties of a battery of glycoproteins that have been reported to increase in PaC tissues and that can also be found in serum. The combination of these new candidate glycoproteins with their aberrant glycosylation together with the existing biomarkers could result in a panel, which would expect to give better results as a new tool for early diagnosis of PaC and to monitor the disease.
Collapse
Affiliation(s)
- Esther Llop
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Pedro E Guerrero
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Adrià Duran
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Sílvia Barrabés
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Anna Massaguer
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - María José Ferri
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
- Clinic Laboratory, University Hospital Dr Josep Trueta, Girona 17007, Spain
| | - Maite Albiol-Quer
- Department of Surgery, Hepato-biliary and Pancreatic Surgery Unit, University Hospital Dr Josep Trueta, Girona 17007, Spain
| | - Rafael de Llorens
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Rosa Peracaula
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| |
Collapse
|
47
|
Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk. Proc Natl Acad Sci U S A 2018; 115:E3769-E3778. [PMID: 29615514 DOI: 10.1073/pnas.1722434115] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) remains one of the most lethal tumor types, with extremely low survival rates due to late diagnosis and resistance to standard therapies. A more comprehensive understanding of the complexity of PDA pathobiology, and especially of the role of the tumor microenvironment in disease progression, should pave the way for therapies to improve patient response rates. In this study, we identify galectin-1 (Gal1), a glycan-binding protein that is highly overexpressed in PDA stroma, as a major driver of pancreatic cancer progression. Genetic deletion of Gal1 in a Kras-driven mouse model of PDA (Ela-KrasG12Vp53-/- ) results in a significant increase in survival through mechanisms involving decreased stroma activation, attenuated vascularization, and enhanced T cell infiltration leading to diminished metastasis rates. In a human setting, human pancreatic stellate cells (HPSCs) promote cancer proliferation, migration, and invasion via Gal1-driven pathways. Moreover, in vivo orthotopic coinjection of pancreatic tumor cells with Gal1-depleted HPSCs leads to impaired tumor formation and metastasis in mice. Gene-expression analyses of pancreatic tumor cells exposed to Gal1 reveal modulation of multiple regulatory pathways involved in tumor progression. Thus, Gal1 hierarchically regulates different events implicated in PDA biology including tumor cell proliferation, invasion, angiogenesis, inflammation, and metastasis, highlighting the broad therapeutic potential of Gal1-specific inhibitors, either alone or in combination with other therapeutic modalities.
Collapse
|