1
|
Siwakoti U, Jones SA, Kumbhare D, Cui XT, Castagnola E. Recent Progress in Flexible Microelectrode Arrays for Combined Electrophysiological and Electrochemical Sensing. BIOSENSORS 2025; 15:100. [PMID: 39997002 PMCID: PMC11853293 DOI: 10.3390/bios15020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Understanding brain function requires advanced neural probes to monitor electrical and chemical signaling across multiple timescales and brain regions. Microelectrode arrays (MEAs) are widely used to record neurophysiological activity across various depths and brain regions, providing single-unit resolution for extended periods. Recent advancements in flexible MEAs, built on micrometer-thick polymer substrates, have improved integration with brain tissue by mimicking the brain's soft nature, reducing mechanical trauma and inflammation. These flexible, subcellular-scale MEAs can record stable neural signals for months, making them ideal for long-term studies. In addition to electrical recording, MEAs have been functionalized for electrochemical neurotransmitter detection. Electroactive neurotransmitters, such as dopamine, serotonin, and adenosine, can be directly measured via electrochemical methods, particularly on carbon-based surfaces. For non-electroactive neurotransmitters like acetylcholine, glutamate, and γ-aminobutyric acid, alternative strategies, such as enzyme immobilization and aptamer-based recognition, are employed to generate electrochemical signals. This review highlights recent developments in flexible MEA fabrication and functionalization to achieve both electrochemical and electrophysiological recordings, minimizing sensor fowling and brain damage when implanted long-term. It covers multi-time scale neurotransmitter detection, development of conducting polymer and nanomaterial composite coatings to enhance sensitivity, incorporation of enzyme and aptamer-based recognition methods, and the integration of carbon electrodes on flexible MEAs. Finally, it summarizes strategies to acquire electrochemical and electrophysiological measurements from the same device.
Collapse
Affiliation(s)
- Umisha Siwakoti
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA; (U.S.); (S.A.J.)
| | - Steven A. Jones
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA; (U.S.); (S.A.J.)
| | - Deepak Kumbhare
- Department of Neurosurgery, Louisiana State University Health Sciences, Shreveport, LA 71103, USA;
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburg, Pittsburgh, PA 15260, USA;
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Elisa Castagnola
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA; (U.S.); (S.A.J.)
- Department of Bioengineering, University of Pittsburg, Pittsburgh, PA 15260, USA;
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
2
|
Li XH, Hu N, Chang ZH, Shi JX, Fan X, Chen MM, Bao SQ, Chen C, Zuo JC, Zhang XW, Wang JJ, Ming D. Brain organoid maturation and implantation integration based on electrical signals input. J Adv Res 2024:S2090-1232(24)00378-3. [PMID: 39243942 DOI: 10.1016/j.jare.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
INTRODUCTION Brain organoids are believed to be able to regenerate impaired neural circuits and reinstate brain functionality. The neuronal activity of organoids is considered a crucial factor for restoring host function after implantation. However, the optimal stage of brain organoid post-transplantation has not yet been established. External electrical signal plays a crucial role in the physiology and development of a majority of human tissues. However, whether electrical input modulates the development of brain organoids, making them ideal transplant donors, is elusive. METHODS Bioelectricity was input into cortical organoids by electrical stimulation (ES) with a multi-electrode array (MEA) to obtain a better-transplanted candidate with better viability and maturity, realizing structural-functional integration with the host brain. RESULTS We found that electrical stimulation facilitated the differentiation and maturation of organoids, displaying well-defined cortical plates and robust functional electrophysiology, which was probably mediated via the pathway of calcium-calmodulin (CaM) dependent protein kinase II (CAMK II)-protein kinase A (PKA)-cyclic-AMP response binding protein (pCREB). The ES-pretreated D40 organoids displayed superior cell viability and higher cell maturity, and were selected to transplant into the damaged primary sensory cortex (S1) of host. The enhanced maturation was exhibited within grafts after transplantation, including synapses and complex functional activities. Moreover, structural-functional integration between grafts and host was observed, conducive to strengthening functional connectivity and restoring the function of the host injury. CONCLUSION Our findings supported that electrical stimulation could promote the development of cortical organoids. ES-pretreated organoids were better-transplanted donors for strengthening connectivity between grafts and host. Our work presented a new physical approach to regulating organoids, potentially providing a novel translational strategy for functional recovery after brain injury. In the future, the development of 3D flexible electrodes is anticipated to overcome the drawbacks of 2D planar MEA, promisingly achieving multimodal stimulation and long-term recordings of brain organoids.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiu Fan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Meng-Meng Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang-Qing Bao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jia-Chen Zuo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Wang Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jing-Jing Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Wallace GG. Driving Deployment of Bioengineered Products-An Arduous, Sometimes Tedious, Challenging, Rewarding, Most Exciting Journey That Has to Be Made! Bioengineering (Basel) 2024; 11:856. [PMID: 39199813 PMCID: PMC11352002 DOI: 10.3390/bioengineering11080856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
More than three decades ago, we embarked on a number of bioengineering explorations using the most advanced materials and fabrication methods. In every area we ventured into, it was our intention to ensure fundamental discoveries were deployed into the clinic to benefit patients. When we embarked on this journey, we did so without a road map, not even a compass, and so the path was arduous, sometimes tedious. Now, we can see the doorway to deployment on the near horizon. We now appreciate that overcoming the challenges has made this a rewarding and exciting journey. However, maybe we could have been here a lot sooner, and so maybe the lessons we have learned could benefit others and accelerate progress in clinical translation. Through a number of case studies, including neural regeneration, cartilage regeneration, skin regeneration, the 3D printing of capsules for islet cell transplantation, and the bioengineered cornea, here, we retrace our steps. We will summarise the journey to date, point out the obstacles encountered, and celebrate the translational impact. Then, we will provide a framework for project design with the clinical deployment of bioengineered products as the goal.
Collapse
Affiliation(s)
- Gordon George Wallace
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia
| |
Collapse
|
4
|
Wang L, Zhao H, Han M, Yang H, Lei M, Wang W, Li K, Li Y, Sang Y, Xin T, Liu H, Qiu J. Electromagnetic Cellularized Patch with Wirelessly Electrical Stimulation for Promoting Neuronal Differentiation and Spinal Cord Injury Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307527. [PMID: 38868910 PMCID: PMC11321663 DOI: 10.1002/advs.202307527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/02/2024] [Indexed: 06/14/2024]
Abstract
Although stem cell therapy holds promise for the treatment of spinal cord injury (SCI), its practical applications are limited by the low degree of neural differentiation. Electrical stimulation is one of the most effective ways to promote the differentiation of stem cells into neurons, but conventional wired electrical stimulation may cause secondary injuries, inflammation, pain, and infection. Here, based on the high conductivity of graphite and the electromagnetic induction effect, graphite nanosheets with neural stem cells (NSCs) are proposed as an electromagnetic cellularized patch to generate in situ wirelessly pulsed electric signals under a rotating magnetic field for regulating neuronal differentiation of NSCs to treat SCI. The strength and frequency of the induced voltage can be controlled by adjusting the rotation speed of the magnetic field. The generated pulsed electrical signals promote the differentiation of NSCs into functional mature neurons and increase the proportion of neurons from 12.5% to 33.7%. When implanted in the subarachnoid region of the injured spinal cord, the electromagnetic cellularized patch improves the behavioral performance of the hind limbs and the repair of spinal cord tissue in SCI mice. This work opens a new avenue for remote treatment of SCI and other nervous system diseases.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Hongbo Zhao
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinan250014P. R. China
| | - Min Han
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinan250014P. R. China
| | - Hongru Yang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Ming Lei
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Wenhan Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Keyi Li
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Yiwei Li
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Tao Xin
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinan250014P. R. China
- Department of Neurosurgery, Shandong Provincial Qianfoshan HospitalShandong UniversityJinan250014P. R. China
- Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinan250117P. R. China
- Department of NeurosurgeryJiangxi Provincial People's HospitalNanchangJiangxi330006P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
- Institute for Advanced Interdisciplinary ResearchUniversity of JinanJinanShandong250022P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| |
Collapse
|
5
|
Kim NY, Choi YY, Kim TH, Ha JH, Kim TH, Kang T, Chung BG. Synergistic Effect of Electrical and Biochemical Stimulation on Human iPSC-Derived Neural Differentiation in a Microfluidic Electrode Array Chip. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15730-15740. [PMID: 38527279 DOI: 10.1021/acsami.3c17108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Neural differentiation is crucial for advancing our understanding of the nervous system and developing treatments for neurological disorders. The advanced methods and the ability to manipulate the alignment, proliferation, and differentiation of stem cells are essential for studying neuronal development and synaptic interactions. However, the utilization of human induced pluripotent stem cells (iPSCs) for disease modeling of neurodegenerative conditions may be constrained by the prolonged duration and uncontrolled cell differentiation required for functional neural cell differentiation. Here, we developed a microfluidic chip to enhance the differentiation and maturation of specific neural lineages by placing aligned microelectrodes on the glass surface to regulate the neural differentiation of human iPSCs. The utilization of electrical stimulation (ES) in conjunction with neurotrophic factors (NF) significantly enhanced the efficiency in generating functional neurons from human iPSCs. We also observed that the simultaneous application of NF and ES to human iPSCs promoted their differentiation and maturation into functional neurons while increasing synaptic interactions. Our research demonstrated the effect of combining NF and ES on human iPSC-derived neural differentiation.
Collapse
Affiliation(s)
- Na Yeon Kim
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea
| | - Yoon Young Choi
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Tae Hyeon Kim
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
| | - Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
| | - Taewook Kang
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Bong Geun Chung
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
- Institute of Smart Biosensor, Sogang University, Seoul 04107, Korea
| |
Collapse
|
6
|
Li M, Sun H, Hou Z, Hao S, Jin L, Wang B. Engineering the Physical Microenvironment into Neural Organoids for Neurogenesis and Neurodevelopment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306451. [PMID: 37771182 DOI: 10.1002/smll.202306451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Understanding the signals from the physical microenvironment is critical for deciphering the processes of neurogenesis and neurodevelopment. The discovery of how surrounding physical signals shape human developing neurons is hindered by the bottleneck of conventional cell culture and animal models. Notwithstanding neural organoids provide a promising platform for recapitulating human neurogenesis and neurodevelopment, building neuronal physical microenvironment that accurately mimics the native neurophysical features is largely ignored in current organoid technologies. Here, it is discussed how the physical microenvironment modulates critical events during the periods of neurogenesis and neurodevelopment, such as neural stem cell fates, neural tube closure, neuronal migration, axonal guidance, optic cup formation, and cortical folding. Although animal models are widely used to investigate the impacts of physical factors on neurodevelopment and neuropathy, the important roles of human stem cell-derived neural organoids in this field are particularly highlighted. Considering the great promise of human organoids, building neural organoid microenvironments with mechanical forces, electrophysiological microsystems, and light manipulation will help to fully understand the physical cues in neurodevelopmental processes. Neural organoids combined with cutting-edge techniques, such as advanced atomic force microscopes, microrobots, and structural color biomaterials might promote the development of neural organoid-based research and neuroscience.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Zongkun Hou
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
7
|
Suarato G, Pressi S, Menna E, Ruben M, Petrini EM, Barberis A, Miele D, Sandri G, Salerno M, Schirato A, Alabastri A, Athanassiou A, Proietti Zaccaria R, Papadopoulou EL. Modified Carbon Nanotubes Favor Fibroblast Growth by Tuning the Cell Membrane Potential. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3093-3105. [PMID: 38206310 PMCID: PMC10811621 DOI: 10.1021/acsami.3c14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
As is known, carbon nanotubes favor cell growth in vitro, although the underlying mechanisms are not yet fully elucidated. In this study, we explore the hypothesis that electrostatic fields generated at the interface between nonexcitable cells and appropriate scaffold might favor cell growth by tuning their membrane potential. We focused on primary human fibroblasts grown on electrospun polymer fibers (poly(lactic acid)─PLA) with embedded multiwall carbon nanotubes (MWCNTs). The MWCNTs were functionalized with either the p-methoxyphenyl (PhOME) or the p-acetylphenyl (PhCOMe) moiety, both of which allowed uniform dispersion in a solvent, good mixing with PLA and the consequent smooth and homogeneous electrospinning process. The inclusion of the electrically conductive MWCNTs in the insulating PLA matrix resulted in differences in the surface potential of the fibers. Both PLA and PLA/MWCNT fiber samples were found to be biocompatible. The main features of fibroblasts cultured on different substrates were characterized by scanning electron microscopy, immunocytochemistry, Rt-qPCR, and electrophysiology revealing that fibroblasts grown on PLA/MWCNT reached a healthier state as compared to pure PLA. In particular, we observed physiological spreading, attachment, and Vmem of fibroblasts on PLA/MWCNT. Interestingly, the electrical functionalization of the scaffold resulted in a more suitable extracellular environment for the correct biofunctionality of these nonexcitable cells. Finally, numerical simulations were also performed in order to understand the mechanism behind the different cell behavior when grown either on PLA or PLA/MWCNT samples. The results show a clear effect on the cell membrane potential, depending on the underlying substrate.
Collapse
Affiliation(s)
- Giulia Suarato
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Samuel Pressi
- Department
of Chemical Sciences, University of Padua, via Marzolo 1, 35131 Padova, Italy
- Interdepartmental
Centre Giorgio Levi Cases for Energy Economics and Technology, University of Padua, via Marzolo 9, 35131 Padova, Italy
| | - Enzo Menna
- Department
of Chemical Sciences, University of Padua, via Marzolo 1, 35131 Padova, Italy
- Interdepartmental
Centre Giorgio Levi Cases for Energy Economics and Technology, University of Padua, via Marzolo 9, 35131 Padova, Italy
| | - Massimo Ruben
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | | | - Andrea Barberis
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Dalila Miele
- Department
of Drug Sciences, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department
of Drug Sciences, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Marco Salerno
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Andrea Schirato
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Dipartimento
di Fisica, Politecnico di Milano, Pizza Leonardo da Vinci 32, Milan 20133, Italy
- Department
of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Alessandro Alabastri
- Department
of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | | | | | | |
Collapse
|
8
|
Olguín Y, Selva M, Benavente D, Orellana N, Montenegro I, Madrid A, Jaramillo-Pinto D, Otero MC, Corrales TP, Acevedo CA. Effect of Electrical Stimulation on PC12 Cells Cultured in Different Hydrogels: Basis for the Development of Biomaterials in Peripheral Nerve Tissue Engineering. Pharmaceutics 2023; 15:2760. [PMID: 38140099 PMCID: PMC10747664 DOI: 10.3390/pharmaceutics15122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Extensive damage to peripheral nerves is a health problem with few therapeutic alternatives. In this context, the development of tissue engineering seeks to obtain materials that can help recreate environments conducive to cellular development and functional repair of peripheral nerves. Different hydrogels have been studied and presented as alternatives for future treatments to emulate the morphological characteristics of nerves. Along with this, other research proposes the need to incorporate electrical stimuli into treatments as agents that promote cell growth and differentiation; however, no precedent correlates the simultaneous effects of the types of hydrogel and electrical stimuli. This research evaluates the neural differentiation of PC12 cells, relating the effect of collagen, alginate, GelMA, and PEGDA hydrogels with electrical stimulation modulated in four different ways. Our results show significant correlations for different cultivation conditions. Electrical stimuli significantly increase neural differentiation for specific experimental conditions dependent on electrical frequency, not voltage. These backgrounds allow new material treatment schemes to be formulated through electrical stimulation in peripheral nerve tissue engineering.
Collapse
Affiliation(s)
- Yusser Olguín
- Departamento de Química y Medio Ambiente, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
- Centro Científico y Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.B.); (C.A.A.)
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
| | - Mónica Selva
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
| | - Diego Benavente
- Centro Científico y Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.B.); (C.A.A.)
| | - Nicole Orellana
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
| | - Ivan Montenegro
- Centro de Investigaciones Biomédicas, Escuela de Obstetricia, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2390123, Chile;
| | - Diego Jaramillo-Pinto
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Millenium Nucleus in NanoBioPhysics (NNBP), Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - María Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Republica 252, Santiago 8370071, Chile;
| | - Tomas P. Corrales
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Millenium Nucleus in NanoBioPhysics (NNBP), Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Cristian A. Acevedo
- Centro Científico y Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.B.); (C.A.A.)
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| |
Collapse
|
9
|
Bartlett M, He M, Ranke D, Wang Y, Cohen-Karni T. A snapshot review on materials enabled multimodal bioelectronics for neurological and cardiac research. MRS ADVANCES 2023; 8:1047-1060. [PMID: 38283671 PMCID: PMC10812139 DOI: 10.1557/s43580-023-00645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/08/2023] [Indexed: 01/30/2024]
Abstract
Seamless integration of the body and electronics toward the understanding, quantification, and control of disease states remains one of the grand scientific challenges of this era. As such, research efforts have been dedicated to developing bioelectronic devices for chemical, mechanical, and electrical sensing, and cellular and tissue functionality modulation. The technologies developed to achieve these capabilities cross a wide range of materials and scale (and dimensionality), e.g., from micrometer to centimeters (from 2-dimensional (2D) to 3-dimensional (3D) assemblies). The integration into multimodal systems which allow greater insight and control into intrinsically multifaceted biological systems requires careful design and selection. This snapshot review will highlight the state-of-the-art in cellular recording and modulation as well as the material considerations for the design and manufacturing of devices integrating their capabilities.
Collapse
Affiliation(s)
- Mabel Bartlett
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mengdi He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Daniel Ranke
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yingqiao Wang
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Tzahi Cohen-Karni
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
Licata JP, Schwab KH, Har-El YE, Gerstenhaber JA, Lelkes PI. Bioreactor Technologies for Enhanced Organoid Culture. Int J Mol Sci 2023; 24:11427. [PMID: 37511186 PMCID: PMC10380004 DOI: 10.3390/ijms241411427] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
An organoid is a 3D organization of cells that can recapitulate some of the structure and function of native tissue. Recent work has seen organoids gain prominence as a valuable model for studying tissue development, drug discovery, and potential clinical applications. The requirements for the successful culture of organoids in vitro differ significantly from those of traditional monolayer cell cultures. The generation and maturation of high-fidelity organoids entails developing and optimizing environmental conditions to provide the optimal cues for growth and 3D maturation, such as oxygenation, mechanical and fluidic activation, nutrition gradients, etc. To this end, we discuss the four main categories of bioreactors used for organoid culture: stirred bioreactors (SBR), microfluidic bioreactors (MFB), rotating wall vessels (RWV), and electrically stimulating (ES) bioreactors. We aim to lay out the state-of-the-art of both commercial and in-house developed bioreactor systems, their benefits to the culture of organoids derived from various cells and tissues, and the limitations of bioreactor technology, including sterilization, accessibility, and suitability and ease of use for long-term culture. Finally, we discuss future directions for improvements to existing bioreactor technology and how they may be used to enhance organoid culture for specific applications.
Collapse
Affiliation(s)
- Joseph P Licata
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Kyle H Schwab
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yah-El Har-El
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Jonathan A Gerstenhaber
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
11
|
Zhou Z, Wang W, Wang J, Wang H, Xia Y, Zhang W, Lai Y, Lin X, Huang Y, Zou X, Stoddart MJ, Li Z, Tian W, Liu S, Wu X, Gao M, Li J, Yang L, Chen D. Function-oriented design: A novel strategy for advanced biomedical materials. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2023; 145:197-209. [DOI: 10.1016/j.jmst.2022.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
12
|
Qin C, Yue Z, Wallace GG, Chen J. Bipolar Electrochemical Stimulation Using Conducting Polymers for Wireless Electroceuticals and Future Directions. ACS APPLIED BIO MATERIALS 2022; 5:5041-5056. [PMID: 36260917 DOI: 10.1021/acsabm.2c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Electrochemistry has become a powerful strategy to modulate cellular behavior and biological activity by manipulating electrical signals. Subsequent electrical stimulus-responsive conducting polymers (CPs) have advanced traditional wired electrochemical stimulation (ES) systems and developed wireless cell stimulation systems due to their electroconductivity, biocompatibility, stability, and flexibility. Bipolar electrochemistry (BPE), i.e., wireless electrochemistry, offers an effective pathway to modify wired ES systems into a desirable contactless mode, turning out a potential technique to offer fundamental insights into neural cell stimulation and neural network formation. This review commences with a brief discussion of the BPE technique and also the advantages of a bipolar electrochemical stimulation (BPES) system compared to traditional wired ES systems and other wireless ES systems. Then, the BPES system is elucidated through four aspects: the benefits of BPES, the key factors to establish BPES platforms for cell stimulation, the limits/barriers to overcome for current rigid materials in particular metals-based systems, and a brief overview of the concept proved by CPs-based systems. Furthermore, how to refine the existing BPES system from materials/devices modification that combine CP compositions with 3D fabrication/bioprinting technologies is elaborately discussed as well. Finally, the review ends together with future research directions, picturing the potential of BPES system in biomedical applications.
Collapse
Affiliation(s)
- Chunyan Qin
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, New South Wales2519, Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, New South Wales2519, Australia
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, New South Wales2519, Australia
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, New South Wales2519, Australia
| |
Collapse
|
13
|
Zhang J, Yang H, Wu J, Zhang D, Wang Y, Zhai J. Recent progresses in novel in vitro models of primary neurons: A biomaterial perspective. Front Bioeng Biotechnol 2022; 10:953031. [PMID: 36061442 PMCID: PMC9428288 DOI: 10.3389/fbioe.2022.953031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Central nervous system (CNS) diseases have been a growing threat to the health of humanity, emphasizing the urgent need of exploring the pathogenesis and therapeutic approaches of various CNS diseases. Primary neurons are directly obtained from animals or humans, which have wide applications including disease modeling, mechanism exploration and drug development. However, traditional two-dimensional (2D) monoculture cannot resemble the native microenvironment of CNS. With the increasing understanding of the complexity of the CNS and the remarkable development of novel biomaterials, in vitro models have experienced great innovation from 2D monoculture toward three-dimensional (3D) multicellular culture. The scope of this review includes the progress of various in vitro models of primary neurons in recent years to provide a holistic view of the modalities and applications of primary neuron models and how they have been connected with the revolution of biofabrication techniques. Special attention has been paid to the interaction between primary neurons and biomaterials. First, a brief introduction on the history of CNS modeling and primary neuron culture was conducted. Next, detailed progress in novel in vitro models were discussed ranging from 2D culture, ex vivo model, spheroid, scaffold-based model, 3D bioprinting model, and microfluidic chip. Modalities, applications, advantages, and limitations of the aforementioned models were described separately. Finally, we explored future prospects, providing new insights into how basic science research methodologies have advanced our understanding of the CNS, and highlighted some future directions of primary neuron culture in the next few decades.
Collapse
Affiliation(s)
- Jiangang Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiyu Yang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaming Wu
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dingyue Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiliang Zhai
- Departments of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Jiliang Zhai,
| |
Collapse
|
14
|
Yang H, Su Y, Sun Z, Ma B, Liu F, Kong Y, Sun C, Li B, Sang Y, Wang S, Li G, Qiu J, Liu C, Geng Z, Liu H. Gold Nanostrip Array-Mediated Wireless Electrical Stimulation for Accelerating Functional Neuronal Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202376. [PMID: 35618610 PMCID: PMC9353484 DOI: 10.1002/advs.202202376] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 05/27/2023]
Abstract
Neural stem cell (NSC)-based therapy holds great promise for the treatment of neurodegenerative diseases. Presently, however, it is hindered by poor functional neuronal differentiation. Electrical stimulation is considered one of the most effective ways to promote neuronal differentiation of NSCs. In addition to surgically implanted electrodes, traditional electrical stimulation includes wires connected to the external power supply, and an additional surgery is required to remove the electrodes or wires following stimulation, which may cause secondary injuries and infections. Herein, a novel method is reported for generation of wireless electrical signals on an Au nanostrip array by leveraging the effect of electromagnetic induction under a rotating magnetic field. The intensity of the generated electrical signals depends on the rotation speed and magnetic field strength. The Au nanostrip array-mediated electric stimulation promotes NSC differentiation into mature neurons within 5 days, at the mRNA, protein, and function levels. The rate of differentiation is faster by at least 5 days than that in cells without treatment. The Au nanostrip array-based wireless device also accelerates neuronal differentiation of NSCs in vivo. The novel method to accelerate the neuronal differentiation of NSCs has the advantages of wireless, timely, localized and precise controllability, and noninvasive power supplementation.
Collapse
Affiliation(s)
- Hongru Yang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Yue Su
- State Key Laboratory of Integrated OptoelectronicsInstitute of SemiconductorsChinese Academy of SciencesBeijing100083P. R. China
| | - Zhaoyang Sun
- Department of Oral and Maxillofacial SurgeryQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Baojin Ma
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Feng Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Ying Kong
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary ResearchUniversity of JinanJinanShandong250022P. R. China
| | - Boyan Li
- Department of Neurosurgery Qilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandong250012P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Shuhua Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Gang Li
- Department of Neurosurgery Qilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandong250012P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Chao Liu
- Department of Oral and Maxillofacial SurgeryQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Zhaoxin Geng
- School of Information EngineeringMinzu University of ChinaBeijing100081P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
- Institute for Advanced Interdisciplinary ResearchUniversity of JinanJinanShandong250022P. R. China
| |
Collapse
|
15
|
O’Hara-Wright M, Mobini S, Gonzalez-Cordero A. Bioelectric Potential in Next-Generation Organoids: Electrical Stimulation to Enhance 3D Structures of the Central Nervous System. Front Cell Dev Biol 2022; 10:901652. [PMID: 35656553 PMCID: PMC9152151 DOI: 10.3389/fcell.2022.901652] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cell-derived organoid models of the central nervous system represent one of the most exciting areas in in vitro tissue engineering. Classically, organoids of the brain, retina and spinal cord have been generated via recapitulation of in vivo developmental cues, including biochemical and biomechanical. However, a lesser studied cue, bioelectricity, has been shown to regulate central nervous system development and function. In particular, electrical stimulation of neural cells has generated some important phenotypes relating to development and differentiation. Emerging techniques in bioengineering and biomaterials utilise electrical stimulation using conductive polymers. However, state-of-the-art pluripotent stem cell technology has not yet merged with this exciting area of bioelectricity. Here, we discuss recent findings in the field of bioelectricity relating to the central nervous system, possible mechanisms, and how electrical stimulation may be utilised as a novel technique to engineer “next-generation” organoids.
Collapse
Affiliation(s)
- Michelle O’Hara-Wright
- Stem Cell Medicine Group, Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Sahba Mobini
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM + CSIC), Madrid, Spain
| | - Anai Gonzalez-Cordero
- Stem Cell Medicine Group, Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
- *Correspondence: Anai Gonzalez-Cordero,
| |
Collapse
|
16
|
Physiological Electric Field: A Potential Construction Regulator of Human Brain Organoids. Int J Mol Sci 2022; 23:ijms23073877. [PMID: 35409232 PMCID: PMC8999182 DOI: 10.3390/ijms23073877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Brain organoids can reproduce the regional three-dimensional (3D) tissue structure of human brains, following the in vivo developmental trajectory at the cellular level; therefore, they are considered to present one of the best brain simulation model systems. By briefly summarizing the latest research concerning brain organoid construction methods, the basic principles, and challenges, this review intends to identify the potential role of the physiological electric field (EF) in the construction of brain organoids because of its important regulatory function in neurogenesis. EFs could initiate neural tissue formation, inducing the neuronal differentiation of NSCs, both of which capabilities make it an important element of the in vitro construction of brain organoids. More importantly, by adjusting the stimulation protocol and special/temporal distributions of EFs, neural organoids might be created following a predesigned 3D framework, particularly a specific neural network, because this promotes the orderly growth of neural processes, coordinate neuronal migration and maturation, and stimulate synapse and myelin sheath formation. Thus, the application of EF for constructing brain organoids in a3D matrix could be a promising future direction in neural tissue engineering.
Collapse
|
17
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
18
|
Mahmoodi N, Ai J, Hassannejad Z, Ebrahimi-Barough S, Hasanzadeh E, Nekounam H, Vaccaro AR, Rahimi-Movaghar V. Improving motor neuron-like cell differentiation of hEnSCs by the combination of epothilone B loaded PCL microspheres in optimized 3D collagen hydrogel. Sci Rep 2021; 11:21722. [PMID: 34741076 PMCID: PMC8571364 DOI: 10.1038/s41598-021-01071-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Spinal cord regeneration is limited due to various obstacles and complex pathophysiological events after injury. Combination therapy is one approach that recently garnered attention for spinal cord injury (SCI) recovery. A composite of three-dimensional (3D) collagen hydrogel containing epothilone B (EpoB)-loaded polycaprolactone (PCL) microspheres (2.5 ng/mg, 10 ng/mg, and 40 ng/mg EpoB/PCL) were fabricated and optimized to improve motor neuron (MN) differentiation efficacy of human endometrial stem cells (hEnSCs). The microspheres were characterized using liquid chromatography-mass/mass spectrometry (LC-mas/mas) to assess the drug release and scanning electron microscope (SEM) for morphological assessment. hEnSCs were isolated, then characterized by flow cytometry, and seeded on the optimized 3D composite. Based on cell morphology and proliferation, cross-linked collagen hydrogels with and without 2.5 ng/mg EpoB loaded PCL microspheres were selected as the optimized formulations to compare the effect of EpoB release on MN differentiation. After differentiation, the expression of MN markers was estimated by real-time PCR and immunofluorescence (IF). The collagen hydrogel containing the EpoB group had the highest HB9 and ISL-1 expression and the longest neurite elongation. Providing a 3D permissive environment with EpoB, significantly improves MN-like cell differentiation and maturation of hEnSCs and is a promising approach to replace lost neurons after SCI.
Collapse
Affiliation(s)
- Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Tissue, Cell and Gene Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexander R Vaccaro
- Department of Orthopedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Moschetta M, Chiacchiaretta M, Cesca F, Roy I, Athanassiou A, Benfenati F, Papadopoulou EL, Bramini M. Graphene Nanoplatelets Render Poly(3-Hydroxybutyrate) a Suitable Scaffold to Promote Neuronal Network Development. Front Neurosci 2021; 15:731198. [PMID: 34616276 PMCID: PMC8488094 DOI: 10.3389/fnins.2021.731198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022] Open
Abstract
The use of composite biomaterials as innovative bio-friendly neuronal interfaces has been poorly developed so far. Smart strategies to target neuro-pathologies are currently exploiting the mixed and complementary characteristics of composite materials to better design future neural interfaces. Here we present a polymer-based scaffold that has been rendered suitable for primary neurons by embedding graphene nanoplatelets (GnP). In particular, the growth, network formation, and functionality of primary neurons on poly(3-hydroxybutyrate) [P(3HB)] polymer supports functionalized with various concentrations of GnP were explored. After growing primary cortical neurons onto the supports for 14 days, all specimens were found to be biocompatible, revealing physiological growth and maturation of the neuronal network. When network functionality was investigated by whole patch-clamp measurements, pure P(3HB) led to changes in the action potential waveform and reduction in firing frequency, resulting in decreased neuronal excitability. However, the addition of GnP to the polymer matrix restored the electrophysiological parameters to physiological values. Interestingly, a low concentration of graphene was able to promote firing activity at a low level of injected current. The results indicate that the P(3HB)/GnP composites show great potential for electrical interfacing with primary neurons to eventually target central nervous system disorders.
Collapse
Affiliation(s)
- Matteo Moschetta
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Martina Chiacchiaretta
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | | | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,IRCSS, Ospedale Policlinico San Martino, Genova, Italy
| | | | - Mattia Bramini
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| |
Collapse
|
20
|
Garrudo FFF, Nogueira DES, Rodrigues CAV, Ferreira FA, Paradiso P, Colaço R, Marques AC, Cabral JMS, Morgado J, Linhardt RJ, Ferreira FC. Electrical stimulation of neural-differentiating iPSCs on novel coaxial electroconductive nanofibers. Biomater Sci 2021; 9:5359-5382. [PMID: 34223566 DOI: 10.1039/d1bm00503k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neural tissue engineering strategies are paramount to create fully mature neurons, necessary for new therapeutic strategies for neurological diseases or the creation of reliable in vitro models. Scaffolds can provide physical support for these neurons and enable cues for enhancing neural cell differentiation, such as electrical current. Coaxial electrospinning fibers, designed to fulfill neural cell needs, bring together an electroconductive shell layer (PCL-PANI), able to mediate electrical stimulation of cells cultivated on fibers mesh surface, and a soft core layer (PGS), used to finetune fiber diameter (951 ± 465 nm) and mechanical properties (1.3 ± 0.2 MPa). Those dual functional coaxial fibers are electroconductive (0.063 ± 0.029 S cm-1, stable over 21 days) and biodegradable (72% weigh loss in 12 hours upon human lipase accelerated assay). For the first time, the long-term effects of electrical stimulation on induced neural progenitor cells were studied using such fibers. The results show increase in neural maturation (upregulation of MAP2, NEF-H and SYP), up-regulation of glutamatergic marker genes (VGLUT1 - 15-fold) and voltage-sensitive channels (SCN1α - 12-fold, CACNA1C - 32-fold), and a down-regulation of GABAergic marker (GAD67 - 0.09-fold), as detected by qRT-PCR. Therefore, this study suggest a shift from an inhibitory to an excitatory neural cell profile. This work shows that the PGS/PCL-PANI coaxial fibers here developed have potential applications in neural tissue engineering.
Collapse
Affiliation(s)
- Fábio F F Garrudo
- Department of Chemistry and Chemical Biology, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA. and Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal. and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal and Department of Bioengineering and Instituto de Telecomunicações, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001, Lisboa, Portugal
| | - Diogo E S Nogueira
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal. and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Carlos A V Rodrigues
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal. and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Flávio A Ferreira
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal. and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Patrizia Paradiso
- IDMEC - Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa, Portugal
| | - Rogério Colaço
- IDMEC - Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa, Portugal
| | - Ana C Marques
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, P-1049-001 Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal. and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge Morgado
- Department of Bioengineering and Instituto de Telecomunicações, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001, Lisboa, Portugal
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA.
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal. and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
21
|
Akarapipad P, Kaarj K, Liang Y, Yoon JY. Environmental Toxicology Assays Using Organ-on-Chip. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:155-183. [PMID: 33974806 DOI: 10.1146/annurev-anchem-091620-091335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Adverse effects of environmental toxicants to human health have traditionally been assayed using in vitro assays. Organ-on-chip (OOC) is a new platform that can bridge the gaps between in vitro assays (or 3D cell culture) and animal tests. Microenvironments, physical and biochemical stimuli, and adequate sensing and biosensing systems can be integrated into OOC devices to better recapitulate the in vivo tissue and organ behavior and metabolism. While OOCs have extensively been studied for drug toxicity screening, their implementation in environmental toxicology assays is minimal and has limitations. In this review, recent attempts of environmental toxicology assays using OOCs, including multiple-organs-on-chip, are summarized and compared with OOC-based drug toxicity screening. Requirements for further improvements are identified and potential solutions are suggested.
Collapse
Affiliation(s)
- Patarajarin Akarapipad
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA;
| | - Kattika Kaarj
- Department of Biosystems Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - Yan Liang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA;
- Department of Biosystems Engineering, University of Arizona, Tucson, Arizona 85721, USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
22
|
Criado-Gonzalez M, Dominguez-Alfaro A, Lopez-Larrea N, Alegret N, Mecerreyes D. Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges, and Opportunities. ACS APPLIED POLYMER MATERIALS 2021; 3:2865-2883. [PMID: 35673585 PMCID: PMC9164193 DOI: 10.1021/acsapm.1c00252] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/19/2021] [Indexed: 05/19/2023]
Abstract
Conducting polymers (CPs) have been attracting great attention in the development of (bio)electronic devices. Most of the current devices are rigid two-dimensional systems and possess uncontrollable geometries and architectures that lead to poor mechanical properties presenting ion/electronic diffusion limitations. The goal of the article is to provide an overview about the additive manufacturing (AM) of conducting polymers, which is of paramount importance for the design of future wearable three-dimensional (3D) (bio)electronic devices. Among different 3D printing AM techniques, inkjet, extrusion, electrohydrodynamic, and light-based printing have been mainly used. This review article collects examples of 3D printing of conducting polymers such as poly(3,4-ethylene-dioxythiophene), polypyrrole, and polyaniline. It also shows examples of AM of these polymers combined with other polymers and/or conducting fillers such as carbon nanotubes, graphene, and silver nanowires. Afterward, the foremost applications of CPs processed by 3D printing techniques in the biomedical and energy fields, that is, wearable electronics, sensors, soft robotics for human motion, or health monitoring devices, among others, will be discussed.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- POLYMAT
University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Instituto
de Ciencia y Tecnología de Polímeros CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Antonio Dominguez-Alfaro
- POLYMAT
University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Naroa Lopez-Larrea
- POLYMAT
University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Nuria Alegret
- POLYMAT
University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - David Mecerreyes
- POLYMAT
University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
| |
Collapse
|
23
|
Warren D, Tomaskovic-Crook E, Wallace GG, Crook JM. Engineering in vitro human neural tissue analogs by 3D bioprinting and electrostimulation. APL Bioeng 2021; 5:020901. [PMID: 33834152 PMCID: PMC8019355 DOI: 10.1063/5.0032196] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
There is a fundamental need for clinically relevant, reproducible, and standardized in vitro human neural tissue models, not least of all to study heterogenic and complex human-specific neurological (such as neuropsychiatric) disorders. Construction of three-dimensional (3D) bioprinted neural tissues from native human-derived stem cells (e.g., neural stem cells) and human pluripotent stem cells (e.g., induced pluripotent) in particular is appreciably impacting research and conceivably clinical translation. Given the ability to artificially and favorably regulate a cell's survival and behavior by manipulating its biophysical environment, careful consideration of the printing technique, supporting biomaterial and specific exogenously delivered stimuli, is both required and advantageous. By doing so, there exists an opportunity, more than ever before, to engineer advanced and precise tissue analogs that closely recapitulate the morphological and functional elements of natural tissues (healthy or diseased). Importantly, the application of electrical stimulation as a method of enhancing printed tissue development in vitro, including neuritogenesis, synaptogenesis, and cellular maturation, has the added advantage of modeling both traditional and new stimulation platforms, toward improved understanding of efficacy and innovative electroceutical development and application.
Collapse
Affiliation(s)
- Danielle Warren
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Fairy Meadow, NSW 2519 Australia
| | | | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Fairy Meadow, NSW 2519 Australia
| | - Jeremy M. Crook
- Author to whom correspondence should be addressed:. Tel.: +61 2 4221 3011
| |
Collapse
|
24
|
Saracino E, Zuppolini S, Guarino V, Benfenati V, Borriello A, Zamboni R, Ambrosio L. Polyaniline nano-needles into electrospun bio active fibres support in vitro astrocyte response. RSC Adv 2021; 11:11347-11355. [PMID: 35423613 PMCID: PMC8695954 DOI: 10.1039/d1ra00596k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have proposed that the bioelectrical response of glial cells, called astrocytes, currently represents a key target for neuroregenerative purposes. Here, we propose the fabrication of electrospun nanofibres containing gelatin and polyaniline (PANi) synthesized in the form of nano-needles (PnNs) as electrically conductive scaffolds to support the growth and functionalities of primary astrocytes. We report a fine control of the morphological features in terms of fibre size and spatial distribution and fibre patterning, i.e. random or aligned fibre organization, as revealed by SEM- and TEM-supported image analysis. We demonstrate that the peculiar morphological properties of fibres - i.e., the fibre size scale and alignment - drive the adhesion, proliferation, and functional properties of primary cortical astrocytes. In addition, the gradual transmission of biochemical and biophysical signals due to the presence of PnNs combined with the presence of gelatin results in a permissive and guiding environment for astrocytes. Accordingly, the functional properties of astrocytes measured via cell patch-clamp experiments reveal that PnNs do not alter the bioelectrical properties of resting astrocytes, thus setting the scene for the use of PnN-loaded nanofibres as bioconductive platforms for interfacing astrocytes and controlling their bioelectrical properties.
Collapse
Affiliation(s)
- Emanuela Saracino
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy via Gobetti, 101 40129 Bologna Italy
| | - Simona Zuppolini
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy Mostra d'Oltremare, Pad. 20, V. le J. F. Kennedy 54 Naples Italy
| | - Vincenzo Guarino
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy Mostra d'Oltremare, Pad. 20, V. le J. F. Kennedy 54 Naples Italy
| | - Valentina Benfenati
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy via Gobetti, 101 40129 Bologna Italy
| | - Anna Borriello
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy Mostra d'Oltremare, Pad. 20, V. le J. F. Kennedy 54 Naples Italy
| | - Roberto Zamboni
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy via Gobetti, 101 40129 Bologna Italy
| | - Luigi Ambrosio
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy Mostra d'Oltremare, Pad. 20, V. le J. F. Kennedy 54 Naples Italy
| |
Collapse
|
25
|
Xu X, Zhang H, Yan Y, Wang J, Guo L. Effects of electrical stimulation on skin surface. ACTA MECHANICA SINICA = LI XUE XUE BAO 2021; 37:1843-1871. [PMID: 33584001 PMCID: PMC7866966 DOI: 10.1007/s10409-020-01026-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 05/10/2023]
Abstract
ABSTRACT Skin is the largest organ in the body, and directly contact with the external environment. Articles on the role of micro-current and skin have emerged in recent years. The function of micro-current is various, including introducing various drugs into the skin locally or throughout the body, stimulating skin wounds healing through various currents, suppressing pain caused by various diseases, and promoting blood circulation for postoperative muscle rehabilitation, etc. This article reviews these efforts. Compared with various physical and chemical medical therapies, micro-current stimulation provides a relatively safe, non-invasive therapy with few side effects, giving modern medicine a more suitable treatment option. At the same time, the cost of the electrical stimulation generating device is relatively low, which makes it have wider space to and more clinical application value. The current micro-current stimulation technology has become more and more mature, but there are still many problems in its research. The design of the experiment and the selection of the current parameters not standardized and rigorous. Now, clear regulations are needed to regulate this field. Micro-current skin therapy has become a robust, reliable, and well-structured system.
Collapse
Affiliation(s)
- Xinkai Xu
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190 China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Han Zhang
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049 China
- Key Laboratory of Noise and Vibration, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190 China
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190 China
| | - Yan Yan
- Cosmetic Technology Center, Chinese Academy of Inspection and Quarantine, Beijing, 100176 China
| | - Jianru Wang
- Xi’an Aerospace Propulsion Institute, Xi’an, 710100 China
| | - Liang Guo
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190 China
| |
Collapse
|
26
|
Garrudo FFF, Mikael PE, Rodrigues CAV, Udangawa RW, Paradiso P, Chapman CA, Hoffman P, Colaço R, Cabral JMS, Morgado J, Linhardt RJ, Ferreira FC. Polyaniline-polycaprolactone fibers for neural applications: Electroconductivity enhanced by pseudo-doping. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111680. [PMID: 33545842 DOI: 10.1016/j.msec.2020.111680] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022]
Abstract
Replenishing neurons in patients with neurodegenerative diseases is one of the ultimate therapies for these progressive, debilitating and fatal diseases. Electrical stimulation can improve neuron stem cell differentiation but requires a reliable nanopatterned electroconductive substrate. Potential candidate substrates are polycaprolactone (PCL) - polyaniline:camphorsulfonic acid (PANI:CSA) nanofibers, but their nanobiophysical properties need to be finetuned. The present study investigates the use of the pseudo-doping effect on the optimization of the electroconductivity of these polyaniline-based electrospun nanofibers. This was performed by developing a new solvent system that comprises a mixture of hexafluoropropanol (HFP) and trifluoroethanol (TFE). For the first time, an electroconductivity so high as 0.2 S cm-1 was obtained for, obtained from a TFE:HFP 50/50 vol% solution, while maintaining fiber biocompatibility. The physicochemical mechanisms behind these changes were studied. The results suggest HFP promotes changes on PANI chains conformations through pseudo-doping, leading to the observed enhancement in electroconductivity. The consequences of such change in the nanofabrication of PCL-PANI fibers include an increase in fiber diameter (373 ± 172 nm), a decrease in contact angle (42 ± 3°) and a decrease in Young modulus (1.6 ± 0.5 MPa), making these fibers interesting candidates for neural tissue engineering. Electrical stimulation of differentiating neural stem cells was performed using AC electrical current. Positive effects on cell alignment and gene expression (DCX, MAP2) are observed. The novel optimized platform shows promising applications for (1) building in vitro platforms for drug screening, (2) interfaces for deep-brain electrodes; and (3) fully grown and functional neurons transplantation.
Collapse
Affiliation(s)
- Fábio F F Garrudo
- Department of Chemistry and Chemical Biology, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA; Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal; Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Paiyz E Mikael
- Department of Chemistry and Chemical Biology, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA
| | - Carlos A V Rodrigues
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Ranodhi W Udangawa
- Department of Chemistry and Chemical Biology, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA
| | - Patrizia Paradiso
- IDMEC - Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Caitlyn A Chapman
- Department of Chemistry and Chemical Biology, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA
| | - Pauline Hoffman
- Department of Chemistry and Chemical Biology, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA
| | - Rogério Colaço
- IDMEC - Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Jorge Morgado
- Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA.
| | - Frederico Castelo Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
| |
Collapse
|
27
|
Ritzau-Reid KI, Spicer CD, Gelmi A, Grigsby CL, Ponder JF, Bemmer V, Creamer A, Vilar R, Serio A, Stevens MM. An Electroactive Oligo-EDOT Platform for Neural Tissue Engineering. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2003710. [PMID: 34035794 PMCID: PMC7610826 DOI: 10.1002/adfm.202003710] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 05/04/2023]
Abstract
The unique electrochemical properties of the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) make it an attractive material for use in neural tissue engineering applications. However, inadequate mechanical properties, and difficulties in processing and lack of biodegradability have hindered progress in this field. Here, the functionality of PEDOT:PSS for neural tissue engineering is improved by incorporating 3,4-ethylenedioxythiophene (EDOT) oligomers, synthesized using a novel end-capping strategy, into block co-polymers. By exploiting end-functionalized oligoEDOT constructs as macroinitiators for the polymerization of poly(caprolactone), a block co-polymer is produced that is electroactive, processable, and bio-compatible. By combining these properties, electroactive fibrous mats are produced for neuronal culture via solution electrospinning and melt electrospinning writing. Importantly, it is also shown that neurite length and branching of neural stem cells can be enhanced on the materials under electrical stimulation, demonstrating the promise of these scaffolds for neural tissue engineering.
Collapse
Affiliation(s)
- Kaja I. Ritzau-Reid
- Department of Materials, Department of Bioengineering, Institute of
Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Christopher D. Spicer
- Department of Materials, Department of Bioengineering, Institute of
Biomedical Engineering, Imperial College London, London SW7 2AZ, UK;
Department of Medical Biochemistry and Biophysics, Karolinska Institutet,
Stockholm 171 77, Sweden; Department of Chemistry, York Biomedical Research
Institute, University of York, Heslington YO10 5DD, UK
| | - Amy Gelmi
- Department of Materials, Department of Bioengineering, Institute of
Biomedical Engineering, Imperial College London, London SW7 2AZ, UK; Applied
Chemistry and Environmental Science, School of Science, RMIT University,
Melbourne 3000, Australia
| | - Christopher L. Grigsby
- Department of Medical Biochemistry and Biophysics, Karolinska
Institutet, Stockholm 171 77, Sweden
| | - James F. Ponder
- Department of Chemistry, Imperial College London, London SW7 2AZ,
UK
| | - Victoria Bemmer
- Department of Materials, Department of Bioengineering, Institute of
Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Adam Creamer
- Department of Materials, Department of Bioengineering, Institute of
Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, London SW7 2AZ,
UK
| | - Andrea Serio
- Department of Materials, Department of Bioengineering, Institute of
Biomedical Engineering, Imperial College London, London SW7 2AZ, UK; Centre
for Craniofacial & Regenerative Biology, King’s College London
and The Francis Crick Institute, Tissue Engineering and Biophotonics
Division, Dental Institute, King’s College London, London SE1 9RT,
UK
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering, Institute
of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK;
Department of Medical Biochemistry and Biophysics, Karolinska Institutet,
Stockholm 171 77, Sweden
| |
Collapse
|
28
|
Zhou R, Sun X, Li Y, Huang Q, Qu Y, Mu D, Li X. Low-dose Dexamethasone Increases Autophagy in Cerebral Cortical Neurons of Juvenile Rats with Sepsis Associated Encephalopathy. Neuroscience 2019; 419:83-99. [PMID: 31682824 DOI: 10.1016/j.neuroscience.2019.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
Studies have shown that a certain dose of dexamethasone can improve the survival rate of patients with sepsis, and in sepsis associated encephalopathy (SAE), autophagy plays a regulatory role in brain function. Here, we proved for the first time that small-dose dexamethasone (SdDex) can regulate the autophagy of cerebral cortex neurons in SAE rats and plays a protective role. Cortical neurons were cultured in vitro in a septic microenvironment and a sepsis rat model was established. The small-dose dexamethasone (SdDex) or high-dose dexamethasone (HdDex) was used to intervene in neurons or SAE rats. Through fluorescence microscopy and western blot analysis, the expressions of microtubule-associated protein 1 light chain 3 (LC3), p62/sequestosome1 (p62/SQSTM1), mammalian target of rapamycin (mTOR) signaling pathway related proteins, and apoptosis-related proteins were detected. Theresultsshowthat compared with those in SAE rats, the cortical pathological changes in SAE rats treated with SdDex were improved, and damaged substances were encapsulated and degraded by autophagosomes in neurons. Additionally, similar to neurons in vitro, cortical autophagy was further activated and the mTOR signaling pathway was inhibited. After HdDex treatment, the mTOR signaling pathway in cortex is inhibited, but further activation of autophagy is not obvious, the cortical pathological changes were further worsened and the ultrastructure of neurons was disturbed. Furthermore, the HdDex group exhibited the most obvious apoptosis. SdDex can regulate autophagy of cortical neurons by inhibiting the mTOR signaling pathway and plays a protective role. Brain damage induced by HdDex may be related to the activation of apoptosis.
Collapse
Affiliation(s)
- Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xuemei Sun
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Yuyao Li
- Medical College, Xiamen University, Xiamen 361102, China
| | - Qun Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xihong Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China; Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
29
|
Tomaskovic‐Crook E, Zhang P, Ahtiainen A, Kaisvuo H, Lee C, Beirne S, Aqrawe Z, Svirskis D, Hyttinen J, Wallace GG, Travas‐Sejdic J, Crook JM. Human Neural Tissues from Neural Stem Cells Using Conductive Biogel and Printed Polymer Microelectrode Arrays for 3D Electrical Stimulation. Adv Healthc Mater 2019; 8:e1900425. [PMID: 31168967 DOI: 10.1002/adhm.201900425] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/03/2019] [Indexed: 11/09/2022]
Abstract
Electricity is important in the physiology and development of human tissues such as embryonic and fetal development, and tissue regeneration for wound healing. Accordingly, electrical stimulation (ES) is increasingly being applied to influence cell behavior and function for a biomimetic approach to in vitro cell culture and tissue engineering. Here, the application of conductive polymer (CP) poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) pillars is described, direct-write printed in an array format, for 3D ES of maturing neural tissues that are derived from human neural stem cells (NSCs). NSCs are initially encapsulated within a conductive polysaccharide-based biogel interfaced with the CP pillar microelectrode arrays (MEAs), followed by differentiation in situ to neurons and supporting neuroglia during stimulation. Electrochemical properties of the pillar electrodes and the biogel support their electrical performance. Remarkably, stimulated constructs are characterized by widespread tracts of high-density mature neurons and enhanced maturation of functional neural networks. Formation of tissues using the 3D MEAs substantiates the platform for advanced clinically relevant neural tissue induction, with the system likely amendable to diverse cell types to create other neural and non-neural tissues. The platform may be useful for both research and translation, including modeling tissue development, function and dysfunction, electroceuticals, drug screening, and regenerative medicine.
Collapse
Affiliation(s)
- Eva Tomaskovic‐Crook
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute AIIM Facility University of Wollongong 2519 Australia
- Illawarra Health and Medical Research Institute University of Wollongong 2522 Australia
| | - Peikai Zhang
- Polymer Electronics Research Centre School of Chemical Sciences The University of Auckland 1010 New Zealand
| | - Annika Ahtiainen
- Computational Biophysics and Imaging Group BioMediTech Institute and Faculty of Biomedical Sciences and Engineering Tampere University of Technology Tampere 33720 Finland
| | - Heidi Kaisvuo
- Computational Biophysics and Imaging Group BioMediTech Institute and Faculty of Biomedical Sciences and Engineering Tampere University of Technology Tampere 33720 Finland
| | - Chong‐Yong Lee
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute AIIM Facility University of Wollongong 2519 Australia
| | - Stephen Beirne
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute AIIM Facility University of Wollongong 2519 Australia
| | - Zaid Aqrawe
- School of Pharmacy The University of Auckland 1010 New Zealand
| | - Darren Svirskis
- School of Pharmacy The University of Auckland 1010 New Zealand
| | - Jari Hyttinen
- Computational Biophysics and Imaging Group BioMediTech Institute and Faculty of Biomedical Sciences and Engineering Tampere University of Technology Tampere 33720 Finland
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute AIIM Facility University of Wollongong 2519 Australia
| | - Jadranka Travas‐Sejdic
- Polymer Electronics Research Centre School of Chemical Sciences The University of Auckland 1010 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology 6140 New Zealand
| | - Jeremy M. Crook
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute AIIM Facility University of Wollongong 2519 Australia
- Illawarra Health and Medical Research Institute University of Wollongong 2522 Australia
- Department of Surgery St Vincent's Hospital The University of Melbourne 3065 Australia
| |
Collapse
|
30
|
Ngan CGY, O’Connell CD, Blanchard R, Boyd-Moss M, Williams RJ, Bourke J, Quigley A, McKelvie P, Kapsa RMI, Choong PFM. Optimising the biocompatibility of 3D printed photopolymer constructs
in vitro
and
in vivo. Biomed Mater 2019; 14:035007. [DOI: 10.1088/1748-605x/ab09c4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Wu Y, Peng Y, Bohra H, Zou J, Ranjan VD, Zhang Y, Zhang Q, Wang M. Photoconductive Micro/Nanoscale Interfaces of a Semiconducting Polymer for Wireless Stimulation of Neuron-Like Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4833-4841. [PMID: 30624894 DOI: 10.1021/acsami.8b19631] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report multiscale structured fibers and patterned films based on a semiconducting polymer, poly(3-hexylthiophene) (P3HT), as photoconductive biointerfaces to promote neuronal stimulation upon light irradiation. The micro/nanoscale structures of P3HT used for neuronal interfacing and stimulation include nanofibers with an average diameter of 100 nm, microfibers with an average diameter of about 1 μm, and lithographically patterned stripes with width of 3, 25, and 50 μm, respectively. The photoconductive effect of P3HT upon light irradiation provides electrical stimulation for neuronal differentiation and directed growth. Our results demonstrate that neurons on P3HT nanofibers showed a significantly higher total number of branches, while neurons grown on P3HT microfibers had longer and thinner neurites. Such a combination strategy of topographical and photoconductive stimulation can be applied to further enhance neuronal differentiation and directed growth. These photoconductive polymeric micro/nanostructures demonstrated their great potential for neural engineering and development of novel neural regenerative devices.
Collapse
Affiliation(s)
- Yingjie Wu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Yanfen Peng
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Hassan Bohra
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Jianping Zou
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Vivek Damodar Ranjan
- School of Mechanical & Aerospace Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Yilei Zhang
- School of Mechanical & Aerospace Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Qing Zhang
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Mingfeng Wang
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| |
Collapse
|
32
|
Palza H, Zapata PA, Angulo-Pineda C. Electroactive Smart Polymers for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E277. [PMID: 30654487 PMCID: PMC6357059 DOI: 10.3390/ma12020277] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 01/05/2023]
Abstract
The flexibility in polymer properties has allowed the development of a broad range of materials with electroactivity, such as intrinsically conductive conjugated polymers, percolated conductive composites, and ionic conductive hydrogels. These smart electroactive polymers can be designed to respond rationally under an electric stimulus, triggering outstanding properties suitable for biomedical applications. This review presents a general overview of the potential applications of these electroactive smart polymers in the field of tissue engineering and biomaterials. In particular, details about the ability of these electroactive polymers to: (1) stimulate cells in the context of tissue engineering by providing electrical current; (2) mimic muscles by converting electric energy into mechanical energy through an electromechanical response; (3) deliver drugs by changing their internal configuration under an electrical stimulus; and (4) have antimicrobial behavior due to the conduction of electricity, are discussed.
Collapse
Affiliation(s)
- Humberto Palza
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 8370456 Santiago, Chile.
- Millenium Nuclei in Soft Smart Mechanical Metamaterials, Universidad de Chile, 8370456 Santiago, Chile.
| | - Paula Andrea Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, 8350709 Santiago, Chile.
| | - Carolina Angulo-Pineda
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 8370456 Santiago, Chile.
| |
Collapse
|