1
|
Saladino GM, Brodin B, Ciobanu M, Kilic NI, Toprak MS, Hertz HM. Design and Biodistribution of PEGylated Core-Shell X-ray Fluorescent Nanoparticle Contrast Agents. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26338-26347. [PMID: 40265284 PMCID: PMC12067382 DOI: 10.1021/acsami.5c01902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
Nanoparticle (NP) uptake by macrophages and their accumulation in undesired organs such as the liver and spleen constitute a major barrier to the effective delivery of NPs to targeted tissues for bioimaging and therapeutics. Surface functionalization with polyethylene glycol (PEG) has been demonstrated to be a promising strategy to limit NP sequestration, although its longitudinal stability under physiological conditions and impact on the NP biodistribution have not been investigated with an in vivo quantitative approach. X-ray fluorescence (XRF) imaging has been employed to noninvasively map the in vivo biodistribution of purposely designed molybdenum-based contrast agents, leading to submillimeter resolution, elemental specificity, and high penetration depth. In the present work, we design a stepwise layering approach for NP synthesis to investigate the role of chemisorbed and physisorbed PEG on silica-coated molybdenum-based contrast agents in affecting their in vivo biodistribution, using whole-body XRF imaging. Comparative quantitative in vivo studies indicated that physisorbed PEG (1.5 kDa) did not substantially affect the biodistribution, while the chemisorption route with mPEG-Si (6-9 PEG units) led to significant macroscopic variations in the biodistribution, leading to a reduction in NP uptake by the liver. Furthermore, the results highlighted the major role of the spleen in compensating for the limited sequestration by the liver, microscopically validated with a multiscale imaging approach with fluorophore doping of the silica shell. These findings demonstrated the promising role of XRF imaging for the rapid assessment of surface-functionalized contrast agents with whole-body in vivo quantitative pharmacokinetic studies, establishing the groundwork for developing strategies to identify and bypass undesired NP uptake.
Collapse
Affiliation(s)
- Giovanni M. Saladino
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, SE 10691, Sweden
- Department
of Radiology, School of Medicine, Stanford
University, Stanford, California 94305, United States
| | - Bertha Brodin
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, SE 10691, Sweden
| | - Mihai Ciobanu
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, SE 10691, Sweden
| | - Nuzhet I. Kilic
- Department
of Fiber and Polymer Technology, School of Engineering Sciences in
Chemistry, Biotechnology and Health, KTH
Royal Institute of Technology, Stockholm, SE 100 44, Sweden
| | - Muhammet S. Toprak
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, SE 10691, Sweden
| | - Hans M. Hertz
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, SE 10691, Sweden
| |
Collapse
|
2
|
Liang C, Liu X, Sun Z, Wen L, Wu J, Shi S, Liu X, Luo N, Li X. Lipid nanosystems for fatty liver therapy and targeted medication delivery: a comprehensive review. Int J Pharm 2025; 669:125048. [PMID: 39653287 DOI: 10.1016/j.ijpharm.2024.125048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Fatty liver is considered to be the most common chronic liver disease with a high global incidence, which can lead to cirrhosis and liver cancer in severe cases, and there is no specific drug for the treatment of fatty liver in the clinic. The use of lipid nanosystems has the potential to be an effective means of fatty liver treatment. The pathogenesis and intervening factors associated with the development of fatty liver are reviewed, and the advantages and the disadvantages of different lipid nanosystems for the treatment of fatty liver are comprehensively discussed, including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, microemulsions, and phospholipid complexes. The composition and characterisation of these lipid nanosystems are highlighted and summarised with a view to improving the efficiency of lipid nanosystems for the treatment of fatty liver. In addition, active targeting and passive targeting strategies used for fatty liver therapy are discussed in detail.
Collapse
Affiliation(s)
- Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nini Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, 400021, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Abtahi M, Gheiratmand L, Dinesh A, Liu Y, Wong ECN, Cho H, Majonis D, Jackson HW, Mrkonjic M, Winnik MA. Testing a Nanoparticle Reagent for Imaging Mass Cytometry. Biomacromolecules 2024; 25:6115-6126. [PMID: 39189480 DOI: 10.1021/acs.biomac.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Mass cytometry (MC), a powerful single-cell analysis technique, has limitations in detecting low-abundance biomarkers. Nanoparticle (NP) reagents offer the potential for enhancing sensitivity by carrying large numbers of heavy metal isotopes. Here, we report NP reporters for imaging mass cytometry (IMC) based on NaYF4:Yb3+/Er3+ NPs. A two-step ligand exchange was used to coat NP surfaces with either methoxy-PEG2K-neridronate (PEG-Ner) and/or poly(sulfobetaine methacrylate)-neridronate (PSBMA-Ner). Both modifications provided long-term colloidal stability in PBS buffer. IMC measurements on tonsil tissue showed that PSBMA-Ner or a 1:1 mixture of PSBMA-Ner + PEG-Ner effectively suppressed nonspecific binding (NSB) at 2 × 1010 NPs/mL, unlike PEG-Ner alone. However, breast cancer tissue samples showed increased NSB at titers above 2 × 1010 NPs/mL. Reduced NSB with mixed PEG-Ner and PSBMA-Ner coatings opens the door for using heterobifunctional PEGs for the development of NP conjugates with bioaffinity agents, enabling more sensitive and specific MC analyses.
Collapse
Affiliation(s)
- Mahtab Abtahi
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ladan Gheiratmand
- Standard BioTools Canada Inc., Suite 400, 1380 Rodick Road, Markham, ON L3R 4G5, Canada
| | - Anuroopa Dinesh
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3A1, Canada
| | - Yang Liu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Edmond C N Wong
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hyungjun Cho
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Daniel Majonis
- Standard BioTools Canada Inc., Suite 400, 1380 Rodick Road, Markham, ON L3R 4G5, Canada
| | - Hartland W Jackson
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3A1, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
- Ontario Institute of Cancer Research, Toronto, ON M5G 1M1, Canada
| | - Miralem Mrkonjic
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
4
|
Khatua R, Bhar B, Dey S, Jaiswal C, J V, Mandal BB. Advances in engineered nanosystems: immunomodulatory interactions for therapeutic applications. NANOSCALE 2024; 16:12820-12856. [PMID: 38888201 DOI: 10.1039/d4nr00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Advances in nanotechnology have led to significant progress in the design and fabrication of nanoparticles (NPs) with improved therapeutic properties. NPs have been explored for modulating the immune system, serving as carriers for drug delivery or vaccine adjuvants, or acting as therapeutics themselves against a wide range of deadly diseases. The combination of NPs with immune system-targeting moieties has facilitated the development of improved targeted immune therapies. Targeted delivery of therapeutic agents using NPs specifically to the disease-affected cells, distinguishing them from other host cells, offers the major advantage of concentrating the therapeutic effect and reducing systemic side effects. Furthermore, the properties of NPs, including size, shape, surface charge, and surface modifications, influence their interactions with the targeted biological components. This review aims to provide insights into these diverse emerging and innovative approaches that are being developed and utilized for modulating the immune system using NPs. We reviewed various types of NPs composed of different materials and their specific application for modulating the immune system. Furthermore, we focused on the mechanistic effects of these therapeutic NPs on primary immune components, including T cells, B cells, macrophages, dendritic cells, and complement systems. Additionally, a recent overview of clinically approved immunomodulatory nanomedicines and potential future perspectives, offering new paradigms of this field, is also highlighted.
Collapse
Affiliation(s)
- Rupam Khatua
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Bibrita Bhar
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Chitra Jaiswal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Victoria J
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
5
|
Zhang Y, Sun C. Current status, challenges and prospects of antifouling materials for oncology applications. Front Oncol 2024; 14:1391293. [PMID: 38779096 PMCID: PMC11109453 DOI: 10.3389/fonc.2024.1391293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Targeted therapy has become crucial to modern translational science, offering a remedy to conventional drug delivery challenges. Conventional drug delivery systems encountered challenges related to solubility, prolonged release, and inadequate drug penetration at the target region, such as a tumor. Several formulations, such as liposomes, polymers, and dendrimers, have been successful in advancing to clinical trials with the goal of improving the drug's pharmacokinetics and biodistribution. Various stealth coatings, including hydrophilic polymers such as PEG, chitosan, and polyacrylamides, can form a protective layer over nanoparticles, preventing aggregation, opsonization, and immune system detection. As a result, they are classified under the Generally Recognized as Safe (GRAS) category. Serum, a biological sample, has a complex composition. Non-specific adsorption of chemicals onto an electrode can lead to fouling, impacting the sensitivity and accuracy of focused diagnostics and therapies. Various anti-fouling materials and procedures have been developed to minimize the impact of fouling on specific diagnoses and therapies, leading to significant advancements in recent decades. This study provides a detailed analysis of current methodologies using surface modifications that leverage the antifouling properties of polymers, peptides, proteins, and cell membranes for advanced targeted diagnostics and therapy in cancer treatment. In conclusion, we examine the significant obstacles encountered by present technologies and the possible avenues for future study and development.
Collapse
Affiliation(s)
| | - Congcong Sun
- University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Kuhn J, McDonald A, Mongoin C, Anderson G, Lafeuillade G, Mitchell S, Elfick APD, Bagnaninchi PO, Yiu HHP, Nelson LJ. Non-invasive methods of monitoring Fe 3O 4 magnetic nanoparticle toxicity in human liver HepaRG cells using impedance biosensing and Coherent anti-Stokes Raman spectroscopic (CARS) microscopy. Toxicol Lett 2024; 394:92-101. [PMID: 38428546 DOI: 10.1016/j.toxlet.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Functionalized nanoparticles have been developed for use in nanomedicines for treating life threatening diseases including various cancers. To ensure safe use of these new nanoscale reagents, various assays for biocompatibility or cytotoxicity in vitro using cell lines often serve as preliminary assessments prior to in vivo animal testing. However, many of these assays were designed for soluble, colourless materials and may not be suitable for coloured, non-transparent nanoparticles. Moreover, cell lines are not always representative of mammalian organs in vivo. In this work, we use non-invasive impedance sensing methods with organotypic human liver HepaRG cells as a model to test the toxicity of PEG-Fe3O4 magnetic nanoparticles. We also use Coherent anti-Stokes Raman Spectroscopic (CARS) microscopy to monitor the formation of lipid droplets as a parameter to the adverse effect on the HepaRG cell model. The results were also compared with two commercial testing kits (PrestoBlue and ATP) for cytotoxicity. The results suggested that the HepaRG cell model can be a more realistic model than commercial cell lines while use of impedance monitoring of Fe3O4 nanoparticles circumventing the uncertainties due to colour assays. These methods can play important roles for scientists driving towards the 3Rs principle - Replacement, Reduction and Refinement.
Collapse
Affiliation(s)
- Joel Kuhn
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Alison McDonald
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, King's Buildings, Edinburgh EH9 3DW
| | - Cyril Mongoin
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, King's Buildings, Edinburgh EH9 3DW
| | - Graham Anderson
- Centre for Regenerative Medicine. Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Guillemette Lafeuillade
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, King's Buildings, Edinburgh EH9 3DW
| | - Stephen Mitchell
- School of Biological Sciences, The Daniel Rutherford Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Alistair P D Elfick
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, King's Buildings, Edinburgh EH9 3DW
| | - Pierre O Bagnaninchi
- Centre for Regenerative Medicine. Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Humphrey H P Yiu
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK.
| | - Leonard J Nelson
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, King's Buildings, Edinburgh EH9 3DW.
| |
Collapse
|
7
|
Zhaisanbayeva BA, Mun EA, Ulmanova L, Zhunissova Z, Umbayev B, Olzhayev F, Vorobjev IA, Hortelano G, Khutoryanskiy VV. In vitro and in vivo toxicity of thiolated and PEGylated organosilica nanoparticles. Int J Pharm 2024; 652:123852. [PMID: 38280501 DOI: 10.1016/j.ijpharm.2024.123852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
This study comprises the comprehensive toxicological assessment of thiolated organosilica nanoparticles (NPs) synthesised from 3-mercaptopropyltrimethoxysilane (MPTS). We investigated the influence of three different types of nanoparticles synthesised from 3-mercaptopropyltrimethoxysilane: the starting thiolated silica (Si-NP-SH) and their derivatives prepared by surface PEGylation with PEG 750 (Si-NP-PEG750) and 5000 Da (Si-NP-PEG5000) on biological subjects from in vitro to in vivo experiments to explore the possible applications of those nanoparticles in biomedical research. As a result of this study, we generated a comprehensive understanding of the toxicological properties of these nanoparticles, including their cytotoxicity in different cell lines, hemolytic properties, in vitro localisation, mucosal irritation properties and biodistribution in BALB/c mice. Our findings indicate that all three types of nanoparticles can be considered safe and have promising prospects for use in biomedical applications. Nanoparticles did not affect the viability of HPF, MCF7, HEK293 and A549 cell lines at low concentrations (up to 100 µg/mL); moreover, they did not cause organ damage to BALB/c mice at concentrations of 10 mg/kg. The outcomes of this study enhance our understanding of the impact of organosilica nanoparticles on health and the environment, which is vital for developing silica nanoparticle-based drug delivery systems and provides opportunities to expand the applications of organosilica nanoparticles.
Collapse
Affiliation(s)
- Balnur A Zhaisanbayeva
- School of Engineering and Digital Science, Nazarbayev University, 010000 Astana, Kazakhstan; School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Ellina A Mun
- School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Leila Ulmanova
- School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Zarina Zhunissova
- School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Farkhad Olzhayev
- National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Ivan A Vorobjev
- School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Gonzalo Hortelano
- School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan.
| | | |
Collapse
|
8
|
Rezaei B, Yari P, Sanders SM, Wang H, Chugh VK, Liang S, Mostufa S, Xu K, Wang JP, Gómez-Pastora J, Wu K. Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304848. [PMID: 37732364 DOI: 10.1002/smll.202304848] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Nowadays, magnetic nanoparticles (MNPs) are applied in numerous fields, especially in biomedical applications. Since biofluidic samples and biological tissues are nonmagnetic, negligible background signals can interfere with the magnetic signals from MNPs in magnetic biosensing and imaging applications. In addition, the MNPs can be remotely controlled by magnetic fields, which make it possible for magnetic separation and targeted drug delivery. Furthermore, due to the unique dynamic magnetizations of MNPs when subjected to alternating magnetic fields, MNPs are also proposed as a key tool in cancer treatment, an example is magnetic hyperthermia therapy. Due to their distinct surface chemistry, good biocompatibility, and inducible magnetic moments, the material and morphological structure design of MNPs has attracted enormous interest from a variety of scientific domains. Herein, a thorough review of the chemical synthesis strategies of MNPs, the methodologies to modify the MNPs surface for better biocompatibility, the physicochemical characterization techniques for MNPs, as well as some representative applications of MNPs in disease diagnosis and treatment are provided. Further portions of the review go into the diagnostic and therapeutic uses of composite MNPs with core/shell structures as well as a deeper analysis of MNP properties to learn about potential biomedical applications.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Sean M Sanders
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Haotong Wang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Lubbock, MN, 55455, USA
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Lubbock, MN, 55455, USA
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Kanglin Xu
- Department of Computer Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Lubbock, MN, 55455, USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Lubbock, MN, 55455, USA
| | | | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
9
|
Izak-Nau E, Niggemann LP, Göstl R. Brownian Relaxation Shakes and Breaks Magnetic Iron Oxide-Polymer Nanocomposites to Release Cargo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304527. [PMID: 37715071 DOI: 10.1002/smll.202304527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Magnetic nanoparticles (NPs) are widely employed for remote controlled molecular release applications using alternating magnetic fields (AMF). Yet, they intrinsically generate heat in the process by Néel relaxation limiting their application scope. In contrast, iron oxide NPs larger than ≈15 nm react to AMF by Brownian relaxation resulting in tumbling and shaking. Here, such iron oxide NPs are combined with polymer shells where the shaking motion mechanically agitates and partially detaches the polymer chains, covalently cleaves a fraction of the polymers, and releases the prototypical cargo molecules doxorubicin and curcumin into solution. This heat-free release mechanism broadens the potential application space of polymer-functionalized magnetic NP composites.
Collapse
Affiliation(s)
- Emilia Izak-Nau
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Louisa P Niggemann
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Robert Göstl
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
10
|
Sadžak A, Eraković M, Šegota S. Kinetics of Flavonoid Degradation and Controlled Release from Functionalized Magnetic Nanoparticles. Mol Pharm 2023; 20:5148-5159. [PMID: 37651612 DOI: 10.1021/acs.molpharmaceut.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Flavonoids are naturally occurring antioxidants that have been shown to protect cell membranes from oxidative stress and have a potential use in photodynamic cancer treatment. However, they degrade at physiological pH values, which is often neglected in drug release studies. Kinetic study of flavonoid oxidation can help to understand the mechanism of degradation and to correctly analyze flavonoid release data. Additionally, the incorporation of flavonoids into magnetic nanocarriers can be utilized to mitigate degradation and overcome their low solubility, while the release can be controlled using magnetic fields (MFs). An approach that combines alternating least squares (ALS) and multilinear regression to consider flavonoid autoxidation in release studies is presented. This approach can be used in general cases to account for the degradation of unstable drugs released from nanoparticles. The oxidation of quercetin, myricetin (MCE), and myricitrin (MCI) was studied in PBS buffer (pH = 7.4) using UV-vis spectrophotometry. ALS was used to determine the kinetic profiles and characteristic spectra, which were used to analyze UV-vis data of release from functionalized magnetic nanoparticles (MNPs). MNPs were selected for their unique magnetic properties, which can be exploited for both targeted drug delivery and control over the drug release. MNPs were prepared and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, superconducting quantum interference device magnetometer, and electrophoretic mobility measurements. Autoxidation of all three flavonoids follows a two-step first-order kinetic model. MCE showed the fastest degradation, while the oxidation of MCI was the slowest. The flavonoids were successfully loaded into the prepared MNPs, and the drug release was described by the first-order and Korsmeyer-Peppas models. External MFs were utilized to control the release mechanism and the cumulative mass of the flavonoids released.
Collapse
Affiliation(s)
- Anja Sadžak
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| | - Mihael Eraković
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| | - Suzana Šegota
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| |
Collapse
|
11
|
Shestovskaya MV, Luss AL, Bezborodova OA, Makarov VV, Keskinov AA. Iron Oxide Nanoparticles in Cancer Treatment: Cell Responses and the Potency to Improve Radiosensitivity. Pharmaceutics 2023; 15:2406. [PMID: 37896166 PMCID: PMC10610190 DOI: 10.3390/pharmaceutics15102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The main concept of radiosensitization is making the tumor tissue more responsive to ionizing radiation, which leads to an increase in the potency of radiation therapy and allows for decreasing radiation dose and the concomitant side effects. Radiosensitization by metal oxide nanoparticles is widely discussed, but the range of mechanisms studied is not sufficiently codified and often does not reflect the ability of nanocarriers to have a specific impact on cells. This review is focused on the magnetic iron oxide nanoparticles while they occupied a special niche among the prospective radiosensitizers due to unique physicochemical characteristics and reactivity. We collected data about the possible molecular mechanisms underlying the radiosensitizing effects of iron oxide nanoparticles (IONPs) and the main approaches to increase their therapeutic efficacy by variable modifications.
Collapse
Affiliation(s)
- Maria V. Shestovskaya
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
| | - Anna L. Luss
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
- The Department of Technology of Chemical, Pharmaceutical and Cosmetic Products Mendeleev of University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Olga A. Bezborodova
- P. Hertsen Moscow Oncology Research Institute of the National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinskiy p. 3, Moscow 125284, Russia;
| | - Valentin V. Makarov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
| | - Anton A. Keskinov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
| |
Collapse
|
12
|
Azizi M, Jahanban-Esfahlan R, Samadian H, Hamidi M, Seidi K, Dolatshahi-Pirouz A, Yazdi AA, Shavandi A, Laurent S, Be Omide Hagh M, Kasaiyan N, Santos HA, Shahbazi MA. Multifunctional nanostructures: Intelligent design to overcome biological barriers. Mater Today Bio 2023; 20:100672. [PMID: 37273793 PMCID: PMC10232915 DOI: 10.1016/j.mtbio.2023.100672] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Over the past three decades, nanoscience has offered a unique solution for reducing the systemic toxicity of chemotherapy drugs and for increasing drug therapeutic efficiency. However, the poor accumulation and pharmacokinetics of nanoparticles are some of the key reasons for their slow translation into the clinic. The is intimately linked to the non-biological nature of nanoparticles and the aberrant features of solid cancer, which together significantly compromise nanoparticle delivery. New findings on the unique properties of tumors and their interactions with nanoparticles and the human body suggest that, contrary to what was long-believed, tumor features may be more mirage than miracle, as the enhanced permeability and retention based efficacy is estimated to be as low as 1%. In this review, we highlight the current barriers and available solutions to pave the way for approved nanoformulations. Furthermore, we aim to discuss the main solutions to solve inefficient drug delivery with the use of nanobioengineering of nanocarriers and the tumor environment. Finally, we will discuss the suggested strategies to overcome two or more biological barriers with one nanocarrier. The variety of design formats, applications and implications of each of these methods will also be evaluated.
Collapse
Affiliation(s)
- Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Samadian
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Hamidi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Khaled Seidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amirhossein Ahmadieh Yazdi
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons – UMONS, Mons, Belgium
| | - Mahsa Be Omide Hagh
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Kasaiyan
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA, Utrecht, Netherlands
| | - Hélder A. Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
| |
Collapse
|
13
|
Pu Y, Ke H, Wu C, Xu S, Xiao Y, Han L, Lyv G, Li S. Superparamagnetic iron oxide nanoparticles target BxPC-3 cells and silence MUC4 for theranostics of pancreatic cancer. Biochim Biophys Acta Gen Subj 2023:130383. [PMID: 37236323 DOI: 10.1016/j.bbagen.2023.130383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
PURPOSE Superparamagnetic iron oxide nanoparticles (SPION) are excellent magnetic resonance imaging (MRI) contrast agents. Mucin 4 (MUC4) acts as pancreatic cancer (PC) tumor antigen and influences PC progression. Small interfering RNAs (siRNAs) are used as a gene-silencing tool to treat a variety of diseases. METHODS We designed a therapeutic probe based on polyetherimide-superparamagnetic iron oxide nanoparticles (PEI-SPION) combined with siRNA nanoprobes (PEI-SPION-siRNA) to assess the contrast in MRI. The biocompatibility of the nanocomposite, and silencing of MUC4 were characterized and evaluated. RESULTS The prepared molecular probe had a particle size of 61.7 ± 18.5 nmand a surface of 46.7 ± 0.8mVand showed good biocompatibility in vitro and T2 relaxation efficiency. It can also load and protect siRNA. PEI-SPION-siRNA showed a good silencing effect on MUC4. CONCLUSION PEI-SPION-siRNA may be beneficial as a novel theranostic tool for PC.
Collapse
Affiliation(s)
- Yu Pu
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China; Department of Medical Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of North Sichuan Medical College. No. 234, Fujiang Road, Shunqing District, Nanchong City 637000, People's Republic of China; Department of Medicine, Quanzhou Medical College, No. 2 Anji Road, Luojiang District, Quanzhou 362000, People's Republic of China
| | - Helin Ke
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China
| | - Changqiang Wu
- Department of Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College. No. 55, Dongshun Road, Gaoping District, Nanchong City 637100, People's Republic of China
| | - Shaodan Xu
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China
| | - Yang Xiao
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China
| | - Lina Han
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China
| | - Guorong Lyv
- Department of Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College. No. 55, Dongshun Road, Gaoping District, Nanchong City 637100, People's Republic of China.
| | - Shilin Li
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China.
| |
Collapse
|
14
|
Marassi V, Zanoni I, Ortelli S, Giordani S, Reschiglian P, Roda B, Zattoni A, Ravagli C, Cappiello L, Baldi G, Costa AL, Blosi M. Native Study of the Behaviour of Magnetite Nanoparticles for Hyperthermia Treatment during the Initial Moments of Intravenous Administration. Pharmaceutics 2022; 14:2810. [PMID: 36559302 PMCID: PMC9782478 DOI: 10.3390/pharmaceutics14122810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Magnetic nanoparticles (MNPs) present outstanding properties making them suitable as therapeutic agents for hyperthermia treatments. Since the main safety concerns of MNPs are represented by their inherent instability in a biological medium, strategies to both achieve long-term stability and monitor hazardous MNP degradation are needed. We combined a dynamic approach relying on flow field flow fractionation (FFF)-multidetection with conventional techniques to explore frame-by-frame changes of MNPs injected in simulated biological medium, hypothesize the interaction mechanism they are subject to when surrounded by a saline, protein-rich environment, and understand their behaviour at the most critical point of intravenous administration. In the first moments of MNPs administration in the patient, MNPs change their surrounding from a favorable to an unfavorable medium, i.e., a complex biological fluid such as blood; the particles evolve from a synthetic identity to a biological identity, a transition that needs to be carefully monitored. The dynamic approach presented herein represents an optimal alternative to conventional batch techniques that can monitor only size, shape, surface charge, and aggregation phenomena as an averaged information, given that they cannot resolve different populations present in the sample and cannot give accurate information about the evolution or temporary instability of MNPs. The designed FFF method equipped with a multidetection system enabled the separation of the particle populations providing selective information on their morphological evolution and on nanoparticle-proteins interaction in the very first steps of infusion. Results showed that in a dynamic biological setting and following interaction with serum albumin, PP-MNPs retain their colloidal properties, supporting their safety profile for intravenous administration.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Stem Sel srl, University of Bologna, 40129 Bologna, Italy
| | - Ilaria Zanoni
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics (Former ISTEC), Via Granarolo 64, 48018 Faenza, Italy
| | - Simona Ortelli
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics (Former ISTEC), Via Granarolo 64, 48018 Faenza, Italy
| | - Stefano Giordani
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Stem Sel srl, University of Bologna, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Stem Sel srl, University of Bologna, 40129 Bologna, Italy
| | - Andrea Zattoni
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Stem Sel srl, University of Bologna, 40129 Bologna, Italy
| | - Costanza Ravagli
- Ce.Ri.Col, Colorobbia Consulting S.R.L., 50059 Sovigliana Vinci, Italy
| | - Laura Cappiello
- Ce.Ri.Col, Colorobbia Consulting S.R.L., 50059 Sovigliana Vinci, Italy
| | - Giovanni Baldi
- Ce.Ri.Col, Colorobbia Consulting S.R.L., 50059 Sovigliana Vinci, Italy
| | - Anna L. Costa
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics (Former ISTEC), Via Granarolo 64, 48018 Faenza, Italy
| | - Magda Blosi
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics (Former ISTEC), Via Granarolo 64, 48018 Faenza, Italy
| |
Collapse
|
15
|
Romero G, Park J, Koehler F, Pralle A, Anikeeva P. Modulating cell signalling in vivo with magnetic nanotransducers. NATURE REVIEWS. METHODS PRIMERS 2022; 2:92. [PMID: 38111858 PMCID: PMC10727510 DOI: 10.1038/s43586-022-00170-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 12/20/2023]
Abstract
Weak magnetic fields offer nearly lossless transmission of signals within biological tissue. Magnetic nanomaterials are capable of transducing magnetic fields into a range of biologically relevant signals in vitro and in vivo. These nanotransducers have recently enabled magnetic control of cellular processes, from neuronal firing and gene expression to programmed apoptosis. Effective implementation of magnetically controlled cellular signalling relies on careful tailoring of magnetic nanotransducers and magnetic fields to the responses of the intended molecular targets. This primer discusses the versatility of magnetic modulation modalities and offers practical guidelines for selection of appropriate materials and field parameters, with a particular focus on applications in neuroscience. With recent developments in magnetic instrumentation and nanoparticle chemistries, including those that are commercially available, magnetic approaches promise to empower research aimed at connecting molecular and cellular signalling to physiology and behaviour in untethered moving subjects.
Collapse
Affiliation(s)
- Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jimin Park
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnd Pralle
- Department of Physics, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
16
|
Hou J, Liu H, Ma Q, Xu S, Wang L. Coordination-Driven Self-Assembly of Iron Oxide Nanoparticles for Tumor Microenvironment-Responsive Magnetic Resonance Imaging. Anal Chem 2022; 94:15578-15585. [DOI: 10.1021/acs.analchem.2c01341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinhong Hou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongqian Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qian Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Influence of Polymer Shell Molecular Weight on Functionalized Iron Oxide Nanoparticles Morphology and In Vivo Biodistribution. Pharmaceutics 2022; 14:pharmaceutics14091877. [PMID: 36145625 PMCID: PMC9501806 DOI: 10.3390/pharmaceutics14091877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Iron oxide nanoparticles (IONPs) have been extensively used in different biomedical applications due to their biocompatibility and magnetic properties. However, different functionalization approaches have been developed to improve their time-life in the systemic circulation. Here, we have synthesized IONPs using a modified Massart method and functionalized them in situ with polyethylene glycol with different molecular weights (20 K and 35 K). The resulting nanoparticles were characterized in terms of morphology, structure, and composition using transmission electron microscopy (TEM) and selected area electron diffraction (SAED). In vivo biodistribution was evaluated in Balb/c mice, the presence of IONP being evidenced through histopathological investigations. IONP morphological characterization showed a change in shape (from spherical to rhombic) and size with molecular weight, while structural characterization proved the obtaining of highly crystalline samples of spinel structured cubic face-centered magnetite. In vivo biodistribution in a mice model proved the biocompatibility of all of the IONP samples. All NPs were cleared through the liver, spleen, and lungs, while bare IONPs were also evidenced in kidneys.
Collapse
|
18
|
Formation of hydrated PEG layers on magnetic iron oxide nanoflowers shows internal magnetisation dynamics and generates high in-vivo efficacy for MRI and magnetic hyperthermia. Acta Biomater 2022; 152:393-405. [PMID: 36007780 PMCID: PMC10141539 DOI: 10.1016/j.actbio.2022.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
Multicore magnetic iron oxide nanoparticles, nanoflowers (NFs), have potential biomedical applications as efficient mediators for AC-magnetic field hyperthermia and as contrast agents for magnetic resonance imaging due to their strong magnetic responses arising from complex internal magnetic ordering. To realise these applications amenable surface chemistry must be engineered that maintain particle dispersion. Here a catechol-derived grafting approach is described to strongly bind polyethylene glycol (PEG) to NFs and provide stable hydrogen-bonded hydrated layers that ensure good long-term colloidal stability in buffers and media even at clinical MRI field strength and high concentration. The approach enables the first comprehensive study into the MRI (relaxivity) and hyperthermic (SAR) efficiencies of fully dispersed NFs. The predominant role of internal magnetisation dynamics in providing high relaxivity and SAR is confirmed, and it is shown that these properties are unaffected by PEG molecular weight or corona formation in biological environments. This result is in contrast to traditional single core nanoparticles which have significantly reduced SAR and relaxivity upon PEGylation and on corona formation, attributed to reduced Brownian contributions and weaker NP solvent interactions. The PEGylated NF suspensions described here exhibit usable blood circulation times and promising retention of relaxivity in-vivo due to the strongly anchored PEG layer. This approach to biomaterials design addresses the challenge of maintaining magnetic efficiency of magnetic nanoparticles in-vivo for applications as theragnostic agents. STATEMENT OF SIGNIFICANCE: : Application of multicore magnetic iron-oxide nanoflowers (NFs) as efficient mediators for AC-field hyperthermia and as contrast agents for MR imaging has been limited by lack of colloidal stability in complex media and biosystems. The optimized materials design presented is shown to reproducibly provide PEG grafted NF suspensions of exceptional colloidal stability in buffers and complex media, with significant hyperthermic and MRI utility which is unaffected by PEG length, anchoring group or bio-molecular adsorption. Deposition in the selected pancreatic model mirrors liposomal formulations providing a quantifiable probe of tissue-level liposome deposition and relaxivity is retained in the tumour microenvironment. Hence the biomaterials design addresses the longstanding challenges of maintaining the in vivo magnetic efficiency of nanoparticles as theragnostic agents.
Collapse
|
19
|
Ge J, Li C, Wang N, Zhang R, Afshari MJ, Chen C, Kou D, Zhou D, Wen L, Zeng J, Gao M. Effects of PEG Chain Length on Relaxometric Properties of Iron Oxide Nanoparticles-Based MRI Contrast Agent. NANOMATERIALS 2022; 12:nano12152673. [PMID: 35957104 PMCID: PMC9370369 DOI: 10.3390/nano12152673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/10/2022]
Abstract
Iron oxide nanoparticles (IONPs) as magnetic resonance imaging (MRI) contrast agents have received considerable interest due to their superior magnetic properties. To increase the biocompatibility and blood circulation time, polyethylene glycol (PEG) is usually chosen to decorate IONPs. Although the surface effect induced by the PEGylation has an impact on the relaxometric properties of IONPs and can subsequently affect the imaging results, the occurrence of particle aggregation has troubled researchers to deeply explore this correlation. To shed light on this relationship, three diphosphonate PEGs with molecular weights of 1000, 2000, and 5000 Da were used to replace the hydrophobic oleate ligands of 3.6 nm and 10.9 nm IONPs. Then, the contrast enhancement properties of the resultant “aggregation-free” nanoparticles were carefully evaluated. Moreover, related theories were adopted to predict certain properties of IONPs and to compare with the experimental data, as well as obtain profound knowledge about the impacts of the PEG chain length on transverse relaxivity (r2) and longitudinal relaxivity (r1). It was found that r2 and the saturated magnetization of the IONPs, independent of particle size, was closely related to the chain length of PEG. The results unveiled the correlation between the chain length of the coated PEG and the relaxometric properties of IONPs, providing valuable information which might hold great promise in designing optimized, high-performance IONPs for MRI-related applications.
Collapse
Affiliation(s)
- Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Cang Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ning Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ruru Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mohammad Javad Afshari
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Can Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dandan Kou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ling Wen
- The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Correspondence: (L.W.); (J.Z.)
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- Correspondence: (L.W.); (J.Z.)
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
20
|
Nowak-Jary J, Machnicka B. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J Nanobiotechnology 2022; 20:305. [PMID: 35761279 PMCID: PMC9235206 DOI: 10.1186/s12951-022-01510-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Magnetic iron oxide nanoparticles (MNPs) have been under intense investigation for at least the last five decades as they show enormous potential for many biomedical applications, such as biomolecule separation, MRI imaging and hyperthermia. Moreover, a large area of research on these nanostructures is concerned with their use as carriers of drugs, nucleic acids, peptides and other biologically active compounds, often leading to the development of targeted therapies. The uniqueness of MNPs is due to their nanometric size and unique magnetic properties. In addition, iron ions, which, along with oxygen, are a part of the MNPs, belong to the trace elements in the body. Therefore, after digesting MNPs in lysosomes, iron ions are incorporated into the natural circulation of this element in the body, which reduces the risk of excessive storage of nanoparticles. Still, one of the key issues for the therapeutic applications of magnetic nanoparticles is their pharmacokinetics which is reflected in the circulation time of MNPs in the bloodstream. These characteristics depend on many factors, such as the size and charge of MNPs, the nature of the polymers and any molecules attached to their surface, and other. Since the pharmacokinetics depends on the resultant of the physicochemical properties of nanoparticles, research should be carried out individually for all the nanostructures designed. Almost every year there are new reports on the results of studies on the pharmacokinetics of specific magnetic nanoparticles, thus it is very important to follow the achievements on this matter. This paper reviews the latest findings in this field. The mechanism of action of the mononuclear phagocytic system and the half-lives of a wide range of nanostructures are presented. Moreover, factors affecting clearance such as hydrodynamic and core size, core morphology and coatings molecules, surface charge and technical aspects have been described.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland.
| | - Beata Machnicka
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland
| |
Collapse
|
21
|
Ahmed B S, Baijal G, Somashekar R, Iyer S, Nayak V. Comparative study of one pot synthesis of PEGylated gold and silver nanoparticles for imaging and radiosensitization of oral cancers. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Chen J, Yuan M, Madison CA, Eitan S, Wang Y. Blood-brain barrier crossing using magnetic stimulated nanoparticles. J Control Release 2022; 345:557-571. [PMID: 35276300 DOI: 10.1016/j.jconrel.2022.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/15/2022]
Abstract
Due to the low permeability and high selectivity of the blood-brain barrier (BBB), existing brain therapeutic technologies are limited by the inefficient BBB crossing of conventional drugs. Magnetic nanoparticles (MNPs) have shown great potential as nano-carriers for efficient BBB crossing under the external static magnetic field (SMF). To quantify the impact of SMF on MNPs' in vivo dynamics towards BBB crossing, we developed a physiologically based pharmacokinetic (PBPK) model for intraperitoneal (IP) injected superparamagnetic iron oxide nanoparticles coated by gold and conjugated with poly (ethylene glycol) (PEG) (SPIO-Au-PEG NPs) in mice. Unlike most reported PBPK models that ignore brain permeability, we first obtained the brain permeabilities with and without SMF by determining the concentration of SPIO-Au-PEG NPs in the cerebral blood and brain tissue. This concentration in the brain was simulated by the advection-diffusion equations and was numerically solved in COMSOL Multiphysics. The results from the PBPK model after incorporating the brain permeability showed a good agreement (regression coefficient R2 = 0.848) with the in vivo results, verifying the capability of using the proposed PBPK model to predict the in vivo biodistribution of SPIO-Au-PEG NPs under the exposure to SMF. Furthermore, the in vivo results revealed that the distribution coefficient from blood to brain under the exposure to SMF (4.01%) is slightly better than the control group (3.68%). In addition, the modification of SPIO-Au-PEG NPs with insulin (SPIO-Au-PEG-insulin) showed an improvement of the brain bioavailability by 24.47% in comparison to the non-insulin group. With the SMF stimulation, the brain bioavailability of SPIO-Au-PEG-insulin was further improved by 3.91% compared to the group without SMF. The PBPK model and in vivo validation in this paper lay a solid foundation for future study on non-invasive targeted drug delivery to the brain.
Collapse
Affiliation(s)
- Jingfan Chen
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, United States of America
| | - Muzhaozi Yuan
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, United States of America
| | - Caitlin A Madison
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, United States of America
| | - Shoshana Eitan
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Ya Wang
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, United States of America; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States of America; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, United States of America.
| |
Collapse
|
23
|
Mahmoud K, Swidan S, El-Nabarawi M, Teaima M. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances. J Nanobiotechnology 2022; 20:109. [PMID: 35248080 PMCID: PMC8898455 DOI: 10.1186/s12951-022-01309-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is considered one of the deadliest diseases with one of the highest disease burdens worldwide. Among the different types of liver cancer, hepatocellular carcinoma is considered to be the most common type. Multiple conventional approaches are being used in treating hepatocellular carcinoma. Focusing on drug treatment, regular agents in conventional forms fail to achieve the intended clinical outcomes. In order to improve the treatment outcomes, utilizing nanoparticles-specifically lipid based nanoparticles-are considered to be one of the most promising approaches being set in motion. Multiple forms of lipid based nanoparticles exist including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, phytosomes, lipid coated nanoparticles, and nanoassemblies. Multiple approaches are used to enhance the tumor uptake as well tumor specificity such as intratumoral injection, passive targeting, active targeting, and stimuli responsive nanoparticles. In this review, the effect of utilizing lipidic nanoparticles is being discussed as well as the different tumor uptake enhancement techniques used.
Collapse
Affiliation(s)
- Khaled Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
| | - Shady Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt.
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt.
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
24
|
Zhou L, Ye Z, Zhang E, Chen L, Hou Y, Lin J, Huang F, Yuan Z. Co-Delivery of Dexamethasone and Captopril by α8 Integrin Antibodies Modified Liposome-PLGA Nanoparticle Hybrids for Targeted Anti-Inflammatory/Anti-Fibrosis Therapy of Glomerulonephritis. Int J Nanomedicine 2022; 17:1531-1547. [PMID: 35388271 PMCID: PMC8978694 DOI: 10.2147/ijn.s347164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/10/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Mesangial cells-mediated glomerulonephritis refers to a category of immunologically mediated glomerular injuries characterized by infiltration of circulating inflammatory cells, proliferation of mesangial cells, and the common pathological manifestation to the later stage is renal fibrosis, accompanied by excessive accumulation of extracellular matrix (ECM). Treatment regimens include glucocorticoids and immunosuppressive agents, but their off-target distribution causes severe systemic toxicity. Hence, specific co-delivery of “anti-inflammatory/anti-fibrosis” drugs to the glomerular mesangial cell (MC) region is expected to produce better therapeutic effects. Methods A novel kidney-targeted nanocarrier drug delivery system targeting MCs was constructed using passive targeting resulting from the difference in pore size between the glomerular endothelial layer and the basement membrane, and active targeting based on the specific binding of antibodies and antigens. Specifically, a liposome-nanoparticle hybrid (PLGA-LNHy) was formed by coating the surface of PLGA nanoparticles (NPs) with a phospholipid bilayer, and then PLGA-LNHy was co-modified with PEG and α8 integrin antibodies to obtain PLGA immunoliposomes (PLGA-ILs). Results The results showed that the obtained NPs had a core-shell structure, uniform and suitable particle size (119.1 ± 2.31 nm), low cytotoxicity, and good mesangial cell-entry ability, which can successfully accumulate in the glomerular MC region. Both dexamethasone (DXMS) and captopril (CAP) were loaded onto PLGA-ILs with a drug loading of 10.22 ± 1.00% for DXMS and 6.37 ± 0.25% for CAP (DXMS/CAP@PLGA-ILs). In vivo pharmacodynamics showed that DXMS/CAP@PLGA-ILs can effectively improve the pathological changes in the mesangial area and positive expression of proliferating cell nuclear antigen (PCNA) in glomeruli as well as reduce the expression of inflammatory factors, fibrotic factors and reactive oxygen species (ROS). Thus, renal inflammation and fibrosis were relieved. Conclusion We have provided a strategy to increase nanoparticle accumulation in MCs with the potential to implement regulatory effects of anti-inflammatory and anti-fibrosis in glomerulonephritis (GN).
Collapse
Affiliation(s)
- Liuting Zhou
- Department of Osteoporosis, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
| | - Zhenyan Ye
- School of Clinical Medical; Chengdu Medical College, Chengdu, People’s Republic of China
| | - E Zhang
- Officers college of PAP, Chengdu, Sichuan, People’s Republic of China
| | - Li Chen
- Department of Osteoporosis, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yitong Hou
- Department of Osteoporosis, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - JuChun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
| | - Fenglan Huang
- Department of Osteoporosis, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Correspondence: Fenglan Huang, Email
| | - Zhixiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
25
|
Abu-Dief AM, Alsehli M, Awaad A. A higher dose of PEGylated gold nanoparticles reduces the accelerated blood clearance phenomenon effect and induces spleen B lymphocytes in albino mice. Histochem Cell Biol 2022; 157:641-656. [PMID: 35157114 DOI: 10.1007/s00418-022-02086-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
Abstract
Polyethylene glycol (PEG) is a multifunctional polymer that has many uses in medical and biological applications. Recently, PEG has been mainly used in developing nanomaterial-based drug delivery systems (DDS). PEG is characterized by its high solubility, biological inertness, and ability to escape from immune cells (stealthiness) after systemic injection. The most challenging problem for PEGylated nanomaterials is their rapid elimination from the bloodstream after repeated doses of systemic injection, called accelerated blood clearance (ABC). Therefore, in this study, the effect of PEGylated nanomaterial dose concentration on ABC induction will be investigated using quantitative, histological, and immunohistochemical analyses. A higher dose concentration (2 mg/kg) of PEGylated gold nanoparticles (PEG-coated AuNPs) reduced the ABC phenomenon when intravenously injected into mice preinjected with the same dose. In contrast, a lower dose concentration (< 1 mg/kg) significantly induced the ABC phenomenon by the rapid elimination of the second dose of PEG-coated AuNPs from the bloodstream. To explain the relationship between the dose concentration (from PEG and AuNPs) and the induction of ABC, the biodistribution of PEG-coated AuNPs in liver and spleen [reticuloendothelial systems (RES)-rich organs] was investigated. The injected dose of PEG-coated AuNPs accumulated mainly in the hepatic Kupffer cells and hepatocytes. Similarly, spleen red pulp received a higher amount of the injected dose of PEG-coated AuNPs. However, the biodistriution profiles of PEG-coated AuNPs after the first and second dose for different dose concentrations varied in RES-rich organs. Additionally, the number of B lymphocytes, which have an important role in producing anti-PEG immunoglobulin (Ig)M, was affected by the repeated dose of PEG-coated AuNPs in the spleen. Therefore, for effective nanomaterial-based DDS development, dose optimization of PEG molecules that express PEGylated nanomaterials is important to reduce the ABC phenomenon effect. The ideal concentration of PEG molecules used to coat nanomaterials and the role of RES-rich organs must be determined to control the ABC phenomenon effect of PEGylated nanomaterials.
Collapse
Affiliation(s)
- Ahmed M Abu-Dief
- Department of Chemistry, College of Science, Taibah University, P.O. Box 344, Madinah, Saudi Arabia.,Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Mosa Alsehli
- Department of Chemistry, College of Science, Taibah University, P.O. Box 344, Madinah, Saudi Arabia
| | - Aziz Awaad
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 52824, Egypt.
| |
Collapse
|
26
|
Kanwal F, Ma M, Rehman MFU, Khan FU, Elizur SE, Batool AI, Wang CC, Tabassum T, Lu C, Wang Y. Aspirin Repurposing in Folate-Decorated Nanoparticles: Another Way to Target Breast Cancer. Front Mol Biosci 2022; 8:788279. [PMID: 35187067 PMCID: PMC8848101 DOI: 10.3389/fmolb.2021.788279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer affects more than 1 million women per year worldwide. Through this study, we developed a nanoparticle-based drug delivery system to target breast cancer cells. Aspirin has been found to inhibit thromboembolic diseases with its tumor-preventing activity. As a consequence, it relieves disease symptoms and severity. Here, mesoporous silica nanoparticles (MNPs) have been used to deliver aspirin to the tumor location. MNP-based aspirin in folic acid (F)-conjugated polydopamine (MNP-Asp-PD-PG-F) vehicles are prepared for targeted breast cancer therapy. The vehicle hinges on MNP altered with polymer polyethylene glycol (PG), polydopamine (PD), and F. The delivery vehicle was studied for in vitro drug release, cytotoxicity, and breast cancer cell proliferation. F-conjugated drug delivery vehicles let MNPs achieve an elevated targeting efficacy, ideal for cancer therapy. It was also observed that compared to free aspirin, our drug delivery system (MNP-Asp-PD-PG-F) has a higher cytotoxic and antiproliferative effect on breast cancer cells. The drug delivery system can be proposed as a targeted breast cancer therapy that could be further focused on other targeted cancer therapies. Delivering aspirin by the PD-PG-F system on the tumor sites promises a therapeutic potential for breast cancer treatment.
Collapse
Affiliation(s)
- Fariha Kanwal
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Mingming Ma
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Muhammad Fayyaz ur Rehman
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
- *Correspondence: Muhammad Fayyaz ur Rehman, ; Yao Wang,
| | - Fahim-ullah Khan
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Shai E. Elizur
- IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel-Hashomer and Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Aima Iram Batool
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tahira Tabassum
- Department of Pathology, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Changrui Lu
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Yao Wang
- Department of Assisted Reproduction, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Muhammad Fayyaz ur Rehman, ; Yao Wang,
| |
Collapse
|
27
|
Cao Y, Yang H, Li D, Li F, Ma J, Liu P. The effect of AS1411 surface density on the tumor targeting properties of PEGylated silver nanotriangles. Nanomedicine (Lond) 2022; 17:289-302. [PMID: 35060397 DOI: 10.2217/nnm-2021-0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To determine the optimal AS1411 density on polyethylene glycol (PEG)ylated silver nanotriangles (PNTs) for targeting breast cancer cells. Methods: PNTs modified with different AS1411 densities (ANTs) were constructed, characterized and evaluated for their targeting properties in breast cancer cells and a mouse model of breast cancer. Results: AS1411 was successfully conjugated to PNTs. The accumulation and cellular uptake of 10-ANTs were the highest. 10-ANTs plus near-IR laser irradiation displayed the greatest inhibitory effect on cell viability. However, 5-ANTs had the highest accumulation in tumor tissues. When combined with NIR laser, 5-ANTs exhibited the best in vivo photothermal therapy effect. Conclusion: The optimal AS1411 densities at the cellular and animal levels were 10% and 5%, respectively.
Collapse
Affiliation(s)
- Yuyu Cao
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Huiquan Yang
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Dongdong Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Fan Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Ma
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Biomaterials & Devices, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
28
|
Klimkevicius V, Voronovic E, Jarockyte G, Skripka A, Vetrone F, Rotomskis R, Katelnikovas A, Karabanovas V. Polymer brush coated upconverting nanoparticles with improved colloidal stability and cellular labeling. J Mater Chem B 2022; 10:625-636. [PMID: 34989749 DOI: 10.1039/d1tb01644j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Upconverting nanoparticles (UCNPs) possess great potential for biomedical application. UCNPs absorb and convert near-infrared (NIR) radiation in the biological imaging window to visible (Vis) and even ultraviolet (UV) radiation. NIR excitation offers reduced scattering and diminished autofluorescence in biological samples, whereas the emitted UV-Vis and NIR photons can be used for cancer treatment and imaging, respectively. However, UCNPs are usually synthesized in organic solvents and are not readily suitable for biomedical application due to the hydrophobic nature of their surface. Herein, we have removed the hydrophobic ligands from the synthesized UCNPs and coated the bare UCNPs with two custom-made hydrophilic polyelectrolytes (synthesized via the reversible addition-fragmentation chain transfer (RAFT) polymerization method). Polymers containing different amounts of PEGylated and carboxylic groups were studied. Coating with both polymers increased the upconversion (UC) emission intensity and photoluminescence lifetime values of the UCNPs, which directly translates to more efficient cancer cell labeling nanoprobes. The polymer composition plays a crucial role in the modification of UCNPs, not only with respect to their colloidal stability, but also with respect to the cellular uptake. Colloidally unstable bare UCNPs aggregate in cell culture media and precipitate, rendering themselves unsuitable for any biomedical use. However, stabilization with polymers prevents UCNPs from aggregation, increases their uptake in cells, and improves the quality of cellular labeling. This investigation sheds light on the appropriate coating for UCNPs and provides relevant insights for the rational development of imaging and therapeutic tools.
Collapse
Affiliation(s)
- Vaidas Klimkevicius
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania.
| | - Evelina Voronovic
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania.,Life Science Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Greta Jarockyte
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Life Science Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Artiom Skripka
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650, boul. Lionel-Boulet, J3X 1S2, Varennes, QC, Canada
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650, boul. Lionel-Boulet, J3X 1S2, Varennes, QC, Canada
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Biophotonics Group of Laser Research Centre, Vilnius University, Saulėtekio 9, c.3, LT-10222, Vilnius, Lithuania
| | - Arturas Katelnikovas
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania.
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania
| |
Collapse
|
29
|
Ashrafizadeh M, Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Raei M, Hushmandi K, Zarrabi A, Voelcker NH, Aref AR, Hamblin MR, Varma RS, Samarghandian S, Arostegi IJ, Alzola M, Kumar AP, Thakur VK, Nabavi N, Makvandi P, Tay FR, Orive G. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr Polym 2021; 272:118491. [PMID: 34420747 DOI: 10.1016/j.carbpol.2021.118491] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
An important motivation for the use of nanomaterials and nanoarchitectures in cancer therapy emanates from the widespread emergence of drug resistance. Although doxorubicin (DOX) induces cell cycle arrest and DNA damage by suppressing topoisomerase activity, resistance to DOX has severely restricted its anti-cancer potential. Hyaluronic acid (HA) has been extensively utilized for synthesizing nanoparticles as it interacts with CD44 expressed on the surface of cancer cells. Cancer cells can take up HA-modified nanoparticles through receptor-mediated endocytosis. Various types of nanostructures such as carbon nanomaterials, lipid nanoparticles and polymeric nanocarriers have been modified with HA to enhance the delivery of DOX to cancer cells. Hyaluronic acid-based advanced materials provide a platform for the co-delivery of genes and drugs along with DOX to enhance the efficacy of anti-cancer therapy and overcome chemoresistance. In the present review, the potential methods and application of HA-modified nanostructures for DOX delivery in anti-cancer therapy are discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiobiology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - I J Arostegi
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - M Alzola
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
30
|
Ren S, Song L, Tian Y, Zhu L, Guo K, Zhang H, Wang Z. Emodin-Conjugated PEGylation of Fe 3O 4 Nanoparticles for FI/MRI Dual-Modal Imaging and Therapy in Pancreatic Cancer. Int J Nanomedicine 2021; 16:7463-7478. [PMID: 34785894 PMCID: PMC8579871 DOI: 10.2147/ijn.s335588] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) remains a difficult tumor to diagnose and treat. It is often diagnosed as advanced by reason of the anatomical structure of the deep retroperitoneal layer of the pancreas, lack of typical symptoms and effective screening methods to detect this malignancy, resulting in a low survival rate. Emodin (EMO) is an economical natural product with effective treatment and few side effects of cancer treatment. Magnetic nanoparticles (MNPs) can achieve multiplexed imaging and targeted therapy by loading a wide range of functional materials such as fluorescent dyes and therapeutic agents. PURPOSE The purpose of this study was to design and evaluate a multifunctional theranostic nanoplatform for PC diagnosis and treatment. METHODS In this study, we successfully developed EMO-loaded, Cy7-functionalized, PEG-coated Fe3O4 (Fe3O4-PEG-Cy7-EMO). Characteristics including morphology, hydrodynamic size, zeta potentials, stability, and magnetic properties of Fe3O4-PEG-Cy7-EMO were evaluated. Fluorescence imaging (FI)/magnetic resonance imaging (MRI) and therapeutic treatment were examined in vitro and in vivo. RESULTS Fe3O4-PEG-Cy7-EMO nanoparticles had a core size of 9.9 ± 1.2 nm, which showed long-time stability and FI/MRI properties. Bio-transmission electron microscopy (bio-TEM) results showed that Fe3O4-PEG-Cy7-EMO nanoparticles were endocytosed into BxPC-3 cells, while few were observed in hTERT-HPNE cells. Prussian blue staining also confirmed that BxPC-3 cells have a stronger phagocytic ability as compared to hTERT-HPNE cells. Additionally, Fe3O4-PEG-Cy7-EMO had a stronger inhibition effect on BxPC-3 cells than Fe3O4-PEG and EMO. The hemolysis experiment proved that Fe3O4-PEG-Cy7-EMO can be used in vivo experiments. In vivo analysis demonstrated that Fe3O4-PEG-Cy7-EMO enabled FI/MRI dual-modal imaging and targeted therapy in pancreatic tumor xenografted mice. CONCLUSION Fe3O4-PEG-Cy7-EMO may serve as a potential theranostic nanoplatform for PC.
Collapse
Affiliation(s)
- Shuai Ren
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Lina Song
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Ying Tian
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Li Zhu
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Kai Guo
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Huifeng Zhang
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Zhongqiu Wang
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| |
Collapse
|
31
|
Ahmed S, Baijal G, Somashekar R, Iyer S, Nayak V. One Pot Synthesis of PEGylated Bimetallic Gold-Silver Nanoparticles for Imaging and Radiosensitization of Oral Cancers. Int J Nanomedicine 2021; 16:7103-7121. [PMID: 34712044 PMCID: PMC8545617 DOI: 10.2147/ijn.s329762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Background Radiotherapy is an important treatment modality for many types of head and neck squamous cell carcinomas. Nanomaterials comprised of high atomic number (Z) elements are novel radiosensitizers enhance radiation injury by production of free radicals and subsequent DNA damage. Gold nanoparticles are upcoming as promising radiosensitizers due to their high (Z) biocompatibility, and ease for surface engineering. Bimetallic nanoparticles have shown enhanced anticancer activity compared to monometallic nanoparticles. Materials and Methods PEG-coated Au–Ag alloy nanoparticles (BNPs) were synthesized using facile one pot synthesis techniques. Size of ~50±5nm measured by dynamic light scattering. Morphology, structural composition and elemental mapping were analyzed by electron microscopy and SAXS (small-angle X-ray scattering). The radiosensitization effects on KB oral cancer cells were evaluated by irradiation with 6MV X-rays on linear accelerator. Nuclear damage was imaged using confocal microscopy staining cells with Hoechst stain. Computed tomography (CT) contrast enhancement of BNPs was compared to that of the clinically used agent, Omnipaque. Results BNPs were synthesized using PEG 600 as reducing and stabilizing agent. The surface charge of well dispersed colloidal BNPs solution was −5mV. Electron microscopy reveals spherical morphology. HAADF-STEM and elemental mapping studies showed that the constituent metals were Au and Ag intermixed nanoalloy. Hydrodynamic diameter was ~50±5nm due to PEG layer and water molecules absorption. SAXS measurement confirmed BNPs size around 35nm. Raman shift of around 20 cm−1 was observed when BNPs were coated with PEG. 1H NMR showed extended involvement of −OH in synthesis. BNPs efficiently enter cytoplasm of KB cells and demonstrated potent in vitro radiosensitization with enhancement ratio ~1.5–1.7. Imaging Hoechst-stained nuclei demonstrated apoptosis in a dose-dependent manner. BNPs exhibit better CT contrast enhancement ability compared to Omnipaque. Conclusion This bimetallic intermix nanoparticles could serve a dual function as radiosensitizer and CT contrast agent against oral cancers, and by extension possibly other cancers as well.
Collapse
Affiliation(s)
- Shameer Ahmed
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, K.K. Birla Goa Campus, Sancoale, Goa, India
| | - Gunjan Baijal
- Department of Radiation Oncology, Manipal Hospital Goa, Panaji, Goa, India
| | - Rudrappa Somashekar
- Centre for Materials Science and Technology, Vijnana Bhavan, Mysore, Karnataka, India
| | - Subramania Iyer
- Department of Head and Neck Oncology, Amrita Institute of Medical Sciences, Ponekkara, Cochin, India
| | - Vijayashree Nayak
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, K.K. Birla Goa Campus, Sancoale, Goa, India
| |
Collapse
|
32
|
Yang H, Zhao J, Li D, Cao Y, Li F, Ma J, Liu P. Application of silver nanotriangles as a novel contrast agent in tumor computed tomography imaging. NANOTECHNOLOGY 2021; 32:495705. [PMID: 34450600 DOI: 10.1088/1361-6528/ac21ef] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to prepare chitosan-coated silver nanotriangles (AgNTs) and assess their computed tomography (CT) contrast property byin vitroandin vivoexperiments. AgNTs with a range of sizes were synthesized by a seed-based growth method, and subsequently characterized by transmission electron microscopy (TEM), ultraviolet-visible absorption spectroscopy and dynamic light scattering. The x-ray attenuation capability of all prepared AgNTs was evaluated using micro CT. The CT contrast effect of AgNTs with the highest x-ray attenuation coefficient was investigated in MDA-MB-231 breast cancer cells and a mouse model of breast cancer. The TEM results displayed that all synthesized AgNTs were triangular in shape and their mean edge lengths ranged from 60 to 149 nm. All AgNTs tested exhibited stronger x-ray attenuation capability than iohexol at the same mass concentration of the active elements, and the larger the AgNTs size, the higher the x-ray attenuation coefficient. AgNTs with the largest size were selected for further research, due to their strongest x-ray attenuation capability and best biocompatibility. The attenuation coefficient of breast cancer cells treated with AgNTs increased in a particle concentration-dependent manner.In vivoCT imaging showed that the contrast of the tumor injected with AgNTs was significantly enhanced. These findings indicated that AgNTs could be a promising candidate for highly efficient tumor CT contrast agents.
Collapse
Affiliation(s)
- Huiquan Yang
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Zhao
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Dongdong Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yuyu Cao
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Fan Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Ma
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
33
|
Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation. Cancers (Basel) 2021; 13:cancers13184583. [PMID: 34572810 PMCID: PMC8465027 DOI: 10.3390/cancers13184583] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Magnetic hyperthermia therapy is an alternative treatment for cancer that complements traditional therapies and that has shown great promise in recent years. In this review, we assess the current applications of this therapy in order to understand why its translation from the laboratory to the clinic has been less smooth than was anticipated, identifying the possible bottlenecks and proposing solutions to the problems encountered. Abstract Hyperthermia has emerged as a promising alternative to conventional cancer therapies and in fact, traditional hyperthermia is now commonly used in combination with chemotherapy or surgery during cancer treatment. Nevertheless, non-specific application of hyperthermia generates various undesirable side-effects, such that nano-magnetic hyperthermia has arisen a possible solution to this problem. This technique to induce hyperthermia is based on the intrinsic capacity of magnetic nanoparticles to accumulate in a given target area and to respond to alternating magnetic fields (AMFs) by releasing heat, based on different principles of physics. Unfortunately, the clinical implementation of nano-magnetic hyperthermia has not been fluid and few clinical trials have been carried out. In this review, we want to demonstrate the need for more systematic and basic research in this area, as many of the sub-cellular and molecular mechanisms associated with this approach remain unclear. As such, we shall consider here the biological effects that occur and why this theoretically well-designed nano-system fails in physiological conditions. Moreover, we will offer some guidelines that may help establish successful strategies through the rational design of magnetic nanoparticles for magnetic hyperthermia.
Collapse
|
34
|
Shatan AB, Patsula V, Dydowiczová A, Gunár K, Velychkivska N, Hromádková J, Petrovský E, Horák D. Cationic Polymer-Coated Magnetic Nanoparticles with Antibacterial Properties: Synthesis and In Vitro Characterization. Antibiotics (Basel) 2021; 10:1077. [PMID: 34572658 PMCID: PMC8471980 DOI: 10.3390/antibiotics10091077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/04/2022] Open
Abstract
Uniformly sized magnetite nanoparticles (Dn = 16 nm) were prepared by a thermal decomposition of Fe(III) oleate in octadec-1-ene and stabilized by oleic acid. The particles were coated with Sipomer PAM-200 containing both phosphate and methacrylic groups available for the attachment to the iron oxide and at the same time enabling (co)polymerization of 2-(dimethylamino)ethyl methacrylate and/or 2-tert-butylaminoethyl methacrylate at two molar ratios. The poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) and poly[2-(dimethylamino)ethyl methacrylate-co-2-tert-butylaminoethyl methacrylate] [P(DMAEMA-TBAEMA)] polymers and the particles were characterized by 1H NMR spectroscopy, size-exclusion chromatography, transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, magnetometry, and ATR FTIR and atomic absorption spectroscopy. The antimicrobial effect of cationic polymer-coated magnetite nanoparticles tested on both Escherichia coli and Staphylococcus aureus bacteria was found to be time- and dose-responsive. The P(DMAEMA-TBAEMA)-coated magnetite particles possessed superior biocidal properties compared to those of P(DMAEMA)-coated one.
Collapse
Affiliation(s)
- Anastasiia B. Shatan
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Vitalii Patsula
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
| | - Aneta Dydowiczová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
| | - Kristýna Gunár
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
| | - Nadiia Velychkivska
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
| | - Jiřina Hromádková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
| | - Eduard Petrovský
- Institute of Geophysics, Czech Academy of Sciences, Boční II/1401, 141 31 Prague 4, Czech Republic;
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
| |
Collapse
|
35
|
Andreozzi P, Simó C, Moretti P, Porcel JM, Lüdtke TU, Ramirez MDLA, Tamberi L, Marradi M, Amenitsch H, Llop J, Ortore MG, Moya SE. Novel Core-Shell Polyamine Phosphate Nanoparticles Self-Assembled from PEGylated Poly(allylamine hydrochloride) with Low Toxicity and Increased In Vivo Circulation Time. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102211. [PMID: 34278713 DOI: 10.1002/smll.202102211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Indexed: 06/13/2023]
Abstract
An approach for reducing toxicity and enhancing therapeutic potential of supramolecular polyamine phosphate nanoparticles (PANs) through PEGylation of polyamines before their assembly into nanoparticles is presented here. It is shown that the number of polyethylene glycol (PEG) chains for polyamine largely influence physico-chemical properties of PANs and their biological endpoints. Poly(allylamine hydrochloride) (PAH) are functionalized through carbodiimide chemistry with three ratios of PEG molecules per PAH chain: 0.1, 1, and 10. PEGylated PAH is then assembled into PANs by exposing the polymer to phosphate buffer solution. PANs decrease size and surface charge with increasing PEG ratios as evidenced by dynamic light scattering and zeta potential measurements, with the ten PEG/PAH ratio PANs having practically zero charge. Small angle X-ray scattering (SAXS) proves that PEG chains form a shell around a polyamine core, which is responsible for the screening of positive charges. MTT experiments show that the screening of amine groups decreases nanoparticle toxicity, with the lowest toxicity for the 10 PEG/PAH ratio. Fluorescence correlation spectroscopy (FCS) proves less interaction with proteins for PEGylated PANs. Positron emission tomography (PET) imaging of 18 F labelled PANs shows longer circulation time in healthy mice for PEGylated PANs than non-PEGylated ones.
Collapse
Affiliation(s)
- Patrizia Andreozzi
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
- Consorzio Sistemi a Grande Interfase, Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence, 50019, Italy
| | - Cristina Simó
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Basque Research and Tech-nology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
| | - Paolo Moretti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via brecce bianche, Ancona, I-60131, Italy
| | - Joaquin Martinez Porcel
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
| | - Tanja Ursula Lüdtke
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
| | - Maria de Los Angeles Ramirez
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
- Instituto de Nanosistemas, UNSAM, CONICET, Avenida 25 de Mayo 1021, San Martín, Buenos Aires, 1650, Argentina
| | - Lorenza Tamberi
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3/13, Sesto Fiorentino, Florence, 50019, Italy
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayergasse 9/V, Graz, 8010, Austria
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Basque Research and Tech-nology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
- Centro de Investigación Biomédica en Red - Enfermedades Respiratorias (CIBERES), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
| | - Maria Grazia Ortore
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via brecce bianche, Ancona, I-60131, Italy
| | - Sergio Enrique Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
| |
Collapse
|
36
|
Xia W, Tao Z, Zhu B, Zhang W, Liu C, Chen S, Song M. Targeted Delivery of Drugs and Genes Using Polymer Nanocarriers for Cancer Therapy. Int J Mol Sci 2021; 22:9118. [PMID: 34502028 PMCID: PMC8431379 DOI: 10.3390/ijms22179118] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the primary causes of worldwide human deaths. Most cancer patients receive chemotherapy and radiotherapy, but these treatments are usually only partially efficacious and lead to a variety of serious side effects. Therefore, it is necessary to develop new therapeutic strategies. The emergence of nanotechnology has had a profound impact on general clinical treatment. The application of nanotechnology has facilitated the development of nano-drug delivery systems (NDDSs) that are highly tumor selective and allow for the slow release of active anticancer drugs. In recent years, vehicles such as liposomes, dendrimers and polymer nanomaterials have been considered promising carriers for tumor-specific drug delivery, reducing toxicity and improving biocompatibility. Among them, polymer nanoparticles (NPs) are one of the most innovative methods of non-invasive drug delivery. Here, we review the application of polymer NPs in drug delivery, gene therapy, and early diagnostics for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Siyu Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (W.X.); (Z.T.); (B.Z.); (W.Z.); (C.L.)
| | - Mingming Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (W.X.); (Z.T.); (B.Z.); (W.Z.); (C.L.)
| |
Collapse
|
37
|
Elahi N, Rizwan M. Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review. Artif Organs 2021; 45:1272-1299. [PMID: 34245037 DOI: 10.1111/aor.14027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Nanoscience has been considered as one of the most substantial research in modern science. The utilization of nanoparticle (NP) materials provides numerous advantages in biomedical applications due to their unique properties. Among various types of nanoparticles, the magnetic nanoparticles (MNPs) of iron oxide possess intrinsic features, which have been efficiently exploited for biomedical purposes including drug delivery, magnetic resonance imaging, Magnetic-activated cell sorting, nanobiosensors, hyperthermia, and tissue engineering and regenerative medicine. The size and shape of nanostructures are the main factors affecting the physicochemical features of superparamagnetic iron oxide nanoparticles, which play an important role in the improvement of MNP properties, and can be controlled by appropriate synthesis strategies. On the other hand, the proper modification and functionalization of the surface of iron oxide nanoparticles have significant effects on the improvement of physicochemical and mechanical features, biocompatibility, stability, and surface activity of MNPs. This review focuses on popular methods of fabrication, beneficial surface coatings with regard to the main required features for their biomedical use, as well as new applications.
Collapse
Affiliation(s)
- Narges Elahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advance Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Nanotechnology, School of Advance Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Muhammad Rizwan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Zhang L, Xu H, Cheng Z, Wei Y, Sun R, Liang Z, Hu Y, Zhao L, Lian X, Li X, Huang D. Human Cancer Cell Membrane-Cloaked Fe 3O 4 Nanocubes for Homologous Targeting Improvement. J Phys Chem B 2021; 125:7417-7426. [PMID: 34185527 DOI: 10.1021/acs.jpcb.1c04383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface modification of nanoparticles with cellular protein components is a new biomimetic modification strategy, which utilizes the inherent affinity between homologous cells to introduce the same surface molecules into nanoparticles to improve the targeting performance. In this study, oleic acid (OA)-coated Fe3O4 nanocubes were prepared by a high-temperature thermal decomposition method and modified by 3, 4-dihydroxyphenylpropionic acid (DHCA); then, HeLa cell membranes were introduced onto the surface of the nanocubes through mixed coextrusion to try to endow them with the targeting function of natural cells. The results show that the prepared Fe3O4 nanocubes have high monodispersity, excellent water solubility, and biocompatibility. Moreover, the Fe3O4 nanocubes encapsulated by cellular protein show an obvious core-shell structure and the specific targeting property to HeLa cells is improved significantly, which is expected to be used in clinical targeted diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Lichuang Zhang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Hao Xu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Ziyi Cheng
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Ruize Sun
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Xia Li
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| |
Collapse
|
39
|
Li H, Luo Z, Peng M, Guo L, Li F, Feng W, Cui Y. Doxorubicin Loaded Dextran-coated Superparamagnetic Iron Oxide Nanoparticles with Sustained Release Property: Intracellular Uptake, Pharmacokinetics, and Biodistribution Study. Curr Pharm Biotechnol 2021; 23:978-987. [PMID: 34097591 DOI: 10.2174/1389201022666210604153738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/14/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Due to the short biological half-life and serious side effects (especially for heart and kidney), the application of Doxorubicin (Dox) in clinical therapy is strictly limited. To overcome these shortcomings, a novel sustained release formulation of doxorubicin-loaded dextran-coated superparamagnetic iron oxide nanoparticles (Dox-DSPIONs) was prepared. OBJECTIVE The purpose of this study was to evaluate the intracellular uptake behavior of Dox-DSPIONs and to investigate their pharmacokinetics and biodistribution properties. METHOD Confocal laser scanning microscopy was employed to study the intracellular uptake and release properties of Dox from Dox-DSPIONs in SMMC-7721 cells. Simple high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method was established to study the pharmacokinetics and biodistribution properties of Dox-DSPIONs in vivo after intravenous administration and compared with free Dox. RESULTS Intracellular uptake experiment indicated that Dox could be released sustainedly from Dox-DSPIONs over time. The pharmacokinetics parameters displayed that the T1/2and AUC0-24h of Dox-DSPIONs were higher than those of free Dox, while the Cmax of Dox-DSPIONs was significantly lower than that of free drug. The biodistribution behaviors of the drug were altered by Dox-DSPIONs in mice, which showed obvious liver targeting, and significantly reduced the distribution of the drug in the heart and kidney. CONCLUSION Dox-DSPIONs have the sustained-release property in vitro and in vivo, which could significantly prolong blood circulation time, improve bioavailability, and reduce the side effects of Dox. Therefore, the novel formulation of the Dox-DSPIONs has the potential as a promising drug delivery system in cancer therapy.
Collapse
Affiliation(s)
- Houli Li
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Zhiyi Luo
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Mingli Peng
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Lili Guo
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Fuqiang Li
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Weiyi Feng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yali Cui
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| |
Collapse
|
40
|
Oleksa V, Macková H, Patsula V, Dydowiczová A, Janoušková O, Horák D. Doxorubicin-Conjugated Iron Oxide Nanoparticles: Surface Engineering and Biomedical Investigation. Chempluschem 2021; 85:1156-1163. [PMID: 32496029 DOI: 10.1002/cplu.202000360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/14/2020] [Indexed: 01/01/2023]
Abstract
Development of therapeutic systems to treat glioblastoma, the most common and aggressive brain tumor, belongs to priority tasks in cancer research. We have synthesized colloidally stable magnetic nanoparticles (Dh =336 nm) coated with doxorubicin (Dox) conjugated copolymers of N,N-dimethylacrylamide and either N-acryloylglycine methyl ester or N-acryloylmethyl 6-aminohexanoate. The terminal carboxyl groups of the copolymers were reacted with alendronate by carbodiimide formation. Methyl ester groups were then transferred to hydrazides for binding Dox by a hydrolytically labile hydrazone bond. The polymers were subsequently bound on the magnetic nanoparticles through bisphosphonate terminal groups. Finally, the anticancer effect of the Dox-conjugated particles was investigated using the U-87 glioblastoma cell line in terms of particle internalization and cell viability, which decreased to almost zero at a concentration of 100 μg of particles per ml. These results confirmed that poly(N,N-dimethylacrylamide)-coated magnetic nanoparticles can serve as a solid support for Dox delivery to glioblastoma cells.
Collapse
Affiliation(s)
- Viktoriia Oleksa
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Hana Macková
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Vitalii Patsula
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Aneta Dydowiczová
- Department of Biological Models, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Olga Janoušková
- Department of Biological Models, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Daniel Horák
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| |
Collapse
|
41
|
Oleksa V, Bernátová I, Patsula V, Líšková S, Bališ P, Radošinská J, Mičurová A, Kluknavský M, Jasenovec T, Radošinská D, Macková H, Horák D. Poly(ethylene glycol)-Alendronate-Coated Magnetite Nanoparticles Do Not Alter Cardiovascular Functions and Red Blood Cells' Properties in Hypertensive Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1238. [PMID: 34067225 PMCID: PMC8151198 DOI: 10.3390/nano11051238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/19/2022]
Abstract
In this study, magnetite nanoparticles were prepared and coated with poly(ethylene glycol) terminated by alendronate to ensure firm binding to the iron oxide surface. Magnetic nanoparticles, designated as magnetite coated with poly(ethylene glycol)-alendronate (Fe3O4@PEG-Ale), were characterized in terms of number-average (Dn) and hydrodynamic (Dh) size, ζ-potential, saturation magnetization, and composition. The effect of particles on blood pressure, vascular functions, nitric oxide (NO), and superoxide production in the tissues of spontaneously hypertensive rats, as well as the effect on red blood cell (RBC) parameters, was investigated after intravenous administration (1 mg Fe3O4/kg of body weight). Results showed that Fe3O4@PEG-Ale particles did negatively affect blood pressure, heart rate and RBC deformability, osmotic resistance and NO production. In addition, Fe3O4@PEG-Ale did not alter functions of the femoral arteries. Fe3O4@PEG-Ale induced increase in superoxide production in the kidney and spleen, but not in the left heart ventricle, aorta and liver. NO production was reduced only in the kidney. In conclusion, the results suggest that acute intravenous administration of Fe3O4@PEG-Ale did not produce negative effects on blood pressure regulation, vascular function, and RBCs in hypertensive rats.
Collapse
Affiliation(s)
- Viktoriia Oleksa
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 06 Prague, Czech Republic; (V.O.); (V.P.); (H.M.)
| | - Iveta Bernátová
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (I.B.); (S.L.); (P.B.); (A.M.); (M.K.)
| | - Vitalii Patsula
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 06 Prague, Czech Republic; (V.O.); (V.P.); (H.M.)
| | - Silvia Líšková
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (I.B.); (S.L.); (P.B.); (A.M.); (M.K.)
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Peter Bališ
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (I.B.); (S.L.); (P.B.); (A.M.); (M.K.)
| | - Jana Radošinská
- Institute of Physiology, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; (J.R.); (T.J.)
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| | - Andrea Mičurová
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (I.B.); (S.L.); (P.B.); (A.M.); (M.K.)
| | - Michal Kluknavský
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (I.B.); (S.L.); (P.B.); (A.M.); (M.K.)
| | - Tomáš Jasenovec
- Institute of Physiology, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; (J.R.); (T.J.)
| | - Dominika Radošinská
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Hana Macková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 06 Prague, Czech Republic; (V.O.); (V.P.); (H.M.)
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 06 Prague, Czech Republic; (V.O.); (V.P.); (H.M.)
| |
Collapse
|
42
|
Moskvin M, Huntošová V, Herynek V, Matouš P, Michalcová A, Lobaz V, Zasońska B, Šlouf M, Seliga R, Horák D. In vitro cellular activity of maghemite/cerium oxide magnetic nanoparticles with antioxidant properties. Colloids Surf B Biointerfaces 2021; 204:111824. [PMID: 33991978 DOI: 10.1016/j.colsurfb.2021.111824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 12/24/2022]
Abstract
Magnetic γ-Fe2O3/CeO2 nanoparticles were obtained by precipitation of Ce(NO3)3 with ammonia in the presence of γ-Fe2O3 seeds. The formation of CeO2 nanoparticles on the seeds was confirmed by transmission electron microscopy linked with selected area electron diffraction, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy, and dynamic light scattering. The γ-Fe2O3/CeO2 particle surface was functionalized with PEG-neridronate to improve the colloidal stability in PBS and biocompatibility. Chemical and in vitro biological assays proved that the nanoparticles, due to the presence of cerium oxide, effectively scavenged radicals, thus decreasing oxidative stress in the model cell line. PEG functionalization of the nanoparticles diminished their in vitro aggregation and facilitated lysosomal cargo degradation in cancer cells during autophagy, which resulted in concentration-dependent cytotoxicity of the nanoparticles. Finally, the iron oxide core allowed easy magnetic separation of the particles from liquid media and may enable monitoring of nanoparticle biodistribution in organisms using magnetic resonance imaging.
Collapse
Affiliation(s)
- Maksym Moskvin
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Veronika Huntošová
- Center of Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Šafárik University in Košice, Jesenná 5, 041 01, Košice, Slovak Republic
| | - Vít Herynek
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Kateřinská 32, 120 00, Prague 2, Czech Republic
| | - Petr Matouš
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Kateřinská 32, 120 00, Prague 2, Czech Republic
| | - Alena Michalcová
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Technická 5, Prague 6, 166 28, Czech Republic
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Beata Zasońska
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Róbert Seliga
- Center of Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Šafárik University in Košice, Jesenná 5, 041 01, Košice, Slovak Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic.
| |
Collapse
|
43
|
Kim H, Koo B. Iron(III) Sensors Based on the Fluorescence Quenching of Poly(phenylene ethynylene)s and Iron-Detecting PDMS Pads. Macromol Res 2021. [DOI: 10.1007/s13233-021-9041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Ahmadpoor F, Masood A, Feliu N, Parak WJ, Shojaosadati SA. The Effect of Surface Coating of Iron Oxide Nanoparticles on Magnetic Resonance Imaging Relaxivity. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.644734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) with acceptable biocompatibility and size-dependent magnetic properties can be used as efficient contrast agents in magnetic resonance imaging (MRI). Herein, we have investigated the impact of particle size and surface coating on the proton relaxivity of IONPs, as well as engineering of small IONPs' surface coating as a strategy for achieving gadolinium-free contrast agents. Accordingly, polymer coating using poly(isobutylene-alt-maleic anhydride) (PMA) with overcoating of the original ligands was applied for providing colloidal stability to originally oleic acid–capped IONPs in aqueous solution. In case of replacement of the original ligand shell, the polymer had been modified with dopamine. Furthermore, the colloidal stability of the polymer-coated IONPs was evaluated in NaCl and bovine serum albumin (BSA) solutions. The results indicate that the polymer-coated IONPs which involved replacement of the original ligands exhibited considerably better colloidal stability and higher proton relaxivity in comparison to polymer-coated IONPs with maintained ligand shell. The highest r2/r1 we obtained was around 300.
Collapse
|
45
|
Tayebi T, Baradaran-Rafii A, Hajifathali A, Rahimpour A, Zali H, Shaabani A, Niknejad H. Biofabrication of chitosan/chitosan nanoparticles/polycaprolactone transparent membrane for corneal endothelial tissue engineering. Sci Rep 2021; 11:7060. [PMID: 33782482 PMCID: PMC8007807 DOI: 10.1038/s41598-021-86340-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
We aimed to construct a biodegradable transparent scaffold for culturing corneal endothelial cells by incorporating chitosan nanoparticles (CSNPs) into chitosan/polycaprolactone (PCL) membranes. Various ratios of CSNP/PCL were prepared in the presence of constant concentration of chitosan and the films were constructed by solvent casting method. Scaffold properties including transparency, surface wettability, FTIR, and biocompatibility were examined. SEM imaging, H&E staining, and cell count were performed to investigate the HCECs adhesion. The phenotypic maintenance of the cells during culture was investigated by flow cytometry. Transparency and surface wettability improved by increasing the CSNP/PCL ratio. The CSNP/PCL 50/25, which has the lowest WCA, showed comparable transparency with human acellular corneal stroma. The scaffold was not cytotoxic and promoted the HCECs proliferation as evaluated by MTT assay. Cell counting, flow cytometry, SEM, and H&E results showed appropriate attachment of HCECs to the scaffold which formed a compact monolayer. The developed scaffold seems to be suitable for use in corneal endothelial regeneration in terms of transparency and biocompatibility.
Collapse
Affiliation(s)
- Tahereh Tayebi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Baradaran-Rafii
- Ophthalmic Research Center, Department of Ophthalmology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Blue light-triggered Fe 2+-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy. Biomaterials 2021; 271:120739. [PMID: 33690102 DOI: 10.1016/j.biomaterials.2021.120739] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/23/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Site-specific Fe2+ generation is promising for tumor therapy. Up to now, reported materials or systems for Fe2+ delivery do not naturally exist in the body, and their biological safety and toxicity are concerned. Herein, inspired by the natural biomineral ferrihydrite in ferritin, we synthesized monodispersed ferrihydrite nanoparticles and demonstrated a light triggered Fe2+ generation on tumor sites. Ferrihydrite nanoparticles of 20-30 nm in diameter possessed high cellular uptake efficiency and good biocompatibility. Under common blue light illumination, a large amount of Fe2+ could be released from ferrihydrite and promote the iron/reactive oxygen species (ROS)-related irreversible DNA fragmentation and glutathione peroxidase 4 (GPX4) inhibition, which led to the apoptosis- and ferroptosis-depended cancer cell proliferation inhibition. On mice, this method induced tumor associated macrophage (TAM) polarization from the tumor-promoting M2 type to the tumor-killing M1 type. With the intravenous pre-injection of ferrihydrite, the combinational effects of the light/Fe2+-approach attenuated pulmonary metastasis on mice. These results demonstrated a novel external light controlled Fe2+-generation approach based on biomineral, which will fully tap the anti-cancer potential of Fe2+ in chemo-dynamic, photo-dynamic and immune-activating therapies.
Collapse
|
47
|
Adusumalli VNKB, Mrówczyńska L, Kwiatek D, Piosik Ł, Lesicki A, Lis S. Ligand-Sensitised LaF 3 :Eu 3+ and SrF 2 :Eu 3+ Nanoparticles and in Vitro Haemocompatiblity Studies. ChemMedChem 2021; 16:1640-1650. [PMID: 33527762 DOI: 10.1002/cmdc.202100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 11/11/2022]
Abstract
Luminescent Ln3+ -doped nanoparticles (NPs) functionalised with the desired organic ligand molecules for haemocompatibility studies were obtained in a one-pot synthesis. Chelated aromatic organic ligands such as isophthalic acid, terephthalic acid, ibuprofen, aspirin, 1,2,4,5-benzenetetracarboxylic acid, 2,6-pyridine dicarboxylic acid and adenosine were applied for surface functionalisation. The modification of the nanoparticles is based on the donor-acceptor character of the ligand-nanoparticle system, which is an alternative to covalent functionalisation by peptide bonding as presented in our recent report. The aromatic groups of selected ligands absorb UV light and transfer their excited-state energy to the dopant Eu3+ ions in LaF3 and SrF2 NPs. Herein, we discuss the structural and spectroscopic characterisation of the NPs and the results of haemocompatibility studies. Flow cytometry analysis of the nanoparticles' membrane-binding is also presented.
Collapse
Affiliation(s)
- Venkata N K B Adusumalli
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Dorota Kwiatek
- Department of Molecular Probes and Prodrugs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Łukasz Piosik
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Andrzej Lesicki
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Stefan Lis
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
48
|
Kawish M, Jabri T, Elhissi A, Zahid H, Muhammad Iqbal K, Rao K, Gul J, Abdullah M, Shah MR. Galactosylated iron oxide nanoparticles for enhancing oral bioavailability of ceftriaxone. Pharm Dev Technol 2021; 26:291-301. [PMID: 33475034 DOI: 10.1080/10837450.2020.1866602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The current study focuses on the development, characterization, biocompatibility investigation and oral bioavailability evaluation of ceftriaxone (CFT)-loaded lactobionic acid (LBA)-functionalized iron oxide magnetic nanoparticles (MNP-LBA). Atomic force microscopy and dynamic light scattering showed that the developed CFT-loaded MNP-LBA is spherical, with a measured hydrodynamic size of 147 ± 15.9 nm and negative zeta potential values (-35 ± 0.58 mV). Fourier transformed infrared analysis revealed interactions between the nanocarrier and the drug. Nanoparticles showed high drug entrapment efficiencies of 91.5 ± 2.2%, and the drug was released gradually in vitro and shows prolonged in vitro stability using simulated gastrointestinal (GI) fluids. The formulations were found to be highly biocompatible (up to 100 µg/mL) and hemocompatible (up to 1.0 mg/mL). Using an albino rabbit model, the formulation showed a significant enhancement in drug plasma concentration up to 14.46 ± 2.5 µg/mL in comparison with its control (1.96 ± 0.58 µg/mL). Overall, the developed MNP-LBA formulation was found promising for provision of high-drug entrapment, gradual drug release and was appropriate for enhancing the oral delivery of CFT.
Collapse
Affiliation(s)
- Muhammad Kawish
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Tooba Jabri
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Abdelbary Elhissi
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Office of The Vice President for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Hina Zahid
- Faculty of Pharmaceutical Sciences, Dow University of Health Sciences Karachi, Karachi, Pakistan
| | - Kanwal Muhammad Iqbal
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Komal Rao
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Jasra Gul
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Muhammad Abdullah
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
49
|
Amirshaghaghi A, Cheng Z, Josephson L, Tsourkas A. Magnetic Nanoparticles. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Bhattacharjee S, Brayden DJ. Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients. Expert Opin Drug Discov 2020; 16:235-254. [PMID: 33108229 DOI: 10.1080/17460441.2021.1826434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Nanotechnology is in a growth phase for drug delivery and medical imaging. Nanomaterials with unique properties present opportunities for encapsulation of therapeutics and imaging agents, along with conjugation to ligands for targeting. Favorable chemistry of nanomaterials can create formulations that address critical challenges for therapeutics, such as insolubility and a low capacity to cross the blood-brain-barrier (BBB) and intestinal wall. AREAS COVERED The authors investigate challenges faced during translation of nanomedicines while suggesting reasons as to why some nanoformulations have under-performed in clinical trials. They assess physiological barriers such as the BBB and gut mucus that nanomedicines must overcome to deliver cargos. They also provide an overview with examples of how nanomedicines can be designed to improve localization and site-specific delivery (e.g., encapsulation, bioconjugation, and triggered-release). EXPERT OPINION There are examples where nanomedicines have demonstrated improved efficacy of payload in humans; however, most of the advantages conferred were in improved pharmacokinetics and reduced toxicity. Problematic data show susceptibility of nanoformulations against natural protective mechanisms present in the body, including distribution impediment by physiological barriers and activation of the reticuloendothelial system. Further initiatives should address current challenges while expanding the scope of nanomedicine into advanced biomedical imaging and antibiotic delivery.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin, Ireland
| | - David J Brayden
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin, Ireland
| |
Collapse
|