1
|
Toribio-Avedillo D, Ballesté E, García-Aljaro C, Stange C, Tiehm A, Sánchez-Cid C, Mulogo E, Nasser A, Santos R, Nemes K, Blanch AR. The reliability of CrAssphage in human fecal pollution detection: A cross-regional MST marker assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125399. [PMID: 40254002 DOI: 10.1016/j.jenvman.2025.125399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/08/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
Microbial Source Tracking (MST) markers play a key role in identifying sources of fecal contamination, particularly human-associated pollution, which is critical for public health. This study investigates the distribution and reliability of three MST markers (crAssphage, HMBif, and HF183) across various environmental contexts in Europe, Asia, and Africa. Samples were obtained from wastewater treatment plants (WWTPs) and rivers across different catchment areas, including sampling during extreme weather conditions such as heavy rainfall and drought. The concentrations of these MST markers were measured and compared with traditional fecal indicators. The obtained results indicate that crAssphage showed consistently the highest prevalence and concentrations in all regions and sample types, demonstrating its robustness as a marker of human fecal contamination. Population density and climatic conditions significantly influenced marker levels, with the highest concentrations found in highly populated areas with moderate climates. The impact of extreme weather events was different for each condition: heavy rainfall resulted in elevated MST marker concentrations, likely due to sediment resuspension, while drought led to more inconsistent results. Strong correlations were observed among the three MST markers and between these markers and conventional fecal indicators. This study underscores the value of crAssphage as a reliable and effective tool for tracking human fecal pollution and highlights the influence of environmental and climatic factors on MST marker behavior.
Collapse
Affiliation(s)
- D Toribio-Avedillo
- Universitat de Barcelona, Departament de Genètica, Microbiologia I Estadística, Avinguda, Diagonal, 643, 08028, Barcelona, Spain.
| | - E Ballesté
- Universitat de Barcelona, Departament de Genètica, Microbiologia I Estadística, Avinguda, Diagonal, 643, 08028, Barcelona, Spain.
| | - C García-Aljaro
- Universitat de Barcelona, Departament de Genètica, Microbiologia I Estadística, Avinguda, Diagonal, 643, 08028, Barcelona, Spain.
| | - C Stange
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139, Karlsruhe, Germany.
| | - A Tiehm
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139, Karlsruhe, Germany.
| | - C Sánchez-Cid
- Ecole Centrale de Lyon, Laboratoire Ampere, 36 Avenue Guy de Collongues, 69134, Ecully, France.
| | - E Mulogo
- Mbarara University of Science and Technology, Department of Community Health Kabale Road Plot 8-18, 04854, Mbarara, Uganda.
| | - A Nasser
- Ministry of Health, National Public Health Laboratory, Ben Zvi Rd 69, 61082, Tel Aviv, Israel.
| | - R Santos
- Universidade Lisboa, Instituto Superior Tecnico, Laboratorio Analises, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
| | - K Nemes
- European Union Reference, Laboratory for Foodborne, Viruses, Swedish Food Agency, Biology Department, Dag Hammarskjölds Väg 56 A, 751 26, Uppsala, Sweden.
| | - A R Blanch
- Universitat de Barcelona, Departament de Genètica, Microbiologia I Estadística, Avinguda, Diagonal, 643, 08028, Barcelona, Spain.
| |
Collapse
|
2
|
Zhang W, Zong Y, Zhang J, Ai J, He H, Li L, Peng S, Zhou H, Wang D, Wang Q. Mechanistic insights into the viral microorganism inactivation during lime stabilization for wastewater sludges. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136884. [PMID: 39689559 DOI: 10.1016/j.jhazmat.2024.136884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
The pathogens inactivation in wastewater sludges is vitally important for safely managing solid wastes and protecting public and environmental health especially in the emergency. Reports have shown the effectiveness of lime to kill virus pathogens in sludges, but mechanism of virus inactivation and related human diseases is unclear. This study evaluated representative limes of CaO/CaO2 on actual viral microorganism inactivation by viral metagenomic sequencing technology. As results, the CaO2 treatment enhanced the sludge hydrolysis and enveloped viral pathogens suppression via EPS structure destruction by oxidative radical generations; while CaO suppressed most of none-enveloped plant related viral pathogens. Most of the viromes of plant virus including Virgaviridae and Nodaviridae were inactivated by CaO, but the human virus-Feirsviridae and plant virus-Solemoviridae were occurred after lime stabilization compared to untreated sludge, with abundances of 1 %-37 % and 21 %-32 % in CaO-treated (CaO-T) and CaO2-treated (CaO2-T) samples, respectively. In addition, metatranscriptome analysis revealed distinct gene expression patterns between the CaO-T and CaO2-T sludges, in which lipopolysaccharide biosynthesis (LPS) and aminoacyl-tRNA synthetases (ARSs) in CaO-T, the formation of ribosome in CaO2-T were crucial to RNA virus regrowth in sludge. These findings suggested neither of CaO and CaO2 could completely suppress pathogens in sludge, and the effect of representative limes of CaO and CaO2 on the viral pathogen diversity, abundance, and metabolic function of the core microbiome on virus suppression and regrowth were ignored. Therefore, combined processes were recommended to provide possible alternatives for sludge safe management in pandemic emergencies.
Collapse
Affiliation(s)
- Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuxi Zong
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Jianbo Zhang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100090, China
| | - Jing Ai
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Hang He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Lanfeng Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Sainan Peng
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Hao Zhou
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Dongsheng Wang
- College of Environmental and Resource Science of Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
3
|
Chettleburgh C, McDougall H, Parreira V, Goodridge L, Habash M. Seasonality of enteric viruses and correlation of hepatitis a virus in wastewater with clinical cases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178862. [PMID: 39955939 DOI: 10.1016/j.scitotenv.2025.178862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Human adenovirus F41 (HAdV-41), norovirus genogroup II (HNV-GII), rotavirus group A (RVA), and hepatitis A virus (HAV) are responsible for millions of illnesses every year in Canada. Wastewater-based epidemiology is one way to monitor the prevalence of these underreported (HAV) and non-reportable (HAdV-41, HNV-GII, RVA) food and waterborne enteric viruses. In this study, we monitored the presence of these four viruses in wastewater over 16 months from September 2022 until December 2023 using samples from two locations in southern Ontario. Viruses in 286 wastewater samples were concentrated using PEG precipitation and quantified using a multiplex RT-qPCR assay for HAdV-41, HNV-GII, and RVA, and a singleplex RT-qPCR assay for HAV. In agreement with historical clinical data, HNV-GII and RVA had seasonal peaks in wastewater in the winter (HNV-GII, up to 1.09 × 103 gene copies (GC)/mL) and spring (RVA, up to 1.20 × 102 GC/mL). The concentration of HAdV-41 in wastewater had a significant seasonal peak in the fall of 2022 (up to 4.65 × 104 GC/mL) that was not repeated in the fall of 2023. The detection of HAV in 24 of 127 samples was correlated with four clinical cases in one sewershed with a one-week wastewater lead time.
Collapse
Affiliation(s)
- Charles Chettleburgh
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; Canadian Research Institute for Food Safety, 43 McGilvray St., Guelph, ON N1G 1Y2, Canada
| | - Hanlan McDougall
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - Valeria Parreira
- Department of Food Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; Canadian Research Institute for Food Safety, 43 McGilvray St., Guelph, ON N1G 1Y2, Canada
| | - Lawrence Goodridge
- Department of Food Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; Canadian Research Institute for Food Safety, 43 McGilvray St., Guelph, ON N1G 1Y2, Canada
| | - Marc Habash
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
4
|
Langenfeld K, Hegarty B, Vidaurri S, Crossette E, Duhaime M, Wigginton K. Development of a quantitative metagenomic approach to establish quantitative limits and its application to viruses. Nucleic Acids Res 2025; 53:gkaf118. [PMID: 40036505 PMCID: PMC11878531 DOI: 10.1093/nar/gkaf118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Quantitative metagenomic methods are maturing but continue to lack clearly-defined analytical limits. Here, we developed a computational tool, QuantMeta, to determine the absolute abundance of targets in metagenomes spiked with synthetic DNA standards. The tool establishes (i) entropy-based detection thresholds to confidently determine the presence of targets, and (ii) an approach to identify and correct read mapping or assembly errors and thus improve the quantification accuracy. Together this allows for an approach to confidently quantify absolute abundance of targets, be they microbial populations, genes, contigs, or metagenome-assembled genomes. We applied the approach to quantify single- and double-stranded DNA viruses in wastewater viral metagenomes, including pathogens and bacteriophages. Concentrations of total DNA viruses in wastewater influent and effluent were >108 copies/ml using QuantMeta. Human-associated DNA viruses were detected and quantifiable with QuantMeta thresholds, including polyomavirus, papillomavirus, and crAss-like phages, at concentrations similar to previous reports that utilized quantitative polymerase chain reaction (PCR)-based assays. Our results highlight the higher detection thresholds of quantitative metagenomics (approximately 500 copies/μl) as compared to PCR-based quantification (approximately 10 copies/μl) despite a sequencing depth of 200 million reads per sample. The QuantMeta approach, applicable to both viral and cellular metagenomes, advances quantitative metagenomics by improving the accuracy of measured target absolute abundances.
Collapse
Affiliation(s)
- Kathryn Langenfeld
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Bridget Hegarty
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Santiago Vidaurri
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Emily Crossette
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Melissa B Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Krista R Wigginton
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
5
|
Malla B, Shrestha S, Sthapit N, Hirai S, Raya S, Rahmani AF, Angga MS, Siri Y, Ruti AA, Haramoto E. Evaluation of plasmid pBI143 for its optimal concentration methods, seasonal impact, and potential as a normalization parameter in wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178661. [PMID: 39893813 DOI: 10.1016/j.scitotenv.2025.178661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Plasmid pBI143, abundant in the human gut, is a promising human-specific fecal marker. However, studies on its optimal concentration methods, seasonal variations, and potential as a normalization parameter for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), remain limited. Among the three concentration methods compared, polyethylene glycol (PEG) precipitation and centrifugation demonstrated comparable efficiencies (9.3 ± 0.6 and 9.2 ± 0.6 log10 copies/L, respectively; n = 8 each), outperforming membrane filtration (8.0 ± 0.6 log10 copies/L; n = 8). PEG precipitation was further applied to quantify pBI143, together with other human-specific fecal markers (crAssphage and pepper mild mottle virus (PMMoV)), in 52 wastewater samples collected weekly over a one year from a wastewater treatment plant in Yamanashi Prefecture, Japan, by quantitative polymerase chain reaction. The higher pBI143 concentrations (9.6 ± 0.5 log10 copies/L) compared to PMMoV (8.2 ± 0.2 log10 copies/L) and crAssphage (8.0 ± 0.2 log10 copies/L) highlighted its potential as a robust marker for human fecal contamination. Unlike PMMoV and crAssphage that remained stable across seasons, pBI143 showed seasonal fluctuations, especially during summer and autumn, suggesting its greater sensitivity to environmental conditions. The study evaluated the suitability of pBI143, crAssphage, and PMMoV for normalizing SARS-CoV-2 concentrations in wastewater; however, non-normalized SARS-CoV-2 concentrations showed the highest correlation with COVID-19 cases (ρ = 0.74), whereas normalization reduced this correlation (PMMoV-normalized, ρ = 0.72; crAssphage-normalized, ρ = 0.70; and pBI143-normalized, ρ = 0.50), likely due to differences in the persistence and structural properties of the markers, indicating that these markers are less effective for SARS-CoV-2 normalization. This study underscores the promising utility of pBI143 in wastewater surveillance but highlights the need for further research across diverse regions to validate its applicability.
Collapse
Affiliation(s)
- Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Department of Civil and Environmental Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Soichiro Hirai
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Aulia Fajar Rahmani
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Yadpiroon Siri
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Annisa Andarini Ruti
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
6
|
Djoulissa LJ, Tandukar S, Schmitz BW, Innes GK, Gerba CP, Pepper IL, Sherchan SP. Abundance and possibilities of crAssphage and PMMoV as a viral indicator in raw sewage in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178101. [PMID: 39826211 DOI: 10.1016/j.scitotenv.2024.178101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Abstract
Given their abundance in human fecal samples, crAssphage and Pepper Mild Mottle Virus (PMMoV) are proposed as indicators for human enteric viruses. This study measured crAssphage and PMMoV in raw sewage samples (n = 24) between June 2014 and May 2015 from two wastewater treatment facilities in southern Arizona, USA. Both crAssphage and PMMoV were detected in nearly 100% of samples. The greatest incidence of crAssphage typically occurred during late-winter to spring seasons, as concentrations reached 8.63 and 8.38 log10 copies/L in May and February. Meanwhile, PMMoV was significantly (p < 0.05) higher during the fall season, with concentrations at 8.69 and 9.12 log10 copies/L in September and October. Among the two tested indicators, a positive correlation (p < 0.05) was observed between PMMoV and tested human enteric viruses (norovirus genogroups I, II, adenovirus, and Aichi virus). Due to abundance, presence, and correlation with other viruses, PMMoV may be used as an appropriate indicator for human enteric viruses.
Collapse
Affiliation(s)
- Louis-Jean Djoulissa
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America
| | - Sarmila Tandukar
- Organization for Public Health and Environment Management, Lalitpur, Nepal
| | - Bradley W Schmitz
- Yuma Center of Excellence for Desert Agriculture (YCEDA), University of Arizona, 6425 W. 8th St., Yuma, AZ 85364, United States of America
| | - Gabriel K Innes
- Yuma Center of Excellence for Desert Agriculture (YCEDA), University of Arizona, 6425 W. 8th St., Yuma, AZ 85364, United States of America
| | - Charles P Gerba
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, United States of America
| | - Ian L Pepper
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, United States of America; Department of Environmental Science, University of Arizona, Tucson, AZ, United States of America
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America; Organization for Public Health and Environment Management, Lalitpur, Nepal; Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, United States of America; Center of Research Excellence in Wastewater based Epidemiology, Morgan State, Baltimore, MD, United States of America.
| |
Collapse
|
7
|
Paisantham P, Theplhar S, Srathongneam T, Sresung M, Mongkolsuk S, Sirikanchana K. Evaluation of tomato brown rugose fruit virus as a microbial source tracking marker for human sewage in Thailand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178419. [PMID: 39824094 DOI: 10.1016/j.scitotenv.2025.178419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Tomato brown rugose fruit virus (ToBRFV) has emerged as a major plant pathogen with the potential to spread through contaminated wastewater, posing risks to agriculture and public health. This study evaluated ToBRFV as a human-specific microbial source tracking (MST) marker in Thailand, comparing its performance to crAssphage. Using qPCR assays, ToBRFV was detected in 62.5 % of building sewage samples (n = 16) and 100.0 % of wastewater treatment plant (WWTP) influent samples (n = 16). Notably, ToBRFV showed minimal cross-detection in non-human fecal samples (35 pooled samples), collected from cows, pigs, chickens, ducks, and goats, with only one detection in a pig fecal-source sample, demonstrating high specificity to human sewage. Concentrations in WWTP influent were significantly higher (mean: 5.19 ± 5.05; range: 3.96-5.62 log10 copies/100 mL) than in building sewage (mean: 4.36 ± 4.40; range: 2.33-4.85 log10 copies/100 mL) (p < 0.001). ToBRFV concentrations were significantly lower than crAssphage in building sewage but higher in WWTP influents. Additionally, ToBRFV and crAssphage exhibited moderate correlations in both building sewage and WWTP influent samples. These results suggest that ToBRFV could serve as a valuable MST marker for identifying human contamination in water bodies, complementing established markers. While ToBRFV's broader utility across diverse geographic regions remains to be fully validated, this study highlights its potential as a reliable indicator of human sewage in environmental surveillance.
Collapse
Affiliation(s)
- Phongsawat Paisantham
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Supitchaya Theplhar
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Thitima Srathongneam
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand.
| |
Collapse
|
8
|
Holzer C, Ho J, Tiehm A, Stange C. Wastewater monitoring - passive sampling for the detection of SARS-CoV-2 and antibiotic resistance genes in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178244. [PMID: 39729846 DOI: 10.1016/j.scitotenv.2024.178244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
As a lesson learned from the COVID-19 pandemic, wastewater-based epidemiology was recognised and used as an important method for surveillance and early detection of SARS-CoV-2. As a result, consideration of wastewater as a source of public health information has gained new prominence, and there is consensus that similar approaches can be used to detect the spread of other viral pathogens or antimicrobial resistance (AMR) in populations. However, the implementation of wastewater monitoring poses challenges in terms of obtaining representative and meaningful samples. In particular, it is difficult to sample small catchments, critical facilities (e.g. hospitals) or low-income countries where the use of automatic water samplers is not possible or the samplers are not available. To overcome these problems, this study developed a low-cost and easy-to-use passive sampler based on activated carbon as an adsorbent with a corresponding elution/extraction protocol that allows the detection of viruses and antibiotic resistance genes in wastewater. Monitoring of SARS-CoV-2 with these passive samplers at the influent of a wastewater treatment plant over a period of 1.5 months showed a positive correlation with monitoring with 24-h composite samples in the catchment area. Analysis of the nucleic acid extracts for antibiotic resistance genes showed the presence of clinically relevant carbapenemase genes such as blaKPC-3 and blaNDM-1 in the wastewater samples, with these genes being detected more reliably by the passive samplers than in the 24-h composite samples. This study therefore demonstrated that passive samplers provide reproducible SARS-CoV-2 RNA and antibiotic resistance gene signals from wastewater and a time-integrated measurement of the sampled matrix with high sensitivity.
Collapse
Affiliation(s)
- C Holzer
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany
| | - J Ho
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany
| | - A Tiehm
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany
| | - C Stange
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany.
| |
Collapse
|
9
|
Solomon T, Idris O, Nwaubani D, Baral R, Sherchan SP. Comparative analysis of membrane filter diameters for detection of selected viruses in wastewater samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:173973. [PMID: 38876339 DOI: 10.1016/j.scitotenv.2024.173973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Wastewater serves as a valuable source of information as it contains biological markers that have been shed by infected individuals and from other biological organisms such as plants and animals. Wastewater has been proven to indicate the presence of emerging pathogens in a community before the manifestation of clinical symptoms. Several methods of concentration and nucleic acid extraction have been employed all around the world without a unified method. One such method involves the use of the adsorption extraction method (AE-method), which involves the use of electronegative membrane filters of different pore sizes. The membrane filters also differ by diameter, but no study has been reported on the effect of diameter on capture efficiency. This study was aimed at evaluating the comparative capture efficiency of two different membrane filter diameters of 45 and 90 mm with pore sizes of 0.45 μm for the detection of indicator and pathogenic viruses. Primary influent samples were obtained from two wastewater treatment plants in Baltimore, Maryland, between April 27 and June 29, 2023. A total of twenty samples were processed using 45- and 90-mm membrane filters. Nucleic acids were extracted from the filters using the QIAmp Viral RNA Mini Kit and assayed for four different targets: PMMoV, Norovirus (GI and GII), and CrAssphage by RT-qPCR. The result showed that 45 mm membrane filters had a higher combined mean capture efficiency in log10 gene copies per liter (gc/l) for crAssphage (7.40) than 90 mm membrane filters (7.10). Similarly, the 45-mm filter had higher mean capture efficiency for Norovirus GI (4.67) than the 90-mm filter (1.84) and likewise for Norovirus GII (2.14, 1.04). On the contrary, 90-mm membrane filters were observed to have better capture of PMMoV (6.84) compared to 45-mm membrane filters (6.69). This result therefore implies that 45-mm membrane filters could be more efficient for wastewater surveillance studies through the AE method for indicator viruses like CrAssphage and human disease-causing viruses like Norovirus.
Collapse
Affiliation(s)
- Tamunobelema Solomon
- Center of Research Excellence in Wastewater based epidemiology, Morgan State University, Baltimore, MD 21251, United States of America; BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Oladele Idris
- BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Daniel Nwaubani
- BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Rakshya Baral
- BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Samendra P Sherchan
- Center of Research Excellence in Wastewater based epidemiology, Morgan State University, Baltimore, MD 21251, United States of America; BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America.
| |
Collapse
|
10
|
de Carvalho Costa LR, Li L, Haak L, Teel L, Feris LA, Marchand E, Pagilla KR. Optimizing ozone treatment for pathogen removal and disinfection by-product control for potable reuse at pilot-scale. CHEMOSPHERE 2024; 364:143128. [PMID: 39159769 DOI: 10.1016/j.chemosphere.2024.143128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 08/21/2024]
Abstract
Reclaimed water poses environmental and human health risks due to residual organic micropollutants and pathogens. Ozonation of reclaimed water to control pathogens and trace organics is an important step in advanced water treatment systems for potable reuse of reclaimed water. Ensuring efficient pathogen reduction while controlling disinfection byproducts remains a significant challenge to implementing ozonation in reclaimed water reuse applications. This study aimed to investigate ozonation conditions using a plug flow reactor (PFR) to achieve effective pathogen removal/inactivation while minimizing bromate and N-Nitrosodimethylamine (NDMA) formation. The pilot scale study was conducted using three doses of ozone (0.7, 1.0 and 1.4 ozone/total organic carbon (O3/TOC) ratio) to determine the disinfection performance using actual reclaimed water. The disinfection efficiency was assessed by measuring total coliforms, Escherichia coli (E. coli), Pepper Mild Mottle Virus (PMMoV), Tomato Brown Rugose Fruit Virus (ToBRFV) and Norovirus (HNoV). The ozone CT values ranged from 1.60 to 13.62 mg min L-1, resulting in significant reductions in pathogens and indicators. Specifically, ozone treatment led to concentration reductions of 2.46-2.89, 2.03-2.18, 0.46-1.63, 2.23-2.64 and > 4 log for total coliforms, E. coli, PMMoV, ToBRFV, and HNoV, respectively. After ozonation, concentrations of bromate and NDMA increased, reaching levels between 2.8 and 12.0 μg L-1, and 28-40.0 ng L-1, respectively, for average feed water bromide levels of 86.7 ± 1.8 μg L-1 and TOC levels of 7.2 ± 0.1 mg L-1. The increases in DBP formation were pronounced with higher ozone dosages, possibly requiring removal/control in subsequent treatment steps in some potable reuse applications.
Collapse
Affiliation(s)
- Leticia Reggiane de Carvalho Costa
- Department of Chemical Engineering, Federal University of Rio Grande Do Sul, Porto Alegre, 2777 Ramiro Barcelos St, RS, 90035-007, Brazil
| | - Lin Li
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA
| | - Laura Haak
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA
| | - Lydia Teel
- Truckee Meadows Water Authority, Reno, NV, 89502, USA
| | - Liliana Amaral Feris
- Department of Chemical Engineering, Federal University of Rio Grande Do Sul, Porto Alegre, 2777 Ramiro Barcelos St, RS, 90035-007, Brazil
| | - Eric Marchand
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA
| | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA.
| |
Collapse
|
11
|
Raya S, Malla B, Thakali O, Angga MS, Segawa T, Sherchand JB, Haramoto E. Validation and application of high-throughput quantitative PCR for the simultaneous detection of microbial source tracking markers in environmental water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173604. [PMID: 38821279 DOI: 10.1016/j.scitotenv.2024.173604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
No single microbial source tracking (MST) marker can be applied to determine the sources of fecal pollution in all water types. This study aimed to validate a high-throughput quantitative polymerase chain reaction (HT-qPCR) method for the simultaneous detection of multiple MST markers. A total of 26 fecal-source samples that had been previously collected from human sewage (n = 6) and ruminant (n = 3), dog (n = 6), pig (n = 6), chicken (n = 3), and duck (n = 2) feces in the Kathmandu Valley, Nepal, were used to validate 10 host-specific MST markers, i.e., Bacteroidales (BacHum, gyrB, BacR, and Pig2Bac), mitochondrial DNA (mtDNA) (swine, bovine, and Dog-mtDNA), and viral (human adenovirus, porcine adenovirus, and chicken/turkey parvovirus) markers, via HT-qPCR. Only Dog-mtDNA showed 100 % accuracy. All the tested bacterial markers showed a sensitivity of 100 %. Nine of the 10 markers were further used to identify fecal contamination in groundwater sources (n = 54), tanker filling stations (n = 14), drinking water treatment plants (n = 5), and river water samples (n = 6). The human-specific Bacteroidales marker BacHum and ruminant-specific Bacteroidales marker BacR was detected at a high ratio in river water samples (83 % and 100 %, respectively). The results of HT-qPCR were in agreement with the standard qPCR. The comparable performances of HT-qPCR and standard qPCR as well as the successful detection of MST markers in the fecal-source and water samples demonstrated the potential applicability of these markers for detecting fecal contamination sources via HT-qPCR.
Collapse
Affiliation(s)
- Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Ocean Thakali
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Takahiro Segawa
- Center for Life Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Jeevan B Sherchand
- Institute of Medicine, Tribhuvan University, Maharajgunj, Kathmandu 1524, Nepal
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
12
|
Armenise E, Rustage S, Jackson KJ, Watts G, Hart A. Adjusting for dilution in wastewater using biomarkers: A practical approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121596. [PMID: 38991335 DOI: 10.1016/j.jenvman.2024.121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
We developed a biomarker-based approach to quantify in-sewer dilution by measuring wastewater quality parameters (ammoniacal-N, orthophosphate, crAssphage). This approach can enhance the environmental management of wastewater treatment works (WWTW) by optimising their operation and providing cost-effective information on the health and behaviour of populations and their interactions with the environment through wastewater-based epidemiology (WBE). Our method relies on site specific baselines calculated for each biomarker. These baselines reflect the sewer conditions without the influence of rainfall-derived inflow and infiltration (RDII). Ammoniacal-N was the best candidate to use as proxy for dilution. We demonstrated that the dilution calculated using biomarkers correlates well with the dilution indicated by measured flow. In some instances, the biomarkers showed much higher dilution than measured flows. These differences were attributed to the loss of flow volume at wastewater treatment works due to the activation of combined sewer overflows (CSOs) and/or storm tanks. Using flow measured directly at the WWTW could therefore result in underestimation of target analyte loads.
Collapse
Affiliation(s)
- E Armenise
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK.
| | - S Rustage
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK
| | - K J Jackson
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK
| | - G Watts
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK
| | - A Hart
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK
| |
Collapse
|
13
|
Carmo dos Santos M, Cerqueira Silva AC, dos Reis Teixeira C, Pinheiro Macedo Prazeres F, Fernandes dos Santos R, de Araújo Rolo C, de Souza Santos E, Santos da Fonseca M, Oliveira Valente C, Saraiva Hodel KV, Moraes dos Santos Fonseca L, Sampaio Dotto Fiuza B, de Freitas Bueno R, Bittencourt de Andrade J, Aparecida Souza Machado B. Wastewater surveillance for viral pathogens: A tool for public health. Heliyon 2024; 10:e33873. [PMID: 39071684 PMCID: PMC11279281 DOI: 10.1016/j.heliyon.2024.e33873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
A focus on water quality has intensified globally, considering its critical role in sustaining life and ecosystems. Wastewater, reflecting societal development, profoundly impacts public health. Wastewater-based epidemiology (WBE) has emerged as a surveillance tool for detecting outbreaks early, monitoring infectious disease trends, and providing real-time insights, particularly in vulnerable communities. WBE aids in tracking pathogens, including viruses, in sewage, offering a comprehensive understanding of community health and lifestyle habits. With the rise in global COVID-19 cases, WBE has gained prominence, aiding in monitoring SARS-CoV-2 levels worldwide. Despite advancements in water treatment, poorly treated wastewater discharge remains a threat, amplifying the spread of water-, sanitation-, and hygiene (WaSH)-related diseases. WBE, serving as complementary surveillance, is pivotal for monitoring community-level viral infections. However, there is untapped potential for WBE to expand its role in public health surveillance. This review emphasizes the importance of WBE in understanding the link between viral surveillance in wastewater and public health, highlighting the need for its further integration into public health management.
Collapse
Affiliation(s)
- Matheus Carmo dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Ana Clara Cerqueira Silva
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carine dos Reis Teixeira
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Filipe Pinheiro Macedo Prazeres
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rosângela Fernandes dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carolina de Araújo Rolo
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Emanuelle de Souza Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Maísa Santos da Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Camila Oliveira Valente
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Larissa Moraes dos Santos Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Bianca Sampaio Dotto Fiuza
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rodrigo de Freitas Bueno
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Jailson Bittencourt de Andrade
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
- Centro Interdisciplinar de Energia e Ambiente – CIEnAm, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
| |
Collapse
|
14
|
Miyani B, Li Y, Guzman HP, Briceno RK, Vieyra S, Hinojosa R, Xagoraraki I. Bioinformatics-based screening tool identifies a wide variety of human and zoonotic viruses in Trujillo-Peru wastewater. One Health 2024; 18:100756. [PMID: 38798735 PMCID: PMC11127556 DOI: 10.1016/j.onehlt.2024.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Peru was one of the most affected countries during the COVID-19 pandemic. Moreover, multiple other viral diseases (enteric, respiratory, bloodborne, and vector-borne) are endemic and rising. According to Peru's Ministry of Health, various health facilities in the country were reallocated for the COVID-19 pandemic, thereby leading to reduced action to curb other diseases. Many viral diseases in the area are under-reported and not recognized. The One Health approach, in addition to clinical testing, incorporates environmental surveillance for detection of infectious disease outbreaks. The purpose of this work is to use a screening tool that is based on molecular methods, high throughput sequencing and bioinformatics analysis of wastewater samples to identify virus-related diseases circulating in Trujillo-Peru. To demonstrate the effectiveness of the tool, we collected nine untreated wastewater samples from the Covicorti wastewater utility in Trujillo-Peru on October 22, 2022. High throughput metagenomic sequencing followed by bioinformatic analysis was used to assess the viral diversity of the samples. Our results revealed the presence of sequences associated with multiple human and zoonotic viruses including Orthopoxvirus, Hepatovirus, Rhadinovirus, Parechovirus, Mamastrovirus, Enterovirus, Varicellovirus, Norovirus, Kobuvirus, Bocaparvovirus, Simplexvirus, Spumavirus, Orthohepevirus, Cardiovirus, Molliscipoxvirus, Salivirus, Parapoxvirus, Gammaretrovirus, Alphavirus, Lymphocryptovirus, Erythroparvovirus, Sapovirus, Cosavirus, Deltaretrovirus, Roseolovirus, Flavivirus, Betacoronavirus, Rubivirus, Lentivirus, Betapolyomavirus, Rotavirus, Hepacivirus, Alphacoronavirus, Mastadenovirus, Cytomegalovirus and Alphapapillomavirus. For confirmation purposes, we tested the samples for the presence of selective viruses belonging to the genera detected above. PCR based molecular methods confirmed the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), monkeypox virus (MPXV), noroviruses GI and GII (NoVGI and NoVGII), and rotavirus A (RoA) in our samples. Furthermore, publicly available clinical data for selected viruses confirm our findings. Wastewater or other environmental media surveillance, combined with bioinformatics methods, has the potential to serve as a systematic screening tool for the identification of human or zoonotic viruses that may cause disease. The results of this method can guide further clinical surveillance efforts and allocation of resources. Incorporation of this bioinformatic-based screening tool by public health officials in Peru and other Latin American countries will help manage endemic and emerging diseases that could save human lives and resources.
Collapse
Affiliation(s)
- Brijen Miyani
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Heidy Peidro Guzman
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Ruben Kenny Briceno
- Institute for Global Health, Michigan State University, East Lansing, MI, United States of America
| | - Sabrina Vieyra
- Institute for Global Health, Michigan State University, East Lansing, MI, United States of America
| | - Rene Hinojosa
- Institute for Global Health, Michigan State University, East Lansing, MI, United States of America
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
15
|
Remesh AT, Viswanathan R. CrAss-Like Phages: From Discovery in Human Fecal Metagenome to Application as a Microbial Source Tracking Marker. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:121-135. [PMID: 38413544 DOI: 10.1007/s12560-024-09584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
CrAss-like phages are a diverse group of bacteriophages genetically similar to the prototypical crAssphage (p-crAssphage), which was discovered in the human gut microbiome through a metagenomics approach. It was identified as a ubiquitous and highly abundant bacteriophage group in the gut microbiome. Initial co-occurrence analysis postulated Bacteroides spp. as the prospective bacterial host. Subsequent studies have confirmed multiple host species under Phylum Bacteroidetes and some Firmicutes. Detection of crAss-like phages in sewage-contaminated environmental water and robust correlation with enteric viruses and bacteria has culminated in their adoption as a microbial source tracking (MST) marker. Polymerase chain reaction (PCR) and real-time PCR assays have been developed utilizing the conserved genes in the p-crAssphage genome to detect human fecal contamination of different water sources, with high specificity. Numerous investigations have examined the implications of crAss-like phages in diverse disease conditions, including ulcerative colitis, obesity and metabolic syndrome, autism spectrum disorders, rheumatoid arthritis, atopic eczema, and other autoimmune disorders. These studies have unveiled associations between certain diseases and diminished abundance and diversity of crAss-like phages. This review offers insights into the diverse aspects of research on crAss-like phages, including their discovery, genomic characteristics, structure, taxonomy, isolation, molecular detection, application as an MST marker, and role as a gut microbiome modulator with consequential health implications.
Collapse
|
16
|
Puchades-Colera P, Díaz-Reolid A, Girón-Guzmán I, Cuevas-Ferrando E, Pérez-Cataluña A, Sánchez G. Capsid Integrity Detection of Enteric Viruses in Reclaimed Waters. Viruses 2024; 16:816. [PMID: 38932109 PMCID: PMC11209584 DOI: 10.3390/v16060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Climate change, unpredictable weather patterns, and droughts are depleting water resources in some parts of the globe, where recycling and reusing wastewater is a strategy for different purposes. To counteract this, the EU regulation for water reuse sets minimum requirements for the use of reclaimed water for agricultural irrigation, including a reduction in human enteric viruses. In the present study, the occurrence of several human enteric viruses, including the human norovirus genogroup I (HuNoV GI), HuNoV GII, and rotavirus (RV), along with viral fecal contamination indicator crAssphage was monitored by using (RT)-qPCR methods on influent wastewater and reclaimed water samples. Moreover, the level of somatic coliphages was also determined as a culturable viral indicator. To assess the potential viral infectivity, an optimization of a capsid integrity PMAxx-RT-qPCR method was performed on sewage samples. Somatic coliphages were present in 60% of the reclaimed water samples, indicating inefficient virus inactivation. Following PMAxx-RT-qPCR optimization, 66% of the samples tested positive for at least one of the analyzed enteric viruses, with concentrations ranging from 2.79 to 7.30 Log10 genome copies (gc)/L. Overall, most of the analyzed reclaimed water samples did not comply with current EU legislation and contained potential infectious viral particles.
Collapse
Affiliation(s)
| | | | | | | | | | - Gloria Sánchez
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Valencia, Spain; (P.P.-C.); (A.D.-R.); (A.P.-C.)
| |
Collapse
|
17
|
Tang Y, Sasaki K, Ihara M, Sugita D, Yamashita N, Takeuchi H, Tanaka H. Evaluation of virus removal in membrane bioreactor (MBR) and conventional activated sludge (CAS) processes based on long-term monitoring at two wastewater treatment plants. WATER RESEARCH 2024; 253:121197. [PMID: 38341968 DOI: 10.1016/j.watres.2024.121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/13/2024]
Abstract
The membrane bioreactor (MBR) process always offers better wastewater treatment than conventional activated sludge (CAS) treatment. However, the difference in their efficacy of virus reduction remains unknown. To investigate this, we monitored virus concentrations before and after MBR and CAS processes over 2 years. Concentrations of norovirus genotypes I and II (NoV GI and GII), aichivirus (AiV), F-specific RNA phage genotypes I, II, and III (GI-, GII-, and GIII-FRNAPHs), and pepper mild mottle virus (PMMoV) were measured by a quantitative polymerase chain reaction (qPCR) method at two municipal wastewater treatment plants (WWTPs A and B) in Japan. Virus concentration datasets containing left-censored data were estimated by using both maximum likelihood estimation (MLE) and robust regression on order statistics (rROS) approaches. PMMoV was the most prevalent at both WWTPs, with median concentrations of 7.5 to 8.8 log10 copies/L before treatment. Log10 removal values (LRVs) of all viruses based on means and standard deviations of concentrations before and after treatment were consistently higher following MBR than following CAS. We used NoV GII as a model pathogen in a quantitative microbial risk assessment of the treated water, and we estimated the additional reductions required following MBR and CAS processes to meet the guideline of 10-6 DALYs pppy for safe wastewater reuse.
Collapse
Affiliation(s)
- Yu Tang
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Shiga 520-0811, Japan.
| | - Kenta Sasaki
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Shiga 520-0811, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Shiga 520-0811, Japan; Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan.
| | - Daichi Sugita
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Shiga 520-0811, Japan
| | - Naoyuki Yamashita
- Course of Rural Engineering, Department of Science and Technology for Biological Resources and Environment, Faculty of Agriculture, Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Haruka Takeuchi
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Shiga 520-0811, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Shiga 520-0811, Japan
| |
Collapse
|
18
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Nagarkar M, Keely SP, Wheaton EA, Rao V, Jahne MA, Garland JL, Brinkman NE. Evaluating endogenous viral targets as potential treatment monitoring surrogates for onsite non-potable water reuse. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2024; 10:971-981. [PMID: 39877237 PMCID: PMC11770558 DOI: 10.1039/d3ew00714f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Onsite non-potable water reuse systems (ONWS) are decentralized systems that treat and repurpose locally collected waters (e.g. greywater or combined wastewater) for uses such as irrigation and flushing toilets. To ensure that treatment is meeting risk benchmarks, it is necessary to monitor the efficacy of pathogen removal. However, accurate assessment of pathogen reduction is hampered by their sporadic and low occurrence rates in source waters and concentrations in treated water that are generally below measurement detection limits. An alternative metric for evaluation of onsite water treatment is log reduction of a more abundant organism that can serve as a surrogate for the pathogen removal. Viruses endogenous to the decentralized system could serve as monitoring surrogates to verify that treatment meets the relevant viral log reduction targets. This study assesses eight candidate PCR targets representing potential monitoring surrogates from different viral classes to determine whether they could be used to verify the efficacy of treatment in onsite non-potable water reuse systems. Candidates tested include markers for Carjivirus (formerly CrAssphage), Pepper Mild Mottle Virus (PMMoV), Microviridae, and T4 Coliphage. We quantified these targets in untreated influent wastewater at three onsite non-potable water reuse systems, two that use greywater and one that uses combined wastewater. We also confirmed, using amplicon sequencing, that the widely used Carjivirus and PMMoV primers correctly target their respective regions of interest, and found sequence diversity within the amplicons including in the probe binding region. Ultimately, we found that the surrogates assessed are not abundant enough for end uses with higher exposure use and concomitant greater removal requirements (e.g., indoor non-potable uses), but may be effective for end uses where exposure risk is lower (e.g., irrigation).
Collapse
Affiliation(s)
- Maitreyi Nagarkar
- U.S. Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Scott P Keely
- U.S. Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Emily A Wheaton
- U.S. Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Varun Rao
- University of Maryland School of Medicine, 655 W. Baltimore St, Baltimore, MD 21201, USA
| | - Michael A Jahne
- U.S. Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Jay L Garland
- U.S. Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Nichole E Brinkman
- U.S. Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| |
Collapse
|
20
|
Li E, Saleem F, Edge TA, Schellhorn HE. Assessment of crAssphage as a human fecal source tracking marker in the lower Great Lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168840. [PMID: 38036144 DOI: 10.1016/j.scitotenv.2023.168840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
CrAssphage or crAss-like phage ranks as the most abundant phage in the human gut and is present in human feces-contaminated environments. Due to its high human specificity and sensitivity, crAssphage is a potentially robust source tracking indicator that can distinguish human fecal contamination from agricultural or wildlife sources. Its suitability in the Great Lakes area, one of the world's most important water systems, has not been well tested. In this study, we tested a qPCR-based quantification method using two crAssphage marker genes (ORF18-mod and CPQ_064) at Toronto recreational beaches along with their adjacent river mouths. Our results showed a 71.4 % (CPQ_064) and 100 % (ORF18-mod) human sensitivity for CPQ_064 and ORF18-mod, and a 100 % human specificity for both marker genes. CrAssphage was present in 57.7 % or 71.2 % of environmental water samples, with concentrations ranging from 1.45 to 5.14 log10 gene copies per 100 mL water. Though concentrations of the two marker genes were strongly correlated, ORF18-mod features a higher human sensitivity and higher positive detection rates in environmental samples. Quantifiable crAssphage was mostly present in samples collected in June and July 2021 associated with higher rainfall. In addition, rivers had more frequent crAssphage presence and higher concentrations than their associated beaches, indicating more frequent and greater human fecal contamination in the rivers. However, crAssphage was more correlated with E. coli and Enterococcus at the beaches than in the rivers, suggesting human fecal sources may be more predominant in driving the increases in E. coli and Enterococcus at the beaches when impacted by river plumes.
Collapse
Affiliation(s)
- Enze Li
- Department of Biology, McMaster University, Ontario L8S 4L8, Canada
| | - Faizan Saleem
- Department of Biology, McMaster University, Ontario L8S 4L8, Canada
| | - Thomas A Edge
- Department of Biology, McMaster University, Ontario L8S 4L8, Canada
| | - Herb E Schellhorn
- Department of Biology, McMaster University, Ontario L8S 4L8, Canada.
| |
Collapse
|
21
|
Long A, Loethen K, Behzadnezhad A, Zhang W. A snapshot of SARS-CoV-2 viral RNA throughout wastewater treatment plants in Arkansas. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10992. [PMID: 38291790 DOI: 10.1002/wer.10992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can spread the viral RNA in wastewater by the feces of those experience COVID-19 symptoms. While wastewater monitoring of SARS-CoV-2 in the raw sewage has been confirmed as an effective tool to predict COVID-19 infection, the goal of this study is to assess the presence of SARS-CoV-2 viral RNA throughout various wastewater treatment processes. Wastewater samples were collected from wastewater treatment plants (WWTPs) in the state of Arkansas from August 2020 to June 2021 and measured for the relative concentration of SARS-CoV-2 viral RNA using RT-qPCR. The gene concentrations in the raw wastewater measured in this study were similar to other published studies, targeting the N1 and N2 genes of the virus. The viral RNA concentration was measured after each wastewater treatment step within WWTPs, including primary sedimentation, activated sludge, filtration and disinfection. Results show the most viral RNA removal occurred in the secondary treatment (activated sludge). The viral RNA was only occasionally detected after disinfection (chlorination or UV disinfection). Overall, WWTPs can remove the SARS-CoV-2 viral RNA at an average of 98.7%, while complete removal was achieved on 82% of the sampling days. Further investigation is required to ensure complete viral RNA removal from wastewater such as improving existing treatment process or supplementing with additional treatment steps. PRACTITIONER POINTS: The viral RNA of SARS-CoV-2 was detected in Arkansas wastewater treatment plants. SARS-CoV-2 was rarely detected in treated effluent from wastewater treatment plants. Activated sludge was effective removing SARS-CoV-2 viral RNA from wastewater. This study was limited by the direct RNA extraction from wastewater, which lowered the sensitivity of detection.
Collapse
Affiliation(s)
- Aaron Long
- Department of Civil Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Katie Loethen
- Department of Biological Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Asal Behzadnezhad
- Department of Civil Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Wen Zhang
- Department of Civil Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
22
|
Hogard S, Pearce R, Gonzalez R, Yetka K, Bott C. Optimizing Ozone Disinfection in Water Reuse: Controlling Bromate Formation and Enhancing Trace Organic Contaminant Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18499-18508. [PMID: 37467303 PMCID: PMC10690711 DOI: 10.1021/acs.est.3c00802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/21/2023]
Abstract
The use of ozone/biofiltration advanced treatment has become more prevalent in recent years, with many utilities seeking an alternative to membrane/RO based treatment for water reuse. Ensuring efficient pathogen reduction while controlling disinfection byproducts and maximizing oxidation of trace organic contaminants remains a major barrier to implementing ozone in reuse applications. Navigating these challenges is imperative in order to allow for the more widespread application of ozonation. Here, we demonstrate the effectiveness of ozone for virus, coliform bacteria, and spore forming bacteria inactivation in unfiltered secondary effluent, all the while controlling the disinfection byproduct bromate. A greater than 6-log reduction of both male specific and somatic coliphages was seen at specific ozone doses as low as 0.75 O3:TOC. This study compared monochloramine and hydrogen peroxide as chemical bromate control measures in high bromide water (Br- = 0.35 ± 0.07 mg/L). On average, monochloramine and hydrogen peroxide resulted in an 80% and 36% decrease of bromate formation, respectively. Neither bromate control method had any appreciable impact on virus or coliform bacteria disinfection by ozone; however, the use of hydrogen peroxide would require a non-Ct disinfection framework. Maintaining ozone residual was shown to be critical for achieving disinfection of more resilient microorganisms, such as spore forming bacteria. While extremely effective at controlling bromate, monochloramine was shown to inhibit TrOC oxidation, whereas hydrogen peroxide enhanced TrOC oxidation.
Collapse
Affiliation(s)
- Samantha Hogard
- Civil
and Environmental Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
- Hampton
Roads Sanitation District, P.O. Box 5911, Virginia Beach, Virginia 23471, United States
| | - Robert Pearce
- Civil
and Environmental Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
- Hampton
Roads Sanitation District, P.O. Box 5911, Virginia Beach, Virginia 23471, United States
| | - Raul Gonzalez
- Hampton
Roads Sanitation District, P.O. Box 5911, Virginia Beach, Virginia 23471, United States
| | - Kathleen Yetka
- Hampton
Roads Sanitation District, P.O. Box 5911, Virginia Beach, Virginia 23471, United States
| | - Charles Bott
- Hampton
Roads Sanitation District, P.O. Box 5911, Virginia Beach, Virginia 23471, United States
| |
Collapse
|
23
|
Andrianjakarivony FH, Bettarel Y, Cecchi P, Bouchard S, Chase E, Desnues C. Decoding the DNA and RNA viromes of a tropical urban lagoon. Environ Microbiol 2023; 25:2368-2387. [PMID: 37431274 DOI: 10.1111/1462-2920.16463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Human and livestock sewage is one of the major causes of excess nutrients, leading to the eutrophication of aquatic ecosystems and potentially to the emergence or spread of pathogenic viruses. This study aimed to investigate the composition and diversity of aquatic viromes in a highly anthropized lagoon, to identify the presence of pathogenic taxa and to explore their use as possible viral indicators of faecal contamination. For this, water and sediment samples were collected in the Ebrié Lagoon (Ivory Coast) at seven stations with contrasting levels of eutrophication. The DNA viromes of the planktonic and the benthic compartments were highly divergent, but were not influenced by the level of eutrophication. Conversely, the RNA viromes in the water column were comparable to those found in sediment, but showed significant differences between the stations. We detected the presence of viral DNA and RNA sequences we had assigned as indicators of faecal contamination (smacovirus, pecovirus and pepper mild mottle virus) as well as human pathogens (human cyclovirus, coxsackie B virus and picobirnavirus), which were all enriched in the most eutrophicated sites. These findings suggest that the examination of viromes represents a promising tool for assessing the state of human-induced contamination of aquatic ecosystems.
Collapse
Affiliation(s)
- Felana Harilanto Andrianjakarivony
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Yvan Bettarel
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Philippe Cecchi
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Sonia Bouchard
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Emily Chase
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Christelle Desnues
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| |
Collapse
|
24
|
Panizzolo M, Gea M, Carraro E, Gilli G, Bonetta S, Pignata C. Occurrence of human pathogenic viruses in drinking water and in its sources: A review. J Environ Sci (China) 2023; 132:145-161. [PMID: 37336605 DOI: 10.1016/j.jes.2022.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/21/2023]
Abstract
Since many waterborne diseases are caused by human pathogenic viruses, virus monitoring of drinking water (DW) and DW sources is crucial for public health. Therefore, the aim of this review was to describe the occurrence of human pathogenic viruses in DW and DW sources; the occurrence of two viruses proposed as novel indicators of human faecal contamination (Pepper mild mottle virus and Tobacco mosaic virus) was also reported. This research was focused on articles that assessed viral occurrence using molecular methods in the surface water used for DW production (SW-D), groundwater used for DW production (GW-D), DW and bottled-DW (BW). A total of 1544 studies published in the last 10 years were analysed, and 79 were ultimately included. In considering the detection methods, filtration is the most common concentration technique, while quantitative polymerase chain reaction is the most common quantification technique. Regarding virus occurrence in SW-D, GW-D, and DW, high percentages of positive samples were reported for adenovirus, polyomavirus and Pepper mild mottle virus. Viral genomes were frequently detected in SW-D and rarely in GW-D, suggesting that GW-D may be a safe DW source. Viral genomes were also detected in DW, posing a possible threat to human health. The lowest percentages of positive samples were found in Europe, while the highest were found in Asia and South America. Only three articles assessed viral occurrence in BW. This review highlights the lack of method standardization and the need for legislation updates.
Collapse
Affiliation(s)
- Marco Panizzolo
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy.
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Silvia Bonetta
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Cristina Pignata
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| |
Collapse
|
25
|
Alotaibi R, Eifan S, Hanif A, Nour I, Alkathiri A. Prevalence and Genetic Diversity of Cross-Assembly Phages in Wastewater Treatment Plants in Riyadh, Saudi Arabia. Microorganisms 2023; 11:2167. [PMID: 37764011 PMCID: PMC10535421 DOI: 10.3390/microorganisms11092167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The most common DNA virus found in wastewaters globally is the cross-assembly phage (crAssphage). King Saud University wastewater treatment plant (KSU-WWTP); Manfoha wastewater treatment plant (MN-WWTP); and the Embassy wastewater treatment plant (EMB-WWTP) in Riyadh, Saudi Arabia were selected, and 36 untreated sewage water samples during the year 2022 were used in the current study. The meteorological impact on crAssphage prevalence was investigated. CrAssphage prevalence was recorded using PCR and Sanger sequencing. The molecular diversity of crAssphage sequences was studied for viral gene segments from the major capsid protein (MCP) and membrane protein containing the peptidoglycan-binding domain (MP-PBD). KSU-WWTP and EMB-WWTP showed a higher prevalence of crAssphage (83.3%) than MN-WWTP (75%). Phylogenetic analysis of MCP and MP-PBD segments depicted a close relationship to the Japanese isolates. The MCP gene from the current study's isolate WW/2M/SA/2022 depicted zero evolutionary divergence from 3057_98020, 2683_104905, and 4238_99953 isolates (d = 0.000) from Japan. A significant influence of temporal variations on the prevalence of crAssphage was detected in the three WWTPs. CrAssphage displayed the highest prevalence at high temperatures (33-44 °C), low relative humidity (6-14%), and moderate wind speed (16-21 Km/h). The findings provided pioneering insights into crAssphage prevalence and its genetic diversity in WWTPs in Riyadh, Saudi Arabia.
Collapse
Affiliation(s)
| | | | - Atif Hanif
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
26
|
Hill ER, Chun CL, Hamilton K, Ishii S. High-Throughput Microfluidic Quantitative PCR Platform for the Simultaneous Quantification of Pathogens, Fecal Indicator Bacteria, and Microbial Source Tracking Markers. ACS ES&T WATER 2023; 3:2647-2658. [PMID: 37593240 PMCID: PMC10428101 DOI: 10.1021/acsestwater.3c00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023]
Abstract
Contamination of water with bacterial, viral, and protozoan pathogens can cause human diseases. Both humans and nonhumans can release these pathogens through their feces. To identify the sources of fecal contamination in the water environment, microbial source tracking (MST) approaches have been developed; however, the relationship between MST markers and pathogens is still not well understood most likely due to the lack of comprehensive datasets of pathogens and MST marker concentrations. In this study, we developed a novel microfluidic quantitative PCR (MFQPCR) platform for the simultaneous quantification of 37 previously validated MST markers, two fecal indicator bacteria (FIB), 22 bacterial, 11 viral, and five protozoan pathogens, and three internal amplification/process controls in many samples. The MFQPCR chip was applied to analyze pathogen removal rates during the wastewater treatment processes. In addition, multiple host-specific MST markers, FIB, and pathogens were successfully quantified in human and avian-impacted surface waters. While the genes for pathogens were relatively infrequently detected, positive correlations were observed between some potential pathogens such as Clostridium perfringens and Mycobacterium spp., and human MST markers. The MFQPCR chips developed in this study, therefore, can provide useful information to monitor and improve water quality.
Collapse
Affiliation(s)
- Elizabeth R Hill
- Water Resource Science Graduate Program, University of Minnesota, 173 McNeal Hall, 1985 Buford Avenue, St. Paul, Minnesota 55108, United States
| | - Chan Lan Chun
- Water Resource Science Graduate Program, University of Minnesota, 173 McNeal Hall, 1985 Buford Avenue, St. Paul, Minnesota 55108, United States
- Natural Resources Research Institute, University of Minnesota, 5013 Miller Trunk Highway, Duluth, Minnesota 55811, United States
- Department of Civil Engineering, University of Minnesota, 221 Swenson Civil Engineering, 1405 University Drive, Duluth, Minnesota 55812, United States
| | - Kerry Hamilton
- School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S. College Avenue, Tempe, Arizona 85281, United States
- Biodesign Center for Environmental Health Engineering, Arizona State University, 727 E. Tyler Street, Tempe, Arizona 85281, United States
| | - Satoshi Ishii
- Water Resource Science Graduate Program, University of Minnesota, 173 McNeal Hall, 1985 Buford Avenue, St. Paul, Minnesota 55108, United States
- BioTechnology Institute, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
- Department of Soil, Water, and Climate, University of Minnesota, 439 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, Minnesota 55108, United States
| |
Collapse
|
27
|
Andrianjakarivony FH, Bettarel Y, Desnues C. Searching for a Reliable Viral Indicator of Faecal Pollution in Aquatic Environments. J Microbiol 2023:10.1007/s12275-023-00052-6. [PMID: 37261715 DOI: 10.1007/s12275-023-00052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
The disposal of sewage in significant quantities poses a health hazard to aquatic ecosystems. These effluents can contain a wide range of pathogens, making faecal contamination a leading source of waterborne diseases around the world. Yet monitoring bacteria or viruses in aquatic environments is time consuming and expensive. The standard indicators of faecal pollution all have limitations, including difficulty in determining the source due to lack of host specificity, poor connection with the presence of non-bacterial pathogens, or low environmental persistence. Innovative monitoring techniques are sorely needed to provide more accurate and targeted solutions. Viruses are a promising alternative to faecal indicator bacteria for monitoring, as they are more persistent in ambient water, more abundant in faeces, and are extremely host-specific. Given the range of viruses found in diverse contexts, it is not easy to find one "ideal" viral indicator of faecal pollution; however, several are of interest. In parallel, the ongoing development of molecular techniques coupled with metagenomics and bioinformatics should enable improved ways to detect faecal contamination using viruses. This review examines the evolution of faecal contamination monitoring with the following aims (i) to identify the characteristics of the main viral indicators of faecal contamination, including human enteric viruses, bacteriophages, CRESS and plant viruses, (ii) to assess how these have been used to monitor water pollution in recent years, (iii) to evaluate the reliability of recent detection methods of such viruses, and (iv) to tentatively determine which viruses may be most effective as markers of faecal pollution.
Collapse
Affiliation(s)
- Felana Harilanto Andrianjakarivony
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, 13005, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), 13009, Marseille, France
| | - Yvan Bettarel
- MARBEC, Marine Biodiversity, Exploitation and Conservation, University of Montpellier, CNRS, Ifremer, IRD, 34090, Montpellier, France.
| | - Christelle Desnues
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, 13005, Marseille, France
| |
Collapse
|
28
|
Zhiteneva V, Mosher J, Gerba CP, Rauch-Williams T, Drewes JE. A new workflow for assigning removal credits to assess overall performance of managed aquifer recharge (MAR). WATER RESEARCH 2023; 235:119836. [PMID: 36931188 DOI: 10.1016/j.watres.2023.119836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Pathogen removal in managed aquifer recharge (MAR) systems is dependent upon numerous operational, physicochemical water quality, and biological parameters. Due to the site-specific conditions affecting these parameters, guidelines for specifying pathogen removal have historically taken rather precautionary and conservative approaches in order to protect groundwater quality and public health. A literature review of regulated pathogens in MAR applications was conducted and compared to up-and-coming indicators and surrogates for pathogen assessment, all of which can be gathered into a toolbox from which regulators and operators alike can select appropriate pathogens for monitoring and optimization of MAR practices. Combined with improved knowledge of pathogen fate and transport obtained through lab- and pilot-scale studies and supported by modeling, this foundation can be used to select appropriate, site-specific pathogens for regarding a more efficient pathogen retention, ultimately protecting public health and reducing costs. This paper outlines a new 10 step-wise workflow for moving towards determining robust removal credits for pathogens based on risk management principles. This approach is tailored to local conditions while reducing overly conservative regulatory restrictions or insufficient safety contingencies. The workflow is intended to help enable the full potential of MAR as more planned water reuse systems are implemented in the coming years.
Collapse
Affiliation(s)
- Veronika Zhiteneva
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany; Kompetenzzentrum Wasser Berlin gGmbH, Cicerostrasse 24, Berlin 10709, Germany.
| | - Jeff Mosher
- Santa Ana Watershed Project Authority, 11615 Sterling Ave, Riverside, CA 92503, USA
| | - Charles P Gerba
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Tanja Rauch-Williams
- Carollo Engineers, Inc., 390 Interlocken Crescent, Suite 800, Broomfield, CO 80021, USA
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany
| |
Collapse
|
29
|
Hamza IA, Abd-Elmaksoud S. Applicability of crAssphage as a performance indicator for viral reduction during activated sludge wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50723-50731. [PMID: 36800087 PMCID: PMC10104927 DOI: 10.1007/s11356-023-25824-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/05/2023] [Indexed: 04/16/2023]
Abstract
A major threat to water quality is the discharge of human-derived wastewater, which can cause waterborne illnesses associated with enteric viruses. A poor association exists between fecal indicator bacteria and virus fate in the environment, especially during wastewater treatment. In the current study, the potential of using a novel human gut bacteriophage crAssphage as a wastewater treatment process indicator was evaluated. Using qPCR, influent and effluent wastewater samples of two wastewater treatment plants were analyzed for crAssphage and human viruses including human bocavirus (HBoV), human adenovirus (HAdV), and human polyomavirus (HPyV). All samples were positive for crAssphage. The annual crAssphage concentrations varied between 1.45E + 04 and 2.39E + 08 gc/l in influent samples and from 1.25E + 04 to 7.88E + 06 gc/l in effluent samples. Human viruses concentrations were some orders of magnitude lower than that of crAssphage. Data demonstrated a significant correlation between crAssphage, HAdV, and HPyV during the wastewater treatment process, suggesting that crAssphage and human viral pathogens have similar removal mechanisms. Ultimately, this work concludes that crAssphage could be a performance indicator for viral reduction in the wastewater treatment process.
Collapse
Affiliation(s)
- Ibrahim Ahmed Hamza
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, 33 El Buhouth St., Giza, 12622, Dokki, Egypt.
| | - Sherif Abd-Elmaksoud
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, 33 El Buhouth St., Giza, 12622, Dokki, Egypt
| |
Collapse
|
30
|
Langeveld J, Schilperoort R, Heijnen L, Elsinga G, Schapendonk CEM, Fanoy E, de Schepper EIT, Koopmans MPG, de Graaf M, Medema G. Normalisation of SARS-CoV-2 concentrations in wastewater: The use of flow, electrical conductivity and crAssphage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161196. [PMID: 36581271 PMCID: PMC9791714 DOI: 10.1016/j.scitotenv.2022.161196] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 05/12/2023]
Abstract
Over the course of the Corona Virus Disease-19 (COVID-19) pandemic in 2020-2022, monitoring of the severe acute respiratory syndrome coronavirus 2 ribonucleic acid (SARS-CoV-2 RNA) in wastewater has rapidly evolved into a supplementary surveillance instrument for public health. Short term trends (2 weeks) are used as a basis for policy and decision making on measures for dealing with the pandemic. Normalisation is required to account for the dilution rate of the domestic wastewater that can strongly vary due to time- and location-dependent sewer inflow of runoff, industrial discharges and extraneous waters. The standard approach in sewage surveillance is normalisation using flow measurements, although flow based normalisation is not effective in case the wastewater volume sampled does not match the wastewater volume produced. In this paper, two alternative normalisation methods, using electrical conductivity and crAssphage have been studied and compared with the standard approach using flow measurements. For this, a total of 1116 24-h flow-proportional samples have been collected between September 2020 and August 2021 at nine monitoring locations. In addition, 221 stool samples have been analysed to determine the daily crAssphage load per person. Results show that, although crAssphage shedding rates per person vary greatly, on a population-level crAssphage loads per person per day were constant over time and similar for all catchments. Consequently, crAssphage can be used as a quantitative biomarker for populations above 5595 persons. Electrical conductivity is particularly suitable to determine dilution rates relative to dry weather flow concentrations. The overall conclusion is that flow normalisation is necessary to reliably determine short-term trends in virus circulation, and can be enhanced using crAssphage and/or electrical conductivity measurement as a quality check.
Collapse
Affiliation(s)
- Jeroen Langeveld
- Sanitary Engineering, Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands; Partners4UrbanWater, Graafseweg 274, 6532 ZV Nijmegen, the Netherlands.
| | - Remy Schilperoort
- Partners4UrbanWater, Graafseweg 274, 6532 ZV Nijmegen, the Netherlands
| | - Leo Heijnen
- KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands
| | - Goffe Elsinga
- KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands
| | - Claudia E M Schapendonk
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Ewout Fanoy
- GGD Department public health, municipality Rotterdam, Schiedamsedijk 95, 3000 LP Rotterdam, the Netherlands
| | - Evelien I T de Schepper
- Department of General Practice, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Gertjan Medema
- Sanitary Engineering, Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands; KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands; Natural resources, Michigan State University, 1405 S Harrison Rd, East-Lansing 48823, MI, USA
| |
Collapse
|
31
|
Betancourt WQ. Waterborne Plant Viruses of Importance in Agriculture. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
32
|
Wang R, Alamin M, Tsuji S, Hara-Yamamura H, Hata A, Zhao B, Ihara M, Honda R. Removal performance of SARS-CoV-2 in wastewater treatment by membrane bioreactor, anaerobic-anoxic-oxic, and conventional activated sludge processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158310. [PMID: 36030862 PMCID: PMC9411102 DOI: 10.1016/j.scitotenv.2022.158310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The potential risk of SARS-CoV-2 in treated effluent from a wastewater treatment plant (WWTP) is concerned since SARS-CoV-2 is contained in wastewater during the COVID-19 outbreak. However, the removal of SARS-CoV-2 in WWTP has not been well investigated. The objectives of this study were (i) to clarify the removal performance of SARS-CoV-2 during wastewater treatment, (ii) to compare the removal performance of different secondary treatment processes, and (iii) to evaluate applicability of pepper mild mottle of virus (PMMoV) as a performance indicator for the reduction of SARS-CoV-2 RNA in wastewater treatment. Influent wastewater, secondary-treatment effluent (before chlorination), and final effluent (after chlorination) samples were collected from a WWTP from May 28 to September 24, 2020, during the COVID-19 outbreak in Japan. The target WWTP had three parallel treatment systems employing conventional activated sludge (CAS), anaerobic-anoxic -oxic (A2O), and membrane bioreactor (MBR) processes. SARS-CoV-2 in both the liquid and solid fractions of the influent wastewater was concentrated and quantified using RT-qPCR. SARS-CoV-2 in treated effluent was concentrated from 10 L samples to achieve a detection limit as low as 10 copies/L. The log reduction value (LRV) of SARS-CoV-2 was 2.7 ± 0.86 log10 in CAS, 1.6 ± 0.50 log10 in A2O, and 3.6 ± 0.62 log10 in MBR. The lowest LRV observed during the sampling period was 2.8 log10 in MBR, 1.2 log10 in CAS, and 1.0 log10 in A2O process, indicating that the MBR had the most stable reduction performance. PMMoV was found to be a good indicator virus to evaluate reduction performance of SARS-CoV-2 independent of the process configuration because the LRV of PMMoV was significantly lower than that of SARS-CoV-2 in the CAS, A2O and MBR processes.
Collapse
Affiliation(s)
- Rongxuan Wang
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Md Alamin
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Shohei Tsuji
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Hiroe Hara-Yamamura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Akihiko Hata
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu, Japan
| | - Bo Zhao
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, PR China; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Japan; Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Japan.
| |
Collapse
|
33
|
Mitranescu A, Uchaikina A, Kau AS, Stange C, Ho J, Tiehm A, Wurzbacher C, Drewes JE. Wastewater-Based Epidemiology for SARS-CoV-2 Biomarkers: Evaluation of Normalization Methods in Small and Large Communities in Southern Germany. ACS ES&T WATER 2022; 2:2460-2470. [PMID: 37552738 PMCID: PMC9578648 DOI: 10.1021/acsestwater.2c00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 06/18/2023]
Abstract
In the context of the COVID-19 pandemic, wastewater-based epidemiology (WBE) emerged as a useful tool to account for the prevalence of SARS-CoV-2 infections on a population scale. In this study, we analyzed wastewater samples from three large (>300,000 people served) and four small (<25,000 people served) communities throughout southern Germany from August to December 2021, capturing the fourth infection wave in Germany dominated by the Delta variant (B.1.617.2). As dilution can skew the SARS-CoV-2 biomarker concentrations in wastewater, normalization to wastewater parameters can improve the relationship between SARS-CoV-2 biomarker data and clinical prevalence data. In this study, we investigated the suitability and performance of various normalization parameters. Influent flow data showed strong relationships to precipitation data; accordingly, flow-normalization reacted distinctly to precipitation events. Normalization by surrogate viruses CrAssphage and pepper mild mottle virus showed varying performance for different sampling sites. The best normalization performance was achieved with a mixed fecal indicator calculated from both surrogate viruses. Analyzing the temporal and spatial variation of normalization parameters proved to be useful to explain normalization performance. Overall, our findings indicate that the performance of surrogate viruses, flow, and hydro-chemical data is site-specific. We recommend testing the suitability of normalization parameters individually for specific sewage systems.
Collapse
Affiliation(s)
- Alexander Mitranescu
- Chair of Urban Water Systems Engineering,
Technical University of Munich, Am Coulombwall 3,
85748Garching, Germany
| | - Anna Uchaikina
- Chair of Urban Water Systems Engineering,
Technical University of Munich, Am Coulombwall 3,
85748Garching, Germany
| | - Anna-Sonia Kau
- Chair of Urban Water Systems Engineering,
Technical University of Munich, Am Coulombwall 3,
85748Garching, Germany
| | - Claudia Stange
- Department of Water Microbiology, TZW:
DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139Karlsruhe,
Germany
| | - Johannes Ho
- Department of Water Microbiology, TZW:
DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139Karlsruhe,
Germany
| | - Andreas Tiehm
- Department of Water Microbiology, TZW:
DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139Karlsruhe,
Germany
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering,
Technical University of Munich, Am Coulombwall 3,
85748Garching, Germany
| | - Jörg E. Drewes
- Chair of Urban Water Systems Engineering,
Technical University of Munich, Am Coulombwall 3,
85748Garching, Germany
| |
Collapse
|
34
|
Hashemi SY, Shahmahmoodi S, Hadi M, Nodehi RN, Alimohammadi M, Nejati A, Mesdaghinia A. Quantitative microbial risk assessment of enteroviruses in raw-eatable vegetables irrigated by wastewater: examining different scenarios of washing. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:629-640. [PMID: 36406612 PMCID: PMC9672215 DOI: 10.1007/s40201-022-00789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/01/2022] [Indexed: 06/16/2023]
Abstract
Due to the increasing water crisis, the reuse of wastewater deserves attention as a method to reduce the pressure of the water crisis, especially in developing countries. The application of health risk assessment models is a way to estimate disease burdens associated with crop irrigation by wastewater effluents. In this study, a quantitative microbial risk assessment (QMRA) with probabilistic Monte-Carlo simulation was used to estimate the annual risk of enteroviruses (EVs) infection and disease burden for consumers of effluent-irrigated raw vegetables in Tehran, the capital of Iran. Wastewater effluent samples were collected over two seasons: summer and winter. EVs were analyzed in three stages, concentration and separation, cell culture, and real-time PCR (RT-PCR). A questionnaire was used to determine the dominant patterns of vegetable washing by consumers. There were 4 vegetable washing steps: wiping away mud (A), rinsing (B), using detergents (C), using disinfectants (D). 5 patterns of washing were examined in the laboratory and the concentration of enteroviruses was measured in every pattern. pattern 1: just wiping away mud (A), pattern 2: wiping away mud and rinsing (AB), pattern 3: wiping away mud by using detergents and rinsing (ABCB), pattern 4: wiping away mud by using disinfectants and rinsing (ABDB), and pattern 5: wiping away mud by using detergents and disinfectants and rinsing (ABCBDB). For washing pattern 1, pattern 2, and pattern 3, the estimated annual infection risk of EVs was estimated to be 5.6 × 10-1, 3.6 × 10-1, 1.7 × 10-1 (risk/per.day), and burden of disease was calculated as 3 × 10-2, 2 × 10-2, and 9 × 10-3 (burden/year), respectively. The results showed that if vegetables are washed according to method 5, the microbial risk will be minimized and the excess prevalence of viral infections will be eliminated.
Collapse
Affiliation(s)
- Seyed Yaser Hashemi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shohreh Shahmahmoodi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Hadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh Nodehi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nejati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mesdaghinia
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Hayes EK, Stoddart AK, Gagnon GA. Adsorption of SARS-CoV-2 onto granular activated carbon (GAC) in wastewater: Implications for improvements in passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157548. [PMID: 35882338 PMCID: PMC9308143 DOI: 10.1016/j.scitotenv.2022.157548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Based on recent studies, passive sampling is a promising method for detecting SARS-CoV-2 in wastewater surveillance (WWS) applications. Passive sampling has many advantages over conventional sampling approaches. However, the potential benefits of passive sampling are also coupled with apparent limitations. We established a passive sampling technique for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater using electronegative filters. Though, it was evident that the adsorption capacity of the filters constrained their use. This work intends to demonstrate an optimized passive sampling technique for SARS-CoV-2 in wastewater using granular activated carbon (GAC). Through bench-scale batch-adsorption studies and sewershed deployments, we established the adsorption characteristics of SARS-CoV-2 and two human feacal viruses (PMMoV and CrAssphage) onto GAC. A pseudo-second-order model best-described adsorption kinetics for SARS-CoV-2 in either deionized (DI) water and SARS-CoV-2, CrAssphage, and PMMoV in wastewater. In both laboratory batch-adsorption experiments and in-situ sewershed deployments, the maximum amount of SARS-CoV-2 adsorbed by GAC occurred at ~60 h in wastewater. In wastewater, the maximum adsorption of PMMoV and CrAssphage by GAC occurred at ~60 h. In contrast, the adsorption capacity was reached in DI water seeded with SARS-CoV-2 after ~35 h. The equilibrium assay modeled the maximum adsorption quantity (qmax) in wastewater with spiked SARS-CoV-2 concentrations using a Hybrid Langmuir-Freundlich equation, a qmax of 2.5 × 109 GU/g was calculated. In paired sewershed deployments, it was found that GAC adsorbs SARS-CoV-2 in wastewater more effectively than electronegative filters. Based on the anticipated viral loading in wastewater, bi-weekly sampling intervals with deployments up to ~96 h are highly feasible without reaching adsorption capacity with GAC. GAC offers improved sensitivity and reproducibility to capture SARS-CoV-2 RNA in wastewater, promoting a scalable and convenient alternative for capturing viral pathogens in wastewater.
Collapse
Affiliation(s)
- Emalie K Hayes
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Amina K Stoddart
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
36
|
Jebri S, Yahya M, Rahmani F, Amri I, Hamdi M, Hmaied F. Inactivation of biohazards in healthcare wastewater by E-Beam and Gamma irradiation: a comparative study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75575-75586. [PMID: 35657553 DOI: 10.1007/s11356-022-21159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The main objective of this study is to evaluate the effect of irradiation by Gamma rays and Electron Beam (E-Beam) on naturally occurring microorganisms shed in healthcare wastewater issued from multi-specialties hospital. We examined the susceptibility of naturally occurring total indicator bacteriophages towards Gamma rays and E-Beam irradiation to evaluate their appropriateness as viral indicators for healthcare wastewater quality control. Results showed that healthcare wastewater is a rich matrix containing bacteriophages surrogates of pathogenic waterborne viruses (4.5 Log10 PFU/100 mL for SOMCPH and 2.3 Log10 PFU/100 mL for FRNAPH), antibiotic resistant bacteria (Mean concentrations from 2.3 to 5.5 Log10 CFU/100 mL), molds and yeasts (2.7 Log10 CFU/100 mL), and spores of Clostridium perfringens (Mean concentration of 3.3 Log10 CFU/100 mL). After E-Beam irradiation, naturally occurring bacteria in healthcare wastewater showed lower resistance patterns (D10 values ranging between 0.21 ± 0.005 and 0.59 ± 0.005) compared to those obtained after Gamma irradiation (D10 values ranging between 0.25 ± 0.015 and 0.70 ± 0.0001). Spores of Clostridium perfringens were the most resistant assayed microbes either after E-Beam (D10 values of 3.74 ± 0.005) or Gamma irradiation (D10 values of 4.77 ± 0.025) of collected samples. According to inactivation patterns, a dose of 10 kGy was sufficient for a complete inactivation of spores. Bacteriophages isolated from healthcare wastewater showed the same resistance patterns as those previously obtained in urban treated sewage and were inactivated using higher doses than waterborne bacteria (D10 values of SOMCPH 1.46 ± 0.057; D10 values of FRNAPH 1.03 ± 0.057). Their resistance to irradiation treatment in such complex matrix corroborates their use to survey the viral quality of healthcare wastewater before their discharge in the urban sanitation network. D10 value analysis showed that bacteria and bacteriophages inactivation by E-Beam irradiation required lower doses than those required for their inactivation using Gamma rays. According to inactivation patterns, a dose of 7 kGy was sufficient for total inactivation of both pathogenic bacteria and viruses. Thus, E-Beam irradiation seems to be an efficient physical pre-treatment process for healthcare wastewater treatment prior to its discharge in urban sanitation system to ensure compliance with environmental standards and protect public health.
Collapse
Affiliation(s)
- Sihem Jebri
- Laboratoire de Biotechnologies Et Techniques Nucléaires, CNSTN, Technopôle de Sidi Thabet, 2020, Sidi Thabet, Tunisia.
| | - Mariem Yahya
- Laboratoire de Biotechnologies Et Techniques Nucléaires, CNSTN, Technopôle de Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - Faten Rahmani
- Laboratoire de Biotechnologies Et Techniques Nucléaires, CNSTN, Technopôle de Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - Islem Amri
- Laboratoire de Biotechnologies Et Techniques Nucléaires, CNSTN, Technopôle de Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - Moktar Hamdi
- Laboratoire Ecologie Et Technologie Microbienne, Institut National Des Sciences Appliquées de Tunis, Tunis Carthage University, BP 676, 1080, Tunis, Tunisia
| | - Fatma Hmaied
- Laboratoire de Biotechnologies Et Techniques Nucléaires, CNSTN, Technopôle de Sidi Thabet, 2020, Sidi Thabet, Tunisia
| |
Collapse
|
37
|
Sabar MA, Honda R, Haramoto E. CrAssphage as an indicator of human-fecal contamination in water environment and virus reduction in wastewater treatment. WATER RESEARCH 2022; 221:118827. [PMID: 35820313 DOI: 10.1016/j.watres.2022.118827] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 05/14/2023]
Abstract
Viral indicators of human-fecal contamination in wastewaters and environmental waters have been getting much attention in the past decade. Cross-assembly phage (crAssphage) is the most abundant DNA virus in human feces. Recently, the usefulness of crAssphage as a microbial source tracking and water quality monitoring tool for human-fecal contamination has been highlighted. Here, we conducted a comprehensive review on crAssphage in water, focusing on detection methodology, concentration range in various waters and wastewaters, specificity to human-fecal contamination, and reduction in wastewater treatment systems. This review highlights that crAssphage is globally distributed in wastewaters and various fecal-contaminated water bodies at high concentrations without seasonal fluctuations. CrAssphage is highly specific to human-fecal contamination and is rarely found in animal feces. It also has a good potential as a performance indicator to ensure virus reduction in wastewater treatment systems. Accordingly, crAssphage could be an effective tool for monitoring of human-fecal contamination and potential presence of fecal pathogenic microbes in environmental waters. Bridging the research gaps highlighted in this review would make crAssphage a powerful tool to support the control of water-related health risks.
Collapse
Affiliation(s)
| | - Ryo Honda
- Faculty of Geoscience and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Eiji Haramoto
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Japan
| |
Collapse
|
38
|
Korajkic A, Kelleher J, Shanks OC, Herrmann MP, McMinn BR. Effectiveness of two wastewater disinfection strategies for the removal of fecal indicator bacteria, bacteriophage, and enteric viral pathogens concentrated using dead-end hollow fiber ultrafiltration (D-HFUF). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154861. [PMID: 35358531 PMCID: PMC9291237 DOI: 10.1016/j.scitotenv.2022.154861] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Primary influent and final effluent samples were collected from wastewater treatment plants using either chlorination or ultraviolet (UV) disinfection biweekly for one year. Paired measurements were determined for fecal indicator bacteria (Escherichia coli and enterococci), cultivated bacteriophages (somatic, F+, and CB-390 coliphage and GB-124 Bacteroides phage), human-associated viral markers (human polyomavirus [HPyV] and crAssphage), enteric pathogens (adenovirus, noroviruses genogroups I and II) as well as total infectious enteric virus. To increase the probability of detecting low concentration targets, both primary (10L) and final effluent wastewater samples (40-100 L) were concentrated using a dead-end hollow-fiber ultrafilter (D-HFUF). Despite seasonal temperature fluctuations, concentration shifts of FIB, bacteriophages, human-associated viruses, and viral pathogens measured in primary influent samples were minimal, while levels of infectious enteric virus were significantly higher in the spring and fall (P range: 0.0003-0.0409). FIB levels measured in primary influents were 1-2 log10 higher than bacteriophage, human-associated viral markers (except crAssphage) and viral pathogens measured. FIB displayed the greatest sensitivity to chlorine disinfection, while crAssphage, adenoviruses and infectious enteric viruses were significantly less sensitive (P ≤ 0.0096). During UV treatment, bacteriophages F+ and GB-124 were the most resistant of the culturable viruses measured (P ≤ 0.001), while crAssphage were the most resistant (P ≤ 0.0124) overall. When UV lamps were inactive, infectious enteric viruses were significantly more resilient to upstream treatment processes than all other targets measured (P ≤ 0.0257). Similar to infectious enteric viruses and adenoviruses; GB-124, F+, and crAssphages displayed the highest resistance to UV irradiation, signaling a potential applicability as pathogen surrogates in these systems. The use of D-HFUF enhanced the ability to estimate removal of viruses through wastewater treatment, with the expectation that future applications of this method will be used to better elucidate viral behavior within these systems.
Collapse
Affiliation(s)
- Asja Korajkic
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Julie Kelleher
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Orin C Shanks
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Michael P Herrmann
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Brian R McMinn
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States.
| |
Collapse
|
39
|
Tandukar S, Sthapit N, Thakali O, Malla B, Sherchan SP, Shakya BM, Shrestha LP, Sherchand JB, Joshi DR, Lama B, Haramoto E. Detection of SARS-CoV-2 RNA in wastewater, river water, and hospital wastewater of Nepal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153816. [PMID: 35157870 PMCID: PMC8832950 DOI: 10.1016/j.scitotenv.2022.153816] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/22/2022] [Accepted: 02/08/2022] [Indexed: 05/19/2023]
Abstract
The applicability of wastewater-based epidemiology (WBE) has been extensively studied throughout the world with remarkable findings. This study reports the presence and reduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at two wastewater treatment plants (WWTPs) of Nepal, along with river water, hospital wastewater (HWW), and wastewater from sewer lines collected between July 2020 and February 2021. SARS-CoV-2 RNA was detected in 50%, 54%, 100%, and 100% of water samples from WWTPs, river hospitals, and sewer lines, respectively, by at least one of four quantitative PCR assays tested (CDC-N1, CDC-N2, NIID_2019-nCOV_N, and N_Sarbeco). The CDC-N2 assay detected SARS-CoV-2 RNA in the highest number of raw influent samples of both WWTPs. The highest concentration was observed for an influent sample of WWTP A (5.5 ± 1.0 log10 genome copies/L) by the N_Sarbeco assay. SARS-CoV-2 was detected in 47% (16/34) of the total treated effluents of WWTPs, indicating that biological treatments installed at the tested WWTPs are not enough to eliminate SARS-CoV-2 RNA. One influent sample was positive for N501Y mutation using the mutation-specific qPCR, highlighting a need for further typing of water samples to detect Variants of Concern. Furthermore, crAssphage-normalized SARS-CoV-2 RNA concentrations in raw wastewater did not show any significant association with the number of new coronavirus disease 2019 (COVID-19) cases in the whole district where the WWTPs were located, suggesting a need for further studies focusing on suitability of viral as well as biochemical markers as a population normalizing factor. Detection of SARS-CoV-2 RNA before, after, and during the peaking in number of COVID-19 cases suggests that WBE is a useful tool for COVID-19 case estimation in developing countries.
Collapse
Affiliation(s)
- Sarmila Tandukar
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan; Policy Research Institute, Sano Gaucharan, Kathmandu, Nepal
| | - Niva Sthapit
- Department of Engineering, University of Yamanashi, Kofu, Yamanashi 400-8511, Japan
| | - Ocean Thakali
- Department of Engineering, University of Yamanashi, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Samendra P Sherchan
- Department of Global Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA; Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| | - Bijay Man Shakya
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Laxman P Shrestha
- Institute of Medicine, Tribhuvan University, Maharajgunj, Kathmandu 1524, Nepal
| | - Jeevan B Sherchand
- Institute of Medicine, Tribhuvan University, Maharajgunj, Kathmandu 1524, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
| | - Bhupendra Lama
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
40
|
Liu G, Qu J, Rose J, Medema G. Roadmap for Managing SARS-CoV-2 and Other Viruses in the Water Environment for Public Health. ENGINEERING (BEIJING, CHINA) 2022; 12:139-144. [PMID: 33654547 PMCID: PMC7909608 DOI: 10.1016/j.eng.2020.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 05/25/2023]
Abstract
The water sector needs to address viral-related public health issues, because water is a virus carrier, which not only spreads viruses (e.g., via drinking water), but also provides information about the circulation of viruses in the community (e.g., via sewage). It has been widely reported that waterborne viral pathogens are abundant, diverse, complex, and threatening the public health in both developed and developing countries. Meanwhile, there is great potential for viral monitoring that can indicate biosafety, treatment performance and community health. New developments in technology have been rising to meet the emerging challenges over the past decades. Under the current coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the world's attention is directed to the urgent need to tackle the most challenging public health issues related to waterborne viruses. Based on critical analysis of the water viral knowledge progresses and gaps, this article offers a roadmap for managing COVID-19 and other viruses in the water environments for ensuring public health.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Joan Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| | - Gertjan Medema
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
- KWR Water Research Institute, Nieuwegein 3433 PE, Netherlands
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2628 CN, Netherlands
| |
Collapse
|
41
|
Cuevas-Ferrando E, Pérez-Cataluña A, Falcó I, Randazzo W, Sánchez G. Monitoring Human Viral Pathogens Reveals Potential Hazard for Treated Wastewater Discharge or Reuse. Front Microbiol 2022; 13:836193. [PMID: 35464930 PMCID: PMC9026171 DOI: 10.3389/fmicb.2022.836193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 01/22/2023] Open
Abstract
Wastewater discharge to the environment or its reuse after sanitization poses a concern for public health given the risk of transmission of human viral diseases. However, estimating the viral infectivity along the wastewater cycle presents technical challenges and still remains underexplored. Recently, human-associated crAssphage has been investigated to serve as viral pathogen indicator to monitor fecal impacted water bodies, even though its assessment as biomarker for infectious enteric viruses has not been explored yet. To this end, the occurrence of potentially infectious norovirus genogroup I (GI), norovirus GII, hepatitis A virus (HAV), rotavirus A (RV), and human astrovirus (HAstV) along with crAssphage was investigated in influent and effluent water sampled in four wastewater treatment plants (WWTPs) over 1 year by a PMAxx-based capsid integrity RT-qPCR assay. Moreover, influent and effluent samples of a selected WWTP were additionally assayed by an in situ capture RT-qPCR assay (ISC-RT-qPCR) as estimate for viral infectivity in alternative to PMAxx-RT-qPCR. Overall, our results showed lower viral occurrence and concentration assessed by ISC-RT-qPCR than PMAxx-RT-qPCR. Occurrence of potentially infectious enteric virus was estimated by PMAxx-RT-qPCR as 88–94% in influent and 46–67% in effluent wastewaters with mean titers ranging from 4.77 to 5.89, and from 3.86 to 4.97 log10 GC/L, with the exception of HAV that was sporadically detected. All samples tested positive for crAssphage at concentration ranging from 7.41 to 9.99 log10 GC/L in influent and from 4.56 to 6.96 log10 GC/L in effluent wastewater, showing higher mean concentration than targeted enteric viruses. Data obtained by PMAxx-RT-qPCR showed that crAssphage strongly correlated with norovirus GII (ρ = 0.67, p < 0.05) and weakly with HAstV and RV (ρ = 0.25–0.30, p < 0.05) in influent samples. In effluent wastewater, weak (ρ = 0.27–0.38, p < 0.05) to moderate (ρ = 0.47–0.48, p < 0.05) correlations between crAssphage and targeted viruses were observed. Overall, these results corroborate crAssphage as an indicator for fecal contamination in wastewater but a poor marker for either viral occurrence and viral integrity/infectivity. Despite the viral load reductions detected in effluent compared to influent wastewaters, the estimates of viral infectivity based on viability molecular methods might pose a concern for (re)-using of treated water.
Collapse
|
42
|
Jiang SC, Bischel HN, Goel R, Rosso D, Sherchan S, Whiteson KL, Yan T, Solo-Gabriele HM. Integrating Virus Monitoring Strategies for Safe Non-potable Water Reuse. WATER 2022; 14:1187. [PMID: 37622131 PMCID: PMC10448804 DOI: 10.3390/w14081187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wastewater reclamation and reuse have the potential to supplement water supplies, offering resiliency in times of drought and helping meet increased water demands associated with population growth. Non-potable water reuse represents the largest potential reuse market. Yet economic constraints for new water reuse infrastructure and safety concerns due to microbial water quality, and especially viral pathogen exposure, limit widespread implementation of water reuse. Cost-effective, real-time methods to measure or indicate viral quality of recycled water would do much to instill greater confidence in the practice. This manuscript discusses advancements in monitoring and modeling of viral health risks in the context of water reuse. First, we describe the current wastewater reclamation processes and treatment technologies with an emphasis on virus removal. Second, we review technologies for the measurement of viruses, both culture- and molecular-based, along with their advantages and disadvantages. We introduce promising viral surrogates and specific pathogenic viruses that can serve as indicators of viral risk for water reuse. We suggest metagenomic analyses for viral screening and flow cytometry for quantification of virus-like particles as new approaches to complement more traditional methods. Third, we describe modeling to assess health risks through quantitative microbial risk assessments (QMRAs), the most common strategy to couple data on virus concentrations with human exposure scenarios. We then explore the potential of artificial neural networks (ANNs) to incorporate suites of data from wastewater treatment processes, water quality parameters, and viral surrogates. We recommend ANNs as a means to utilize existing water quality data, alongside new complementary measures of viral quality, to achieve cost-effective strategies to assess risks associated with infectious human viruses in recycled water. Given the review, we conclude that technologies are ready for identifying and implementing viral surrogates for health risk reduction in the next decade. Incorporating modeling with monitoring data would likely result in more robust assessment of water reuse risk.
Collapse
Affiliation(s)
- Sunny C Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
- Water-Energy Nexus Center, 844G Engineering Tower, University of California, Irvine, CA 92697-2175
| | - Heather N Bischel
- Department of Civil & Environmental Engineering, University of California, Davis CA 95616
| | - Ramesh Goel
- Department of Civil & Environmental Engineering, University of Utah, Salt Lake City, Utah 84112
| | - Diego Rosso
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
- Water-Energy Nexus Center, 844G Engineering Tower, University of California, Irvine, CA 92697-2175
| | - Samendra Sherchan
- Department of Environmental Health sciences, Tulane university, New Orleans, LA 70112
| | - Katrine L Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Tao Yan
- Department of Civil and Environmental Engineering, and Water Resources Research Center, University of Hawaii at Manoa, HI 96822, USA
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, 33146, USA
| |
Collapse
|
43
|
Monitoring coliphages to reduce waterborne infectious disease transmission in the One Water framework. Int J Hyg Environ Health 2022; 240:113921. [DOI: 10.1016/j.ijheh.2022.113921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
|
44
|
Kevill JL, Pellett C, Farkas K, Brown MR, Bassano I, Denise H, McDonald JE, Malham SK, Porter J, Warren J, Evens NP, Paterson S, Singer AC, Jones DL. A comparison of precipitation and filtration-based SARS-CoV-2 recovery methods and the influence of temperature, turbidity, and surfactant load in urban wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151916. [PMID: 34826466 PMCID: PMC8610557 DOI: 10.1016/j.scitotenv.2021.151916] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 05/09/2023]
Abstract
Wastewater-based epidemiology (WBE) has become a complimentary surveillance tool during the SARS-CoV-2 pandemic. Viral concentration methods from wastewater are still being optimised and compared, whilst viral recovery under different wastewater characteristics and storage temperatures remains poorly understood. Using urban wastewater samples, we tested three viral concentration methods; polyethylene glycol precipitation (PEG), ammonium sulphate precipitation (AS), and CP select™ InnovaPrep® (IP) ultrafiltration. We found no major difference in SARS-CoV-2 and faecal indicator virus (crAssphage) recovery from wastewater samples (n = 46) using these methods, PEG slightly (albeit non-significantly), outperformed AS and IP for SARS-CoV-2 detection, as a higher genome copies per litre (gc/l) was recorded for a larger proportion of samples. Next generation sequencing of 8 paired samples revealed non-significant differences in the quality of data between AS and IP, though IP data quality was slightly better and less variable. A controlled experiment assessed the impact of wastewater suspended solids (turbidity; 0-400 NTU), surfactant load (0-200 mg/l), and storage temperature (5-20 °C) on viral recovery using the AS and IP methods. SARS-CoV-2 recoveries were >20% with AS and <10% with IP in turbid samples, whilst viral recoveries for samples with additional surfactant were between 0-18% for AS and 0-5% for IP. Turbidity and sample storage temperature combined had no significant effect on SARS-CoV-2 recovery (p > 0.05), whilst surfactant and storage temperature combined were significant negative correlates (p < 0.001 and p < 0.05, respectively). In conclusion, our results show that choice of methodology had small effect on viral recovery of SARS-CoV-2 and crAssphage in wastewater samples within this study. In contrast, sample turbidity, storage temperature, and surfactant load did affect viral recovery, highlighting the need for careful consideration of the viral concentration methodology used when working with wastewater samples.
Collapse
Affiliation(s)
- Jessica L Kevill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Cameron Pellett
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Mathew R Brown
- Joint Biosecurity Centre, Department of Health and Social Care, London WC1B 4DA, UK; School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Irene Bassano
- Joint Biosecurity Centre, Department of Health and Social Care, London WC1B 4DA, UK; Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Hubert Denise
- Joint Biosecurity Centre, Department of Health and Social Care, London WC1B 4DA, UK
| | - James E McDonald
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Jonathan Porter
- Environment Agency National Laboratory Service, Exeter, Devon EX6 8PE, UK
| | - Jonathan Warren
- Environment Agency National Laboratory Service, Exeter, Devon EX6 8PE, UK
| | - Nicholas P Evens
- Environment Agency National Laboratory Service, Exeter, Devon EX6 8PE, UK
| | - Steve Paterson
- Centre of Genomics Research & NERC Environmental Omics Facility, University of Liverpool, Liverpool L69 7ZB, UK
| | | | - Davey L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6105, Australia
| |
Collapse
|
45
|
Garcia A, Le T, Jankowski P, Yanaç K, Yuan Q, Uyaguari-Diaz MI. Quantification of human enteric viruses as alternative indicators of fecal pollution to evaluate wastewater treatment processes. PeerJ 2022; 10:e12957. [PMID: 35186509 PMCID: PMC8852272 DOI: 10.7717/peerj.12957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/27/2022] [Indexed: 01/11/2023] Open
Abstract
We investigated the potential use and quantification of human enteric viruses in municipal wastewater samples of Winnipeg (Manitoba, Canada) as alternative indicators of contamination and evaluated the processing stages of the wastewater treatment plant. During the fall 2019 and winter 2020 seasons, samples of raw sewage, activated sludge, effluents, and biosolids (sludge cake) were collected from the North End Sewage Treatment Plant (NESTP), which is the largest wastewater treatment plant in the City of Winnipeg. DNA (Adenovirus and crAssphage) and RNA enteric viruses (Pepper mild mottle virus, Norovirus genogroups GI and GII, Rotavirus Astrovirus, and Sapovirus) as well as the uidA gene found in Escherichia coli were targeted in the samples collected from the NESTP. Total nucleic acids from each wastewater treatment sample were extracted using a commercial spin-column kit. Enteric viruses were quantified in the extracted samples via quantitative PCR using TaqMan assays. Overall, the average gene copies assessed in the raw sewage were not significantly different (p-values ranged between 0.1023 and 0.9921) than the average gene copies assessed in the effluents for DNA and RNA viruses and uidA in terms of both volume and biomass. A significant reduction (p-value ≤ 0.0438) of Adenovirus and Noroviruses genogroups GI and GII was observed in activated sludge samples compared with those for raw sewage per volume. Higher GCNs of enteric viruses were observed in dewatered sludge samples compared to liquid samples in terms of volume (g of sample) and biomass (ng of nucleic acids). Enteric viruses found in gene copy numbers were at least one order of magnitude higher than the E. coli marker uidA, indicating that enteric viruses may survive the wastewater treatment process and viral-like particles are being released into the aquatic environment. Viruses such as Noroviruses genogroups GI and GII, and Rotavirus were detected during colder months. Our results suggest that Adenovirus, crAssphage, and Pepper mild mottle virus can be used confidently as complementary viral indicators of human fecal pollution.
Collapse
Affiliation(s)
- Audrey Garcia
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tri Le
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Paul Jankowski
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kadir Yanaç
- Department of Civil Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
46
|
Torii S, Oishi W, Zhu Y, Thakali O, Malla B, Yu Z, Zhao B, Arakawa C, Kitajima M, Hata A, Ihara M, Kyuwa S, Sano D, Haramoto E, Katayama H. Comparison of five polyethylene glycol precipitation procedures for the RT-qPCR based recovery of murine hepatitis virus, bacteriophage phi6, and pepper mild mottle virus as a surrogate for SARS-CoV-2 from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150722. [PMID: 34610400 PMCID: PMC8487407 DOI: 10.1016/j.scitotenv.2021.150722] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 05/04/2023]
Abstract
Polyethylene glycol (PEG) precipitation is one of the conventional methods for virus concentration. This technique has been used to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater. The procedures and seeded surrogate viruses were different among implementers; thus, the reported whole process recovery efficiencies considerably varied among studies. The present study compared five PEG precipitation procedures, with different operational parameters, for the RT-qPCR-based whole process recovery efficiency of murine hepatitis virus (MHV), bacteriophage phi6, and pepper mild mottle virus (PMMoV), and molecular process recovery efficiency of murine norovirus using 34 raw wastewater samples collected in Japan. The five procedures yielded significantly different whole process recovery efficiency of MHV (0.070%-2.6%) and phi6 (0.071%-0.51%). The observed concentration of indigenous PMMoV ranged from 8.9 to 9.7 log (8.2 × 108 to 5.6 × 109) copies/L. Interestingly, PEG precipitation with 2-h incubation outperformed that with overnight incubation partially due to the difference in molecular process recovery efficiency. The recovery load of MHV exhibited a positive correlation (r = 0.70) with that of PMMoV, suggesting that PMMoV is the potential indicator of the recovery efficiency of SARS-CoV-2. In addition, we reviewed 13 published studies and found considerable variability between different studies in the whole process recovery efficiency of enveloped viruses by PEG precipitation. This was due to the differences in operational parameters and surrogate viruses as well as the differences in wastewater quality and bias in the measurement of the seeded load of surrogate viruses, resulting from the use of different analytes and RNA extraction methods. Overall, the operational parameters (e.g., incubation time and pretreatment) should be optimized for PEG precipitation. Co-quantification of PMMoV may allow for the normalization of SARS-CoV-2 RNA concentration by correcting for the differences in whole process recovery efficiency and fecal load among samples.
Collapse
Affiliation(s)
- Shotaro Torii
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Wakana Oishi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yifan Zhu
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Ocean Thakali
- Department of Engineering, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Zaizhi Yu
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Bo Zhao
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Chisato Arakawa
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Akihiko Hata
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan; Faculty of Agriculture and Marine Science, Kochi University, Monobe-Otsu 200, Nankoku, Kochi 783-8502 Japan
| | - Shigeru Kyuwa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
47
|
Holm RH, Nagarkar M, Yeager RA, Talley D, Chaney AC, Rai JP, Mukherjee A, Rai SN, Bhatnagar A, Smith T. Surveillance of RNase P, PMMoV, and CrAssphage in wastewater as indicators of human fecal concentration across urban sewer neighborhoods, Kentucky. FEMS MICROBES 2022; 3:1-12. [PMID: 37228897 PMCID: PMC10117713 DOI: 10.1093/femsmc/xtac003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/24/2021] [Accepted: 01/25/2022] [Indexed: 09/03/2023] Open
Abstract
Wastewater surveillance has been widely used as a supplemental method to track the community infection levels of severe acute respiratory syndrome coronavirus 2. A gap exists in standardized reporting for fecal indicator concentrations, which can be used to calibrate the primary outcome concentrations from wastewater monitoring for use in epidemiological models. To address this, measurements of fecal indicator concentration among wastewater samples collected from sewers and treatment centers in four counties of Kentucky (N = 650) were examined. Results from the untransformed wastewater data over 4 months of sampling indicated that the fecal indicator concentration of human ribonuclease P (RNase P) ranged from 5.1 × 101 to 1.15 × 106 copies/ml, pepper mild mottle virus (PMMoV) ranged from 7.23 × 103 to 3.53 × 107 copies/ml, and cross-assembly phage (CrAssphage) ranged from 9.69 × 103 to 1.85 × 108 copies/ml. The results showed both regional and temporal variability. If fecal indicators are used as normalization factors, knowing the daily sewer system flow of the sample location may matter more than rainfall. RNase P, while it may be suitable as an internal amplification and sample adequacy control, has less utility than PMMoV and CrAssphage as a fecal indicator in wastewater samples when working at different sizes of catchment area. The choice of fecal indicator will impact the results of surveillance studies using this indicator to represent fecal load. Our results contribute broadly to an applicable standard normalization factor and assist in interpreting wastewater data in epidemiological modeling and monitoring.
Collapse
Affiliation(s)
- R H Holm
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY 40202, USA
| | - M Nagarkar
- Center for Environmental Solutions and Emergency Response, United States Environmental Protection Agency, Cincinnati, OH 45220, USA
| | - R A Yeager
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY 40202, USA
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray St., Louisville, KY 40202, USA
| | - D Talley
- Louisville/Jefferson County Metropolitan Sewer District, Morris Forman Water Quality Treatment Center, 4522 Algonquin Parkway, Louisville, KY 40211, USA
| | - A C Chaney
- Sanitation District No. 1 of Northern Kentucky, 1045 Eaton Dr., Ft. Wright, Kentucky 41017, USA
| | - J P Rai
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - A Mukherjee
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - S N Rai
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY 40202, USA
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
- Brown Cancer Center, School of Medicine, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
- Center for Integrative Environmental Health Sciences, 500 S. Preston St., Suite 1319, Louisville, KY 40202, USA
| | - A Bhatnagar
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY 40202, USA
| | - T Smith
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY 40202, USA
| |
Collapse
|
48
|
Coprostanol as a Population Biomarker for SARS-CoV-2 Wastewater Surveillance Studies. WATER 2022. [DOI: 10.3390/w14020225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wastewater surveillance is a cost-effective tool for monitoring SARS-CoV-2 transmission in a community. However, challenges remain with regard to interpretating such studies, not least in how to compare SARS-CoV-2 levels between different-sized wastewater treatment plants. Viral faecal indicators, including crAssphage and pepper mild mottle virus, have been proposed as population biomarkers to normalise SARS-CoV-2 levels in wastewater. However, as these indicators exhibit variability between individuals and may not be excreted by everyone, their utility as population biomarkers may be limited. Coprostanol, meanwhile, is a bacterial metabolite of cholesterol which is excreted by all individuals. In this study, composite influent samples were collected from a large- and medium-sized wastewater treatment plant in Dublin, Ireland and SARS-CoV-2 N1, crAssphage, pepper mild mottle virus, HF183 and coprostanol levels were determined. SARS-CoV-2 N1 RNA was detected and quantified in all samples from both treatment plants. Regardless of treatment plant size, coprostanol levels exhibited the lowest variation in composite influent samples, while crAssphage exhibited the greatest variation. Moreover, the strongest correlations were observed between SARS-CoV-2 levels and national and Dublin COVID-19 cases when levels were normalised to coprostanol. This work demonstrates the usefulness of coprostanol as a population biomarker for wastewater surveillance studies.
Collapse
|
49
|
Yasui M, Iso H, Torii S, Matsui Y, Katayama H. Applicability of pepper mild mottle virus and cucumber green mottle mosaic virus as process indicators of enteric virus removal by membrane processes at a potable reuse facility. WATER RESEARCH 2021; 206:117735. [PMID: 34673461 DOI: 10.1016/j.watres.2021.117735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 05/09/2023]
Abstract
Treatment of wastewater for potable reuse is increasingly becoming a suitable alternative water source to meet the growing urban water needs worldwide. Potable reuse requires reduction of enteric viruses to levels at which they do not pose a risk to human health. Advanced water treatment trains (e.g., microfiltration (MF), ultrafiltration (UF), reverse osmosis (RO), and ultraviolet light and advanced oxidation process (UV/AOP)) provide significant protection and reduce virus loads in highly treated final product waters. Even though viruses are a principal concern, the performance of virus removal by membrane processes is not easily determined. The objective of this study was to evaluate the applicability of Aichi virus (AiV), pepper mild mottle virus (PMMoV), cucumber green mottle mosaic virus (CGMMV), and cross-assembly phage (crAssphage) removal as possible process indicators for MF, UF, and RO. Virus log reduction values (LRVs) based on gene copies measured using molecular methods were determined for MF and UF. The median LRVs of all viruses obtained after MF and UF were 2.9 and 3.1, respectively. The LRVs of the proposed indicators were lower than those of human enteric viruses. The morphological and physicochemical difference among indicators was not found to affect LRVs. Therefore, all proposed indicator viruses were determined to be suitable candidates as process indicators for MF and UF. Regarding RO, most of the viruses measured in this study were undetectable in permeate. Only PMMoV and CGMMV were detected showing median LRVs of 2.8 and 2.5, respectively. PMMoV and CGMMV are recommended as good process indicators of physical virus removal for the overall water treatment process.
Collapse
Key Words
- AIV, aichi virus
- Abbreviation: MF, microfiltration
- AdV, adenovirus
- CGMMV, cucumber green mottle mosaic virus
- Crassphage, cross-assembly phage
- EF, effluent
- Human enteric virus
- LRV, log reduction value
- MME, molecular method efficiencies
- MNV, Murine Norovirus
- MPC, molecular process control
- Microfiltration
- NV GI, norovirus GI
- NV GII, norovirus GII
- ORSV, Odontoglossum Ringspot Virus
- PCE, primary concentration efficiency
- PMMOV, pepper mild mottle virus
- Process indicator
- RO, reverse osmosis
- Reverse osmosis
- UF, ultrafiltration
- UV/AOP, ultraviolet light and advanced oxidation process
- Ultrafiltration
- Water reuse
Collapse
Affiliation(s)
- Midori Yasui
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hikaru Iso
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shotaro Torii
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | - Hiroyuki Katayama
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
50
|
Sapula SA, Whittall JJ, Pandopulos AJ, Gerber C, Venter H. An optimized and robust PEG precipitation method for detection of SARS-CoV-2 in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147270. [PMID: 33940413 PMCID: PMC8086323 DOI: 10.1016/j.scitotenv.2021.147270] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 04/15/2023]
Abstract
Wastewater-based epidemiology is currently being utilized to monitor the dissemination of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), on a population scale. The detection of SARS-CoV-2 in wastewater is highly influenced by methodologies used for its isolation, concentration and RNA extraction. Although various viral concentration methods are currently employed, including polyethylene glycol (PEG) precipitation, adsorption-extraction, ultracentrifugation and ultrafiltration, to our knowledge, none of these methods have been standardized for use with a variety of wastewater matrices and/or different kits for RNA extraction and quantification. To address this, wastewater with different physical characteristics was seeded with gamma-irradiated SARS-CoV-2 and used to test the efficiency of PEG precipitation and adsorption-extraction to concentrate the virus from three physiochemically different wastewater samples, sourced from three distinct wastewater plants. Efficiency of viral concentration and RNA extraction was assessed by reverse-transcriptase polymerase chain reaction and the recovery yields calculated. As co-purification of inhibitors can be problematic for subsequent detection, two commonly used commercial master mixes were assessed for their sensitivity and efficiency to detect two SARS-CoV-2 target nucleocapsid (N) gene sequences. Recovery rates varied greatly between wastewater matrices and concentration methods, with the highest and most reproducible recovery rates (46.6-56.7%) observed when SARS-CoV-2 was precipitated with PEG and detected by the Luna® Universal master mix. The adsorption-extraction method was less effective (0-21.7%). This study demonstrates that PEG precipitation is the more robust method, which translates well to varying wastewater matrices, producing consistent and reproducible recovery rates. Furthermore, it is compatible with different kits for RNA extraction and quantitation.
Collapse
Affiliation(s)
- Sylvia A Sapula
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, Australia
| | - Jonathan J Whittall
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, Australia
| | - Aaron J Pandopulos
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, Australia
| | - Cobus Gerber
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, Australia
| | - Henrietta Venter
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, Australia.
| |
Collapse
|