1
|
Liu Q, Fang J, Liu Z, Chen Y, Chen Q, Chen Z, Yuan S, Yu H, Yao W. Influence of different food matrices on the abundance, characterization, migration kinetics and hazards of microplastics released from plastic packaging (PP and PET). Food Chem 2025; 478:143691. [PMID: 40058265 DOI: 10.1016/j.foodchem.2025.143691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
The effect of food matrix on the release of microplastics from plastic packaging was investigated by treating plastic samples with various food simulants. MPs were released during simulated conditions, and their main source was the separation of plastic samples subjected to ageing. Acidic high oil simulants resulted in the greatest abundance of MPs (1311.33 ± 262.22 and 1414.00 ± 214.52 items/piece). Dual constant kinetic model and Elovich kinetic model described the process well (R2 > 0.9019), indicating the release rate of MPs was mainly controlled by characteristics of plastics and environment. Characterization showed the morphology of plastics became rougher, carbonyl index increased, crystalline shapes changed and proportion of O increased. The release mechanism was deduced to be deterioration of the plastic by oxidative reactions. Finally, hazard assessment methodologies were developed, the results showed these MPs are hazardous to humans. It is hoped that this study will draw more attention to the harmful effects of MPs.
Collapse
Affiliation(s)
- Qingrun Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - Jingkai Fang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zitian Liu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin, China
| | - Yulun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Qiwen Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Zhe Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| |
Collapse
|
2
|
Abedi D, Niari MH, Ramavandi B, De-la-Torre GE, Renner G, Schmidt TC, Dobaradaran S. Microplastics and phthalate esters in yogurt and buttermilk samples: characterization and health risk assessment. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2025; 23:14. [PMID: 40226515 PMCID: PMC11992273 DOI: 10.1007/s40201-025-00939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/26/2025] [Indexed: 04/15/2025]
Abstract
The contamination of yogurt and buttermilk (doogh), two widely consumed dairy products, with microplastics (MPs) and phthalic acid esters (PAEs), and subsequently the health effects caused by the contamination of these products on humans, is a potential concern. In this study, the abundance and characteristics of MPs as well as the PAEs concentration in different types of yogurts and buttermilk available in the Iranian market were investigated. The average abundance of MPs in different types of yogurts and buttermilk was between 0.63 and 0.76 and 0.52-0.7 items/mL, respectively. Most detected MPs in yogurt and buttermilk samples were in the size range of 1000-5000 μm with the predominant color and shape of transparent and fiber, respectively. Polyethylene terephthalate (PET) and polyamide (PA) were the dominant polymers in yogurt and buttermilk samples, respectively. The average concentrations of PAEs in different types of yogurt and buttermilk samples were between 5.79 and 11.36 and 1.46-6.93 µg/L, respectively. The findings showed that Di(2-ethylhexyl) phthalate (DEHP) levels in yogurt and buttermilk samples may have a carcinogenic risk for adults and adolescents. According to the results of this study, the intake of MPs and PAEs through high consumption of yogurt and buttermilk should be recognized as a significant source of MPs in the human body. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-025-00939-z.
Collapse
Affiliation(s)
- Delaram Abedi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Hazrati Niari
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Gabriel E. De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Gerrit Renner
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, , University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Torsten C. Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, , University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, , University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| |
Collapse
|
3
|
Jeong S, Lee G, Park S, Son M, Lee S, Ryu B. Unseen Threats: The Long-term Impact of PET-Microplastics on Development of Male Reproductive Over a Lifetime. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407585. [PMID: 39804975 PMCID: PMC11884539 DOI: 10.1002/advs.202407585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/26/2024] [Indexed: 01/16/2025]
Abstract
The physical abrasion of plastics from simple everyday entered the food chain, with associated risks recently emphasized. Although many studies have reported the adverse effects of microplastics (MPs) on human, the reproductive implications of continuous exposure to physically abraded polyethylene terephthalate (PET)-MPs remain unexplored. Ingestion of physically abraded PET-MPs (size range: 50-100 µm) in mice from 5 to 34 weeks of age at an annual intake relevant dose of MPs (5 mg week-1) significantly impaired male reproductive function. Reductions in seminiferous tubule diameter and epithelial height are observed (p < 0.0001), with 32.2% decrease in Leydig cells and 24.3% reduction in testosterone levels (p < 0.05). The epididymis shows marked deterioration in all regions, with total sperm concentration significantly reduce from 17.0 × 10⁶ to 5.3 × 10⁶ (p < 0.01) and decrease motility. Transcriptome analysis demonstrates downregulation of genes related with gonadotropin-releasing hormone secretion, testosterone biosynthesis, and Meiosin gene, which is for crucial spermatogenesis. Continuous ingestion of physically abraded PET-MPs from plastic bottles adversely affected testicular and epididymal functions, leading to hormonal imbalances and abnormal sperm production. These findings raise concerns about the impact of commonly used plastics on male reproductive development, highlighting potential risks for future generations.
Collapse
Affiliation(s)
- Seungjin Jeong
- Department of Food Science and NutritionPukyong National UniversityBusan48513Republic of Korea
- Department of Smart Green Technology EngineeringPukyong National UniversityBusan48513Republic of Korea
| | - GyuDae Lee
- Department of Applied BiosciencesKyungpook National UniversityDaegu41566Republic of Korea
| | - Surye Park
- Department of Food Science and NutritionPukyong National UniversityBusan48513Republic of Korea
| | - Myeongjoo Son
- Department of Anatomy & Cell Biology, School of MedicineKangwon National UniversityChuncheon24341Republic of Korea
| | - Seungjun Lee
- Department of Food Science and NutritionPukyong National UniversityBusan48513Republic of Korea
| | - Bomi Ryu
- Department of Food Science and NutritionPukyong National UniversityBusan48513Republic of Korea
- Department of Smart Green Technology EngineeringPukyong National UniversityBusan48513Republic of Korea
| |
Collapse
|
4
|
Ruggieri F, Battistini B, Sorbo A, Senofonte M, Leso V, Iavicoli I, Bocca B. From food-to-human microplastics and nanoplastics exposure and health effects: A review on food, animal and human monitoring data. Food Chem Toxicol 2025; 196:115209. [PMID: 39710246 DOI: 10.1016/j.fct.2024.115209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
This review figures out the overall status on the presence of microplastics (MPs) and nanoplastics (NPs) in food and their bioaccumulation in animal and human tissues, providing critical insights into possible human health impacts. Data are discussed on both in-vivo and ex-vivo animal and human studies, and the role of physicochemical properties in determining the biological fate and toxicological effects of MPs and NPs. Particular attention is given to dietary exposure assessments, specifically evaluating daily intake through the consumption of contaminated food items. The current limitations in the body of knowledge and some considerations for future assessments are also reported. Overall, there is a pressing need to establish more robust biomarker research and develop standardized methodologies, for a better understanding of MPs and NPs fate and associated effects in more realistic scenarios for their safe consumption. The review underscores the importance of integrating the human biomonitoring into monitoring programs and interdisciplinary research to ultimately inform on MPs and NPs real burden in the human body.
Collapse
Affiliation(s)
- Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Angela Sorbo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Senofonte
- Department Chemical Engineering Materials Environment, Sapienza University, Rome, Italy
| | - Veruscka Leso
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
5
|
Kumar P, Kumar A, Kumar D, Prajapati KB, Mahajan AK, Pant D, Yadav A, Giri A, Manda S, Bhandari S, Panjla R. Microplastics influencing aquatic environment and human health: A review of source, determination, distribution, removal, degradation, management strategy and future perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124249. [PMID: 39869960 DOI: 10.1016/j.jenvman.2025.124249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/15/2024] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies. It has been observed that several methods are being employed for samples collection, extraction and identification of MPs and polymer types using various equipment, chemicals and instrumental techniques. Aquatic species mistakenly ingest MPs, considering them prey and through food-chain, and then suffer from various metabolic disorders. The consumption of seafood and fish may consequently cause health implications in humans. Certain plasticizers are added during manufacturing to provide colour, durability, flexibility, and strength to plastics, but they leach out during usage, storage, and transport, as well as after entering the bodies of aquatic species and human beings. The leached chemicals (bisphenol-A, triclosan, phthalates, etc.) act as endocrine disrupting chemicals (EDCs), which effect on homeostasis; thereby causing neurotoxicity, cytotoxicity, reproductive problems, adverse behaviour and autism. Negative influence of MPs on carbon sequestration potential of water bodies is also observed, however more studies are required to understand it with a detail mechanism under natural conditions. The wastewater treatment plants are found to remove a large amount of MPs, but in turn, also act as significant sources of their release in sludge and effluents. Further, it is covered that how advanced oxidation processes, thermal- and photo-oxidation, fungi, algae and microbes degrade the plastics and increase their numbers in the surrounding environment. The management strategy comprising recovery of energy and other valuable by-products from plastic wastes, recycling and regulatory framework; are also described in detail. The future perspectives can be of paramount importance to control MPs generation and their abundance in the aquatic and other types of environments. The studies in future need to focus on advanced filtration techniques, advanced oxidation processes, energy recovery from plastic wastes and influences of MPs on carbon sequestration in aquatic environment and human health.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Natural Resources Management, Maharana Pratap Horticultural University, Karnal, Haryana, 132001, India.
| | - Anil Kumar
- Forest Ecology and Climate Change Division, ICFRE-Himalayan Forest Research Institute, Panthaghati, Shimla, Himachal Pradesh, 171013, India
| | - Deepak Kumar
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Kalp Bhusan Prajapati
- Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, India
| | - Ambrish Kumar Mahajan
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Deepak Pant
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Anoop Yadav
- Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, India
| | - Anand Giri
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, 171013, India
| | - Satish Manda
- Department of Natural Resources Management, Maharana Pratap Horticultural University, Karnal, Haryana, 132001, India
| | - Soniya Bhandari
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Richa Panjla
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| |
Collapse
|
6
|
Pacher-Deutsch C, Schweighofer N, Hanemaaijer M, Marut W, Žukauskaitė K, Horvath A, Stadlbauer V. The microplastic-crisis: Role of bacteria in fighting microplastic-effects in the digestive system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125437. [PMID: 39631654 DOI: 10.1016/j.envpol.2024.125437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Plastic particles smaller than 5 mm, referred to as Microplastics, pose health risks, like metabolic, immunological, neurological, reproductive, and carcinogenic effects, after being ingested. Smaller plastic particles are more likely to be absorbed by human cells, with nanoplastics showing higher potential for cellular damage, including DNA fragmentation and altered protein functions. Micro- and nanoplastics (MNPs) affect the gastrointestinal tract by altering the microbial composition, they could influence digestive enzymes, and possibly disrupt mucus layers. In the stomach, they potentially interfere with digestion and barrier functions, while in the intestines, they could increase permeability via inflammation and tissue disruption. MNPs can lead to microbial dysbiosis, leading to gastrointestinal symptoms. By activating inflammatory pathways, altering T cell functions and affecting dendritic cells and macrophages, immune system homeostasis could possibly be disrupted. Probiotics offer potential strategies to alleviate plastic effects, by either degrading plastic particles or directly countering health effects. We compared genetic sequences of probiotics to the genome of known plastic degraders and concluded that no probiotic bacteria could serve the role of plastic degradation. However, probiotics could directly mitigate MNP-health effects. They can restore microbial diversity, enhance the gut barrier, regulate bile acid metabolism, reduce inflammation, regulate insulin balance, and counteract metabolic disruptions. Antioxidative properties protect against lipid peroxidation and MNP-related reproductive system damage. Probiotics can also bind and degrade toxins, like heavy metals and bisphenol A. Additionally, bacteria could be used to aggregate MNPs and reduce their impact. Therefore, probiotics offer a variety of strategies to counter MNP-induced health effects.
Collapse
Affiliation(s)
- Christian Pacher-Deutsch
- Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria.
| | | | | | | | - Kristina Žukauskaitė
- Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria; Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Vanessa Stadlbauer
- Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria; BioTechMed-Graz, Graz, Austria
| |
Collapse
|
7
|
Yashwanth A, Huang R, Iepure M, Mu M, Zhou W, Kunadu A, Carignan C, Yegin Y, Cho D, Oh JK, Taylor MT, Akbulut MES, Min Y. Food packaging solutions in the post-per- and polyfluoroalkyl substances (PFAS) and microplastics era: A review of functions, materials, and bio-based alternatives. Compr Rev Food Sci Food Saf 2025; 24:e70079. [PMID: 39680570 DOI: 10.1111/1541-4337.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Food packaging (FP) is essential for preserving food quality, safety, and extending shelf-life. However, growing concerns about the environmental and health impacts of conventional packaging materials, particularly per- and polyfluoroalkyl substances (PFAS) and microplastics, are driving a major transformation in FP design. PFAS, synthetic compounds with dual hydro- and lipophobicity, have been widely employed in food packaging materials (FPMs) to impart desirable water and grease repellency. However, PFAS bioaccumulate in the human body and have been linked to multiple health effects, including immune system dysfunction, cancer, and developmental problems. The detection of microplastics in various FPMs has raised significant concerns regarding their potential migration into food and subsequent ingestion. This comprehensive review examines the current landscape of FPMs, their functions, and physicochemical properties to put into perspective why there is widespread use of PFAS and microplastics in FPMs. The review then addresses the challenges posed by PFAS and microplastics, emphasizing the urgent need for sustainable and bio-based alternatives. We highlight promising advancements in sustainable and renewable materials, including plant-derived polysaccharides, proteins, and waxes, as well as recycled and upcycled materials. The integration of these sustainable materials into active packaging systems is also examined, indicating innovations in oxygen scavengers, moisture absorbers, and antimicrobial packaging. The review concludes by identifying key research gaps and future directions, including the need for comprehensive life cycle assessments and strategies to improve scalability and cost-effectiveness. As the FP industry evolves, a holistic approach considering environmental impact, functionality, and consumer acceptance will be crucial in developing truly sustainable packaging solutions.
Collapse
Affiliation(s)
- Arcot Yashwanth
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Rundong Huang
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Monica Iepure
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Minchen Mu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Wentao Zhou
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Angela Kunadu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Courtney Carignan
- Department of Food Science and Human Nutrition, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Yagmur Yegin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dongik Cho
- Department of Polymer Science and Engineering, Dankook University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Matthew T Taylor
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Mustafa E S Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Younjin Min
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
- Material Science and Engineering Program, University of California, Riverside, California, USA
| |
Collapse
|
8
|
Diana ZT, Chen Y, Rochman CM. Paint: a ubiquitous yet disregarded piece of the microplastics puzzle. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:26-44. [PMID: 39887286 PMCID: PMC11790211 DOI: 10.1093/etojnl/vgae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 02/01/2025]
Abstract
Microplastics are widespread pollutants. Microplastics generated from the wear and tear of paints and coatings have recently been modeled to be a large source of microplastics to the environment. Yet, studies focused on microplastics broadly frequently overlook paint microplastics. In this article, we systematically reviewed the primary literature (turning up 53 relevant articles) on paint microplastic sources, identification methods, environmental concentrations, and toxicity to model organisms. Examples of sources of paint microplastics include paints from buildings and murals, crafts and hobbies, cars and roads, marine boats and structures, and industrial systems like pipes, sewers, and other infrastructure. Paint microplastics have been quantified in several marine samples from Europe and, to a lesser extent, East Asia. Reported concentrations of paint microplastics are up to 290,000 particles per kilogram of sediments, with the greatest concentration reported near a graffiti wall. Out of the toxicity studies testing paint microplastics, there have been 68 tested effects in total across all endpoints and organisms and 17 quantified lethal concentration 50% doses (ranging from 0.001 to 20 g/L). Of the tested effects, 45 observed endpoint values in the paint treatment were significantly different from the control (66%)-most of which were tests using antifouling paints. Overall, the number of studies on paint microplastics is small, limiting a holistic understanding of microplastics. Based on our synthesis of the state of the science on paint microplastics, we suggest a research agenda moving forward informed by research gaps.
Collapse
Affiliation(s)
- Zoie T Diana
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Yuying Chen
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Chelsea M Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Xie L, Zhu K, Chen N, Deng Y, Jiang W, Jia H. A Critical Review of an Environmental Risk Substance Induced by Aging Microplastics: Insights into Environmentally Persistent Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22502-22518. [PMID: 39661042 DOI: 10.1021/acs.est.4c09107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Microplastics (MPs), as an emerging contaminants category, can undergo complex aging in a variety of environmental matrices in which the chemical bonds of polymer molecules can be broken to form free radicals. While the existence of free radicals in aged plastics has been known for over half a century, only recently has significant research on a new type of environmentally risky substance, namely environmentally persistent free radicals (EPFRs), present in aged MPs and their environmental effects, been started, but it is still in its infancy. To address these issues, this work examines EPFR generation on MPs and their environmental effect by reviewing publications from 2012 to 2023. The aging processes and mechanisms of MPs in the environment are first summarized. Then, the occurrence and formation mechanisms of EPFRs on aged MPs are specifically discussed. Additionally, the reactivity of EPFRs on aging MPs and their influencing factors are comprehensively considered, such as their physicochemical properties, oxygen content, and coexisting substances. Due to their reactivity, EPFRs can interact directly with some substances (e.g., p-nitrophenol and proteins, etc.) or induce the generation of reactive oxygen species, leading to diverse environmental effects, including pollutant transformation, biotoxicity, and health risks. Finally, research challenges and perspectives for EPFRs formation on aging MPs and related environmental implications are presented. Given the environmental fate and risk of MPs-EPFRs, our urgent call for a better understanding of the potential hazards of aged MPs is to help develop a sustainable path for plastics management.
Collapse
Affiliation(s)
- Linyang Xie
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Na Chen
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yongxi Deng
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Wenjun Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| |
Collapse
|
10
|
You T, Feng X, Xu H. The whole life journey and destination of microplastics: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125165. [PMID: 39427952 DOI: 10.1016/j.envpol.2024.125165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Recent reports indicate that ubiquitous microplastics (MPs) in the environment can infiltrate the human body, posing significant health risks and garnering widespread attention. However, public understanding of the intricate processes through which microplastics are transferred to humans remains limited. Consequently, developing effective strategies to mitigate the escalating issue of MPs pollution and safeguard human health is still challenging. In this review, we elucidated the sources and dynamic migration pathways of MPs, examined its complex interactions with other pollutants, and identified primary routes of human exposure. Subsequently, the events and alterations of gut microbiota, gut microbiota metabolism, and intestinal barrier after MPs enter the gut of organisms are unclosed. Additionally, it highlighted the ease with which MPs translocate from the intestine to other organs along with their biological toxicities. Finally, we also emphasized the knowledge gaps in the current research field and proposes future research directions. This review aims to enhance public awareness regarding microplastic pollution and provide valuable references for forthcoming research endeavors as well as policy formulation related to this pressing issue.
Collapse
Affiliation(s)
- Tao You
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| |
Collapse
|
11
|
Cui T, Liu K, Zhu L, Wang X, Dong X, Jabeen K, Zong C, Wang X, Wei N, He Y, Li Q, Jiao M, Lu J, Bu X, Li D. Is intravenous infusion an unrecognized route for internal microplastic human exposure? A general assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135769. [PMID: 39288522 DOI: 10.1016/j.jhazmat.2024.135769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
As newly recognized environmental pollutants, microplastics (MPs, ≤5 mm in length) have been reported in various human tissues and fluids, including the spleen, liver, heart, blood and blood clots, raising global concerns about their impact on human health. This study investigated the characteristics of MPs in intravenous infusion and the removal of MPs from infusion products by infusion sets fitted with different filters using micro-Fourier Transform Infrared Spectroscopy. MPs were detected in infusion products, with an average abundance of 1.24 ± 1.44 items/unit (2.91 ± 3.91 items/L). The primary types of MPs identified were fragmented particles of polyethene and polypropylene, ranging in size from 15-100 µm. Internal filters in infusion sets played a crucial role in removing MPs, particularly fibrous ones, resulting in a reduction in both abundance and particle size of MPs in the human body. Moreover, this study conducted a general assessment of intravenous microplastic exposure among hospital patients and estimated the global per-person input of MPs via intravenous administration. It is an opportunity for us to gain a deeper understanding of MPs in intravenous infusion and provides guides selecting infusion devices, increasing awareness of associated health risks.
Collapse
Affiliation(s)
- Tiefeng Cui
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Kai Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Lixin Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Xiaohui Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Xuri Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Khalida Jabeen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Changxing Zong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Xinghuo Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Nian Wei
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Yinan He
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Qingqing Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Meng Jiao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Jungang Lu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Xinyu Bu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China.
| |
Collapse
|
12
|
Son JW, Kim D, Hwang C, Lee S, Yang S, Nam Y, Kim C. Nanoplastic release from disposable plastics: Correlation with maximum service temperature. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136478. [PMID: 39536343 DOI: 10.1016/j.jhazmat.2024.136478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/28/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The potential for bioaccumulation of nanoplastics (NPs, <1 µm) increases as the particle size decreases. Since several disposable plastic products used daily may release NPs, their intake may be unavoidable. Therefore, it is crucial to examine the release patterns of NPs from these products. This study investigates the relationship between NP release and the Maximum Service Temperature (MST) of five plastic types, confirming the correlation under real-world conditions. The releasing tendencies of NPs were investigated using plastic pellets. We simulated the packaging of hot food in plastic containers, considering the physical dynamics of food delivery, and replicated cooking in an oven and microwave. We observed that the mass of NPs released tended to reach its maximum at the material's MST. In real-life conditions, the release of NP was found to increase with higher container content temperatures and longer packaging or cooking durations. Physical impacts were confirmed to be the most significant contributors to NP release. Moreover, Higher microwave power levels lead to greater NP release, with polar materials releasing more NPs compared to non-polar materials. Consequently, to minimize NP ingestion, it is recommended to use containers made from non-polar materials with a high MST.
Collapse
Affiliation(s)
- Ji-Won Son
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Donghwi Kim
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chaewon Hwang
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seonho Lee
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Soobin Yang
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yejin Nam
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Changwoo Kim
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
13
|
Kahlert S, Bening CR. Look before you leap: Are increased recycling efforts accelerating microplastic pollution? JOURNAL OF INDUSTRIAL ECOLOGY 2024; 28:1926-1939. [PMID: 39722870 PMCID: PMC11667650 DOI: 10.1111/jiec.13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
To fight plastic pollution and reach net-zero ambitions, policy and industry set goals to increase the recycling of plastics and the recycled content in products. While this ideally reduces demand for virgin material, it also increases pressure on recyclers to find suitable endmarkets for the recyclate. This may lead to two effects: a multiplication of recycled content in applications already made of plastic and a substitution of non-plastic materials with cheap, low-quality recyclate. Both areas of application may be sources of microplastic (MP) pollution. Combined with the inherent degradation of recyclate during its lifecycle, but also during recycling, we expect the increase in recycled content will subsequently lead to an increase in MP pollution. We propose a framework to investigate the risk of MP generation through plastic applications throughout their subsequent lifecycle of production, use phase, and end of life. We apply the framework to two prominent examples of recyclate endmarkets, that is, textiles and wood-plastic, and point out where the degradation effects can cause higher release. To conclude, we outline a research agenda to support policymakers in their decision making on specifying targets for recycling and recycled content.
Collapse
|
14
|
Kamel NA, Bashir DW, El-Leithy EMM, Tohamy AF, Rashad MM, Ali GE, El-Saba AAA. "Polyethylene Terephthalate Nanoplastics Caused Hepatotoxicity in Mice Can be Prevented by Betaine: Molecular and Immunohistochemical Insights". J Biochem Mol Toxicol 2024; 38:e70088. [PMID: 39651595 DOI: 10.1002/jbt.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024]
Abstract
Polyethylene terephthalate nanoplastics (PET-NPs) are one of the most frequently distributed nanoplastics in daily life. Betaine is thought to be a promising hepatoprotective agent. The current investigation focused on whether orally administered PET-NPs caused hepatotoxicity and ameliorative effect of betaine. Forty adult male Swiss albino mice were randomly split into four groups: group I control, group II betaine (1000 mg/kg I/P), group III PET-NPs (200 mg/kg orally), and group IV betaine plus PET-NPs at doses similar to group II& III respectively. After 30 days, blood sample were collected then animals were euthanized and liver specimens were dissected out for biochemical and histopathological examination. PET-NPs induced a significant elevation in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA), as well as an increase in the inflammatory genes a proto-oncogene (c-FOS) and cyclooxygenase 2 (COX2) (p ≤ 0.05), with a substantial decrease in glutathione (GSH) (p ≤ 0.05). Furthermore, on the level of histopathological analysis PET-NPs caused alterations in hepatic tissue architecture as vascular dilatation and congestion with hepatocytes degeneration, bile duct epithelial hyperplasia and inflammatory cell infiltrations While on the level of immunohistochemistry, PET-NPs trigger positive tumor necrosis factor-alpha (TNF-α) and nuclear factor-kappa B (NF-ҠB) expression in comparison to control. Meanwhile, betaine treatment reduced the deleterious effects of PET-NPs. To summarize, PET-NPs may cause hepatotoxicity in mice, with a belief that betaine could mitigate the detrimental impact.
Collapse
Affiliation(s)
- Nehal A Kamel
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ebtihal M M El-Leithy
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel F Tohamy
- Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Maha M Rashad
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ghada E Ali
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdel Aleem A El-Saba
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Kim EB, Akhtar MS, Kong I, Ameen S. Tailoring porous NiMoO 4 nanotube via MoO 3 nanorod precursor for environmental monitoring: Electrochemical detection of micro-sized polyvinylchloride. CHEMOSPHERE 2024; 369:143796. [PMID: 39580083 DOI: 10.1016/j.chemosphere.2024.143796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Globally, the hidden contaminants like microplastics (MPs) combined with other harmful substances have agglomerated in rivers and oceans that pose a threat to human health. Thus, evaluating the toxicity of MPs separately and in combination with other pollutants must be done quickly and precisely. This work reports the synthesis of porous NiMoO4 nanotubes (NTs) from the transformation of MoO3 nanorods (NRs) via two steps hydrothermal methods for the effective detection of polyvinyl chloride (PVC) MPs. Transformation of MoO3 NRs to porous NiMoO4 NTs was comprehensively deduced by evaluating the crystalline, structural, compositional and morphological properties. The hydrophobic nature of MoO3 NRs and porous NiMoO4 NTs was proven experimentally and also by DFT calculations. The electrochemical detection of PVC MPs by NiMoO4 NTs was investigated by the CV and EIS measurements. Porous NiMoO4 NTs based electrode expressed the good detection towards PVC MPs with a reasonable sensitivity of ∼1.43 × 10-4 μA/ppm.cm2, a low LOD of ∼18 ppm and R2 = ∼0.9781. EIS results revealed that porous NiMoO4 NTs electrode enabled to deliver sensing response at very low concentration of PVC MPs. Due to their easy interaction with hydrophobic PVC MPs, the hydrophobic NiMoO4 NTs controlled the sensing nature of the material and improved the electrochemical detection at the MP-NiMiO4 NTs interface.
Collapse
Affiliation(s)
- Eun-Bi Kim
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup Campus, 56212, Republic of Korea
| | - M Shaheer Akhtar
- New & Renewable Energy Material Development Center (NewREC), Jeonbuk National University, Jeonbuk, Republic of Korea; Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Engineering, School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia.
| | - Ing Kong
- Department of Engineering, School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia
| | - Sadia Ameen
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup Campus, 56212, Republic of Korea.
| |
Collapse
|
16
|
Huang H, Lei P, Yu H, Du J, Wu B, Wang H, Yang Q, Cheng Y, Sun D, Wan L. Micro/nano plastics in the urinary system: Pathways, mechanisms, and health risks. ENVIRONMENT INTERNATIONAL 2024; 193:109109. [PMID: 39500122 DOI: 10.1016/j.envint.2024.109109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024]
Abstract
Micro/Nano plastics (MNPs) pollutants are widespread in the environment, raising significant concerns about their biosafety. Emerging studies indicate that the urinary system is a primary accumulation site for MNPs, leading to severe tissue and functional damage. This review aims to summarize recent research on the potential hazards that MNPs may pose to the urinary system, highlighting the mechanisms of toxicity and the current state of knowledge. Studies have shown that MNPs enter the human body through drinking water, the food chain, inhalation, and skin contact. They may penetrate the bloodstream via the digestive, respiratory, and skin systems, subsequently dispersing to various organs, including the urinary system. The potential accumulation of MNPs in the urinary system might induce cellular oxidative stress, inflammation, apoptosis, autophagy, the "intestine-kidney axis", and other possible toxic mechanisms. These processes could disrupt kidney metabolic functions and promote tissue fibrosis, thereby potentially increasing the risk of urinary system diseases. Despite ongoing research, the understanding of MNPs' impact on the urinary system remains limited. Therefore, this review provides a comprehensive overview of MNPs' potential toxicity mechanisms in the urinary system, highlights key challenges, and outlines future research directions. It offers a theoretical basis for the development of effective protective measures and policies.
Collapse
Affiliation(s)
- Hang Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Key Laboratory of Novel Nuclide Technologies on Precision Diagnosis and Treatment & Clinical Transformation of Wenzhou City, Wenzhou 325035, Zhejiang, China; Institute of Urology, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Pengyu Lei
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Baihui Wu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yongwei Cheng
- MedTech (Wenzhou) Health Innovation Achievement Transformation Institute, Wenzhou Institue of Industry & Science, Wenzhou 325000, China
| | - Da Sun
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Lijun Wan
- Department of Urology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
17
|
Du L, Liu Q, Wang L, Lyu H, Tang J. Microplastics enhanced the allelopathy of pyrogallol on toxic Microcystis with additional risks: Microcystins release and greenhouse gases emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173864. [PMID: 38879032 DOI: 10.1016/j.scitotenv.2024.173864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Cyanobacteria blooms (CBs) caused by eutrophication pose a global concern, especially Microcystis aeruginosa (M. aeruginosa), which could release harmful microcystins (MCs). The impact of microplastics (MPs) on allelopathy in freshwater environments is not well understood. This study examined the joint effect of adding polystyrene (PS-MPs) as representative MPs and two concentrations (2 and 8 mg/L) of pyrogallol (PYR) on the allelopathy of M. aeruginosa. The results showed that the addition of PS-MPs intensified the inhibitory effect of 8 mg/L PYR on the growth and photosynthesis of M. aeruginosa. After a 7-day incubation period, the cell density decreased to 69.7 %, and the chl-a content decreased to 48 % compared to the condition without PS-MPs (p < 0.05). Although the growth and photosynthesis of toxic Microcystis decreased with the addition of PS-MPs, the addition of PS-MPs significantly resulted in a 3.49-fold increase in intracellular MCs and a 1.10-fold increase in extracellular MCs (p < 0.05). Additionally, the emission rates of greenhouse gases (GHGs) (carbon dioxide, nitrous oxide and methane) increased by 2.66, 2.23 and 2.17-fold, respectively (p < 0.05). In addition, transcriptomic analysis showed that the addition of PS-MPs led to the dysregulation of gene expression related to DNA synthesis, membrane function, enzyme activity, stimulus detection, MCs release and GHGs emissions in M. aeruginosa. PYR and PS-MPs triggered ROS-induced membrane damage and disrupted photosynthesis in algae, leading to increased MCs and GHG emissions. PS-MPs accumulation exacerbated this issue by impeding light absorption and membrane function, further heightening the release of MCs and GHGs emissions. Therefore, PS-MPs exhibited a synergistic effect with PYR in inhibiting the growth and photosynthesis of M. aeruginosa, resulting in additional risks such as MCs release and GHGs emissions. These results provide valuable insights for the ecological risk assessment and control of algae bloom in freshwater ecosystems.
Collapse
Affiliation(s)
- Linqing Du
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qinglong Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
18
|
Wang X, Li J, Pan X. How micro-/nano-plastics influence the horizontal transfer of antibiotic resistance genes - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173881. [PMID: 38871331 DOI: 10.1016/j.scitotenv.2024.173881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Plastic debris such as microplastics (MPs) and nanoplastics (NPTs), along with antibiotic resistance genes (ARGs), are pervasive in the environment and are recognized as significant global health and ecological concerns. Micro-/nano-plastics (MNPs) have been demonstrated to favor the spread of ARGs by enhancing the frequency of horizontal gene transfer (HGT) through various pathways. This paper comprehensively and systematically reviews the current study with focus on the influence of plastics on the HGT of ARGs. The critical role of MNPs in the HGT of ARGs has been well illustrated in sewage sludge, livestock farms, constructed wetlands and landfill leachate. A summary of the performed HGT assay and the underlying mechanism of plastic-mediated transfer of ARGs is presented in the paper. MNPs could facilitate or inhibit HGT of ARGs, and their effects depend on the type, size, and concentration. This review provides a comprehensive insight into the effects of MNPs on the HGT of ARGs, and offers suggestions for further study. Further research should attempt to develop a standard HGT assay and focus on investigating the impact of different plastics, including the oligomers they released, under real environmental conditions on the HGT of ARGs.
Collapse
Affiliation(s)
- Xiaonan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou 310015, China; School of Environment Science and Spatial Information, China University of Mining and Technology, Xuzhou 221116, China; Shaoxing Research Institute of Zhejiang University of Technology, Shaoxing 312000, China
| | - Jiahao Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
19
|
Bai Y, Chen Y, Song Y, Bai R, He W, Zhao M, Zhang J, Zhang W, Zhang Y, Dong S, Bai W. Screening of optimal cleaning methods to reduce microplastic residues on strawberry surfaces: Characterization of microplastics in strawberry wash water. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135310. [PMID: 39067298 DOI: 10.1016/j.jhazmat.2024.135310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Microplastics are widespread in facility strawberry greenhouses and can be deposited on the surface of strawberries through air currents. Investigating effective cleaning methods represents a viable strategy to reduce human ingestion of MPs. Therefore, different cleaning methods were compared: ultrasonic cleaning for 30 min, deionized water rinsing once, deionized water immersion for 30 min, and fruit immersion in washing salt for 30 min. The MPs in strawberry washing water were analyzed and compared using laser direct infrared imaging to investigate their characteristics and the optimal reduction of MPs on the surface of strawberries. The quality of the cleaning results was in the following order: water immersion > washing salt immersion > water rinsing > ultrasound. Water immersion was 1.3-2 times more effective in removing microplastics than other treatments. Furthermore, 21 polymer types were detected in the samples. Most MPs were less than 50 µm in size. The main polymers in this size range were polyamide, chlorinated polyethylene, and polyethylene terephthalate, and they mainly existed as fragments, fibers, and beads. This study provides a valuable reference for reducing human intake of microplastics through fresh fruits and vegetables.
Collapse
Affiliation(s)
- Yeran Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanhua Chen
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yang Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Runhao Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenqing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meng Zhao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiajia Zhang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Weidong Zhang
- Changping District Farmland Station, Beijing 102200, China
| | - Yukun Zhang
- Changping District Farmland Station, Beijing 102200, China
| | - Shuqi Dong
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Wenbo Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
20
|
Kukkola A, Chetwynd AJ, Krause S, Lynch I. Beyond microbeads: Examining the role of cosmetics in microplastic pollution and spotlighting unanswered questions. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135053. [PMID: 38976961 DOI: 10.1016/j.jhazmat.2024.135053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
The presence of microplastics in cosmetics and personal care products (C&PCPs) has been increasingly in the public eye since the early 2010s. Despite increasing research into the potential environmental and health effects of microplastics, most research to date on microplastics in C&PCPs has investigated "rinse-off" products, while the potential impacts of "leave-on" C&PCPs have been largely neglected, despite these products being purchased in greater volumes and often having two or more microplastic ingredients in their formulations(CosmeticsEurope, 2018b). This review aims to synthesize the current knowledge of microplastic in C&PCPs, assessing the potential environmental and human health impacts of C&PCPs and discussing the regulatory implications. The lack of studies on leave-on C&PCPs is significant, suggesting a severe knowledge gap regarding microplastic presence in, and emissions from, C&PCPs. There is a noticeable lack of studies on the (eco)toxicological consequences of microplastic exposure from C&PCPs. As a result, significant aspects of microplastic contamination may be overlooked in the microplastic legislations emerging globally (including from the European Commission), which intend to restrict microplastic use in C&PCPs but focus on rinse-off C&PCPs only. This review highlights the potential consequences of microplastics in leave-on C&PCPs for regulatory decision-making, particularly as alternatives to microplastics are considered during the phase-out periods and spotlights the need for sufficient monitoring and research on these alternatives, to avoid unforeseen consequences.
Collapse
Affiliation(s)
- Anna Kukkola
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Andrew J Chetwynd
- Centre for Proteome Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; LEHNA, Laboratoire d'ecologie des hydrosystemes naturels et anthropises, University of Lyon, 3-6 Rue Raphaël Dubois, Villeurbanne 69622, France; Institute of Global Innovation, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Institute of Global Innovation, University of Birmingham, Birmingham B15 2SA, United Kingdom
| |
Collapse
|
21
|
Snekkevik VK, Cole M, Gomiero A, Haave M, Khan FR, Lusher AL. Beyond the food on your plate: Investigating sources of microplastic contamination in home kitchens. Heliyon 2024; 10:e35022. [PMID: 39170486 PMCID: PMC11336334 DOI: 10.1016/j.heliyon.2024.e35022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Given that a substantial amount of time is spent in kitchens preparing food, the kitchen equipment used may be relevant in determining the composition and amount of microplastics ending up on our dinner plate. While previous research has predominantly focused on foodstuffs as a source of microplastics, we emphasise that micro- and nanoplastics are ubiquitous and likely originate from diverse sources. To address the existing knowledge gap regarding additional sources contributing to microplastics on our dinner plates, this review investigates various kitchen processes, utensils and equipment (excluding single-use items and foodstuffs) to get a better understanding of potential microplastic sources within a home kitchen. Conducting a narrative literature review using terms related to kitchenware and kitchen-affiliated equipment and processes, this study underscores that the selection of preparation tools, storage, serving, cooking, and cleaning procedures in our kitchens may have a significant impact on microplastic exposure. Mechanical, physical, and chemical processes occurring during food preparation contribute to the release of microplastic particles, challenging the assumption that exposure to microplastics in food is solely tied to food products or packaging. This review highlights diverse sources of microplastics in home kitchens, posing concerns for food safety and human health.
Collapse
Affiliation(s)
| | - Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory (PML), Plymouth, PL1 3DH, UK
| | - Alessio Gomiero
- Norwegian Research Centre (NORCE), Department of Climate & Environment, Mekjarvik 12, 4072, Randaberg, Norway
| | - Marte Haave
- SALT Lofoten AS, Pb. 91, Fiskergata 23, 8301, Svolvær, Norway
- Norwegian Research Centre (NORCE), Department of Climate & Environment, Nygårdsgt 112, 5008, Bergen, Norway
| | - Farhan R. Khan
- Norwegian Research Centre (NORCE), Department of Climate & Environment, Nygårdsgt 112, 5008, Bergen, Norway
| | - Amy L. Lusher
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| |
Collapse
|
22
|
Visentin E, Manuelian CL, Niero G, Benetti F, Perini A, Zanella M, Pozza M, De Marchi M. Characterization of microplastics in skim-milk powders. J Dairy Sci 2024; 107:5393-5401. [PMID: 38608944 DOI: 10.3168/jds.2023-24373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
The diffusion of microplastics in the food supply chain is prompting public concern as their impact on human health is still largely unknown. The aim of this study was to qualitatively and quantitatively characterize microplastics in skim-milk powder samples (n = 16) from different European countries (n = 8) through Fourier-transform infrared microspectroscopy in attenuated total reflectance mode analysis. The present study highlights that the use of hot alkaline digestion has enabled the efficacious identification of microplastics in skim-milk powders used for cheesemaking across European countries. The adopted protocol allowed detection of 29 different types of polymeric matrices for a total of 536 plastic particles. The most abundant microplastics were polypropylene, polyethylene, polystyrene, and polyethylene terephthalate. Microplastics were found in skim-milk powders in 3 different shapes (fiber, sphere, and irregular fragments) and 6 different colors (black, blue, brown, fuchsia, green, and gray). Results demonstrate the presence of microplastics in all skim-milk powder samples, suggesting a general contamination. Results of the present study will help to evaluate the impact of microplastics intake on human health.
Collapse
Affiliation(s)
- E Visentin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro (PD), Italy
| | - C L Manuelian
- Group of Ruminant Research (G2R), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - G Niero
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro (PD), Italy.
| | - F Benetti
- European Center for the Sustainable Impact of Nanotechnology, EcamRicert S.r.l., 35127 Padova (PD), Italy
| | - A Perini
- European Center for the Sustainable Impact of Nanotechnology, EcamRicert S.r.l., 35127 Padova (PD), Italy
| | - M Zanella
- European Center for the Sustainable Impact of Nanotechnology, EcamRicert S.r.l., 35127 Padova (PD), Italy
| | - M Pozza
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro (PD), Italy
| | - M De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro (PD), Italy
| |
Collapse
|
23
|
Kaushik A, Singh A, Kumar Gupta V, Mishra YK. Nano/micro-plastic, an invisible threat getting into the brain. CHEMOSPHERE 2024; 361:142380. [PMID: 38763401 DOI: 10.1016/j.chemosphere.2024.142380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
Due to weather and working/operational conditions, plastic degradation produces toxic and non-biodegradable nano and microplastics (N/M-Ps, ranging from 10 nm to 5 mm), and over time these N/M-Ps have integrated with the human cycle through ingestion and inhalation. These N/M-Ps, as serious emerging pollutants, are causing considerable adverse health issues due to up-taken by the cells, tissue, and organs, including the brain. It has been proven that N/M-Ps can cross the blood-brain barrier (via olfactory and blood vessels) and affect the secretion of neuroinflammatory (cytokine and chemokine), transporters, and receptor markers. Neurotoxicity, neuroinflammation, and brain injury, which may result in such scenarios are a serious concern and may cause brain disorders. However, the related pathways and pathogenesis are not well-explored but are the focus of upcoming emerging research. Therefore, as a focus of this editorial, well-organized multidisciplinary research is required to explore associated pathways and pathogenesis, leading to brain mapping and nano-enabled therapeutics in acute and chronic N/M - Ps exposure.
Collapse
Affiliation(s)
- Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA.
| | - Avtar Singh
- Research and Development, Molekule Inc., 3802 Spectrum Blvd., Tampa, FL, 33612, USA.
| | - V Kumar Gupta
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark.
| |
Collapse
|
24
|
Wang Y, Fu Z, Guan D, Zhao J, Zhang Q, Liu Q, Xie J, Sun Y, Guo L. Occurrence Characteristics and Ecotoxic Effects of Microplastics in Environmental Media: a Mini Review. Appl Biochem Biotechnol 2024; 196:5484-5507. [PMID: 38158486 DOI: 10.1007/s12010-023-04832-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The issue of environmental pollution caused by the widespread presence of microplastics (MPs) in environmental media has garnered significant attention. However, research on MPs pollution has mainly focused on aquatic ecosystems in recent years. The sources and pollution characteristics of MPs in the environment, especially in solid waste, have not been well-described. Additionally, there are few reports on the ecotoxicity of MPs, which highlights the need to fill this gap. This review first summarizes the occurrence characteristics of MPs in water, soil, and marine environments, and then provides an overview of their toxic effects on organisms and the relevant mechanisms. This paper also provides an outlook on the hotspots of research on pollution characterization and ecotoxicity of MPs. Finally, this review aims to provide insights for future ecotoxicity control of MPs. Overall, this paper expands our understanding of the pollution characteristics and ecological toxicity of MPs in current environmental media, providing forward-looking guidance for future research.
Collapse
Affiliation(s)
- Yuxin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Zhou Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Dezheng Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Qi Zhang
- School of Environmental Science and Engineering, Qingdao Jiebao Ecological Technology Co., Ltd., Qingdao, 266000, China
| | - Qingxin Liu
- School of Environmental Science and Engineering, Qingdao Jiebao Ecological Technology Co., Ltd., Qingdao, 266000, China
| | - Jingliang Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Liang Guo
- China Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
25
|
Basaran B, Aytan Ü, Şentürk Y, Özçifçi Z, Akçay HT. Microplastic contamination in some beverages marketed in türkiye: Characteristics, dietary exposure and risk assessment. Food Chem Toxicol 2024; 189:114730. [PMID: 38740239 DOI: 10.1016/j.fct.2024.114730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
In this study, microplastic contamination in water, natural mineral water and mineral water, sparkling soft drinks, cold tea and some traditional beverages marketed in Türkiye were assessed. Microplastics physically and chemically characterized by microscope and ATR/FT-IR, respectively. Microplastics were detected in 9 out of 47 beverage samples. A total of 250 microplastics with 5 different polymers, 2 different shapes, and 7 different colours were detected in 47 beverage samples. The average microplastic concentration was 2.24 ± 9.86 particles/L for all beverages analysed. The highest average microplastic concentration was found in mineral waters in glass bottles (average 11.3 particles/L). No microplastics were found in cold tea and other drinks. The total annual microplastic exposure from beverage consumption in male and female individuals aged >15 years was 2029 and 1786 particles/mL/year, respectively. The microplastic load index category of all beverage samples was determined as "moderate". The average pRi level of all beverages was 117 ± 260 and the risk level was determined as "low". The study provides evidence that microplastics are common in beverages and that microplastics are directly ingested by humans.
Collapse
Affiliation(s)
- Burhan Basaran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye.
| | - Ülgen Aytan
- Department of Marine Biology, Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Yasemen Şentürk
- Department of Marine Biology, Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Zehra Özçifçi
- Department of Chemistry Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Hakkı Türker Akçay
- Department of Chemistry Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| |
Collapse
|
26
|
Saudrais F, Schvartz M, Renault JP, Vieira J, Devineau S, Leroy J, Taché O, Boulard Y, Pin S. The Impact of Virgin and Aged Microstructured Plastics on Proteins: The Case of Hemoglobin Adsorption and Oxygenation. Int J Mol Sci 2024; 25:7047. [PMID: 39000151 PMCID: PMC11241625 DOI: 10.3390/ijms25137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Plastic particles, particularly micro- and nanoparticles, are emerging pollutants due to the ever-growing amount of plastics produced across a wide variety of sectors. When plastic particles enter a biological medium, they become surrounded by a corona, giving them their biological identity and determining their interactions in the living environment and their biological effects. Here, we studied the interactions of microstructured plastics with hemoglobin (Hb). Virgin polyethylene microparticles (PEMPs) and polypropylene microparticles (PPMPs) as well as heat- or irradiation-aged microparticles (ag-PEMPs and ag-PPMPs) were used to quantify Hb adsorption. Polypropylene filters (PP-filters) were used to measure the oxygenation of adsorbed Hb. Microstructured plastics were characterized using optical microscopy, SAXS, ATR-FTIR, XPS, and Raman spectroscopy. Adsorption isotherms showed that the Hb corona thickness is larger on PPMPs than on PEMPs and Hb has a higher affinity for PPMPs than for PEMPs. Hb had a lower affinity for ag-PEMPs and ag-PPMPs, but they can be adsorbed in larger amounts. The presence of partial charges on the plastic surface and the oxidation rate of microplastics may explain these differences. Tonometry experiments using an original method, the diffuse reflection of light, showed that adsorbed Hb on PP-filters retains its cooperativity, but its affinity for O2 decreases significantly.
Collapse
Affiliation(s)
- Florent Saudrais
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Marion Schvartz
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | | | - Jorge Vieira
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Stéphanie Devineau
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, 75013 Paris, France
| | - Jocelyne Leroy
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Olivier Taché
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Yves Boulard
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Serge Pin
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| |
Collapse
|
27
|
Vincoff S, Schleupner B, Santos J, Morrison M, Zhang N, Dunphy-Daly MM, Eward WC, Armstrong AJ, Diana Z, Somarelli JA. The Known and Unknown: Investigating the Carcinogenic Potential of Plastic Additives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10445-10457. [PMID: 38830620 PMCID: PMC11191590 DOI: 10.1021/acs.est.3c06840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Microplastics are routinely ingested and inhaled by humans and other organisms. Despite the frequency of plastic exposure, little is known about its health consequences. Of particular concern are plastic additives─chemical compounds that are intentionally or unintentionally added to plastics to improve functionality or as residual components of plastic production. Additives are often loosely bound to the plastic polymer and may be released during plastic exposures. To better understand the health effects of plastic additives, we performed a comprehensive literature search to compile a list of 2,712 known plastic additives. Then, we performed an integrated toxicogenomic analysis of these additives, utilizing cancer classifications and carcinogenic expression pathways as a primary focus. Screening these substances across two chemical databases revealed two key observations: (1) over 150 plastic additives have known carcinogenicity and (2) the majority (∼90%) of plastic additives lack data on carcinogenic end points. Analyses of additive usage patterns pinpointed specific polymers, functions, and products in which carcinogenic additives reside. Based on published chemical-gene interactions, both carcinogenic additives and additives with unknown carcinogenicity impacted similar biological pathways. The predominant pathways involved DNA damage, apoptosis, the immune response, viral diseases, and cancer. This study underscores the urgent need for a systematic and comprehensive carcinogenicity assessment of plastic additives and regulatory responses to mitigate the potential health risks of plastic exposure.
Collapse
Affiliation(s)
- Sophia Vincoff
- Department
of Medicine and the Duke Cancer Institute Center for Prostate and
Urologic Cancer, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Beatrice Schleupner
- Department
of Orthopaedics, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Jasmine Santos
- Department
of Medicine and the Duke Cancer Institute Center for Prostate and
Urologic Cancer, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Margaret Morrison
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27710, United States
| | - Newland Zhang
- Department
of Medicine and the Duke Cancer Institute Center for Prostate and
Urologic Cancer, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Meagan M. Dunphy-Daly
- Division
of Marine Science and Conservation, Nicholas School of the Environment,
Duke University Marine Laboratory, Duke
University, Beaufort, North Carolina 28516, United States
| | - William C. Eward
- Department
of Orthopaedics, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Andrew J. Armstrong
- Department
of Medicine and the Duke Cancer Institute Center for Prostate and
Urologic Cancer, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Zoie Diana
- Division
of Marine Science and Conservation, Nicholas School of the Environment,
Duke University Marine Laboratory, Duke
University, Beaufort, North Carolina 28516, United States
- Department
of Ecology and Evolutionary Biology, University
of Toronto, 25 Wilcocks
Street, Toronto, Ontario M5S3B2, Canada
| | - Jason A. Somarelli
- Department
of Medicine and the Duke Cancer Institute Center for Prostate and
Urologic Cancer, Duke University Medical
Center, Durham, North Carolina 27710, United States
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
28
|
Pan I, Umapathy S. Probiotics an emerging therapeutic approach towards gut-brain-axis oriented chronic health issues induced by microplastics: A comprehensive review. Heliyon 2024; 10:e32004. [PMID: 38882279 PMCID: PMC11176854 DOI: 10.1016/j.heliyon.2024.e32004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Applications for plastic polymers can be found all around the world, often discarded without any prior care, exacerbating the environmental issue. When large waste materials are released into the environment, they undergo physical, biological, and photo-degradation processes that break them down into smaller polymer fragments known as microplastics (MPs). The time it takes for residual plastic to degrade depends on the type of polymer and environmental factors, with some taking as long as 600 years or more. Due to their small size, microplastics can contaminate food and enter the human body through food chains and webs, causing gastrointestinal (GI) tract pain that can range from local to systemic. Microplastics can also acquire hydrophobic organic pollutants and heavy metals on their surface, due to their large surface area and surface hydrophobicity. The levels of contamination on the microplastic surface are significantly higher than in the natural environment. The gut-brain axis (GB axis), through which organisms interact with their environment, regulate nutritional digestion and absorption, intestinal motility and secretion, complex polysaccharide breakdown, and maintain intestinal integrity, can be altered by microplastics acting alone or in combination with pollutants. Probiotics have shown significant therapeutic potential in managing various illnesses mediated by the gut-brain axis. They connect hormonal and biochemical pathways to promote gut and brain health, making them a promising therapy option for a variety of GB axis-mediated illnesses. Additionally, taking probiotics with or without food can reduce the production of pro-inflammatory cytokines, reactive oxygen species (ROS), neuro-inflammation, neurodegeneration, protein folding, and both motor and non-motor symptoms in individuals with Parkinson's disease. This study provides new insight into microplastic-induced gut dysbiosis, its associated health risks, and the benefits of using both traditional and next-generation probiotics to maintain gut homeostasis.
Collapse
Affiliation(s)
- Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
29
|
Fang C, Awoyemi OS, Naidu R. Is paper bag plastic-free, without plastic in colourful logo area? JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134403. [PMID: 38669922 DOI: 10.1016/j.jhazmat.2024.134403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
The concern over plastic contamination has led to bans on plastic shopping bags, often replaced by paper ones. However, logos painted or printed on paper bags may still contain plastics, as investigated herein. In some logos, for example, white pigment of titanium dioxide (TiO2) nanoparticles are bound with plastic binder onto the cellulose surface of the paper. This hybrid of plastic and nanoparticle is examined using scanning electron microscope (SEM) to characterise morphology physically, and Raman imaging to identify and visualise them chemically. Raman imaging scans the sample to separate images and identify not only plastic but also the co-formulated pigment. The scan generates a hyperspectral matrix containing hundreds to thousands of spectra, and subsequent analysis can enhance the signal-to-noise ratio. Decoding the hyperspectral matrix using chemometrics like principal component analysis (PCA) can effectively map plastic and pigment separately with increased certainty. The image can be further refined through 3-dimensional surface fitting for deconvolution, providing direct visualisation of the plastic-nanoparticle hybrid at a density of approximately 7.3 million particles per square millimetre. Overall, caution should be exercised when using paper bags, as they may not be entirely free of plastics. Raman imaging proves to be an effective method for identifying and visualising complex components, including plastics and nanoparticles. ENVIRONMENTAL IMPLICATION: The concern over plastic contamination has led to bans on plastic shopping bags, replaced by paper alternatives. However, some logos on paper bags may still contain plastics, which is investigated to confirm the presence of plastic-nanoparticle hybrid using SEM and Raman imaging. By employing decoding algorithms such as PCA to separately map plastic and pigment, and utilising 3D surface fitting to deconvolute the image, the hybrid plastic-nanoparticle is estimated at a density of approximately 7.3 million particles per square millimetre. It's important to exercise caution and not assume these items are plastic-free. This aspect of plastics may have been overlooked as another potential source of contamination.
Collapse
Affiliation(s)
- Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Olalekan Simon Awoyemi
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
30
|
Luo Y, Naidu R, Fang C. Toy building bricks as a potential source of microplastics and nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134424. [PMID: 38678720 DOI: 10.1016/j.jhazmat.2024.134424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Microplastics and nanoplastics have become noteworthy contaminants, affecting not only outdoor ecosystems but also making a notable impact within indoor environments. The release of microplastics and nanoplastics from commonly used plastic items remains a concern, and the characterisation of these contaminants is still challenging. This study focused on evaluating the microplastics and nanoplastics produced from plastic building bricks. Using Raman spectroscopy and correlation analysis, the plastic material used to manufacture building blocks was determined to be either acrylonitrile butadiene styrene (correlation value of 0.77) or polycarbonate (correlation value of 0.96). A principal component analysis (PCA) algorithm was optimised for improved detection of the debris particles released. Some challenges in microplastic analysis, such as the interference from the colourants in the building block materials, was explored and discussed. Combining Raman results with scanning electron microscopy - energy-dispersive X-ray spectroscopy, we found the scratches on the building blocks to be a significant source of contamination, estimated several thousand microplastics and several hundred thousand nanoplastics were generated per mm2 following simulated play activities. The potential exposure to microplastics and nanoplastics during play poses risks associated with the ingestion and inhalation of these minute plastic particles.
Collapse
Affiliation(s)
- Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
31
|
Eisen A, Pioro EP, Goutman SA, Kiernan MC. Nanoplastics and Neurodegeneration in ALS. Brain Sci 2024; 14:471. [PMID: 38790450 PMCID: PMC11119293 DOI: 10.3390/brainsci14050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Plastic production, which exceeds one million tons per year, is of global concern. The constituent low-density polymers enable spread over large distances and micro/nano particles (MNPLs) induce organ toxicity via digestion, inhalation, and skin contact. Particles have been documented in all human tissues including breast milk. MNPLs, especially weathered particles, can breach the blood-brain barrier, inducing neurotoxicity. This has been documented in non-human species, and in human-induced pluripotent stem cell lines. Within the brain, MNPLs initiate an inflammatory response with pro-inflammatory cytokine production, oxidative stress with generation of reactive oxygen species, and mitochondrial dysfunction. Glutamate and GABA neurotransmitter dysfunction also ensues with alteration of excitatory/inhibitory balance in favor of reduced inhibition and resultant neuro-excitation. Inflammation and cortical hyperexcitability are key abnormalities involved in the pathogenic cascade of amyotrophic lateral sclerosis (ALS) and are intricately related to the mislocalization and aggregation of TDP-43, a hallmark of ALS. Water and many foods contain MNPLs and in humans, ingestion is the main form of exposure. Digestion of plastics within the gut can alter their properties, rendering them more toxic, and they cause gut microbiome dysbiosis and a dysfunctional gut-brain axis. This is recognized as a trigger and/or aggravating factor for ALS. ALS is associated with a long (years or decades) preclinical period and neonates and infants are exposed to MNPLs through breast milk, milk substitutes, and toys. This endangers a time of intense neurogenesis and establishment of neuronal circuitry, setting the stage for development of neurodegeneration in later life. MNPL neurotoxicity should be considered as a yet unrecognized risk factor for ALS and related diseases.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6S 1Z3, Canada;
| | - Erik P. Pioro
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6S 1Z3, Canada;
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA;
| | | |
Collapse
|
32
|
Zheng Y, Xu S, Liu J, Liu Z. The effects of micro- and nanoplastics on the central nervous system: A new threat to humanity? Toxicology 2024; 504:153799. [PMID: 38608860 DOI: 10.1016/j.tox.2024.153799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Given the widespread production and use of plastics, poor biodegradability, and inadequate recycling, micro/nanoplastics (MNPs) have caused widespread environmental pollution. As a result, humans inevitably ingest MNPs through various pathways. However, there is still no consensus on whether exposure to MNPs has adverse effects on humans. This article aims to provide a comprehensive overview of the knowledge of MNPs and the potential mechanisms of their impact on the central nervous system. Numerous in vivo and in vitro studies have shown that exposure to MNPs may pass through the blood-brain barrier (BBB) and lead to neurotoxicity through impairments in oxidative and inflammatory balance, neurotransmitter alternation, nerve conduction-related key enzymes, and impact through the gut-brain axis. It is worth noting that MNPs may act as carriers and have more severe effects on the body when co-exposed with other substances. MNPs of smaller sizes cause more severe harm. Despite the scarcity of reports directly relevant to humans, this review brings together a growing body of evidence showing that exposure to MNPs disturbs neurons and has even been found to alter the memory and behavior of organisms. This effect may lead to further potential negative influence on the central nervous system and contribute to the development of other diseases such as central nervous system inflammation and Parkinson 's-like neurodegenerative disorders. There is a need further to investigate the threat of MNPs to human health.
Collapse
Affiliation(s)
- Yanxu Zheng
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital, 87th Xiangya Road, Changsha, Hunan 410008, PR China
| | - Jingyu Liu
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, 87th Xiangya Road, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410013, PR China.
| |
Collapse
|
33
|
Wohlleben W, Bossa N, Mitrano DM, Scott K. Everything falls apart: How solids degrade and release nanomaterials, composite fragments, and microplastics. NANOIMPACT 2024; 34:100510. [PMID: 38759729 DOI: 10.1016/j.impact.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
To ensure the safe use of materials, one must assess the identity and quantity of exposure. Solid materials, such as plastics, metals, coatings and cements, degrade to some extent during their life cycle, and releases can occur during manufacturing, use and end-of-life. Releases (e.g., what is released, how does release happen, and how much material is released) depend on the composition and internal (nano)structures of the material as well as the applied stresses during the lifecycle. We consider, in some depth, releases from mechanical, weathering and thermal stresses and specifically address the use cases of fused-filament 3D printing, dermal contact, food contact and textile washing. Solid materials can release embedded nanomaterials, composite fragments, or micro- and nanoplastics, as well as volatile organics, ions and dissolved organics. The identity of the release is often a heterogenous mixture and requires adapted strategies for sampling and analysis, with suitable quality control measures. Control materials enhance robustness by enabling comparative testing, but reference materials are not always available as yet. The quantity of releases is typically described by time-dependent rates that are modulated by the nature and intensity of the applied stress, the chemical identity of the polymer or other solid matrix, and the chemical identity and compatibility of embedded engineered nanomaterials (ENMs) or other additives. Standardization of methods and the documentation of metadata, including all the above descriptors of the tested material, applied stresses, sampling and analytics, are identified as important needs to advance the field and to generate robust, comparable assessments. In this regard, there are strong methodological synergies between the study of all solid materials, including the study of micro- and nanoplastics. From an outlook perspective, we review the hazard of the released entities, and show how this informs risk assessment. We also address the transfer of methods to related issues such as tyre wear, advanced materials and advanced manufacturing, biodegradable polymers, and non-solid matrices. As the consideration of released entities will become more routine in industry via lifecycle assessment in Safe-and-Sustainable-by-Design practices, release assessments will require careful design of the study with quality controls, the use of agreed-on test materials and standardized methods where these exist and the adoption of clearly defined data reporting practices that enable data reuse, meta-analyses, and comparative studies.
Collapse
Affiliation(s)
- Wendel Wohlleben
- BASF SE, Dept. of Analytical and Materials Science, 67056 Ludwigshafen, Germany.
| | - Nathan Bossa
- TEMAS Solutions GmbH, Lätterweg 5, 5212 Hausen, Switzerland; Department of Civil & Environmental Engineering, Duke University, Durham, NC 27708, United States
| | - Denise M Mitrano
- Environmental Systems Science Department, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Keana Scott
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, MS-8372, Gaithersburg, MD 20899, United States
| |
Collapse
|
34
|
Faramarzi P, Jang W, Oh D, Kim B, Kim JH, You JB. Microfluidic Detection and Analysis of Microplastics Using Surface Nanodroplets. ACS Sens 2024; 9:1489-1498. [PMID: 38440995 DOI: 10.1021/acssensors.3c02627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Detection of microplastics from water is crucial for various reasons, such as food safety monitoring, monitoring of the fate and transport of microplastics, and development of preventive measures for their occurrence. Currently, microplastics are detected by isolating them using filtration, separation by centrifugation, or membrane filtration, subsequently followed by analysis using well-established analytical methods, such as Raman spectroscopy. However, due to their variability in shape, color, size, and density, isolation using the conventional methods mentioned above is cumbersome and time-consuming. In this work, we show a surface-nanodroplet-decorated microfluidic device for isolation and analysis of small microplastics (diameter of 10 μm) from water. Surface nanodroplets are able to capture nearby microplastics as water flows through the microfluidic device. Using a model microplastic solution, we show that microplastics of various sizes and types can be captured and visualized by using optical and fluorescence microscopy. More importantly, as the surface nanodroplets are pinned on the microfluidic channel, the captured microplastics can also be analyzed using a Raman spectroscope, which enables both physical (i.e., size and shape) and chemical (i.e., type) characterization of microplastics at a single-particle level. The technique shown here can be used as a simple, fast, and economical detection method for small microplastics.
Collapse
Affiliation(s)
- Paniz Faramarzi
- Department of Energy Convergence and Climate Change, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Wonik Jang
- Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Donghyeon Oh
- Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byeunggon Kim
- Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ju Hyeon Kim
- Interface Materials and Chemical Engineering Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Jae Bem You
- Department of Energy Convergence and Climate Change, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
35
|
Li X, Chen X, Chen B, Zhang W, Zhu Z, Zhang B. Tire additives: Evaluation of joint toxicity, design of new derivatives and mechanism analysis of free radical oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133220. [PMID: 38101020 DOI: 10.1016/j.jhazmat.2023.133220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is one of the most widely used antioxidant agents in tire additives. Its ozonation by-product 6PPD-quinone has recently been recognized as inducing acute mortality in aquatic organisms such as coho salmon. In this study, we aimed to develop an in-silico method to design environmentally friendly 6PPD derivatives and evaluate the joint toxicity of 6PPD with other commonly used tire additives on coho salmon through full factorial design-molecular docking and molecular dynamic simulation. The toxicity mentioned in this study is represented by the binding energy of chemical(s) binding to the coho salmon growth hormone. The recommended formula for tire additives with relatively low toxicity was then proposed. To further reduce the toxicity of 6PPD, 129 6PPD derivatives were designed based on the N-H bond dissociation reaction, and three of these derivatives showed improved antioxidant activity and 6PPD-106 was finally screened as the optimum alternative with lower toxicity to coho salmon. Besides, the mechanism of free radical oxidation (i.e., antioxidation and ozonation metabolic pathway) for 6PPD-106 was also analyzed and found that after ozonation, the toxicity of 6PPD-106's by-products is much lower than that of 6PPD's by-products. This study provided a molecular modelling-based examination of 6PPD, which comprehensively advanced the understanding of 6PPD's environmental behaviors and provided more environmentally friendly 6PPD alternatives with desired functional property and lower ecological risks.
Collapse
Affiliation(s)
- Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinyi Chen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Wenhui Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada.
| |
Collapse
|
36
|
Thakur RK, Biswas PK, Singh M. Biovalorization of Fruit Wastes for Development of Biodegradable Antimicrobial Chitosan-Based Coatings for Fruits (Tomatoes and Grapes). Appl Biochem Biotechnol 2024; 196:1175-1193. [PMID: 37378721 DOI: 10.1007/s12010-023-04601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Organic wastes are generated from high consumption of fruits. In this paper, fruit residual wastes collected from fruit-juice centres were transformed into fine powder, and thereafter, proximate analysis along with SEM, EDX and XRD was done to get into the surface morphology, minerals and ash content of fine powder. Aqueous extract (AE) prepared from this powder was studied using gas chromatography-mass spectroscopy (GC-MS). The phytochemicals identified are N-hexadecanoic acid; 1,3-dioxane,2,4-dimethyl-, diglycerol, 4-ethyl-2-hydroxycyclopent-2-en-1-one, eicosanoic acid, etc. AE showed high antioxidant and a low MIC value (2 mg/ml) against Pseudomonas aeruginosa MZ269380. AE having acceptance as nontoxic to biological system, formulation of chitosan (2%)-based coating was done with 1% AQ. Surface coatings of tomatoes and grapes showed significant inhibition of microbial growth even after 10 days of storage at ambient temperature (25 ± 2 °C). Colour, texture, firmness and aceptability of coated fruits showed no degradation compared to negative control. Additionally, the extracts showed insignificance haemolysis of goat RBC and damage of Calf Thymus DNA which exhibited its biocompatible nature. Biovalorization of fruit wastes yields useful phytochemicals and can be utilized in various sectors thereby finding a sustainable solution for disposal of fruit wastes.
Collapse
Affiliation(s)
- Ranjay Kumar Thakur
- Department of Biotechnology, Haldia Institute of Technology, Haldia, 721657, West Bengal, India
- Department of Food Technology, Haldia Institute of Technology, Haldia, 721657, West Bengal, India
- Department of Food Technology & Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Prasanta Kumar Biswas
- Department of Food Technology & Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, Haldia, 721657, West Bengal, India.
| |
Collapse
|
37
|
Milne MH, De Frond H, Rochman CM, Mallos NJ, Leonard GH, Baechler BR. Exposure of U.S. adults to microplastics from commonly-consumed proteins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123233. [PMID: 38159628 DOI: 10.1016/j.envpol.2023.123233] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
We investigated microplastic (MP) contamination in 16 commonly-consumed protein products (seafoods, terrestrial meats, and plant-based proteins) purchased in the United States (U.S.) with different levels of processing (unprocessed, minimally-processed, and highly-processed), brands (1 - 4 per product type, depending on availability) and store types (conventional supermarket and grocer featuring mostly natural/organic products). Mean (±stdev) MP contamination per serving among the products was 74 ± 220 particles (ranging from 2 ± 2 particles in chicken breast to 370 ± 580 in breaded shrimp). Concentrations (MPs/g tissue) differed between processing levels, with highly-processed products containing significantly more MPs than minimally-processed products (p = 0.0049). There were no significant differences among the same product from different brands or store types. Integrating these results with protein consumption data from the American public, we estimate that the mean annual exposure of adults to MPs in these proteins is 11,000 ± 29,000 particles, with a maximum estimated exposure of 3.8 million MPs/year. These findings further inform estimations of human exposure to MPs, particularly from proteins which are important dietary staples in the U.S. Subsequent research should investigate additional drivers of MPs in the human diet, including other understudied food groups sourced from both within and outside the U.S.
Collapse
Affiliation(s)
- Madeleine H Milne
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Hannah De Frond
- Ocean Conservancy, 1300 19th St NW 8th floor, Washington, DC, 20036, USA; University of Toronto Trash Team, Toronto, Canada
| | - Chelsea M Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada; University of Toronto Trash Team, Toronto, Canada
| | - Nicholas J Mallos
- Ocean Conservancy, 1300 19th St NW 8th floor, Washington, DC, 20036, USA
| | - George H Leonard
- Ocean Conservancy, 1300 19th St NW 8th floor, Washington, DC, 20036, USA
| | - Britta R Baechler
- Ocean Conservancy, 1300 19th St NW 8th floor, Washington, DC, 20036, USA.
| |
Collapse
|
38
|
Fang C, Awoyemi OS, Saianand G, Xu L, Niu J, Naidu R. Characterising microplastics in indoor air: Insights from Raman imaging analysis of air filter samples. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132969. [PMID: 37956564 DOI: 10.1016/j.jhazmat.2023.132969] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
We are directly exposed to microplastic contamination via indoor air that we breathe daily, for which the characterisation of microplastics is still a challenge. Herein, two typical air filter samples were collected, one from an air-conditioner and another from a personal computer, both of which have been working for around half a year to collect and accumulate microplastics in the indoor air, like microplastic banks. After the sample preparation to remove the mineral dusts, Raman imaging was employed to directly and simultaneously identify and visualise microplastics of polyethylene terephthalate (PET) fibres, distinguish them from other fibres such as cellulose and cross-check them with a scanning electron microscope (SEM). To count the microplastics and to avoid the quantification bias, several areas were randomly scanned and imaged to statistically estimate the percentage of microplastic fibres in the analysed samples. The microplastics amount, which has been estimated at 73-88,000 fibers per filter per half a year, varies and depends on the indoor environment so that the air filter can work as a good indicator to monitor the quality of the indoor air from the microplastic perspective. Overall, human are directly exposed to this emerging contamination every day, raising environmental concerns. Raman imaging characterisation and its corresponding statistical information can help pursue further research on microplastics.
Collapse
Affiliation(s)
- Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Olalekan Simon Awoyemi
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Gopalan Saianand
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Lei Xu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
39
|
Luo Y, Awoyemi O, Liu S, Niu J, Naidu R, Fang C. From celebration to contamination: Analysing microplastics released by burst balloons. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133021. [PMID: 37992504 DOI: 10.1016/j.jhazmat.2023.133021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
Air balloons are a ubiquitous presence in our daily lives, and their rupture may release a substantial quantity of debris, as investigated herein. We employ Raman imaging to capture the fragments resulting from balloon explosions, enabling the identification and direct visualisation of minute microplastic particles / fragments with an improved signal-to-noise ratio for precise quantification. To circumvent the generation of misleading confocal Raman images, we recommend employing terrain mapping to scan the three-dimensional surface of the sample. It is important to acknowledge that the analysis of microplastics at the micro-scale inherently poses limitations in terms of throughput, as it necessitates a trade-off between low and high magnifications. We conduct explosive experiments on ten-to-hundred balloons, collecting debris from various angles and positions. Our investigation involves the random testing of multiple samples / sample positions at the micro-scale, with subsequent extrapolation to estimate the total amount of microplastics. The amalgamation of these results through statistical analysis indicates that each balloon explosion can potentially release tens-to-thousands of microplastics, highlighting a concern that has hitherto received insufficient attention. The characterisation approach, particularly the random Raman scanning method in combination with SEM and the statistical analysis on accumulated samples employed in this report, has the potential to serve as a useful tool in future research on microplastics and even nanoplastics.
Collapse
Affiliation(s)
- Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Olalekan Awoyemi
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Siyuan Liu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
40
|
Bhat ZM, Gani KM. Microfiber pollution from Dhobi Ghats (open air laundry centers) and commercial laundries in a north Indian city. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12161-12173. [PMID: 38225494 DOI: 10.1007/s11356-023-31700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
In regions like Southeast Asia, Dhobi Ghats-traditional open-air laundromats-hold cultural significance and provide livelihoods to many people. These centers are near the riverbanks for easy access to water for washing. These Dhobi Ghats are among major sources of microfibers (MFs) in the waterbodies. However, there is no ample data that confirms their level of MF release into the waterbodies. This study reports for the first time the prevalence of microfibers (MFs) in wastewater from Dhobi Ghats in a North Indian city and comparatively assess them with the MF pollution from commercial laundries. A mean microfiber concentration of 3204 ± 270 MFs/L was observed in the discharged effluents of Dhobi Ghats, while a concentration at 36,923 ± 389 MFs/L was observed in effluents from commercial laundries. Pertinently, microfibers measuring less than 75 µm dominated in effluents of commercial laundries, accounting for 53% of the total. Conversely, microfibers within the 75-150-µm range were present in effluents of Dhobi Ghats, constituting 52%. Spectroscopic analyses by FTIR showed polyester and polyamides as the main polymers released from Dhobi Ghats. Ecological risk assessment demonstrated a potential environmental risk from the MF pollution from Dhobi Ghats and commercial laundries. The study also proposed a mitigation framework prioritizing both environmental protection and the sustenance of local livelihoods for reducing the microfiber pollution by the Dhobi Ghats.
Collapse
Affiliation(s)
- Zaid Mushtaq Bhat
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, India
| | - Khalid Muzamil Gani
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, India.
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
41
|
Sun J, Wang X, Zheng H, Xiang H, Jiang X, Fan J. Characterization of the degradation products of biodegradable and traditional plastics on UV irradiation and mechanical abrasion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168618. [PMID: 37977371 DOI: 10.1016/j.scitotenv.2023.168618] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Biodegradable plastics are popular alternatives to traditional plastics in packaging, mulch sheets, and other applications. However, there are concerns regarding the potential for pollution as a result of their abiotic degradation. In this study, we investigated the degradation of biodegradable polybutylene adipate terephthalate/polylactic acid (PBAT/PLA) and traditional polyethylene (PE) plastic under two typical abiotic conditions: ultraviolet (UV) irradiation and mechanical abrasion (MA) for up to nine months. The physical and chemical properties of the two plastics during the degradation period were assessed. In addition, quantitative analysis of the degradation products was carried out using a new method called membrane filtration and total organic carbon determination (MF-TOCD). The results revealed that PBAT/PLA underwent a greater number of changes in surface morphology, thermal stability, and mass loss compared to PE when exposed to UV and MA during the test period. Further analysis of the released products revealed that PBAT/PLA released more products than PE. Overall, PE mainly produced microplastics (MPs) larger than 0.22 μm, whereas PBAT/PLA produced products <0.22 μm (nanoplastics and soluble molecules) on UV exposure. In contrast, when subjected to MA, PBAT/PLA produced MPs larger than 0.22 μm, and these accumulated gradually; this behavior is similar to that of PE. By combining the mass loss and the TOC data for the degradation products, we determined that long-term UV irradiation generated a large number of smaller particles from PBAT/PLA that could further degrade rather than accumulate in the environment. In summary, we established a new method to separate and characterize MPs as well as nanoplastics and soluble molecules, and provided new insights into the fate of PBAT/PLA during abiotic degradation.
Collapse
Affiliation(s)
- Jiaoxia Sun
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Xi Wang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Hanyue Zheng
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Hong Xiang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xueting Jiang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jianxin Fan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
42
|
Tutaroğlu S, Uslu L, Gündoğdu S. Microplastic contamination of packaged spirulina products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1114-1126. [PMID: 38036911 DOI: 10.1007/s11356-023-31130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Microplastic (MP) contamination in commercially sold spirulina products has not been previously investigated. In this study, 29 spirulina samples in various packaging types were purchased from different brands and origins to assess the presence of MPs. Microplastic analysis was conducted using microscopic and μ-Raman techniques. To ascertain whether the content is indeed spirulina and make a comparison with the MP level, C-Phycocyanin levels were also analyzed. A total of 251 MP-like particles were observed. Out of the 29 examined packaged spirulina brands, 26 showed potential MPs upon visual inspection, with 35 particles confirmed as MPs (73% of the analyzed particles). The mean abundance of MPs was estimated at 13.77 ± 2.45 MPs/100 g dw. Powdered spirulina had a higher but not statistically significant MP abundance (17.34 ± 4.22 MPs/100 g dw) compared to capsule/tablet forms (10.43 ± 2.45 MPs/100 g dw). Fragments accounted for 38.3% while fibers constituted 61.7% of the identified MPs, with sizes ranging from 0.07 to 2.15 mm for fragments and 0.19 to 5.691 mm for fibers. The color distribution of MPs in spirulina samples was predominantly blue (52.8%), followed by black (25.4%), white (10.9%), and others (10.9%). Ten synthetic polymers and cellulose were identified through μ-Raman analysis, with polypropylene (31.6%) and polystyrene (8.3%) being the most prevalent. The correlation between C-Phycocyanin and MPs concentrations, was not found statistically significant. The abundance and composition of MPs were found to be influenced by packaging and processing stages. Identifying potential sources of MPs in spirulina products and evaluating their risks to human health is crucial.
Collapse
Affiliation(s)
- Serkan Tutaroğlu
- Department of Biotechnology, Cukurova University, Balcalı, Saricam, 01330, Adana, Türkiye
| | - Leyla Uslu
- Department of Biotechnology, Cukurova University, Balcalı, Saricam, 01330, Adana, Türkiye
- Faculty of Fisheries, Department of Basic Science, Cukurova University, Balcalı, Saricam, 01330, Adana, Türkiye
| | - Sedat Gündoğdu
- Faculty of Fisheries, Department of Basic Science, Cukurova University, Balcalı, Saricam, 01330, Adana, Türkiye.
| |
Collapse
|
43
|
Ololade IA, Apata A, Oladoja NA, Alabi BA, Ololade OO. Microplastic particles in river sediments and water of southwestern Nigeria: insights on the occurrence, seasonal distribution, composition, and source apportionment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1314-1330. [PMID: 38038917 DOI: 10.1007/s11356-023-31118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Microplastics (MPs) are globally recognized as an emerging environmental threat, particularly in the aquatic environment. This study presents baseline data on the occurrence and distribution of MPs in sediments and surface water of major rivers in southwestern Nigeria. Microplastics were extracted by density separation and polymer identification using Fourier transformed infrared spectroscopy in attenuated total reflectance mode (FTIR-ATR). The abundance of MPs in surface sediment and water samples across all locations ranged from 12.82 to 22.90 particle/kg dw and 6.71 to 17.12 particle/L during the dry season and 5.69 to 14.38 particle/kg dw and 12.41 to 22.73 particle/L during the wet season, respectively. On average, fiber constituted the highest percentage of MP in sediments (71%) and water (67%) while foam accounted for the lowest values of 0.6% and 1.7%, respectively. Polypropylene (PP) and polyethylene (PE) were the main MPs across all locations based on Fourier transform infrared spectroscopy (FTIR). MPs of size < 1 mm were the most abundant (≥ 55%) on average in both water and sediments. The study identified run-off from human activities and industrial wastewater as potential sources of MP exposure based on positive matrix factorization. The study suggests assessing the impact of different land-use activities on MPs occurrence and distribution in addition to quantifying MPs in seafood as a way forward in food safety management systems for further studies. This study confirmed the occurrence and widespread distribution of MPs in surface water and sediments and provides a database on MP pollution in Nigeria.
Collapse
Affiliation(s)
- Isaac Ayodele Ololade
- Environmental Monitoring Unit, Department of Chemical Sciences, Adekunle Ajasin University, PMB 001, AkungbaAkoko, Ondo State, Nigeria.
| | - Abiodun Apata
- Environmental Monitoring Unit, Department of Chemical Sciences, Adekunle Ajasin University, PMB 001, AkungbaAkoko, Ondo State, Nigeria
- Puget Sound Naval Shipyard, 1400 Farragut Street, Bremerton, Washington, 98314, USA
| | - Nurudeen Abiola Oladoja
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, AkungbaAkoko, Nigeria
| | - Bosede Adenike Alabi
- Environmental Monitoring Unit, Department of Chemical Sciences, Adekunle Ajasin University, PMB 001, AkungbaAkoko, Ondo State, Nigeria
| | - Oluwaranti Olubunmi Ololade
- Environmental Monitoring Unit, Department of Chemical Sciences, Adekunle Ajasin University, PMB 001, AkungbaAkoko, Ondo State, Nigeria
| |
Collapse
|
44
|
Jain R, Gaur A, Suravajhala R, Chauhan U, Pant M, Tripathi V, Pant G. Microplastic pollution: Understanding microbial degradation and strategies for pollutant reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167098. [PMID: 37717754 DOI: 10.1016/j.scitotenv.2023.167098] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Microplastics are ubiquitous environmental pollutants with the potential for adverse impacts on ecosystems and human health. These particles originate from the fragmentation of larger plastic items, shedding from synthetic fibers, tire abrasions, and direct release from personal care products and industrial processes. Once released into the environment, microplastics can disrupt ecosystems, accumulate in organisms, cause physical harm, and carry chemical pollutants that pose risks to both wildlife and human health. There is an urgent need to comprehensively explore the multifaceted issue of microplastic pollution and understand microbial degradation to reduce environmental pollution caused by microplastics. This paper presents a comprehensive exploration of microplastics, including their types, composition, advantages, and disadvantages, as well as the journey and evolution of microplastic pollution. The impact of microplastics on the microbiome and microbial communities is elucidated, highlighting the intricate interactions between microplastics and microbial ecosystems. Furthermore, the microbial degradation of microplastics is discussed, including the identification, characterization, and culturing methods of microplastic-degrading microorganisms. Mechanisms of microplastic degradation and the involvement of microbial enzymes are elucidated to shed light on potential biotechnological applications. Strategies for reducing microplastic pollution are presented, encompassing policy recommendations and the importance of enhanced waste management practices. Finally, the paper addresses future challenges and prospects in the field, emphasizing the need for international collaboration, research advancements, and public engagement. Overall, this study underscores the urgent need for concerted efforts to mitigate microplastic pollution and offers valuable insights for researchers, policymakers, and stakeholders involved in environmental preservation.
Collapse
Affiliation(s)
- Rajul Jain
- Bioclues.org, India, Vivekananda Nagar, Kukatpally, 500072 Hyderabad, Telangana, India.
| | - Ashish Gaur
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India.
| | - Renuka Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, 690525, Kerala, India.
| | - Uttra Chauhan
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Manu Pant
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India.
| | - Gaurav Pant
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun 248002, India.
| |
Collapse
|
45
|
Kimura Y, Fukuda Y, Otsu R, Yu J, Mino S, Misawa S, Maruyama S, Ikeda Y, Miyamachi R, Noguchi H, Kato S, Yamamoto Y, Sawabe T. A lesson from polybutylene succinate plastisphere to the discovery of novel plastic degrading enzyme genes in marine vibrios. Environ Microbiol 2023; 25:2834-2850. [PMID: 37775475 DOI: 10.1111/1462-2920.16512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Polybutylene succinate (PBS) is an eco-friendly green plastic. However, PBS was shown as being non-biodegradable in marine environments, and up until now, only a limited number of PBS-degrading marine microbes have been discovered. We first set up in vitro PBS- and PBSA (polybutylene succinate adipate)-plastispheres to characterize novel PBS-degrading marine microbes. Microbial growth and oxygen consumption were observed in both PBS- and PBSA-plastispheres enriched with natural seawater collected from Usujiri, Hokkaido, Japan, and Vibrionaceae and Pseudoalteromonadaceae were significantly enriched on these films. Further gene identification indicated that vibrios belonging to the Gazogenes clade possess genes related to a PBS degrading enzyme (PBSase). The PBS degradation assay for six Gazogenes clade vibrios identified Vibrio ruber, Vibrio rhizosphaerae, and Vibrio spartinae as being capable of degrading PBS. We further identified the gene responsible for PBSase from the type strain of V. ruber, and the purified recombinant vibrio PBSase was found to have low-temperature adaptation and was active under high NaCl concentrations. We also provided docking models between the vibrio PBSase and PBS and PBSA units to show how vibrio PBSase interacts with each substrate compared to the Acidovorax PBSase. These results could contribute to a more sustainable society through further utilization of PBS in marine environments and plastic recycling.
Collapse
Affiliation(s)
- Yutaro Kimura
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yutaka Fukuda
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Rumi Otsu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Juwanen Yu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Satoru Misawa
- Medical Core Project Dept, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Satoshi Maruyama
- Yokohama Basic Chemicals Lab, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Yuta Ikeda
- Food Core Project Dept, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Remi Miyamachi
- Organic Materials Lab, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Hiroshi Noguchi
- Organic Materials Lab, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Satoshi Kato
- Research and Consulting Div, Mitsubishi Chemical Research Corporation, Tokyo, Japan
| | - Yasuhito Yamamoto
- Yokohama Basic Chemicals Lab, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
46
|
Zhang X, Niu Z, Zhang Y, Guan S, Jing M, Wu N, Ma Y. Role of traveling microplastics as bacterial carriers based on spatial and temporal dynamics of bacterial communities. WATER RESEARCH 2023; 247:120832. [PMID: 37976625 DOI: 10.1016/j.watres.2023.120832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/20/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Microplastics (MPs) are considered as distinct substrates for bacterial colonization, they can carry bacterial communities to travel around environments. The bacterial communities on traveling MPs prefer to be gradually consistent with those on local MPs that were always in the same environment, and this process of change in the bacterial communities on traveling MPs was called 'localization'. However, the dynamics of localization process and their influencing factors are still unclear. Therefore, we simulated the MPs migration process along the water flow direction in the estuary. We used quantitative analysis to study the dynamics of bacterial communities on the migrated MPs. We found the localization characteristics depended on the differences between the former and latter environments, as well as the preexisting bacteria. The localization degree was higher when the former and latter environments were similar. In most cases, compared with the first cultivation of pristine MPs, the time for localization was shorter. Moreover, although the entire bacterial communities tended to be localized, the preexisting bacteria on the migrated MPs had selective effects on subsequent bacterial colonization. Furthermore, the preexisting bacteria on MPs could set up the connections with the bacteria that existed at the latter site, and the stability of the entire bacterial communities on the migrated MPs increased with time. Overall, our findings indicated that the localization characteristics of bacterial communities on traveling MPs were related to the precultured time and environmental differences, which were helpful to understand the colonized bacteria transportation and MPs ecological effects.
Collapse
Affiliation(s)
- Xiaohan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhiguang Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; International Joint Institute of Tianjin University, Fuzhou, Fuzhou 350205, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Shijia Guan
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Meiqi Jing
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Nan Wu
- School of Geography, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
47
|
Yang T, Wang J. Exposure sources and pathways of micro- and nanoplastics in the environment, with emphasis on potential effects in humans: A systematic review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1422-1432. [PMID: 36661032 DOI: 10.1002/ieam.4742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are emerging pollutants that are ubiquitous in the environment, and may be a potential threat to human health. This review describes the MP exposure sources and pathways through drinking water, food intake, and air inhalation. The unregulated discharge of MPs in water sources and the absence of required MP filter technology in water treatment plants are important routes of MP exposure through drinking water. The presence of MPs in food may lead to the accumulation of MPs in the body. Exposure to MPs can occur through airborne fallout and dust inhalation in both indoor and outdoor environments. This review summarizes the MP exposure sources and possible pathways in the human body, and illustrates that the intake of drinking water, food consumption, and air inhalation should be assessed in during routine activities. Integr Environ Assess Manag 2023;19:1422-1432. © 2023 SETAC.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Resource Chemistry and Eco-environmental Protection in Qinghai-Tibet Plateau, State Ethnic Affairs Commission, Qinghai Provincial Key Laboratory of High-Value Utilization of Characteristic Economic Plants, The College of Ecological Environmental and Resources, Qinghai MinZu University, Xining, Qinghai, China
| | - Jiao Wang
- College of Environmental Science and Engineering, Tianjin University, Tianjin, China
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
48
|
Ke D, Zheng J, Liu X, Xu X, Zhao L, Gu Y, Yang R, Liu S, Yang S, Du J, Chen B, He G, Dong R. Occurrence of microplastics and disturbance of gut microbiota: a pilot study of preschool children in Xiamen, China. EBioMedicine 2023; 97:104828. [PMID: 37837933 PMCID: PMC10585208 DOI: 10.1016/j.ebiom.2023.104828] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Microplastics (MPs) have garnered widespread attention because of their presence in human placenta, stool, and even blood. Ingestion is considered the major route of human exposure to MPs. It has been found that the consumption of food and water is associated with more MP abundance in human stools. The usage of plastic containers, particularly feeding bottles, may be a major contributor to MP contamination. However, human exposure to MPs and potential factors that influence exposure, especially for preschoolers, remains largely unknown. When exposed to MPs, mice exhibited gut microbiota dysbiosis, including alterations in diversity indices, a decreased relative abundance of probiotics and an increased abundance of pathogenic bacteria. Such results have also been observed in human gut in vitro models, however, the actual association between MP exposure and human intestinal microbiota remains unclear. Therefore, this study aimed to evaluate MP concentrations in preschoolers' stools, explore possible dietary factors that influence preschooler exposure to MPs, and investigate their potential association with the gut microbiota. METHODS A cross-sectional study was conducted in Xiamen, China in October 2022. We investigated the feeding behaviours and dietary habits of preschool children. A total of 69 couples of stool samples were collected and analyzed for MPs test and gut microbiota analysis. Pyrolysis-gas chromatography coupled with mass spectrometry (Py-GC/MS) was used for quantifying 11 types of MPs. The gut microbiota composition was analyzed by 16S rRNA gene sequencing. FINDINGS The results showed that only polyvinyl chloride (PVC), polyethylene terephthalate (PET), polyethylene (PE), and polyamide 6 (PA6) were detected in 85.5% stool samples, with concentrations of 317.4 (152.0, 491.9) μg/g dw, 299.0 (196.1, 619.9) μg/g dw, 206.2 (154.1, 240.3) μg/g dw, and 17.9 (13.4, 18.6) μg/g dw, respectively. The median estimated daily intake (EDI) for preschoolers was 425.9 (272.5, 762.3) μg/kg-bw/d. Dairy intake may influence MP concentration in preschoolers' stools, and the usage of feeding bottles may be a specific source of MP contamination. Moreover, higher PVC concentrations were observed in the stools when the children took more time to eat a meal. MP exposure was inversely associated with alpha indices and possibly affected certain probiotic taxa, such as Parabacteroides and Alistipes, in preschool children. INTERPRETATION Our data provided baseline evidence for MP exposure doses and potential dietary factors that may influence MP exposure in preschoolers. These findings supported the perspective that MP exposure might be associated with the disturbance of gut microbiota. Further studies focusing on sensitive populations with larger sample sizes are needed. FUNDING This study was funded by the National Natural Science Foundation of China (grant number: 82003412), the Shanghai Municipal Health Commission (grant number: 20214Y0019), and the Project of Shanghai Municipal Financial Professional foundation (Food Safety Risk Assessment) (grant number: RA-2022-06).
Collapse
Affiliation(s)
- Dandan Ke
- Key Lab of Public Health Safety of the Ministry of Education, School of Public Health, Institute of Nutrition, Fudan University, Shanghai 200032, China.
| | | | - Xinyuan Liu
- Key Lab of Public Health Safety of the Ministry of Education, School of Public Health, Institute of Nutrition, Fudan University, Shanghai 200032, China.
| | - Xin Xu
- Key Lab of Public Health Safety of the Ministry of Education, School of Public Health, Institute of Nutrition, Fudan University, Shanghai 200032, China.
| | - Long Zhao
- Key Lab of Public Health Safety of the Ministry of Education, School of Public Health, Institute of Nutrition, Fudan University, Shanghai 200032, China.
| | - Yiying Gu
- Key Lab of Public Health Safety of the Ministry of Education, School of Public Health, Institute of Nutrition, Fudan University, Shanghai 200032, China.
| | - Ruoru Yang
- Key Lab of Public Health Safety of the Ministry of Education, School of Public Health, Institute of Nutrition, Fudan University, Shanghai 200032, China.
| | - Shaojie Liu
- Key Lab of Public Health Safety of the Ministry of Education, School of Public Health, Institute of Nutrition, Fudan University, Shanghai 200032, China.
| | - Shuyu Yang
- Nutrilite Health Institute, Shanghai 200023, China.
| | - Jun Du
- Nutrilite Health Institute, Shanghai 200023, China.
| | - Bo Chen
- Key Lab of Public Health Safety of the Ministry of Education, School of Public Health, Institute of Nutrition, Fudan University, Shanghai 200032, China.
| | - Gengsheng He
- Key Lab of Public Health Safety of the Ministry of Education, School of Public Health, Institute of Nutrition, Fudan University, Shanghai 200032, China.
| | - Ruihua Dong
- Key Lab of Public Health Safety of the Ministry of Education, School of Public Health, Institute of Nutrition, Fudan University, Shanghai 200032, China.
| |
Collapse
|
49
|
Nguyen MK, Lin C, Nguyen HL, Le VR, Kl P, Singh J, Chang SW, Um MJ, Nguyen DD. Emergence of microplastics in the aquatic ecosystem and their potential effects on health risks: The insights into Vietnam. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118499. [PMID: 37480638 DOI: 10.1016/j.jenvman.2023.118499] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/11/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023]
Abstract
The increase of microplastic contamination in Vietnam is a growing concern due to various domestic, agricultural, and industrial activities. The use of plastic mulch and sludge application in agricultural farmland, textile production, daily consumer items, cleaning agents, and health/personal care products contribute significantly to the increasing microplastic pollution in the aquatic ecosystem. The concentration of microplastics reported in surface water ranged from 0.35 to 519,000 items m-3, with fibers and fragments being the most prevalent shapes. Notably, the high concentration of microplastics was observed in lakes, canals, and megacities such as Ha Noi and Ho Chi Minh City, which poses potential health risks to the local community via drinking-water supply and food chains. As an emerging pollutant, MPs are the transport vectors for contaminants in environmental matrices that act as a carrier of hazardous pollutants, release toxic compounds, and evenly aggregate/accumulate in biota. Recent studies have reported the presence of microplastics in various marine organisms, including fish and shellfish, highlighting the risk of ingestion of these particles by humans and wildlife. Thus, it is imperative to monitor microplastic contamination in the ecosystem to provide helpful information for the government and local communities. Efforts should be taken to reduce microplastic pollution at the source to minimize potential effects on ecological and health safety. This review paper emphasizes the urgent need for further research on microplastic pollution in Vietnam and highlights potential solutions to mitigate this emerging environmental threat. KEYWORKS: single-use plastics; microplastics; ecosystems; plastic waste; health risk; ecological and health safety; pollution mitigation.
Collapse
Affiliation(s)
- Minh-Ky Nguyen
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University, Ho Chi Minh City 700000, Viet Nam; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Van-Re Le
- Ho Chi Minh City University of Food Industry (HUFI), Ho Chi Minh City, 700000, Viet Nam
| | - Priya Kl
- Department of Civil Engineering, TKM College of Engineering, Kollam 691005, India
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research & Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Soon W Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, Republic of Korea
| | - Myoung-Jin Um
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, Republic of Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, Republic of Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
50
|
Bai R, Fan R, Xie C, Liu Q, Liu Q, Yan C, Cui J, He W. Microplastics are overestimated due to poor quality control of reagents. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132068. [PMID: 37494798 DOI: 10.1016/j.jhazmat.2023.132068] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Microplastics are widely distributed in the environment and pose potential ecological risks, increasing to be one of the most important environmental pollutants. However, when assessing the characteristics of microplastic contamination in environmental samples, inadequate quality control measures for the working solutions may introduce additional microplastic contamination and lead to an overestimation of microplastic abundance in the samples. In this study, we evaluated the microplastic contamination characteristics in commonly used flotation and digestion reagents to assess errors caused by microplastics in the reagents. The results showed that the abundance of microplastics in the reagents ranged from 0.8 to 43.4 items/g, with the abundance of microplastics in flotation reagents being lower than that in digestion reagents. The shapes of the detected microplastics included particles, fibers, and fragments, and their size and outline were generally small, with most being below 100 µm. The most common types of polymers detected were polyethylene and polypropylene. In order to improve the universality and readability of the results, the detected microplastic abundances were converted into the actual application concentration of the working fluid. It was found that the potential contamination of microplastics in untreated flotation solutions ranged from 1.5 to 30.8 items/mL, while in digestion solutions ranged from 0.1 to 2.3 items/mL. Our study emphasizes the need for quality control measures, such as suction filtration, when evaluating microplastics in environmental samples or conducting chemical and biological tests related to microplastics.
Collapse
Affiliation(s)
- Runhao Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruiqi Fan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changhong Xie
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qin Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qi Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changrong Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jixiao Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, Changji 831100, Xinjiang, China.
| | - Wenqing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, Changji 831100, Xinjiang, China.
| |
Collapse
|