1
|
Singh A, Chaudhary R. Potentials of peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ: An in-depth and comprehensive review of their molecular mechanisms, cellular Signalling, immune responses and therapeutic implications in multiple diseases. Int Immunopharmacol 2025; 155:114616. [PMID: 40222274 DOI: 10.1016/j.intimp.2025.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors, have emerged as a key regulator of various biological processes, underscoring their relevance in the pathophysiology and treatment of numerous diseases. PPARs are primarily recognized for their critical role in lipid and glucose metabolism, which underpins their therapeutic applications in managing type 2 diabetes mellitus. Beyond metabolic disorders, they have gained attention for their involvement in immune modulation, making them potential targets for autoimmune-related inflammatory diseases. Furthermore, PPAR's ability to regulate proliferation, differentiation, and apoptosis has positioned them as promising candidates in oncology. Their anti-inflammatory and anti-fibrotic properties further highlight their potential in dermatological and cardiovascular conditions, where dysregulated inflammatory responses contribute to disease progression. Recent advancements have elucidated the molecular mechanisms of different PPAR isoforms, including their regulation of key signalling pathways such as NF-κB and MAPK, which are crucial in inflammation and cellular stress responses. Additionally, their interactions with co-factors and post-translational modifications further diversify their functional roles. The therapeutic potential of various PPAR agonists has been extensively explored, although challenges related to side effects and target specificity remain. This growing body of evidence underscores the significance of PPARs in understanding the molecular basis of diseases and advancing therapeutic interventions, paving way for targeted treatment approach across a wide spectrum of medical conditions. Here, we provide a comprehensive and detailed perspective of PPARs and their potential across different health conditions to advance our understanding, elucidate underlying mechanisms, and facilitate the development of potential treatment strategies.
Collapse
Affiliation(s)
- Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
2
|
Ma F, Longo M, Meroni M, Bhattacharya D, Paolini E, Mughal S, Hussain S, Anand SK, Gupta N, Zhu Y, Navarro-Corcuera A, Li K, Prakash S, Cogliati B, Wang S, Huang X, Wang X, Yurdagul A, Rom O, Wang L, Fried SK, Dongiovanni P, Friedman SL, Cai B. EHBP1 suppresses liver fibrosis in metabolic dysfunction-associated steatohepatitis. Cell Metab 2025; 37:1152-1170.e7. [PMID: 40015280 PMCID: PMC12058419 DOI: 10.1016/j.cmet.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/27/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025]
Abstract
Excess cholesterol accumulation contributes to fibrogenesis in metabolic dysfunction-associated steatohepatitis (MASH), but how hepatic cholesterol metabolism becomes dysregulated in MASH is not completely understood. We show that human fibrotic MASH livers have decreased EH-domain-binding protein 1 (EHBP1), a genome-wide association study (GWAS) locus associated with low-density lipoprotein (LDL) cholesterol, and that EHBP1 loss- and gain-of-function increase and decrease MASH fibrosis in mice, respectively. Mechanistic studies reveal that EHBP1 promotes sortilin-mediated PCSK9 secretion, leading to LDL receptor (LDLR) degradation, decreased LDL uptake, and reduced TAZ, a fibrogenic effector. At a cellular level, EHBP1 deficiency affects the intracellular localization of retromer, a protein complex required for sortilin stabilization. Our therapeutic approach to stabilizing retromer is effective in mitigating MASH fibrosis. Moreover, we show that the tumor necrosis factor alpha (TNF-α)/peroxisome proliferator-activated receptor alpha (PPARα) pathway suppresses EHBP1 in MASH. These data not only provide mechanistic insights into the role of EHBP1 in cholesterol metabolism and MASH fibrosis but also elucidate an interplay between inflammation and EHBP1-mediated cholesterol metabolism.
Collapse
Affiliation(s)
- Fanglin Ma
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miriam Longo
- Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Marica Meroni
- Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Dipankar Bhattacharya
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erika Paolini
- Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Shama Mughal
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Syed Hussain
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Neha Gupta
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yiwei Zhu
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amaia Navarro-Corcuera
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kenneth Li
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Satya Prakash
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruno Cogliati
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shuang Wang
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Huang
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Liheng Wang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Susan K Fried
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
3
|
Uchiyama LF, Nguyen A, Qian K, Cui L, Pham KT, Xiao X, Gao Y, Shimanaka Y, Tol MJ, Vergnes L, Reue K, Tontonoz P. PPARα regulates ER-lipid droplet protein Calsyntenin-3β to promote ketogenesis in hepatocytes. Proc Natl Acad Sci U S A 2025; 122:e2426338122. [PMID: 40258152 PMCID: PMC12054784 DOI: 10.1073/pnas.2426338122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/11/2025] [Indexed: 04/23/2025] Open
Abstract
Ketogenesis requires fatty acid flux from intracellular (lipid droplets) and extrahepatic (adipose tissue) lipid stores to hepatocyte mitochondria. However, whether interorganelle contact sites regulate this process is unknown. Recent studies have revealed a role for Calsyntenin-3β (CLSTN3β), an endoplasmic reticulum-lipid droplet contact site protein, in the control of lipid utilization in adipose tissue. Here, we show that Clstn3b expression is induced in the liver by the nuclear receptor PPARα in settings of high lipid utilization, including fasting and ketogenic diet feeding. Hepatocyte-specific loss of CLSTN3β in mice impairs ketogenesis independent of changes in PPARα activation. Conversely, hepatic overexpression of CLSTN3β promotes ketogenesis in mice. Mechanistically, CLSTN3β affects LD-mitochondria crosstalk, as evidenced by changes in fatty acid oxidation, lipid-dependent mitochondrial respiration, and the mitochondrial integrated stress response. These findings define a function for CLSTN3β-dependent membrane contacts in hepatic lipid utilization and ketogenesis.
Collapse
Affiliation(s)
- Lauren F. Uchiyama
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Biological Chemistry, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| | - Alexander Nguyen
- Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Kevin Qian
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Biological Chemistry, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| | - Liujuan Cui
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Biological Chemistry, University of California, Los Angeles, CA90095
| | - Khoi T. Pham
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Xu Xiao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Biological Chemistry, University of California, Los Angeles, CA90095
| | - Yajing Gao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Biological Chemistry, University of California, Los Angeles, CA90095
| | - Yuta Shimanaka
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Biological Chemistry, University of California, Los Angeles, CA90095
| | - Marcus J. Tol
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Biological Chemistry, University of California, Los Angeles, CA90095
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, CA90095
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, CA90095
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Biological Chemistry, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
4
|
Ren J, Wu M. Identification of Novel Therapeutic Targets for MAFLD Based on Bioinformatics Analysis Combined with Mendelian Randomization. Int J Mol Sci 2025; 26:3166. [PMID: 40243942 PMCID: PMC11989663 DOI: 10.3390/ijms26073166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver condition with limited therapeutic options. To identify novel drug targets, we integrated bioinformatics, Mendelian randomization (MR), and colocalization analyses. Using the Gene Expression Omnibus (GEO) database, we identified differentially expressed genes and constructed protein-protein interaction (PPI) networks, pinpointing 10 hub genes. MR and colocalization analyses revealed that Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) is causally associated with MAFLD and driven by the same causal variant locus, suggesting its potential as a therapeutic target. Molecular docking identified disogenin as a candidate small-molecule drug targeting UHRF1. Drug affinity responsive target stability (DARTS) assays confirmed direct binding between UHRF1 and disogenin. In vitro, disogenin significantly reduced UHRF1 mRNA and protein levels induced by free fatty acids (FFA) in AML12 and HepG2 cells, accompanied by decreased cellular total cholesterol (TC) and triglyceride (TG) levels. In vivo, disogenin administration alleviated hepatic lipid accumulation, inflammation, and fibrosis in methionine/choline-deficient (MCD)-diet-fed mice. This study identifies UHRF1 as a promising therapeutic target for MAFLD and validates disogenin as a potential therapeutic agent, providing a foundation for further investigation.
Collapse
Affiliation(s)
- Jialin Ren
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225100, China;
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225100, China
| | - Min Wu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225100, China;
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225100, China
| |
Collapse
|
5
|
Mejía-Guzmán JE, Belmont-Hernández RA, Chávez-Tapia NC, Uribe M, Nuño-Lámbarri N. Metabolic-Dysfunction-Associated Steatotic Liver Disease: Molecular Mechanisms, Clinical Implications, and Emerging Therapeutic Strategies. Int J Mol Sci 2025; 26:2959. [PMID: 40243565 PMCID: PMC11988898 DOI: 10.3390/ijms26072959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is a highly prevalent metabolic disorder characterized by hepatic steatosis in conjunction with at least one cardiometabolic risk factor, such as obesity, type 2 diabetes, hypertension, or dyslipidemia. As global rates of obesity and metabolic syndrome continue to rise, MASLD is becoming a major public health concern, with projections indicating a substantial increase in prevalence over the coming decades. The disease spectrum ranges from simple steatosis to metabolic-dysfunction-associated steatohepatitis (MASH), fibrosis, cirrhosis, and hepatocellular carcinoma, contributing to significant morbidity and mortality worldwide. This review delves into the molecular mechanisms driving MASLD pathogenesis, including dysregulation of lipid metabolism, chronic inflammation, oxidative stress, mitochondrial dysfunction, and gut microbiota alterations. Recent advances in research have highlighted the role of genetic and epigenetic factors in disease progression, as well as novel therapeutic targets such as peroxisome proliferator-activated receptors (PPARs), fibroblast growth factors, and thyroid hormone receptor beta agonists. Given the multifaceted nature of MASLD, a multidisciplinary approach integrating early diagnosis, molecular insights, lifestyle interventions, and personalized therapies is critical. This review underscores the urgent need for continued research into innovative treatment strategies and precision medicine approaches to halt MASLD progression and improve patient outcomes.
Collapse
Affiliation(s)
- Jeysson E. Mejía-Guzmán
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (J.E.M.-G.); (R.A.B.-H.); (N.C.C.-T.)
| | - Ramón A. Belmont-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (J.E.M.-G.); (R.A.B.-H.); (N.C.C.-T.)
- Postgraduate Program in Experimental Biology, División de Ciencias Básicas y de la Salud (DCBS), Universidad Autonoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Norberto C. Chávez-Tapia
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (J.E.M.-G.); (R.A.B.-H.); (N.C.C.-T.)
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
| | - Natalia Nuño-Lámbarri
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (J.E.M.-G.); (R.A.B.-H.); (N.C.C.-T.)
- Surgery Department, Faculty of Medicine, The National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
6
|
Wang JJ, Chen XY, Zhang YR, Shen Y, Zhu ML, Zhang J, Zhang JJ. Role of genetic variants and DNA methylation of lipid metabolism-related genes in metabolic dysfunction-associated steatotic liver disease. Front Physiol 2025; 16:1562848. [PMID: 40166716 PMCID: PMC11955510 DOI: 10.3389/fphys.2025.1562848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), is one of the most common chronic liver diseases, which encompasses a spectrum of diseases, from metabolic dysfunction-associated steatotic liver (MASL) to metabolic dysfunction-associated steatohepatitis (MASH), and may ultimately progress to MASH-related cirrhosis and hepatocellular carcinoma (HCC). MASLD is a complex disease that is influenced by genetic and environmental factors. Dysregulation of hepatic lipid metabolism plays a crucial role in the development and progression of MASLD. Therefore, the focus of this review is to discuss the links between the genetic variants and DNA methylation of lipid metabolism-related genes and MASLD pathogenesis. We first summarize the interplay between MASLD and the disturbance of hepatic lipid metabolism. Next, we focus on reviewing the role of hepatic lipid related gene loci in the onset and progression of MASLD. We summarize the existing literature around the single nucleotide polymorphisms (SNPs) associated with MASLD identified by genome-wide association studies (GWAS) and candidate gene analyses. Moreover, based on recent evidence from human and animal studies, we further discussed the regulatory function and associated mechanisms of changes in DNA methylation levels in the occurrence and progression of MASLD, with a particular emphasis on its regulatory role of lipid metabolism-related genes in MASLD and MASH. Furthermore, we review the alterations of hepatic DNA and blood DNA methylation levels associated with lipid metabolism-related genes in MASLD and MASH patients. Finally, we introduce potential value of the genetic variants and DNA methylation profiles of lipid metabolism-related genes in developing novel prognostic biomarkers and therapeutic targets for MASLD, intending to provide references for the future studies of MASLD.
Collapse
Affiliation(s)
- Jun-Jie Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiao-Yuan Chen
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Rong Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Yan Shen
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Meng-Lin Zhu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jun Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jun-Jie Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
7
|
Zhang W, Guo J, Miao G, Chen J, Xu Y, Lai P, Zhang L, Han Y, Lam SM, Shui G, Wang Y, Huang W, Xian X. Fat-1 Ameliorates Metabolic Dysfunction-Associated Fatty Liver Disease and Atherosclerosis through Promoting the Nuclear Localization of PPARα in Hamsters. RESEARCH (WASHINGTON, D.C.) 2025; 8:0577. [PMID: 40052160 PMCID: PMC11884683 DOI: 10.34133/research.0577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 03/09/2025]
Abstract
Fat-1, an enzyme encoded by the fat-1 gene, is responsible for the conversion of endogenous omega-6 polyunsaturated fatty acids into omega-3 polyunsaturated fatty acids in Caenorhabditis elegans. To better investigate whether the expression of Fat-1 will exert a beneficial function in dyslipidemia and metabolic dysfunction-associated fatty liver disease (MAFLD), we established an adeno-associated virus 9 expressing Fat-1. We found that adeno-associated-virus-mediated expression of Fat-1 markedly reduced the levels of plasma triglycerides and total cholesterol but increased high-density lipoprotein levels in male wild-type hamsters on both chow diet and high-fat diet as well as in chow-diet-fed male LDLR-/- hamsters. Fat-1 ameliorated diet-induced MAFLD in wild-type hamsters by enhancing fatty acid oxidation through the hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent pathway. Mechanistically, Fat-1 increased the levels of multiple lipid derivatives as ligands for PPARα and simultaneously facilitated the nuclear localization of PPARα. Our results provide new insights into the multiple therapeutic potentials of Fat-1 to treat dyslipidemia, MAFLD, and atherosclerosis.
Collapse
Affiliation(s)
- Wenxi Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Jiabao Guo
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Guolin Miao
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Jingxuan Chen
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Yitong Xu
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Pingping Lai
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Lianxin Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Yufei Han
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology,
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- LipidALL Technologies Company Limited, Changzhou 213022, Jiangsu Province, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology,
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Wei Huang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research,
Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
8
|
Gan Y, Zeng Y, Huang J, Li Y, Zhu Q, Wang L. Polysaccharide extracted from Phellinus igniarius attenuated hyperuricemia by modulating bile acid metabolism and inhibiting uric acid synthesis in adenine/potassium oxonate-treated mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119365. [PMID: 39837359 DOI: 10.1016/j.jep.2025.119365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phellinus igniarius (Linnearus: Fries) Quelet (Phellinus igniarius) is an edible and medicinal fungi and has been used in China for centuries. It is found to improve organs function and metabolic homeostasis including ameliorating hyperuricemia (HUA). Polysaccharide is a predominant component in P. igniarius. AIMS OF THIS STUDY This study aimed to investigate the anti-HUA effects and underlying mechanism of the polysaccharide extracted from P. igniarius (PPI). MATERIALS AND METHODS PPI was extracted and characterized by molecular weight, monosaccharide composition and FT-IR spectroscopy. HUA was induced in C57BL/6 male mice by gavage of adenine/potassium oxonate for 14 days. PPI (2.2, 4.4 or 8.8 mg/kg) was orally given to HUA mice and its effects on HUA were determined. RESULTS Compared to HUA group, PPI significantly reduced the serum levels of uric acid (UA), creatinine, blood urea nitrogen (BUN), AST, ALT, and total cholesterol. In the liver of HUA mice, PPI notably inhibited the activity of xanthine oxidase (XOD) and its expression mediated by peroxisome proliferator-activated receptor α (PPARα), suggesting a decrease in UA synthesis. Furthermore, PPI was found to modulate enterohepatic bile acid (BA) metabolism. The profile of BAs showed that PPI significantly elevated the TUDCA + THDCA levels in the liver of HUA mice. In the hepatocytes HepG2, TUDCA decreased the expression of PPARα/XOD and reduced UA production, whereas THDCA did not present similar effects. The anti-HUA effects of TUDCA was further confirmed in HUA mice, where it lowered serum UA level and inhibited XOD expression and activity. CONCLUSION This study demonstrates that PPI ameliorates HUA in vivo, and this effect may be mediated by the regulation of bile acid metabolism, particularly through the function of TUDCA in suppressing UA production in the liver.
Collapse
Affiliation(s)
- Yuhan Gan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuting Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingyi Huang
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuxi Li
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Zhu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Lei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
9
|
Lago-Baameiro N, Camino T, Vazquez-Durán A, Sueiro A, Couto I, Santos F, Baltar J, Falcón-Pérez JM, Pardo M. Intra and inter-organ communication through extracellular vesicles in obesity: functional role of obesesomes and steatosomes. J Transl Med 2025; 23:207. [PMID: 39979938 PMCID: PMC11844161 DOI: 10.1186/s12967-024-06024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/22/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) represent a sophisticated mechanism of intercellular communication that is implicated in health and disease. Specifically, the role of EVs in metabolic regulation and their implications in metabolic pathologies, such as obesity and its comorbidities, remain unclear. METHODS Extracellular vesicles (EVs) were isolated through serial ultracentrifugation from murine adipocytes treated with palmitate or oleic acid, whole visceral and subcutaneous adipose tissue (obesesomes) of bariatric surgery obese donors, and human hepatocytes under steatosis (steatosomes) for functional in vitro experiments. Functional effects on inflammation and glucose and lipid metabolism of target cells (human and murine macrophages and hepatocytes) were assessed using ELISA, RT-PCR, and immunodetection. Isolated EVs from human steatotic (steatosomes) and control hepatocytes (hepatosomes) were characterized for quantity, size, and tetraspanin profile by NTA and Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS), and their protein cargo analyzed by qualitative (DDA) and quantitative (DIA-SWATH) proteomics using LC-MS/MS. Proteins identified by proteomics were validated by capturing EVs on functionalized chips by SP-IRIS. RESULTS AND CONCLUSIONS In this study, we investigated the role of EVs in the local communication between obese adipocytes and immune cells within adipose tissue, and the interaction of steatotic and healthy hepatocytes in the context of fatty liver disease progression. Furthermore, we analyzed obese adipose tissue-to-liver interactions through EV-obesesomes to elucidate their role in obesity-associated hepatic metabolic dysregulation. Our findings reveal that obesesomes promote inflammation and the secretion of pro-inflammatory cytokines upon interaction with macrophages, exerting a significant impact on reducing insulin resistance and altering lipid and glucose metabolism upon interaction with hepatocytes; in both cases, EVs from palmitate-loaded adipocytes and obesesomes from human visceral adipose depots demonstrated the most deleterious effect. Additionally, EVs secreted by steatotic hepatocytes (steatosomes) induced insulin resistance and altered lipid and glucose metabolism in healthy hepatocytes, suggesting their involvement in MASLD development. Proteomic analysis of steatosomes revealed that these vesicles contain liver disease-associated proteins, rendering them significant repositories of real-time biomarkers for the early stages and progression of MASLD.
Collapse
Affiliation(s)
- N Lago-Baameiro
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
| | - T Camino
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
| | - A Vazquez-Durán
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
| | - A Sueiro
- Grupo Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Spain
| | - I Couto
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
- Servicio de Cirugía Plástica y Reparadora, Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Spain
| | - F Santos
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
- Servicio de Cirugía General, Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Spain
| | - J Baltar
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
- Servicio de Cirugía General, Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Spain
| | - J M Falcón-Pérez
- Exosomes Laboratory and Metabolomics Platform, CIC bioGUNE-BRTA, CIBERehd, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - M Pardo
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain.
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Berthier A, Gheeraert C, Vinod M, Johanns M, Guille L, Haas JT, Dubois-Chevalier J, Eeckhoute J, Staels B, Lefebvre P. Unveiling the molecular legacy of transient insulin resistance: Implications for hepatic metabolic adaptability. J Hepatol 2025:S0168-8278(25)00080-7. [PMID: 39947330 DOI: 10.1016/j.jhep.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND & AIMS Insulin plays a central role in coordinating metabolic flexibility (MetF). Insulin resistance (IR) can impair MetF, contributing to type 2 diabetes and obesity. Transient IR episodes, like gestational diabetes or stress-induced hyperglycemia, also heighten the risk of later diabetes development. While the health significance of transient IR is well established, we aimed to better understand the heretofore poorly understood molecular processes that occur after such episodes. METHODS To do this, we characterized the hepatic response to a high-fat diet challenge in mice previously exposed to a transient IR episode. We integrated transcriptomic, epigenomic, lipidomic, and molecular clock assessments to provide a molecular basis for the observed dysregulations. RESULTS Our study shows that temporarily blocking the insulin receptor in young mice leads to later-life liver issues by hindering PPARα-mediated adaptation to a high-fat diet. This is linked to decreased histone active marks at PPARα sites and reduced endogenous PPARα ligands. Transient insulin receptor blockade also altered the liver's molecular clock, particularly affecting PPARα transcriptional responsiveness. CONCLUSIONS Seemingly reversible metabolic challenges in early adulthood may predispose the liver to exacerbated metabolic dysfunctions when confronted with chronic challenges later in life. IMPACT AND IMPLICATIONS While the health significance of transient insulin resistance is well established, the molecular processes that occur after such episodes are poorly understood. This study thus provides a circadian molecular paradigm for a later-in-life alteration of liver metabolic flexibility following a previous episode of insulin resistance and calls for particular attention to be paid to detecting transient episodes of insulin resistance as they occur in patients with gestational diabetes or stress-induced hyperglycemia. By extension, any transient exposure to compounds altering circadian rhythmicity, such as anti-depressants, might predispose to a compromised metabolic response to an unbalanced diet later in life.
Collapse
Affiliation(s)
- Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France.
| | - Céline Gheeraert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Manjula Vinod
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Manuel Johanns
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Loïc Guille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Joel T Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Julie Dubois-Chevalier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| |
Collapse
|
11
|
Attema B, de la Rosa Rodriguez MA, van Schothorst EM, Grefte S, Hooiveld GJ, Kersten S. Deficiency of the mitochondrial transporter SLC25A47 minimally impacts hepatic lipid metabolism in fasted and diet-induced obese mice. Mol Metab 2025; 92:102092. [PMID: 39746607 PMCID: PMC11773045 DOI: 10.1016/j.molmet.2024.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVE The peroxisome proliferator-activated receptor-alpha (PPARα) plays a central role in lipid metabolism in the liver by stimulating the expression of hundreds of genes. Accordingly, regulation by PPARα could be a screening tool to identify novel genes involved in hepatic lipid metabolism. Previously, the mitochondrial transporter SLC25A47 was suggested to play a role in energy metabolism and liver-specific uncoupling, but further research is lacking. METHODS We explored the potential role of SLC25A47 through in vitro studies and using mice overexpressing and lacking SLC25A47. RESULTS SLC25A47 was identified as a PPARα-regulated and fasting-induced gene in human and mouse hepatocytes. Adenoviral-mediated overexpression of SLC25A47 minimally impacted metabolic parameters during fasting and high-fat feeding. During high-fat feeding, SLC25A47 ablation also did not influence any metabolic parameters, apart from a minor improvement in glucose tolerance. In fasted mice, SLC25A47 ablation was associated with modest, reproducible, and likely indirect reductions in plasma triglycerides and glycerol. SLC25A47 ablation did not influence energy expenditure. Depending on the nutritional status, metabolomic analysis showed modest alterations in plasma, liver, and hepatic mitochondrial levels of various metabolites related to amino acid metabolism, TCA cycle, and fatty acid metabolism. No major and consistent alterations in levels of specific metabolites were found that establish the substrate for and function of SLC25A47. CONCLUSION Collectively, our results hint at a role of SLC25A47 in amino acid and fatty acid metabolism, yet suggest that SLC25A47 is dispensable for hepatic lipid homeostasis during fasting and high-fat feeding.
Collapse
Affiliation(s)
- Brecht Attema
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Montserrat A de la Rosa Rodriguez
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | | | - Sander Grefte
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Guido Jej Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
12
|
Wang Y, Zhang Y, Wang Y. Overexpression of Apolipoprotein A-I Alleviates Insulin Resistance in MASLD Mice Through the PPARα Pathway. Int J Mol Sci 2025; 26:1051. [PMID: 39940822 PMCID: PMC11817368 DOI: 10.3390/ijms26031051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Insulin resistance (IR) is one of the important causes of metabolic dysfunction-associated steatotic liver disease (MASLD). Apolipoprotein A-I (apoA-I) is secreted primarily by hepatocytes and plays an essential role in reverse cholesterol transport. Our previous studies revealed that apoA-I can mitigate the progression of metabolic dysfunction-associated steatohepatitis (MASH). However, there is no clear evidence to explain the relationship between apoA-I and IR. Here, we investigated the effects of apoA-I overexpression on IR in both HepG2 cells and mice. In vitro experiment results revealed that apoA-I overexpression can promote cellular glucose uptake in oleic acid-induced IR in HepG2 cells. High-fat, high-cholesterol, and high-fructose diets were used to induce IR in mice. The results showed that apoA-I overexpression improved glucose tolerance, reduced serum insulin levels, and ameliorated IR in diet-induced MASLD mice. Moreover, apoA-I promoted the expression of peroxisome proliferator-activated receptor α (PPARα) in the nucleus both in vitro and in vivo. In conclusion, apoA-I could alleviate MASLD by reducing IR in mice and might exert this effect through the PPARα pathway.
Collapse
Affiliation(s)
| | - Yudian Zhang
- Municipal Laboratory for Liver Protection and Regulation of Regeneration, Department of Cell Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
| | - Yutong Wang
- Municipal Laboratory for Liver Protection and Regulation of Regeneration, Department of Cell Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
| |
Collapse
|
13
|
Ali BM, Elbaz EM, Al-Mokaddem AK, El-Emam SZ, Awny MM. Delphinidin or α-amyrin attenuated liver steatosis and metabolic disarrangement in rats fed a high-fat diet. Biofactors 2025; 51:e2133. [PMID: 39431734 DOI: 10.1002/biof.2133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver pathology concomitant with metabolic disarrangement. This study assessed the therapeutic impacts of delphinidin, an anthocyanin, or α-amyrin, a pentacyclic triterpenoid, on NAFLD in rats and the underlying mechanisms involved. NAFLD was established by feeding a high-fat diet (HFD) for 10 weeks, either alone or in combination with delphinidin (40 mg/kg, oral) or α-amyrin (20 mg/kg, oral). Delphinidin or α-amyrin ameliorated the metabolic and histopathological perturbations induced by HFD. These compounds markedly attenuated NAFLD-induced hepatic steatosis, as evidenced by a substantial decrease in body weight, insulin resistance, and liver and adipose tissue indices. Alongside normalization of the atherogenic index, both improved HFD-mediated abnormalities in serum lipids, liver enzymes, leptin, and ghrelin levels. Moreover, their intervention activated the NFE2 like bZIP transcription factor 2 and heme oxygenase 1 pathways and abrogated HFD-triggered activation of mitogen-activated protein kinase 1 signaling. These remedies inhibited hepatic apoptosis and modulated the gene expression of lipogenic enzymes. Furthermore, histological analysis corroborated the suppression of lipid accumulation and amelioration of hepatic architecture in the treated rats. Our findings highlight the hepatoprotective value of delphinidin or α-amyrin against NAFLD and related metabolic diseases through their insulin-sensitizing, anti-inflammatory, antioxidant, and antiapoptotic effects.
Collapse
Affiliation(s)
- Bassam Mohamed Ali
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Eman M Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Soad Z El-Emam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Magdy M Awny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
14
|
Gilgenkrantz H, Paradis V, Lotersztajn S. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. Hepatology 2025; 81:269-287. [PMID: 37212145 PMCID: PMC11643143 DOI: 10.1097/hep.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| | - Valérie Paradis
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
- Pathology Department, Beaujon Hospital APHP, Paris-Cité University, Clichy, France
| | - Sophie Lotersztajn
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| |
Collapse
|
15
|
Mijiti T, Chen X, Ma X, Ma Y, Ma X, Chen B. Inhibition of hepatic PCSK9 as a novel therapeutic target ameliorates metabolic steatohepatitis in mice. Int Immunopharmacol 2024; 143:113621. [PMID: 39549549 DOI: 10.1016/j.intimp.2024.113621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND & AIMS Metabolic steatohepatitis (MASH) is closely related to metabolic disorders, and the main characteristics of MASH are hepatocyte steatosis with hepatocyte injury and inflammation. In severe cases, MASH can develop into liver cirrhosis. At present, there is no effective treatment for MASH. Proprotein convertase subtilisin/kexin 9 (PCSK9) is a popular target for the development of cholesterol-lowering drugs and therapeutic interventions for cardiovascular disease. The present study aimed to explore the role of PCSK9 in methionine- and choline-deficient (MCD) diet-induced MASH progression and its targeted intervention. METHODS PCSK9 expression was determined in a MASH mouse model, and the role of PCSK9 in the regulation of lipid metabolism, inflammation, and fibrosis was investigated using PCSK9 knockout (PCSK9-/-) mice fed a MCD diet. An adeno-associated virus was used to alter PCSK9 expression in MASH mice. RESULTS Following the MCD diet, C57BL/6J wild-type (WT) mice developed marked steatohepatitis and elevated hepatic PCSK9 expression, and circulating PCSK9 expression. PCSK9-/- mice showed significantly alleviated MCD-induced hepatic steatosis, with lower serum ALT levels, lower serum AST levels, smaller hepatic vacuoles, and less hepatic lipid deposition. PCSK9-/- mice on the MCD diet showed a significantly reduced levels of inflammation and fibrogenesis. Moreover, adeno-associated virus (AAV)-mediated PCSK9 silencing in mouse livers significantly relieved liver steatosis, inflammation, and fibrosis. CONCLUSIONS The present study demonstrated an important role of PCSK9 in MASH, suggesting that inhibition of PCSK9 may represent a novel and effective therapeutic strategy for MASH treatment.
Collapse
Affiliation(s)
- Tuoluonayi Mijiti
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Xiaocui Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiang Ma
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yitong Ma
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiumin Ma
- Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, China.
| | - Bangdang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
16
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
17
|
Farrash WF, Idris S, Elzubier ME, Khidir EBA, Aslam A, Mujalli A, Almaimani RA, Obaid AA, El-Readi MZ, Alobaidy MA, Salaka A, Shakoori AM, Saleh AM, Minshawi F, Samkari JA, Alshehre SM, Refaat B. Enhanced hepatoprotective effects of empagliflozin and vitamin D dual therapy against metabolic dysfunction-associated steatohepatitis in mice by boosted modulation of metabolic, oxidative stress, and inflammatory pathways. Int J Exp Pathol 2024; 105:219-234. [PMID: 39397269 DOI: 10.1111/iep.12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Although single treatment with sodium-glucose cotransporter-2 inhibitors (SGLT2i) or vitamin D3 (VD3) inhibited metabolic dysfunction-associated steatohepatitis (MASH) development in diabetic patients, their combination has not been explored previously. Hence, this study investigated the hepatoprotective effects of SGLT2i (empagliflozin) and/or VD3 against MASH in type 2 diabetic mice. Forty Mice were assigned into negative (NC) and positive (PC) controls, SGLT2i, VD3, and SGLT2i + VD3 groups. All animals, except the NC group, received high-fructose/high-fat diet (8 weeks) followed by diabetes induction. Diabetic mice then received another cycle of high-fructose/high-fat diet (4 weeks) followed by 8 weeks of treatment (five times/week) with SGLT2i (5.1 mg/kg/day) and/or VD3 (410 IU/Kg/day). The PC group demonstrated hyperglycaemia, dyslipidaemia, elevated liver enzymes, and increased non-alcoholic fatty liver disease activity score (NAS) with fibrosis. Hepatic glucose transporting molecule (SGLT2) with lipogenesis (SREBP-1/PPARγ), oxidative stress (MDA/H2O2), inflammation (IL1β/IL6/TNF-α), fibrosis (TGF-β1/α-SMA), and apoptosis (TUNEL/Caspase-3) markers alongside the PI3K/AKT/mTOR pathway increased in the PC group. Conversely, hepatic insulin-dependent glucose transporter (GLUT4), lipolytic (PPARα/INSIG1), antioxidant (GSH/GPx1/SOD1/CAT), and anti-inflammatory (IL-10) molecules with the inhibitor of PI3K/AKT/mTOR pathway (PTEN) decreased in the PC group. Whilst SGLT2i monotherapy outperformed VD3, their combination showed the best attenuation of hyperglycaemia, dyslipidaemia, and fibrosis with the strongest modulation of hepatic glucose-transporting and lipid-regulatory molecules, PI3K/AKT/mTOR pathway, and markers of oxidative stress, inflammation, fibrosis, and apoptosis. This study is the first to reveal boosted hepatoprotection for SGLT2i and VD3 co-therapy against diabetes-induced MASH, possibly via enhanced metabolic control and modulation of hepatic PI3K/AKT/mTOR, anti-inflammatory, anti-oxidative, and anti-fibrotic pathways.
Collapse
Affiliation(s)
- Wesam F Farrash
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shakir Idris
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed E Elzubier
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Elshiekh B A Khidir
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Akhmed Aslam
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulrahman Mujalli
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad A Obaid
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud Z El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Mohammad A Alobaidy
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Afnan Salaka
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Afnan M Shakoori
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa M Saleh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Faisal Minshawi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Jamil A Samkari
- Department of Family and Community Medicine, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sallwa M Alshehre
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Bassem Refaat
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
18
|
Taghizadeh M, Maleki MH, Vakili O, Tavakoli R, Zarei P, Dehghanian A, Bordbar H, Shafiee SM. Bilirubin, a hepatoprotective agent that activates SIRT1, PGC-1α, and PPAR-α, while inhibiting NF-κB in rats with metabolic-associated fatty liver disease. Sci Rep 2024; 14:29244. [PMID: 39587213 PMCID: PMC11589846 DOI: 10.1038/s41598-024-80119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disorder characterized by fatty liver disease alongside overweight or obesity and/or type 2 diabetes mellitus (T2DM). Timely intervention is crucial for a potential cure. This study aimed to investigate the effects of bilirubin, an endogenous antioxidant, on lipid metabolism and inflammation in MAFLD. Specifically, it examined bilirubin's impact on SIRT1, PPAR-α, and NF-κB in the livers of rats with MAFLD induced by a high-fat diet (HFD) and streptozotocin (STZ) administration. Forty eight-week adult male Sprague Dawley rats were divided into five groups (n = 8): Control, HFD-STZ, HFD-S-BR6, HFD-S-BR14, and C-BR14. In the last three groups, bilirubin administration was performed intraperitoneally for 6 and 14 weeks (10 mg/kg/day). We selected the key genes associated with MAFLD and subsequently performed GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses to explore the enriched biological processes and signaling pathways. Hence, the gene expression of SIRT1, PGC-1α, PPAR-α, and inflammatory genes (NF-κB, TNF-α, IL-6, and IL-1β) was measured using Real-time quantitative PCR. Stereological and histopathological alterations of liver structure as well as lipid profile, biochemical indices, and liver indices, were also assessed among different groups. The enrichment analysis identified that several signaling pathways and biological processes might be related to MAFLD. Bilirubin-treated rats contained higher PPAR-α, PGC-1α, and SIRT1 expression levels by approximately 5.7-, 2.1-, and 2.2-fold, respectively, compared to the HFD-receiving rats (p < 0.0001, p < 0.05, and p < 0.05). Whereas, the genes involved in the inflammatory cascades, including NF-κB, TNF-α, and IL-6, were downregulated by 0.6-fold (p < 0.05) following 14-week treatment of bilirubin, while only significantly decreased expression of NF-κB and IL-6 (approximately 0.6-fold, p < 0.05) were observed after 6-week treatment of bilirubin. Remarkably, bilirubin administration favorably reversed the effects of HFD on the liver's volume and cell numbers and ameliorated the related structural changes. It also improved lipid profile, biochemical parameters, and liver indices of HFD-STZ rats. This study indicated that bilirubin acts as a protective/ameliorative compound against MAFLD, particularly through regulating the key genes involved in lipid metabolism and inflammation in HFD-STZ rats.
Collapse
Affiliation(s)
- Motahareh Taghizadeh
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hasan Maleki
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ramin Tavakoli
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parvin Zarei
- Department of Bioinformatics, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirreza Dehghanian
- Trauma Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Molecular Pathology and Cytogenetics Division, Department of Pathology, School of Medicine, Shiraz University, Shiraz, Iran
| | - Hossein Bordbar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Reid MV, Fredickson G, Mashek DG. Mechanisms coupling lipid droplets to MASLD pathophysiology. Hepatology 2024:01515467-990000000-01067. [PMID: 39475114 DOI: 10.1097/hep.0000000000001141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 01/03/2025]
Abstract
Hepatic steatosis, the buildup of neutral lipids in lipid droplets (LDs), is commonly referred to as metabolic dysfunction-associated steatotic liver disease when alcohol or viral infections are not involved. Metabolic dysfunction-associated steatotic liver disease encompasses simple steatosis and the more severe metabolic dysfunction-associated steatohepatitis, characterized by inflammation, hepatocyte injury, and fibrosis. Previously viewed as inert markers of disease, LDs are now understood to play active roles in disease etiology and have significant nonpathological and pathological functions in cell signaling and function. These dynamic properties of LDs are tightly regulated by hundreds of proteins that coat the LD surface, controlling lipid metabolism, trafficking, and signaling. The following review highlights various facets of LD biology with the primary goal of discussing key mechanisms through which LDs promote the development of advanced liver diseases, including metabolic dysfunction-associated steatohepatitis.
Collapse
Affiliation(s)
- Mari V Reid
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gavin Fredickson
- Department of Integrated Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
20
|
Erdenebileg S, Kim M, Nam Y, Cha KH, Le TT, Jung SH, Nho CW. Artemisia argyi ethanol extract ameliorates nonalcoholic steatohepatitis-induced liver fibrosis by modulating gut microbiota and hepatic signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118415. [PMID: 38848971 DOI: 10.1016/j.jep.2024.118415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia argyi (AA), a herbal medicine traditionally used in Asian countries, to treat inflammatory conditions such as eczema, dermatitis, arthritis, allergic asthma and colitis. However, the mechanism of action of this plant with regard to hepatitis and other liver-related diseases is still unclear. AIM This study aimed to investigate the effects of AA ethanol extract on NASH-related fibrosis and gut microbiota in a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD)-induced mouse model. METHODS Male C57BL/6J mice were fed CDAHFD, with or without AA ethanol extract treatment. Biochemical markers, lipid profiles, hepatic mRNA expression levels of key genes, and the fibrosis area were assessed. In vitro, TGF-β-stimulated human hepatic stellate LX-2 cells and mouse primary hepatic stellate cells (mHSCs) were used to elucidate the effects of AA ethanol extract on fibrosis and steatosis. 16S rRNA sequencing, QIIME2, and PICRUST2 were employed to analyze gut microbial diversity, composition, and functional pathways. RESULTS Treatment with the AA ethanol extract improved plasma and liver lipid profiles, modulated hepatic mRNA expression levels of antioxidant, lipolytic, and fibrosis-related genes, and significantly reduced CDAHFD-induced hepatic fibrosis. Gut microbiota analysis revealed a marked decrease in Acetivibrio ethanolgignens abundance upon treatment with the AA ethanol extract, and its functional pathways were significantly correlated with NASH/fibrosis markers. The AA ethanol extract and its active components (jaceosidin, eupatilin, and chlorogenic acid) inhibited fibrosis-related markers in LX-2 and mHSC. CONCLUSION The AA ethanol extract exerted therapeutic effects on CDAHFD-induced liver disease by modulating NASH/fibrosis-related factors and gut microbiota composition. Notably, AA treatment reduced the abundance of the potentially profibrotic bacterium (A. ethanolgignens). These findings suggest that AA is a promising candidate for treating NASH-induced fibrosis.
Collapse
Affiliation(s)
- Saruul Erdenebileg
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea; Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea
| | - Myungsuk Kim
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea; Natural Product Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea; Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, 26426, South Korea
| | - Yunseong Nam
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea; Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea
| | - Kwang Hyun Cha
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea; Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, 26426, South Korea; Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea
| | - Tam Thi Le
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea; Natural Product Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea
| | - Sang Hoon Jung
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea; Natural Product Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea
| | - Chu Won Nho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea; Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea.
| |
Collapse
|
21
|
Xie J, Yin Y, Lin B, Li X, Li Q, Tang X, Pan L, Xiong X. Autophagy and PPARs/NF-κB-associated inflammation are involved in hepatotoxicity induced by the synthetic phenolic antioxidant 2,4-di-tert-butylphenol in common carp (Cyprinus carpio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116937. [PMID: 39226863 DOI: 10.1016/j.ecoenv.2024.116937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
The synthetic phenolic antioxidant 2,4-di-tert-butylphenol (2,4-DTBP) is an emergent contaminant and can disrupt the delicate balance of aquatic ecosystems. This study aimed to investigate 2,4-DTBP-induced hepatotoxicity in common carp and the underlying mechanisms involved. Sixty common carp were divided into four groups and exposed to 0 mg/L, 0.01 mg/L, 0.1 mg/L or 1 mg/L 2,4-DTBP for 30 days. Here, we first demonstrated that 2,4-DTBP exposure caused liver damage, manifested as hepatocyte nuclear pyknosis, inflammatory cell infiltration and apoptosis. Moreover, 2,4-DTBP exposure induced hepatic reactive oxygen species (ROS) overload and disrupted antioxidant capacity, as indicated by the reduced activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). In addition, transmission electron microscopy revealed that 2,4-DTBP exposure induced autophagosome accumulation in the liver of common carp. Western blot analysis further revealed that 2,4-DTBP exposure significantly decreased the protein levels of mTOR and increased the LC3II/LC3I ratio. Furthermore, 2,4-DTBP exposure inhibited lysozyme (LZM) and alkaline phosphatase (AKP) activity; decreased immunoglobulin M (IgM), complement 3 (C3), and complement 4 (C4) levels in the serum; increased the mRNA levels of proinflammatory cytokines (NF-κB, TNF-α, IL-1β and IL-6); and increased the mRNA levels of three types of proliferator-activated receptors (PPARs) (α, β/δ and γ). Molecular docking revealed that 2,4-DTBP directly binds to the internal active pocket of PPARs. Overall, we concluded that 2,4-DTBP exposure in aquatic systems could induce hepatotoxicity in common carp by regulating autophagy and controlling inflammatory responses. The present study provides new insights into the hepatotoxicity mechanism induced by 2,4-DTBP in aquatic organisms and furthers our understanding of the effects of 2,4-DTBP on public health and ecotoxicology.
Collapse
Affiliation(s)
- Jiaqi Xie
- Hunan Food and Drug Vocational College, Changsha, Hunan Province 410208, China
| | - Yuxiang Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Bixiao Lin
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410013, China
| | - Xinlian Li
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000,, China
| | - Qiuyue Li
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000,, China
| | - Xiaoqing Tang
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000,, China
| | - Lingai Pan
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Xuan Xiong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
22
|
Wu D, van de Graaf SFJ. Maladaptive regeneration and metabolic dysfunction associated steatotic liver disease: Common mechanisms and potential therapeutic targets. Biochem Pharmacol 2024; 227:116437. [PMID: 39025410 DOI: 10.1016/j.bcp.2024.116437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The normal liver has an extraordinary capacity of regeneration. However, this capacity is significantly impaired in steatotic livers. Emerging evidence indicates that metabolic dysfunction associated steatotic liver disease (MASLD) and liver regeneration share several key mechanisms. Some classical liver regeneration pathways, such as HGF/c-Met, EGFR, Wnt/β-catenin and Hippo/YAP-TAZ are affected in MASLD. Some recently established therapeutic targets for MASH such as the Thyroid Hormone (TH) receptors, Glucagon-like protein 1 (GLP1), Farnesoid X receptor (FXR), Peroxisome Proliferator-Activated Receptors (PPARs) as well as Fibroblast Growth Factor 21 (FGF21) are also reported to affect hepatocyte proliferation. With this review we aim to provide insight into common molecular pathways, that may ultimately enable therapeutic strategies that synergistically ameliorate steatohepatitis and improve the regenerating capacity of steatotic livers. With the recent rise of prolonged ex-vivo normothermic liver perfusion prior to organ transplantation such treatment is no longer restricted to patients undergoing major liver resection or transplantation, but may eventually include perfused (steatotic) donor livers or even liver segments, opening hitherto unexplored therapeutic avenues.
Collapse
Affiliation(s)
- Dandan Wu
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, the Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, the Netherlands.
| |
Collapse
|
23
|
Jiang D, Yang L, Meng X, Xu Q, Zhou X, Liu B. Let-7f-5p Modulates Lipid Metabolism by Targeting Sterol Regulatory Element-Binding Protein 2 in Response to PRRSV Infection. Vet Sci 2024; 11:392. [PMID: 39330771 PMCID: PMC11435751 DOI: 10.3390/vetsci11090392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has caused substantial damage to the pig industry. MicroRNAs (miRNAs) were found to play crucial roles in modulating the pathogenesis of PRRS virus (PRRSV). In the present study, we revealed that PRRSV induced let-7f-5p to influence lipid metabolism to regulate PRRSV pathogenesis. A transcriptome analysis of PRRSV-infected PK15CD163 cells transfected with let-7f-5p mimics or negative control (NC) generated 1718 differentially expressed genes, which were primarily associated with lipid metabolism processes. Furthermore, the master regulator of lipogenesis SREBP2 was found to be directly targeted by let-7f-5p using a dual-luciferase reporter system and Western blotting. The findings demonstrate that let-7f-5p modulates lipogenesis by targeting SREBP2, providing novel insights into miRNA-mediated PRRSV pathogenesis and offering a potential antiviral therapeutic target.
Collapse
Affiliation(s)
- Dongfeng Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Institute of Pig Biotech Breeding, Zhengzhou 450046, China
| | - Liyu Yang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Institute of Pig Biotech Breeding, Zhengzhou 450046, China
| | - Xiangge Meng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Institute of Pig Biotech Breeding, Zhengzhou 450046, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
24
|
Yahya MA, Alshammari GM, Osman MA, Al-Harbi LN, Yagoub AEA, AlSedairy SA. Liquorice root extract and isoliquiritigenin attenuate high-fat diet-induced hepatic steatosis and damage in rats by regulating AMPK. Arch Physiol Biochem 2024; 130:385-400. [PMID: 36121371 DOI: 10.1080/13813455.2022.2102654] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Objective: This study compared the ability of Liquorice roots aqueous extract (LRE) and its ingredient, isoliquiritigenin (ISL), in alleviating high-fat diet (HFD)-induced hepatic steatosis and examined if this effect involves activation of AMPK.Materials and methods: Control or HFD-fed rats were treated with the vehicle, LRE (200 mg/kg), or ISL (30 mg/kg) for 8 weeks orally.Results: ISL and LRE reduced HFD-induced hyperglycaemia, improved liver structure, lowered serum and hepatic lipids, and attenuated hepatic oxidative stress and inflammation. In the control and HFD-fed rats, ISL and LRE significantly stimulated the muscular and hepatic mRNA and protein levels of AMPK, improved oral glucose tolerance, reduced hepatic mRNA levels of SREBP1/2, and upregulated hepatic levels of PPARα and Bcl2. These effects were comparable for ISL and LRE and were prevented by co-administration of compound C, an AMPK inhibitor.Discussion and conclusion: ISL and LRE provide an effective theory to alleviate hepatic steatosis through activating AMPK.
Collapse
Affiliation(s)
- Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Magdi A Osman
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sahar Abdulaziz AlSedairy
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Zhang D, Zhao Y, Zhang G, Lank D, Cooke S, Wang S, Nuotio-Antar A, Tong X, Yin L. Suppression of hepatic ChREBP⍺-CYP2C50 axis-driven fatty acid oxidation sensitizes mice to diet-induced MASLD/MASH. Mol Metab 2024; 85:101957. [PMID: 38740087 PMCID: PMC11145360 DOI: 10.1016/j.molmet.2024.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVES Compromised hepatic fatty acid oxidation (FAO) has been observed in human MASH patients and animal models of MASLD/MASH. It remains poorly understood how and when the hepatic FAO pathway is suppressed during the progression of MASLD towards MASH. Hepatic ChREBP⍺ is a classical lipogenic transcription factor that responds to the intake of dietary sugars. METHODS We examined its role in regulating hepatocyte fatty acid oxidation (FAO) and the impact of hepatic Chrebpa deficiency on sensitivity to diet-induced MASLD/MASH in mice. RESULTS We discovered that hepatocyte ChREBP⍺ is both necessary and sufficient to maintain FAO in a cell-autonomous manner independently of its DNA-binding activity. Supplementation of synthetic PPAR⍺/δ agonist is sufficient to restore FAO in Chrebp-/- primary mouse hepatocytes. Hepatic ChREBP⍺ was decreased in mouse models of diet-induced MAFSLD/MASH and in patients with MASH. Hepatocyte-specific Chrebp⍺ knockout impaired FAO, aggravated liver steatosis and inflammation, leading to early-onset fibrosis in response to diet-induced MASH. Conversely, liver overexpression of ChREBP⍺-WT or its non-lipogenic mutant enhanced FAO, reduced lipid deposition, and alleviated liver injury, inflammation, and fibrosis. RNA-seq analysis identified the CYP450 epoxygenase (CYP2C50) pathway of arachidonic acid metabolism as a novel target of ChREBP⍺. Over-expression of CYP2C50 partially restores hepatic FAO in primary hepatocytes with Chrebp⍺ deficiency and attenuates preexisting MASH in the livers of hepatocyte-specific Chrebp⍺-deleted mice. CONCLUSIONS Our findings support the protective role of hepatocyte ChREBPa against diet-induced MASLD/MASH in mouse models in part via promoting CYP2C50-driven FAO.
Collapse
Affiliation(s)
- Deqiang Zhang
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | - Yuee Zhao
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Furong District, Changsha, Hunan Province 410011, PR China
| | - Gary Zhang
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | - Daniel Lank
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Sarah Cooke
- Neurosciences Graduate Program, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA
| | - Sujuan Wang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Furong District, Changsha, Hunan Province 410011, PR China
| | - Alli Nuotio-Antar
- Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Tong
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | - Lei Yin
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA.
| |
Collapse
|
26
|
Almohawes ZN, El-Kott A, Morsy K, Shati AA, El-Kenawy AE, Khalifa HS, Elsaid FG, Abd-Lateif AEKM, Abu-Zaiton A, Ebealy ER, Abdel-Daim MM, Ghanem RA, Abd-Ella EM. Salidroside inhibits insulin resistance and hepatic steatosis by downregulating miR-21 and subsequent activation of AMPK and upregulation of PPARα in the liver and muscles of high fat diet-fed rats. Arch Physiol Biochem 2024; 130:257-274. [PMID: 35061559 DOI: 10.1080/13813455.2021.2024578] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023]
Abstract
This study evaluated if salidroside (SAL) alleviates high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) by downregulating miR-21. Rats (n = 8/group) were treated for 12 weeks as normal diet (control/ND), ND + agmoir negative control (NC) (150 µg/kg), ND + SAL (300 mg/kg), HFD, HFD + SAL, HFD + compound C (an AMPK inhibitor) (200 ng/kg), HFD + SAL + NXT629 (a PPAR-α antagonist) (30 mg/kg), and HFD + SAL + miR-21 agomir (150 µg/kg). SAL improved glucose and insulin tolerance and preserved livers in HFD-fed rats. In ND and HFD-fed rats, SAL reduced levels of serum and hepatic lipids and the hepatic expression of SREBP1, SREBP2, fatty acid (FA) synthase, and HMGCOAR. It also activated hepatic Nrf2 and increased hepatic/muscular activity of AMPK and levels of PPARα. All effects afforded by SAL were prevented by CC, NXT629, and miR-21 agmoir. In conclusion, activation of AMPK and upregulation of PPARα mediate the anti-steatotic effect of SAL.
Collapse
Affiliation(s)
- Zakiah N Almohawes
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Attalla El-Kott
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Kareem Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, College of Science, Cairo University, Cairo, Egypt
| | - Ali A Shati
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ayman E El-Kenawy
- Pathology Department, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Heba S Khalifa
- Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Fahmy G Elsaid
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | | | - Eman R Ebealy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmaceutical Sciences Department, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Reham A Ghanem
- Oral Biology Department, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Eman M Abd-Ella
- Zoology Department, College of Science, Fayoum University, Fayoum, Egypt
- Biology Department, College of Science and Art, Al-Baha University, Al-Mandaq, Saudi Arabia
| |
Collapse
|
27
|
Lyu J, Okada H, Sunagozaka H, Kawaguchi K, Shimakami T, Nio K, Murai K, Shirasaki T, Yoshida M, Arai K, Yamashita T, Tanaka T, Harada K, Takamura T, Kaneko S, Yamashita T, Honda M. Potential utility of l-carnitine for preventing liver tumors derived from metabolic dysfunction-associated steatohepatitis. Hepatol Commun 2024; 8:e0425. [PMID: 38619434 PMCID: PMC11019826 DOI: 10.1097/hc9.0000000000000425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/26/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Recent reports have unveiled the potential utility of l-carnitine to alleviate metabolic dysfunction-associated steatohepatitis (MASH) by enhancing mitochondrial metabolic function. However, its efficacy at preventing the development of HCC has not been assessed fully. METHODS l-carnitine (2 g/d) was administered to 11 patients with MASH for 10 weeks, and blood liver function tests were performed. Five patients received a serial liver biopsy, and liver histology and hepatic gene expression were evaluated using this tissue. An atherogenic plus high-fat diet MASH mouse model received long-term l-carnitine administration, and liver histology and liver tumor development were evaluated. RESULTS Ten-week l-carnitine administration significantly improved serum alanine transaminase and aspartate transaminase levels along with a histological improvement in the NAFLD activity score, while steatosis and fibrosis were not improved. Gene expression profiling revealed a significant improvement in the inflammation and profibrotic gene signature as well as the recovery of lipid metabolism. Long-term l-carnitine administration to atherogenic plus high-fat diet MASH mice substantially improved liver histology (inflammation, steatosis, and fibrosis) and significantly reduced the incidence of liver tumors. l-carnitine directly reduced the expression of the MASH-associated and stress-induced transcriptional factor early growth response 1. Early growth response 1 activated the promoter activity of neural precursor cell expressed, developmentally downregulated protein 9 (NEDD9), an oncogenic protein. Thus, l-carnitine reduced the activation of the NEDD9, focal adhesion kinase 1, and AKT oncogenic signaling pathway. CONCLUSIONS Short-term l-carnitine administration ameliorated MASH through its anti-inflammatory effects. Long-term l-carnitine administration potentially improved the steatosis and fibrosis of MASH and may eventually reduce the risk of HCC.
Collapse
Affiliation(s)
- Junyan Lyu
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hajime Sunagozaka
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kazuhisa Murai
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takayoshi Shirasaki
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Mika Yoshida
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kuniaki Arai
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takuji Tanaka
- Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masao Honda
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
28
|
Kadam I, Trasino SE, Korsmo H, Lucas J, Pinkas M, Jiang X. Prenatal Choline Supplementation Improves Glucose Tolerance and Reduces Liver Fat Accumulation in Mouse Offspring Exposed to Ethanol during the Prenatal and Postnatal Periods. Nutrients 2024; 16:1264. [PMID: 38732511 PMCID: PMC11085373 DOI: 10.3390/nu16091264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Prenatal alcohol exposure (AE) affects cognitive development. However, it is unclear whether prenatal AE influences the metabolic health of offspring and whether postnatal AE exacerbates metabolic deterioration resulting from prenatal AE. Choline is a semi-essential nutrient that has been demonstrated to mitigate the cognitive impairment of prenatal AE. This study investigated how maternal choline supplementation (CS) may modify the metabolic health of offspring with prenatal and postnatal AE (AE/AE). C57BL/6J female mice were fed either a Lieber-DeCarli diet with 1.4% ethanol between embryonic day (E) 9.5 and E17.5 or a control diet. Choline was supplemented with 4 × concentrations versus the control throughout pregnancy. At postnatal week 7, offspring mice were exposed to 1.4% ethanol for females and 3.9% ethanol for males for 4 weeks. AE/AE increased hepatic triglyceride accumulation in male offspring only, which was normalized by prenatal CS. Prenatal CS also improved glucose tolerance compared to AE/AE animals. AE/AE suppressed hepatic gene expression of peroxisome proliferator activated receptor alpha (Ppara) and low-density lipoprotein receptor (Ldlr), which regulate fatty acid catabolism and cholesterol reuptake, respectively, in male offspring. However, these changes were not rectified by prenatal CS. In conclusion, AE/AE led to an increased risk of steatosis and was partially prevented by prenatal CS in male mice.
Collapse
Affiliation(s)
- Isma’il Kadam
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA; (I.K.); (H.K.)
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA; (J.L.); (M.P.)
| | - Steven E. Trasino
- Nutrition Program, School of Urban Public Health, Hunter College, City University of New York, New York, NY 10065, USA
| | - Hunter Korsmo
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA; (I.K.); (H.K.)
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA; (J.L.); (M.P.)
| | - Jessica Lucas
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA; (J.L.); (M.P.)
| | - Myriam Pinkas
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA; (J.L.); (M.P.)
| | - Xinyin Jiang
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA; (I.K.); (H.K.)
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA; (J.L.); (M.P.)
| |
Collapse
|
29
|
Moore MP, Shryack G, Alessi I, Wieschhaus N, Meers GM, Johnson SA, Wheeler AA, Ibdah JA, Parks EJ, Rector RS. Relationship between serum β-hydroxybutyrate and hepatic fatty acid oxidation in individuals with obesity and NAFLD. Am J Physiol Endocrinol Metab 2024; 326:E493-E502. [PMID: 38381399 PMCID: PMC11194052 DOI: 10.1152/ajpendo.00336.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation that can progress to inflammation (nonalcoholic steatohepatitis, NASH), and fibrosis. Serum β-hydroxybutyrate (β-HB), a product of the ketogenic pathway, is commonly used as a surrogate marker for hepatic fatty acid oxidation (FAO). However, it remains uncertain whether this relationship holds true in the context of NAFLD in humans. We compared fasting serum β-HB levels with direct measurement of liver mitochondrial palmitate oxidation in humans stratified based on NAFLD severity (n = 142). Patients were stratified based on NAFLD activity score (NAS): NAS = 0 (no disease), NAS = 1-2 (mild), NAS = 3-4 (moderate), and NAS ≥ 5 (advanced). Moderate and advanced NAFLD is associated with reductions in liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), serum β-HB, but not 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL) mRNA, relative to no disease. Worsening liver mitochondrial complete palmitate oxidation corresponded with lower HMGCS2 mRNA but not total (complete + incomplete) palmitate oxidation. Interestingly, we found that liver HMGCS2 mRNA and serum β-HB correlated with liver mitochondrial β-hydroxyacyl-CoA dehydrogenase (β-HAD) activity and CPT1A mRNA. Also, lower mitochondrial mass and markers of mitochondrial turnover positively correlated with lower HMGCS2 in the liver. These data suggest that liver ketogenesis and FAO occur at comparable rates in individuals with NAFLD. Our findings support the utility of serum β-HB to serve as a marker of liver injury and hepatic FAO in the context of NAFLD.NEW & NOTEWORTHY Serum β-hydroxybutyrate (β-HB) is frequently utilized as a surrogate marker for hepatic fatty acid oxidation; however, few studies have investigated this relationship during states of liver disease. We found that the progression of nonalcoholic fatty liver disease (NAFLD) is associated with reductions in circulating β-HB and liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2). As well, decreased rates of hepatic fatty acid oxidation correlated with liver HMGCS2 mRNA and serum β-HB. Our work supports serum β-HB as a potential marker for hepatic fatty acid oxidation and liver injury during NAFLD.
Collapse
Affiliation(s)
- Mary P Moore
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Grace Shryack
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, Columbia, Missouri, United States
| | - Isabella Alessi
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, Columbia, Missouri, United States
| | - Nicole Wieschhaus
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, Columbia, Missouri, United States
| | - Grace M Meers
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, Columbia, Missouri, United States
| | - Sarah A Johnson
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri, United States
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Andrew A Wheeler
- Department of Surgery, University of Missouri, Columbia, Missouri, United States
| | - Jamal A Ibdah
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, Columbia, Missouri, United States
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - R Scott Rector
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, Columbia, Missouri, United States
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
30
|
Zhu B, Wu H, Li KS, Eisa-Beygi S, Singh B, Bielenberg DR, Huang W, Chen H. Two sides of the same coin: Non-alcoholic fatty liver disease and atherosclerosis. Vascul Pharmacol 2024; 154:107249. [PMID: 38070759 DOI: 10.1016/j.vph.2023.107249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 02/03/2024]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Kathryn S Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, United States of America
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
31
|
Ohene-Marfo P, Nguyen HVM, Mohammed S, Thadathil N, Tran A, Nicklas EH, Wang D, Selvarani R, Farriester JW, Varshney R, Kinter M, Richardson A, Rudolph MC, Deepa SS. Non-Necroptotic Roles of MLKL in Diet-Induced Obesity, Liver Pathology, and Insulin Sensitivity: Insights from a High-Fat, High-Fructose, High-Cholesterol Diet Mouse Model. Int J Mol Sci 2024; 25:2813. [PMID: 38474061 PMCID: PMC10931720 DOI: 10.3390/ijms25052813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic inflammation is a key player in metabolic dysfunction-associated fatty liver disease (MAFLD) progression. Necroptosis, an inflammatory cell death pathway, is elevated in MAFLD patients and mouse models, yet its role is unclear due to the diverse mouse models and inhibition strategies. In our study, we inhibited necroptosis by targeting mixed lineage kinase domain-like pseudokinase (MLKL), the terminal effector of necroptosis, in a high-fat, high-fructose, high-cholesterol (HFHFrHC) mouse model of diet-induced MAFLD. Despite the HFHFrHC diet upregulating MLKL (2.5-fold), WT mice livers showed no increase in necroptosis markers or associated proinflammatory cytokines. Surprisingly, Mlkl-/- mice experienced exacerbated liver inflammation without protection from diet-induced liver damage, steatosis, or fibrosis. In contrast, Mlkl+/- mice showed a significant reduction in these parameters that was associated with elevated Pparα and Pparγ levels. Both Mlkl-/- and Mlkl+/- mice on the HFHFrHC diet resisted diet-induced obesity, attributed to the increased beiging, enhanced oxygen consumption, and energy expenditure due to adipose tissue, and exhibited improved insulin sensitivity. These findings highlight the tissue-specific effects of MLKL on the liver and adipose tissue, and they suggest a dose-dependent effect of MLKL on liver pathology.
Collapse
Affiliation(s)
- Phoebe Ohene-Marfo
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
| | - Hoang Van M. Nguyen
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Sabira Mohammed
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Nidheesh Thadathil
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
| | - Albert Tran
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
| | - Evan H. Nicklas
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
| | - Dawei Wang
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
| | - Ramasamy Selvarani
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
| | - Jacob W. Farriester
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rohan Varshney
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Arlan Richardson
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Oklahoma Center for Geroscience & Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK 73104, USA
| | - Michael C. Rudolph
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sathyaseelan S. Deepa
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| |
Collapse
|
32
|
Shimizu Y, Hamada K, Guo T, Hasegawa C, Kuga Y, Takeda K, Yagi T, Koyama H, Takagi H, Aotani D, Kataoka H, Tanaka T. Role of PPARα in inflammatory response of C2C12 myotubes. Biochem Biophys Res Commun 2024; 694:149413. [PMID: 38141556 DOI: 10.1016/j.bbrc.2023.149413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Recent studies have shown a role of inflammation in muscle atrophy and sarcopenia. However, no anti-inflammatory pharmacotherapy has been established for the treatment of sarcopenia. Here, we investigate the potential role of PPARα and its ligands on inflammatory response and PGC-1α gene expression in LPS-treated C2C12 myotubes. Knockdown of PPARα, whose expression was upregulated upon differentiation, augmented IL-6 or TNFα gene expression. Conversely, PPARα overexpression or its activation by ligands suppressed 2-h LPS-induced cytokine expression, with pemafibrate attenuating NF-κB or STAT3 phosphorylation. Of note, reduction of PGC-1α gene expression by LPS treatment for 24 hours was partially reversed by fenofibrate. Our data demonstrate a critical inhibitory role of PPARα in inflammatory response of C2C12 myotubes and suggest a future possibility of PPARα ligands as a candidate for anti-inflammatory therapy against sarcopenia.
Collapse
Affiliation(s)
- Yuki Shimizu
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Keiko Hamada
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Tingting Guo
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Chie Hasegawa
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Yusuke Kuga
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Katsushi Takeda
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Takashi Yagi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Hiroyuki Koyama
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetology, Nagoya City University East Medical Center, 1-2-23 Wakamizu, Chikusa-ku, Nagoya, 464-8547, Japan
| | - Daisuke Aotani
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan.
| |
Collapse
|
33
|
Ohene-Marfo P, Nguyen HVM, Mohammed S, Thadathil N, Tran A, Nicklas EH, Wang D, Selvarani R, Farriester J, Varshney R, Kinter M, Richardson A, Rudolph M, Deepa SS. Non-Necroptotic Roles of MLKL in Diet-Induced Obesity, Liver Pathology, and Insulin Sensitivity: Insights from a High Fat, High Fructose, High Cholesterol Diet Mouse Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575102. [PMID: 38260537 PMCID: PMC10802562 DOI: 10.1101/2024.01.10.575102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Chronic inflammation is a key player in metabolic dysfunction-associated fatty liver disease (MAFLD) progression. Necroptosis, an inflammatory cell death pathway, is elevated in MAFLD patients and mouse models, yet its role is unclear due to diverse mouse models and inhibition strategies. In our study, we inhibited necroptosis by targeting mixed lineage kinase domain like pseudokinase (MLKL), the terminal effector of necroptosis, in a high-fat, high-fructose, high-cholesterol (HFHFrHC) mouse model of diet-induced MAFLD mouse model. Despite HFHFrHC diet upregulating MLKL (2.5-fold), WT mice livers showed no increase in necroptosis markers or associated proinflammatory cytokines. Surprisingly, Mlkl -/- mice experienced exacerbated liver inflammation without protection from diet-induced liver damage, steatosis, or fibrosis. In contrast, Mlkl +/- mice showed significant reduction in these parameters that was associated with elevated Pparα and Pparγ levels. Both Mlkl -/- and Mlkl +/- mice on HFHFrHC diet resisted diet-induced obesity, attributed to increased beiging, enhanced oxygen consumption and energy expenditure due to adipose tissue, and exhibited improved insulin sensitivity. These findings highlight the tissue specific effects of MLKL on the liver and adipose tissue, and suggest a dose-dependent effect of MLKL on liver pathology.
Collapse
|
34
|
Theys C, Vanderhaeghen T, Van Dijck E, Peleman C, Scheepers A, Ibrahim J, Mateiu L, Timmermans S, Vanden Berghe T, Francque SM, Van Hul W, Libert C, Vanden Berghe W. Loss of PPARα function promotes epigenetic dysregulation of lipid homeostasis driving ferroptosis and pyroptosis lipotoxicity in metabolic dysfunction associated Steatotic liver disease (MASLD). FRONTIERS IN MOLECULAR MEDICINE 2024; 3:1283170. [PMID: 39086681 PMCID: PMC11285560 DOI: 10.3389/fmmed.2023.1283170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/14/2023] [Indexed: 08/02/2024]
Abstract
Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) is a growing epidemic with an estimated prevalence of 20%-30% in Europe and the most common cause of chronic liver disease worldwide. The onset and progression of MASLD are orchestrated by an interplay of the metabolic environment with genetic and epigenetic factors. Emerging evidence suggests altered DNA methylation pattern as a major determinant of MASLD pathogenesis coinciding with progressive DNA hypermethylation and gene silencing of the liver-specific nuclear receptor PPARα, a key regulator of lipid metabolism. To investigate how PPARα loss of function contributes to epigenetic dysregulation in MASLD pathology, we studied DNA methylation changes in liver biopsies of WT and hepatocyte-specific PPARα KO mice, following a 6-week CDAHFD (choline-deficient, L-amino acid-defined, high-fat diet) or chow diet. Interestingly, genetic loss of PPARα function in hepatocyte-specific KO mice could be phenocopied by a 6-week CDAHFD diet in WT mice which promotes epigenetic silencing of PPARα function via DNA hypermethylation, similar to MASLD pathology. Remarkably, genetic and lipid diet-induced loss of PPARα function triggers compensatory activation of multiple lipid sensing transcription factors and epigenetic writer-eraser-reader proteins, which promotes the epigenetic transition from lipid metabolic stress towards ferroptosis and pyroptosis lipid hepatoxicity pathways associated with advanced MASLD. In conclusion, we show that PPARα function is essential to support lipid homeostasis and to suppress the epigenetic progression of ferroptosis-pyroptosis lipid damage associated pathways towards MASLD fibrosis.
Collapse
Affiliation(s)
- Claudia Theys
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tineke Vanderhaeghen
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Cedric Peleman
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Pathophysiology Lab, Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anne Scheepers
- Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Joe Ibrahim
- Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Ligia Mateiu
- Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Steven Timmermans
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Pathophysiology Lab, Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sven M. Francque
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Wim Van Hul
- Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
35
|
Changizi Z, Kajbaf F, Moslehi A. An Overview of the Role of Peroxisome Proliferator-activated Receptors in Liver Diseases. J Clin Transl Hepatol 2023; 11:1542-1552. [PMID: 38161499 PMCID: PMC10752810 DOI: 10.14218/jcth.2023.00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 01/03/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a superfamily of nuclear transcription receptors, consisting of PPARα, PPARγ, and PPARβ/δ, which are highly expressed in the liver. They control and modulate the expression of a large number of genes involved in metabolism and energy homeostasis, oxidative stress, inflammation, and even apoptosis in the liver. Therefore, they have critical roles in the pathophysiology of hepatic diseases. This review provides a general insight into the role of PPARs in liver diseases and some of their agonists in the clinic.
Collapse
Affiliation(s)
- Zahra Changizi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Forough Kajbaf
- Veterinary Department, Faculty of Agriculture, Islamic Azad University, Shoushtar Branch, Shoushtar, Iran
| | - Azam Moslehi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
36
|
Chen L, Chen Y, Wang B, Yang Z, Cai Z, Wang X, Sun L, Li Z, Wang G. Design, synthesis, and biological evaluation of deuterated indolepropionic acid derivatives as novel long-acting pan PPARα/γ/δ agonists. Bioorg Med Chem 2023; 96:117533. [PMID: 37976807 DOI: 10.1016/j.bmc.2023.117533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Metabolic syndrome is a complex disease with diverse symptoms, but current pharmacological interventions have limited efficacy. Indeglitazar, a pan-agonist targeting the three-peroxisome proliferator activated receptors (PPAR), exhibits significant therapeutic effects on both diabetic and fatty liver animal models. However, its short half-life limits the in vivo efficacy, which might be attributed to the β-oxidation of indolepropionic acid at Indeglitazar. To overcome this metabolic instability, two deuterium atoms were introduced to the α-position of indolepropionic acid to block the β-oxidation. In this study, several deuterated derivatives were found to sustain PPARs activity and extend the half-life of liver microsomes. In oral glucose tolerance tests, I-1 exhibited the strongest glucose-lowering effect on ob/ob mice in this series. In db/db mice, I-1 reduced lipid levels, liver steatosis and promoted UCP1 expression in white adipose tissue. Mechanistic studies further revealed that I-1 exerts stronger effects than Indeglitazar on the regulation of genes related to lipid metabolism, mitochondrial function, and oxidative stress. Furthermore, I-1 significantly reduced liver steatosis, hepatocellular ballooning, inflammation, and fibrosis in NASH model induced by HFD + CCl4, and even exerted better therapeutic effect than that of Indeglitazar. With the above attractive efficacy, deuterated derivative I-1 is considered as a promising treatment for metabolic syndrome.
Collapse
Affiliation(s)
- Lianru Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ya Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Bin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xuekun Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Lidan Sun
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510006, PR China.
| | - Guangji Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
37
|
Ji X, Ma Q, Wang X, Ming H, Bao G, Fu M, Wei C. Digeda-4 decoction and its disassembled prescriptions improve dyslipidemia and apoptosis by regulating AMPK/SIRT1 pathway on tyloxapol-induced nonalcoholic fatty liver disease in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116827. [PMID: 37348794 DOI: 10.1016/j.jep.2023.116827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nonalcoholic fatty liver disease (NAFLD) is a manifestation of metabolic syndrome in the liver and the leading cause of chronic liver disease worldwide. Digeda-4 decoction (DGD-4) is a commonly prescribed Mongolian herbal drug for treating acute and chronic liver injury and fatty liver. However, the mechanisms underlying the improvement of dislipidemia and liver injury via treatment with DGD-4 remain unclear. Disassembling a prescription is an effective approach to studying the effects and mechanisms underlying Mongolian medicine prescriptions. By disassembling a prescription, it is feasible to discover effective combinations of individual herbs to optimize a given prescription. Accordingly, we disassembled DGD-4 into two groups: the single Lomatogonium rotatum (L.) Fries ex Nym (LR) (DGD-1) and non-LR (DGD-3). AIM OF THIS STUDY To study whether DGD-4 and its disassembled prescriptions have protective effects against tyloxapol (TY)-induced NAFLD and to explore the underlying mechanisms of action and compatibility of prescriptions. MATERIAL AND METHODS NAFLD mice were developed by TY induction. Biochemical horizontal analyses, enzyme-linked immunosorbent assay, and liver histological staining were performed to explore the protective effects of DGD-4 and its disassembled prescriptions DGD-3 and DGD-1. Furthermore, we performed immunohistochemical analyses and Western blotting to further explore the expression of target proteins. RESULTS DGD-4 and its disassembled prescriptions could inhibit TY-induced dislipidemia and liver injury. In addition, DGD-4 and its disassembled prescriptions increased the levels of p-AMPKα and p-ACC, but decreased the levels of SREBP1c, SCD-1, SREBP-2, and HMGCS1 proteins. The activation of lipid metabolic pathways SIRT1, PGC-1α, and PPARα improved lipid accumulation in the liver. Moreover, DGD-4 could inhibit hepatocyte apoptosis and treat TY-induced liver injury by upregulating the Bcl-2 expression, downregulating the expression of Bax, caspase-3, caspase-8, and the ratio of Bax/Bcl-2, and positively regulating the imbalance of oxidative stress (OxS) markers (such as superoxide dismutase [SOD], catalase [CAT], malondialdehyde [MDA], and myeloperoxidase [MPO]). DGD-1 was superior to DGD-3 in regulating lipid synthesis-related proteins such as SREBP1c, SCD-1, SREBP-2, and HMGCS1. DGD-3 significantly affected the expression of lipid metabolic proteins SIRT1, PGC-1α, PPARα, apoptotic proteins Bcl-2, Bax, caspase-3, caspase-8, and the regulation of Bax/Bcl-2 ratio. However, DGD-1 showed no regulatory effects on Bax and Bcl-2 proteins. CONCLUSION This study demonstrates the protective effects of DGD-4 in the TY-induced NAFLD mice through a mechanism involving improvement of dyslipidemia and apoptosis by regulating the AMPK/SIRT1 pathway. Although the Monarch drug DGD-1 reduces lipid accumulation and DGD-3 inhibits apoptosis and protects the liver from injury, DGD-4 can be more effective overall as a therapy when compared to DGD-1 and DGD-3.
Collapse
Affiliation(s)
- Xiaoping Ji
- School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, 028000, China; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Qianqian Ma
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Xuan Wang
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Hui Ming
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Guihua Bao
- School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Minghai Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China.
| | - Chengxi Wei
- School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, 028000, China; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| |
Collapse
|
38
|
Kang Y, Ren P, Shen X, Kuang X, Yang X, Liu H, Yan H, Yang H, Kang X, Ding Z, Luo X, Ma J, Yang Y, Fan W. A Newly Synbiotic Combination Alleviates Obesity by Modulating the Gut Microbiota-Fat Axis and Inhibiting the Hepatic TLR4/NF-κB Signaling Pathway. Mol Nutr Food Res 2023; 67:e2300141. [PMID: 37594720 DOI: 10.1002/mnfr.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/11/2023] [Indexed: 08/19/2023]
Abstract
SCOPE Obesity has been recognized as a worldwide public health crisis, this is accompanied by dysregulation of the intestinal microbiota and upregulation of liver steatosis and adipose inflammation. Synbiotic as a novel alternative therapy for obesity have recently gained much attention. METHODS This study innovatively research the anti-obesity properties of a newly synbiotic composed of Lactobacillus acidophilus, Bifidobacterium infantis and konjac glucomannan oligosaccharides. RESULTS The synbiotic treatment can reduce body weight, fat mass, blood sugar, liver steatosis and adipose inflammation in obesity mice fed by high-fat diet (HFD). Meanwhile, synbiotic treatment activated brown adipose tissue and improve energy, glucose and lipid metabolism. In addition, synbiotic treatment not solely enhanced the protection of intestinal barrier, but also ameliorated gut microbiota dysbiosis directly by enhancing beneficial microbes and reducing potentially harmful bacteria. Furthermore, the microbiome phenotype and functional prediction showed that synbiotic treatment can improve the gut microbiota functions involving inflammatory state, immune response, metabolism and pathopoiesia. CONCLUSION The synbiotic may be an effective candidate treatment strategy for the clinical prevention and treatment of obesity and other associated metabolic diseases such as hyperlipidemia, nonalcoholic fatty liver diseases by alleviating inflammatory response, regulating energy metabolism and maintaining the balance of intestinal microecology.
Collapse
Affiliation(s)
- Yongbo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Peng Ren
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaorong Shen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaoyu Kuang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaodan Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Haixia Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Huan Yan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Hao Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xing Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Zeyuan Ding
- Laboratory of Morphology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xuguang Luo
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jieqiong Ma
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Ying Yang
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, Yunnan, 650021, China
| | - Weiping Fan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| |
Collapse
|
39
|
Rodimova S, Bobrov N, Mozherov A, Elagin V, Karabut M, Ermakova P, Shchechkin I, Kozlov D, Krylov D, Gavrina A, Kashina A, Zagainov V, Zagaynova E, Kuznetsova D. The Effect of Diabetes Mellitus Type 1 on the Energy Metabolism of Hepatocytes: Multiphoton Microscopy and Fluorescence Lifetime Imaging. Int J Mol Sci 2023; 24:17016. [PMID: 38069338 PMCID: PMC10706954 DOI: 10.3390/ijms242317016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
A decrease in the regenerative potential of the liver during the development of non-alcoholic fatty liver disease (NAFLD), which is observed in the vast majority of patients with diabetes mellitus type 1, significantly increases the risk of postoperative liver failure. In this regard, it is necessary to develop new approaches for the rapid intraoperative assessment of the condition of liver tissue in the presence of concomitant liver pathology. A modern label-free approach based on multiphoton microscopy, second harmonic generation (SHG), and fluorescence lifetime imaging microscopy (FLIM) allow for the evaluation of the structure of liver tissue as well as the assessment of the metabolic state of hepatocytes, even at the cellular level. We obtained optical criteria and identified specific changes in the metabolic state of hepatocytes for a reduced liver regenerative potential in the presence of induced diabetes mellitus type 1. The obtained criteria will expand the possibilities for the express assessment of the structural and functional state of liver tissue in clinical practice.
Collapse
Affiliation(s)
- Svetlana Rodimova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
| | - Nikolai Bobrov
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
| | - Artem Mozherov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
- Laboratory of Molecular Genetic Research of the Institute of Clinical Medicine, Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
| | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
| | - Polina Ermakova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
| | - Ilya Shchechkin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
- Laboratory of Molecular Genetic Research of the Institute of Clinical Medicine, Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Kozlov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
- Laboratory of Molecular Genetic Research of the Institute of Clinical Medicine, Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Krylov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
- Laboratory of Molecular Genetic Research of the Institute of Clinical Medicine, Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Alena Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
- Laboratory of Molecular Genetic Research of the Institute of Clinical Medicine, Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Aleksandra Kashina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
| | - Vladimir Zagainov
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
- Nizhny Novgorod Regional Clinical Oncologic Dispensary, 11/1 Delovaya St., 603126 Nizhny Novgorod, Russia
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
| | - Daria Kuznetsova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
- Laboratory of Molecular Genetic Research of the Institute of Clinical Medicine, Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
40
|
Gowda D, Shekhar C, B. Gowda SG, Chen Y, Hui SP. Crosstalk between Lipids and Non-Alcoholic Fatty Liver Disease. LIVERS 2023; 3:687-708. [DOI: 10.3390/livers3040045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), a complex liver disorder that can result in non-alcoholic steatohepatitis, cirrhosis, and liver cancer, is the accumulation of fat in the liver seen in people due to metabolic dysfunction. The pathophysiology of NAFLD is influenced by several variables, such as metabolic dysregulation, oxidative stress, inflammation, and genetic susceptibility. This illness seriously threatens global health because of its link to obesity, insulin resistance, type 2 diabetes, and other metabolic disorders. In recent years, lipid–NAFLD crosstalk has drawn a lot of interest. Through numerous methods, lipids have been connected to the onset and advancement of the illness. The connection between lipids and NAFLD is the main topic of the current review, along with the various therapeutic targets and currently available drugs. The importance of hepatic lipid metabolism in the progression of NAFLD is summarized with the latest results in the field.
Collapse
Affiliation(s)
- Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Chandra Shekhar
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Siddabasave Gowda B. Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Graduate School of Global Food Resources, Hokkaido University, Sapporo 060-0812, Japan
| | - Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
41
|
Hu P, Li K, Peng X, Kan Y, Li H, Zhu Y, Wang Z, Li Z, Liu HY, Cai D. Nuclear Receptor PPARα as a Therapeutic Target in Diseases Associated with Lipid Metabolism Disorders. Nutrients 2023; 15:4772. [PMID: 38004166 PMCID: PMC10674366 DOI: 10.3390/nu15224772] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Lipid metabolic diseases have substantial morbidity and mortality rates, posing a significant threat to human health. PPARα, a member of the peroxisome proliferator-activated receptors (PPARs), plays a crucial role in lipid metabolism and immune regulation. Recent studies have increasingly recognized the pivotal involvement of PPARα in diverse pathological conditions. This comprehensive review aims to elucidate the multifaceted role of PPARα in metabolic diseases including liver diseases, diabetes-related diseases, age-related diseases, and cancers, shedding light on the underlying molecular mechanisms and some regulatory effects of natural/synthetic ligands of PPARα. By summarizing the latest research findings on PPARα, we aim to provide a foundation for the possible therapeutic exploitation of PPARα in lipid metabolic diseases.
Collapse
Affiliation(s)
- Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Xiaoxu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Yufei Kan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Hao Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Yanli Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Ziyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Zhaojian Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|
42
|
Al Jadani JM, Albadr NA, Alshammari GM, Almasri SA, Alfayez FF, Yahya MA. Esculeogenin A, a Glycan from Tomato, Alleviates Nonalcoholic Fatty Liver Disease in Rats through Hypolipidemic, Antioxidant, and Anti-Inflammatory Effects. Nutrients 2023; 15:4755. [PMID: 38004149 PMCID: PMC10675668 DOI: 10.3390/nu15224755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
This study examined the preventative effects of esculeogenin A (ESGA), a newly discovered glycan from tomato, on liver damage and hepatic steatosis in high-fat-diet (HFD)-fed male rats. The animals were divided into six groups (each of eight rats): a control group fed a normal diet, control + ESGA (200 mg/kg), HFD, and HFD + ESAG in 3 doses (50, 100, and 200 mg/kg). Feeding and treatments were conducted for 12 weeks. Treatment with ESGA did not affect gains in the body or fat weight nor increases in fasting glucose, insulin, and HOMA-IR or serum levels of free fatty acids (FFAs), tumor-necrosis factor-α, and interleukin-6 (IL-6). On the contrary, it significantly reduced the serum levels of gamma-glutamyl transpeptidase (GGT), aspartate aminotransferase (AST), alanine aminotransferase (ALT), total triglycerides (TGs), cholesterol (CHOL), and low-density lipoprotein cholesterol (LDL-c) in the HFD-fed rats. In addition, it improved the liver structure, attenuating the increase in fat vacuoles; reduced levels of TGs and CHOL, and the mRNA levels of SREBP1 and acetyl CoA carboxylase (ACC); and upregulated the mRNA levels of proliferator-activated receptor α (PPARα) and carnitine palmitoyltransferase I (CPT I) in HFD-fed rats. These effects were concomitant with increases in the mRNA, cytoplasmic, and nuclear levels of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and heme oxygenase-1 (HO); a reduction in the nuclear activity of nuclear factor-kappa beta (NF-κB); and inhibition of the activity of nuclear factor kappa B kinase subunit beta (IKKβ). All of these effects were dose-dependent effects in which a normal liver structure and normal levels of all measured parameters were seen in HFD + ESGA (200 mg/kg)-treated rats. In conclusion, ESGA prevents NAFLD in HFD-fed rats by attenuating hyperlipidemia, hepatic steatosis, oxidative stress, and inflammation by acting locally on Nrf2, NF-κB, SREBP1, and PPARα transcription factors.
Collapse
Affiliation(s)
- Jwharah M. Al Jadani
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Nawal A. Albadr
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Soheir A. Almasri
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Farah Fayez Alfayez
- Department of Medicine and Surgery, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| |
Collapse
|
43
|
Staels B, Butruille L, Francque S. Treating NASH by targeting peroxisome proliferator-activated receptors. J Hepatol 2023; 79:1302-1316. [PMID: 37459921 DOI: 10.1016/j.jhep.2023.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 07/02/2023] [Indexed: 09/15/2023]
Abstract
The pathophysiology of non-alcoholic steatohepatitis (NASH) encompasses a complex set of intra- and extrahepatic driving mechanisms, involving numerous metabolic, inflammatory, vascular and fibrogenic pathways. The peroxisome proliferator-activated receptors (PPARs) α, β/δ and γ belong to the nuclear receptor family of ligand-activated transcription factors. Activated PPARs modulate target tissue transcriptomic profiles, enabling the body's adaptation to changing nutritional, metabolic and inflammatory environments. PPARs hence regulate several pathways involved in NASH pathogenesis. Whereas single PPAR agonists exert robust anti-NASH activity in several preclinical models, their clinical effects on histological endpoints of NASH resolution and fibrosis regression appear more modest. Simultaneous activation of several PPAR isotypes across different organs and within-organ cell types, resulting in pleiotropic actions, enhances the therapeutic potential of PPAR agonists as pharmacological agents for NASH and NASH-related hepatic and extrahepatic morbidity, with some compounds having already shown clinical efficacy on histological endpoints.
Collapse
Affiliation(s)
- Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| | - Laura Butruille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sven Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, B-2650, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| |
Collapse
|
44
|
Kim H, Lee K, Kim JY, Shim JJ, Lim J, Kim JY, Lee JL. Lactobacillus helveticus Isolated from Raw Milk Improves Liver Function, Hepatic Steatosis, and Lipid Metabolism in Non-Alcoholic Fatty Liver Disease Mouse Model. Microorganisms 2023; 11:2466. [PMID: 37894124 PMCID: PMC10609090 DOI: 10.3390/microorganisms11102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Here, we show that Lactiplantibacillus plantarum LP158 (LP158), Lactobacillus helveticus HY7804 (HY7804), and Lacticaseibacillus paracasei LPC226 (LPC226) isolated from raw milk alleviate non-alcoholic fatty acid disease (NAFLD) in a C57BL/6 mouse model. Lactic acid bacteria (LAB) were screened for their ability to inhibit fatty acid accumulation in palmitic acid (PA)-treated HepG2 cells, and three strains were selected based on the results. We also investigated hemolytic activity and antibiotic resistance of the three strains. LP158, HY7804, and LPC226 suppressed expression of mRNA encoding genes related to lipogenesis, and increased expression of genes related to β-oxidation, in a PA-induced HepG2 cell model. Moreover, when LP158, HY7804, and LPC226 were administered at 109 CFU/kg/day for 8 weeks to mice with dietary-induced NAFLD, they all modulated blood biochemistry markers and reduced steatosis in liver tissue. Also, all three strains significantly reduced expression of mRNA encoding lipogenesis genes (Fasn, Acaca, and Srebp-1c) and inflammatory factors (Tnfα and Ccl-2) and fibrosis factors, and increased expression of a β-oxidation gene (Acox1) in the liver. In particular, HY7804 showed the strongest effects both in vitro and in vivo. Therefore, HY7804, LP158, and LPC226 can be proposed as potential supplements that can improve NAFLD through anti-steatosis, anti-inflammatory, and anti-fibrotic effects.
Collapse
Affiliation(s)
- Hyeonji Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Kippeum Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Ju-Yeon Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Jae-Jung Shim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Junghyun Lim
- Department of Pharmacy, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Joo-Yun Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Jung-Lyoul Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| |
Collapse
|
45
|
Zhong J, He X, Gao X, Liu Q, Zhao Y, Hong Y, Zhu W, Yan J, Li Y, Li Y, Zheng N, Bao Y, Wang H, Ma J, Huang W, Liu Z, Lyu Y, Ke X, Jia W, Xie C, Hu Y, Sheng L, Li H. Hyodeoxycholic acid ameliorates nonalcoholic fatty liver disease by inhibiting RAN-mediated PPARα nucleus-cytoplasm shuttling. Nat Commun 2023; 14:5451. [PMID: 37673856 PMCID: PMC10482907 DOI: 10.1038/s41467-023-41061-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is usually characterized with disrupted bile acid (BA) homeostasis. However, the exact role of certain BA in NAFLD is poorly understood. Here we show levels of serum hyodeoxycholic acid (HDCA) decrease in both NAFLD patients and mice, as well as in liver and intestinal contents of NAFLD mice compared to their healthy counterparts. Serum HDCA is also inversely correlated with NAFLD severity. Dietary HDCA supplementation ameliorates diet-induced NAFLD in male wild type mice by activating fatty acid oxidation in hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent way because the anti-NAFLD effect of HDCA is abolished in hepatocyte-specific Pparα knockout mice. Mechanistically, HDCA facilitates nuclear localization of PPARα by directly interacting with RAN protein. This interaction disrupts the formation of RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer. Our results demonstrate the therapeutic potential of HDCA for NAFLD and provide new insights of BAs on regulating fatty acid metabolism.
Collapse
Affiliation(s)
- Jing Zhong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, 313000, China
| | - Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qiaohong Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Juan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yifan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junli Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuanzhi Lyu
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Xisong Ke
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Jia
- Center for Translational Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, 999077, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
46
|
Nam Y, Kim M, Erdenebileg S, Cha KH, Ryu DH, Kim HY, Lee SH, Jung JH, Nho CW. Sanguisorba officinalis L. Ameliorates Hepatic Steatosis and Fibrosis by Modulating Oxidative Stress, Fatty Acid Oxidation, and Gut Microbiota in CDAHFD-Induced Mice. Nutrients 2023; 15:3779. [PMID: 37686810 PMCID: PMC10490207 DOI: 10.3390/nu15173779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver diseases and encompasses non-alcoholic steatosis, steatohepatitis, and fibrosis. Sanguisorba officinalis L. (SO) roots have traditionally been used for their antioxidant properties and have beneficial effects on metabolic disorders, including diabetes and obesity. However, its effects on hepatic steatosis and fibrosis remain unclear. In this study, we explored the effects of a 95% ethanolic SO extract (SOEE) on NAFLD and fibrosis in vivo and in vitro. The SOEE was orally administered to C57BL/6J mice fed a choline-deficient, L-amino-acid-defined, high-fat diet for 10 weeks. The SOEE inhibited hepatic steatosis by modulating hepatic malondialdehyde levels and the expression of oxidative stress-associated genes, regulating fatty-acid-oxidation-related genes, and inhibiting the expression of genes that are responsible for fibrosis. The SOEE suppressed the deposition of extracellular matrix hydroxyproline and mRNA expression of fibrosis-associated genes. The SOEE decreased the expression of fibrosis-related genes in vitro by inhibiting SMAD2/3 phosphorylation. Furthermore, the SOEE restored the gut microbial diversity and modulated specific bacterial genera associated with NAFLD and fibrosis. This study suggests that SOEE might be the potential candidate for inhibiting hepatic steatosis and fibrosis by modulating oxidative stress, fatty acid oxidation, and gut microbiota composition.
Collapse
Affiliation(s)
- Yunseong Nam
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea; (Y.N.); (M.K.); (S.E.); (K.H.C.); (H.Y.K.)
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (D.H.R.); (S.H.L.); (J.H.J.)
| | - Myungsuk Kim
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea; (Y.N.); (M.K.); (S.E.); (K.H.C.); (H.Y.K.)
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26493, Republic of Korea
| | - Saruul Erdenebileg
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea; (Y.N.); (M.K.); (S.E.); (K.H.C.); (H.Y.K.)
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (D.H.R.); (S.H.L.); (J.H.J.)
| | - Kwang Hyun Cha
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea; (Y.N.); (M.K.); (S.E.); (K.H.C.); (H.Y.K.)
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26493, Republic of Korea
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Da Hye Ryu
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (D.H.R.); (S.H.L.); (J.H.J.)
| | - Ho Youn Kim
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea; (Y.N.); (M.K.); (S.E.); (K.H.C.); (H.Y.K.)
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (D.H.R.); (S.H.L.); (J.H.J.)
| | - Su Hyeon Lee
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (D.H.R.); (S.H.L.); (J.H.J.)
| | - Je Hyeong Jung
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (D.H.R.); (S.H.L.); (J.H.J.)
| | - Chu Won Nho
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea; (Y.N.); (M.K.); (S.E.); (K.H.C.); (H.Y.K.)
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (D.H.R.); (S.H.L.); (J.H.J.)
| |
Collapse
|
47
|
Lee WH, Najjar SM, Kahn CR, Hinds TD. Hepatic insulin receptor: new views on the mechanisms of liver disease. Metabolism 2023; 145:155607. [PMID: 37271372 PMCID: PMC10330768 DOI: 10.1016/j.metabol.2023.155607] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
Over 65 % of people with obesity display the metabolic-associated fatty liver disease (MAFLD), which can manifest as steatohepatitis, fibrosis, cirrhosis, or liver cancer. The development and progression of MAFLD involve hepatic insulin resistance and reduced insulin clearance. This review discusses the relationships between altered insulin signaling, hepatic insulin resistance, and reduced insulin clearance in the development of MAFLD and how this provides the impetus for exploring the use of insulin sensitizers to curb this disease. The review also explores the role of the insulin receptor in hepatocytes and hepatic stellate cells and how it signals in metabolic and end-stage liver diseases. Finally, we discuss new research findings that indicate that advanced hepatic diseases may be an insulin-sensitive state in the liver and deliberate whether insulin sensitizers should be used to manage late-stage liver diseases.
Collapse
Affiliation(s)
- Wang-Hsin Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences and the Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
48
|
Sun J, Bian Y, Ma Y, Ali W, Wang T, Yuan Y, Gu J, Bian J, Liu Z, Zou H. Melatonin alleviates cadmium-induced nonalcoholic fatty liver disease in ducks by alleviating autophagic flow arrest via PPAR-α and reducing oxidative stress. Poult Sci 2023; 102:102835. [PMID: 37343350 PMCID: PMC10404762 DOI: 10.1016/j.psj.2023.102835] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Cadmium (Cd) is an important environmental pollutant that causes liver damage and induces nonalcoholic fatty liver disease (NAFLD). NAFLD is a fat accumulation disease and has significant effects on the body. Melatonin (Mel) is an endogenous protective molecule with antioxidant, anti-inflammatory, antiobesity, and antiaging effects. However, whether Mel can alleviate Cd-induced NAFLD and its mechanism remains unclear. First, in vivo, we found that Mel maintained mitochondrial structure and function, inhibited oxidative stress, and reduced Cd-induced liver injury. In addition, Mel alleviated lipid accumulation in the liver induced by Cd. In this process, Mel inhibits fatty acid production and promotes fatty acid oxidation. Interestingly, Mel regulated PPAR-α expression and alleviated Cd-induced autophagy blockade. In vitro model, the oil Red O staining, and WB results showed that Mel alleviated Cd-induced lipid accumulation. In addition, RAPA was used to activate autophagy to alleviate Cd-induced lipid accumulation, and TG was used to block autophagy flux to aggravate Cd-induced autophagy accumulation. After knocking down PPAR-α, the autophagosome fusion with lysosomes, and autophagic flux was inhibited and increased Cd-induced lipid accumulation. Mel alleviates mitochondrial damage and oxidative stress, and attenuates Cd-induced NAFLD by restoring the expression of PPAR-α and restoring autophagy flux.
Collapse
Affiliation(s)
- Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yusheng Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
49
|
Badmus OO, Kipp ZA, Bates EA, da Silva AA, Taylor LC, Martinez GJ, Lee WH, Creeden JF, Hinds TD, Stec DE. Loss of hepatic PPARα in mice causes hypertension and cardiovascular disease. Am J Physiol Regul Integr Comp Physiol 2023; 325:R81-R95. [PMID: 37212551 PMCID: PMC10292975 DOI: 10.1152/ajpregu.00057.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
The leading cause of death in patients with nonalcoholic fatty liver disease (NAFLD) is cardiovascular disease (CVD). However, the mechanisms are unknown. Mice deficient in hepatocyte proliferator-activated receptor-α (PPARα) (PparaHepKO) exhibit hepatic steatosis on a regular chow diet, making them prone to manifesting NAFLD. We hypothesized that the PparaHepKO mice might be predisposed to poorer cardiovascular phenotypes due to increased liver fat content. Therefore, we used PparaHepKO and littermate control mice fed a regular chow diet to avoid complications with a high-fat diet, such as insulin resistance and increased adiposity. After 30 wk on a standard diet, male PparaHepKO mice exhibited elevated hepatic fat content compared with littermates as measured by Echo MRI (11.95 ± 1.4 vs. 3.74 ± 1.4%, P < 0.05), hepatic triglycerides (1.4 ± 0.10 vs. 0.3 ± 0.01 mM, P < 0.05), and Oil Red O staining, despite body weight, fasting blood glucose, and insulin levels being the same as controls. The PparaHepKO mice also displayed elevated mean arterial blood pressure (121 ± 4 vs. 108 ± 2 mmHg, P < 0.05), impaired diastolic function, cardiac remodeling, and enhanced vascular stiffness. To determine mechanisms controlling the increase in stiffness in the aorta, we used state-of-the-art PamGene technology to measure kinase activity in this tissue. Our data suggest that the loss of hepatic PPARα induces alterations in the aortas that reduce the kinase activity of tropomyosin receptor kinases and p70S6K kinase, which might contribute to the pathogenesis of NAFLD-induced CVD. These data indicate that hepatic PPARα protects the cardiovascular system through some as-of-yet undefined mechanism.
Collapse
Affiliation(s)
- Olufunto O Badmus
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lucy C Taylor
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Wang-Hsin Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Justin F Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
50
|
Saito K, Sekiya M, Kainoh K, Yoshino R, Hayashi A, Han SI, Araki M, Ohno H, Takeuchi Y, Tsuyuzaki T, Yamazaki D, Wanpei C, Hada L, Watanabe S, Paramita Adi Putri PI, Murayama Y, Sugano Y, Osaki Y, Iwasaki H, Yahagi N, Suzuki H, Miyamoto T, Matsuzaka T, Shimano H. Obesity-induced metabolic imbalance allosterically modulates CtBP2 to inhibit PPAR-alpha transcriptional activity. J Biol Chem 2023:104890. [PMID: 37286039 PMCID: PMC10339064 DOI: 10.1016/j.jbc.2023.104890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023] Open
Abstract
Maintenance of metabolic homeostasis is secured by metabolite-sensing systems, which can be overwhelmed by constant macronutrient surplus in obesity. Not only the uptake processes but also the consumption of energy substrates determine the cellular metabolic burden. We herein describe a novel transcriptional system in this context comprised of peroxisome proliferator-activated receptor alpha (PPARα), a master regulator for fatty acid oxidation, and C-terminal binding protein 2 (CtBP2), a metabolite-sensing transcriptional co-repressor. CtBP2 interacts with PPARα to repress its activity, and the interaction is enhanced upon binding to malonyl-CoA, a metabolic intermediate increased in tissues in obesity and reported to suppress fatty acid oxidation through inhibition of carnitine palmitoyltransferase 1 (CPT1). In line with our preceding observations that CtBP2 adopts a monomeric configuration upon binding to acyl-CoAs, we determined that mutations in CtBP2 that shift the conformational equilibrium toward monomers increase the interaction between CtBP2 and PPARα. In contrast, metabolic manipulations that reduce malonyl-CoA decreased the formation of the CtBP2/PPARα complex. Consistent with these in vitro findings, we found that the CtBP2/PPARα interaction is accelerated in obese livers while genetic deletion of CtBP2 in the liver causes derepression of PPARα target genes. These findings support our model where CtBP2 exists primarily as a monomer in the metabolic milieu of obesity to repress PPARα, representing a liability in metabolic diseases that can be exploited to develop therapeutic approaches.
Collapse
Affiliation(s)
- Kenji Saito
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Motohiro Sekiya
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575.
| | - Kenta Kainoh
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Ryunosuke Yoshino
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Akio Hayashi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Song-Iee Han
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Masaya Araki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Hiroshi Ohno
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Yoshinori Takeuchi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Tomomi Tsuyuzaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Daichi Yamazaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Chen Wanpei
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Lisa Hada
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Sho Watanabe
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Putu Indah Paramita Adi Putri
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Yuki Murayama
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Yoko Sugano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Yoshinori Osaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Hitoshi Iwasaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Naoya Yahagi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Hiroaki Suzuki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575; Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| |
Collapse
|