1
|
Cavalcanti L, Francati S, Ferraguti G, Fanfarillo F, Peluso D, Barbato C, Greco A, Minni A, Petrella C. Lipocalin-2, Matrix Metalloproteinase-9, and MMP-9/NGAL Complex in Upper Aerodigestive Tract Carcinomas: A Pilot Study. Cells 2025; 14:506. [PMID: 40214460 PMCID: PMC11988122 DOI: 10.3390/cells14070506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Upper aerodigestive tract (UADT) carcinomas have a high and rapidly increasing incidence, particularly in industrialized countries. The identification of diagnostic and prognostic biomarkers remains a key objective in oncological research. However, conflicting data have been reported regarding Lipocalin-2 (LCN-2 or NGAL), Matrix Metalloproteinase-9 (MMP-9), and the MMP-9/NGAL complex in UADT carcinomas. For this reason, the primary aim of this study was to investigate the involvement and modulation of the LCN-2 system in UADT cancer by selecting patients at first diagnosis and excluding any pharmacological or interventional treatments that could act as confounding factors. In this clinical retrospective pilot study, we investigated LCN-2 and MMP-9 tissue gene expression, as well as circulating levels of LCN-2, MMP-9, and the MMP-9/NGAL complex. Our findings revealed a downregulation of LCN-2 and an upregulation of MMP-9 gene expression in tumor tissues compared to healthy counterparts. A similar trend was observed in circulating levels, with decreased LCN-2 and increased MMP-9 in cancer patients compared to healthy controls. Additionally, serum levels of the MMP-9/NGAL complex were significantly elevated in UADT cancer patients relative to controls. Our study suggests a potentially distinct role for the free form of LCN-2 and its conjugated form (MMP-9/NGAL complex) in UADT tumors. These findings not only provide new insights into the molecular mechanisms underlying tumor progression but also highlight the potential clinical relevance of these biomarkers. The differential expression patterns observed suggest that the LCN-2 and MMP-9/NGAL complex could serve as valuable tools for improving early diagnosis, monitoring disease progression, and potentially guiding therapeutic strategies. Further research is needed to validate their utility in clinical settings and to explore their prognostic and predictive value in personalized treatment approaches.
Collapse
Affiliation(s)
- Luca Cavalcanti
- Department of Sensory Organs, Sapienza University of Rome, 00161 Roma, Italy; (L.C.); (A.G.); (A.M.)
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.F.); (G.F.); (F.F.)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.F.); (G.F.); (F.F.)
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.F.); (G.F.); (F.F.)
| | - Daniele Peluso
- PhD School of Applied Medical-Surgical Sciences, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Roma, Italy;
- Department of Biology, University of Rome “Tor Vergata”, 00133 Roma, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology (IBBC-CNR), 00161 Roma, Italy;
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00161 Roma, Italy; (L.C.); (A.G.); (A.M.)
| | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, 00161 Roma, Italy; (L.C.); (A.G.); (A.M.)
- Division of Otolaryngology-Head and Neck Surgery, San Camillo de Lellis Hospital, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), 00161 Roma, Italy;
| |
Collapse
|
2
|
Reichmann R, Nimptsch K, Pischon T, Gunter MJ, Jenab M, Eriksen AK, Tjonneland A, Janke J, Katzke V, Kaaks R, Schulze MB, Eichelmann F, Masala G, Sieri S, Pasanisi F, Tumino R, Giraudo MT, Rothwell J, Severi G, Jakszyn P, Sanchez-Perez MJ, Amiano P, Colorado-Yohar SM, Guevara M, van Guelpen B, Aglago EK, Heath AK, Smith-Byrne K, Weiderpass E, Aleksandrova K. Sex- and site-specific associations of circulating lipocalin 2 and incident colorectal cancer: Results from the EPIC cohort. Int J Cancer 2025; 156:930-942. [PMID: 39511728 DOI: 10.1002/ijc.35205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 11/15/2024]
Abstract
Experimental research has uncovered lipocalin 2 (LCN2) as a novel biomarker implicated in the modulation of intestinal inflammation, metabolic homeostasis, and colon carcinogenesis. However, evidence from human research has been scant. We, therefore, explored the association of pre-diagnostic circulating LCN2 concentrations with incident colorectal cancer (CRC) in a nested case-control study within the in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. LCN2 was measured in 1267 incident CRC cases matched to 1267 controls using incidence density sampling. Conditional logistic regression was used to estimate incidence rate ratios (IRRs) and 95% confidence intervals (95% CIs) according to tumor subsite and sex. Weighted Cox proportional hazard regression was used to explore associations by adiposity status. In multivariable-adjusted analyses, the IRR [95% CI] per doubling in LCN2 concentration was 1.16 [0.98-1.37] for CRC overall, 1.26 [1.00-1.59] for colon cancer, and 1.08 [0.85-1.38] for rectal cancer. The association for colon cancer was more pronounced in women (IRR [95% CI], 1.66 [1.20-2.30]) and for proximal colon cancer (IRR [95% CI], 1.96 [1.15-3.34]), whereas no association was seen in men and distal colon cancer. The association for colon cancer was positive in individuals with high waist circumference (hazard ratio [95% CI], 1.69 [1.52-1.88]) and inverse in individuals with low waist circumference (hazard ratio [95% CI], 0.86 [0.76-0.98], P interaction<0.01). Overall, these data suggest that pre-diagnostic LCN2 concentrations were positively associated with colon cancer, particularly occurring in the proximal colon, in women and among individuals with abdominal adiposity.
Collapse
Grants
- Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands)
- German Cancer Aid, German Cancer Research Center (DKFZ), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Federal Ministry of Education and Research (BMBF) (Germany)
- Danish Cancer Society (Denmark)
- Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l'Education Nationale, Institut National de la Santé et de la Recherche Médicale (INSERM) (France)
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London
- 001 World Health Organization
- Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy, Compagnia di SanPaolo and National Research Council (Italy)
- International Agency for Research on Cancer (IARC)
- Cancer Research UK (14,136 to EPIC-Norfolk; C8221/A29017 to EPIC-Oxford), Medical Research Council (1,000,143 to EPIC-Norfolk; MR/M012190/1 to EPIC-Oxford) (United Kingdom).
- Health Research Fund (FIS)-Instituto de Salud Carlos III (ISCIII), Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra, and the Catalan Institute of Oncology-ICO (Spain)
- Swedish Cancer Society, Swedish Research Council, Region Skåne and Region Västerbotten (Sweden)
Collapse
Affiliation(s)
- Robin Reichmann
- Biomarkers and Metabolism Research Group, Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology, Bremen, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Core Facility Biobank, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marc J Gunter
- International Agency for Research on Cancer, World Health Organization, Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Mazda Jenab
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Anne Kirstine Eriksen
- Diet, Cancer and Health Research Group, Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| | - Anne Tjonneland
- Diet, Cancer and Health Research Group, Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jürgen Janke
- Molecular Epidemiology Research Group, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Verena Katzke
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Fabian Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Giovanna Masala
- Prevention and Clinical Network, Institute for the Study and Prevention of Cancer (ISPRO), Florenz, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Instituto Nazionale dei Tumori, Milan, Italy
| | - Fabrizio Pasanisi
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research, Associazione Iblea per la Ricerca Epidemiologica (A.I.R.E.-ONLUS), Ragusa, Italy
| | - Maria Teresa Giraudo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Joseph Rothwell
- CESP-Univ. Paris-Saclay, UVSQ, Inserm-"Exposome, heredity, cancer and health" Team, The Centre for Research in Epidemiology and Population Health, Villejuif, France
| | - Gianluca Severi
- CESP-Univ. Paris-Saclay, UVSQ, Inserm-"Exposome, heredity, cancer and health" Team, The Centre for Research in Epidemiology and Population Health, Villejuif, France
- Department of Statistics, Computer Science, Applications "G. Parenti" (DISIA), University of Florence, Florence, Italy
| | - Paula Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
- Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| | - Maria Jose Sanchez-Perez
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Public Health Research and Health Services Research Group, Andalusian School of Public Health (EASP), Granada, Andalucía, Spain
- Epidemiology, Prevention and Control of Cancer Research Group, Biosanitary Research Institute of Granada (ibs.Granada), Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Pilar Amiano
- Sub Directorate for Public Health and Addictions of Gipuzkoa, Ministry of Health of the Basque Government, San Sebastian, Spain
- Epidemiology of Chronic and Communicable Diseases Group, Biodonostia Health Research Institute, San Sebastian, Spain
- Instituto de Salud Carlos III, CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Sandra M Colorado-Yohar
- Department of Epidemiology, Murcia Regional Health Council, Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellin, Colombia
| | - Marcela Guevara
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Health Prevention Service, Institute of Public Health and Labor of Navarre, Pamplona, Navarra, Spain
- Epidemiology of Cancer and Other Chronic Diseases Research Group, Healthcare Research Institute of Navarre (IdiSNA), Pamplona, Spain
| | - Bethany van Guelpen
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Elom K Aglago
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Krasimira Aleksandrova
- Biomarkers and Metabolism Research Group, Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology, Bremen, Germany
- Faculty of Human and Health Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
3
|
Wang T, Zhou D, Hong Z. Adipose tissue in older individuals: a contributing factor to sarcopenia. Metabolism 2024; 160:155998. [PMID: 39128607 DOI: 10.1016/j.metabol.2024.155998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Sarcopenia is a geriatric syndrome characterized by a functional decline in muscle. The prevalence of sarcopenia increases with natural aging, becoming a serious health problem among elderly individuals. Therefore, understanding the pathology of sarcopenia is critical for inhibiting age-related alterations and promoting health and longevity in elderly individuals. The development of sarcopenia may be influenced by interactions between visceral and subcutaneous adipose tissue and skeletal muscle, particularly under conditions of chronic low-grade inflammation and metabolic dysfunction. This hypothesis is supported by the following observations: (i) accumulation of senescent cells in both adipose tissue and skeletal muscle with age; (ii) gut dysbiosis, characterized by an imbalance in gut microbial communities as the main trigger for inflammation, sarcopenia, and aged adipose tissue; and (iii) microbial dysbiosis, which could impact the onset or progression of a senescent state. Moreover, adipose tissue acts as an endocrine organ, releasing molecules that participate in intricate communication networks between organs. Our discussion focuses on novel adipokines and their role in regulating adipose tissue and muscle, particularly those influenced by aging and obesity, emphasizing their contributions to disease development. On the basis of these findings, we propose that age-related adipose tissue and sarcopenia are disorders characterized by chronic inflammation and metabolic dysregulation. Finally, we explore new potential therapeutic strategies involving specialized proresolving mediator (SPM) G protein-coupled receptor (GPCR) agonists, non-SPM GPCR agonists, transient receptor potential (TRP) channels, antidiabetic drugs in conjunction with probiotics and prebiotics, and compounds designed to target senescent cells and mitigate their pro-inflammatory activity.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Xiao H, Li W, Qin Y, Lin Z, Qian C, Wu M, Xia Y, Bai J, Geng D. Crosstalk between Lipid Metabolism and Bone Homeostasis: Exploring Intricate Signaling Relationships. RESEARCH (WASHINGTON, D.C.) 2024; 7:0447. [PMID: 39165638 PMCID: PMC11334918 DOI: 10.34133/research.0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
Bone is a dynamic tissue reshaped by constant bone formation and bone resorption to maintain its function. The skeletal system accounts for approximately 70% of the total volume of the body, and continuous bone remodeling requires quantities of energy and material consumption. Adipose tissue is the main energy storehouse of the body and has a strong adaptive capacity to participate in the regulation of various physiological processes. Considering that obesity and metabolic syndrome have become major public health challenges, while osteoporosis and osteoporotic fractures have become other major health problems in the aging population, it would be interesting to explore these 2 diseases together. Currently, an increasing number of researchers are focusing on the interactions between multiple tissue systems, i.e., multiple organs and tissues that are functionally coordinated together and pathologically pathologically interact with each other in the body. However, there is lack of detailed reviews summarizing the effects of lipid metabolism on bone homeostasis and the interactions between adipose tissue and bone tissue. This review provides a detailed summary of recent advances in understanding how lipid molecules and adipose-derived hormones affect bone homeostasis, how bone tissue, as a metabolic organ, affects lipid metabolism, and how lipid metabolism is regulated by bone-derived cytokines.
Collapse
Affiliation(s)
- Haixiang Xiao
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei 230022, China
| | - Wenming Li
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yi Qin
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhixiang Lin
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Chen Qian
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Mingzhou Wu
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yu Xia
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, Jingjiang People’s Hospital Affiliated to Yangzhou University, Jingjiang 214500, Jiangsu Province, China
| | - Dechun Geng
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
5
|
Afridi R, Kim JH, Bhusal A, Lee WH, Suk K. Lipocalin-2 as a mediator of neuroimmune communication. J Leukoc Biol 2024; 116:357-368. [PMID: 38149462 DOI: 10.1093/jleuko/qiad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Lipocalin-2, a neutrophil gelatinase-associated lipocalin, is a 25-kDa secreted protein implicated in a broad range of inflammatory diseases affecting the brain and periphery. It is a pleotropic protein expressed by various immune and nonimmune cells throughout the body. Importantly, the surge in lipocalin-2 levels in disease states has been associated with a myriad of undesirable effects, further exacerbating the ongoing pathological processes. In the brain, glial cells are the principal source of lipocalin-2, which plays a definitive role in determining their functional phenotypes. In different central nervous system pathologies, an increased expression of glial lipocalin-2 has been linked to neurotoxicity. Lipocalin-2 mediates a crosstalk between central and peripheral immune cells under neuroinflammatory conditions. One intriguing aspect is that elevated lipocalin-2 levels in peripheral disorders, such as cancer, metabolic conditions, and liver diseases, potentially incite an inflammatory activation of glial cells while disrupting neuronal functions. This review comprehensively summarizes the influence of lipocalin-2 on the exacerbation of neuroinflammation by regulating various cellular processes. Additionally, this review explores lipocalin-2 as a mediator of neuroimmune crosstalk in various central nervous system pathologies and highlights the role of lipocalin-2 in carrying inflammatory signals along the neuroimmune axis.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
| | - Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
| | - Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
6
|
Alonso-García M, Gutiérrez-Gil B, Pelayo R, Fonseca PAS, Marina H, Arranz JJ, Suárez-Vega A. A meta-analysis approach for annotation and identification of lncRNAs controlling perirenal fat deposition in suckling lambs. Anim Biotechnol 2024; 35:2374328. [PMID: 39003576 DOI: 10.1080/10495398.2024.2374328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Long non-coding RNAs (lncRNAs) are being studied in farm animals due to their association with traits of economic interest, such as fat deposition. Based on the analysis of perirenal fat transcriptomes, this research explored the relevance of these regulatory elements to fat deposition in suckling lambs. To that end, meta-analysis techniques have been implemented to efficiently characterize and detect differentially expressed transcripts from two different RNA-seq datasets, one including samples of two sheep breeds that differ in fat deposition features, Churra and Assaf (n = 14), and one generated from Assaf suckling lambs with different fat deposition levels (n = 8). The joint analysis of the 22 perirenal fat RNA-seq samples with the FEELnc software allowed the detection of 3953 novel lncRNAs. After the meta-analysis, 251 differentially expressed genes were identified, 21 of which were novel lncRNAs. Additionally, a co-expression analysis revealed that, in suckling lambs, lncRNAs may play a role in controlling angiogenesis and thermogenesis, processes highlighted in relation to high and low fat deposition levels, respectively. Overall, while providing information that could be applied for the improvement of suckling lamb carcass traits, this study offers insights into the biology of perirenal fat deposition regulation in mammals.
Collapse
Affiliation(s)
- María Alonso-García
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rocío Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Pablo A S Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Héctor Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Juan José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
7
|
Kim YK, Jo D, Arjunan A, Ryu Y, Lim YH, Choi SY, Kim HK, Song J. Identification of IGF-1 Effects on White Adipose Tissue and Hippocampus in Alzheimer's Disease Mice via Transcriptomic and Cellular Analysis. Int J Mol Sci 2024; 25:2567. [PMID: 38473814 DOI: 10.3390/ijms25052567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) stands as the most prevalent neurodegenerative disorder, characterized by a multitude of pathological manifestations, prominently marked by the aggregation of amyloid beta. Recent investigations have revealed a compelling association between excessive adiposity and glial activation, further correlating with cognitive impairments. Additionally, alterations in levels of insulin-like growth factor 1 (IGF-1) have been reported in individuals with metabolic conditions accompanied by memory dysfunction. Hence, our research endeavors to comprehensively explore the impact of IGF-1 on the hippocampus and adipose tissue in the context of Alzheimer's disease. To address this, we have conducted an in-depth analysis utilizing APP/PS2 transgenic mice, recognized as a well-established mouse model for Alzheimer's disease. Upon administering IGF-1 injections to the APP/PS2 mice, we observed notable alterations in their behavioral patterns, prompting us to undertake a comprehensive transcriptomic analysis of both the hippocampal and adipose tissues. Our data unveiled significant modifications in the functional profiles of these tissues. Specifically, in the hippocampus, we identified changes associated with synaptic activity and neuroinflammation. Concurrently, the adipose tissue displayed shifts in processes related to fat browning and cell death signaling. In addition to these findings, our analysis enabled the identification of a collection of long non-coding RNAs and circular RNAs that exhibited significant changes in expression subsequent to the administration of IGF-1 injections. Furthermore, we endeavored to predict the potential roles of these identified RNA molecules within the context of our study. In summary, our study offers valuable transcriptome data for hippocampal and adipose tissues within an Alzheimer's disease model and posits a significant role for IGF-1 within both the hippocampus and adipose tissue.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Danbi Jo
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Yeongseo Ryu
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Yeong-Hwan Lim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Seo Yoon Choi
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Hee Kyung Kim
- Department of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Juhyun Song
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| |
Collapse
|
8
|
Paparella R, Ferraguti G, Fiore M, Menghi M, Micangeli G, Tarani F, Ligotino A, Messina MP, Ceccanti M, Minni A, Barbato C, Lucarelli M, Tarani L, Petrella C. Serum Lipocalin-2 Levels as a Biomarker in Pre- and Post-Pubertal Klinefelter Syndrome Patients: A Pilot Study. Int J Mol Sci 2024; 25:2214. [PMID: 38396890 PMCID: PMC10889401 DOI: 10.3390/ijms25042214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Klinefelter syndrome (KS) is a male genetic disease caused by the presence of an extra X chromosome, causing endocrine disorders mainly responsible for a high rate of infertility and metabolic disorders in adulthood. Scientific research is interested in identifying new biomarkers that can be predictive or prognostic of alterations strictly connected to KS. Lipocalin-2 (LCN-2, also known as NGAL) is a small protein initially identified within neutrophils as a protein related to innate immunity. Serum LCN-2 estimation seems to be a useful tool in predicting the metabolic complications caused by several pathological conditions. However, little is known about its potential role in infertility conditions. The present pilot study aims to investigate the presence of LCN-2 in the serum of a group of pre-pubertal and post-pubertal children affected by KS, compared to healthy controls. We demonstrated for the first time the presence of elevated levels of LCN-2 in the serum of KS patients, compared to controls. This increase was accompanied, in pre-pubertal KS patients, by the loss of correlation with LH and HDL, which instead was present in the healthy individuals. Moreover, in all KS individuals, a positive correlation between LCN-2 and inhibin B serum concentration was found. Despite the limited size of the sample analyzed, our preliminary data encourage further studies to confirm the findings and to extend the study to KS adult patients, to verify the predictive/prognostic value of LCN-2 as new biomarker for metabolic diseases and infertility associated with the pathology.
Collapse
Affiliation(s)
- Roberto Paparella
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.M.); (G.M.); (F.T.); (M.P.M.); (L.T.)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.F.); (M.L.)
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Policlinico Umberto I, 00161 Roma, Italy; (M.F.); (C.B.)
| | - Michela Menghi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.M.); (G.M.); (F.T.); (M.P.M.); (L.T.)
| | - Ginevra Micangeli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.M.); (G.M.); (F.T.); (M.P.M.); (L.T.)
| | - Francesca Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.M.); (G.M.); (F.T.); (M.P.M.); (L.T.)
| | - Aurora Ligotino
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.M.); (G.M.); (F.T.); (M.P.M.); (L.T.)
| | - Marisa Patrizia Messina
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.M.); (G.M.); (F.T.); (M.P.M.); (L.T.)
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento Dell’alcolismo e le sue Complicanze, 00185 Rome, Italy;
| | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, 00161 Roma, Italy;
- Division of Otolaryngology-Head and Neck Surgery, San Camillo de Lellis Hospital, ASL Rieti-Sapienza University, 02100 Rieti, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Policlinico Umberto I, 00161 Roma, Italy; (M.F.); (C.B.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.F.); (M.L.)
- Pasteur Institute Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Roma, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.M.); (G.M.); (F.T.); (M.P.M.); (L.T.)
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Policlinico Umberto I, 00161 Roma, Italy; (M.F.); (C.B.)
| |
Collapse
|
9
|
Wang Y, Dong Z, An Z, Jin W. Cancer cachexia: Focus on cachexia factors and inter-organ communication. Chin Med J (Engl) 2024; 137:44-62. [PMID: 37968131 PMCID: PMC10766315 DOI: 10.1097/cm9.0000000000002846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 11/17/2023] Open
Abstract
ABSTRACT Cancer cachexia is a multi-organ syndrome and closely related to changes in signal communication between organs, which is mediated by cancer cachexia factors. Cancer cachexia factors, being the general name of inflammatory factors, circulating proteins, metabolites, and microRNA secreted by tumor or host cells, play a role in secretory or other organs and mediate complex signal communication between organs during cancer cachexia. Cancer cachexia factors are also a potential target for the diagnosis and treatment. The pathogenesis of cachexia is unclear and no clear effective treatment is available. Thus, the treatment of cancer cachexia from the perspective of the tumor ecosystem rather than from the perspective of a single molecule and a single organ is urgently needed. From the point of signal communication between organs mediated by cancer cachexia factors, finding a deeper understanding of the pathogenesis, diagnosis, and treatment of cancer cachexia is of great significance to improve the level of diagnosis and treatment. This review begins with cancer cachexia factors released during the interaction between tumor and host cells, and provides a comprehensive summary of the pathogenesis, diagnosis, and treatment for cancer cachexia, along with a particular sight on multi-organ signal communication mediated by cancer cachexia factors. This summary aims to deepen medical community's understanding of cancer cachexia and may conduce to the discovery of new diagnostic and therapeutic targets for cancer cachexia.
Collapse
Affiliation(s)
- Yongfei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zikai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ziyi An
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Weilin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
10
|
Kalinin S, Feinstein DL. Astrocyte lipocalin-2 modestly effects disease severity in a mouse model of multiple sclerosis while reducing mature oligodendrocyte protein and mRNA expression. Neurosci Lett 2023; 815:137497. [PMID: 37748675 DOI: 10.1016/j.neulet.2023.137497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Roles for lipocalin-2 (LCN2, also referred to as neutrophil gelatinase associated lipocalin, NGAL) in the progression of disease in multiple sclerosis and its animal models have been reported; however, the importance of astrocyte-derived LCN2, a major source of LCN2, have not been defined. We found that clinical scores in experimental autoimmune encephalomyelitis (EAE) were modestly delayed in mice with conditional knockout of LCN2 from astrocytes, associated with a small decrease in astrocyte GFAP expression. Immunostaining and qPCR of spinal cord samples showed decreased oligodendrocyte proteolipid protein and transcription factor Olig2 expression, but no changes in PDGFRα expression. These results suggest astrocyte LCN2 contributes to early events in EAE and reduces damage to mature oligodendrocytes at later times.
Collapse
Affiliation(s)
- Sergey Kalinin
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, United States
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, United States; Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
11
|
Sciarretta F, Ceci V, Tiberi M, Zaccaria F, Li H, Zhou ZY, Sun Q, Konja D, Matteocci A, Bhusal A, Verri M, Fresegna D, Balletta S, Ninni A, Di Biagio C, Rosina M, Suk K, Centonze D, Wang Y, Chiurchiù V, Aquilano K, Lettieri-Barbato D. Lipocalin-2 promotes adipose-macrophage interactions to shape peripheral and central inflammatory responses in experimental autoimmune encephalomyelitis. Mol Metab 2023; 76:101783. [PMID: 37517520 PMCID: PMC10448472 DOI: 10.1016/j.molmet.2023.101783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023] Open
Abstract
OBJECTIVE Accumulating evidence suggests that dysfunctional adipose tissue (AT) plays a major role in the risk of developing multiple sclerosis (MS), the most common immune-mediated and demyelinating disease of the central nervous system. However, the contribution of adipose tissue to the etiology and progression of MS is still obscure. This study aimed at deciphering the responses of AT in experimental autoimmune encephalomyelitis (EAE), the best characterized animal model of MS. RESULTS AND METHODS We observed a significant AT loss in EAE mice at the onset of disease, with a significant infiltration of M1-like macrophages and fibrosis in the AT, resembling a cachectic phenotype. Through an integrative and multilayered approach, we identified lipocalin2 (LCN2) as the key molecule released by dysfunctional adipocytes through redox-dependent mechanism. Adipose-derived LCN2 shapes the pro-inflammatory macrophage phenotype, and the genetic deficiency of LCN2 specifically in AT reduced weight loss as well as inflammatory macrophage infiltration in spinal cord in EAE mice. Mature adipocytes downregulating LCN2 reduced lipolytic response to inflammatory stimuli (e.g. TNFα) through an ATGL-mediated mechanism. CONCLUSIONS Overall data highlighted a role LCN2 in exacerbating inflammatory phenotype in EAE model, suggesting a pathogenic role of dysfunctional AT in MS.
Collapse
Affiliation(s)
| | - Veronica Ceci
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marta Tiberi
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Fabio Zaccaria
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Haoyun Li
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Zhong-Yan Zhou
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiyang Sun
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Daniels Konja
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Alessandro Matteocci
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; PhD program in Immunology, Molecular Medicine and Applied biotechnologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Martina Verri
- Pathology Unit, University Hospital Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Sara Balletta
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Andrea Ninni
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Claudia Di Biagio
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marco Rosina
- Neurology Unit, Fondazione PTV Policlinico Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Daniele Lettieri-Barbato
- IRCCS, Fondazione Santa Lucia, 00179 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
12
|
He J, Li X. Relationship between chronic obstructive pulmonary disease and adiponectin concentrations: An updated meta-analysis and single-cell RNA sequencing. Medicine (Baltimore) 2023; 102:e34825. [PMID: 37603523 PMCID: PMC10443756 DOI: 10.1097/md.0000000000034825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Adipose tissue, being an organ of the endocrine system, can influence the severity of chronic obstructive pulmonary disease (COPD). Even though several inflammatory markers can potentially significantly influence lung function, the precise function of adipokines, like adiponectin, in COPD is still disputed. To analyze the association of COPD with adiponectin concentrations, a meta-analysis of the most recent literature and single-cell sequencing data were conducted. METHODS Studies in Embase, PubMed, Cochrane Library, and Web of Science were browsed to obtain relevant data, which were then assessed with the aid of R 4.1.3 and STATA 11.0 software. Standardized mean differences and correlation coefficients aided the analysis of effect values. Moreover, a single-cell sequencing GSE136831 dataset was retrieved to ascertain the mRNA expression of adiponectin gene (ADIPOQ) in the lung tissue of COPD patients to confirm the difference in the expression of adiponectin between the case and control groups. RESULTS This meta-analysis comprised 18 publications involving 24 studies. The overall combined data established the concentration of plasma/serum adiponectin as significantly higher in patients with COPD compared to healthy subjects. Subgroup analyses based on disease status, specimen type, ethnicity, study design method, measurement method, and age of COPD patients demonstrated that all patients with COPD had elevated levels of adiponectin compared to healthy controls. When subgroup analysis was performed for gender alone, the results depicted that male COPD patients had significantly higher adiponectin than healthy males, while female patients of COPD had elevated adiponectin compared to healthy females. Furthermore, it was found that plasma/serum adiponectin appeared to be positively correlated with tumor necrosis factor-α, and it was negatively correlated with FEV1% and FEV1/FVC. The results of single-cell sequencing data suggested that ADIPOQ mRNA was mainly expressed in alveolar epithelial cells, and the level of ADIPOQ mRNA was higher in lung tissues of patients with COPD than in lung tissues of healthy subjects. CONCLUSION This meta-analysis suggests that the levels of plasma/serum adiponectin are significantly elevated in patients with COPD versus controls. Tumor necrosis factor-α, FEV1/FVC, and FEV1% may all be associated with the concentrations of adiponectin.
Collapse
Affiliation(s)
- Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Key Laboratory of Geriatric Respiratory Diseases of Sichuan Higher Education Institutes, Chengdu, China
| | - Xuemei Li
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Neurosurgery department, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
13
|
Tews HC, Elger T, Grewal T, Weidlich S, Vitali F, Buechler C. Fecal and Urinary Adipokines as Disease Biomarkers. Biomedicines 2023; 11:biomedicines11041186. [PMID: 37189804 DOI: 10.3390/biomedicines11041186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The use of biomarkers is of great clinical value for the diagnosis and prognosis of disease and the assessment of treatment efficacy. In this context, adipokines secreted from adipose tissue are of interest, as their elevated circulating levels are associated with a range of metabolic dysfunctions, inflammation, renal and hepatic diseases and cancers. In addition to serum, adipokines can also be detected in the urine and feces, and current experimental evidence on the analysis of fecal and urinary adipokine levels points to their potential as disease biomarkers. This includes increased urinary adiponectin, lipocalin-2, leptin and interleukin-6 (IL-6) levels in renal diseases and an association of elevated urinary chemerin as well as urinary and fecal lipocalin-2 levels with active inflammatory bowel diseases. Urinary IL-6 levels are also upregulated in rheumatoid arthritis and may become an early marker for kidney transplant rejection, while fecal IL-6 levels are increased in decompensated liver cirrhosis and acute gastroenteritis. In addition, galectin-3 levels in urine and stool may emerge as a biomarker for several cancers. With the analysis of urine and feces from patients being cost-efficient and non-invasive, the identification and utilization of adipokine levels as urinary and fecal biomarkers could become a great advantage for disease diagnosis and predicting treatment outcomes. This review article highlights data on the abundance of selected adipokines in urine and feces, underscoring their potential to serve as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Hauke C Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Tanja Elger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Simon Weidlich
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Francesco Vitali
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
14
|
The relationship between anemia and obesity. Expert Rev Hematol 2022; 15:911-926. [PMID: 36189499 DOI: 10.1080/17474086.2022.2131521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Obesity is linked to a variety of unfavourable outcomes, including anaemia, which is a serious global public health problem. The prevalence of obesity along with anaemia suggests a relationship between obesity and anaemia. Recent studies have demonstrated strong associations between anaemia and obesity, chronic diseases, ageing, hepato-renal impairment, chronic infection, autoimmune diseases, and widespread malignancy. Thus, the intersection point of obesity and anaemia is an important area of attention. AREA COVERED This paper reviews the pathophysiology of obesity and anaemia. Then, It deliberates the relationship between obesity and different types of anaemia and other clinical forms associated with anaemia. EXPERT OPINION Obesity, especially obesity-related to excessive visceral fat distribution, is accompanied by several disturbances at the endothelial, hormonal, and inflammatory levels. These disturbances induce activation of several mechanisms that contribute to the anaemic state. Over-weight patients with chronic anaemias are required to maintain the related vitamins and minerals at optimum levels and appropriate BMI. In addition, a regular clinical follow-up is essential to be scheduled to reduce the risk of complications associated with anaemia in obese patients.
Collapse
|
15
|
Gasterich N, Bohn A, Sesterhenn A, Nebelo F, Fein L, Kaddatz H, Nyamoya S, Kant S, Kipp M, Weiskirchen R, Zendedel A, Beyer C, Clarner T. Lipocalin 2 attenuates oligodendrocyte loss and immune cell infiltration in mouse models for multiple sclerosis. Glia 2022; 70:2188-2206. [PMID: 35856297 DOI: 10.1002/glia.24245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/06/2022]
Abstract
Multiple sclerosis (MS) is a central nervous system disease characterized by both degenerative and inflammatory processes. Various mediators are involved in the interplay of degeneration and innate immunity on one hand and peripheral adaptive immunity on the other hand. The secreted protein lipocalin 2 (LCN2) is an inflammatory modulator in a variety of pathologies. Although elevated intrathecal levels of LCN2 have been reported in MS patients, it's functional role is widely unknown. Here, we identified a subpopulation of astrocytes as a source of LCN2 in MS lesions and respective animal models. We investigated the functional role of LCN2 for both autoimmune and degenerative aspects in three MS mouse models including both wild type (WT) and Lcn2-/- mouse strains. While the experimental autoimmune encephalomyelitis (EAE) model reflects primary autoimmunity, the cuprizone model reflects selective oligodendrocyte loss and demyelination. In addition, we included a combinatory Cup/EAE model in which primary cytodegeneration is followed by inflammatory lesions within the forebrain. While in the EAE model, the disease outcome was comparable in between the two mouse strains, cuprizone intoxicated Lcn2-/- animals showed an increased loss of oligodendrocytes. In the Cup/EAE model, Lcn2-/- animals showed increased inflammation when compared to WT mice. Together, our results highlight LCN2 as a potentially protective molecule in MS lesion formation, which might be able to limit loss of oligodendrocytes immune-cell invasion. Despite these findings, it is not yet clear which glial cell phenotype (and to which extent) contributes to the observed neuroprotective effects, that is, microglia and/or astroglia or even endothelial cells in the brain.
Collapse
Affiliation(s)
- Natalie Gasterich
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Amelie Bohn
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Anika Sesterhenn
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Frederik Nebelo
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Lena Fein
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Hannes Kaddatz
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Stella Nyamoya
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Sebastian Kant
- RWTH University Hospital Aachen, Institute of Molecular and Cellular Anatomy, Aachen, Germany
| | - Markus Kipp
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Ralf Weiskirchen
- RWTH University Hospital Aachen, Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Aachen, Germany
| | - Adib Zendedel
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Cordian Beyer
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Tim Clarner
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| |
Collapse
|
16
|
Feng X, Zhao J, Li F, Aloufi BH, Alshammari AM, Ma Y. Weighted Gene Co-expression Network Analysis Revealed That CircMARK3 Is a Potential CircRNA Affects Fat Deposition in Buffalo. Front Vet Sci 2022; 9:946447. [PMID: 35873681 PMCID: PMC9302235 DOI: 10.3389/fvets.2022.946447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Buffalo meat is increasingly widely accepted for consumption as it shares several quality attributes with cattle meat (beef). Hence, there is a huge opportunity for growth in the buffalo meat industry. However, buffalo meat has relatively low intramuscular fat (IMF) content, affecting its flavor, tenderness and juiciness. As there is a dearth of information on factors that control fat deposition, this study was undertaken to provide new candidate factor associated with buffalo fat deposition. Circular RNA (circRNA) is a novel class of non-coding RNA with a closed-loop structure, and play an important role in fat deposition. Methods In this study, weighted gene co-expression network analysis (WGCNA) was used to construct a circRNA co-expression network and revealed a candidate circRNA that may affect the IMF deposition of buffalo as determined by RT-qPCR, semiquantitative PCR and gain-of-function experiments. Results Herein, WGCNA determined that one module (turquoise module) is significantly associated with the growth and development stages of buffalo. Further analysis revealed a total of 191 overlapping circRNAs among differentially expressed (DE) circRNAs and the co-expression module. A candidate circRNA was found, 21:6969877|69753491 (circRNA_ID), with a reported involvement in lipid metabolism. This circRNA is stably expressed and originates from the MARK3 gene, hence the name circMARK3. circMARK3 is highly expressed in adipose tissue and mature adipocytes and is located in the cytoplasm. Gain-of-function experiments demonstrated that circMARK3 promoted adipogenic differentiation of buffalo adipocytes and 3T3-L1 cells by up-regulating the expression levels of adipogenic marker genes PPARG, C/EBPα and FABP4. Conclusion These results indicate that circMARK3 is a potential factor that promotes fat deposition by regulating adipocyte differentiation and adipogenesis in buffalo.
Collapse
Affiliation(s)
- Xue Feng
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China
| | - Jinhui Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Fen Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China
| | - Bandar Hamad Aloufi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | | | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, China
- *Correspondence: Yun Ma
| |
Collapse
|
17
|
Jin M, Fei X, Li T, Lu Z, Chu M, Di R, He X, Wang X, Wei C. Transcriptome study digs out BMP2 involved in adipogenesis in sheep tails. BMC Genomics 2022; 23:457. [PMID: 35725366 PMCID: PMC9210821 DOI: 10.1186/s12864-022-08657-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
Background Hu sheep and Tibetan sheep in China are characterized by fat tails and thin tails, respectively. Several transcriptomes have been conducted in different sheep breeds to identify the differentially expressed genes (DEGs) underlying this trait. However, these studies identified different DEGs in different sheep breeds. Results Hence, RNA sequencing was performed on Hu sheep and Tibetan sheep. We obtained a total of 45.57 and 43.82 million sequencing reads, respectively. Two libraries mapped reads from 36.93 and 38.55 million reads after alignment to the reference sequences. 2108 DEGs were identified, including 1247 downregulated and 861 upregulated DEGs. GO and KEGG analyses of all DEGs demonstrated that pathways were enriched in the regulation of lipolysis in adipocytes and terms related to the chemokine signalling pathway, lysosomes, and glycosaminoglycan degradation. Eight genes were selected for validation by RT–qPCR. In addition, the transfection of BMP2 overexpression into preadipocytes resulted in increased PPAR-γ expression and expression. BMP2 potentially induces adipogenesis through LOX in preadipocytes. The number of lipid drops in BMP2 overexpression detected by oil red O staining was also greater than that in the negative control. Conclusion In summary, these results showed that significant genes (BMP2, HOXA11, PPP1CC and LPIN1) are involved in the regulation of adipogenesis metabolism and suggested novel insights into metabolic molecules in sheep fat tails. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08657-8.
Collapse
Affiliation(s)
- Meilin Jin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaojuan Fei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Taotao Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Mingxing Chu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
18
|
Wei K, Song G, Xi L, Chen J, Sun C, Chen P, Wei Y, Wang L, Kong X, Li Y, Xu D, Jia X. Association of plasma neutrophil gelatinase-associated lipocalin and thoracic aorta calcification in maintenance hemodialysis patients with and without diabetes. BMC Nephrol 2022; 23:156. [PMID: 35459121 PMCID: PMC9026670 DOI: 10.1186/s12882-022-02773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Neutrophil gelatinase-associated lipocalin (NGAL) is not only a bone-derived factor involved in metabolism, but also a biomarker of kidney disease and cardiovascular pathophysiology. We conducted this cross-sectional observational study to explore relationships between plasma NGAL and thoracic aorta calcification (TAC) in maintenance hemodialysis (MHD) patients with and without diabetes. Methods Plasma NGAL was measured by ELISA, TAC was evaluated via computed tomography scan using a 3D quantification method or chest radiography aortic arch calcification score. Spearman correlation, Logistic regression and Partial correlation analysis were used to describe the correlations between NGAL and TAC. Results Plasma NGAL levels were lower in MHD patients with diabetes compared to those without diabetes (49.33(42.37, 55.48) vs 56.78(44.37, 674.13) ng/mL, P = 0.026). In MHD patients without diabetes, lg (NGAL) was positively correlated with ARC value(R = 0.612, P = 0.003) analyzed by Spearman correlation; for partial correlation analysis, lg (NGAL) was positively correlated with ARC value, after adjusting for age and sex (R = 0.550, P = 0.015), adjusting for age, sex and CHD (R = 0.565, P = 0.015), adjusting for age, sex, CHD and Alb (R = 0.536, P = 0.027), or adjusting for age, sex, CHD, Alb, and dialyzer membrane (polysulfone) (R = 0.590, P = 0.016); however, when adjusting for age, sex, CHD, Alb and Ca, the correlation between lg (NGAL) and ARC value disappeared. Positive correlation were found between NGAL and Ca (R = 0.644, P < 0.001), Ca and ACR (R = 0.534, P = 0.013) in Spearman coefficient analysis. Conclusion There were positive correlations among plasma NGAL, serum Ca and ARC in MHD patients without diabetes; which suggests that NGAL is possibly a participant in cardiovascular calcification, in non-diabetic MHD. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02773-z.
Collapse
Affiliation(s)
- Kai Wei
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Gesheng Song
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China
| | - Linhe Xi
- Department of Plastic and Reconstruction, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China
| | - Juan Chen
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Chuancai Sun
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Ping Chen
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Yong Wei
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Li Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Xianglei Kong
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Yang Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Dongmei Xu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Xiaoyan Jia
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China. .,Shandong Provincial Insititute of Nephrology, Jinan, China.
| |
Collapse
|
19
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
20
|
Li N, Xu B, Zeng J, Lei S, Gu L, Feng L, Zhu B, Huang Y, Wang L, Su L, Qu S, Cheng X, Bu L. Development of a New Index Based on Preoperative Serum Lipocalin 2 to Predict Post-LSG Weight Reduction. Obes Surg 2022; 32:1184-1192. [PMID: 35138515 PMCID: PMC8933383 DOI: 10.1007/s11695-022-05916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 11/30/2022]
Abstract
Background Bariatric surgery is the most effective therapy for obesity, but targeted weight reduction is not always achieved. Serum lipocalin-2 (LCN2) is closely associated with obesity, but its impact on weight loss after surgery is unknown. We aimed to access the reliability of LCN2 levels and other parameters as effective predictors of excellent weight loss (≥ 75% excess weight loss (EWL)) 1 year after bariatric surgery. Methods This retrospective study evaluated 450 patients (aged 18–65 years) with obesity at 3 months and 1 year after laparoscopic sleeve gastrectomy (LSG) surgery. Seventy-four patients who underwent LSG surgery and met the inclusion and exclusion criteria were included in this study. Serum LCN2, thyroid function, and metabolic and anthropometric parameters were assessed. Weight reduction was expressed as %EWL and percent total weight loss (%TWL) at 3 months and 1 year post surgery. Multivariable logistic regression analysis and receiver operating characteristic (ROC) curve analysis were used to evaluate predictors of ≥ 75%EWL. Results In our cohort, %EWL and %TWL were both strongly associated with preoperative serum LCN2 levels. The binary logistic regression analysis showed that preoperative LCN2, waist circumference, and glycated hemoglobin were independent predictors of excellent weight loss. Conclusions Based on these results, we determined a new P index with better predictive value for excellent weight reduction (≥ 75%EWL) 1 year after LSG surgery. Graphical abstract ![]()
Collapse
Affiliation(s)
- Nannan Li
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Bei Xu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Jiangping Zeng
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Shihui Lei
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Lei Gu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Lijin Feng
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Bing Zhu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Yueye Huang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Lu Wang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Lili Su
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Xiaoyun Cheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, 200072, China.
| | - Le Bu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
21
|
Ren Y, Zhao H, Yin C, Lan X, Wu L, Du X, Griffiths HR, Gao D. Adipokines, Hepatokines and Myokines: Focus on Their Role and Molecular Mechanisms in Adipose Tissue Inflammation. Front Endocrinol (Lausanne) 2022; 13:873699. [PMID: 35909571 PMCID: PMC9329830 DOI: 10.3389/fendo.2022.873699] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic low-grade inflammation in adipose tissue (AT) is a hallmark of obesity and contributes to various metabolic disorders, such as type 2 diabetes and cardiovascular diseases. Inflammation in ATs is characterized by macrophage infiltration and the activation of inflammatory pathways mediated by NF-κB, JNK, and NLRP3 inflammasomes. Adipokines, hepatokines and myokines - proteins secreted from AT, the liver and skeletal muscle play regulatory roles in AT inflammation via endocrine, paracrine, and autocrine pathways. For example, obesity is associated with elevated levels of pro-inflammatory adipokines (e.g., leptin, resistin, chemerin, progranulin, RBP4, WISP1, FABP4, PAI-1, Follistatin-like1, MCP-1, SPARC, SPARCL1, and SAA) and reduced levels of anti-inflammatory adipokines such as adiponectin, omentin, ZAG, SFRP5, CTRP3, vaspin, and IL-10. Moreover, some hepatokines (Fetuin A, DPP4, FGF21, GDF15, and MANF) and myokines (irisin, IL-6, and DEL-1) also play pro- or anti-inflammatory roles in AT inflammation. This review aims to provide an updated understanding of these organokines and their role in AT inflammation and related metabolic abnormalities. It serves to highlight the molecular mechanisms underlying the effects of these organokines and their clinical significance. Insights into the roles and mechanisms of these organokines could provide novel and potential therapeutic targets for obesity-induced inflammation.
Collapse
Affiliation(s)
- Yakun Ren
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
| | - Hao Zhao
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xi Lan
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Litao Wu
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiaojuan Du
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Helen R. Griffiths
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Dan Gao
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
- *Correspondence: Dan Gao,
| |
Collapse
|
22
|
Dekens DW, Eisel ULM, Gouweleeuw L, Schoemaker RG, De Deyn PP, Naudé PJW. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev 2021; 70:101414. [PMID: 34325073 DOI: 10.1016/j.arr.2021.101414] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Chronic (neuro)inflammation plays an important role in many age-related central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease and vascular dementia. Inflammation also characterizes many conditions that form a risk factor for these CNS disorders, such as physical inactivity, obesity and cardiovascular disease. Lipocalin 2 (Lcn2) is an inflammatory protein shown to be involved in different age-related CNS diseases, as well as risk factor conditions thereof. Lcn2 expression is increased in the periphery and the brain in different age-related CNS diseases and also their risk factor conditions. Experimental studies indicate that Lcn2 contributes to various neuropathophysiological processes of age-related CNS diseases, including exacerbated neuroinflammation, cell death and iron dysregulation, which may negatively impact cognitive function. We hypothesize that increased Lcn2 levels as a result of age-related risk factor conditions may sensitize the brain and increase the risk to develop age-related CNS diseases. In this review we first provide a comprehensive overview of the known functions of Lcn2, and its effects in the CNS. Subsequently, this review explores Lcn2 as a potential (neuro)inflammatory link between different risk factor conditions and the development of age-related CNS disorders. Altogether, evidence convincingly indicates Lcn2 as a key constituent in ageing and age-related brain diseases.
Collapse
Affiliation(s)
- Doortje W Dekens
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Leonie Gouweleeuw
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory of Neurochemistry and Behaviour, Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Petrus J W Naudé
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
23
|
Olson B, Diba P, Korzun T, Marks DL. Neural Mechanisms of Cancer Cachexia. Cancers (Basel) 2021; 13:cancers13163990. [PMID: 34439145 PMCID: PMC8391721 DOI: 10.3390/cancers13163990] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/05/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Cancer cachexia is a devastating wasting syndrome that occurs in many illnesses, with signs and symptoms including anorexia, weight loss, cognitive impairment and fatigue. The brain is capable of exerting overarching homeostatic control of whole-body metabolism and is increasingly being recognized as an important mediator of cancer cachexia. Given the increased recognition and discovery of neural mechanisms of cancer cachexia, we sought to provide an in-depth review and update of mechanisms by which the brain initiates and propagates cancer cachexia programs. Furthermore, recent work has identified new molecular mediators of cachexia that exert their effects through their direct interaction with the brain. Therefore, this review will summarize neural mechanisms of cachexia and discuss recently identified neural mediators of cancer cachexia. Abstract Nearly half of cancer patients suffer from cachexia, a metabolic syndrome characterized by progressive atrophy of fat and lean body mass. This state of excess catabolism decreases quality of life, ability to tolerate treatment and eventual survival, yet no effective therapies exist. Although the central nervous system (CNS) orchestrates several manifestations of cachexia, the precise mechanisms of neural dysfunction during cachexia are still being unveiled. Herein, we summarize the cellular and molecular mechanisms of CNS dysfunction during cancer cachexia with a focus on inflammatory, autonomic and neuroendocrine processes and end with a discussion of recently identified CNS mediators of cachexia, including GDF15, LCN2 and INSL3.
Collapse
Affiliation(s)
- Brennan Olson
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (B.O.); (P.D.); (T.K.)
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Parham Diba
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (B.O.); (P.D.); (T.K.)
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Tetiana Korzun
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (B.O.); (P.D.); (T.K.)
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Daniel L. Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
24
|
Wilhelmsen A, Tsintzas K, Jones SW. Recent advances and future avenues in understanding the role of adipose tissue cross talk in mediating skeletal muscle mass and function with ageing. GeroScience 2021; 43:85-110. [PMID: 33528828 PMCID: PMC8050140 DOI: 10.1007/s11357-021-00322-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/01/2021] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia, broadly defined as the age-related decline in skeletal muscle mass, quality, and function, is associated with chronic low-grade inflammation and an increased likelihood of adverse health outcomes. The regulation of skeletal muscle mass with ageing is complex and necessitates a delicate balance between muscle protein synthesis and degradation. The secretion and transfer of cytokines, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), both discretely and within extracellular vesicles, have emerged as important communication channels between tissues. Some of these factors have been implicated in regulating skeletal muscle mass, function, and pathologies and may be perturbed by excessive adiposity. Indeed, adipose tissue participates in a broad spectrum of inter-organ communication and obesity promotes the accumulation of macrophages, cellular senescence, and the production and secretion of pro-inflammatory factors. Pertinently, age-related sarcopenia has been reported to be more prevalent in obesity; however, such effects are confounded by comorbidities and physical activity level. In this review, we provide evidence that adiposity may exacerbate age-related sarcopenia and outline some emerging concepts of adipose-skeletal muscle communication including the secretion and processing of novel myokines and adipokines and the role of extracellular vesicles in mediating inter-tissue cross talk via lncRNAs and miRNAs in the context of sarcopenia, ageing, and obesity. Further research using advances in proteomics, transcriptomics, and techniques to investigate extracellular vesicles, with an emphasis on translational, longitudinal human studies, is required to better understand the physiological significance of these factors, the impact of obesity upon them, and their potential as therapeutic targets in combating muscle wasting.
Collapse
Affiliation(s)
- Andrew Wilhelmsen
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Queen Elizabeth Hospital, The University of Birmingham, Birmingham, UK
| |
Collapse
|