1
|
Shepherd J. Biomimetic Approaches in the Development of Optimised 3D Culture Environments for Drug Discovery in Cardiac Disease. Biomimetics (Basel) 2025; 10:204. [PMID: 40277603 PMCID: PMC12024959 DOI: 10.3390/biomimetics10040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/09/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Cardiovascular disease remains the leading cause of death worldwide, yet despite massive investment in drug discovery, the progress of cardiovascular drugs from lab to clinic remains slow. It is a complex, costly pathway from drug discovery to the clinic and failure becomes more expensive as a drug progresses along this pathway. The focus has begun to shift to optimisation of in vitro culture methodologies, not only because these must be undertaken are earlier on in the drug discovery pathway, but also because the principles of the 3Rs have become embedded in national and international legislation and regulation. Numerous studies have shown myocyte cell behaviour to be much more physiologically relevant in 3D culture compared to 2D culture, highlighting the advantages of using 3D-based models, whether microfluidic or otherwise, for preclinical drug screening. This review aims to provide an overview of the challenges in cardiovascular drug discovery, the limitations of traditional routes, and the successes in the field of preclinical models for cardiovascular drug discovery. It focuses on the particular role biomimicry can play, but also the challenges around implementation within commercial drug discovery.
Collapse
Affiliation(s)
- Jenny Shepherd
- School of Engineering, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
2
|
Lamberger Z, Priebe V, Ryma M, Lang G. A Versatile Method to Produce Monomodal Nano- to Micro-Fiber Fragments as Fillers for Biofabrication. SMALL METHODS 2025; 9:e2401060. [PMID: 39690825 PMCID: PMC11926501 DOI: 10.1002/smtd.202401060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/04/2024] [Indexed: 12/19/2024]
Abstract
A key goal of biofabrication is the production of 3D tissue models with biomimetic properties. In natural tissues, fibrils-mainly composed of collagen-play a critical role in stabilizing and spatially organizing the extracellular matrix. To use biomimetic fibers for reinforcing bioinks in 3D printing, fiber fragmentation is necessary to prevent nozzle clogging. However, existing fragmentation methods are often material-specific, poorly scalable, and provide limited control over fragment size and shape. A novel workflow is introduced for producing fiber fragments applicable to various materials and fabrication techniques such as electrospinning, melt-electrowriting, fused deposition modeling, wet spinning, and microfluidic spinning. The method uses a sacrificial membrane as a substrate for precise cryo-sectioning of fibers. A significant advantage is that no additional handling steps, such as fiber detachment or transfer, are needed, resulting in highly reproducible fiber sectioning with a quasi-monodisperse length distribution. The membrane can be rolled before cutting, preventing fibers from sticking together and significantly increasing production efficiency. This method is also versatile, applicable to multiple fiber types and materials without re-parameterization. Cell culture experiments demonstrate that the fibers maintain key properties necessary for cell-fiber interactions, making them suitable for systematic screenings in the development of anisotropic 3D tissue models.
Collapse
Affiliation(s)
- Zan Lamberger
- Department for Functional Materials in Medicine and DentistryUniversity Hospital of WürzburgPleicherwall 2D‐97070WürzburgGermany
| | - Vivien Priebe
- Department for Functional Materials in Medicine and DentistryUniversity Hospital of WürzburgPleicherwall 2D‐97070WürzburgGermany
| | - Matthias Ryma
- Department for Functional Materials in Medicine and DentistryUniversity Hospital of WürzburgPleicherwall 2D‐97070WürzburgGermany
| | - Gregor Lang
- Department for Functional Materials in Medicine and DentistryUniversity Hospital of WürzburgPleicherwall 2D‐97070WürzburgGermany
| |
Collapse
|
3
|
House A, Santillan A, Correa E, Youssef V, Guvendiren M. Cellular Alignment and Matrix Stiffening Induced Changes in Human Induced Pluripotent Stem Cell Derived Cardiomyocytes. Adv Healthc Mater 2025; 14:e2402228. [PMID: 39468891 DOI: 10.1002/adhm.202402228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Biological processes are inherently dynamic, necessitating biomaterial platforms capable of spatiotemporal control over cellular organization and matrix stiffness for accurate study of tissue development, wound healing, and disease. However, most in vitro platforms remain static. In this study, a dynamic biomaterial platform comprising a stiffening hydrogel is introduced and achieved through a stepwise approach of addition followed by light-mediated crosslinking, integrated with an elastomeric substrate featuring strain-responsive lamellar surface patterns. Employing this platform, the response of human induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CMs) is investigated to dynamic stiffening from healthy to fibrotic tissue stiffness. The results demonstrate that culturing hIPSC-CMs on physiologically relevant healthy stiffness significantly enhances their function, as evidenced by increased sarcomere fraction, wider sarcomere width, significantly higher connexin-43 content, and elevated cell beating frequency compared to cells cultured on fibrotic matrix. Conversely, dynamic matrix stiffening negatively impacts hIPSC-CM function, with earlier stiffening events exerting a more pronounced hindering effect. These findings provide valuable insights into material-based approaches for addressing existing challenges in hIPSC-CM maturation and have broader implications across various tissue models, including muscle, tendon, nerve, and cornea, where both cellular alignment and matrix stiffening play pivotal roles in tissue development and regeneration.
Collapse
Affiliation(s)
- Andrew House
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Anjeli Santillan
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Evan Correa
- Federated Department of Biological Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Victoria Youssef
- Federated Department of Biological Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Murat Guvendiren
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| |
Collapse
|
4
|
Karami M, Keshvari H, Hajari MA, Shiri M, Movahedi F, Rezaeiani S, Pahlavan S, Montazeri L. Functional and Structural Improvement of Engineered Cardiac Microtissue Using Aligned Microfilaments Scaffold. ACS Biomater Sci Eng 2025; 11:531-542. [PMID: 39725564 DOI: 10.1021/acsbiomaterials.4c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
To enhance therapeutic strategies for cardiovascular diseases, the development of more reliable in vitro preclinical systems is imperative. These models, crucial for disease modeling and drug testing, must accurately replicate the 3D architecture of native heart tissue. In this study, we engineered a scaffold with aligned poly(lactic-co-glycolic acid) (PLGA) microfilaments to induce cellular alignment in the engineered cardiac microtissue (ECMT). Consequently, the coculture of three cell types, including cardiac progenitor cells (CPC), human umbilical cord endothelial cells (HUVEC), and human foreskin fibroblasts (HFF), within this 3D scaffold significantly improved cellular alignment compared to the control. Additionally, cells in the ECMT exhibited a more uniaxial anisotropic and oriented cytoskeleton, characterized by immunostaining of F-actin. This approach not only enhanced cell structure and microtissue architecture but also improved functionality, evident in synchronized electrophysiological signals. Therefore, our engineered cardiac microtissue using this aligned microfilament scaffold (AMFS) holds great potential for pharmaceutical research and other biomedical applications.
Collapse
Affiliation(s)
- Mohammad Karami
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Hamid Keshvari
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran
| | - Mohammad Amin Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Mahshad Shiri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Fatemeh Movahedi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Siamak Rezaeiani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| |
Collapse
|
5
|
Dutta D, Nuntapramote T, Rehders M, Brix K, Brüggemann D. Topography-Mediated Induction of Epithelial Mesenchymal Transition via Alumina Textiles for Potential Wound Healing Applications. J Biomed Mater Res A 2025; 113:e37826. [PMID: 39529481 DOI: 10.1002/jbm.a.37826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Substrate topography is vital in determining cell growth and fate of cellular behavior. Although current in vitro studies of the underlying cellular signaling pathways mostly rely on their induction by specific growth factors or chemicals, the influence of substrate topography on specific changes in cells has been explored less often. This study explores the impact of substrate topography, specifically the tricot knit microfibrous structure of alumina textiles, on cell behavior, focusing on fibroblasts and keratinocytes for potential wound healing applications. The textiles, studied for the first time as in vitro substrates, demonstrated support for keratinocyte adhesion, leading to alterations in cell morphology and the expression of E-cadherin and fibronectin. These topography-induced changes resembled the epithelial-to-mesenchymal transition (EMT), crucial for wound healing, and were specific to keratinocytes and absent in identically treated fibroblasts. Biochemically induced EMT in keratinocytes cultured on flat alumina substrates mirrored the changes seen with alumina textiles alone, suggesting the tricot knit microfibrous topography could serve as an in vitro model system to induce EMT-like mechanisms. These results enhance our understanding of how substrate topography influences EMT-related processes in wound healing, paving the way for further evaluation of microfibrous alumina textiles as innovative wound dressings.
Collapse
Affiliation(s)
| | | | - Maren Rehders
- School of Science, Constructor University, Bremen, Germany
| | - Klaudia Brix
- School of Science, Constructor University, Bremen, Germany
| | - Dorothea Brüggemann
- Institute for Biophysics, University of Bremen, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bremen, Germany
- Biophysics and Applied Biomaterials, University of Applied Sciences, Hochschule Bremen, Germany
| |
Collapse
|
6
|
Blazeski A, Garcia-Cardena G, Kamm RD. Advancing Cardiac Organoid Engineering Through Application of Biophysical Forces. IEEE Rev Biomed Eng 2024; PP:211-230. [PMID: 40030454 DOI: 10.1109/rbme.2024.3514378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Cardiac organoids represent an important bioengineering opportunity in the development of models to study human heart pathophysiology. By incorporating multiple cardiac cell types in three-dimensional culture and developmentally-guided biochemical signaling, cardiac organoids recapitulate numerous features of heart tissue. However, cardiac tissue also experiences a variety of mechanical forces as the heart develops and over the course of each contraction cycle. It is now clear that these forces impact cellular specification, phenotype, and function, and should be incorporated into the engineering of cardiac organoids in order to generate better models. In this review, we discuss strategies for engineering cardiac organoids and report the effects of organoid design on the function of cardiac cells. We then discuss the mechanical environment of the heart, including forces arising from tissue elasticity, contraction, blood flow, and stretch, and report on efforts to mimic these biophysical cues in cardiac organoids. Finally, we review emerging areas of cardiac organoid research, for the study of cardiac development, the formation of multi-organ models, and the simulation of the effects of spaceflight on cardiac tissue and consider how these investigations might benefit from the inclusion of mechanical cues.
Collapse
|
7
|
Kalogeropoulou M, Kracher A, Fucile P, Mihăilă SM, Moroni L. Blueprints of Architected Materials: A Guide to Metamaterial Design for Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408082. [PMID: 39370588 PMCID: PMC11586834 DOI: 10.1002/adma.202408082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Indexed: 10/08/2024]
Abstract
Mechanical metamaterials are rationally designed structures engineered to exhibit extraordinary properties, often surpassing those of their constituent materials. The geometry of metamaterials' building blocks, referred to as unit cells, plays an essential role in determining their macroscopic mechanical behavior. Due to their hierarchical design and remarkable properties, metamaterials hold significant potential for tissue engineering; however their implementation in the field remains limited. The major challenge hindering the broader use of metamaterials lies in the complexity of unit cell design and fabrication. To address this gap, a comprehensive guide is presented detailing the design principles of well-established metamaterials. The essential unit cell geometric parameters and design constraints, as well as their influence on mechanical behavior, are summarized highlighting essential points for effective fabrication. Moreover, the potential integration of artificial intelligence techniques is explored in meta-biomaterial design for patient- and application-specific design. Furthermore, a comprehensive overview of current applications of mechanical metamaterials is provided in tissue engineering, categorized by tissue type, thereby showcasing the versatility of different designs in matching the mechanical properties of the target tissue. This review aims to provide a valuable resource for tissue engineering researchers and aid in the broader use of metamaterials in the field.
Collapse
Affiliation(s)
- Maria Kalogeropoulou
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Anna Kracher
- Division of PharmacologyDepartment of Pharmaceutical SciencesUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Pierpaolo Fucile
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Silvia M. Mihăilă
- Division of PharmacologyDepartment of Pharmaceutical SciencesUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| |
Collapse
|
8
|
Chalard AE, Porritt H, Lam Po Tang EJ, Taberner AJ, Winbo A, Ahmad AM, Fitremann J, Malmström J. Dynamic composite hydrogels of gelatin methacryloyl (GelMA) with supramolecular fibers for tissue engineering applications. BIOMATERIALS ADVANCES 2024; 163:213957. [PMID: 39024864 DOI: 10.1016/j.bioadv.2024.213957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
In the field of tissue engineering, there is a growing need for biomaterials with structural properties that replicate the native characteristics of the extracellular matrix (ECM). It is important to include fibrous structures into ECM mimics, especially when constructing scar models. Additionally, including a dynamic aspect to cell-laden biomaterials is particularly interesting, since native ECM is constantly reshaped by cells. Composite hydrogels are developed to bring different combinations of structures and properties to a scaffold by using different types and sources of materials. In this work, we aimed to combine gelatin methacryloyl (GelMA) with biocompatible supramolecular fibers made of a small self-assembling sugar-derived molecule (N-heptyl-D-galactonamide, GalC7). The GalC7 fibers were directly grown in the GelMA through a thermal process, and it was shown that the presence of the fibrous network increased the Young's modulus of GelMA. Due to the non-covalent interactions that govern the self-assembly, these fibers were observed to dissolve over time, leading to a dynamic softening of the composite gels. Cardiac fibroblast cells were successfully encapsulated into composite gels for 7 days, showing excellent biocompatibility and fibroblasts extending in an elongated morphology, most likely in the channels left by the fibers after their degradation. These novel composite hydrogels present unique properties and could be used as tools to study biological processes such as fibrosis, vascularization and invasion.
Collapse
Affiliation(s)
- Anaïs E Chalard
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Harrison Porritt
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Emily J Lam Po Tang
- The Auckland Bioengineering Institute (ABI), The University of Auckland, Auckland, New Zealand
| | - Andrew J Taberner
- The Auckland Bioengineering Institute (ABI), The University of Auckland, Auckland, New Zealand; Department of Engineering Science and Biomedical Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| | - Annika Winbo
- Department of Physiology, The University of Auckland, Auckland, New Zealand; Manaaki Manawa Centre for Heart Research, The University of Auckland, Auckland, New Zealand
| | - Amatul M Ahmad
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Juliette Fitremann
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| |
Collapse
|
9
|
Fair E, Bornstein J, Lyons T, Sgobba P, Hayes A, Rourke M, Macwan I, Haghbin N. Evaluating the efficacy of uniformly designed square mesh resin 3D printed scaffolds in directing the orientation of electrospun PCL nanofibers. Sci Rep 2024; 14:22722. [PMID: 39349524 PMCID: PMC11443100 DOI: 10.1038/s41598-024-72711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Replicating the architecture of extracellular matrices (ECM) is crucial in tissue engineering to support tissues' natural structure and functionality. The ECM's structure plays a significant role in directing cell alignment. Electrospinning is an effective technique for fabricating nanofibrous substrates that mimic the architecture of extracellular matrices (ECM). This study aims to evaluate the efficacy of resin 3D-printed scaffolds made from a low-conductivity material (i.e., a resin composed of methacrylated oligomers, monomers, and photoinitiators) in directing the alignment of electrospun polycaprolactone (PCL) nanofibers. Six 3D-printed scaffolds were fabricated using stereolithography (SLA) technology and strategically positioned on an aluminum foil collector plate during electrospinning. The structured geometry of the scaffolds, rather than the local electric field distribution, is hypothesized to guide nanofiber alignment. Images acquired through the scanning electron microscopy (SEM) were used to analyze and statistically quantify the nanofibrous scaffolds to evaluate the alignment of nanofibers over the scaffolds compared to a set of randomly deposited control nanofiber samples in the absence of the 3D printed scaffolds. SEM images also showed significant alignment of nanofibers within the pores of scaffolds, using histograms as a means for indicating the distribution of orientation angles. Statistical analysis revealed that this distribution deviates from normality due to the deviations in the tails and the existence of relatively smaller peaks at angles relative to 0°, particularly within a range of ± 50° and ± 40°. It is further found that the average peak orientation angle relative to 0° had a maximum probability of 0.014. Furthermore, the statistical analysis confirmed the distribution and significant differences in orientation between test samples with 3D-printed scaffolds and control samples. These findings demonstrate the effectiveness of resin 3D-printed scaffolds, particularly their geometric filtering effect, leading to controlled nanofiber alignment, which is proposed to be beneficial for enhancing cell adhesion, proliferation, and cell migration in tissue engineering applications.
Collapse
Affiliation(s)
- Evan Fair
- Department of Electrical and Biomedical Engineering, School of Engineering and Computing, Fairfield University, 1073 North Benson Rd, Fairfield, CT, 06824, USA
| | - Jacob Bornstein
- Department of Electrical and Biomedical Engineering, School of Engineering and Computing, Fairfield University, 1073 North Benson Rd, Fairfield, CT, 06824, USA
| | - Timothy Lyons
- Department of Mechanical Engineering, School of Engineering and Computing, Fairfield University, 1073 North Benson Rd, Fairfield, CT, 06824, USA
| | - Phillip Sgobba
- Department of Electrical and Biomedical Engineering, School of Engineering and Computing, Fairfield University, 1073 North Benson Rd, Fairfield, CT, 06824, USA
| | - Alana Hayes
- Department of Mechanical Engineering, School of Engineering and Computing, Fairfield University, 1073 North Benson Rd, Fairfield, CT, 06824, USA
| | - Megan Rourke
- Department of Mechanical Engineering, School of Engineering and Computing, Fairfield University, 1073 North Benson Rd, Fairfield, CT, 06824, USA
| | - Isaac Macwan
- Department of Electrical and Biomedical Engineering, School of Engineering and Computing, Fairfield University, 1073 North Benson Rd, Fairfield, CT, 06824, USA.
| | - Naser Haghbin
- Department of Mechanical Engineering, School of Engineering and Computing, Fairfield University, 1073 North Benson Rd, Fairfield, CT, 06824, USA.
| |
Collapse
|
10
|
Hwang DG, Kang W, Park SM, Jang J. Biohybrid printing approaches for cardiac pathophysiological studies. Biosens Bioelectron 2024; 260:116420. [PMID: 38805890 DOI: 10.1016/j.bios.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Bioengineered hearts, which include single cardiomyocytes, engineered heart tissue, and chamber-like models, generate various biosignals, such as contractility, electrophysiological, and volume-pressure dynamic signals. Monitoring changes in these signals is crucial for understanding the mechanisms of disease progression and developing potential treatments. However, current methodologies face challenges in the continuous monitoring of bioengineered hearts over extended periods and typically require sacrificing the sample post-experiment, thereby limiting in-depth analysis. Thus, a biohybrid system consisting of living and nonliving components was developed. This system primarily features heart tissue alongside nonliving elements designed to support or comprehend its functionality. Biohybrid printing technology has simplified the creation of such systems and facilitated the development of various functional biohybrid systems capable of measuring or even regulating multiple functions, such as pacemakers, which demonstrates its versatility and potential applications. The future of biohybrid printing appears promising, with the ongoing exploration of its capabilities and potential directions for advancement.
Collapse
Affiliation(s)
- Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, 37563, Republic of Korea
| | - Wonok Kang
- Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea
| | - Sung-Min Park
- Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Jinah Jang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, 37563, Republic of Korea; Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
11
|
Kobeissi H, Gao X, DePalma SJ, Ewoldt JK, Wang MC, Das SL, Jilberto J, Nordsletten D, Baker BM, Chen CS, Lejeune E. MicroBundlePillarTrack: A Python package for automated segmentation, tracking, and analysis of pillar deflection in cardiac microbundles. ARXIV 2024:arXiv:2405.11096v2. [PMID: 39184538 PMCID: PMC11343223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Movies of human induced pluripotent stem cell (hiPSC)-derived engineered cardiac tissue (microbundles) contain abundant information about structural and functional maturity. However, extracting these data in a reproducible and high-throughput manner remains a major challenge. Furthermore, it is not straightforward to make direct quantitative comparisons across the multiple in vitro experimental platforms employed to fabricate these tissues. Here, we present "MicroBundlePillarTrack," an open-source optical flow-based package developed in Python to track the deflection of pillars in cardiac microbundles grown on experimental platforms with two different pillar designs ("Type 1" and "Type 2" design). Our software is able to automatically segment the pillars, track their displacements, and output time-dependent metrics for contractility analysis, including beating amplitude and rate, contractile force, and tissue stress. Because this software is fully automated, it will allow for both faster and more reproducible analyses of larger datasets and it will enable more reliable cross-platform comparisons as compared to existing approaches that require manual steps and are tailored to a specific experimental platform. To complement this open-source software, we share a dataset of 1,540 brightfield example movies on which we have tested our software. Through sharing this data and software, our goal is to directly enable quantitative comparisons across labs, and facilitate future collective progress via the biomedical engineering open-source data and software ecosystem.
Collapse
Affiliation(s)
- Hiba Kobeissi
- Department of Mechanical Engineering, Center for Multiscale and Translational Mechanobiology, Boston University, Boston, Massachusetts, United States
| | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Samuel J. DePalma
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
| | - Miranda C. Wang
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Shoshana L. Das
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - David Nordsletten
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
- Department of Cardiac Surgery, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
- School of Imaging Sciences and Biomedical Engineering, King’s Health Partners, King’s College London, London, England, United Kingdom
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Emma Lejeune
- Department of Mechanical Engineering, Center for Multiscale and Translational Mechanobiology, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
12
|
Lou L, Rubfiaro AS, Deng V, He J, Thomas T, Roy M, Dickerson D, Agarwal A. Harnessing 3D Printing and Electrospinning for Multiscale Hybrid Patches Mimicking the Native Myocardium. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37596-37612. [PMID: 38991102 DOI: 10.1021/acsami.4c06505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Engineered cardiac tissues show potential for regenerative therapy in ischemic heart disease. Yet, selection of soft biomaterials for scaffold manufacturing is primarily influenced by empirical and compositional factors, raising concerns about arrhythmic risks due to poor electrophysiological integration. Addressing this, we developed multiscale hybrid myocardial patches mimicking native myocardium's structural and biomechanical attributes, utilizing 3D printing and electrospinning techniques. We compared three patch types: pure silicone and silicone-poly(lactic-co-glycolic acid) (PLGA) with random (S-PLGA-R) and aligned (S-PLGA-A) fibers. S-PLGA-A patches with fiber orientation angles of 95-115° are achieved by applying a secondary electrical field using two parallel aluminum enhancers. With bulk and localized moduli of 350-750 and 13-20 kPa resembling the native myocardium, S-PLGA-A patches demonstrate a sarcomere length of 2.1 ± 0.2 μm, ≥50% higher strain motions and diastolic phase, and a 50-70% slower rise of calcium handling compared to the other two patches. This enhanced maturation and improved synchronization phenomena are attributed to efficient force transmission and reduced stress concentration due to mechanical similarity and linear propagation of electrical signals. This study presents a promising strategy for advancing regenerative cardiac therapies by harnessing the capabilities of 3D printing and electrospinning, providing a proof-of-concept for their effectiveness.
Collapse
Affiliation(s)
- Lihua Lou
- Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| | - Alberto Sesena Rubfiaro
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Victor Deng
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Jin He
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Tony Thomas
- Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| | - Mukesh Roy
- Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| | - Darryl Dickerson
- Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| | - Arvind Agarwal
- Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| |
Collapse
|
13
|
Sarikhani E, Meganathan DP, Larsen AKK, Rahmani K, Tsai CT, Lu CH, Marquez-Serrano A, Sadr L, Li X, Dong M, Santoro F, Cui B, Klausen LH, Jahed Z. Engineering the Cellular Microenvironment: Integrating Three-Dimensional Nontopographical and Two-Dimensional Biochemical Cues for Precise Control of Cellular Behavior. ACS NANO 2024; 18:19064-19076. [PMID: 38978500 PMCID: PMC11271182 DOI: 10.1021/acsnano.4c03743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
The development of biomaterials capable of regulating cellular processes and guiding cell fate decisions has broad implications in tissue engineering, regenerative medicine, and cell-based assays for drug development and disease modeling. Recent studies have shown that three-dimensional (3D) nanoscale physical cues such as nanotopography can modulate various cellular processes like adhesion and endocytosis by inducing nanoscale curvature on the plasma and nuclear membranes. Two-dimensional (2D) biochemical cues such as protein micropatterns can also regulate cell function and fate by controlling cellular geometries. Development of biomaterials with precise control over nanoscale physical and biochemical cues can significantly influence programming cell function and fate. In this study, we utilized a laser-assisted micropatterning technique to manipulate the 2D architectures of cells on 3D nanopillar platforms. We performed a comprehensive analysis of cellular and nuclear morphology and deformation on both nanopillar and flat substrates. Our findings demonstrate the precise engineering of single cell architectures through 2D micropatterning on nanopillar platforms. We show that the coupling between the nuclear and cell shape is disrupted on nanopillar surfaces compared to flat surfaces. Furthermore, our results suggest that cell elongation on nanopillars enhances nanopillar-induced endocytosis. We believe our platform serves as a versatile tool for further explorations into programming cell function and fate through combined physical cues that create nanoscale curvature on cell membranes and biochemical cues that control the geometry of the cell.
Collapse
Affiliation(s)
- Einollah Sarikhani
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Dhivya Pushpa Meganathan
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | | | - Keivan Rahmani
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Ching-Ting Tsai
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | - Chih-Hao Lu
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | - Abel Marquez-Serrano
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Leah Sadr
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Xiao Li
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | - Mingdong Dong
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark
| | - Francesca Santoro
- Center
for Advanced Biomaterials for Healthcare, Tissue Electronics, Instituto Italiano di Tecnologia, Naples 80125, Italy
- Faculty
of Electrical Engineering and IT, RWTH, Aachen 52074, Germany
- Institute
for Biological Information Processing-Bioelectronics, Forschungszentrum
Juelich, Julich 52428, Germany
| | - Bianxiao Cui
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | | | - Zeinab Jahed
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
- Department
of Bioengineering, University of California
San Diego, La Jolla ,California 92093, United States
| |
Collapse
|
14
|
Kobeissi H, Gao X, DePalma SJ, Ewoldt JK, Wang MC, Das SL, Jilberto J, Nordsletten D, Baker BM, Chen CS, Lejeune E. MicroBundlePillarTrack: A Python package for automated segmentation, tracking, and analysis of pillar deflection in cardiac microbundles. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001231. [PMID: 39114859 PMCID: PMC11304080 DOI: 10.17912/micropub.biology.001231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Movies of human induced pluripotent stem cell (hiPSC)-derived engineered cardiac tissue (microbundles) contain abundant information about structural and functional maturity. However, extracting these data in a reproducible and high-throughput manner remains a major challenge. Furthermore, it is not straightforward to make direct quantitative comparisons across the multiple in vitro experimental platforms employed to fabricate these tissues. Here, we present "MicroBundlePillarTrack," an open-source optical flow-based package developed in Python to track the deflection of pillars in cardiac microbundles grown on experimental platforms with two different pillar designs ("Type 1" and "Type 2" design). Our software is able to automatically segment the pillars, track their displacements, and output time-dependent metrics for contractility analysis, including beating amplitude and rate, contractile force, and tissue stress. Because this software is fully automated, it will allow for both faster and more reproducible analyses of larger datasets and it will enable more reliable cross-platform comparisons as compared to existing approaches that require manual steps and are tailored to a specific experimental platform. To complement this open-source software, we share a dataset of 1,540 brightfield example movies on which we have tested our software. Through sharing this data and software, our goal is to directly enable quantitative comparisons across labs, and facilitate future collective progress via the biomedical engineering open-source data and software ecosystem.
Collapse
Affiliation(s)
- Hiba Kobeissi
- Department of Mechanical Engineering, Center for Multiscale and Translational Mechanobiology, Boston University, Boston, Massachusetts, United States
| | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Samuel J. DePalma
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
| | - Miranda C. Wang
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Shoshana L. Das
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - David Nordsletten
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
- Department of Cardiac Surgery, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
- School of Imaging Sciences and Biomedical Engineering, King’s Health Partners, King's College London, London, England, United Kingdom
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Emma Lejeune
- Department of Mechanical Engineering, Center for Multiscale and Translational Mechanobiology, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
15
|
Zhang B, Luo Y, Zhou X, Gao L, Yin X, Yang H. GelMA micropattern enhances cardiomyocyte organization, maturation, and contraction via contact guidance. APL Bioeng 2024; 8:026108. [PMID: 38699629 PMCID: PMC11065454 DOI: 10.1063/5.0182585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Cardiac tissue engineering has emerged as a promising approach for restoring the functionality of damaged cardiac tissues following myocardial infarction. To effectively replicate the native anisotropic structure of cardiac tissues in vitro, this study focused on the fabrication of micropatterned gelatin methacryloyl hydrogels with varying geometric parameters. These substrates were evaluated for their ability to guide induced pluripotent stem cell-derived cardiomyocytes (CMs). The findings demonstrate that the mechanical properties of this hydrogel closely resemble those of native cardiac tissues, and it exhibits high fidelity in micropattern fabrication. Micropatterned hydrogel substrates lead to enhanced organization, maturation, and contraction of CMs. A microgroove with 20-μm-width and 20-μm-spacing was identified as the optimal configuration for maximizing the contact guidance effect, supported by analyses of nuclear orientation and F-actin organization. Furthermore, this specific micropattern design was found to promote CMs' maturation, as evidenced by increased expression of connexin 43 and vinculin, along with extended sarcomere length. It also enhanced CMs' contraction, resulting in larger contractile amplitudes and greater contractile motion anisotropy. In conclusion, these results underscore the significant benefits of optimizing micropatterned gelatin methacryloyl for improving CMs' organization, maturation, and contraction. This valuable insight paves the way for the development of highly organized and functionally mature cardiac tissues in vitro.
Collapse
Affiliation(s)
- Bin Zhang
- Author to whom correspondence should be addressed:
| | | | | | | | | | | |
Collapse
|
16
|
Skillin NP, Kirkpatrick BE, Herbert KM, Nelson BR, Hach GK, Günay KA, Khan RM, DelRio FW, White TJ, Anseth KS. Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment. SCIENCE ADVANCES 2024; 10:eadn0235. [PMID: 38820155 PMCID: PMC11141631 DOI: 10.1126/sciadv.adn0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
The ability of cells to organize into tissues with proper structure and function requires the effective coordination of proliferation, migration, polarization, and differentiation across length scales. Skeletal muscle is innately anisotropic; however, few biomaterials can emulate mechanical anisotropy to determine its influence on tissue patterning without introducing confounding topography. Here, we demonstrate that substrate stiffness anisotropy coordinates contractility-driven collective cellular dynamics resulting in C2C12 myotube alignment over millimeter-scale distances. When cultured on mechanically anisotropic liquid crystalline polymer networks (LCNs) lacking topography, C2C12 myoblasts collectively polarize in the stiffest direction. Cellular coordination is amplified through reciprocal cell-ECM dynamics that emerge during fusion, driving global myotube-ECM ordering. Conversely, myotube alignment was restricted to small local domains with no directional preference on mechanically isotropic LCNs of the same chemical formulation. These findings provide valuable insights for designing biomaterials that mimic anisotropic microenvironments and underscore the importance of stiffness anisotropy in orchestrating tissue morphogenesis.
Collapse
Affiliation(s)
- Nathaniel P. Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katie M. Herbert
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Benjamin R. Nelson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Grace K. Hach
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Kemal Arda Günay
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Ryan M. Khan
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Frank W. DelRio
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Timothy J. White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
17
|
Bliley JM, Stang MA, Behre A, Feinberg AW. Advances in 3D Bioprinted Cardiac Tissue Using Stem Cell-Derived Cardiomyocytes. Stem Cells Transl Med 2024; 13:425-435. [PMID: 38502194 PMCID: PMC11092277 DOI: 10.1093/stcltm/szae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/11/2024] [Indexed: 03/21/2024] Open
Abstract
The ultimate goal of cardiac tissue engineering is to generate new muscle to repair or replace the damaged heart. This requires advances in stem cell technologies to differentiate billions of cardiomyocytes, together with advanced biofabrication approaches such as 3D bioprinting to achieve the requisite structure and contractile function. In this concise review, we cover recent progress in 3D bioprinting of cardiac tissue using pluripotent stem cell-derived cardiomyocytes, key design criteria for engineering aligned cardiac tissues, and ongoing challenges in the field that must be addressed to realize this goal.
Collapse
Affiliation(s)
- Jacqueline M Bliley
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Maria A Stang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Anne Behre
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Yao ZF, Kuang Y, Wu HT, Lundqvist E, Fu X, Celt N, Pei J, Yee A, Ardoña HAM. Selective Induction of Molecular Assembly to Tissue-Level Anisotropy on Peptide-Based Optoelectronic Cardiac Biointerfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312231. [PMID: 38335948 PMCID: PMC11126358 DOI: 10.1002/adma.202312231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/19/2024] [Indexed: 02/12/2024]
Abstract
The conduction efficiency of ions in excitable tissues and of charged species in organic conjugated materials both benefit from having ordered domains and anisotropic pathways. In this study, a photocurrent-generating cardiac biointerface is presented, particularly for investigating the sensitivity of cardiomyocytes to geometrically comply to biomacromolecular cues differentially assembled on a conductive nanogrooved substrate. Through a polymeric surface-templated approach, photoconductive substrates with symmetric peptide-quaterthiophene (4T)-peptide units assembled as 1D nanostructures on nanoimprinted polyalkylthiophene (P3HT) surface are developed. The 4T-based peptides studied here can form 1D nanostructures on prepatterned polyalkylthiophene substrates, as directed by hydrogen bonding, aromatic interactions between 4T and P3HT, and physical confinement on the nanogrooves. It is observed that smaller 4T-peptide units that can achieve a higher degree of assembly order within the polymeric templates serve as a more efficient driver of cardiac cytoskeletal anisotropy than merely presenting aligned -RGD bioadhesive epitopes on a nanotopographic surface. These results unravel some insights on how cardiomyocytes perceive submicrometer dimensionality, local molecular order, and characteristics of surface cues in their immediate environment. Overall, the work offers a cardiac patterning platform that presents the possibility of a gene modification-free cardiac photostimulation approach while controlling the conduction directionality of the biotic and abiotic components.
Collapse
Affiliation(s)
- Ze-Fan Yao
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
| | - Yuyao Kuang
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
| | - Hao-Tian Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Emil Lundqvist
- Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
| | - Xin Fu
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
| | - Natalie Celt
- Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Albert Yee
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
| | - Herdeline Ann M. Ardoña
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
19
|
Kobeissi H, Jilberto J, Karakan MÇ, Gao X, DePalma SJ, Das SL, Quach L, Urquia J, Baker BM, Chen CS, Nordsletten D, Lejeune E. MicroBundleCompute: Automated segmentation, tracking, and analysis of subdomain deformation in cardiac microbundles. PLoS One 2024; 19:e0298863. [PMID: 38530829 PMCID: PMC10965069 DOI: 10.1371/journal.pone.0298863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/01/2024] [Indexed: 03/28/2024] Open
Abstract
Advancing human induced pluripotent stem cell derived cardiomyocyte (hiPSC-CM) technology will lead to significant progress ranging from disease modeling, to drug discovery, to regenerative tissue engineering. Yet, alongside these potential opportunities comes a critical challenge: attaining mature hiPSC-CM tissues. At present, there are multiple techniques to promote maturity of hiPSC-CMs including physical platforms and cell culture protocols. However, when it comes to making quantitative comparisons of functional behavior, there are limited options for reliably and reproducibly computing functional metrics that are suitable for direct cross-system comparison. In addition, the current standard functional metrics obtained from time-lapse images of cardiac microbundle contraction reported in the field (i.e., post forces, average tissue stress) do not take full advantage of the available information present in these data (i.e., full-field tissue displacements and strains). Thus, we present "MicroBundleCompute," a computational framework for automatic quantification of morphology-based mechanical metrics from movies of cardiac microbundles. Briefly, this computational framework offers tools for automatic tissue segmentation, tracking, and analysis of brightfield and phase contrast movies of beating cardiac microbundles. It is straightforward to implement, runs without user intervention, requires minimal input parameter setting selection, and is computationally inexpensive. In this paper, we describe the methods underlying this computational framework, show the results of our extensive validation studies, and demonstrate the utility of exploring heterogeneous tissue deformations and strains as functional metrics. With this manuscript, we disseminate "MicroBundleCompute" as an open-source computational tool with the aim of making automated quantitative analysis of beating cardiac microbundles more accessible to the community.
Collapse
Affiliation(s)
- Hiba Kobeissi
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States of America
| | - Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - M. Çağatay Karakan
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
- Photonics Center, Boston University, Boston, MA, United States of America
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Samuel J. DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Shoshana L. Das
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Lani Quach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Jonathan Urquia
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, United States of America
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - David Nordsletten
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King’s Health Partners, King’s College London, King’s Health Partners, London, United Kingdom
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States of America
| |
Collapse
|
20
|
Gill JK, Rehsia SK, Verma E, Sareen N, Dhingra S. Stem cell therapy for cardiac regeneration: past, present, and future. Can J Physiol Pharmacol 2024; 102:161-179. [PMID: 38226807 DOI: 10.1139/cjpp-2023-0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cardiac disorders remain the leading cause of mortality worldwide. Current clinical strategies, including drug therapy, surgical interventions, and organ transplantation offer limited benefits to patients without regenerating the damaged myocardium. Over the past decade, stem cell therapy has generated a keen interest owing to its unique self-renewal and immune privileged characteristics. Furthermore, the ability of stem cells to differentiate into specialized cell types, has made them a popular therapeutic tool against various diseases. This comprehensive review provides an overview of therapeutic potential of different types of stem cells in reference to cardiovascular diseases. Furthermore, it sheds light on the advantages and limitations associated with each cell type. An in-depth analysis of the challenges associated with stem cell research and the hurdles for its clinical translation and their possible solutions have also been elaborated upon. It examines the controversies surrounding embryonic stem cells and the emergence of alternative approaches, such as the use of induced pluripotent stem cells for cardiac therapeutic applications. Overall, this review serves as a valuable resource for researchers, clinicians, and policymakers involved in the field of regenerative medicine, guiding the development of safe and effective stem cell-based therapies to revolutionize patient care.
Collapse
Affiliation(s)
- Jaideep Kaur Gill
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Sargun Kaur Rehsia
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Elika Verma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| |
Collapse
|
21
|
Brown GE, Han YD, Michell AR, Ly OT, Vanoye CG, Spanghero E, George AL, Darbar D, Khetani SR. Engineered cocultures of iPSC-derived atrial cardiomyocytes and atrial fibroblasts for modeling atrial fibrillation. SCIENCE ADVANCES 2024; 10:eadg1222. [PMID: 38241367 PMCID: PMC10798559 DOI: 10.1126/sciadv.adg1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia treatable with antiarrhythmic drugs; however, patient responses remain highly variable. Human induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs) are useful for discovering precision therapeutics, but current platforms yield phenotypically immature cells and are not easily scalable for high-throughput screening. Here, primary adult atrial, but not ventricular, fibroblasts induced greater functional iPSC-aCM maturation, partly through connexin-40 and ephrin-B1 signaling. We developed a protein patterning process within multiwell plates to engineer patterned iPSC-aCM and atrial fibroblast coculture (PC) that significantly enhanced iPSC-aCM structural, electrical, contractile, and metabolic maturation for 6+ weeks compared to conventional mono-/coculture. PC displayed greater sensitivity for detecting drug efficacy than monoculture and enabled the modeling and pharmacological or gene editing treatment of an AF-like electrophysiological phenotype due to a mutated sodium channel. Overall, PC is useful for elucidating cell signaling in the atria, drug screening, and modeling AF.
Collapse
Affiliation(s)
- Grace E. Brown
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yong Duk Han
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ashlin R. Michell
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Olivia T. Ly
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Carlos G. Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emanuele Spanghero
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dawood Darbar
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Salman R. Khetani
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
22
|
Godoy-Gallardo M, Cun X, Liu X, Hosta-Rigau L. Silica Replicas Derived from Mammalian Cells as an Innovative Approach to Physically Direct Cell Lineage Decisions of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48855-48870. [PMID: 37823476 DOI: 10.1021/acsami.3c05556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
By means of a "live-cell" template strategy, silica replicas displaying the same morphology and topography of the mammalian cells used as templates are fabricated. The replicas are used as substrates to direct the differentiation of mesenchymal stem cells (MSCs) to predefined cell lineages. Upregulation of specific genes shows how the silica replica-based substrates have the ability to induce the molecular characteristics of the mature cell types from which they have been derived from. Thus, MSCs cultured in the presence of silica replicas of human osteoblasts (HObs) differentiate into HObs-like cells, as shown by the upregulation of specific osteogenic genes. Likewise, when MSCs are incubated with silica replicas derived from human chondrocytes, an enhanced expression of chondrogenic markers is observed. Importantly, the effects of the silica replicas are cell type-specific since the incubation of MSCs with HObs silica replicas does not result in upregulation of chondrogenic markers and vice versa. What is more, for both cases, the differentiation rate is enhanced when the silica replicas are used in combination with growth factors, suggesting a potential synergistic effect. These results demonstrate the potential of this innovative method as an efficient and cheap approach with the potential to eliminate, or at least reduce, the use of biochemically soluble compounds in stem cells research.
Collapse
Affiliation(s)
- Maria Godoy-Gallardo
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Produktionstorvet, Building 423, 2800 Kongens Lyngby, Denmark
| | - Xingli Cun
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Produktionstorvet, Building 423, 2800 Kongens Lyngby, Denmark
| | - Xiaoli Liu
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Produktionstorvet, Building 423, 2800 Kongens Lyngby, Denmark
| | - Leticia Hosta-Rigau
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Produktionstorvet, Building 423, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
23
|
Kistamás K, Müller A, Muenthaisong S, Lamberto F, Zana M, Dulac M, Leal F, Maziz A, Costa P, Bernotiene E, Bergaud C, Dinnyés A. Multifactorial approaches to enhance maturation of human iPSC-derived cardiomyocytes. J Mol Liq 2023; 387:122668. [DOI: 10.1016/j.molliq.2023.122668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Asiri F, Haque Siddiqui MI, Ali MA, Alam T, Dobrotă D, Chicea R, Dobrotă RD. Mathematical modeling of active contraction of the human cardiac myocyte: A review. Heliyon 2023; 9:e20065. [PMID: 37809539 PMCID: PMC10559823 DOI: 10.1016/j.heliyon.2023.e20065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/26/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023] Open
Abstract
Background and objective In this present research paper, a mathematical model has been developed to study myocyte contraction in the human cardiac muscle, using the Land model. Different parts of the human heart with a focus on the composition of the myocyte cells have been explored numerically to enabling us to determine the interaction of various parameters in the heart muscle. The main objective of the work is to direct the study of the Land model, which has been exploited to simulate the contraction of real human myocytes. Methods Mathematical models has been developed based on the Hill model and Huxley model. Myocyte contraction for different scenarios, such as in isometric tension and isotonic tension have been studied. Results It is found that increase in stretch, the peak active tension increases, in line with well-established length-dependent tension generation. Five parameters are selected: [Ca2+]T50, Tref, TRPN50, β0, and β1, which have been varied in between the range of -50%-100%, to examine the isometric effects of each parameter on the behavior of the tension developed in the intact myocyte cells, with the most sensitive parameter being [Ca2+]T50. Conclusion In conclusion, it is found that the Land model provides a good platform for the analysis of the active contraction of the human cardiac myocyte.
Collapse
Affiliation(s)
- Fisal Asiri
- Department of Mathematics, Taibah University, Medina, 42353, Saudi Arabia
| | | | - Masood Ashraf Ali
- Department of Industrial Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj, 16273, Saudi Arabia
| | - Tabish Alam
- CSIR-Central Building Research Institute, Roorkee, 247667, India
| | - Dan Dobrotă
- Faculty of Engineering, Lucian Blaga University of Sibiu, 550024, Sibiu, Romania
| | - Radu Chicea
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550024, Sibiu, Romania
| | | |
Collapse
|
25
|
Jafari A, Behjat E, Malektaj H, Mobini F. Alignment behavior of nerve, vascular, muscle, and intestine cells in two- and three-dimensional strategies. WIREs Mech Dis 2023; 15:e1620. [PMID: 37392045 DOI: 10.1002/wsbm.1620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/28/2023] [Accepted: 05/23/2023] [Indexed: 07/02/2023]
Abstract
By harnessing structural hierarchical insights, plausibly simulate better ones imagination to figure out the best choice of methods for reaching out the unprecedented developments of the tissue engineering products as a next level. Constructing a functional tissue that incorporates two-dimensional (2D) or higher dimensions requires overcoming technological or biological limitations in order to orchestrate the structural compilation of one-dimensional and 2D sheets (microstructures) simultaneously (in situ). This approach enables the creation of a layered structure that can be referred to as an ensemble of layers or, after several days of maturation, a direct or indirect joining of layers. Here, we have avoided providing a detailed methodological description of three-dimensional and 2D strategies, except for a few interesting examples that highlight the higher alignment of cells and emphasize rarely remembered facts associated with vascular, peripheral nerve, muscle, and intestine tissues. The effective directionality of cells in conjunction with geometric cues (in the range of micrometers) is well known to affect a variety of cell behaviors. The curvature of a cell's environment is one of the factors that influence the formation of patterns within tissues. The text will cover cell types containing some level of stemness, which will be followed by their consequences for tissue formation. Other important considerations pertain to cytoskeleton traction forces, cell organelle positioning, and cell migration. An overview of cell alignment along with several pivotal molecular and cellular level concepts, such as mechanotransduction, chirality, and curvature of structure effects on cell alignments will be presented. The mechanotransduction term will be used here in the context of the sensing capability that cells show as a result of force-induced changes either at the conformational or the organizational levels, a capability that allows us to modify cell fate by triggering downstream signaling pathways. A discussion of the cells' cytoskeleton and of the stress fibers involvement in altering the cell's circumferential constitution behavior (alignment) based on exposed scaffold radius will be provided. Curvatures with size similarities in the range of cell sizes cause the cell's behavior to act as if it was in an in vivo tissue environment. The revision of the literature, patents, and clinical trials performed for the present study shows that there is a clear need for translational research through the implementation of clinical trial platforms that address the tissue engineering possibilities raised in the current revision. This article is categorized under: Infectious Diseases > Biomedical Engineering Neurological Diseases > Biomedical Engineering Cardiovascular Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Amir Jafari
- Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erfan Behjat
- Department of Biomaterials, School of Metallurgy & Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Aalborg, Denmark
| | - Faezeh Mobini
- Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
26
|
House A, Cornick J, Butt Q, Guvendiren M. Elastomeric platform with surface wrinkling patterns to control cardiac cell alignment. J Biomed Mater Res A 2023; 111:1228-1242. [PMID: 36762538 DOI: 10.1002/jbm.a.37511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/07/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
There is a growing interest in creating 2D cardiac tissue models that display native extracellular matrix (ECM) cues of the heart tissue. Cellular alignment alone is known to be a crucial cue for cardiac tissue development by regulating cell-cell and cell-ECM interactions. In this study, we report a simple and robust approach to create lamellar surface wrinkling patterns enabling spatial control of pattern dimensions with a wide range of pattern amplitude (A ≈ 2-55 μm) and wavelength (λ ≈ 35-100 μm). For human cardiomyocytes (hCMs) and human cardiac fibroblasts (hCFs), our results indicate that the degree of cellular alignment and pattern recognition are correlated with pattern A and λ. We also demonstrate fabrication of devices composed of micro-well arrays with user-defined lamellar patterns on the bottom surface of each well for high-throughput screening studies. Results from a screening study indicate that cellular alignment is strongly diminished with increasing seeding density. In another study, we show our ability to vary hCM/hCF seeding ratio for each well to create co-culture systems where seeding ratio is independent of cellular alignment.
Collapse
Affiliation(s)
- Andrew House
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Jason Cornick
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Quratulain Butt
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Murat Guvendiren
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
27
|
Khan A, Kumari P, Kumari N, Shaikh U, Ekhator C, Halappa Nagaraj R, Yadav V, Khan AW, Lazarevic S, Bharati B, Lakshmipriya Vetrivendan G, Mulmi A, Mohamed H, Ullah A, Kadel B, Bellegarde SB, Rehman A. Biomimetic Approaches in Cardiac Tissue Engineering: Replicating the Native Heart Microenvironment. Cureus 2023; 15:e43431. [PMID: 37581196 PMCID: PMC10423641 DOI: 10.7759/cureus.43431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2023] [Indexed: 08/16/2023] Open
Abstract
Cardiovascular diseases, including heart failure, pose significant challenges in medical practice, necessitating innovative approaches for cardiac repair and regeneration. Cardiac tissue engineering has emerged as a promising solution, aiming to develop functional and physiologically relevant cardiac tissue constructs. Replicating the native heart microenvironment, with its complex and dynamic milieu necessary for cardiac tissue growth and function, is crucial in tissue engineering. Biomimetic strategies that closely mimic the natural heart microenvironment have gained significant interest due to their potential to enhance synthetic cardiac tissue functionality and therapeutic applicability. Biomimetic approaches focus on mimicking biochemical cues, mechanical stimuli, coordinated electrical signaling, and cell-cell/cell-matrix interactions of cardiac tissue. By combining bioactive ligands, controlled delivery systems, appropriate biomaterial characteristics, electrical signals, and strategies to enhance cell interactions, biomimetic approaches provide a more physiologically relevant environment for tissue growth. The replication of the native cardiac microenvironment enables precise regulation of cellular responses, tissue remodeling, and the development of functional cardiac tissue constructs. Challenges and future directions include refining complex biochemical signaling networks, paracrine signaling, synchronized electrical networks, and cell-cell/cell-matrix interactions. Advancements in biomimetic approaches hold great promise for cardiovascular regenerative medicine, offering potential therapeutic strategies and revolutionizing cardiac disease modeling. These approaches contribute to the development of more effective treatments, personalized medicine, and improved patient outcomes. Ongoing research and innovation in biomimetic approaches have the potential to revolutionize regenerative medicine and cardiac disease modeling by replicating the native heart microenvironment, advancing functional cardiac tissue engineering, and improving patient outcomes.
Collapse
Affiliation(s)
- Anoosha Khan
- Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Priya Kumari
- Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | - Naina Kumari
- Dow Medical College, Dow University of Health Sciences, Karachi, PAK
| | - Usman Shaikh
- Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, USA
| | | | - Vikas Yadav
- Internal Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, IND
| | | | | | - Bishal Bharati
- Internal Medicine, Nepal Medical College, Kathmandu, NPL
| | | | | | - Hana Mohamed
- Medicine, United Nations Study & Understanding, The International Academy, Khartoum, SDN
- Medicine, Elrazi University, Khartoum, SDN
| | | | - Bijan Kadel
- Internal Medicine, Nepal Medical College and Teaching Hospital, Kathmandu, NPL
| | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, St. John's, ATG
| | | |
Collapse
|
28
|
Mostert D, Groenen B, Klouda L, Passier R, Goumans MJ, Kurniawan NA, Bouten CVC. Human pluripotent stem cell-derived cardiomyocytes align under cyclic strain when guided by cardiac fibroblasts. APL Bioeng 2022; 6:046108. [PMID: 36567768 PMCID: PMC9771596 DOI: 10.1063/5.0108914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
The myocardium is a mechanically active tissue typified by anisotropy of the resident cells [cardiomyocytes (CMs) and cardiac fibroblasts (cFBs)] and the extracellular matrix (ECM). Upon ischemic injury, the anisotropic tissue is replaced by disorganized scar tissue, resulting in loss of coordinated contraction. Efforts to re-establish tissue anisotropy in the injured myocardium are hampered by a lack of understanding of how CM and/or cFB structural organization is affected by the two major physical cues inherent in the myocardium: ECM organization and cyclic mechanical strain. Herein, we investigate the singular and combined effect of ECM (dis)organization and cyclic strain in a two-dimensional human in vitro co-culture model of the myocardial microenvironment. We show that (an)isotropic ECM protein patterning can guide the orientation of CMs and cFBs, both in mono- and co-culture. Subsequent application of uniaxial cyclic strain-mimicking the local anisotropic deformation of beating myocardium-causes no effect when applied parallel to the anisotropic ECM. However, when cultured on isotropic substrates, cFBs, but not CMs, orient away from the direction of cyclic uniaxial strain (strain avoidance). In contrast, CMs show strain avoidance via active remodeling of their sarcomeres only when co-cultured with at least 30% cFBs. Paracrine signaling or N-cadherin-mediated communication between CMs and cFBs was no contributing factor. Our findings suggest that the mechanoresponsive cFBs provide structural guidance for CM orientation and elongation. Our study, therefore, highlights a synergistic mechanobiological interplay between CMs and cFBs in shaping tissue organization, which is of relevance for regenerating functionally organized myocardium.
Collapse
Affiliation(s)
| | - Bart Groenen
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Leda Klouda
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | | | - Marie-Jose Goumans
- Department of Cell and Chemical Biology and Center for Biomedical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | |
Collapse
|
29
|
Biendarra‐Tiegs SM, Yechikov S, Shergill B, Brumback B, Takahashi K, Shirure VS, Gonzalez RE, Houshmand L, Zhong D, Weng K, Silva J, Smith TW, Rentschler SL, George SC. An iPS-derived in vitro model of human atrial conduction. Physiol Rep 2022; 10:e15407. [PMID: 36117385 PMCID: PMC9483613 DOI: 10.14814/phy2.15407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/27/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in the United States, affecting approximately 1 in 10 adults, and its prevalence is expected to rise as the population ages. Treatment options for AF are limited; moreover, the development of new treatments is hindered by limited (1) knowledge regarding human atrial electrophysiological endpoints (e.g., conduction velocity [CV]) and (2) accurate experimental models. Here, we measured the CV and refractory period, and subsequently calculated the conduction wavelength, in vivo (four subjects with AF and four controls), and ex vivo (atrial slices from human hearts). Then, we created an in vitro model of human atrial conduction using induced pluripotent stem (iPS) cells. This model consisted of iPS-derived human atrial cardiomyocytes plated onto a micropatterned linear 1D spiral design of Matrigel. The CV (34-41 cm/s) of the in vitro model was nearly five times faster than 2D controls (7-9 cm/s) and similar to in vivo (40-64 cm/s) and ex vivo (28-51 cm/s) measurements. Our iPS-derived in vitro model recapitulates key features of in vivo atrial conduction and may be a useful methodology to enhance our understanding of AF and model patient-specific disease.
Collapse
Affiliation(s)
| | - Sergey Yechikov
- Department of Biomedical EngineeringUniversity of California, DavisDavisCaliforniaUSA
| | - Bhupinder Shergill
- Department of Biomedical EngineeringUniversity of California, DavisDavisCaliforniaUSA
| | - Brittany Brumback
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Kentaro Takahashi
- Department of MedicineWashington University in St. LouisSt. LouisMissouriUSA
| | - Venktesh S. Shirure
- Department of Biomedical EngineeringUniversity of California, DavisDavisCaliforniaUSA
| | - Ruth Estelle Gonzalez
- Department of Biomedical EngineeringUniversity of California, DavisDavisCaliforniaUSA
| | - Laura Houshmand
- Department of Biomedical EngineeringUniversity of California, DavisDavisCaliforniaUSA
| | - Denise Zhong
- Department of Biomedical EngineeringUniversity of California, DavisDavisCaliforniaUSA
| | - Kuo‐Chan Weng
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Jon Silva
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Timothy W. Smith
- Department of MedicineWashington University in St. LouisSt. LouisMissouriUSA
| | - Stacey L. Rentschler
- Department of MedicineWashington University in St. LouisSt. LouisMissouriUSA
- Department of Developmental BiologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Steven C. George
- Department of Biomedical EngineeringUniversity of California, DavisDavisCaliforniaUSA
| |
Collapse
|
30
|
Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic Tissue Engineering and Bio-Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108427. [PMID: 35194852 DOI: 10.1002/adma.202108427] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Bio-hybrid technologies aim to replicate the unique capabilities of biological systems that could surpass advanced artificial technologies. Soft bio-hybrid robots consist of synthetic and living materials and have the potential to self-assemble, regenerate, work autonomously, and interact safely with other species and the environment. Cells require a sufficient exchange of nutrients and gases, which is guaranteed by convection and diffusive transport through liquid media. The functional development and long-term survival of biological tissues in vitro can be improved by dynamic flow culture, but only microfluidic flow control can develop tissue with fine structuring and regulation at the microscale. Full control of tissue growth at the microscale will eventually lead to functional macroscale constructs, which are needed as the biological component of soft bio-hybrid technologies. This review summarizes recent progress in microfluidic techniques to engineer biological tissues, focusing on the use of muscle cells for robotic bio-actuation. Moreover, the instances in which bio-actuation technologies greatly benefit from fusion with microfluidics are highlighted, which include: the microfabrication of matrices, biomimicry of cell microenvironments, tissue maturation, perfusion, and vascularization.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Thomas Buchner
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Stefan Weirich
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
31
|
Rogozinski N, Yanez A, Bhoi R, Lee MY, Yang H. Current methods for fabricating 3D cardiac engineered constructs. iScience 2022; 25:104330. [PMID: 35602954 PMCID: PMC9118671 DOI: 10.1016/j.isci.2022.104330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
3D cardiac engineered constructs have yielded not only the next generation of cardiac regenerative medicine but also have allowed for more accurate modeling of both healthy and diseased cardiac tissues. This is critical as current cardiac treatments are rudimentary and often default to eventual heart transplants. This review serves to highlight the various cell types found in cardiac tissues and how they correspond with current advanced fabrication methods for creating cardiac engineered constructs capable of shedding light on various pathologies and providing the therapeutic potential for damaged myocardium. In addition, insight is given toward the future direction of the field with an emphasis on the creation of specialized and personalized constructs that model the region-specific microtopography and function of native cardiac tissues.
Collapse
Affiliation(s)
- Nicholas Rogozinski
- Department of Biomedical Engineering, University of North Texas, 3940 N. Elm Street K240B, Denton, TX 76207-7102, USA
| | - Apuleyo Yanez
- Department of Biomedical Engineering, University of North Texas, 3940 N. Elm Street K240B, Denton, TX 76207-7102, USA
| | - Rahulkumar Bhoi
- Department of Biomedical Engineering, University of North Texas, 3940 N. Elm Street K240B, Denton, TX 76207-7102, USA
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, 3940 N. Elm Street K240B, Denton, TX 76207-7102, USA
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, 3940 N. Elm Street K240B, Denton, TX 76207-7102, USA
| |
Collapse
|
32
|
Tan YH, Helms HR, Nakayama KH. Decellularization Strategies for Regenerating Cardiac and Skeletal Muscle Tissues. Front Bioeng Biotechnol 2022; 10:831300. [PMID: 35295645 PMCID: PMC8918733 DOI: 10.3389/fbioe.2022.831300] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and is associated with approximately 17.9 million deaths each year. Musculoskeletal conditions affect more than 1.71 billion people globally and are the leading cause of disability. These two areas represent a massive global health burden that is perpetuated by a lack of functionally restorative treatment options. The fields of regenerative medicine and tissue engineering offer great promise for the development of therapies to repair damaged or diseased tissues. Decellularized tissues and extracellular matrices are cornerstones of regenerative biomaterials and have been used clinically for decades and many have received FDA approval. In this review, we first discuss and compare methods used to produce decellularized tissues and ECMs from cardiac and skeletal muscle. We take a focused look at how different biophysical properties such as spatial topography, extracellular matrix composition, and mechanical characteristics influence cell behavior and function in the context of regenerative medicine. Lastly, we describe emerging research and forecast the future high impact applications of decellularized cardiac and skeletal muscle that will drive novel and effective regenerative therapies.
Collapse
Affiliation(s)
| | | | - Karina H. Nakayama
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
33
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
34
|
Lee G, Cho Y, Kim EH, Choi JM, Chae SS, Lee MG, Kim J, Choi WJ, Kwon J, Han EH, Kim SH, Park S, Chung YH, Chi SG, Jung BH, Shin JH, Lee JO. Pillar-Based Mechanical Induction of an Aggressive Tumorigenic Lung Cancer Cell Model. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20-31. [PMID: 34914354 DOI: 10.1021/acsami.1c12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tissue microarchitecture imposes physical constraints to the migration of individual cells. Especially in cancer metastasis, three-dimensional structural barriers within the extracellular matrix are known to affect the migratory behavior of cells, regulating the pathological state of the cells. Here, we employed a culture platform with micropillar arrays of 2 μm diameter and 16 μm pitch (2.16 micropillar) as a mechanical stimulant. Using this platform, we investigated how a long-term culture of A549 human lung carcinoma cells on the (2.16) micropillar-embossed dishes would influence the pathological state of the cell. A549 cells grown on the (2.16) micropillar array with 10 μm height exhibited a significantly elongated morphology and enhanced migration even after the detachment and reattachment, as evidenced in the conventional wound-healing assay, single-cell tracking analysis, and in vivo tumor colonization assays. Moreover, the pillar-induced morphological deformation in nuclei was accompanied by cell-cycle arrest in the S phase, leading to suppressed proliferation. While these marked traits of morphology-migration-proliferation support more aggressive characteristics of metastatic cancer cells, typical indices of epithelial-mesenchymal transition were not found, but instead, remarkable traces of amoeboidal transition were confirmed. Our study also emphasizes the importance of mechanical stimuli from the microenvironment during pathogenesis and how gained traits can be passed onto subsequent generations, ultimately affecting their pathophysiological behavior. Furthermore, this study highlights the potential use of pillar-based mechanical stimuli as an in vitro cell culture strategy to induce more aggressive tumorigenic cancer cell models.
Collapse
Affiliation(s)
- Geonhee Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Youngbin Cho
- Department of Mechanical Engineering, Korea Advanced of Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eun Hye Kim
- Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Jong Min Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo Sang Chae
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jonghyun Kim
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Won Jin Choi
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Joseph Kwon
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Eun Hee Han
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Seong Hwan Kim
- Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Young-Ho Chung
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Byung Hwa Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced of Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong-O Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| |
Collapse
|
35
|
Do Human iPSC-Derived Cardiomyocytes Cultured on PLA Scaffolds Induce Expression of CD28/CTLA-4 by T Lymphocytes? J Funct Biomater 2022; 13:jfb13010006. [PMID: 35076538 PMCID: PMC8788528 DOI: 10.3390/jfb13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
Many research groups have developed various types of tissue-engineered cardiac constructs. However, the immunological properties of such artificial tissues are not yet fully understood. Previously, we developed microfiber scaffolds carrying human iPSC-derived cardiomyocytes (hiPSC-CM). In this work, we evaluated the ability of these tissue-engineered constructs to activate the expression of CD28 and CTLA-4 proteins on T lymphocytes, which are early markers of the immune response. For this purpose, electrospun PLA microfiber scaffolds were seeded with hiPSC-CM and cultured for 2 weeks. Allogeneic mononuclear cells were then co-cultured for 48 h with three groups of samples: bare scaffolds, pure cardiomyocyte culture and tissue-engineered constructs, followed by analysis of CD28/CTLA-4 expression on T lymphocytes using flow cytometry. PLA scaffolds and concanavalin A stimulation (positive control) statistically significantly increased CD28 expression on CD4+ T cells (up to 61.3% and 66.3%) CD8+ T cells (up to 17.8% and 21.7%). CD28/CTLA-4 expression was not increased when T lymphocytes were co-cultured with cardiac tissue-engineered constructs and iPSC-CM monolayers. Thus, iPSC-CM in monolayers and on PLA microfiber scaffolds did not induce T cell activation, which suggests that such cardiac constructs would not be a cause of rejection after implantation.
Collapse
|
36
|
Ozkizilcik A, Sysavanh F, Patel S, Tandon I, Balachandran K. Local Renin-Angiotensin System Signaling Mediates Cellular Function of Aortic Valves. Ann Biomed Eng 2021; 49:3550-3562. [PMID: 34704164 DOI: 10.1007/s10439-021-02876-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
The renin-angiotensin system (RAS) is activated in aortic valve disease, yet little is understood about how it affects the acute functional response of valve interstitial cells (VICs). Herein, we developed a gelatin-based valve thin film (vTF) platform to investigate whether the contractile response of VICs can be regulated via RAS mediators and inhibitors. First, the impact of culture medium (quiescent, activated, and osteogenic medium) on VIC phenotype and function was assessed. Contractility of VICs was measured upon treatment with angiotensin I (Ang I), angiotensin II (Ang II), angiotensin-converting enzyme (ACE) inhibitor, and Angiotensin II type 1 receptor (AT1R) inhibitor. Anisotropic cell alignment on gelatin vTF was achieved independent of culture conditions. Cells cultured in activated and osteogenic conditions were found to be more elongated than in quiescent medium. Increased α-SMA expression was observed in activated medium and no RUNX2 expression were observed in cells. VIC contractile stress increased with increasing concentrations (from 10-10 to 10-6 M) of Ang I and Ang II. Moreover, cell contraction was significantly reduced in all ACE and AT1R inhibitor-treated groups. Together, these findings suggest that local RAS is active in VICs, and our vTF may provide a powerful platform for valve drug screening and development.
Collapse
Affiliation(s)
- Asya Ozkizilcik
- Department of Biomedical Engineering, University of Arkansas, 122 John A.White Jr. Engineering Hall, Fayetteville, AR, 72701, USA
| | - Fah Sysavanh
- Department of Biomedical Engineering, University of Arkansas, 122 John A.White Jr. Engineering Hall, Fayetteville, AR, 72701, USA
| | - Smit Patel
- Department of Biomedical Engineering, University of Arkansas, 122 John A.White Jr. Engineering Hall, Fayetteville, AR, 72701, USA
| | - Ishita Tandon
- Department of Biomedical Engineering, University of Arkansas, 122 John A.White Jr. Engineering Hall, Fayetteville, AR, 72701, USA
| | - Kartik Balachandran
- Department of Biomedical Engineering, University of Arkansas, 122 John A.White Jr. Engineering Hall, Fayetteville, AR, 72701, USA.
| |
Collapse
|