1
|
Das K, Kuźnik N, Dydio P. Dehomologative C-C Borylation of Aldehydes and Alcohols via a Rh-Catalyzed Dehydroformylation-Borylation Relay. J Am Chem Soc 2025; 147:16735-16741. [PMID: 40354369 PMCID: PMC12100658 DOI: 10.1021/jacs.5c02181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
The dehomologative conversion of linear or α-methyl aldehydes to vinyl boronates is achieved via a one-pot sequence of rhodium-catalyzed transfer dehydroformylation and transfer borylation of the resulting alkenes. Similarly, allylic or aliphatic alcohols are converted to vinyl boronates through a sequence involving, respectively, rhodium-catalyzed isomerization or transfer dehydrogenation to aldehyde intermediates, followed by dehydroformylation-borylation. The vinyl boronates can be further hydrogenated to alkyl boronates using the same rhodium precatalyst, enabling all five catalytic steps with a single catalyst system.
Collapse
Affiliation(s)
- Kuhali Das
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CambridgeCB2 1EW, United
Kingdom
- University
of Strasbourg, CNRS, ISIS UMR 7006, 67000Strasbourg, France
| | - Nikodem Kuźnik
- University
of Strasbourg, CNRS, ISIS UMR 7006, 67000Strasbourg, France
- Silesian
University of Technology, Krzywoustego 4, 44-100Gliwice, Poland
| | - Paweł Dydio
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CambridgeCB2 1EW, United
Kingdom
- University
of Strasbourg, CNRS, ISIS UMR 7006, 67000Strasbourg, France
| |
Collapse
|
2
|
Ran W, Zhao H, Zhang X, Chen N, Sun JF, Pan W, Liu J, Liao C, Liu R, Jiang G. Combining a Pd Cluster and a Built-in Electric Field as a Biomimic for Stable C-Cl Bond Polarization. ACS NANO 2025; 19:18843-18855. [PMID: 40340331 DOI: 10.1021/acsnano.5c04994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Adopting the essence of enzyme catalysis, the strong binding of substrates into the active site pocket for their selective activation through multiple noncovalent interactions in the reactive site design can effectively enhance the electrocatalysis process. However, mimicking the enzyme catalytic process, particularly the introduction of reactant activation mechanisms, remains a significant challenge. Herein, we present a Pd cluster inside the Fe2N-Fe3O4-based built-in electric field (BEF), denoted as Pd/Fe2N-Fe3O4, to serve as an enzyme mimic to activate stable C-Cl bonds. Theoretical calculations and in situ Raman indicate that the probe molecule 2,4-dichlorophenol (2,4-DCP) adsorbs onto the Pd site and rotates inside the BEF with the C4-Cl bond being selectively activated and elongated from 1.73 to 1.82 Å. This makes Pd/Fe2N-Fe3O4 an excellent electrocatalytic hydrodechlorination catalyst, with Pd usage down to 2.5 μg cm-2, which is 32.7-360 times less than that of conventional catalysts like Pd/C, and achieving a Faradaic efficiency exceeding 20%. We reveal that besides H*-mediated electrochemical reduction, Pd/Fe2N-Fe3O4 also hydrodechlorinates activated 2,4-DCP via the proton-electron coupled transfer pathway. This understanding of the role of BEF in reactant activation, along with the strategy of integrating BEF and noble metals to mimic enzymes, provides a direction for the design of advanced electrocatalysts.
Collapse
Affiliation(s)
- Wei Ran
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Huachao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 China
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resources Engineering, Wuyi University, Wuyishan 354300 China
| | - Xiaoling Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Ning Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute of Advanced Study, UCAS, Hangzhou 310024 China
| | - Jie-Fang Sun
- Beijing Center for Disease Prevention and Control, Beijing 100013 China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Jingfu Liu
- Institute of Environment and Health, Jianghan University, Wuhan 430056 China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 China
- School of Environment, Hangzhou Institute of Advanced Study, UCAS, Hangzhou 310024 China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 China
- School of Environment, Hangzhou Institute of Advanced Study, UCAS, Hangzhou 310024 China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 China
- School of Environment, Hangzhou Institute of Advanced Study, UCAS, Hangzhou 310024 China
| |
Collapse
|
3
|
Lu T, Lu S, Yao H, Sun H, Hu H, Song J, Duan F, Du M. Biological Cascade Catalysts Based on Structurally Regulated Covalent Organic Framework for Intuitive Glucose Colorimetric Sensing. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40380901 DOI: 10.1021/acsami.5c03929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
The integration of chemical catalysts and biocatalysts into catalytic cascade reactions has garnered significant attention in recent years. However, its practical application has been limited due to several challenges, including the fragility of enzymes, inadequate carrier loading capacity, and poor catalytic efficiency. In this study, two types of Fe-ion-coordinated covalent organic frameworks (Fe-COFs) were synthesized in one pot by facilely changing the COF monomers. They have similar topologies but different electronic structures on the catalytic sites. These Fe-COFs demonstrated excellent peroxidase activity without interference of the oxidase activity, making them suitable for the immobilization of glucose oxidase (GOx). It is proved that both Fe-COFs could achieve a high GOx loading capacity of over 0.9 mg/mgCOF. The general applicability of Fe-COFs as carriers for GOx immobilization in the construction of cascade catalytic systems was confirmed. Among them, Fe-COF1 constructed by 2,2'-bipyridine-5,5'-diformaldehyde (Bpy) and 1,3,6,8-tetrakis(p-aminophenyl)-pyrene (Tpy) was optimized as the more suitable carrier toward the GOx immobilization for the quantitative colorimetric determination of trace glucose. Building upon this, a nanoenzyme-based colorimetric sensor that is compatible with smartphone biological systems was developed, facilitating efficient and convenient glucose quantification. The sensor demonstrated a strong linear relationship within the glucose concentration range of 10-1000 μM, with a limit of detection (LoD) of 1.4 μM. Additionally, it retained 90% of its catalytic activity after 10 repeated tests, proving its efficacy in sensitively detecting glucose in serum samples. This work expands the practical applications of biocascade catalysts based on COFs in colorimetric sensing and medical diagnostics.
Collapse
Affiliation(s)
- Tong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Hongze Yao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Huimin Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Hongyin Hu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Jiashen Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
4
|
Avci FG, Prasun T, Wendisch VF. Metabolic engineering for microbial production of sugar acids. BMC Biotechnol 2025; 25:36. [PMID: 40361067 PMCID: PMC12076931 DOI: 10.1186/s12896-025-00973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Carbohydrates including sugar acids are commonly used as carbon sources in microbial biotechnology. These sugar acids are themselves desirable and often overlooked targets for biobased production since they find applications in a broad range of industries, examples include food, construction, medical, textile, and polymer industries. Different stages of oxidation for natural sugar acids can be distinguished. Oxidation of the aldehyde group yields aldonic acids, oxidation of the primary hydroxy group leads to uronic acids, and both oxidations combined yield aldaric acids. While the chemical oxidation of sugars to their acid forms often is a one-pot reaction under harsh conditions, their biosynthesis is much more delicate. Bio-based production can involve enzymatic conversion, whole-cell biotransformation, and fermentation. Generally, the in vivo approaches are preferred because they are less resource-intensive than enzymatic conversion. Metabolic engineering plays a crucial role in optimizing microbial strains for efficient sugar acid production. Strategies include pathway engineering to overexpress key enzymes involved in sugar oxidation, deletion of competing pathways to enhance the precursor availability and eliminate the product consumption, cofactor balancing for efficient redox reactions, and transporter engineering to facilitate precursor import or sugar acid export. Synthetic biology tools, such as CRISPR-Cas and dynamic regulatory circuits, have further improved strain development by enabling precise genetic modifications and adaptive control of metabolic fluxes. The usage of plant biomass hydrolysates for bio-based production further adds to the environmental friendliness of the in vivo approaches. This review highlights the different approaches for the production of C5 and C6 sugar acids, their applications, and their catabolism in microbes.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Türkiye
| | - Tim Prasun
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
5
|
Duan M, Zhong X, Qin J, Lin GQ, He QL, Zhao Q. Biocatalytic Synthesis of Corticosteroid Derivatives by Toad-Derived Steroid C21-Hydroxylase. Org Lett 2025; 27:4574-4579. [PMID: 40243427 DOI: 10.1021/acs.orglett.5c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
CsCYP21A, a steroid 21-hydroxylase from Bufo bufo gargarizans, exhibits unprecedented sequential oxidations. Optimizing Pichia pastoris biotransformation conditions enhanced C21-hydroxylation selectivity, converting 14 substrates to 21-hydroxylated products, with 10 conversions of >80% and 4 yields of >80%. Hydrocortisone production reached 1.5 g L-1 day-1 with 100 g/L wet biomass. CsCYP21A's versatility enables integration into the synthesis of over 10 steroidal drugs, offering a sustainable biocatalytic platform for green pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Meiling Duan
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xueqing Zhong
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jiaxu Qin
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Guo-Qiang Lin
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qing-Li He
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qunfei Zhao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
6
|
Wu Y, Zhu C. Changing the absolute configuration of atropisomeric bisnaphthols (BINOLs). Chem Commun (Camb) 2025; 61:5228-5233. [PMID: 40111747 DOI: 10.1039/d5cc01026h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Bisnaphthol (BINOL) is a ubiquitous core skeleton in versatile chiral catalysts and ligands for transition metals, and this representative atropisomeric structure also serves as a building block in various optically active natural products. Due to the high rotational barrier (∼40 kcal mol-1) in the neutral form of BINOL, it displays stable atropisomerism. Asymmetric catalysis using racemic BINOL substrates generally exhibits a kinetic resolution process, with reaction yields having to be below 50%. Dynamic kinetic resolution (DKR) combines kinetic resolution with a racemization process to push the ideal yield to 100%. A changing of the absolute configuration of BINOL has been observed since Brussee et al. did so in 1985, but its mechanism remains unknown. Recently, racemization strategies and a mechanism based on single-electron oxidation, producing a released radical-anion species as the key intermediate, have been clearly disclosed. In particular, deracemization of BINOLs achieved by using stochiometric amounts of a chiral amine or ammonium salt, and dynamic kinetic resolution in cooperation with biocatalysis, have been well established for accessing enantioenriched BINOL derivatives, as summarized and discussed in this review.
Collapse
Affiliation(s)
- Yun Wu
- Department of Pharmacy, Nantong Health College of Jiangsu Province, 288 Zhenxing East Road, Nantong, 226000, China
| | - Can Zhu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, China
| |
Collapse
|
7
|
Zhu L, Wu T, Shao C, Li X, Zhou B, Peng L, Jin Q, Jin H, Xie S, Shang F, Liu Z, Huang J, Liu S, Tian N. Cloning and functional characterization of the caffeine oxidase gene CsCDH from Camellia sinensis. Int J Biol Macromol 2025; 302:140429. [PMID: 39884634 DOI: 10.1016/j.ijbiomac.2025.140429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
Theacrine, a purine alkaloid with pharmacological effects such as calming and anti-depressive activities, is biosynthesized through a key rate-limiting enzyme, caffeine oxidase. Despite its importance, the caffeine oxidase gene (CsCDH) in Camellia sinensis has not been cloned to date. We successfully isolated the full-length CsCDH cDNA, which contains a 501-bp open reading frame (ORF) encoding a 166-amino-acid protein with a calculated molecular weight of 18.7 kDa. Molecular docking and dynamics simulations showed that CsCDH binds tightly and stably to caffeine, indicating its catalytic potential in converting caffeine to 1,3,7-trimethyluric acid. The CsCDH fusion protein was expressed in Escherichia coli and purified through affinity chromatography. In vitro enzymatic assays verified that CsCDH catalyzes the conversion of caffeine into 1,3,7-trimethyluric acid. Furthermore, transient expression in tobacco confirmed its caffeine oxidase activity in planta. Finally, antisense oligonucleotide (asODN) interference experiments confirmed that CsCDH exhibits caffeine oxidase activity in tea plants. This study lays the groundwork for unraveling the theacrine biosynthesis pathway and offers new insights into breeding low-caffeine or high-theacrine tea cultivars.
Collapse
Affiliation(s)
- Lihua Zhu
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Ting Wu
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Chenyu Shao
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Xinyu Li
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Biao Zhou
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Lvwen Peng
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Qifang Jin
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Huiying Jin
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Siyi Xie
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Fanghuizi Shang
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China.
| | - Jianan Huang
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China.
| | - Shuoqian Liu
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China.
| | - Na Tian
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China.
| |
Collapse
|
8
|
Torri D, Bering L, Yates LRL, Angiolini SM, Xu G, Cuesta‐Hoyos S, Shepherd SA, Micklefield J. Enzymatic Cascades for Stereoselective and Regioselective Amide Bond Assembly. Angew Chem Int Ed Engl 2025; 64:e202422185. [PMID: 39792621 PMCID: PMC11933536 DOI: 10.1002/anie.202422185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 01/10/2025] [Indexed: 01/12/2025]
Abstract
Amide bond formation is fundamental in nature and is widely used in the synthesis of pharmaceuticals and other valuable products. Current methods for amide synthesis are often step and atom inefficient, requiring the use of protecting groups, deleterious reagents and organic solvents that create significant waste. The development of cleaner and more efficient catalytic methods for amide synthesis remains an urgent unmet need. Herein, we present novel biocatalytic cascade reactions for synthesising various amides under mild aqueous conditions from readily available organic nitriles combining nitrile hydrolysing enzymes and amide bond synthetase enzymes. These cooperative biocatalytic cascades enable kinetic resolution of racemic nitriles and provide a highly enantioselective biocatalytic extension of the Strecker reaction. The regioselective non-directed C-H bond amidation of simple arenes was demonstrated through the incorporation of photoredox catalysis to the front end of the cascade. C-H bond amidation of simple aromatic precursors was also achieved via a CO2 fixation cascade combining enzymatic carboxylation and amide bond synthesis in one-pot.
Collapse
Affiliation(s)
- Daniele Torri
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Luis Bering
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Luke R. L. Yates
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Stuart M. Angiolini
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Guangcai Xu
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Sebastian Cuesta‐Hoyos
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Sarah A. Shepherd
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Jason Micklefield
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
- Department of Chemistry, Molecular Science Research HubImperial CollegeLondonW12 0BZUK
| |
Collapse
|
9
|
Borowiecki P, Schmidt S. Chemoenzymatic synthesis. Commun Chem 2025; 8:77. [PMID: 40082686 PMCID: PMC11906607 DOI: 10.1038/s42004-025-01451-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Affiliation(s)
- Paweł Borowiecki
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland.
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
10
|
Mazzei R, Bazzarelli F, Terholsen H, Nardi M, Piacentini E, Procopio A, Bornscheuer UT, Giorno L. Triple Enzymatic Cascade Reaction to Produce Hydroxytyrosol Acetate from Olive Leaves Using Integrated Membrane Bioreactors. CHEMSUSCHEM 2025; 18:e202401707. [PMID: 39400969 PMCID: PMC11874677 DOI: 10.1002/cssc.202401707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
An integrated system of three membrane bioreactors (MBRs) has been developed that cascades three different enzymatic reactions. The integrated system was applied to produce hydroxytyrosol acetate from oleuropein extracted from olive leaves. Different reactor configurations for each reaction were tested and individually optimized to select the MBR to ensure high conversion and continuous production of oleuropein aglycone (OA), hydroxytyrosol (HY) and hydroxytyrosol acetate (HA). Based on this study, the most performing configuration of the integrated system was identified. In the first reaction, oleuropein was converted to OA using a biocatalytic membrane reactor (BMR) with immobilized β-glucosidase in polymeric membranes (conversion 95 %). The OA was then fed to another BMR, where it was converted to HY (conversion: 70 %) by an immobilized mutant of the promiscuous hydrolase/acyltransferase (PestE) (from the thermophilic archaeon Pyrobaculum calidifontis VA1). The HY produced was then acetylated using PestE immobilized on magnetic nanoparticles in a multiphase MBR (conversion: 98 %) and simultaneously extracted (extraction: 98 %) in ethyl acetate. The work demonstrates that continuous cascade enzymatic reactions can be engineered using artificial membranes to tailor enzyme compartmentalization, mass transport and phase contact according to reaction requirements. Besides, environmental factors proved the sustainability of the integrated membrane bioreactive system.
Collapse
Affiliation(s)
- Rosalinda Mazzei
- Institute on Membrane TechnologyNational Research Council, CNR-ITMUniversity of Calabriavia P. Bucci, 17/C87036Rende (Cosenza)Italy
| | - Fabio Bazzarelli
- Institute on Membrane TechnologyNational Research Council, CNR-ITMUniversity of Calabriavia P. Bucci, 17/C87036Rende (Cosenza)Italy
| | - Henrik Terholsen
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff- Straße 417487GreifswaldGermany
| | - Monica Nardi
- Department of Health Sciences University “Magna Graecia” of Catanzaro Campus “S. Venuta”Biosciences building, 5th floor Viale Europa (Loc. Germaneto)88100CatanzaroItaly
| | - Emma Piacentini
- Institute on Membrane TechnologyNational Research Council, CNR-ITMUniversity of Calabriavia P. Bucci, 17/C87036Rende (Cosenza)Italy
| | - Antonio Procopio
- Department of Health Sciences University “Magna Graecia” of Catanzaro Campus “S. Venuta”Biosciences building, 5th floor Viale Europa (Loc. Germaneto)88100CatanzaroItaly
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff- Straße 417487GreifswaldGermany
| | - Lidietta Giorno
- Institute on Membrane TechnologyNational Research Council, CNR-ITMUniversity of Calabriavia P. Bucci, 17/C87036Rende (Cosenza)Italy
| |
Collapse
|
11
|
Sabi GJ, Simões ALA, Gorup LF, da Silva WA, Mendes AA. Production of benzyl-based esters from used soybean cooking oil as renewable plasticizers for flexible PVC films: Exploring new applications for lipases in emerging technologies. Int J Biol Macromol 2025; 292:139233. [PMID: 39733875 DOI: 10.1016/j.ijbiomac.2024.139233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
The objective of this study was to produce new and renewable bio-based plasticizers from used soybean cooking oil (USCO). First, USCO was completely converted into free fatty acids (FFAs) using lipase from Candida rugosa. Next, these FFAs were enzymatically esterified with benzyl alcohol in solvent-free systems. During this stage, we assessed various factors that influenced the reaction, achieving a maximum FFA conversion of 94 % within 40 min using lipase Eversa® Transform 2.0 immobilized on poly(styrene-divinylbenzene) beads. This biocatalyst maintained full activity across eight consecutive esterification cycles. In the third step, epoxy groups were introduced into the chemical structure of the synthesized benzyl esters through an in situ epoxidation process. The performance of these benzyl esters as plasticizers for flexible PVC films was then evaluated and compared to the petroleum-based plasticizer dioctyl phthalate (DOP). Incorporating epoxy groups significantly improved the compatibility of the benzyl esters with PVC, resulting in films with superior properties compared to those plasticized with DOP. This study provides valuable insights into the development of bio-based plasticizers as potential alternatives to commercial plasticizers. Additionally, the proposed process offers useful technical information for emerging applications of lipases in oleochemical processes.
Collapse
Affiliation(s)
- Guilherme J Sabi
- Graduate Program in Chemistry, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil; Institute of Chemistry, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil
| | - Ana L A Simões
- Department of Chemistry, ICEx, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Luiz F Gorup
- Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil; Department of Chemistry, Interdisciplinary Laboratory of Electrochemistry and Ceramics (LIEC), Federal University of São Carlos, São Carlos, SP 13565-905, Brazil; School of Chemistry and Food Science, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil
| | - Washington A da Silva
- Department of Food Engineering, Federal University of São João del-Rei, Campus Sete Lagoas, Sete Lagoas, MG 35701-970, Brazil
| | - Adriano A Mendes
- Graduate Program in Chemistry, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil; Institute of Chemistry, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil.
| |
Collapse
|
12
|
Li S, Yahaya S, Bojanowski J, Ragazzon G, Dydio P. Dual relay Rh-/Pd-catalysis enables β-C(sp 3)-H arylation of α-substituted amines. Chem Sci 2025; 16:4167-4174. [PMID: 39911345 PMCID: PMC11791518 DOI: 10.1039/d4sc06806h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
A dual relay catalytic protocol, built on reversible dehydrogenation of amines by Rh catalysis and C-H functionalisation of transient imines by Pd catalysis, is reported to enable regioselective arylation of amines at their unactivated β-C(sp3)-H bond. Notably, the new strategy is applicable to secondary anilines and N-PMP-protected primary aliphatic amines of intermediate steric demands, which is in contrast to the existing strategies that involve either free-amine-directed C-H activation for highly sterically hindered secondary aliphatic amines or steric-controlled migrative cross-coupling for unhindered N-Boc protected secondary aliphatic amines. Regioselectivity of the reaction is imposed by the electronic effects of transient imine intermediates rather than by the steric effects between specific starting materials and catalysts, thereby opening the uncharted scope of amines. In a broader sense, this study demonstrates new opportunities in dual relay catalysis involving hydrogen borrowing chemistry, previously explored in the functionalisation of alcohols, to execute otherwise challenging transformations for amines, commonly present in natural products, pharmaceuticals, biologically active molecules, and functional materials.
Collapse
Affiliation(s)
- Shuailong Li
- University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Sani Yahaya
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Jan Bojanowski
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Giulio Ragazzon
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Paweł Dydio
- University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
13
|
Peng Y, Sakoleva T, Rockstroh N, Bartling S, Schoenmakers P, Lim G, Wei D, Bayer T, Dörr M, Böttcher D, Lauterbach L, Junge H, Bornscheuer UT, Beller M. State-of-the-Art Light-Driven Hydrogen Generation from Formic Acid and Utilization in Enzymatic Hydrogenations. CHEMSUSCHEM 2025; 18:e202401811. [PMID: 39377637 PMCID: PMC11826123 DOI: 10.1002/cssc.202401811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/09/2024]
Abstract
A concept of combining photocatalytically generated hydrogen with green enzymatic reductions is demonstrated. The developed photocatalytic formic acid (FA) dehydrogenation setup based on Pt(x)@TiO2 shows stable hydrogen generation activity, which is two orders of magnitude higher than reported values of state-of-the-art systems. Mechanistic studies confirm that hydrogen generation proceeds via a photocatalytic pathway, which is entirely different from purely thermal reaction mechanisms previously reported. The viability of the presented approach is demonstrated by the synthesis of value-added compounds 3-phenylpropanal and (2R, 5S)-dihydrocarvone at ambient pressure and room temperature, which should be applicable for many other hydrogenation processes, e. g., for the preparation of flavours and fragrance compounds, as well as pharmaceuticals.
Collapse
Affiliation(s)
- Yong Peng
- Leibniz-Institut für Katalyse e. V. (LIKAT Rostock)Albert-Einstein-Str. 29a18059RostockGermany
| | - Thaleia Sakoleva
- Dept. of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Nils Rockstroh
- Leibniz-Institut für Katalyse e. V. (LIKAT Rostock)Albert-Einstein-Str. 29a18059RostockGermany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e. V. (LIKAT Rostock)Albert-Einstein-Str. 29a18059RostockGermany
| | - Pierre Schoenmakers
- Institute of Applied MicrobiologyAachen Biology and BiotechnologyRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Guiyeoul Lim
- Institute of Applied MicrobiologyAachen Biology and BiotechnologyRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Duo Wei
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Thomas Bayer
- Dept. of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Mark Dörr
- Dept. of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Dominique Böttcher
- Dept. of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Lars Lauterbach
- Institute of Applied MicrobiologyAachen Biology and BiotechnologyRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Henrik Junge
- Leibniz-Institut für Katalyse e. V. (LIKAT Rostock)Albert-Einstein-Str. 29a18059RostockGermany
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. (LIKAT Rostock)Albert-Einstein-Str. 29a18059RostockGermany
| |
Collapse
|
14
|
Cheng X, Fu C, Chen BB, Chang X, Dong XQ, Wang CJ. Asymmetric Relay Catalysis Enables Unreactive Allylic Alcohols to Participate in 1,3-Dipolar Cycloaddition of Azomethine Ylides. J Am Chem Soc 2025; 147:5014-5024. [PMID: 39893690 DOI: 10.1021/jacs.4c14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Current synthetic transformations occur readily with starting materials that possess both innate reactivity and steric accessibility or functional-group-oriented reactivity. However, achieving reactions with inactive feedstock substrates remains significantly challenging and normally requires cumbersome prior functional group manipulations. Herein, we report an unprecedented example of catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides with nonactivated alkenes enabled by copper/ruthenium relay catalysis. Key to the success is the temporary activation strategy initiated by oxidative dehydrogenation of inert allylic alcohols into electron-demanding reversed highly reactive enones, which triggers the ensuing Cu-catalyzed asymmetric 1,3-dipolar cycloaddition followed by reductive hydrogenation to deliver highly functionalized chiral pyrrolidines with the construction of two C-C bonds and four well-defined stereogenic centers in an atom-/step-economical and redox-neutral manner. This method features mild reaction conditions, operational simplicity, and broad substrate scope and is also characterized by formal dynamic kinetic resolution. Mechanistic studies and control experiments supported a typical borrowing-hydrogen cascade orthogonally merged with 1,3-dipolar cycloaddition and revealed that the superiority and reliability of relay catalysis are enabled by the controlled release of highly reactive but unstable enones to impede the undesired polymerization. It should be noted that up to four stereoisomers of the challenging and otherwise inaccessible pyrrolidines and cyclobutanes could be readily prepared through concise late-stage elaborations.
Collapse
Affiliation(s)
- Xiang Cheng
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Cong Fu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Bo-Bin Chen
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Chang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiu-Qin Dong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Zhang J, Batista VF, Hübner R, Karring H, Wu C. Host-guest chemistry on living cells enabling recyclable photobiocatalytic cascade. Chem Sci 2025:d4sc06508e. [PMID: 39926712 PMCID: PMC11801380 DOI: 10.1039/d4sc06508e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025] Open
Abstract
Combining chemical and whole-cell catalysts enables sustainable chemoenzymatic cascade reactions. However, their traditional combination faces challenges in catalyst recycling and maintaining cell viability. Here, we introduce a supramolecular host-guest strategy that efficiently attaches photocatalysts to bacterial cells, facilitating recyclable photobiocatalysis. This method involves attaching a cationic polyethylenimine (PEI) polymer, functionalized with β-cyclodextrin (β-CD), to E. coli cells. The polymer attachment is biocompatible and protective, safeguarding the cells from harsh conditions such as UV radiation and organic solvents, without causing cell death. Additionally, the presence of β-CD imparts a plug-and-play capability to the cells, enabling the straightforward integration of guest photocatalysts - specifically anthraquinone - onto the cell surface through host-guest interactions. This effective combination of cellular and chemical catalysts promotes efficient photobiocatalytic cascades and supports the photocatalyst's recycling and reuse. This supramolecular system thus represents a promising platform for advancing photobiocatalysis in cascade synthesis.
Collapse
Affiliation(s)
- Jiaheng Zhang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Campusvej 55 5230 Odense Denmark
| | - Vasco F Batista
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Campusvej 55 5230 Odense Denmark
| | - René Hübner
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Ion Beam Physics and Materials Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Henrik Karring
- Department of Green Technology, University of Southern Denmark Campusvej 55 5230 Odense Denmark
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Campusvej 55 5230 Odense Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark Campusvej 55 5230 Odense Denmark
| |
Collapse
|
16
|
Wang S, Hübner R, Karring H, Batista VF, Wu C. A Supramolecular Approach to Engineering Living Cells with Enzymes for Adaptive and Recyclable Cascade Synthesis. Angew Chem Int Ed Engl 2025; 64:e202416556. [PMID: 39621003 DOI: 10.1002/anie.202416556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/10/2024]
Abstract
Biocatalytic transformation in nature is inherently dynamic, spontaneous, and adaptive, enabling complex chemical synthesis and metabolism. These processes often involve supramolecular recognition among cells, enzymes, and biomacromolecules, far surpassing the capabilities of isolated cells and enzymes used in industrial synthesis. Inspired by nature, here we design a supramolecular approach to equip living cells with these capacities, enabling recyclable, efficient cascade reactions. Our two-step "plug-and-play" methodology begins by coating Escherichia coli cells with guest-containing polymers (SupraBAC) via supramolecular charge interactions, followed by the introduction of β-cyclodextrin-functionalized host enzymes through host-guest chemistry, creating a robust cell-enzyme complex. This supramolecular coating not only protects cells from various stresses, such as UV radiation, heat, and organic solvents, but also facilitates the overexpression of intracellular enzymes and the attachment of extracellular enzymes within and on SupraBAC. This combination results in efficient multienzyme cascade synthesis, enabling two- and three-step reactions in one pot. Importantly, the multienzyme system can be recycled up to five times without significant loss of activity. Our findings introduce a versatile, adaptive supramolecular coating for whole-cell catalysts, offering a sustainable and efficient solution for complex synthesis in both chemistry and industrial biotechnology.
Collapse
Affiliation(s)
- Shan Wang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Henrik Karring
- Department of Green Technology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Vasco F Batista
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
17
|
Logotheti M, Gehres S, França AS, Bornscheuer UT, de Souza ROMA, Höhne M. Combining Photochemical Oxyfunctionalization and Enzymatic Catalysis for the Synthesis of Chiral Pyrrolidines and Azepanes. J Org Chem 2025; 90:1036-1043. [PMID: 39772597 PMCID: PMC11744798 DOI: 10.1021/acs.joc.4c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Chiral heterocyclic alcohols and amines are frequently used building blocks in the synthesis of fine chemicals and pharmaceuticals. Herein, we report a one-pot photoenzymatic synthesis route for N-Boc-3-amino/hydroxy-pyrrolidine and N-Boc-4-amino/hydroxy-azepane with up to 90% conversions and >99% enantiomeric excess. The transformation combines a photochemical oxyfunctionalization favored for distal C-H positions with a stereoselective enzymatic transamination or carbonyl reduction step. Our study demonstrates a mild and operationally simple asymmetric synthesis workflow from easily available starting materials.
Collapse
Affiliation(s)
- Maria Logotheti
- Department
of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str., 4, 17487 Greifswald, Germany
| | - Susanne Gehres
- Department
of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str., 4, 17487 Greifswald, Germany
| | - Alexandre S. França
- Biocatalysis
and Organic Synthesis Group, Federal University
of Rio de Janeiro, Chemistry Institute, 21941909 Rio de Janeiro, Brazil
| | - Uwe T. Bornscheuer
- Department
of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str., 4, 17487 Greifswald, Germany
| | - Rodrigo O. M. A. de Souza
- Biocatalysis
and Organic Synthesis Group, Federal University
of Rio de Janeiro, Chemistry Institute, 21941909 Rio de Janeiro, Brazil
| | - Matthias Höhne
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
18
|
Tian K, Jin Z, Liu XL, He L, Liu HF, Yu PK, Chang X, Dong XQ, Wang CJ. Stereodivergent assembly of δ-valerolactones with an azaarene-containing quaternary stereocenter enabled by Cu/Ru relay catalysis. Chem Sci 2025; 16:1233-1240. [PMID: 39677940 PMCID: PMC11635979 DOI: 10.1039/d4sc05852f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
Developing methodologies for the expedient construction of biologically important δ-valerolactones bearing a privileged azaarene moiety and a sterically congested all-carbon quaternary stereocenter is important and full of challenges. We present herein a novel multicatalytic strategy for the stereodivergent synthesis of highly functionalized chiral δ-valerolactones bearing 1,4-nonadjacent quaternary/tertiary stereocenters by orthogonally merging borrowing hydrogen and Michael addition between α-azaaryl acetates and allylic alcohols followed by lactonization in a one-pot manner. Enabled by Cu/Ru relay catalysis, this cascade protocol offers the advantages of atom/step economy, redox-neutrality, mild reaction conditions, and broad substrate tolerance. Scale-up experiments and synthetic transformations further demonstrated the potential for synthetic applications. Mechanistic experiments support the envisioned bimetallic relay catalytic mechanism, and the key role of Cs2CO3 in promoting lactonization was also revealed.
Collapse
Affiliation(s)
- Kui Tian
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Zhuan Jin
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Xin-Lian Liu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Ling He
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Hong-Fu Liu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Pin-Ke Yu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Xin Chang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Xiu-Qin Dong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Chun-Jiang Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
19
|
González‐Rodríguez J, González‐Granda S, Lavandera I, Gotor‐Fernández V, Mangas‐Sánchez J. L-Cysteine-Catalysed Hydration of Activated Alkynes. Angew Chem Int Ed Engl 2025; 64:e202414046. [PMID: 39344480 PMCID: PMC11720403 DOI: 10.1002/anie.202414046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
Hydration reactions consist of the introduction of a molecule of water into a chemical compound and are particularly useful to transform alkynes into carbonyls, which are strategic intermediates in the synthesis of a plethora of compounds. Herein we demonstrate that L-cysteine can catalyse the hydration of activated alkynes in a very effective and fully regioselective manner to access important building blocks in synthetic chemistry such as β-ketosulfones, amides and esters, in aqueous media. The mild reaction conditions facilitated the integration with enzyme catalysis to access chiral β-hydroxy sulfones from the corresponding alkynes in a one-pot cascade process in good yields and excellent enantiomeric ratios. These findings pave the way towards establishing a general method for metal-free, cost-effective, and more sustainable alkyne hydration processes.
Collapse
Affiliation(s)
- Jorge González‐Rodríguez
- IUQOEM – Department of Organic and Inorganic ChemistrySchool of ChemistryUniversity of OviedoJulián Clavería 833006OviedoSpain
- Current address: Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163-OC1060WienAustria
| | - Sergio González‐Granda
- IUQOEM – Department of Organic and Inorganic ChemistrySchool of ChemistryUniversity of OviedoJulián Clavería 833006OviedoSpain
- Current address: Department of ChemistryUniversity of Michigan930 N University AveAnn ArborMI-48109USA
| | - Iván Lavandera
- IUQOEM – Department of Organic and Inorganic ChemistrySchool of ChemistryUniversity of OviedoJulián Clavería 833006OviedoSpain
| | - Vicente Gotor‐Fernández
- IUQOEM – Department of Organic and Inorganic ChemistrySchool of ChemistryUniversity of OviedoJulián Clavería 833006OviedoSpain
| | - Juan Mangas‐Sánchez
- IUQOEM – Department of Organic and Inorganic ChemistrySchool of ChemistryUniversity of OviedoJulián Clavería 833006OviedoSpain
| |
Collapse
|
20
|
Zhao Q, Zhang R, Döbber J, Gulder T. Chemoenzymatic C,C-Bond Forming Cascades by Cryptic Vanadium Haloperoxidase Catalyzed Bromination. Org Lett 2025; 27:159-164. [PMID: 39741038 PMCID: PMC11731374 DOI: 10.1021/acs.orglett.4c04108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Inspired by natural cryptic halogenation in C,C-bond formation, this study developed a synthetic approach combining biocatalytic bromination with transition-metal-catalyzed cross-coupling. Using the cyanobacterial AmVHPO, a robust and sustainable bromination-arylation cascade was created. Genetic modifications allowed enzyme immobilization, enhancing the compatibility between biocatalysis and chemocatalysis. This mild, efficient method for synthesizing biaryl compounds provides a foundation for future biochemo cascade reactions harnessing halogenation as a traceless directing tool.
Collapse
Affiliation(s)
- Qingqi Zhao
- Biomimetic
Catalysis, Catalysis Research Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Ru Zhang
- Institute
of Organic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
- Organic
Chemistry−Biomimetic Catalysis, Saarland
University, 66123 Saarbruecken, Germany
| | - Johannes Döbber
- Forschungszentrum
Jülich GmbH, IBG-1: Biotechnology, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Tanja Gulder
- Biomimetic
Catalysis, Catalysis Research Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
- Institute
of Organic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
- Organic
Chemistry−Biomimetic Catalysis, Saarland
University, 66123 Saarbruecken, Germany
- Synthesis
of Natural-Product Derived Drugs, Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre
for Infection Research (HZI), 66123 Saarbruecken, Germany
| |
Collapse
|
21
|
Klos N, Osterthun O, Mengers HG, Lanzerath P, Graf von Westarp W, Lim G, Gausmann M, Küsters-Spöring JD, Wiesenthal J, Guntermann N, Lauterbach L, Jupke A, Leitner W, Blank LM, Klankermayer J, Rother D. Concatenating Microbial, Enzymatic, and Organometallic Catalysis for Integrated Conversion of Renewable Carbon Sources. JACS AU 2024; 4:4546-4570. [PMID: 39735920 PMCID: PMC11672146 DOI: 10.1021/jacsau.4c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 12/31/2024]
Abstract
The chemical industry can now seize the opportunity to improve the sustainability of its processes by replacing fossil carbon sources with renewable alternatives such as CO2, biomass, and plastics, thereby thinking ahead and having a look into the future. For their conversion to intermediate and final products, different types of catalysts-microbial, enzymatic, and organometallic-can be applied. The first part of this review shows how these catalysts can work separately in parallel, each route with unique requirements and advantages. While the different types of catalysts are often seen as competitive approaches, an increasing number of examples highlight, how combinations and concatenations of catalysts of the complete spectrum can open new roads to new products. Therefore, the second part focuses on the different catalysts either in one-step, one-pot transformations or in reaction cascades. In the former, the reaction conditions must be conflated but purification steps are minimized. In the latter, each catalyst can work under optimal conditions and the "hand-over points" should be chosen according to defined criteria like minimal energy usage during separation procedures. The examples are discussed in the context of the contributions of catalysis to the envisaged (bio)economy.
Collapse
Affiliation(s)
- Nina Klos
- Institute
of Bio- and Geosciences 1: Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Ole Osterthun
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Hendrik G. Mengers
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Patrick Lanzerath
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - William Graf von Westarp
- Fluid
Process Engineering (AVT.FVT), RWTH Aachen
University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Guiyeoul Lim
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Marcel Gausmann
- Fluid
Process Engineering (AVT.FVT), RWTH Aachen
University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Jan-Dirk Küsters-Spöring
- Institute
of Bio- and Geosciences 1: Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Jan Wiesenthal
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Nils Guntermann
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Lars Lauterbach
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Andreas Jupke
- Fluid
Process Engineering (AVT.FVT), RWTH Aachen
University, Aachen, Nordrhein-Westfalen 52074, Germany
- Institute
of Bio- and Geosciences 2: Plant Science (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
| | - Walter Leitner
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
- Max-Planck-Institute
for Chemical Energy Conversion, Mülheim an der Ruhr, Nordrhein-Westfalen 45470, Germany
| | - Lars M. Blank
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Jürgen Klankermayer
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Dörte Rother
- Institute
of Bio- and Geosciences 1: Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| |
Collapse
|
22
|
Diekamp J, Schmidt A, Holstein JJ, Strohmann C, Seidensticker T. Synthesis and catalytic testing of the first hydrophilic derivative of Shvo's catalyst. Chem Commun (Camb) 2024; 61:117-120. [PMID: 39620319 DOI: 10.1039/d4cc04390a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Although commonly applied in various reactions, Shvo's catalyst has not been modified towards solubility in highly polar solvents until now. Here, we report the straightforward synthesis of a disulfonate derivative of the complex, which allows to (transfer) (de-)hydrogenate aldehydes and ketones in aqueous solutions. A proof of principle for the recycling of the catalyst is also provided.
Collapse
Affiliation(s)
- Justus Diekamp
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Emil-Figge-Straße 66, 44227 Dortmund, Germany.
| | - Annika Schmidt
- TU Dortmund University, Inorganic Chemistry, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| | - Julian J Holstein
- TU Dortmund University, Inorganic Chemistry, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| | - Carsten Strohmann
- TU Dortmund University, Inorganic Chemistry, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| | - Thomas Seidensticker
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Emil-Figge-Straße 66, 44227 Dortmund, Germany.
| |
Collapse
|
23
|
Zhao LN, Yang L, Liu J. Shedding Light on MOF-Encapsulated Tandem Enzymes. Chembiochem 2024; 25:e202400825. [PMID: 39562296 DOI: 10.1002/cbic.202400825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
Photo-enzyme coupling system are receiving widespread attention due to the unique opportunity by integrating photochemistry with nature's enzymatic machinery. Here we highlight a recent work about MOF encapsulated tandem enzymes for photoenzymatic CO2 conversion, and provide an outlook for the further development of photo-enzyme systems for green bio-manufacturing.
Collapse
Affiliation(s)
- Li-Nan Zhao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 260042, China
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Lijun Yang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 260042, China
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
24
|
Mukherjee A, Roy S. Understanding the Directed Evolution of a Natural-like Efficient Artificial Metalloenzyme. J Phys Chem B 2024; 128:12122-12132. [PMID: 39588805 DOI: 10.1021/acs.jpcb.4c06994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The artificial metalloenzyme containing iridium in place of iron along with four directed evolution mutations C317G, T213G, L69V, and V254L in a natural cytochrome P450 presents an important milestone in merging the extraordinary efficiency of biocatalysts with the versatility of small molecule chemical catalysts in catalyzing a new-to-nature carbene insertion reaction. This is a show-stopper enzyme, as it exhibits a catalytic efficiency similar to that of natural enzymes. Despite this remarkable discovery, there is no mechanistic and structural understanding as to why it displays extraordinary efficiency after the incorporation of the four active site mutations by directed evolution methods, which so far has been intractable to any experimental methods. In this study, we have deciphered how directed evolution mutations gradually alter the protein conformational ensemble to populate a catalytically active conformation to boost a multistep catalysis in a natural-like artificial metalloenzyme using large-scale molecular dynamics simulations, rigorous quantum chemical (QM), and multiscale quantum chemical/molecular mechanics (QM/MM) calculations. It reveals how evolution precisely positions the cofactor-substrate in an unusual but effective orientation within a reshaped active site in the catalytically active conformation stabilized by C-H···π interactions from more ordered mutated L69V and V254L residues to achieve preferential transition state stabilization compared to the ground state. This work essentially tracks down in atomistic detail the shift in the conformational ensemble of the highly active conformation from the less efficient single mutant to the most efficient quadruple mutant and offers valuable insights for designing better enzymes. The active conformation correctly reproduces the experimental barrier height and also accounts for the catalytic effect, which is in good agreement with experimental observations. Moreover, this conformation features an unusual bonding interaction in a metal-carbene species that preferentially stabilizes the rate-determining formation of an iridium porphyrin carbene intermediate to render the observed high catalytic rate acceleration. Our study provides crucial insights into the underlying rationale for directed evolution, reports the major catalytic role of nonelectrostatic interactions in enzyme catalysis different from the electrostatic model, and suggests a crucial principle toward designing enzymes with natural efficiency.
Collapse
Affiliation(s)
- Anagh Mukherjee
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Subhendu Roy
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
25
|
Zhang Y, Huang C, Kong W, Zhou L, Gao J, Hollmann F, Liu Y, Jiang Y. A Chemoenzymatic Cascade for the Formal Enantioselective Hydroxylation and Amination of Benzylic C-H Bonds. ACS Catal 2024; 14:17405-17412. [PMID: 39664772 PMCID: PMC11629291 DOI: 10.1021/acscatal.4c03161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
We report the synthesis and characterization of an artificial peroxygenase (CoN4SA-POase) with CoN4 active sites by supporting single-atom cobalt on polymeric carbon nitrogen, which exhibits high activity, selectivity, stability, and reusability in the oxidation of aromatic alkanes to ketones. Density functional theory calculations reveal a different catalytic mechanism for the artificial peroxygenase from that of natural peroxygenases. In addition, continuous-flow systems are employed to combine CoN4SA-POase with enantiocomplementary ketoreductases as well as an amine dehydrogenase, enabling the enantioselective synthesis of chiral alcohols and amines from hydrocarbons with significantly improved productivity. This work, emulating nature and beyond nature, provides a promising design concept for heme enzyme-based transformations.
Collapse
Affiliation(s)
- Yuqing Zhang
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Chen Huang
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Weixi Kong
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Liya Zhou
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jing Gao
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Frank Hollmann
- Department
of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Yunting Liu
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yanjun Jiang
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
26
|
Wang K, Wang W, Lou D, Zhang J, Chi C, Bäckvall JE, Sheng X, Zhu C. Overcoming the Limitations of Transition-Metal Catalysis in the Chemoenzymatic Dynamic Kinetic Resolution (DKR) of Atropisomeric Bisnaphthols. ACS CENTRAL SCIENCE 2024; 10:2099-2110. [PMID: 39634225 PMCID: PMC11613327 DOI: 10.1021/acscentsci.4c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
Chemoenzymatic dynamic kinetic resolution (DKR), combining a metal racemization catalyst with an enzyme, has emerged as an elegant solution to transform racemic substrates into enantiopure products, while compatibility of dual catalysis is the key issue. Conventional solutions have utilized presynthesized metal complexes with a fixed and bulky ligand to protect the metal from the enzyme system; however, this has been generally limited to anionic ligands. Herein, we report our strategy to solve the compatibility issue by employing a reliable ligand that firmly coordinates in situ to the metal. Such a reliable ligand offers π* orbitals, allowing additional metal-to-ligand d-π* back-donation, which can significantly enhance coordination effects between the ligand and metal. Therefore, we developed an efficient DKR method to access chiral BINOLs from racemic derivatives under dual copper and enzyme catalysis. In cooperation with lipase LPL-311-Celite, the DKR of BINOLs was successfully realized with a copper catalyst via in situ coordination of BCP (L8) to CuCl. A series of functionalized C 2- and C 1-symmetric chiral biaryls could be synthesized in high yields with good enantioselectivity. The racemization mechanism was proposed to involve a radical-anion intermediate, which allows the axial rotation with a dramatic decrease of the rotation barrier.
Collapse
Affiliation(s)
- Kun Wang
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Wei Wang
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
- National
Center of Technology Innovation for Synthetic Biology and Key Laboratory
of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, P.R. China
| | - Dingkai Lou
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Jie Zhang
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Changli Chi
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Xiang Sheng
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
- National
Center of Technology Innovation for Synthetic Biology and Key Laboratory
of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, P.R. China
| | - Can Zhu
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
| |
Collapse
|
27
|
Feng M, Xing C, Jin Y, Feng X, Zhang Y, Wang B. Reticular Chemistry for Enhancing Bioentity Stability and Functional Performance. J Am Chem Soc 2024. [PMID: 39561393 DOI: 10.1021/jacs.4c09259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Addressing the fragility of bioentities that results in instability and compromised performance during storage and applications, reticular chemistry, specifically through metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), offers versatile platforms for stabilization and enhancement of bioentities. These highly porous frameworks facilitate efficient loading and mass transfer, offer confined environments and selective permeability for stabilization and protection, and enable finely tunable biointerfacial interactions and microenvironments for function optimization, significantly broadening the applications of various bioentities, including enzymes, nucleic acids, cells, etc. This Perspective outlines strategies for integrating bioentities with reticular frameworks, highlighting new design ideas for existing issues within these strategies. It emphasizes the crucial roles of these frameworks for bioentities in enhancing stability, boosting activity, imparting non-native functions, and synergizing bioentity systems. Concluding with a discussion of the challenges and prospects in the design, characterization, and practical applications of these biocomposites, this Perspective aims to inspire further development of high-performance biocomposites in this promising field.
Collapse
Affiliation(s)
- Mengchu Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chunyan Xing
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yehao Jin
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuanyuan Zhang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
28
|
Wang W, Yu Y, Wang M, Wang Y, Liu S, Xu J, Sun Z. Pickering Emulsion Promoted Interfacial Sequential Chemo-Biocatalytic Reaction for the Synthesis of Chiral Alcohols from Styrene. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54799-54806. [PMID: 39315994 DOI: 10.1021/acsami.4c10461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Chemo-biocatalytic cascades have emerged as a promising approach in the realm of advanced synthesis. However, reconciling the incompatible reaction conditions among distinct catalytic species presents a significant challenge. Herein, we introduce an innovative solution using an emulsion system stabilized by Janus silica nanoparticles, which serve as a bridge for both chemo-catalysts and biocatalysts at the interface. The chemo-catalyst is securely anchored within a hydrophobic polymer matrix, ensuring its residence in an organic environment. Meanwhile, the negatively charged E. coli cells containing enzymes are attracted to the aqueous phase at the interface, facilitating their optimal positioning. We demonstrate the efficacy of this system through a two-step cascade reaction. Initially, the oxidation of styrene to acetophenone using palladium as a chemocatalyst achieves a 6-fold increase in yield compared to the control system. Subsequently, the reduction of achiral acetophenone to its chiral alcohol derivative presents a 17-fold yield enhancement relative to that of the control reaction. Importantly, our system exhibits versatility, accommodating a wide range of substrates for both individual and sequential reactions. This work not only validates the concept but also paves the way for the integration of chemo- and biocatalysts in the synthesis of a broader array of high-value chemical compounds.
Collapse
Affiliation(s)
- Weiqi Wang
- School of Pharmacy, Nantong University, 226001 Nantong, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, 226001 Nantong, China
| | - Mengyao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yangxin Wang
- College of Materials Science and Engineering, Nanjing Tech University, 211816 Nanjing, China
| | - Shanqiu Liu
- College of Material Science and Engineering, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Zhiyong Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014 Hangzhou, China
| |
Collapse
|
29
|
Naim M, Mohammat MF, Mohd Ariff PNA, Uzir MH. Biocatalytic approach for the synthesis of chiral alcohols for the development of pharmaceutical intermediates and other industrial applications: A review. Enzyme Microb Technol 2024; 180:110483. [PMID: 39033578 DOI: 10.1016/j.enzmictec.2024.110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/27/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Biocatalysis has emerged as a strong tool for the synthesis of active pharmaceutical ingredients (APIs). In the early twentieth century, whole cell biocatalysis was used to develop the first industrial biocatalytic processes, and the precise work of enzymes was unknown. Biocatalysis has evolved over the years into an essential tool for modern, cost-effective, and sustainable pharmaceutical manufacturing. Meanwhile, advances in directed evolution enable the rapid production of process-stable enzymes with broad substrate scope and high selectivity. Large-scale synthetic pathways incorporating biocatalytic critical steps towards >130 APIs of authorized pharmaceuticals and drug prospects are compared in terms of steps, reaction conditions, and scale with the corresponding chemical procedures. This review is designed on the functional group developed during the reaction forming alcohol functional groups. Some important biocatalyst sources, techniques, and challenges are described. A few APIs and their utilization in pharmaceutical drugs are explained here in this review. Biocatalysis has provided shorter, more efficient, and more sustainable alternative pathways toward existing small molecule APIs. Furthermore, non-pharmaceutical applications of biocatalysts are also mentioned and discussed. Finally, this review includes the future outlook and challenges of biocatalysis. In conclusion, Further research and development of promising enzymes are required before they can be used in industry.
Collapse
Affiliation(s)
- Mohd Naim
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia.
| | - Mohd Fazli Mohammat
- Centre for Chemical Synthesis & Polymer Technology, Institute of Science (IoS), Kompleks Inspirasi, Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan 40450, Malaysia.
| | - Putri Nur Arina Mohd Ariff
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.
| | - Mohamad Hekarl Uzir
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia.
| |
Collapse
|
30
|
Guo J, Yue X, Hou Y, Wang Y, Liu Y, Liu G, He Y, Ma L, Zhou L, Jiang Y. Immobilization of cross-linked enzymes aggregates on hierarchical covalent organic frameworks: Highly stable chemoenzymatic nanoreactor for asymmetric synthesis of optically active halohydrins. Int J Biol Macromol 2024; 278:134641. [PMID: 39128755 DOI: 10.1016/j.ijbiomac.2024.134641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Organometallic catalyst is extensively applied for the non-enzymatic regeneration of nicotinamide adenine dinucleotide (phosphate) cofactors, but suffering from the mutual inactivation with the enzymes in one pot. The spatially separated immobilization of organometallic catalyst and enzymes on suitable carriers not only can reduce their mutual inhabitation but also can enhance their reusability. Here in this work, we present a hierarchical porous COFs (HP-TpBpy) that incorporated with [(Cp*RhCl2]2 to generate the metalized COF, Rh-HP-TpBpy. The obtained Rh-HP-TpBpy exhibited superior performance in nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) regeneration using formate as the hydride donor, significantly outperforming the natural formate dehydrogenases in cofactor preference toward NADP+. Subsequently, the Lactobacillus fermentum short-chain dehydrogenase/reductase 1 (LfSDR1) was then cross-linked into enzyme aggregates (CLEA) and immobilized on hierarchical Rh-HP-TpBpy, achieving the integrated chemoenzymatic catalyst, LfSDR1@Rh-HP-TpBpy, which can catalyze the chemoenzymatic reduction of halogenated aryl ketones and give the corresponding optically active halohydrins with high conversion and enantiomeric excess (ee) value up to 99 %. The LfSDR1@Rh-HP-TpBpy also exhibits largely enhanced stability compared with the free LfSDR1 and the CLEAs-LfSDR1, enabling its excellent reusability.
Collapse
Affiliation(s)
- Jiayi Guo
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Xiaoyang Yue
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China.
| | - Yuying Hou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yujie Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China
| | - Guanhua Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China
| | - Ying He
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China
| | - Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China.
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
31
|
Halder M, Chawla V, Singh Y. Ceria nanoparticles immobilized with self-assembling peptide for biocatalytic applications. NANOSCALE 2024; 16:16887-16899. [PMID: 39175360 DOI: 10.1039/d4nr02672a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Peptide-based artificial enzymes exhibit structure and catalytic mechanisms comparable to natural enzymes but they suffer from limited reusability due to their existence in homogenous solutions. Immobilization of self-assembling peptides on the surface of nanoparticles can be used to overcome limitations associated with artificial enzymes. A high, local density of peptides can be obtained on nanoparticles to exert cooperative or synergistic effects, resulting in an accelerated rate of reaction, distinct catalytic properties, and excellent biocompatibility. In this work, we have immobilized a branched, self-assembled, and nanofibrous catalytic peptide, (C12-SHD)2KK(Alloc)-NH2, onto thiolated ceria nanoparticles to generate a heterogeneous catalyst with an enhanced number of catalytic sites. This artificial enzyme mimics the activities of esterase, phosphatase, and haloperoxidase enzymes and the catalytic efficiency remains nearly unaltered when reused. The enzyme-mimicking property is investigated for pesticide detection, bone regeneration, and antibiofouling applications. Overall, this work presents a facile approach to develop a multifunctional heterogeneous biocatalyst that addresses the challenges associated with unstable peptide-based homogeneous catalysts and, thus, shows a strong potential for industrial applications.
Collapse
Affiliation(s)
- Moumita Halder
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| | - Vatan Chawla
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| |
Collapse
|
32
|
Lainer B, Li S, Mammadova F, Dydio P. A Merger of Relay Catalysis with Dynamic Kinetic Resolution Enables Enantioselective β-C(sp 3)-H Arylation of Alcohols. Angew Chem Int Ed Engl 2024; 63:e202408418. [PMID: 38800865 DOI: 10.1002/anie.202408418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 05/29/2024]
Abstract
The conceptual merger of relay catalysis with dynamic kinetic resolution strategy is reported to enable regio- and enantioselective C(sp3)-H bond arylation of aliphatic alcohols, forming enantioenriched β-aryl alcohols typically with >90 : 10 enantiomeric ratios (up to 98 : 2 er) and 36-74 % yields. The starting materials bearing neighbouring stereogenic centres can be converted to either diastereomer of the β-aryl alcohol products, with >85 : 15 diastereomeric ratios determined by the catalysts. The reactions occur under mild conditions, ensuring broad compatibility, and involve readily available aryl bromides, an inorganic base, and commercial Ru- and Pd-complexes. Mechanistic experiments support the envisioned mechanism of the transformation occurring through a network of regio- and stereoselective processes operated by a coherent Ru/Pd-dual catalytic system.
Collapse
Affiliation(s)
- Bruno Lainer
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Shuailong Li
- University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Flora Mammadova
- University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Paweł Dydio
- University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
33
|
Gricourt G, Meyer P, Duigou T, Faulon JL. Artificial Intelligence Methods and Models for Retro-Biosynthesis: A Scoping Review. ACS Synth Biol 2024; 13:2276-2294. [PMID: 39047143 PMCID: PMC11334239 DOI: 10.1021/acssynbio.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
Retrosynthesis aims to efficiently plan the synthesis of desirable chemicals by strategically breaking down molecules into readily available building block compounds. Having a long history in chemistry, retro-biosynthesis has also been used in the fields of biocatalysis and synthetic biology. Artificial intelligence (AI) is driving us toward new frontiers in synthesis planning and the exploration of chemical spaces, arriving at an opportune moment for promoting bioproduction that would better align with green chemistry, enhancing environmental practices. In this review, we summarize the recent advancements in the application of AI methods and models for retrosynthetic and retro-biosynthetic pathway design. These techniques can be based either on reaction templates or generative models and require scoring functions and planning strategies to navigate through the retrosynthetic graph of possibilities. We finally discuss limitations and promising research directions in this field.
Collapse
Affiliation(s)
- Guillaume Gricourt
- Université
Paris-Saclay, INRAE, AgroParisTech, Micalis
Institute, 78350 Jouy-en-Josas, France
| | - Philippe Meyer
- Université
Paris-Saclay, INRAE, AgroParisTech, Micalis
Institute, 78350 Jouy-en-Josas, France
| | - Thomas Duigou
- Université
Paris-Saclay, INRAE, AgroParisTech, Micalis
Institute, 78350 Jouy-en-Josas, France
| | - Jean-Loup Faulon
- Université
Paris-Saclay, INRAE, AgroParisTech, Micalis
Institute, 78350 Jouy-en-Josas, France
- The
University of Manchester, Manchester Institute
of Biotechnology, Manchester M1 7DN, U.K.
| |
Collapse
|
34
|
Carceller JM, Arias KS, Climent MJ, Iborra S, Corma A. One-pot chemo- and photo-enzymatic linear cascade processes. Chem Soc Rev 2024; 53:7875-7938. [PMID: 38965865 DOI: 10.1039/d3cs00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The combination of chemo- and photocatalyses with biocatalysis, which couples the flexible reactivity of the photo- and chemocatalysts with the highly selective and environmentally friendly nature of enzymes in one-pot linear cascades, represents a powerful tool in organic synthesis. However, the combination of photo-, chemo- and biocatalysts in one-pot is challenging because the optimal operating conditions of the involved catalyst types may be rather different, and the different stabilities of catalysts and their mutual deactivation are additional problems often encountered in one-pot cascade processes. This review explores a large number of transformations and approaches adopted for combining enzymes and chemo- and photocatalytic processes in a successful way to achieve valuable chemicals and valorisation of biomass. Moreover, the strategies for solving incompatibility issues in chemo-enzymatic reactions are analysed, introducing recent examples of the application of non-conventional solvents, enzyme-metal hybrid catalysts, and spatial compartmentalization strategies to implement chemo-enzymatic cascade processes.
Collapse
Affiliation(s)
- J M Carceller
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - K S Arias
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - M J Climent
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - S Iborra
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - A Corma
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| |
Collapse
|
35
|
Zeng T, Jin Z, Zheng S, Yu T, Wu R. Developing BioNavi for Hybrid Retrosynthesis Planning. JACS AU 2024; 4:2492-2502. [PMID: 39055138 PMCID: PMC11267531 DOI: 10.1021/jacsau.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Illuminating synthetic pathways is essential for producing valuable chemicals, such as bioactive molecules. Chemical and biological syntheses are crucial, and their integration often leads to more efficient and sustainable pathways. Despite the rapid development of retrosynthesis models, few of them consider both chemical and biological syntheses, hindering the pathway design for high-value chemicals. Here, we propose BioNavi by innovating multitask learning and reaction templates into the deep learning-driven model to design hybrid synthesis pathways in a more interpretable manner. BioNavi outperforms existing approaches on different data sets, achieving a 75% hit rate in replicating reported biosynthetic pathways and displaying superior ability in designing hybrid synthesis pathways. Additional case studies further illustrate the potential application of BioNavi in a de novo pathway design. The enhanced web server (http://biopathnavi.qmclab.com/bionavi/) simplifies input operations and implements step-by-step exploration according to user experience. We show that BioNavi is a handy navigator for designing synthetic pathways for various chemicals.
Collapse
Affiliation(s)
- Tao Zeng
- School
of Pharmaceutical Sciences, Sun Yat-sen
University, Guangzhou 510006, P. R. China
| | - Zhehao Jin
- Center
for Synthetic Biochemistry, CAS Key Laboratory of Quantitative Engineering
Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
(CAS), Shenzhen 518055, P. R. China
| | - Shuangjia Zheng
- Global
Institute of Future Technology, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
| | - Tao Yu
- Center
for Synthetic Biochemistry, CAS Key Laboratory of Quantitative Engineering
Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
(CAS), Shenzhen 518055, P. R. China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-sen
University, Guangzhou 510006, P. R. China
| |
Collapse
|
36
|
Wang H, Kou X, Gao R, Huang S, Chen G, Ouyang G. Enzyme-Immobilized Porous Crystals for Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11869-11886. [PMID: 38940189 DOI: 10.1021/acs.est.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Developing efficient technologies to eliminate or degrade contaminants is paramount for environmental protection. Biocatalytic decontamination offers distinct advantages in terms of selectivity and efficiency; however, it still remains challenging when applied in complex environmental matrices. The main challenge originates from the instability and difficult-to-separate attributes of fragile enzymes, which also results in issues of compromised activity, poor reusability, low cost-effectiveness, etc. One viable solution to harness biocatalysis in complex environments is known as enzyme immobilization, where a flexible enzyme is tightly fixed in a solid carrier. In the case where a reticular crystal is utilized as the support, it is feasible to engineer next-generation biohybrid catalysts functional in complicated environmental media. This can be interpreted by three aspects: (1) the highly crystalline skeleton can shield the immobilized enzyme against external stressors. (2) The porous network ensures the high accessibility of the interior enzyme for catalytic decontamination. And (3) the adjustable and unambiguous structure of the reticular framework favors in-depth understanding of the interfacial interaction between the framework and enzyme, which can in turn guide us in designing highly active biocomposites. This Review aims to introduce this emerging biocatalysis technology for environmental decontamination involving pollutant degradation and greenhouse gas (carbon dioxide) conversion, with emphasis on the enzyme immobilization protocols and diverse catalysis principles including single enzyme catalysis, catalysis involving enzyme cascades, and photoenzyme-coupled catalysis. Additionally, the remaining challenges and forward-looking directions in this field are discussed. We believe that this Review may offer a useful biocatalytic technology to contribute to environmental decontamination in a green and sustainable manner and will inspire more researchers at the intersection of the environment science, biochemistry, and materials science communities to co-solve environmental problems.
Collapse
Affiliation(s)
- Hao Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Rui Gao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Siming Huang
- Guangzhou Municipal and Guangzhou Province Key Laboratory of Molecular Target & Clinical Phamacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Phamaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
37
|
Zhao H, Zhang J, Liu Y, Liu X, Ma L, Zhou L, Gao J, Liu G, Yue X, Jiang Y. Molecular Engineering and Morphology Control of Covalent Organic Frameworks for Enhancing Activity of Metal-Enzyme Cascade Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400730. [PMID: 38654621 PMCID: PMC11220694 DOI: 10.1002/advs.202400730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Metal-enzyme integrated catalysts (MEICs) that combine metal and enzyme offer great potential for sustainable chemoenzymatic cascade catalysis. However, rational design and construction of optimal microenvironments and accessible active sites for metal and enzyme in individual nanostructures are necessary but still challenging. Herein, Pd nanoparticles (NPs) and Candida antarctica lipase B (CALB) are co-immobilized into the pores and surfaces of covalent organic frameworks (COFs) with tunable functional groups, affording Pd/COF-X/CALB (X = ONa, OH, OMe) MEICs. This strategy can regulate the microenvironment around Pd NPs and CALB, and their interactions with substrates. As a result, the activity of the COF-based MEICs in catalyzing dynamic kinetic resolution of primary amines is enhanced and followed COF-OMe > COF-OH > COF-ONa. The experimental and simulation results demonstrated that functional groups of COFs modulated the conformation of CALB, the electronic states of Pd NPs, and the affinity of the integrated catalysts to the substrate, which contributed to the improvement of the catalytic activity of MEICs. Further, the MEICs are prepared using COF with hollow structure as support material, which increased accessible active sites and mass transfer efficiency, thus improving catalytic performance. This work provides a blueprint for rational design and preparation of highly active MEICs.
Collapse
Affiliation(s)
- Hao Zhao
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| | - Jialin Zhang
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| | - Yunting Liu
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| | - Xinlong Liu
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| | - Li Ma
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| | - Liya Zhou
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| | - Jing Gao
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| | - Guanhua Liu
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| | - Xiaoyang Yue
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| | - Yanjun Jiang
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| |
Collapse
|
38
|
Deng M, Yang J, Kong Z, Li Y, Wang Q, Liu H, Deng SZ, Li N. Manganese/Enzyme Sequential Catalytic Pathway for the Production of Optically Active γ-Functionalized Alcohols. J Org Chem 2024; 89:9103-9109. [PMID: 38842047 DOI: 10.1021/acs.joc.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
A brief, practical catalytic process for the production of optically active γ-functionalized alcohols from relevant alkenes has been developed by using a robust Mn(III)/air/(Me2SiH)2O catalytic system combined with lipase-catalyzed kinetic resolution. This approach demonstrates exceptional tolerance toward proximal functional groups present on alkenes, enabling the achievement of high yields and exclusive enantioselectivity. Under this sequential catalytic system, the chiral alkene precursors can also be converted into γ-functionalized alcohols and related acetates as separable single enantiomers.
Collapse
Affiliation(s)
- Meng Deng
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan Province 471934, China
| | - Jiaqi Yang
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan Province 471934, China
| | - Zhiyi Kong
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan Province 471934, China
| | - Yaning Li
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan Province 471934, China
| | - Quanpeng Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan Province 471934, China
| | - Huan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province 471023, China
| | - Shu-Zhen Deng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province 471023, China
| | - Nan Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan Province 471934, China
| |
Collapse
|
39
|
Li Y, Liu G, Zhou L, Ma L, He Y, Gao J, Jiang Y, Ren L, Liu Y. Resin-Immobilized Palladium Acetate and Alcohol Dehydrogenase for Chemoenzymatic Enantioselective Synthesis of Chiral Diarylmethanols. J Org Chem 2024; 89:4818-4825. [PMID: 38536102 DOI: 10.1021/acs.joc.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The enantioselective synthesis of chiral diarylmethanols is highly desirable in synthetic chemistry and the pharmaceutical industry, but it remains challenging, especially in terms of green and sustainable production. Herein, a resin-immobilized palladium acetate catalyst was fabricated with high activity, stability, and reusability in Suzuki cross-coupling reaction of acyl halides with boronic acids, and the coimmobilization of alcohol dehydrogenase and glucose dehydrogenase on resin supports was also conducted for asymmetric bioreduction of diaryl ketones. Experimental results revealed that the physicochemical properties of the resins and the immobilization modes played important roles in affecting their catalytic performances. These two catalysts enabled the construction of a chemoenzymatic cascade for the enantioselective synthesis of a series of chiral diarylmethanols in high yields (83-90%) and enantioselectivities (87-98% ee). In addition, the asymmetric synthesis of the antihistaminic and anticholinergic drugs (S)-neobenodine and (S)-carbinoxamine was also achieved from the chiral diarylmethanol precursors, demonstrating the synthetic utility of the chemoenzymatic cascade.
Collapse
Affiliation(s)
- Yanyan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Guanhua Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Ying He
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Limei Ren
- Department of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei 050035, China
| | - Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
40
|
Li Y, Huang Y, Shen Q, Yu W, Yang Z, Gao Z, Lv F, Bai H, Wang S. Utilizing microbial metabolite in catalytic cascade synthesis of conjugated oligomers for In-Situ regulation of biological activity. Bioorg Chem 2024; 145:107188. [PMID: 38377815 DOI: 10.1016/j.bioorg.2024.107188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Despite the advances of multistep enzymatic cascade reactions, their incorporation with abiotic reactions in living organisms remains challenging in synthetic biology. Herein, we combined microbial metabolic pathways and Pd-catalyzed processes for in-situ generation of bioactive conjugated oligomers. Our biocompatible one-pot coupling reaction utilized the fermentation process of engineered E. coli that converted glucose to styrene, which participated in the Pd-catalyzed Heck reaction for in-situ synthesis of conjugated oligomers. This process serves a great interest in understanding resistance evolution by utilizing the inhibitory activity of the synthesized conjugated oligomers. The approach allows for the in-situ combination of biological metabolism and CC coupling reactions, opening up new possibilities for the biosynthesis of unnatural molecules and enabling the in-situ regulation of the bioactivity of the obtained products.
Collapse
Affiliation(s)
- Yuke Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qi Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
41
|
O'Connell A, Barry A, Burke AJ, Hutton AE, Bell EL, Green AP, O'Reilly E. Biocatalysis: landmark discoveries and applications in chemical synthesis. Chem Soc Rev 2024; 53:2828-2850. [PMID: 38407834 DOI: 10.1039/d3cs00689a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Biocatalysis has become an important tool in chemical synthesis, allowing access to complex molecules with high levels of activity and selectivity and with low environmental impact. Key discoveries in protein engineering, bioinformatics, recombinant technology and DNA sequencing have contributed towards the rapid acceleration of the field. This tutorial review explores enzyme engineering strategies and high-throughput screening approaches that have been applied for the discovery and development of enzymes for synthetic application. Landmark developments in the field are discussed and have been carefully selected to highlight the diverse synthetic applications of enzymes within the pharmaceutical, agricultural, food and chemical industries. The design and development of artificial biocatalytic cascades is also examined. This tutorial review will give readers an insight into the landmark discoveries and milestones that have helped shape and grow this branch of catalysis since the discovery of the first enzyme.
Collapse
Affiliation(s)
- Adam O'Connell
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Amber Barry
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ashleigh J Burke
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Amy E Hutton
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Elizabeth L Bell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Anthony P Green
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Elaine O'Reilly
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
42
|
Möhler JS, Pickl M, Reiter T, Simić S, Rackl JW, Kroutil W, Wennemers H. Peptide and Enzyme Catalysts Work in Concert in Stereoselective Cascade Reactions-Oxidation followed by Conjugate Addition. Angew Chem Int Ed Engl 2024; 63:e202319457. [PMID: 38235524 DOI: 10.1002/anie.202319457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Enzymes and peptide catalysts consist of the same building blocks but require vastly different environments to operate best. Herein, we show that an enzyme and a peptide catalyst can work together in a single reaction vessel to catalyze a two-step cascade reaction with high chemo- and stereoselectivity. Abundant linear alcohols, nitroolefins, an alcohol oxidase, and a tripeptide catalyst provided chiral γ-nitroaldehydes in aqueous buffer. High yields (up to 92 %) and stereoselectivities (up to 98 % ee) were achieved for the cascade through the rational design of the peptide catalyst and the identification of common reaction conditions.
Collapse
Affiliation(s)
- Jasper S Möhler
- Laboratorium für Organische Chemie, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Mathias Pickl
- University of Graz, Institute of Chemistry NAWI Graz, BioTechMed Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Tamara Reiter
- University of Graz, Institute of Chemistry NAWI Graz, BioTechMed Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Stefan Simić
- University of Graz, Institute of Chemistry NAWI Graz, BioTechMed Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Jonas W Rackl
- Laboratorium für Organische Chemie, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Wolfgang Kroutil
- University of Graz, Institute of Chemistry NAWI Graz, BioTechMed Graz, Heinrichstraße 28, 8010, Graz, Austria
- Field of Excellence BioHealth-, University of Graz, 8010, Graz, Austria
| | - Helma Wennemers
- Laboratorium für Organische Chemie, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
43
|
Jiang L, Ao Q, Tong X, Lv X, Song Y, Tang J. A biocatalytic cascade in enzyme/metal continuous-microflow microgel with stable intermediate channel for point-of-care biosensing. Biosens Bioelectron 2024; 248:115965. [PMID: 38176253 DOI: 10.1016/j.bios.2023.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
A fast and accurate method for ultrasensitive monitoring of substrate is significant for cascade molecular detection. Here, we synthesize a glucose oxidase (GOx) microgel with iron coordination (Fe/GOx microgel). The microgel is cross-linked by chitosan and iron ion coordination which construct a tubular structure. Powder X-ray diffraction and Brunauer-Emmett-Teller results confirm the tubular crystal structure with a high specific surface area is formed in the microgel. The tubular structure offers a stable channel for intermediate transport which ensures the stabilization for the intermediate transport, and high specific surface area enhances the interaction between substrates and catalysts. As a result, the sensitivity of the Fe/GOx microgel is 175.5 μA mM-1 cm-2 and the lowest detection limit is 4.42 μM. In addition, the nanoscale Fe/GOx microgel also has the characteristics of reusability and maintains its activity after five times of catalysis. The generation of free radicals during the catalytic process can be detected by light detection and electrochemical signal detection within different detection limits. Therefore, Fe/GOx microgel provides a new platform and catalyst for the precise detection of cascade catalysis.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qi Ao
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xinglai Tong
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxiao Lv
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ying Song
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
44
|
Virdi J, Dusunge A, Handa S. Aqueous Micelles as Solvent, Ligand, and Reaction Promoter in Catalysis. JACS AU 2024; 4:301-317. [PMID: 38425936 PMCID: PMC10900500 DOI: 10.1021/jacsau.3c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024]
Abstract
Water is considered to be the most sustainable and safest solvent. Micellar catalysis is a significant contributor to the chemistry in water. It promotes pathways involving water-sensitive intermediates and transient catalytic species under micelles' shielding effect while also replacing costly ligands and dipolar-aprotic solvents. However, there is a lack of critical information about micellar catalysis. This includes why it works better than traditional catalysis in organic solvents, why specific rules in micellar catalysis differ from those of conventional catalysis, and how the limitations of micellar catalysis can be addressed in the future. This Perspective aims to highlight the current gaps in our understanding of micellar catalysis and provide an analysis of designer surfactants' origin and essential components. This will also provide a fundamental understanding of micellar catalysis, including how aqueous micelles can simultaneously perform multiple functions such as solvent, ligand, and reaction promoter.
Collapse
Affiliation(s)
- Jagdeep
K. Virdi
- Department of Chemistry, University
of Missouri, Columbia, Missouri 65211, United States
| | - Ashish Dusunge
- Department of Chemistry, University
of Missouri, Columbia, Missouri 65211, United States
| | - Sachin Handa
- Department of Chemistry, University
of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
45
|
Giparakis S, Winkler M, Rudroff F. Nature stays natural: two novel chemo-enzymatic one-pot cascades for the synthesis of fragrance and flavor aldehydes. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:1338-1344. [PMID: 38323304 PMCID: PMC10840651 DOI: 10.1039/d3gc04191c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024]
Abstract
Novel synthetic strategies for the production of high-value chemicals based on the 12 principles of green chemistry are highly desired. Herein, we present a proof of concept for two novel chemo-enzymatic one-pot cascades allowing for the production of valuable fragrance and flavor aldehydes. We utilized renewable phenylpropenes, such as eugenol from cloves or estragole from estragon, as starting materials. For the first strategy, Pd-catalyzed isomerization of the allylic double bond and subsequent enzyme-mediated (aromatic dioxygenase, ADO) alkene cleavage were performed to obtain the desired aldehydes. In the second route, the double bond was oxidized to the corresponding ketone via a copper-free Wacker oxidation protocol followed by enzymatic Baeyer-Villiger oxidation (phenylacetone monooxygenase from Thermobifida fusca), esterase-mediated (esterase from Pseudomonas fluorescens, PfeI) hydrolysis and subsequent oxidation of the primary alcohol (alcohol dehydrogenase from Pseudomonas putida, AlkJ) to the respective aldehyde products. Eight different phenylpropene derivatives were subjected to these reaction sequences, allowing for the synthesis of seven aldehydes in up to 55% yield after 4 reaction steps (86% for each step).
Collapse
Affiliation(s)
- Stefan Giparakis
- TU Wien, Institute of Applied Synthetic Chemistry Getreidemarkt 9 163-OC 1060 Vienna Austria
| | - Margit Winkler
- TU-Graz, Institut für Molekulare Biotechnologie Petersgasse 14 8010 Graz Austria
- Austrian Center of Industrial Biotechnology (ACIB GmbH) Krenngasse 37 8010 Graz Austria
| | - Florian Rudroff
- TU Wien, Institute of Applied Synthetic Chemistry Getreidemarkt 9 163-OC 1060 Vienna Austria
| |
Collapse
|
46
|
Terholsen H, Schmidt S. Cell-free chemoenzymatic cascades with bio-based molecules. Curr Opin Biotechnol 2024; 85:103058. [PMID: 38154324 DOI: 10.1016/j.copbio.2023.103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
For the valorization of various bio-based feedstocks, the combination of different catalytic systems with biocatalysis in chemoenzymatic cascades has been shown to have high potential. However, the development of such integrated catalytic systems is often limited by catalyst incompatibility. Therefore, incorporating novel catalytic concepts into the chemoenzymatic valorization of bio-based feedstocks is currently of great interest. This article provides an overview of the methods/approaches used to advance the development of chemoenzymatic cascades for the catalytic upgrading of bio-based feedstocks. It specifically focuses on recent developments in the combination of enzymes with organo- and chemocatalysis. Furthermore, current applications and future perspectives of integrating novel catalytic systems such as photo- and electrocatalysis toward new synthetic routes for the utilization of the often highly functionalized bio-based compounds are reviewed.
Collapse
Affiliation(s)
- Henrik Terholsen
- University of Groningen, Groningen Research Institute of Pharmacy, Dept. of Chemical and Pharmaceutical Biology, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands
| | - Sandy Schmidt
- University of Groningen, Groningen Research Institute of Pharmacy, Dept. of Chemical and Pharmaceutical Biology, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands.
| |
Collapse
|
47
|
Buller R, Lutz S, Kazlauskas RJ, Snajdrova R, Moore JC, Bornscheuer UT. From nature to industry: Harnessing enzymes for biocatalysis. Science 2023; 382:eadh8615. [PMID: 37995253 DOI: 10.1126/science.adh8615] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Biocatalysis harnesses enzymes to make valuable products. This green technology is used in countless applications from bench scale to industrial production and allows practitioners to access complex organic molecules, often with fewer synthetic steps and reduced waste. The last decade has seen an explosion in the development of experimental and computational tools to tailor enzymatic properties, equipping enzyme engineers with the ability to create biocatalysts that perform reactions not present in nature. By using (chemo)-enzymatic synthesis routes or orchestrating intricate enzyme cascades, scientists can synthesize elaborate targets ranging from DNA and complex pharmaceuticals to starch made in vitro from CO2-derived methanol. In addition, new chemistries have emerged through the combination of biocatalysis with transition metal catalysis, photocatalysis, and electrocatalysis. This review highlights recent key developments, identifies current limitations, and provides a future prospect for this rapidly developing technology.
Collapse
Affiliation(s)
- R Buller
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - S Lutz
- Codexis Incorporated, Redwood City, CA 94063, USA
| | - R J Kazlauskas
- Department of Biochemistry, Molecular Biology and Biophysics, Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - R Snajdrova
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - J C Moore
- MRL, Merck & Co., Rahway, NJ 07065, USA
| | - U T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, Greifswald University, Greifswald, Germany
| |
Collapse
|
48
|
Wu P, Zhao Y, Zhang X, Fan Y, Zhang S, Zhang W, Huo F. Opportunities and Challenges of Metal-Organic Framework Micro/Nano Reactors for Cascade Reactions. JACS AU 2023; 3:2413-2435. [PMID: 37772189 PMCID: PMC10523373 DOI: 10.1021/jacsau.3c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
Building bridges among different types of catalysts to construct cascades is a highly worthwhile pursuit, such as chemo-, bio-, and chemo-bio cascade reactions. Cascade reactions can improve the reaction efficiency and selectivity while reducing steps of separation and purification, thereby promoting the development of "green chemistry". However, compatibility issues in cascade reactions pose significant constraints on the development of this field, particularly concerning the compatibility of diverse catalyst types, reaction conditions, and reaction rates. Metal-organic framework micro/nano reactors (MOF-MNRs) are porous crystalline materials formed by the self-assembly coordination of metal sites and organic ligands, possessing a periodic network structure. Due to the uniform pore size with the capability of controlling selective transfer of substances as well as protecting active substances and the organic-inorganic parts providing reactive microenvironment, MOF-MNRs have attracted significant attention in cascade reactions in recent years. In this Perspective, we first discuss how to address compatibility issues in cascade reactions using MOF-MNRs, including structural design and synthetic strategies. Then we summarize the research progress on MOF-MNRs in various cascade reactions. Finally, we analyze the challenges facing MOF-MNRs and potential breakthrough directions and opportunities for the future.
Collapse
Affiliation(s)
- Peng Wu
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yanhua Zhao
- Frontiers
Science Center for Flexible Electronics, Xi’an Institute of
Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials
& Engineering, Northwestern Polytechnical
University, 127 West
Youyi Road, Xi’an 710072, China
| | - Xinglong Zhang
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yun Fan
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Suoying Zhang
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Weina Zhang
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Fengwei Huo
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
49
|
Hao R, Zhang M, Tian D, Lei F, Qin Z, Wu T, Yang H. Bottom-Up Synthesis of Multicompartmentalized Microreactors for Continuous Flow Catalysis. J Am Chem Soc 2023; 145:20319-20327. [PMID: 37676729 DOI: 10.1021/jacs.3c04886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The bottom-up assembly of biomimetic multicompartmentalized microreactors for use in continuous flow catalysis remains a grand challenge because of the structural instability or the absence of liquid microenvironments to host biocatalysts in the existing systems. Here, we address this challenge using a strategy that combines stepwise Pickering emulsification with interface-confined cross-linking. Our strategy allows for the fabrication of robust multicompartmentalized liquid-containing microreactors (MLMs), whose interior architectures can be exquisitely tuned in a bottom-up fashion. With this strategy, enzymes and metal catalysts can be separately confined in distinct subcompartments of MLMs for processing biocatalysis or chemo-enzymatic cascade reactions. As exemplified by the enzyme-catalyzed kinetic resolution of racemic alcohols, our systems exhibit a durability of 2000 h with 99% enantioselectivity. Another Pd-enzyme-cocatalyzed dynamic kinetic resolution of amines further demonstrates the versatility and long-term operational stability of our MLMs in continuous flow cascade catalysis. This study opens up a new way to design efficient biomimetic multicompartmental microreactors for practical applications.
Collapse
Affiliation(s)
- Ruipeng Hao
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ming Zhang
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Danping Tian
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Fu Lei
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zhiqin Qin
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Tao Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Hengquan Yang
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
50
|
Kato M, Huynh M, Chan N, Elliott J, Trinh A, Lucero K, Vu J, Parker D, Cheruzel LE. A one-pot Pd- and P450-catalyzed chemoenzymatic synthesis of a library of oxyfunctionalized biaryl alkanoic acids leveraging a substrate anchoring approach. J Inorg Biochem 2023; 245:112240. [PMID: 37245283 DOI: 10.1016/j.jinorgbio.2023.112240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 04/27/2023] [Indexed: 05/30/2023]
Abstract
A one-pot chemoenzymatic approach was developed by combining Palladium-catalysis with selective cytochrome P450 enzyme oxyfunctionalization. Various iodophenyl alkanoic acids could be coupled with alkylphenyl boronic acids to generate a series of alkyl substituted biarylalkanoic acids in overall high yield. The identity of the products could be confirmed by various analytical and chromatographic techniques. Addition of an engineered cytochrome P450 heme domain mutant with peroxygenase activity upon completion of the chemical reaction resulted in the selective oxyfunctionalization of those compounds, primarily at the benzylic position. Moreover, in order to increase the biocatalytic product conversion, a reversible substrate engineering approach was developed. This involves the coupling of a bulky amino acid such as L- phenylalanine or tryptophan, to the carboxylic acid moiety. The approach resulted in a 14 to 49% overall biocatalytic product conversion increase associated with a change in regioselectivity of hydroxylation towards less favored positions.
Collapse
Affiliation(s)
- Mallory Kato
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Michael Huynh
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Nicholas Chan
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Julien Elliott
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Amie Trinh
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Kathreena Lucero
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Julia Vu
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Daniel Parker
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Lionel E Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA.
| |
Collapse
|