1
|
Sutcliffe EI, Irvine A, Rooney J, Smith D, Northcote HM, McKenzie D, Bakshi S, Nisbet AJ, Price D, Graham R, Morphew R, Atkinson L, Mousley A, Cantacessi C. Antimicrobial peptides in nematode secretions - Unveiling biotechnological opportunities for therapeutics and beyond. Biotechnol Adv 2025; 81:108572. [PMID: 40154760 DOI: 10.1016/j.biotechadv.2025.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/02/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Gastrointestinal (GI) parasitic nematodes threaten food security and affect human health and animal welfare globally. Current anthelmintics for use in humans and livestock are challenged by continuous re-infections and the emergence and spread of multidrug resistance, underscoring an urgent need to identify novel control targets for therapeutic exploitation. Recent evidence has highlighted the occurrence of complex interplay between GI parasitic nematodes of humans and livestock and the resident host gut microbiota. Antimicrobial peptides (AMPs) found within nematode biofluids have emerged as potential effectors of these interactions. This review delves into the occurrence, structure, and function of nematode AMPs, highlighting their potential as targets for drug discovery and development. We argue that an integrated approach combining advanced analytical techniques, scalable production methods, and innovative experimental models is needed to unlock the full potential of nematode AMPs and pave the way for the discovery and development of sustainable parasite control strategies.
Collapse
Affiliation(s)
- E I Sutcliffe
- Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | - A Irvine
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - J Rooney
- Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | - D Smith
- Moredun Research Institute, United Kingdom
| | - H M Northcote
- Department of Life Sciences, Aberystwyth University, United Kingdom
| | - D McKenzie
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - S Bakshi
- Department of Engineering, University of Cambridge, United Kingdom
| | - A J Nisbet
- Moredun Research Institute, United Kingdom
| | - D Price
- Moredun Research Institute, United Kingdom
| | - R Graham
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - R Morphew
- Department of Life Sciences, Aberystwyth University, United Kingdom
| | - L Atkinson
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - A Mousley
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - C Cantacessi
- Department of Veterinary Medicine, University of Cambridge, United Kingdom.
| |
Collapse
|
2
|
Shin DL, Tsai YB, Hsu SH, Liang CC, Wu NH. Chicken intestinal organoids reveal polarity-dependent replication dynamics and immune responses of low pathogenic avian influenza viruses. Poult Sci 2025; 104:104921. [PMID: 40043674 PMCID: PMC11927706 DOI: 10.1016/j.psj.2025.104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 03/24/2025] Open
Abstract
Low pathogenic avian influenza viruses (LPAIVs) persist in poultry populations, posing an ongoing challenge to poultry management and research. These viruses typically cause mild infections but can lead to significant economic losses due to their widespread presence and potential to disrupt poultry production. Traditional in vivo and in vitro models struggle to accurately replicate the avian intestinal environment, where these viruses often establish infection. In Taiwan, the domestic H6N1 LPAIVs cause an endemic in the local area but still lack investigation. This study addresses this gap by utilizing advanced chicken intestinal organoid (CIO) systems, apical-out (Ap-o), and basal-out (Ba-o) conformations to study the unique replication kinetics and innate immune responses of LPAIVs in a physiologically relevant setting. By comparing the Taiwan specialized H6N1 strain toward the Eurasian H9N2 virus, our results demonstrate that Ap-o organoids, which mimic natural exposure to the intestinal lumen, elicit robust interferon-stimulated gene responses, particularly higher expression of downstream gene, which effectively controls viral replication against H6N1 virus. In contrast, Ba-o organoids, representing a systemic infection route, exhibited lower upstream interferon responses, reflecting a different immune response pattern in the H9N2 strain. These results confirm that CIO is a well-suited model to study LPAIV pathogenesis. It provides key insights into the host-pathogen interactions that determine viral replication and immune evasion strategies. This model deepens our understanding of LPAIV behavior in poultry and provides a valuable tool for developing more targeted and effective control strategies for poultry health management.
Collapse
Affiliation(s)
- Dai-Lun Shin
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan
| | - Yi-Bei Tsai
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; Department and Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan
| | - Shu-Han Hsu
- Department and Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan
| | - Chi-Chia Liang
- Department and Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan
| | - Nai-Huei Wu
- Department and Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan.
| |
Collapse
|
3
|
Ma X, Li M, Zhang Y, Xu T, Zhou X, Qian M, Yang Z, Han X. Akkermansia muciniphila identified as key strain to alleviate gut barrier injury through Wnt signaling pathway. eLife 2025; 12:RP92906. [PMID: 39912727 PMCID: PMC11801796 DOI: 10.7554/elife.92906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
As the largest mucosal surface, the gut has built a physical, chemical, microbial, and immune barrier to protect the body against pathogen invasion. The disturbance of gut microbiota aggravates pathogenic bacteria invasion and gut barrier injury. Fecal microbiota transplantation (FMT) is a promising treatment for microbiome-related disorders, where beneficial strain engraftment is a significant factor influencing FMT outcomes. The aim of this research was to explore the effect of FMT on antibiotic-induced microbiome-disordered (AIMD) models infected with enterotoxigenic Escherichia coli (ETEC). We used piglet, mouse, and intestinal organoid models to explore the protective effects and mechanisms of FMT on ETEC infection. The results showed that FMT regulated gut microbiota and enhanced the protection of AIMD piglets against ETEC K88 challenge, as demonstrated by reduced intestinal pathogen colonization and alleviated gut barrier injury. Akkermansia muciniphila (A. muciniphila) and Bacteroides fragilis (B. fragilis) were identified as two strains that may play key roles in FMT. We further investigated the alleviatory effects of these two strains on ETEC infection in the AIMD mice model, which revealed that A. muciniphila and B. fragilis relieved ETEC-induced intestinal inflammation by maintaining the proportion of Treg/Th17 cells and epithelial damage by moderately activating the Wnt/β-catenin signaling pathway, while the effect of A. muciniphila was better than B. fragilis. We, therefore, identified whether A. muciniphila protected against ETEC infection using basal-out and apical-out intestinal organoid models. A. muciniphila did protect the intestinal stem cells and stimulate the proliferation and differentiation of intestinal epithelium, and the protective effects of A. muciniphila were reversed by Wnt inhibitor. FMT alleviated ETEC-induced gut barrier injury and intestinal inflammation in the AIMD model. A. muciniphila was identified as a key strain in FMT to promote the proliferation and differentiation of intestinal stem cells by mediating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Meng Li
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Yuanyuan Zhang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
| | - Tingting Xu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
| | - Xinchen Zhou
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Mengqi Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
| | - Zhiren Yang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Xinyan Han
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| |
Collapse
|
4
|
Vervelde L, Manders TTM, Kammourieh S, Wiegel J. Invasion of Chicken Intestinal Cells Is Higher for Enterococcus cecorum Lesion Strains Compared to Cloacal Strains in an Organoid Model. Microorganisms 2024; 13:50. [PMID: 39858818 PMCID: PMC11767407 DOI: 10.3390/microorganisms13010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Some strains of Enterococcus cecorum can cause spondylitis and bacterial osteomyelitis. Translocation and bacteremia are pivotal to the pathogenesis and clinical disease. Virulence typing to distinguish extra-intestinal disease of lesion from cloacal strains remains difficult. We investigated if organoids can be applied to differentiate between E. cecorum strains that are more or less virulent. Floating chicken intestinal organoids combine the complex cell system of the gut with an easily accessible apical-out orientation. The organoids were treated with four E. cecorum strains that differ in original isolation, lesion, or cloacal, and bacterial load was determined after 3 and 6 h by quantitative PCR and bacterial plating. Independent of the inoculum dose or time post inoculation, DNA levels of E. cecorum marginally differed between the strains. To determine if this was caused by adherence of bacteria to the epithelial cells, an invasion assay was developed. The organoids were inoculated with the different E. cecorum strains and after 3 or 6 h treated with an antimicrobial mixture, lysed, and quantified by bacterial plate counting. Significantly higher (p < 0.0001) numbers of bacteria isolated from lesions invaded the organoids compared to cloacal strains in a dose-dependent manner. Higher numbers of bacteria isolated from lesions invaded the organoids compared to cloacal strains in a dose-dependent manner. This study is a major step in the development of a model to study the interaction between E. cecorum and the chicken host and a model to test novel intervention strategies to prevent translocation of bacteria.
Collapse
Affiliation(s)
- Lonneke Vervelde
- Department Poultry Health, Royal GD, 7418 EZ Deventer, The Netherlands; (T.T.M.M.); (S.K.); (J.W.)
| | - Thijs T. M. Manders
- Department Poultry Health, Royal GD, 7418 EZ Deventer, The Netherlands; (T.T.M.M.); (S.K.); (J.W.)
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Samira Kammourieh
- Department Poultry Health, Royal GD, 7418 EZ Deventer, The Netherlands; (T.T.M.M.); (S.K.); (J.W.)
| | - Jeanine Wiegel
- Department Poultry Health, Royal GD, 7418 EZ Deventer, The Netherlands; (T.T.M.M.); (S.K.); (J.W.)
| |
Collapse
|
5
|
Yu LE, Yang WC, Liang YC. Crosstalk Within the Intestinal Epithelium: Aspects of Intestinal Absorption, Homeostasis, and Immunity. Biomedicines 2024; 12:2771. [PMID: 39767678 PMCID: PMC11673925 DOI: 10.3390/biomedicines12122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Gut health is crucial in many ways, such as in improving human health in general and enhancing production in agricultural animals. To maximize the effect of a healthy gastrointestinal tract (GIT), an understanding of the regulation of intestinal functions is needed. Proper intestinal functions depend on the activity, composition, and behavior of intestinal epithelial cells (IECs). There are various types of IECs, including enterocytes, Paneth cells, enteroendocrine cells (EECs), goblet cells, tuft cells, M cells, and intestinal epithelial stem cells (IESCs), each with unique 3D structures and IEC distributions. Although the communication between IECs and other cell types, such as immune cells and neurons, has been intensively reviewed, communication between different IECs has rarely been addressed. The present paper overviews the networks among IECs that influence intestinal functions. Intestinal absorption is regulated by incretins derived from EECs that induce nutrient transporter activity in enterocytes. EECs, Paneth cells, tuft cells, and enterocytes release signals to activate Notch signaling, which modulates IESC activity and intestinal homeostasis, including proliferation and differentiation. Intestinal immunity can be altered via EECs, goblet cells, tuft cells, and cytokines derived from IECs. Finally, tools for investigating IEC communication have been discussed, including the novel 3D intestinal cell model utilizing enteroids that can be considered a powerful tool for IEC communication research. Overall, the importance of IEC communication, especially EECs and Paneth cells, which cover most intestinal functional regulating pathways, are overviewed in this paper. Such a compilation will be helpful in developing strategies for maintaining gut health.
Collapse
Affiliation(s)
| | | | - Yu-Chaun Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan; (L.-E.Y.); (W.-C.Y.)
| |
Collapse
|
6
|
Mann P, Liu J, Yu LE, Wolfenden R, Li Y. Utilizing the apical-out enteroids in vitro model to investigate intestinal glucose transport, barrier function, oxidative stress, and inflammatory responses in broiler chickens. Front Physiol 2024; 15:1470009. [PMID: 39568543 PMCID: PMC11576162 DOI: 10.3389/fphys.2024.1470009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Conventional 2D intestinal epithelial cell lines have been widely used in investigating intestinal functions, yet with limitations in recapitulating the in vivo gut physiology of chickens. A recently established chicken enteroid model with apical-out nature and the presence of leukocyte components represents intestinal mucosal functions. The objectives of this study were to 1) evaluate basic gut nutrient transport and barrier functions in this model and 2) identify the model's effectiveness in studying inflammation and oxidative stress responses. Methods Enteroids were generated from individual villus units isolated from the small intestine of Cobb500 broiler embryos. Enteroid viability, morphology, and epithelial cell markers were monitored; barrier function was evaluated based on the permeability to fluorescein isothiocyanate-dextran (FD4) with or without EDTA and lipopolysaccharide (LPS) challenges; nutrient transport was evaluated by fluorescence-labeled glucose (2NBD-G) with or without transporter blockade; the oxidative status was indicated by reactive oxygen species (ROS). Inflammatory and oxidative challenges were induced by LPS and menadione treatment, respectively. Selected marker gene expressions, including tight junction proteins (CLDN-1, CLDN-2, ZO-1, and OCCL), epithelial cell markers (Lgr-5, LYZ, and MUC-2), cytokines (IL-1β, IL-6, IL-8, IL-10, TNF-α, and INF-γ), and antioxidant enzymes (Nrf-2, catalase, and SOD), were determined by using RT-qPCR. Data were analyzed by one-way ANOVA among treatment groups. Results Enteroid cell activity was stable from day (d) 2 to d 6 and declined at d 7. Epithelial cell marker and cytokine expressions were stable from d 4 to d 6. FD4 permeability was increased after the EDTA treatment (P ≤ 0.05). Transporter-mediated 2NBD-G absorption was observed, which was reduced with glucose transporter blockade (P ≤ 0.05). Enteroids showed classic responses to LPS challenges, including upregulated gene expressions of IL-1β and IL-6, downregulated gene expressions of ZO-1 and OCCL, and increased FD4 permeability (P ≤ 0.05). Enteroids showed increased ROS generation (P ≤ 0.05) in response to oxidative stress. Discussion In conclusion, this apical-out enteroid model is a stable alternative in vitro model that exhibits intestinal barrier, nutrient transport, oxidation, and inflammation functions. With this enteroid model, we developed two challenge protocols for evaluating intestinal functions under oxidative stress and inflammation conditions.
Collapse
Affiliation(s)
- Peter Mann
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Jundi Liu
- Animal Nutrition BU, Eastman Chemical Company, Kingsport, TN, United States
| | - Liang-En Yu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Ross Wolfenden
- Animal Nutrition BU, Eastman Chemical Company, Kingsport, TN, United States
| | - Yihang Li
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
7
|
Flagg M, de Wit E. Advancing zoonotic respiratory virus research through the use of organoids. Curr Opin Virol 2024; 68-69:101435. [PMID: 39406586 PMCID: PMC11611640 DOI: 10.1016/j.coviro.2024.101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 12/07/2024]
Abstract
Zoonotic viruses with the ability to replicate in the human respiratory tract pose a threat to public health. Organoids, which are highly representative, multicellular models representing specific organs or tissues, can aid in our understanding of the pathogenesis, pathogenicity, transmissibility, and reservoir circulation dynamics of zoonotic viruses. Organoid studies can facilitate the rapid selection of antiviral therapies identification of potential reservoir species and intermediate hosts, and inform the selection of suitable laboratory animal models. We review the use of human- and animal-derived organoid models from multiple organs to investigate the threat of emerging zoonotic viruses that cause respiratory disease.
Collapse
Affiliation(s)
- Meaghan Flagg
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, United States of America
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, United States of America.
| |
Collapse
|
8
|
Yan J, Monlong J, Cougoule C, Lacroix-Lamandé S, Wiedemann A. Mapping the scientific output of organoids for animal and human modeling infectious diseases: a bibliometric assessment. Vet Res 2024; 55:81. [PMID: 38926765 PMCID: PMC11210181 DOI: 10.1186/s13567-024-01333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/11/2024] [Indexed: 06/28/2024] Open
Abstract
The escalation of antibiotic resistance, pandemics, and nosocomial infections underscores the importance of research in both animal and human infectious diseases. Recent advancements in three-dimensional tissue cultures, or "organoids", have revolutionized the development of in vitro models for infectious diseases. Our study conducts a bibliometric analysis on the use of organoids in modeling infectious diseases, offering an in-depth overview of this field's current landscape. We examined scientific contributions from 2009 onward that focused on organoids in host‒pathogen interactions using the Web of Science Core Collection and OpenAlex database. Our analysis included temporal trends, reference aging, author, and institutional productivity, collaborative networks, citation metrics, keyword cluster dynamics, and disruptiveness of organoid models. VOSviewer, CiteSpace, and Python facilitated this analytical assessment. The findings reveal significant growth and advancements in organoid-based infectious disease research. Analysis of keywords and impactful publications identified three distinct developmental phases in this area that were significantly influenced by outbreaks of Zika and SARS-CoV-2 viruses. The research also highlights the synergistic efforts between academia and publishers in tackling global pandemic challenges. Through mostly consolidating research efforts, organoids are proving to be a promising tool in infectious disease research for both human and animal infectious disease. Their integration into the field necessitates methodological refinements for better physiological emulation and the establishment of extensive organoid biobanks. These improvements are crucial for fully harnessing the potential of organoids in understanding infectious diseases and advancing the development of targeted treatments and vaccines.
Collapse
Affiliation(s)
- Jin Yan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China.
- Research Center of Digestive Disease, Central South University, Changsha, China.
- IRSD - Digestive Health Research Institute, University of Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.
| | - Jean Monlong
- IRSD - Digestive Health Research Institute, University of Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Céline Cougoule
- Institut de Pharmacologie Et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Agnès Wiedemann
- IRSD - Digestive Health Research Institute, University of Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.
| |
Collapse
|
9
|
Mitchell J, Sutton K, Elango JN, Borowska D, Perry F, Lahaye L, Santin E, Arsenault RJ, Vervelde L. Chicken intestinal organoids: a novel method to measure the mode of action of feed additives. Front Immunol 2024; 15:1368545. [PMID: 38835764 PMCID: PMC11148291 DOI: 10.3389/fimmu.2024.1368545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
There is a rapidly growing interest in how the avian intestine is affected by dietary components and feed additives. The paucity of physiologically relevant models has limited research in this field of poultry gut health and led to an over-reliance on the use of live birds for experiments. The development of complex 3D intestinal organoids or "mini-guts" has created ample opportunities for poultry research in this field. A major advantage of the floating chicken intestinal organoids is the combination of a complex cell system with an easily accessible apical-out orientation grown in a simple culture medium without an extracellular matrix. The objective was to investigate the impact of a commercial proprietary blend of organic acids and essential oils (OA+EO) on the innate immune responses and kinome of chicken intestinal organoids in a Salmonella challenge model. To mimic the in vivo prolonged exposure of the intestine to the product, the intestinal organoids were treated for 2 days with 0.5 or 0.25 mg/mL OA+EO and either uninfected or infected with Salmonella and bacterial load in the organoids was quantified at 3 hours post infection. The bacteria were also treated with OA+EO for 1 day prior to challenge of the organoids to mimic intestinal exposure. The treatment of the organoids with OA+EO resulted in a significant decrease in the bacterial load compared to untreated infected organoids. The expression of 88 innate immune genes was investigated using a high throughput qPCR array, measuring the expression of 88 innate immune genes. Salmonella invasion of the untreated intestinal organoids resulted in a significant increase in the expression of inflammatory cytokine and chemokines as well as genes involved in intracellular signaling. In contrast, when the organoids were treated with OA+EO and challenged with Salmonella, the inflammatory responses were significantly downregulated. The kinome array data suggested decreased phosphorylation elicited by the OA+EO with Salmonella in agreement with the gene expression data sets. This study demonstrates that the in vitro chicken intestinal organoids are a new tool to measure the effect of the feed additives in a bacterial challenge model by measuring innate immune and protein kinases responses.
Collapse
Affiliation(s)
- Jordan Mitchell
- Division of Immunology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences (R(D)SVS), University of Edinburgh, Edinburgh, United Kingdom
| | - Kate Sutton
- Division of Immunology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences (R(D)SVS), University of Edinburgh, Edinburgh, United Kingdom
| | | | - Dominika Borowska
- Division of Immunology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences (R(D)SVS), University of Edinburgh, Edinburgh, United Kingdom
| | - Famatta Perry
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | | | | | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences (R(D)SVS), University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Kadekar D, Udrea AC, Bak SY, Christensen N, Gibbs K, Shen C, Bernardeau M. Cell-Free Culture Supernatant of Lactobacillus acidophilus AG01 and Bifidobacterium animalis subsp. lactis AG02 Reduces the Pathogenicity of NetB-Positive Clostridium perfringens in a Chicken Intestinal Epithelial Cell Line. Microorganisms 2024; 12:839. [PMID: 38674783 PMCID: PMC11052021 DOI: 10.3390/microorganisms12040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The worldwide reduction in the use of antibiotics in animal feed is fueling the need for alternatives for the prevention and control of poultry intestinal diseases such as necrotic enteritis (NE), which is caused by Clostridium perfringens. This is the first report on the use of an intestinal epithelial chicken cell line (CHIC-8E11) to study the pathogenic traits of C. perfringens and to investigate the mode of action of cell-free supernatants (CFS) from probiotic Lactobacillus acidophilus AG01 and Bifidobacterium animalis subsp. lactis AG02 in reducing the pathogenicity of C. perfringens. The cell adhesion, permeability and cytotoxicity were assessed under challenge with four C. perfringens strains isolated from broiler NE episodes of differing geographical origin (CP1-UK; CP10-Sweden; 25037-CP01 and CP22-USA). All the C. perfringens strains could adhere to the CHIC-8E11 cells, with varying affinity (0.05-0.48% adhesion across the strains). The CFS from one out of two strains (CP22) increased the cell permeability (+4.5-fold vs. the control, p < 0.01), as measured by the fluorescein isothiocyanate-dextran (FD4) content, with NetB toxin implicated in this effect. The CFS from all the strains was cytotoxic against the CHIC-8E11 cells in a dose- and strain-dependent manner (cytotoxicity 23-62% across the strains when dosed at 50 µL/mL, as assessed by the MTT cell viability assay). Pre-treatment of the cells with CFS from B. animalis subsp. lactis AG02 but not L. acidophilus AG01 reduced the cell adhesion of three out of four C. perfringens strains (by 77-85% vs. the control, p < 0.001) and reduced the negative effect of two NetB-positive strains on the cell permeability. The CFS of both probiotics alleviated the cytotoxicity of all the C. perfringens strains, which was dependent on the dose. The results confirm the suitability of the CHIC-8E11 cell line for the study of host-pathogen cell interactions in the context of NE caused by C. perfringens and reveal a beneficial mode of action of B. animalis subsp. lactis AG02 in reducing C. perfringens cell adhesion and, together with L. acidophilus AG01, in reducing C. perfringens cytotoxicity.
Collapse
Affiliation(s)
- Darshana Kadekar
- Gut Immunology Lab, R&D, Health & Biosciences, IFF, 8220 Brabrand, Denmark (A.C.U.)
| | | | - Steffen Yde Bak
- IFF Advanced Analysis, R&D, ET, IFF, 8220 Brabrand, Denmark; (S.Y.B.); (N.C.)
| | - Niels Christensen
- IFF Advanced Analysis, R&D, ET, IFF, 8220 Brabrand, Denmark; (S.Y.B.); (N.C.)
| | - Kirsty Gibbs
- Danisco Animal Nutrition, IFF, 2342 BH Oegstgeest, The Netherlands;
| | - Chong Shen
- Gut Immunology Lab, R&D, Health & Biosciences, IFF, 8220 Brabrand, Denmark (A.C.U.)
| | - Marion Bernardeau
- Danisco Animal Nutrition, IFF, 2342 BH Oegstgeest, The Netherlands;
- Agro-Food Department, Normandy University, UNICAEN, ABTE, 14000 Caen, France
| |
Collapse
|
11
|
Yu LE, Mann P, Schlitzkus L, Ghiselli F, Sanders M, Hadimundeen A, Li Y. In-Ovo Glutamine Administration Enhances Intestinal Development and Functions in Broiler Chickens: Insights from Enteroid Models. J Nutr 2024; 154:1175-1188. [PMID: 38360113 DOI: 10.1016/j.tjnut.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Early life events play significant roles in tissue development and animal health in their later life. Early nutrition, through in-ovo delivery, has shown beneficial effects on improving intestinal health in broiler chickens. However, the underlying mechanism is not fully investigated. A recently developed enteroid culture technique allows investigations on intestinal epithelial functions that are close to physiologic conditions. OBJECTIVES In this study, we evaluated the short- and long-term effects of in-ovo administration of glutamine (Gln) on intestinal epithelial development and functions by using intestinal enteroid culture and tissue electrophysiologic analysis. METHODS A hundred eggs of commercial Cobb500 broilers were in-ovo injected with 0.2 mL of either phosphate-buffered saline (PBS) or 3% Gln at embryonic day 18 (E18). Chicks were killed on the day of hatch, and at 3- and 14-d posthatch. Enteroids were generated from the small intestine. After 4 d of culture, enteroids were harvested for 5-ethynyl-2'-deoxyuridine proliferation, fluorescein isothiocyanate-4 kDa dextran permeability, and glucose absorption assays. At day 3 (d3) and day 14 (d14), intestinal barrier and nutrient transport functions were measured by the Ussing chamber. The gene expression of epithelial cell markers, nutrient transporters, and tight-junction proteins were analyzed in both intestinal tissues and enteroids. RESULTS In comparison with the PBS control group, in-ovo Gln increased intestinal villus morphology, epithelial cell proliferation, and differentiation, and altered epithelial cell population toward increased number of enteroendocrine and goblet cells while decreasing Paneth cells. Enteroids gene expression of nutrient transporters (B0AT1, SGLT1, and EAAT3), tight junction (ZO2), glucose absorption, and barrier functions were enhanced on the day of hatch. Long-term increases of intestinal di-peptide and alanine transport were observed at day 14 posthatch. CONCLUSIONS Together our results suggested that the in-ovo injection of Gln stimulated intestinal epithelium proliferation and programmed the epithelial cell differentiation toward absorptive cells.
Collapse
Affiliation(s)
- Liang-En Yu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Peter Mann
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Lydia Schlitzkus
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Federico Ghiselli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Mia Sanders
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Abdallah Hadimundeen
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Yihang Li
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States.
| |
Collapse
|
12
|
Fasina YO, Suarez DL, Ritter GD, Gerken EC, Farnell YZ, Wolfenden R, Hargis B. Unraveling frontiers in poultry health (part 1) - Mitigating economically important viral and bacterial diseases in commercial Chicken and Turkey production. Poult Sci 2024; 103:103500. [PMID: 38417326 PMCID: PMC10907857 DOI: 10.1016/j.psj.2024.103500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/21/2024] [Indexed: 03/01/2024] Open
Abstract
This symposium offered up-to-date perspectives on field experiences and the latest research on significant viral and bacterial diseases affecting poultry. A highlight was the discussion on the use of enteroids as advanced in vitro models for exploring disease pathogenesis. Outcomes of this symposium included identifying the urgent need to improve the prevention and control of avian influenza by focusing research on vaccine effectiveness. In this regard, efforts should focus on enhancing the relatedness of vaccine antigen to the field (challenge) virus strain and improving immunogenicity. It was also revealed that gangrenous dermatitis could be controlled through withholding or restricting the administration of ionophores during broiler life cycle, and that administration of microscopic polymer beads (gel) based-live coccidia vaccines to chicks could be used to reduce necrotic enteritis-induced mortality. It was emphasized that effective diagnosis of re-emerging Turkey diseases (such as blackhead, fowl cholera, and coccidiosis) and emerging Turkey diseases such as reoviral hepatitis, reoviral arthritis, Ornithobacterium rhinotracheale infection, and strepticemia require complementarity between investigative research approaches and production Veterinarian field approaches. Lastly, it was determined that the development of a variety of functionally-specific enteroids would expedite the delineation of enteric pathogen mechanisms and the identification of novel vaccine adjuvants.
Collapse
Affiliation(s)
- Yewande O Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA.
| | - David L Suarez
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS-USDA, Athens, GA 30605, USA
| | | | | | - Yuhua Z Farnell
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | | | - Billy Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville AR 72701, USA
| |
Collapse
|
13
|
Windhaber C, Heckl A, Csukovich G, Pratscher B, Burgener IA, Biermann N, Dengler F. A matter of differentiation: equine enteroids as a model for the in vivo intestinal epithelium. Vet Res 2024; 55:30. [PMID: 38493107 PMCID: PMC10943904 DOI: 10.1186/s13567-024-01283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/08/2024] [Indexed: 03/18/2024] Open
Abstract
Epithelial damage due to gastrointestinal disorders frequently causes severe disease in horses. To study the underlying pathophysiological processes, we aimed to establish equine jejunum and colon enteroids (eqJE, eqCE) mimicking the in vivo epithelium. Therefore, enteroids were cultivated in four different media for differentiation and subsequently characterized histomorphologically, on mRNA and on protein level in comparison to the native epithelium of the same donor horses to identify ideal culture conditions for an in vitro model system. With increasing enterocyte differentiation, the enteroids showed a reduced growth rate as well as a predominantly spherical morphology and less budding compared to enteroids in proliferation medium. Combined or individual withdrawal of stem cell niche pathway components resulted in lower mRNA expression levels of stem cell markers and concomitant differentiation of enterocytes, goblet cells and enteroendocrine cells. For eqCE, withdrawal of Wnt alone was sufficient for the generation of differentiated enterocytes with a close resemblance to the in vivo epithelium. Combined removal of Wnt, R-spondin and Noggin and the addition of DAPT stimulated differentiation of eqJE at a similar level as the in vivo epithelium, particularly with regard to enterocytes. In summary, we successfully defined a medium composition that promotes the formation of eqJE and eqCE consisting of multiple cell types and resembling the in vivo epithelium. Our findings emphasize the importance of adapting culture conditions to the respective species and the intestinal segment. This in vitro model will be used to investigate the pathological mechanisms underlying equine gastrointestinal disorders in future studies.
Collapse
Affiliation(s)
- Christina Windhaber
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Anna Heckl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Georg Csukovich
- Division of Small Animal Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Pratscher
- Division of Small Animal Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Iwan Anton Burgener
- Division of Small Animal Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Nora Biermann
- Clinical Unit of Equine Surgery, University of Veterinary Medicine, Vienna, Austria
| | - Franziska Dengler
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
14
|
Kang TH, Lee SI. Establishment of a chicken intestinal organoid culture system to assess deoxynivalenol-induced damage of the intestinal barrier function. J Anim Sci Biotechnol 2024; 15:30. [PMID: 38369477 PMCID: PMC10874546 DOI: 10.1186/s40104-023-00976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/12/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Deoxynivalenol (DON) is a mycotoxin that has received recognition worldwide because of its ability to cause growth delay, nutrient malabsorption, weight loss, emesis, and a reduction of feed intake in livestock. Since DON-contaminated feedstuff is absorbed in the gastrointestinal tract, we used chicken organoids to assess the DON-induced dysfunction of the small intestine. RESULTS We established a culture system using chicken organoids and characterized the organoids at passages 1 and 10. We confirmed the mRNA expression levels of various cell markers in the organoids, such as KI67, leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5), mucin 2 (MUC2), chromogranin A (CHGA), cytokeratin 19 (CK19), lysozyme (LYZ), and microtubule-associated doublecortin-like kinase 1 (DCLK1), and compared the results to those of the small intestine. Our results showed that the organoids displayed functional similarities in permeability compared to the small intestine. DON damaged the tight junctions of the organoids, which resulted in increased permeability. CONCLUSIONS Our organoid culture displayed topological, genetic, and functional similarities with the small intestine cells. Based on these similarities, we confirmed that DON causes small intestine dysfunction. Chicken organoids offer a practical model for the research of harmful substances.
Collapse
Affiliation(s)
- Tae Hong Kang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-Sangbuk-Do, 37224, Republic of Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-Sangbuk-Do, 37224, Republic of Korea.
- Research Institute for Innovative Animal Science, Kyungpook National University, 37224, Sangju, Gyeong-Sangbuk-Do, Republic of Korea.
| |
Collapse
|
15
|
Csukovich G, Wagner M, Walter I, Burger S, Tschulenk W, Steinborn R, Pratscher B, Burgener IA. Polarity reversal of canine intestinal organoids reduces proliferation and increases cell death. Cell Prolif 2024; 57:e13544. [PMID: 37697686 PMCID: PMC10849783 DOI: 10.1111/cpr.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Apical-out intestinal organoids are a relatively simple method of gaining access to the apical cell surface and have faced increasing scientific interest over the last few years. Apical-out organoids can thus be used for disease modelling to compare differing effects on the basolateral versus the apical cell surface. However, these 'inside-out' organoids die relatively quickly and cannot be propagated as long as their basal-out counterparts. Here, we show that apical-out organoids have drastically reduced proliferative potential, as evidenced by immunohistochemical staining and the incorporation of the thymidine analogue EdU. At the same time, cell death levels are increased. Nevertheless, these phenomena cannot be explained by an induction of differentiation, as the gene expression of key marker genes for various cell types does not change over time.
Collapse
Affiliation(s)
- Georg Csukovich
- Department for Companion Animals and Horses, Small Animal Internal MedicineVetmeduniViennaAustria
| | - Maximilian Wagner
- Department for Companion Animals and Horses, Small Animal Internal MedicineVetmeduniViennaAustria
| | - Ingrid Walter
- VetBioBank, VetCoreVetmeduniViennaAustria
- Institute of Morphology, Working Group HistologyVetmeduniViennaAustria
| | | | | | | | - Barbara Pratscher
- Department for Companion Animals and Horses, Small Animal Internal MedicineVetmeduniViennaAustria
| | - Iwan Anton Burgener
- Department for Companion Animals and Horses, Small Animal Internal MedicineVetmeduniViennaAustria
| |
Collapse
|
16
|
Pinto S, Hosseini M, Buckley ST, Yin W, Garousi J, Gräslund T, van Ijzendoorn S, Santos HA, Sarmento B. Nanoparticles targeting the intestinal Fc receptor enhance intestinal cellular trafficking of semaglutide. J Control Release 2024; 366:621-636. [PMID: 38215986 DOI: 10.1016/j.jconrel.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Semaglutide is the first oral glucagon-like peptide-1 (GLP-1) analog commercially available for the treatment of type 2 diabetes. In this work, semaglutide was incorporated into poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticles (NPs) to improve its delivery across the intestinal barrier. The nanocarriers were surface-decorated with either a peptide or an affibody that target the human neonatal Fc receptor (hFcRn), located on the luminal cell surface of the enterocytes. Both ligands were successfully conjugated with the PLGA-PEG via maleimide-thiol chemistry and thereafter, the functionalized polymers were used to produce semaglutide-loaded NPs. Monodisperse NPs with an average size of 170 nm, neutral surface charge and 3% of semaglutide loading were obtained. Both FcRn-targeted NPs exhibited improved interaction and association with Caco-2 cells (cells that endogenously express the hFcRn), compared to non-targeted NPs. Additionally, the uptake of FcRn-targeted NPs was also observed to occur in human intestinal organoids (HIOs) expressing hFcRn through microinjection into the lumen of HIOs, resulting in potential increase of semaglutide permeability for both ligand-functionalized nanocarriers. Herein, our study demonstrates valuable data and insights that the FcRn-targeted NPs has the capacity to promote intestinal absorption of therapeutic peptides.
Collapse
Affiliation(s)
- Soraia Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Mahya Hosseini
- Department of Biomedical Sciences of Cell and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713, AV, Groningen, the Netherlands
| | - Stephen T Buckley
- Global Research Technologies, Novo Nordisk, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Wen Yin
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Javad Garousi
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Sven van Ijzendoorn
- Department of Biomedical Sciences of Cell and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713, AV, Groningen, the Netherlands
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands; Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
17
|
Ahmad V, Yeddula SGR, Telugu BP, Spencer TE, Kelleher AM. Development of Polarity-Reversed Endometrial Epithelial Organoids. Reproduction 2024; 167:REP-23-0478. [PMID: 38215284 PMCID: PMC10959009 DOI: 10.1530/rep-23-0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/11/2024] [Indexed: 01/14/2024]
Abstract
The uterine epithelium is composed of a single layer of hormone responsive polarized epithelial cells that line the lumen and form tubular glands. Endometrial epithelial organoids (EEO) can be generated from uterine epithelia and recapitulate cell composition and hormone responses in vitro. As such, the development of EEO represents a major advance for facilitating mechanistic studies in vitro. However, a major limitation for the use of EEO cultured in basement membrane extract and other hydrogels is the inner location of apical membrane, thereby hindering direct access to the apical surface of the epithelium to study interactions with the embryo or infectious agents such as viruses and bacteria. Here, a straightforward strategy was developed that successfully reverses the polarity of EEO. The result is an apical-out organoid that preserves a distinct apical-basolateral orientation and remains responsive to ovarian steroid hormones. Our investigations highlight the utility of polarity-reversed EEO to study interactions with E. coli and blastocysts. This method of generating apical-out EEO lays the foundation for developing new in vitro functional assays, particularly regarding epithelial interactions with embryos during pregnancy or other luminal constituents in a pathological or diseased state.
Collapse
Affiliation(s)
- Vakil Ahmad
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | | | - Bhanu P Telugu
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, USA
| | - Andrew M Kelleher
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
18
|
Martins‐Costa C, Pham VA, Sidhaye J, Novatchkova M, Wiegers A, Peer A, Möseneder P, Corsini NS, Knoblich JA. Morphogenesis and development of human telencephalic organoids in the absence and presence of exogenous extracellular matrix. EMBO J 2023; 42:e113213. [PMID: 37842725 PMCID: PMC10646563 DOI: 10.15252/embj.2022113213] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
The establishment and maintenance of apical-basal polarity is a fundamental step in brain development, instructing the organization of neural progenitor cells (NPCs) and the developing cerebral cortex. Particularly, basally located extracellular matrix (ECM) is crucial for this process. In vitro, epithelial polarization can be achieved via endogenous ECM production, or exogenous ECM supplementation. While neuroepithelial development is recapitulated in neural organoids, the effects of different ECM sources in tissue morphogenesis remain underexplored. Here, we show that exposure to a solubilized basement membrane matrix substrate, Matrigel, at early neuroepithelial stages causes rapid tissue polarization and rearrangement of neuroepithelial architecture. In cultures exposed to pure ECM components or unexposed to any exogenous ECM, polarity acquisition is slower and driven by endogenous ECM production. After the onset of neurogenesis, tissue architecture and neuronal differentiation are largely independent of the initial ECM source, but Matrigel exposure has long-lasting effects on tissue patterning. These results advance the knowledge on mechanisms of exogenously and endogenously guided morphogenesis, demonstrating the self-sustainability of neuroepithelial cultures by endogenous processes.
Collapse
Affiliation(s)
- Catarina Martins‐Costa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Vincent A Pham
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Jaydeep Sidhaye
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Andrea Wiegers
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Angela Peer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Paul Möseneder
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Nina S Corsini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| |
Collapse
|
19
|
Xu Z, Xu X, Yang B, Mi Y, Wang J. 3D sheep rumen epithelial structures driven from single cells in vitro. Vet Res 2023; 54:104. [PMID: 37946298 PMCID: PMC10636852 DOI: 10.1186/s13567-023-01234-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/22/2023] [Indexed: 11/12/2023] Open
Abstract
Ruminants play a vital economic role as livestock, providing high-quality protein for humans. At present, 3D-cultured ruminant abomasum and intestinal organoids have been successfully established to study host and pathogen interaction. The rumen is a unique digestive organ of ruminants that occupies 70% of the volume of the digestive tract and its microbiota can decompose lignocellulose to support animal growth. Here we report a method for culturing rumen epithelial organoids. We found that single rumen epithelial cells form self-organized 3D structures representative of typical stratified squamous epithelium, which is similar to rumen epithelium. EGF, Noggin, Wnt3a, IGF-1, and FGF-10 significantly enhanced the seeding efficiency of organoids. Moreover, the inclusion of CHIR-99021, A83-01, SB202190, and Y-27632 is crucial for organoid formation and maintenance. Importantly, we demonstrate that rumen epithelial cells retain their ability to form organoids after passage, cryopreservation, and resuscitation. The rumen epithelial organoids express rumen cell type-specific genes, uptake fatty acids, and generate 2D cultures. In summary, our data demonstrate that it is feasible to establish organoids from single rumen epithelial cells, which is a novel in vitro system that may reduce the use of experimental animals.
Collapse
Affiliation(s)
- Zebang Xu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Xinxin Xu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Bin Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Yuling Mi
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiakun Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China.
| |
Collapse
|
20
|
Sutton K, Nash T, Sives S, Borowska D, Mitchell J, Vohra P, Stevens MP, Vervelde L. Disentangling the innate immune responses of intestinal epithelial cells and lamina propria cells to Salmonella Typhimurium infection in chickens. Front Microbiol 2023; 14:1258796. [PMID: 37854334 PMCID: PMC10579587 DOI: 10.3389/fmicb.2023.1258796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (STm) is a major foodborne pathogen and poultry are a key reservoir of human infections. To understand the host responses to early stages of Salmonella infection in poultry, we infected 2D and 3D enteroids, the latter of which contains leukocytes, neurons, and mesenchymal cells that are characteristic of the lamina propria. We infected these enteroids with wild-type (WT STm), a non-invasive mutant lacking the prgH gene (ΔprgH STm), or treated them with STm lipopolysaccharide (LPS) and analyzed the expression of innate immune related genes by qPCR at 4 and 8 h. The localization of the tight junction protein, ZO-1, expression was disrupted in WT STm infected enteroids but not ΔprgH STm or LPS treated enteroids, suggesting a loss of epithelial barrier integrity. The innate immune response to LPS was more pronounced in 2D enteroids compared to 3D enteroids and by 8 hpi, the response in 3D enteroids was almost negligible. However, when STm adhered to or invaded the enteroids, both 2D and 3D enteroids exhibited an upregulation of inflammatory responses. The presence of lamina propria cells in 3D enteroids resulted in the unique expression of genes associated with immune functions involved in regulating inflammation. Moreover, 2D and 3D enteroids showed temporal differences in response to bacterial invasion or adherence. At 8 hpi, innate responses in 3D but not 2D enteroids continued to increase after infection with WT STm, whereas the responses to the non-invasive strain decreased at 8 hpi in both 2D and 3D enteroids. In conclusion, STm infection of chicken enteroids recapitulated several observations from in vivo studies of Salmonella-infected chickens, including altered epithelial barrier integrity based on ZO-1 expression and inflammatory responses. Our findings provide evidence that Salmonella-infected enteroids serve as effective models for investigating host-pathogen interactions and exploring the molecular mechanisms of microbial virulence although the 3D model mimics the host more accurately due to the presence of a lamina propria.
Collapse
Affiliation(s)
- Kate Sutton
- Division of Immunology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Tessa Nash
- Division of Immunology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Samantha Sives
- Division of Immunology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Dominika Borowska
- Division of Immunology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jordan Mitchell
- Division of Immunology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Prerna Vohra
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark P. Stevens
- Division of Bacteriology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Ghiselli F, Felici M, Piva A, Grilli E. Establishment and characterization of an SV40 immortalized chicken intestinal epithelial cell line. Poult Sci 2023; 102:102864. [PMID: 37517361 PMCID: PMC10400971 DOI: 10.1016/j.psj.2023.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 08/01/2023] Open
Abstract
Primary chicken intestinal epithelial cells or 3D enteroids are a powerful tool to study the different biological mechanisms that occur in the chicken intestine. Unfortunately, they are not ideal for large-scale screening or long-term studies due to their short lifespan. Moreover, they require expensive culture media, coatings, or the usage of live embryos for each isolation. The aim of this study was to establish and characterize an immortalized chicken intestinal epithelial cell line to help the study of host-pathogen interactions in poultry. This cell line was established by transducing into primary chicken enterocytes the SV40 large-T antigen through a lentiviral vector. The transduced cells grew without changes up to 40 passages maintaining, after a differentiation phase of 48 h with epidermal growth factor, the biological properties of mature enterocytes such as alkaline phosphatase activity and tight junction formation. Immortalized enterocytes were able to generate a cytokine response during an inflammatory challenge, and showed to be susceptible to Eimeria tenella sporozoites invasion and generate a proper immune response to parasitic and lipopolysaccharide (Escherichia coli) stimulation. This immortalized cell line could be a cost-effective and easy-to-maintain model for all the public health, food safety, or research and pharmaceutical laboratories that study host-pathogen interactions, foodborne pathogens, and food or feed science in vitro.
Collapse
Affiliation(s)
| | - Martina Felici
- DIMEVET, Ozzano dell'Emilia (BO) - University of Bologna, Bologna 40064, Italy
| | - Andrea Piva
- Vetagro S.p.A., Reggio Emilia 42124, Italy; DIMEVET, Ozzano dell'Emilia (BO) - University of Bologna, Bologna 40064, Italy
| | - Ester Grilli
- DIMEVET, Ozzano dell'Emilia (BO) - University of Bologna, Bologna 40064, Italy; Vetagro Inc., Chicago, IL 60603, USA.
| |
Collapse
|
22
|
Ahmad V, Yeddula SGR, Telugu BP, Spencer TE, Kelleher AM. Development of Polarity-Reversed Endometrial Epithelial Organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553918. [PMID: 37645779 PMCID: PMC10462151 DOI: 10.1101/2023.08.18.553918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The uterine epithelium is composed of a single layer of hormone responsive polarized epithelial cells that line the lumen and form tubular glands. Endometrial epithelial organoids (EEO) can be generated from uterine epithelia and recapitulate cell composition and hormone responses in vitro . As such, the development of EEO represents a major advance for facilitating mechanistic studies in vitro . However, a major limitation for the use of EEO cultured in basement membrane extract and other hydrogels is the inner location of apical membrane, thereby hindering direct access to the apical surface of the epithelium to study interactions with the embryo or infectious agents such as viruses and bacteria. Here, a straightforward strategy was developed that successfully reverses the polarity of EEO. The result is an apical-out organoid that preserves a distinct apical-basolateral orientation and remains responsive to ovarian steroid hormones. Our investigations highlight the utility of polarity-reversed EEO to study interactions with E. coli and blastocysts. This method of generating apical-out EEO lays the foundation for developing new in vitro functional assays, particularly regarding epithelial interactions with embryos during pregnancy or other luminal constituents in a pathological or diseased state.
Collapse
|
23
|
Graham D, Petrone-Garcia VM, Hernandez-Velasco X, Coles ME, Juarez-Estrada MA, Latorre JD, Chai J, Shouse S, Zhao J, Forga AJ, Senas-Cuesta R, Laverty L, Martin K, Trujillo-Peralta C, Loeza I, Gray LS, Hargis BM, Tellez-Isaias G. Assessing the effects of a mixed Eimeria spp. challenge on performance, intestinal integrity, and the gut microbiome of broiler chickens. Front Vet Sci 2023; 10:1224647. [PMID: 37662988 PMCID: PMC10470081 DOI: 10.3389/fvets.2023.1224647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
A mixed Eimeria spp. challenge model was designed to assess the effects of challenge on broiler chicken performance, intestinal integrity, and the gut microbiome for future use to evaluate alternative strategies for controlling coccidiosis in broiler chickens. The experimental design involved broiler chickens divided into two groups: a control group (uninfected) and a positive control group, infected with Eimeria acervulina (EA), Eimeria maxima (EM), and Eimeria tenella (ET). At day-of-hatch, 240 off-sex male broiler chicks were randomized and allocated to one of two treatment groups. The treatment groups included: (1) Non-challenged (NC, n = 5 replicate pens); and (2) challenged control (PC, n = 7 replicate pens) with 20 chickens/pen. Pen weights were recorded at d0, d16, d31, d42, and d52 to determine average body weight (BW) and (BWG). Feed intake was measured at d16, d31, d42, and d52 to calculate feed conversion ratio (FCR). Four diet phases included a starter d0-16, grower d16-31, finisher d31-42, and withdrawal d42-52 diet. At d18, chickens were orally challenged with 200 EA, 3,000 EM, and 500 ET sporulated oocysts/chicken. At d24 (6-day post-challenge) and d37 (19-day post-challenge), intestinal lesion scores were recorded. Additionally, at d24, FITC-d was used as a biomarker to evaluate intestinal permeability and ileal tissue sections were collected for histopathology and gene expression of tight junction proteins. Ileal and cecal contents were also collected to assess the impact of challenge on the microbiome. BWG and FCR from d16-31 was significantly (p < 0.05) reduced in PC compared to NC. At d24, intestinal lesion scores were markedly higher in the PC compared to the NC. Intestinal permeability was significantly increased in the PC group based on serum FITC-d levels. Cadherin 1 (CDH1), calprotectin (CALPR), and connexin 45 (Cx45) expression was also upregulated in the ileum of the PC group at d24 (6-day post-challenge) while villin 1 (VIL1) was downregulated in the ileum of the PC group. Additionally, Clostridium perfringens (ASV1) was enriched in the cecal content of the PC group. This model could be used to assess the effect of alternative coccidiosis control methods during the post-challenge with EA, EM, and ET.
Collapse
Affiliation(s)
- Danielle Graham
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Victor M. Petrone-Garcia
- College of Higher Studies Cuautitlan, National Autonomous University of Mexico (UNAM), Cuautitlan Izcalli, Mexico
| | - Xochitl Hernandez-Velasco
- Department of Medicine and Zootechnics of Birds, College of Veterinary Medicine and Zootechnics (UNAM), Mexico City, Mexico
| | - Makenly E. Coles
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Marco A. Juarez-Estrada
- Department of Medicine and Zootechnics of Birds, College of Veterinary Medicine and Zootechnics (UNAM), Mexico City, Mexico
| | - Juan D. Latorre
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Jianmin Chai
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Stephanie Shouse
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| | - Aaron J. Forga
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Roberto Senas-Cuesta
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Lauren Laverty
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Kristen Martin
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Carolina Trujillo-Peralta
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Ileana Loeza
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Latasha S. Gray
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Billy M. Hargis
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Guillermo Tellez-Isaias
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
24
|
Feix AS, Cruz-Bustos T, Ruttkowski B, Joachim A. In vitro cultivation methods for coccidian parasite research. Int J Parasitol 2023; 53:477-489. [PMID: 36400306 DOI: 10.1016/j.ijpara.2022.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022]
Abstract
The subclass Coccidia comprises a large group of protozoan parasites, including important pathogens of humans and animals such as Toxoplasma gondii, Neospora caninum, Eimeria spp., and Cystoisospora spp. Their life cycle includes a switch from asexual to sexual stages and is often restricted to a single host species. Current research on coccidian parasites focuses on cell biology and the underlying mechanisms of protein expression and trafficking in different life stages, host cell invasion and host-parasite interactions. Furthermore, novel anticoccidial drug targets are evaluated. Given the variety of research questions and the requirement to reduce and replace animal experimentation, in vitro cultivation of Coccidia needs to be further developed and refined to meet these requirements. For these purposes, established culture systems are constantly improved. In addition, new in vitro culture systems lately gained considerable importance in research on Coccidia. Well established and optimized in vitro cultures of monolayer cells can support the viability and development of parasite stages and even allow completion of the life cycle in vitro, as shown for Cystoisospora suis and Eimeria tenella. Furthermore, new three-dimensional cell culture models are used for propagation of Cryptosporidium spp. (close relatives of the coccidians), and the infection of three-dimensional organoids with T. gondii also gained popularity as the interaction between the parasite and host tissue can be studied in more detail. The latest advances in three-dimensional culture systems are organ-on-a-chip models, that to date have only been tested for T. gondii but promise to accelerate research in other coccidians. Lastly, the completion of the life cycle of C. suis and Cryptosporidium parvum was reported to continue in a host cell-free environment following the first occurrence of asexual stages. Such axenic cultures are becoming increasingly available and open new avenues for research on parasite life cycle stages and novel intervention strategies.
Collapse
Affiliation(s)
- Anna Sophia Feix
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
| | - Teresa Cruz-Bustos
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Bärbel Ruttkowski
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
25
|
Ghiselli F, Yu LE, Piva A, Grilli E, Li Y. Evaluating protective effects of botanicals under inflammation and oxidative stress in chicken apical-out enteroids. Poult Sci 2023; 102:102821. [PMID: 37343346 PMCID: PMC10404760 DOI: 10.1016/j.psj.2023.102821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/30/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Botanicals (BOTs) are well known for their anti-inflammatory and antioxidant activities. They have been widely used as feed additives to reduce inflammation and improve intestinal functions in agricultural animals. However, the effects of BOTs on chicken intestinal epithelial functions are not fully understood. The 3D apical-out chicken enteroids recapitulate the intestinal tissue, and allow convenient access to the luminal surface, thus serving as a suitable model for investigating gut functions. The aim of this study was to identify the roles of BOTs in protecting the intestinal epithelium in chicken enteroids under challenging conditions. Apical-out enteroids were isolated from the small intestines of 18 days-old chicken embryos. Lipopolysaccharide (LPS, 10 µg/mL) and menadione (400 µM) challenges were performed in the media with or without BOTs. Paracellular Fluorescein isothiocyanate-dextran 4kD (FD4) permeability, inflammatory cytokine gene expression, and reactive oxygen species (ROS) generation were analyzed post-BOTs and challenges treatments. Statistical analysis was performed using one-way ANOVA and post hoc multiple comparisons among treatments. The results showed that the LPS challenge for 24 h induced a 50% increase in FD4 permeability compared with nontreated control; thymol, thyme essential oil, and phenol-rich extract significantly (P < 0.02) reduced FD4 permeability by 25%, 41%, and 48% respectively, in comparison with LPS treatment. Moreover, the gene expression of inflammatory cytokines was upregulated, tight junction proteins and defensins were downregulated (P < 0.05) after 6 h of LPS treatment, while these BOTs treatments significantly restored the LPS-induced gene expression alterations (P < 0.05). Menadione oxidative challenge for 1 h significantly increased the ROS level compared with unchallenged control. Enteroids treated with thymol and thyme essential oils showed 30% reduced ROS levels, while the phenol-rich extract reduced them by 60%, in comparison with the challenged group (P < 0.0001). These data confirmed the role of BOTs in supporting the barrier function and reducing the disruptive effects of inflammation and oxidation in the chicken intestine.
Collapse
Affiliation(s)
- Federico Ghiselli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Liang-En Yu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19711, USA
| | - Andrea Piva
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy; Vetagro S.p.A. - Via Ignazio Porro, Reggio Emilia (RE), Italy
| | - Ester Grilli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy; Vetagro Inc., Chicago, IL 60603, USA
| | - Yihang Li
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
26
|
Lacroix-Lamandé S, Bernardi O, Pezier T, Barilleau E, Burlaud-Gaillard J, Gagneux A, Velge P, Wiedemann A. Differential Salmonella Typhimurium intracellular replication and host cell responses in caecal and ileal organoids derived from chicken. Vet Res 2023; 54:63. [PMID: 37525204 PMCID: PMC10391861 DOI: 10.1186/s13567-023-01189-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/20/2023] [Indexed: 08/02/2023] Open
Abstract
Chicken infection with Salmonella Typhimurium is an important source of foodborne human diseases. Salmonella colonizes the avian intestinal tract and more particularly the caecum, without causing symptoms. This thus poses a challenge for the prevention of foodborne transmission. Until now, studies on the interaction of Salmonella with the avian gut intestine have been limited by the absence of in vitro intestinal culture models. Here, we established intestinal crypt-derived chicken organoids to better decipher the impact of Salmonella intracellular replication on avian intestinal epithelium. Using a 3D organoid model, we observed a significantly higher replication rate of the intracellular bacteria in caecal organoids than in ileal organoids. Our model thus recreates intracellular environment, allowing Salmonella replication of avian epithelium according to the intestinal segment. Moreover, an inhibition of the cellular proliferation was observed in infected ileal and caecal organoids compared to uninfected organoids. This appears with a higher effect in ileal organoids, as well as a higher cytokine and signaling molecule response in infected ileal organoids at 3 h post-infection (hpi) than in caecal organoids that could explain the lower replication rate of Salmonella observed later at 24 hpi. To conclude, this study demonstrates that the 3D organoid is a model allowing to decipher the intracellular impact of Salmonella on the intestinal epithelium cell response and illustrates the importance of the gut segment used to purify stem cells and derive organoids to specifically study epithelial cell -Salmonella interaction.
Collapse
Affiliation(s)
| | | | - Tiffany Pezier
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France
| | | | - Julien Burlaud-Gaillard
- Plateforme IBiSA de Microscopie Électronique, Université de Tours et CHRU de Tours, Tours, France
| | - Anissa Gagneux
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France
| | - Philippe Velge
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France
| | - Agnès Wiedemann
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France.
- IRSD, Institut de Recherche en Santé Digestive, ENVT, INRAE, INSERM, Université́ de Toulouse, UPS, Toulouse, France.
| |
Collapse
|
27
|
Sharp CP, Thompson BH, Nash TJ, Diebold O, Pinto RM, Thorley L, Lin YT, Sives S, Wise H, Clohisey Hendry S, Grey F, Vervelde L, Simmonds P, Digard P, Gaunt ER. CpG dinucleotide enrichment in the influenza A virus genome as a live attenuated vaccine development strategy. PLoS Pathog 2023; 19:e1011357. [PMID: 37146066 PMCID: PMC10191365 DOI: 10.1371/journal.ppat.1011357] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/17/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023] Open
Abstract
Synonymous recoding of RNA virus genomes is a promising approach for generating attenuated viruses to use as vaccines. Problematically, recoding typically hinders virus growth, but this may be rectified using CpG dinucleotide enrichment. CpGs are recognised by cellular zinc-finger antiviral protein (ZAP), and so in principle, removing ZAP sensing from a virus propagation system will reverse attenuation of a CpG-enriched virus, enabling high titre yield of a vaccine virus. We tested this using a vaccine strain of influenza A virus (IAV) engineered for increased CpG content in genome segment 1. Virus attenuation was mediated by the short isoform of ZAP, correlated with the number of CpGs added, and was enacted via turnover of viral transcripts. The CpG-enriched virus was strongly attenuated in mice, yet conveyed protection from a potentially lethal challenge dose of wildtype virus. Importantly for vaccine development, CpG-enriched viruses were genetically stable during serial passage. Unexpectedly, in both MDCK cells and embryonated hens' eggs that are used to propagate live attenuated influenza vaccines, the ZAP-sensitive virus was fully replication competent. Thus, ZAP-sensitive CpG enriched viruses that are defective in human systems can yield high titre in vaccine propagation systems, providing a realistic, economically viable platform to augment existing live attenuated vaccines.
Collapse
Affiliation(s)
- Colin P. Sharp
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Beth H. Thompson
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Tessa J. Nash
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Ola Diebold
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Rute M. Pinto
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Luke Thorley
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Yao-Tang Lin
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Samantha Sives
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Helen Wise
- Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, United Kingdom
| | - Sara Clohisey Hendry
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Finn Grey
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Lonneke Vervelde
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Paul Digard
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Eleanor R. Gaunt
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| |
Collapse
|
28
|
Cohen-Kedar S, Shaham Barda E, Rabinowitz KM, Keizer D, Abu-Taha H, Schwartz S, Kaboub K, Baram L, Sadot E, White I, Wasserberg N, Wolff-Bar M, Levy-Barda A, Dotan I. Human intestinal epithelial cells can internalize luminal fungi via LC3-associated phagocytosis. Front Immunol 2023; 14:1142492. [PMID: 36969163 PMCID: PMC10030769 DOI: 10.3389/fimmu.2023.1142492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Intestinal epithelial cells (IECs) are the first to encounter luminal microorganisms and actively participate in intestinal immunity. We reported that IECs express the β-glucan receptor Dectin-1, and respond to commensal fungi and β-glucans. In phagocytes, Dectin-1 mediates LC3-associated phagocytosis (LAP) utilizing autophagy components to process extracellular cargo. Dectin-1 can mediate phagocytosis of β-glucan-containing particles by non-phagocytic cells. We aimed to determine whether human IECs phagocytose β-glucan-containing fungal particles via LAP. METHODS Colonic (n=18) and ileal (n=4) organoids from individuals undergoing bowel resection were grown as monolayers. Fluorescent-dye conjugated zymosan (β-glucan particle), heat-killed- and UV inactivated C. albicans were applied to differentiated organoids and to human IEC lines. Confocal microscopy was used for live imaging and immuno-fluorescence. Quantification of phagocytosis was carried out with a fluorescence plate-reader. RESULTS zymosan and C. albicans particles were phagocytosed by monolayers of human colonic and ileal organoids and IEC lines. LAP was identified by LC3 and Rubicon recruitment to phagosomes and lysosomal processing of internalized particles was demonstrated by co-localization with lysosomal dyes and LAMP2. Phagocytosis was significantly diminished by blockade of Dectin-1, actin polymerization and NAPDH oxidases. CONCLUSIONS Our results show that human IECs sense luminal fungal particles and internalize them via LAP. This novel mechanism of luminal sampling suggests that IECs may contribute to the maintenance of mucosal tolerance towards commensal fungi.
Collapse
Affiliation(s)
- Sarit Cohen-Kedar
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Efrat Shaham Barda
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Keren Masha Rabinowitz
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Danielle Keizer
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Hanan Abu-Taha
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shoshana Schwartz
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kawsar Kaboub
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Liran Baram
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Eran Sadot
- Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
| | - Ian White
- Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Wasserberg
- Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
| | - Meirav Wolff-Bar
- Department of Pathology, Rabin Medical Center, Petah-Tikva, Israel
| | | | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Csukovich G, Kramer N, Pratscher B, Gotic I, Freund P, Hahn R, Himmler G, Brandt S, Burgener IA. Neutralising Effects of Different Antibodies on Clostridioides difficile Toxins TcdA and TcdB in a Translational Approach. Int J Mol Sci 2023; 24:ijms24043867. [PMID: 36835278 PMCID: PMC9962434 DOI: 10.3390/ijms24043867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Given the high prevalence of intestinal disease in humans and animals, there is a strong need for clinically relevant models recapitulating gastrointestinal systems, ideally replacing in vivo models in accordance with the principles of the 3R. We established a canine organoid system and analysed the neutralising effects of recombinant versus natural antibodies on Clostridioides difficile toxins A and B in this in vitro system. Sulforhodamine B cytotoxicity assays in 2D and FITC-dextran barrier integrity assays on basal-out and apical-out organoids revealed that recombinant, but not natural antibodies, effectively neutralised C. difficile toxins. Our findings emphasise that canine intestinal organoids can be used to test different components and suggest that they can be further refined to also mirror complex interactions between the intestinal epithelium and other cells.
Collapse
Affiliation(s)
- Georg Csukovich
- Small Animal Internal Medicine, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria
| | - Nina Kramer
- Small Animal Internal Medicine, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria
| | - Barbara Pratscher
- Small Animal Internal Medicine, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria
| | | | - Patricia Freund
- Small Animal Internal Medicine, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria
| | - Rainer Hahn
- Department for Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | | | - Sabine Brandt
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria
| | - Iwan Anton Burgener
- Small Animal Internal Medicine, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria
- Correspondence:
| |
Collapse
|
30
|
Kakni P, Jutten B, Teixeira Oliveira Carvalho D, Penders J, Truckenmüller R, Habibovic P, Giselbrecht S. Hypoxia-tolerant apical-out intestinal organoids to model host-microbiome interactions. J Tissue Eng 2023; 14:20417314221149208. [PMID: 36699634 PMCID: PMC9869231 DOI: 10.1177/20417314221149208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/16/2022] [Indexed: 01/20/2023] Open
Abstract
Microbiome is an integral part of the gut and is essential for its proper function. Imbalances of the microbiota can be devastating and have been linked with several gastrointestinal conditions. Current gastrointestinal models do not fully reflect the in vivo situation. Thus, it is important to establish more advanced in vitro models to study host-microbiome/pathogen interactions. Here, we developed for the first time an apical-out human small intestinal organoid model in hypoxia, where the apical surface is directly accessible and exposed to a hypoxic environment. These organoids mimic the intestinal cell composition, structure and functions and provide easy access to the apical surface. Co-cultures with the anaerobic strains Lactobacillus casei and Bifidobacterium longum showed successful colonization and probiotic benefits on the organoids. These novel hypoxia-tolerant apical-out small intestinal organoids will pave the way for unraveling unknown mechanisms related to host-microbiome interactions and serve as a tool to develop microbiome-related probiotics and therapeutics.
Collapse
Affiliation(s)
- Panagiota Kakni
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Barry Jutten
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Daniel Teixeira Oliveira Carvalho
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Nutrition and Translational Research in Metabolism, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Roman Truckenmüller
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands,Stefan Giselbrecht, Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, The Netherlands.
| |
Collapse
|
31
|
Kakni P, López-Iglesias C, Truckenmüller R, Habibović P, Giselbrecht S. PSC-derived intestinal organoids with apical-out orientation as a tool to study nutrient uptake, drug absorption and metabolism. Front Mol Biosci 2023; 10:1102209. [PMID: 36743212 PMCID: PMC9889654 DOI: 10.3389/fmolb.2023.1102209] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Intestinal organoids recapitulate many features of the in vivo gastrointestinal tract and have revolutionized in vitro studies of intestinal function and disease. However, the restricted accessibility of the apical surface of the organoids facing the central lumen (apical-in) limits studies related to nutrient uptake and drug absorption and metabolism. Here, we demonstrate that pluripotent stem cell (PSC)-derived intestinal organoids with reversed epithelial polarity (apical-out) can successfully recapitulate tissue-specific functions. In particular, these apical-out organoids show strong epithelial barrier formation with all the major junctional complexes, nutrient transport and active lipid metabolism. Furthermore, the organoids express drug-metabolizing enzymes and relevant apical and basolateral transporters. The scalable and robust generation of functional, apical-out intestinal organoids lays the foundation for a completely new range of organoid-based high-throughput/high-content in vitro applications in the fields of nutrition, metabolism and drug discovery.
Collapse
Affiliation(s)
- Panagiota Kakni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Maastricht, Netherlands
| | - Carmen López-Iglesias
- Microscopy CORE lab, Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, Netherlands
| | - Roman Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Maastricht, Netherlands
| | - Pamela Habibović
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Maastricht, Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Maastricht, Netherlands,*Correspondence: Stefan Giselbrecht,
| |
Collapse
|
32
|
Nash TJ, Morris KM, Mabbott NA, Vervelde L. Temporal transcriptome profiling of floating apical out chicken enteroids suggest stability and reproducibility. Vet Res 2023; 54:12. [PMID: 36793124 PMCID: PMC9933378 DOI: 10.1186/s13567-023-01144-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Enteroids are miniature self-organising three-dimensional (3D) tissue cultures which replicate much of the complexity of the intestinal epithelium. We recently developed an apical-out leukocyte-containing chicken enteroid model providing a novel physiologically relevant in vitro tool to explore host-pathogen interactions in the avian gut. However, the replicate consistency and culture stability have not yet been fully explored at the transcript level. In addition, causes for the inability to passage apical-out enteroids were not determined. Here we report the transcriptional profiling of chicken embryonic intestinal villi and chicken enteroid cultures using bulk RNA-seq. Comparison of the transcriptomes of biological and technical replicate enteroid cultures confirmed their high level of reproducibility. Detailed analysis of cell subpopulation and function markers revealed that the mature enteroids differentiate from late embryonic intestinal villi to recapitulate many digestive, immune and gut-barrier functions present in the avian intestine. These transcriptomic results demonstrate that the chicken enteroid cultures are highly reproducible, and within the first week of culture they morphologically mature to appear similar to the in vivo intestine, therefore representing a physiologically-relevant in vitro model of the chicken intestine.
Collapse
Affiliation(s)
- Tessa J. Nash
- grid.4305.20000 0004 1936 7988Division of Immunology, The Roslin Institute, R(D)SVS, University of Edinburgh, Midlothian Edinburgh, UK
| | - Katrina M. Morris
- grid.4305.20000 0004 1936 7988Division of Immunology, The Roslin Institute, R(D)SVS, University of Edinburgh, Midlothian Edinburgh, UK
| | - Neil A. Mabbott
- grid.4305.20000 0004 1936 7988Division of Immunology, The Roslin Institute, R(D)SVS, University of Edinburgh, Midlothian Edinburgh, UK
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute, R(D)SVS, University of Edinburgh, Midlothian, Edinburgh, UK.
| |
Collapse
|
33
|
Johnson CN, Arsenault RJ, Piva A, Grilli E, Swaggerty CL. A microencapsulated feed additive containing organic acids and botanicals has a distinct effect on proliferative and metabolic related signaling in the jejunum and ileum of broiler chickens. Front Physiol 2023; 14:1147483. [PMID: 37035681 PMCID: PMC10075360 DOI: 10.3389/fphys.2023.1147483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Well designed and formulated natural feed additives have the potential to provide many of the growth promoting and disease mitigating characteristics of in-feed antibiotics, particularly feed additives that elicit their effects on targeted areas of the gut. Here, we describe the mechanism of action of a microencapsulated feed additive containing organic acids and botanicals (AviPlus®P) on the jejunum and ileum of 15-day-old broiler-type chickens. Day-of-hatch chicks were provided ad libitum access to feed containing either 0 or 500 g/MT of the feed additive for the duration of the study. Fifteen days post-hatch, birds were humanely euthanized and necropsied. Jejunum and ileum tissue samples were collected and either flash frozen or stored in RNA-later as appropriate for downstream applications. Chicken-specific kinome peptide array analysis was conducted on the jejunum and ileum tissues, comparing the tissues from the treated birds to those from their respective controls. Detailed analysis of peptides representing individual kinase target sites revealed that in the ileum there was a broad increase in the signal transduction pathways centering on activation of HIF-1α, AMPK, mTOR, PI3K-Akt and NFκB. These signaling responses were largely decreased in the jejunum relative to control birds. Gene expression analysis agrees with the kinome data showing strong immune gene expression in the ileum and reduced expression in the jejunum. The microencapsulated blend of organic acids and botanicals elicit a more anti-inflammatory phenotype and reduced signaling in the jejunum while resulting in enhanced immunometabolic responses in the ileum.
Collapse
Affiliation(s)
- Casey N. Johnson
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| | - Ryan J. Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Andrea Piva
- DIMEVET, University of Bologna, Bologna, Italy
- Vetagro S.p.A, Reggio Emilia, Italy
| | - Ester Grilli
- DIMEVET, University of Bologna, Bologna, Italy
- Vetagro Inc., Chicago, IL, United States
| | - Christina L. Swaggerty
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
- *Correspondence: Christina L. Swaggerty,
| |
Collapse
|
34
|
Csukovich G, Pratscher B, Burgener IA. The World of Organoids: Gastrointestinal Disease Modelling in the Age of 3R and One Health with Specific Relevance to Dogs and Cats. Animals (Basel) 2022; 12:ani12182461. [PMID: 36139322 PMCID: PMC9495014 DOI: 10.3390/ani12182461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
One Health describes the importance of considering humans, animals, and the environment in health research. One Health and the 3R concept, i.e., the replacement, reduction, and refinement of animal experimentation, shape today’s research more and more. The development of organoids from many different organs and animals led to the development of highly sophisticated model systems trying to replace animal experiments. Organoids may be used for disease modelling in various ways elucidating the manifold host–pathogen interactions. This review provides an overview of disease modelling approaches using organoids of different kinds with a special focus on animal organoids and gastrointestinal diseases. We also provide an outlook on how the research field of organoids might develop in the coming years and what opportunities organoids hold for in-depth disease modelling and therapeutic interventions.
Collapse
|
35
|
Nash T, Vervelde L. Advances, challenges and future applications of avian intestinal in vitro models. Avian Pathol 2022; 51:317-329. [PMID: 35638458 DOI: 10.1080/03079457.2022.2084363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There is a rapidly growing interest in how the avian intestine is affected by dietary components and probiotic microorganisms, as well as its role in the spread of infectious diseases in both the developing and developed world. A paucity of physiologically relevant models has limited research in this essential field of poultry gut health and led to an over-reliance on the use of live birds for experiments. The intestine is characterized by a complex cellular composition with numerous functions, unique dynamic locations and interdependencies making this organ challenging to recreate in vitro. This review illustrates the in vitro tools that aim to recapitulate this intestinal environment; from the simplest cell lines, which mimic select features of the intestine but lack anatomical and physiological complexity, to the more recently developed complex 3D enteroids, which recreate more of the intestine's intricate microanatomy, heterogeneous cell populations and signalling gradients. We highlight the benefits and limitations of in vitro intestinal models and describe their current applications and future prospective utilizations in intestinal biology and pathology research. We also describe the scope to improve on the current systems to include, for example, microbiota and a dynamic mechanical environment, vital components which enable the intestine to develop and maintain homeostasis in vivo. As this review explains, no one model is perfect, but the key to choosing a model or combination of models is to carefully consider the purpose or scientific question.
Collapse
Affiliation(s)
- Tessa Nash
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Lonneke Vervelde
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
36
|
Blake R, Jensen K, Mabbott N, Hope J, Stevens J. The Development of 3D Bovine Intestinal Organoid Derived Models to Investigate Mycobacterium Avium ssp Paratuberculosis Pathogenesis. Front Vet Sci 2022; 9:921160. [PMID: 35859809 PMCID: PMC9290757 DOI: 10.3389/fvets.2022.921160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the etiological agent of Johne's Disease, a chronic enteritis of ruminants prevalent across the world. It is estimated that approximately 50% of UK dairy herds are infected with MAP, but this is likely an underestimate of the true prevalence. Infection can result in reduced milk yield, infertility and premature culling of the animal, leading to significant losses to the farming economy and negatively affecting animal welfare. Understanding the initial interaction between MAP and the host is critical to develop improved diagnostic tools and novel vaccines. Here we describe the characterisation of three different multicellular in vitro models derived from bovine intestinal tissue, and their use for the study of cellular interactions with MAP. In addition to the previously described basal-out 3D bovine enteroids, we have established viable 2D monolayers and 3D apical-out organoids. The apical-out enteroids differ from previously described bovine enteroids as the apical surface is exposed on the exterior surface of the 3D structure, enabling study of host-pathogen interactions at the epithelial surface without the need for microinjection. We have characterised the cell types present in each model system using RT-qPCR to detect predicted cell type-specific gene expression, and confocal microscopy for cell type-specific protein expression. Each model contained the cells present in the original bovine intestinal tissue, confirming they were representative of the bovine gut. Exposure of the three model systems to the K10 reference strain of MAP K10, and a recent Scottish isolate referred to as C49, led to the observation of intracellular bacteria by confocal microscopy. Enumeration of the bacteria by quantification of genome copy number, indicated that K10 was less invasive than C49 at early time points in infection in all model systems. This study shows that bovine enteroid-based models are permissive to infection with MAP and that these models may be useful in investigating early stages of MAP pathogenesis in a physiologically relevant in vitro system, whilst reducing the use of animals in scientific research. Bos taurus: urn:lsid:zoobank.org:act:4C90C4FA-6296-4972-BE6A-5EF578677D64
Collapse
|
37
|
Faber MN, Smith D, Price DRG, Steele P, Hildersley KA, Morrison LJ, Mabbott NA, Nisbet AJ, McNeilly TN. Development of Bovine Gastric Organoids as a Novel In Vitro Model to Study Host-Parasite Interactions in Gastrointestinal Nematode Infections. Front Cell Infect Microbiol 2022; 12:904606. [PMID: 35846775 PMCID: PMC9281477 DOI: 10.3389/fcimb.2022.904606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022] Open
Abstract
Gastro-intestinal nematode (GIN) parasites are a major cause of production losses in grazing cattle, primarily through reduced growth rates in young animals. Control of these parasites relies heavily on anthelmintic drugs; however, with growing reports of resistance to currently available anthelmintics, alternative methods of control are required. A major hurdle in this work has been the lack of physiologically relevant in vitro infection models that has made studying precise interactions between the host and the GINs difficult. Such mechanistic insights into the infection process will be valuable for the development of novel targets for drugs, vaccines, or other interventions. Here we created bovine gastric epithelial organoids from abomasal gastric tissue and studied their application as in vitro models for understanding host invasion by GIN parasites. Transcriptomic analysis of gastric organoids across multiple passages and the corresponding abomasal tissue showed conserved expression of tissue-specific genes across samples, demonstrating that the organoids are representative of bovine gastric tissue from which they were derived. We also show that self-renewing and self-organising three-dimensional organoids can also be serially passaged, cryopreserved, and resuscitated. Using Ostertagia ostertagi, the most pathogenic gastric parasite in cattle in temperate regions, we show that cattle gastric organoids are biologically relevant models for studying GIN invasion in the bovine abomasum. Within 24 h of exposure, exsheathed larvae rapidly and repeatedly infiltrated the lumen of the organoids. Prior to invasion by the parasites, the abomasal organoids rapidly expanded, developing a ‘ballooning’ phenotype. Ballooning of the organoids could also be induced in response to exposure to parasite excretory/secretory products. In summary, we demonstrate the power of using abomasal organoids as a physiologically relevant in vitro model system to study interactions of O. ostertagi and other GIN with bovine gastrointestinal epithelium.
Collapse
Affiliation(s)
- Marc N. Faber
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
- *Correspondence: Marc N. Faber,
| | - David Smith
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Daniel R. G. Price
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Philip Steele
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Katie A. Hildersley
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Penicuik, United Kingdom
| | - Neil A. Mabbott
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Penicuik, United Kingdom
| | - Alasdair J. Nisbet
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Tom N. McNeilly
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| |
Collapse
|
38
|
Oost MJ, Ijaz A, van Haarlem DA, van Summeren K, Velkers FC, Kraneveld AD, Venema K, Jansen CA, Pieters RHH, Ten Klooster JP. Chicken-derived RSPO1 and WNT3 contribute to maintaining longevity of chicken intestinal organoid cultures. Sci Rep 2022; 12:10563. [PMID: 35732901 PMCID: PMC9217957 DOI: 10.1038/s41598-022-14875-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
Intestinal organoids are advanced cellular models, which are widely used in mammalian studies to mimic and study in vivo intestinal function and host–pathogen interactions. Growth factors WNT3 and RSPO1 are crucial for the growth of intestinal organoids. Chicken intestinal organoids are currently cultured with mammalian Wnt3a and Rspo1, however, maintaining their longevity has shown to be challenging. Based on the limited homology between mammalian and avian RSPO1, we expect that chicken-derived factors are required for the organoid cultures. Isolated crypts from embryonic tissue of laying hens were growing in the presence of chicken WNT3 and RSPO1, whereas growth in the presence of mammalian Wnt3a and Rspo1 was limited. Moreover, the growth was increased by using Prostaglandin E2 (PGE2) and a Forkhead box O1-inhibitor (FOXO1-inhibitor), allowing to culture these organoids for 15 passages. Furthermore, stem cells maintained their ability to differentiate into goblets, enterocytes and enteroendocrine cells in 2D structures. Overall, we show that chicken intestinal organoids can be cultured for multiple passages using chicken-derived WNT3 and RSPO1, PGE2, and FOXO1-inhibitor.
Collapse
Affiliation(s)
- Miriam J Oost
- Centre for Healthy Eating and Food Innovation, Faculty of Science and Engineering, Maastricht University, Campus Venlo, Venlo, The Netherlands
| | - Adil Ijaz
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Daphne A van Haarlem
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Kitty van Summeren
- Innovative Testing in Life Sciences and Chemistry, Research Centre Healthy and Sustainable Living, University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Francisca C Velkers
- Division Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Koen Venema
- Centre for Healthy Eating and Food Innovation, Faculty of Science and Engineering, Maastricht University, Campus Venlo, Venlo, The Netherlands
| | - Christine A Jansen
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Raymond H H Pieters
- Innovative Testing in Life Sciences and Chemistry, Research Centre Healthy and Sustainable Living, University of Applied Sciences Utrecht, Utrecht, The Netherlands.,Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jean Paul Ten Klooster
- Innovative Testing in Life Sciences and Chemistry, Research Centre Healthy and Sustainable Living, University of Applied Sciences Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
39
|
Ramírez-Flores CJ, Tibabuzo Perdomo AM, Gallego-López GM, Knoll LJ. Transcending Dimensions in Apicomplexan Research: from Two-Dimensional to Three-Dimensional In Vitro Cultures. Microbiol Mol Biol Rev 2022; 86:e0002522. [PMID: 35412359 PMCID: PMC9199416 DOI: 10.1128/mmbr.00025-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Parasites belonging to the Apicomplexa phylum are among the most successful pathogens known in nature. They can infect a wide range of hosts, often remain undetected by the immune system, and cause acute and chronic illness. In this phylum, we can find parasites of human and veterinary health relevance, such as Toxoplasma, Plasmodium, Cryptosporidium, and Eimeria. There are still many unknowns about the biology of these pathogens due to the ethical and practical issues of performing research in their natural hosts. Animal models are often difficult or nonexistent, and as a result, there are apicomplexan life cycle stages that have not been studied. One recent alternative has been the use of three-dimensional (3D) systems such as organoids, 3D scaffolds with different matrices, microfluidic devices, organs-on-a-chip, and other tissue culture models. These 3D systems have facilitated and expanded the research of apicomplexans, allowing us to explore life stages that were previously out of reach and experimental procedures that were practically impossible to perform in animal models. Human- and animal-derived 3D systems can be obtained from different organs, allowing us to model host-pathogen interactions for diagnostic methods and vaccine development, drug testing, exploratory biology, and other applications. In this review, we summarize the most recent advances in the use of 3D systems applied to apicomplexans. We show the wide array of strategies that have been successfully used so far and apply them to explore other organisms that have been less studied.
Collapse
Affiliation(s)
- Carlos J. Ramírez-Flores
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Andrés M. Tibabuzo Perdomo
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Gina M. Gallego-López
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
40
|
Roach SN, Fiege JK, Shepherd FK, Wiggen TD, Hunter RC, Langlois RA. Respiratory Influenza Virus Infection Causes Dynamic Tuft Cell and Innate Lymphoid Cell Changes in the Small Intestine. J Virol 2022; 96:e0035222. [PMID: 35446142 PMCID: PMC9093116 DOI: 10.1128/jvi.00352-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Influenza A viruses (IAV) can cause severe disease and death in humans. IAV infection and the accompanying immune response can result in systemic inflammation, leading to intestinal damage and disruption of the intestinal microbiome. Here, we demonstrate that a specific subset of epithelial cells, tuft cells, increase across the small intestine during active respiratory IAV infection. Upon viral clearance, tuft cell numbers return to baseline levels. Intestinal tuft cell increases were not protective against disease, as animals with either increased tuft cells or a lack of tuft cells did not have any change in disease morbidity after infection. Respiratory IAV infection also caused transient increases in type 1 and 2 innate lymphoid cells (ILC1 and ILC2, respectively) in the small intestine. ILC2 increases were significantly blunted in the absence of tuft cells, whereas ILC1s were unaffected. Unlike the intestines, ILCs in the lungs were not altered in the absence of tuft cells. This work establishes that respiratory IAV infection causes dynamic changes to tuft cells and ILCs in the small intestines and that tuft cells are necessary for the infection-induced increase in small intestine ILC2s. These intestinal changes in tuft cell and ILC populations may represent unexplored mechanisms preventing systemic infection and/or contributing to severe disease in humans with preexisting conditions. IMPORTANCE Influenza A virus (IAV) is a respiratory infection in humans that can lead to a wide range of symptoms and disease severity. Respiratory infection can cause systemic inflammation and damage in the intestines. Few studies have explored how inflammation alters the intestinal environment. We found that active infection caused an increase in the epithelial population called tuft cells as well as type 1 and 2 innate lymphoid cells (ILCs) in the small intestine. In the absence of tuft cells, this increase in type 2 ILCs was seriously blunted, whereas type 1 ILCs still increased. These findings indicate that tuft cells are necessary for infection-induced changes in small intestine type 2 ILCs and implicate tuft cells as regulators of the intestinal environment in response to systemic inflammation.
Collapse
Affiliation(s)
- Shanley N. Roach
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jessica K. Fiege
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Frances K. Shepherd
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Talia D. Wiggen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan C. Hunter
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
41
|
Kakni P, López-Iglesias C, Truckenmüller R, Habibović P, Giselbrecht S. Reversing Epithelial Polarity in Pluripotent Stem Cell-Derived Intestinal Organoids. Front Bioeng Biotechnol 2022; 10:879024. [PMID: 35547177 PMCID: PMC9081652 DOI: 10.3389/fbioe.2022.879024] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
The inner surface of the intestine is a dynamic system, composed of a single layer of polarized epithelial cells. The development of intestinal organoids was a major breakthrough since they robustly recapitulate intestinal architecture, regional specification and cell composition in vitro. However, the cyst-like organization hinders direct access to the apical side of the epithelium, thus limiting their use in functional assays. For the first time, we show an intestinal organoid model from pluripotent stem cells with reversed polarity where the apical side faces the surrounding culture media and the basal side faces the lumen. These inside-out organoids preserve a distinct apico-basolateral orientation for a long period and differentiate into the major intestinal cell types. This novel model lays the foundation for developing new in vitro functional assays particularly targeting the apical surface of the epithelium and thus offers a new research tool to study nutrient/drug uptake, metabolism and host-microbiome/pathogen interactions.
Collapse
Affiliation(s)
- Panagiota Kakni
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Carmen López-Iglesias
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, Netherlands
| | - Roman Truckenmüller
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
- *Correspondence: Stefan Giselbrecht,
| |
Collapse
|
42
|
Paradowska M, Dunislawska A, Siwek M, Slawinska A. Avian Cell Culture Models to Study Immunomodulatory Properties of Bioactive Products. Animals (Basel) 2022; 12:670. [PMID: 35268238 PMCID: PMC8909239 DOI: 10.3390/ani12050670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Antimicrobial resistance is becoming a greater danger to both human and animal health, reducing the capacity to treat bacterial infections and increasing the risk of morbidity and mortality from resistant bacteria. Antimicrobial efficacy in the treatment of bacterial infections is still a major concern in both veterinary and human medicine. Antimicrobials can be replaced with bioactive products. Only a small number of plant species have been studied in respect to their bioactive compounds. More research is needed to characterize and evaluate the therapeutic properties of the plant extracts. Due to the more and more common phenomenon of antimicrobial resistance, poultry farming requires the use of natural alternatives to veterinary antibiotics that have an immunomodulatory effect. These include a variety of bioactive products, such as plant extracts, essential oils, probiotics, prebiotics, and synbiotics. This article presents several studies on bioactive products and their immunomodulatory effects tested in vitro and ex vivo using various avian cell culture models. Primary cell cultures that have been established to study the immune response in chickens include peripheral blood mononuclear cells (PBMCs), intestinal epithelial cells (IEC), and bone marrow-derived dendritic cells (BMDCs). Chicken lymphatic lines that can be used to study immune responses are mainly: chicken B cells infected with avian leukemia RAV-1 virus (DT40), macrophage-like cell line (HD11), and a spleen-derived macrophage cell line (MQ-NCSU). Ex vivo organ cultures combine in vitro and in vivo studies, as this model is based on fragments of organs or tissues grown in vitro. As such, it mimics the natural reactions of organisms, but under controlled conditions. Most ex vivo organ cultures of chickens are derived from the ileum and are used to model the interaction between the gastrointestinal tract and the microbiota. In conclusion, the use of in vitro and ex vivo models allows for numerous experimental replications in a short period, with little or no ethical constraints and limited confounding factors.
Collapse
Affiliation(s)
- Michelle Paradowska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (A.D.); (M.S.)
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (A.D.); (M.S.)
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (A.D.); (M.S.)
| | - Anna Slawinska
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| |
Collapse
|
43
|
Sutton KM, Orr B, Hope J, Jensen SR, Vervelde L. Establishment of bovine 3D enteroid-derived 2D monolayers. Vet Res 2022; 53:15. [PMID: 35236416 PMCID: PMC8889782 DOI: 10.1186/s13567-022-01033-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/03/2022] [Indexed: 12/28/2022] Open
Abstract
Three-dimensional (3D) intestinal enteroids are powerful in vitro models for studying intestinal biology. However, due to their closed structure direct access to the apical surface is impeded, limiting high-throughput applications of exogenous compounds and pathogens. In this study, we describe a method for generating confluent 2D enteroids from single-cell suspensions of enzymatically-dissociated ileum-derived bovine 3D enteroids. Confluent monolayers were first achieved using IntestiCult media but to establish a defined, cost-effective culture media, we also developed a bovine enteroid monolayer (BEM) medium. The monolayers cultured in BEM media proliferated extensively and formed confluent cell layers on both Matrigel-coated plastic plates and transwell inserts by day 3 of culture. The 2D enteroids maintained the epithelial cell lineages found in 3D enteroids and ileum tissue. In addition, the monolayers formed a functional epithelial barrier based on the presence of the adherens and tight junction proteins, E-cadherin and ZO-1, and electrical resistance across the monolayer was measured from day 3 and maintained for up to 7 days in culture. The method described here will provide a useful model to study bovine epithelial cell biology with ease of access to the apical surface of epithelial cells and has potential to investigate host-pathogen interactions and screen bioactive compounds.
Collapse
Affiliation(s)
- Kate M Sutton
- Division of Infection and Immunity, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Brigid Orr
- Division of Infection and Immunity, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jayne Hope
- Division of Infection and Immunity, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Stina R Jensen
- Novozymes A/S, Animal Health and Nutrition, 2800, Lyngby, Denmark
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
44
|
Wang Y, Hou Q, Wu Y, Xu Y, Liu Y, Chen J, Xu L, Guo Y, Gao S, Yuan J. Methionine deficiency and its hydroxy analogue influence chicken intestinal 3-dimensional organoid development. ANIMAL NUTRITION 2022; 8:38-51. [PMID: 34977374 PMCID: PMC8669257 DOI: 10.1016/j.aninu.2021.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Abstract
Methionine and its hydroxy analogue (MHA) have been shown to benefit mouse intestinal regeneration. The intestinal organoid is a good model that directly reflects the impact of certain nutrients or chemicals on intestinal development. Here, we aimed to establish a chicken intestinal organoid culture method first and then use the model to explore the influence of methionine deficiency and MHA on intestinal organoid development. The results showed that 125-μm cell strainer exhibited the highest efficiency for chicken embryo crypt harvesting. We found that transforming growth factor-β inhibitor (A8301) supplementation promoted enterocyte differentiation at the expense of the proliferation of intestinal stem cells (ISC). The mitogen-activated protein kinase p38 inhibitor (SB202190) promoted intestinal organoid formation and enterocyte differentiation but suppressed the differentiation of enteroendocrine cells, goblet cells and Paneth cells. However, the suppression of enteroendocrine cell and Paneth cell differentiation by SB202190 was alleviated at the presence of A8301. The glycogen synthase kinase 3 inhibitor (CHIR99021), valproic acid (VPA) alone and their combination promoted chicken intestinal organoid formation and enterocyte differentiation at the expense of the expression of Paneth cells and goblet cells. Chicken serum significantly improved organoid formation, especially in the presence of A8301, SB202190, CHIR99021, and VPA, but inhibited the differentiation of Paneth cells and enteroendocrine cells. Chicken serum at a concentration of 0.25% meets the requirement of chicken intestinal organoid development, and the beneficial effect of chicken serum on chicken intestinal organoid culture could not be replaced by fetal bovine serum and insulin-like growth factor-1. Moreover, commercial mouse organoid culture medium supplemented with A8301, SB202190, CHIR99021, VPA, and chicken serum promotes chicken organoid budding. Based on the chicken intestinal organoid model, we found that methionine deficiency mimicked by cycloleucine suppressed organoid formation and organoid size, and this effect was reinforced with increased cycloleucine concentrations. Methionine hydroxy analogue promoted regeneration of ISC but decreased cell differentiation compared with the results obtained with L-methionine. In conclusion, our results provide a potentially excellent guideline for chicken intestinal organoid culture and insights into methionine function in crypt development.
Collapse
Affiliation(s)
- Youli Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qihang Hou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuqin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanwei Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jing Chen
- Sichuan New Hope Liuhe Co. Ltd, Chengdu, 610100, China
| | - Lingling Xu
- Beijing Dafa Chia Tai Co. Ltd., Beijing, 101206, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuai Gao
- Key Laboratory of Animal Gene Breeding and Reproductivity, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Corresponding authors.
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Corresponding authors.
| |
Collapse
|
45
|
Joo SS, Gu BH, Park YJ, Rim CY, Kim MJ, Kim SH, Cho JH, Kim HB, Kim M. Porcine Intestinal Apical-Out Organoid Model for Gut Function Study. Animals (Basel) 2022; 12:ani12030372. [PMID: 35158695 PMCID: PMC8833427 DOI: 10.3390/ani12030372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Pigs have been used in various animal model studies on the gastrointestinal tract (GIT) across both animal science and biomedical science fields. Recently, intestinal organoids have been used as a research tool for the GIT, and they have also been applied to farm animals, including pigs. However, to our knowledge, no functional studies of the porcine intestine using intestinal organoids have been conducted to date. In the present study, we developed two porcine intestinal organoid models (basal-out and apical-out organoids) and compared their characteristics. We also confirmed the possibility of conducting research related to intestinal functions, such as nutrient uptake and gut barrier function. The present study suggests that porcine intestinal organoids can be used as potential models for future GIT mechanism studies, such as host–microbe interactions, harmful ingredient tests, and nutritional research. Abstract Pig models provide valuable research information on farm animals, veterinary, and biomedical sciences. Experimental pig gut models are used in studies on physiology, nutrition, and diseases. Intestinal organoids are powerful tools for investigating intestinal functions such as nutrient uptake and gut barrier function. However, organoids have a basal-out structure and need to grow in the extracellular matrix, which causes difficulties in research on the intestinal apical membrane. We established porcine intestinal organoids from jejunum tissues and developed basal-out and apical-out organoids using different sub-culture methods. Staining and quantitative real-time PCR showed the difference in axis change of the membrane and gene expression of epithelial cell marker genes. To consider the possibility of using apical-out organoids for intestinal function, studies involving fatty acid uptake and disruption of the epithelial barrier were undertaken. Fluorescence fatty acid was more readily absorbed in apical-out organoids than in basal-out organoids within the same time. To determine whether apical-out organoids form a functional barrier, a fluorescent dextran diffusion assay was performed. Hence, we successfully developed porcine intestinal organoid culture systems and showed that the porcine apical-out organoid model is ideal for the investigation of the intestinal environment. It can be used in future studies related to the intestine across various research fields.
Collapse
Affiliation(s)
- Sang-Seok Joo
- Department of Animal Science, College of Natural Resources & Live Science, Pusan National University, Miryang 50463, Korea; (S.-S.J.); (Y.-J.P.); (C.-Y.R.)
| | - Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Mirayng 50463, Korea;
| | - Yei-Ju Park
- Department of Animal Science, College of Natural Resources & Live Science, Pusan National University, Miryang 50463, Korea; (S.-S.J.); (Y.-J.P.); (C.-Y.R.)
| | - Chae-Yun Rim
- Department of Animal Science, College of Natural Resources & Live Science, Pusan National University, Miryang 50463, Korea; (S.-S.J.); (Y.-J.P.); (C.-Y.R.)
| | - Min-Ji Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea; (M.-J.K.); (S.-H.K.)
| | - Sang-Ho Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea; (M.-J.K.); (S.-H.K.)
| | - Jin-Ho Cho
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea;
| | - Hyeun-Bum Kim
- Department of Animal Resources and Science, Dankook University, Cheonan 31116, Korea;
| | - Myunghoo Kim
- Department of Animal Science, College of Natural Resources & Live Science, Pusan National University, Miryang 50463, Korea; (S.-S.J.); (Y.-J.P.); (C.-Y.R.)
- Life and Industry Convergence Research Institute, Pusan National University, Mirayng 50463, Korea;
- Correspondence: ; Tel.: +82-55-350-5516; Fax: +82-55-350-5519
| |
Collapse
|
46
|
Challenges to, and prospects for, reverse engineering the gastrointestinal tract using organoids. Trends Biotechnol 2022; 40:932-944. [DOI: 10.1016/j.tibtech.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/29/2022]
|
47
|
Orr B, Sutton K, Christian S, Nash T, Niemann H, Hansen LL, McGrew MJ, Jensen SR, Vervelde L. Novel chicken two-dimensional intestinal model comprising all key epithelial cell types and a mesenchymal sub-layer. Vet Res 2021; 52:142. [PMID: 34819162 PMCID: PMC8611946 DOI: 10.1186/s13567-021-01010-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium plays a variety of roles including providing an effective physical barrier and innate immune protection against infection. Two-dimensional models of the intestinal epithelium, 2D enteroids, are a valuable resource to investigate intestinal cell biology and innate immune functions and are suitable for high throughput studies of paracellular transport and epithelial integrity. We have developed a chicken 2D enteroid model that recapitulates all major differentiated cell lineages, including enterocytes, Paneth cells, Goblet cells, enteroendocrine cells and leukocytes, and self-organises into an epithelial and mesenchymal sub-layer. Functional studies demonstrated the 2D enteroids formed a tight cell layer with minimal paracellular flux and a robust epithelial integrity, which was maintained or rescued following damage. The 2D enteroids were also able to demonstrate appropriate innate immune responses following exposure to bacterial endotoxins, from Salmonella enterica serotype Typhimurium and Bacillus subtilis. Frozen 2D enteroids cells when thawed were comparable to freshly isolated cells. The chicken 2D enteroids provide a useful ex vivo model to study intestinal cell biology and innate immune function, and have potential uses in screening of nutritional supplements, pharmaceuticals, and bioactive compounds.
Collapse
Affiliation(s)
- Brigid Orr
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Kate Sutton
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Sonja Christian
- Novozymes A/S, Animal Health and Nutrition, 2800, Lyngby, Denmark
| | - Tessa Nash
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Helle Niemann
- Novozymes A/S, Animal Health and Nutrition, 2800, Lyngby, Denmark
| | - Lone Lind Hansen
- Novozymes A/S, Animal Health and Nutrition, 2800, Lyngby, Denmark
| | - Mike J McGrew
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK
| | | | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK.
| |
Collapse
|
48
|
Ijaz A, Veldhuizen EJA, Broere F, Rutten VPMG, Jansen CA. The Interplay between Salmonella and Intestinal Innate Immune Cells in Chickens. Pathogens 2021; 10:1512. [PMID: 34832668 PMCID: PMC8618210 DOI: 10.3390/pathogens10111512] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Salmonellosis is a common infection in poultry, which results in huge economic losses in the poultry industry. At the same time, Salmonella infections are a threat to public health, since contaminated poultry products can lead to zoonotic infections. Antibiotics as feed additives have proven to be an effective prophylactic option to control Salmonella infections, but due to resistance issues in humans and animals, the use of antimicrobials in food animals has been banned in Europe. Hence, there is an urgent need to look for alternative strategies that can protect poultry against Salmonella infections. One such alternative could be to strengthen the innate immune system in young chickens in order to prevent early life infections. This can be achieved by administration of immune modulating molecules that target innate immune cells, for example via feed, or by in-ovo applications. We aimed to review the innate immune system in the chicken intestine; the main site of Salmonella entrance, and its responsiveness to Salmonella infection. Identifying the most important players in the innate immune response in the intestine is a first step in designing targeted approaches for immune modulation.
Collapse
Affiliation(s)
- Adil Ijaz
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
| | - Edwin J. A. Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
| | - Femke Broere
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
| | - Victor P. M. G. Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - Christine A. Jansen
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|