1
|
Zhang Y, Ma T, Lu X, Hua H, Wu L, Chen Z. Mechanical mechanics-reclaiming a new battlefield for chronic liver disease. J Adv Res 2025:S2090-1232(25)00346-7. [PMID: 40379238 DOI: 10.1016/j.jare.2025.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/17/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND In the 21st century, significant breakthroughs have been made in the research of chronic liver disease. New biochemical markers of pathogenicity and corresponding drugs continue to emerge. However, current treatment strategies remain unsatisfactory due to complex pathological changes in the liver, including vascular dysfunction, myofibroblast-like transition, and local tissue necrosis in liver sinusoids. These challenges have created an urgent need for innovative, synergistic treatments. Mechanical mechanics is a growing field, with increasing evidence suggesting that mechanical signals play a role similar to that of biochemical markers. These signals influence response speed, conduction intensity, and functional diversity in regulating cell activities. AIM OF REVIEW This review summarizes the three main mechanical characteristics involved in the progression of "liver fibrosis-cirrhosis-hepatocellular carcinoma" and provides an in-depth interpretation of several mechanically-related targets. Finally, current and cutting-edge therapeutic strategies are proposed from a cellular perspective. Despite the many challenges that remain, this review is both relevant and significant.
Collapse
Affiliation(s)
- Yiheng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Tianle Ma
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - XingXing Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Haibing Hua
- Department of Gastroenterology, Jiangyin Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangyin 214400, China.
| | - Li Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhipeng Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Tang H, Evers TMJ, Babaei M, Mashaghi A. Revealing Mechanopathology Induced by Dengue NS1 Using Organ Chips and Single-Cell Force Spectroscopy. ACS Biomater Sci Eng 2025; 11:2448-2455. [PMID: 40131123 PMCID: PMC12001184 DOI: 10.1021/acsbiomaterials.4c02410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Capillary leakage is a hallmark of severe dengue, yet its precise mechanisms remain elusive. Emerging evidence highlights the dengue virus's targeting of mechanically active endothelial cells as a key contributor to dengue shock syndrome. The viral nonstructural protein 1 (NS1) has been identified as a central player, disrupting endothelial integrity and inducing vascular hyperpermeability independently of pro-inflammatory cytokines. This study provides a direct assessment of NS1-induced endothelial pathology by combining single-cell force spectroscopy and a microvessel-on-a-chip platform. We demonstrate that NS1 significantly alters endothelial cell mechanics, reducing cell stiffness and compromising junctional integrity, thereby directly linking these mechanical alterations to vascular dysfunction. These findings establish a framework for understanding the mechano-pathology of dengue and offer a platform for developing targeted therapeutic strategies to mitigate severe disease outcomes.
Collapse
Affiliation(s)
| | | | - Mehrad Babaei
- Medical Systems Biophysics and Bioengineering,
Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, 2334CC Leiden, The Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering,
Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, 2334CC Leiden, The Netherlands
| |
Collapse
|
3
|
Wang Z, Ye X, Huang L, Yuan Y. Modulation of morphogenesis and metabolism by plant cell biomechanics: from model plants to traditional herbs. HORTICULTURE RESEARCH 2025; 12:uhaf011. [PMID: 40093376 PMCID: PMC11908831 DOI: 10.1093/hr/uhaf011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/05/2025] [Indexed: 03/19/2025]
Abstract
The quality of traditional herbs depends on organ morphogenesis and the accumulation of active pharmaceutical ingredients. While recent research highlights the significance of cell mechanobiology in model plant morphogenesis, our understanding of mechanical signal initiation and transduction in traditional herbs remains incomplete. Recent studies reveal a close correlation between cell wall (CW) biosynthesis and active ingredient production, yet the role of cell mechanics in balancing morphogenesis and secondary metabolism is often overlooked. This review explores how the cell wall, plasma membrane, cytoskeleton, and vacuole collaborate to regulate cell mechanics and respond to mechanical changes. We propose CW biosynthesis as a hub in connecting cell mechanics with secondary metabolism and emphasize that understanding the relationship between mechanical remodeling and secondary metabolism could provide new insights into plant cell mechanobiology and the breeding of high-quality herbs.
Collapse
Affiliation(s)
- Zhengpeng Wang
- Experimental Research Center, China Academy of Chinese Medical Science, Beijing 100700, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaoming Ye
- Peking University Health Science Center, Peking University, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuan Yuan
- Experimental Research Center, China Academy of Chinese Medical Science, Beijing 100700, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| |
Collapse
|
4
|
Naghilou A, Evers TMJ, Armbruster O, Satarifard V, Mashaghi A. Synthesis and Characterization of Phase-Separated Extracellular Condensates in Interactions with Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644961. [PMID: 40196562 PMCID: PMC11974749 DOI: 10.1101/2025.03.24.644961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Biomolecular condensates formed through liquid-liquid phase separation play key roles in intracellular organization and signaling, yet their function in extracellular environments remains largely unexplored. Here, we establish a model using heparan sulfate, a key component of the extracellular matrix, to study extracellular condensate-cell interactions. We demonstrate that heparan sulfate can form condensates with a positively charged counterpart in serum-containing solutions, mimicking the complexity of extracellular fluid, and supporting cell viability. We observe that these condensates adhere to cell membranes and remain stable, enabling a versatile platform for examining extracellular condensate dynamics and quantifying their rheological properties as well as their adhesion forces with cellular surfaces. Our findings and methodology open new avenues for understanding the organizational roles of condensates beyond cellular boundaries.
Collapse
|
5
|
Zhang W, Zhou R, Lei X, Wang M, Duan Q, Miao Y, Zhang T, Li X, Zutong Z, Wang L, Jones OD, Xu M, Bryant J, Ma J, Liu Y, Xu X. Molecular mechanism on autophagy associated cardiovascular dysfunction in Drosophila melanogaster. Front Cell Dev Biol 2025; 13:1512341. [PMID: 40099194 PMCID: PMC11911378 DOI: 10.3389/fcell.2025.1512341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/10/2025] [Indexed: 03/19/2025] Open
Abstract
As a highly conserved cellular process, autophagy has been the focus of extensive research due to its critical role in maintaining cellular homeostasis and its implications in cardiovascular pathogenesis. The decline in muscular function, along with the neuronal system, and increased sensitivity to stress have been recognized in multiple animal models. Autophagic defects in cardiovascular architecture and cellular dysfunction have been linked to both physiological and pathological conditions of the heart in mammals and Drosophila. In this review, we systematically analyze the autophagy-associated pathways in the hearts of fruit flies and aim to provide a comprehensive understanding for developing potential treatments for patients and effective strategies for agricultural applications. This analysis elucidates the molecular mechanisms of autophagy in cardiovascular function under both physiological and pathological conditions in Drosophila, offering significant insights into the development of cardiovascular diseases. The loss of key autophagy-associated proteins, including the transmembrane protein Atg9 and its partners Atg2 or Atg18, along with DmSestrin, leads to cardiac hypertrophy and structural abnormalities in Drosophila, resembling the age-dependent deterioration of cardiac function. Members of the autophagy-related (Atg) gene family, cellular or nuclear skeletal lamins, and the mechanistic or mammalian target of rapamycin (mTOR) signaling pathways are critically influential in heart function in Drosophila, with autophagy activation shown to suppress cardiac laminopathy. The mTORC1/C2 complexes, along with axis of Atg2-AMPK/Sirt1/PGC-1α pathway, are essential in the hearts of both mammals and fruit flies, governing cardiac development, growth, maturation, and the maintenance of cardiac homeostasis. The beneficial effects of several interventions that enhance cardiac function, including exercise and cold stress, can influence autophagy-dependent TOR activity of the serine/threonine protein kinase signaling in both mammals and Drosophila. Exercise has been shown to increase autophagy when it is deficient and to inhibit it when it is excessive, highlighting the dual role of autophagy in cardiac health. This review evaluates the functional significance of autophagy in the heart, particularly in the context of Drosophila, in relation to mTORC-associated autophagy and the axis of Atg2-AMPK/Sirt1/PGC-1α pathways. It systematically contrasts the molecular mechanisms underlying autophagy-related cardiovascular physiological and pathological conditions in both fruit flies and mammals. The evolutionary conservation of autophagy underscores the value of Drosophila as a model for understanding broader mechanisms of autophagy across species. This study not only deepens our understanding of autophagy's role in cardiovascular function but also provides a theoretical foundation for the potential application of autophagy in agricultural pest control.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Rong Zhou
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Xinjuan Lei
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Mofei Wang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Yuanlin Miao
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Tingting Zhang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Xinjie Li
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Zhang Zutong
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Liyang Wang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Odell D Jones
- University Laboratory Animal Resources (ULAR), University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Mengmeng Xu
- Department of Pediatrics, Morgan Stanley Children's Hospital, Columbia University, New York, NY, United States
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jianjie Ma
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, VA, United States
| | - Yingli Liu
- Department of Internal Medicine, University Hospital Shaanxi Normal University, Xi'an, China
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| |
Collapse
|
6
|
Du E, Xu H, Ponkratova L. Electro-deformation spectroscopy: A unified method for simultaneous electrical and mechanical characterization of single cells. Acta Biomater 2025; 192:119-127. [PMID: 39644941 DOI: 10.1016/j.actbio.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The intrinsic electrical and mechanical properties of cells are not only valuable biophysical markers reflective of physiological conditions but also play important roles in the development and progression of human diseases. Existing single-cell techniques are restricted to assessing either mechanical or electrical properties. We introduce the development of electro-deformation spectroscopy (EDS), namely the frequency-dependent electro-deformation, as a new method for simultaneous electrical and mechanical characterization of individual cells in suspension. To facilitate the practical use of this technology, we developed a testing procedure that evaluates red blood cells (RBCs) directly from whole blood in a simple microfluidic system, employing an electric field magnitude of 34 kV/m over a frequency range of 15 MHz to 100 kHz. The EDS measurement is performed under stationary conditions without special cell stabilization, at a moderate throughput of 50-100 cells per minute. We develop an experimental-computational framework to decouple cell electromechanics by optimizing the most suitable parameters of the relative permittivity of cell membrane, cytoplasm electrical conductivity, and membrane shear modulus. This technique, tested on RBCs from 4 healthy human samples, revealed membrane relative permittivity of 3.6 - 5.8, membrane shear modulus of 2.2 - 2.8 µN/m, and cytoplasm conductivity of 0.47 - 0.81 S/m. EDS analysis identifies the marked intrasample heterogeneity and individual variability in both cellular electrical and mechanical properties. The EDS framework can be readily used to test RBCs across different species, pathological states, and other cell types of similar structures as RBCs. STATEMENT OF SIGNIFICANCE: This work introduces electro-deformation spectroscopy (EDS) as a unified method for simultaneous electrical and mechanical characterization of single cells in suspension. This is the first-of-its-kind technology for such purposes. EDS can be performed in a simple microfluidic system with minimal sample preparation, making it a convenient and powerful tool for label-free, non-invasive single-cell analysis. We validate the applicability of EDS by measuring the intrasample heterogeneity and individual variability based on the electromechanical parameters of interest for human red blood cells. Single-cell EDS has the potential to enable rapid and reliable detection of cellular changes by diseases or drug treatments and provide insights into the fundamental bioelectromechanical mechanisms of cellular adaptation and dysfunction. This work advances the field of single-cell analysis and contributes to the development of biomaterials and biotechnologies based on cellular electromechanics.
Collapse
Affiliation(s)
- E Du
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, United States; Department of Biomedical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, United States.
| | - Hongyuan Xu
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Liliana Ponkratova
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, United States
| |
Collapse
|
7
|
Tharp KM. Have plastic culture models prevented the discovery of effective cancer therapeutics? Br J Pharmacol 2024. [PMID: 39491545 DOI: 10.1111/bph.17387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/31/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024] Open
Abstract
Conventional cell culture techniques generally fail to recapitulate the expression profiles or functional phenotypes of the in vivo equivalents they are meant to model. These cell culture models are indispensable for preclinical drug discovery and mechanistic studies. However, if our goal is to develop effective therapies that work as intended in the human body, we must revise our cell culture models to recapitulate normal and disease physiology to ensure that we identify compounds that are useful and effective beyond our in vitro models.
Collapse
Affiliation(s)
- Kevin M Tharp
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
8
|
Jui E, Kingsley G, Phan HKT, Singampalli KL, Birla RK, Connell JP, Keswani SG, Grande-Allen KJ. Shear Stress Induces a Time-Dependent Inflammatory Response in Human Monocyte-Derived Macrophages. Ann Biomed Eng 2024; 52:2932-2947. [PMID: 39289258 DOI: 10.1007/s10439-024-03546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/10/2024] [Indexed: 09/19/2024]
Abstract
Macrophages are innate immune cells that are known for their extreme plasticity, enabling diverse phenotypes that lie on a continuum. In a simplified model, they switch between pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes depending on surrounding microenvironmental cues, which have been implicated in disease outcomes. Although considerable research has been focused on macrophage response to biochemical cues and mechanical signals, there is a scarcity of knowledge surrounding their behavior in response to shear stress. In this study, we applied varying magnitudes of shear stress on human monocyte-derived macrophages (MDMs) using a cone-and-plate viscometer and evaluated changes in morphology, gene expression, protein expression, and cytokine secretion over time. MDMs exposed to shear stress exhibited a rounder morphology compared to statically-cultured controls. RT-qPCR results showed significant upregulation of TNF-α, and analysis of cytokine release revealed increased secretion of IL-8, IL-18, fractalkine, and other chemokines. The upregulation of pro-inflammatory factors was evident with both increasing magnitudes of shear and time. Taken together, these results indicate that prolonged shear exposure induced a pro-inflammatory phenotype in human MDMs. These findings have implications for medical technology development, such as in situ vascular graft design wherein macrophages are exposed to shear and have been shown to affect graft resorption, and in delineating disease pathophysiology, for example to further illuminate the role of macrophages in atherosclerosis where shear is directly related to disease outcome.
Collapse
Affiliation(s)
- Elysa Jui
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX, USA
| | - Griffin Kingsley
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX, USA
| | - Hong Kim T Phan
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX, USA
| | - Kavya L Singampalli
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Ravi K Birla
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Jennifer P Connell
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX, USA
| | - Sundeep G Keswani
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | - K Jane Grande-Allen
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX, USA.
| |
Collapse
|
9
|
Wang J, Barr MM, Wehman AM. Extracellular vesicles. Genetics 2024; 227:iyae088. [PMID: 38884207 PMCID: PMC11304975 DOI: 10.1093/genetics/iyae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Extracellular vesicles (EVs) encompass a diverse array of membrane-bound organelles released outside cells in response to developmental and physiological cell needs. EVs play important roles in remodeling the shape and content of differentiating cells and can rescue damaged cells from toxic or dysfunctional content. EVs can send signals and transfer metabolites between tissues and organisms to regulate development, respond to stress or tissue damage, or alter mating behaviors. While many EV functions have been uncovered by characterizing ex vivo EVs isolated from body fluids and cultured cells, research using the nematode Caenorhabditis elegans has provided insights into the in vivo functions, biogenesis, and uptake pathways. The C. elegans EV field has also developed methods to analyze endogenous EVs within the organismal context of development and adult physiology in free-living, behaving animals. In this review, we summarize major themes that have emerged for C. elegans EVs and their relevance to human health and disease. We also highlight the diversity of biogenesis mechanisms, locations, and functions of worm EVs and discuss open questions and unexplored topics tenable in C. elegans, given the nematode model is ideal for light and electron microscopy, genetic screens, genome engineering, and high-throughput omics.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Maureen M Barr
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
10
|
Xie J, Huck WTS, Bao M. Unveiling the Intricate Connection: Cell Volume as a Key Regulator of Mechanotransduction. Annu Rev Biophys 2024; 53:299-317. [PMID: 38424091 DOI: 10.1146/annurev-biophys-030822-035656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The volumes of living cells undergo dynamic changes to maintain the cells' structural and functional integrity in many physiological processes. Minor fluctuations in cell volume can serve as intrinsic signals that play a crucial role in cell fate determination during mechanotransduction. In this review, we discuss the variability of cell volume and its role in vivo, along with an overview of the mechanisms governing cell volume regulation. Additionally, we provide insights into the current approaches used to control cell volume in vitro. Furthermore, we summarize the biological implications of cell volume regulation and discuss recent advances in understanding the fundamental relationship between cell volume and mechanotransduction. Finally, we delve into the potential underlying mechanisms, including intracellular macromolecular crowding and cellular mechanics, that govern the global regulation of cell fate in response to changes in cell volume. By exploring the intricate interplay between cell volume and mechanotransduction, we underscore the importance of considering cell volume as a fundamental signaling cue to unravel the basic principles of mechanotransduction. Additionally, we propose future research directions that can extend our current understanding of cell volume in mechanotransduction. Overall, this review highlights the significance of considering cell volume as a fundamental signal in understanding the basic principles in mechanotransduction and points out the possibility of controlling cell volume to control cell fate, mitigate disease-related damage, and facilitate the healing of damaged tissues.
Collapse
Affiliation(s)
- Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands;
| | - Min Bao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China;
| |
Collapse
|
11
|
Wang D, Woodcock E, Yang X, Nishikawa H, Sviderskaya EV, Oshima M, Edwards C, Zhang Y, Korchev Y. Exploration of individual colorectal cancer cell responses to H 2O 2 eustress using hopping probe scanning ion conductance microscopy. Sci Bull (Beijing) 2024; 69:1909-1919. [PMID: 38644130 DOI: 10.1016/j.scib.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
Colorectal cancer (CRC), a widespread malignancy, is closely associated with tumor microenvironmental hydrogen peroxide (H2O2) levels. Some clinical trials targeting H2O2 for cancer treatment have revealed its paradoxical role as a promoter of cancer progression. Investigating the dynamics of cancer cell H2O2 eustress at the single-cell level is crucial. In this study, non-contact hopping probe mode scanning ion conductance microscopy (HPICM) with high-sensitive Pt-functionalized nanoelectrodes was employed to measure dynamic extracellular to intracellular H2O2 gradients in individual colorectal cancer Caco-2 cells. We explored the relationship between cellular mechanical properties and H2O2 gradients. Exposure to 0.1 or 1 mmol/L H2O2 eustress increased the extracellular to intracellular H2O2 gradient from 0.3 to 1.91 or 3.04, respectively. Notably, cellular F-actin-dependent stiffness increased at 0.1 mmol/L but decreased at 1 mmol/L H2O2 eustress. This H2O2-induced stiffness modulated AKT activation positively and glutathione peroxidase 2 (GPX2) expression negatively. Our findings unveil the failure of some H2O2-targeted therapies due to their ineffectiveness in generating H2O2, which instead acts eustress to promote cancer cell survival. This research also reveals the complex interplay between physical properties and biochemical signaling in cancer cells' antioxidant defense, illuminating the exploitation of H2O2 eustress for survival at the single-cell level. Inhibiting GPX and/or catalase (CAT) enhances the cytotoxic activity of H2O2 eustress against CRC cells, which holds significant promise for developing innovative therapies targeting cancer and other H2O2-related inflammatory diseases.
Collapse
Affiliation(s)
- Dong Wang
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Emily Woodcock
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom; Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, United Kingdom
| | - Xi Yang
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiromi Nishikawa
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Elena V Sviderskaya
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, United Kingdom
| | - Masanobu Oshima
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Christopher Edwards
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Yanjun Zhang
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan; Department of Medicine, Imperial College London, London W12 0NN, United Kingdom.
| | - Yuri Korchev
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom; WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
12
|
Singam A, Bhattacharya C, Park S. Aging-related changes in the mechanical properties of single cells. Heliyon 2024; 10:e32974. [PMID: 38994100 PMCID: PMC11238009 DOI: 10.1016/j.heliyon.2024.e32974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Mechanical properties, along with biochemical and molecular properties, play crucial roles in governing cellular function and homeostasis. Cellular mechanics are influenced by various factors, including physiological and pathological states, making them potential biomarkers for diseases and aging. While several methods such as AFM, particle-tracking microrheology, optical tweezers/stretching, magnetic tweezers/twisting cytometry, microfluidics, and micropipette aspiration have been widely utilized to measure the mechanical properties of single cells, our understanding of how aging affects these properties remains limited. To fill this knowledge gap, we provide a brief overview of the commonly used methods to measure single-cell mechanical properties. We then delve into the effects of aging on the mechanical properties of different cell types. Finally, we discuss the importance of studying cellular viscous and viscoelastic properties as well as aging induced by different stressors to gain a deeper understanding of the aging process and aging-related diseases.
Collapse
Affiliation(s)
- Amarnath Singam
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Chandrabali Bhattacharya
- Department of Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
- Interdisciplinary Biomedical Engineering Program, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Seungman Park
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
- Interdisciplinary Biomedical Engineering Program, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| |
Collapse
|
13
|
Elblová P, Lunova M, Dejneka A, Jirsa M, Lunov O. Impact of mechanical cues on key cell functions and cell-nanoparticle interactions. DISCOVER NANO 2024; 19:106. [PMID: 38907808 PMCID: PMC11193707 DOI: 10.1186/s11671-024-04052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
In recent years, it has been recognized that mechanical forces play an important regulative role in living organisms and possess a direct impact on crucial cell functions, ranging from cell growth to maintenance of tissue homeostasis. Advancements in mechanobiology have revealed the profound impact of mechanical signals on diverse cellular responses that are cell type specific. Notably, numerous studies have elucidated the pivotal role of different mechanical cues as regulatory factors influencing various cellular processes, including cell spreading, locomotion, differentiation, and proliferation. Given these insights, it is unsurprising that the responses of cells regulated by physical forces are intricately linked to the modulation of nanoparticle uptake kinetics and processing. This complex interplay underscores the significance of understanding the mechanical microenvironment in shaping cellular behaviors and, consequently, influencing how cells interact with and process nanoparticles. Nevertheless, our knowledge on how localized physical forces affect the internalization and processing of nanoparticles by cells remains rather limited. A significant gap exists in the literature concerning a systematic analysis of how mechanical cues might bias the interactions between nanoparticles and cells. Hence, our aim in this review is to provide a comprehensive and critical analysis of the existing knowledge regarding the influence of mechanical cues on the complicated dynamics of cell-nanoparticle interactions. By addressing this gap, we would like to contribute to a detailed understanding of the role that mechanical forces play in shaping the complex interplay between cells and nanoparticles.
Collapse
Affiliation(s)
- Petra Elblová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18200, Prague, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18200, Prague, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), 14021, Prague, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18200, Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021, Prague, Czech Republic
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18200, Prague, Czech Republic.
| |
Collapse
|
14
|
Zhang Z, Peng Z, Wang R, Guo X, Gao J. Metabolomic analysis reveals macrophage metabolic reprogramming and polarization under different nutritional cues. Clin Chim Acta 2024; 560:119735. [PMID: 38772523 DOI: 10.1016/j.cca.2024.119735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/05/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND AND AIMS Obesity-induced chronic inflammation and metabolic abnormalities are highly relevant to the functional dysregulation of macrophages, especially under obese conditions. Hyperglycemia and hyperlipidemia, central to obesity, directly alter macrophage activity. However, the impacts of different nutritional cues on the intricate metabolic networks in macrophages remain unclear. MATERIALS AND METHODS In this study, we employed metabolomic approaches to examine the metabolic responses of macrophages to high glucose, high fat and their coexistence, aiming to delineate the molecular mechanisms of nutritional factors on macrophage activation and obesity-related diseases from a metabolic perspective. RESULTS Our findings revealed that different nutritional conditions could reprogram key metabolism in macrophages. Additionally, we identified a metabolite derived from macrophages, Long-Chain Phosphatidylcholine (LPC), which exerts beneficial effects on obese mice. It ameliorates the obesity phenotype and improves glucose metabolism profiles. This discovery suggests that LPC has a significant therapeutic potential in the context of obesity-induced metabolic dysfunctions. Our study unveils the metabolic phenotype of macrophages in high-fat and high-sugar environments and uncovers a macrophage-derived metabolite that significantly ameliorates the obesity phenotype. CONCLUSION This finding reveals a potential dialogue mechanism between macrophages and adipocytes, shedding light on the complex interplay of immune and metabolic systems in obesity. This discovery not only enhances our understanding of obesity's underlying mechanisms but also opens up new avenues for therapeutic interventions targeting macrophage-adipocyte interactions.
Collapse
Affiliation(s)
- Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Peng
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xirong Guo
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jianfang Gao
- Endocrinology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Lunova M, Jirsa M, Dejneka A, Sullivan GJ, Lunov O. Mechanical regulation of mitochondrial morphodynamics in cancer cells by extracellular microenvironment. BIOMATERIALS AND BIOSYSTEMS 2024; 14:100093. [PMID: 38585282 PMCID: PMC10992729 DOI: 10.1016/j.bbiosy.2024.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
Recently, it has been recognized that physical abnormalities (e.g. elevated solid stress, elevated interstitial fluid pressure, increased stiffness) are associated with tumor progression and development. Additionally, these mechanical forces originating from tumor cell environment through mechanotransduction pathways can affect metabolism. On the other hand, mitochondria are well-known as bioenergetic, biosynthetic, and signaling organelles crucial for sensing stress and facilitating cellular adaptation to the environment and physical stimuli. Disruptions in mitochondrial dynamics and function have been found to play a role in the initiation and advancement of cancer. Consequently, it is logical to hypothesize that mitochondria dynamics subjected to physical cues may play a pivotal role in mediating tumorigenesis. Recently mitochondrial biogenesis and turnover, fission and fusion dynamics was linked to mechanotransduction in cancer. However, how cancer cell mechanics and mitochondria functions are connected, still remain poorly understood. Here, we discuss recent studies that link mechanical stimuli exerted by the tumor cell environment and mitochondria dynamics and functions. This interplay between mechanics and mitochondria functions may shed light on how mitochondria regulate tumorigenesis.
Collapse
Affiliation(s)
- Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18200, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), Prague 14021, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague 14021, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18200, Czech Republic
| | | | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18200, Czech Republic
| |
Collapse
|
16
|
Fanelli G, Alloisio G, Lelli V, Marini S, Rinalducci S, Gioia M. Mechano-induced cell metabolism disrupts the oxidative stress homeostasis of SAOS-2 osteosarcoma cells. Front Mol Biosci 2024; 10:1297826. [PMID: 38726050 PMCID: PMC11079223 DOI: 10.3389/fmolb.2023.1297826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/18/2023] [Indexed: 05/12/2024] Open
Abstract
There has been an increasing focus on cancer mechanobiology, determining the underlying-induced changes to unlock new avenues in the modulation of cell malignancy. Our study used LC-MS untargeted metabolomic approaches and real-time polymerase chain reaction (PCR) to characterize the molecular changes induced by a specific moderate uniaxial stretch regimen (i.e., 24 h-1 Hz, cyclic stretch 0,5% elongation) on SAOS-2 osteosarcoma cells. Differential metabolic pathway analysis revealed that the mechanical stimulation induces a downregulation of both glycolysis and the tricarboxylic acid (TCA) cycle. At the same time, the amino acid metabolism was found to be dysregulated, with the mechanical stimulation enhancing glutaminolysis and reducing the methionine cycle. Our findings showed that cell metabolism and oxidative defense are tightly intertwined in mechanically stimulated cells. On the one hand, the mechano-induced disruption of the energy cell metabolism was found correlated with an antioxidant glutathione (GSH) depletion and an accumulation of reactive oxygen species (ROS). On the other hand, we showed that a moderate stretch regimen could disrupt the cytoprotective gene transcription by altering the expression levels of manganese superoxide dismutase (SOD1), Sirtuin 1 (SIRT1), and NF-E2-related factor 2 (Nrf2) genes. Interestingly, the cyclic applied strain could induce a cytotoxic sensitization (to the doxorubicin-induced cell death), suggesting that mechanical signals are integral regulators of cell cytoprotection. Hence, focusing on the mechanosensitive system as a therapeutic approach could potentially result in more effective treatments for osteosarcoma in the future.
Collapse
Affiliation(s)
- Giuseppina Fanelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Giulia Alloisio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Veronica Lelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
17
|
Peirce-Cottler SM, Sander EA, Fisher MB, Deymier AC, LaDisa JF, O'Connell G, Corr DT, Han B, Singh A, Wilson SE, Lai VK, Clyne AM. A Systems Approach to Biomechanics, Mechanobiology, and Biotransport. J Biomech Eng 2024; 146:040801. [PMID: 38270930 PMCID: PMC12047288 DOI: 10.1115/1.4064547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024]
Abstract
The human body represents a collection of interacting systems that range in scale from nanometers to meters. Investigations from a systems perspective focus on how the parts work together to enact changes across spatial scales, and further our understanding of how systems function and fail. Here, we highlight systems approaches presented at the 2022 Summer Biomechanics, Bio-engineering, and Biotransport Conference in the areas of solid mechanics; fluid mechanics; tissue and cellular engineering; biotransport; and design, dynamics, and rehabilitation; and biomechanics education. Systems approaches are yielding new insights into human biology by leveraging state-of-the-art tools, which could ultimately lead to more informed design of therapies and medical devices for preventing and treating disease as well as rehabilitating patients using strategies that are uniquely optimized for each patient. Educational approaches can also be designed to foster a foundation of systems-level thinking.
Collapse
Affiliation(s)
| | - Edward A. Sander
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, 5629 Seamans Center, University of Iowa, Iowa City, IA 52242; Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Matthew B. Fisher
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695; Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514
| | - Alix C. Deymier
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032
| | - John F. LaDisa
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Wauwatosa, WI 53226; Department of Pediatrics, Division of Cardiology Herma Heart Institute, Children's Wisconsin and the Medical College of Wisconsin, Milwaukee, WI 53226
| | - Grace O'Connell
- Department of Mechanical Engineering, University of California-Berkeley, 6141 Etcheverry Hall, Berkeley, CA 94720
| | - David T. Corr
- Department of Biomedical Engineering, Center for Modeling, Simulation, & Imaging in Medicine, Rensselaer Polytechnic Institute, 7042 Jonsson Engineering Center 110 8th Street, Troy, NY 12180
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907; Center for Cancer Research, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907
- Purdue University West Lafayette
| | - Anita Singh
- Bioengineering Department, Temple University, Philadelphia, PA 19122
| | - Sara E. Wilson
- Department of Mechanical Engineering, University of Kansas, 1530 W 15th Street, Lawrence, KS 66045
| | - Victor K. Lai
- Department of Chemical Engineering, University of Minnesota Duluth, Duluth, MN 55812
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| |
Collapse
|
18
|
Wang J, Zhao Z, Yang K, Bai Y. Research progress in cell therapy for oral diseases: focus on cell sources and strategies to optimize cell function. Front Bioeng Biotechnol 2024; 12:1340728. [PMID: 38515628 PMCID: PMC10955105 DOI: 10.3389/fbioe.2024.1340728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
In recent years, cell therapy has come to play an important therapeutic role in oral diseases. This paper reviews the active role of mesenchymal stem cells, immune cell sources, and other cells in oral disorders, and presents data supporting the role of cell therapy in oral disorders, including bone and tooth regeneration, oral mucosal disorders, oral soft tissue defects, salivary gland dysfunction, and orthodontic tooth movement. The paper will first review the progress of cell optimization strategies for oral diseases, including the use of hormones in combination with stem cells, gene-modified regulatory cells, epigenetic regulation of cells, drug regulation of cells, cell sheets/aggregates, cell-binding scaffold materials and hydrogels, nanotechnology, and 3D bioprinting of cells. In summary, we will focus on the therapeutic exploration of these different cell sources in oral diseases and the active application of the latest cell optimization strategies.
Collapse
Affiliation(s)
| | | | | | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Jackson WS, Bauer S, Kaczmarczyk L, Magadi SS. Selective Vulnerability to Neurodegenerative Disease: Insights from Cell Type-Specific Translatome Studies. BIOLOGY 2024; 13:67. [PMID: 38392286 PMCID: PMC10886597 DOI: 10.3390/biology13020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Neurodegenerative diseases (NDs) manifest a wide variety of clinical symptoms depending on the affected brain regions. Gaining insights into why certain regions are resistant while others are susceptible is vital for advancing therapeutic strategies. While gene expression changes offer clues about disease responses across brain regions, the mixture of cell types therein obscures experimental results. In recent years, methods that analyze the transcriptomes of individual cells (e.g., single-cell RNA sequencing or scRNAseq) have been widely used and have provided invaluable insights into specific cell types. Concurrently, transgene-based techniques that dissect cell type-specific translatomes (CSTs) in model systems, like RiboTag and bacTRAP, offer unique advantages but have received less attention. This review juxtaposes the merits and drawbacks of both methodologies, focusing on the use of CSTs in understanding conditions like amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), Alzheimer's disease (AD), and specific prion diseases like fatal familial insomnia (FFI), genetic Creutzfeldt-Jakob disease (gCJD), and acquired prion disease. We conclude by discussing the emerging trends observed across multiple diseases and emerging methods.
Collapse
Affiliation(s)
- Walker S Jackson
- Wallenberg Center for Molecular Medicine, Linköping University, 581 85 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Susanne Bauer
- Wallenberg Center for Molecular Medicine, Linköping University, 581 85 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Lech Kaczmarczyk
- Wallenberg Center for Molecular Medicine, Linköping University, 581 85 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Srivathsa S Magadi
- Wallenberg Center for Molecular Medicine, Linköping University, 581 85 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| |
Collapse
|
20
|
Marques MPM, de Carvalho ALMB, Martins CB, Silva JD, Sarter M, García Sakai V, Stewart JR, de Carvalho LAEB. Cellular dynamics as a marker of normal-to-cancer transition in human cells. Sci Rep 2023; 13:21079. [PMID: 38030663 PMCID: PMC10687084 DOI: 10.1038/s41598-023-47649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
Normal-to-cancer (NTC) transition is known to be closely associated to cell´s biomechanical properties which are dependent on the dynamics of the intracellular medium. This study probes different human cancer cells (breast, prostate and lung), concomitantly to their healthy counterparts, aiming at characterising the dynamical profile of water in distinct cellular locations, for each type of cell, and how it changes between normal and cancer states. An increased plasticity of the cytomatrix is observed upon normal-to-malignant transformation, the lung carcinoma cells displaying the highest flexibility followed by prostate and breast cancers. Also, lung cells show a distinct behaviour relative to breast and prostate, with a higher influence from hydration water motions and localised fast rotations upon NTC transformation. Quasielastic neutron scattering techniques allowed to accurately distinguish the different dynamical processes taking place within these highly heterogeneous cellular systems. The results thus obtained suggest that intracellular water dynamics may be regarded as a specific reporter of the cellular conditions-either healthy or malignant.
Collapse
Affiliation(s)
- M P M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - A L M Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.
| | - C B Martins
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - J D Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - M Sarter
- STFC Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, OX11 0QX, UK
| | - V García Sakai
- STFC Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, OX11 0QX, UK
| | - J R Stewart
- STFC Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, OX11 0QX, UK
| | - L A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| |
Collapse
|
21
|
Ma R, Rashid SA, Velusamy A, Deal BR, Chen W, Petrich B, Li R, Salaita K. Molecular mechanocytometry using tension-activated cell tagging. Nat Methods 2023; 20:1666-1671. [PMID: 37798479 PMCID: PMC11325290 DOI: 10.1038/s41592-023-02030-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2023] [Indexed: 10/07/2023]
Abstract
Flow cytometry is used routinely to measure single-cell gene expression by staining cells with fluorescent antibodies and nucleic acids. Here, we present tension-activated cell tagging (TaCT) to label cells fluorescently based on the magnitude of molecular force transmitted through cell adhesion receptors. As a proof-of-concept, we analyzed fibroblasts and mouse platelets after TaCT using conventional flow cytometry.
Collapse
Affiliation(s)
- Rong Ma
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | | | | | - Brendan R Deal
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Wenchun Chen
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Brian Petrich
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Renhao Li
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
22
|
Bertolio R, Napoletano F, Del Sal G. Dynamic links between mechanical forces and metabolism shape the tumor milieu. Curr Opin Cell Biol 2023; 84:102218. [PMID: 37597464 DOI: 10.1016/j.ceb.2023.102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/21/2023]
Abstract
Cell function relies on the spatiotemporal dynamics of metabolic reactions. In all physiopathological processes of tissues, mechanical forces impact the structure and function of membranes, enzymes, organelles and regulators of metabolic gene programs, thus regulating cell metabolism. In turn, metabolic pathways feedback impacts the physical properties of cell and tissues. Hence, metabolism and tissue mechanics are dynamically intertwined and continuously interact. Cancer is akin to an ecosystem, comprising tumor cells and various subpopulations of stromal cells embedded in an altered extracellular matrix. The progression of cancer, from initiation to advanced stage and metastasis, is driven by genetic mutations and crucially influenced by physical and metabolic alterations in the tumor microenvironment. These alterations also play a pivotal role in cancer cells evasion from immune surveillance and in developing resistance to treatments. Here, we highlight emerging evidence showing that mechano-metabolic circuits in cancer and stromal cells regulate multiple processes crucial for tumor progression and discuss potential approaches to improve therapeutic treatments by interfering with these circuits.
Collapse
Affiliation(s)
- Rebecca Bertolio
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, 34149 Trieste, Italy
| | - Francesco Napoletano
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, 34149 Trieste, Italy
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, 34149 Trieste, Italy; IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
23
|
Su É, Villard C, Manneville JB. Mitochondria: At the crossroads between mechanobiology and cell metabolism. Biol Cell 2023; 115:e2300010. [PMID: 37326132 DOI: 10.1111/boc.202300010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Metabolism and mechanics are two key facets of structural and functional processes in cells, such as growth, proliferation, homeostasis and regeneration. Their reciprocal regulation has been increasingly acknowledged in recent years: external physical and mechanical cues entail metabolic changes, which in return regulate cell mechanosensing and mechanotransduction. Since mitochondria are pivotal regulators of metabolism, we review here the reciprocal links between mitochondrial morphodynamics, mechanics and metabolism. Mitochondria are highly dynamic organelles which sense and integrate mechanical, physical and metabolic cues to adapt their morphology, the organization of their network and their metabolic functions. While some of the links between mitochondrial morphodynamics, mechanics and metabolism are already well established, others are still poorly documented and open new fields of research. First, cell metabolism is known to correlate with mitochondrial morphodynamics. For instance, mitochondrial fission, fusion and cristae remodeling allow the cell to fine-tune its energy production through the contribution of mitochondrial oxidative phosphorylation and cytosolic glycolysis. Second, mechanical cues and alterations in mitochondrial mechanical properties reshape and reorganize the mitochondrial network. Mitochondrial membrane tension emerges as a decisive physical property which regulates mitochondrial morphodynamics. However, the converse link hypothesizing a contribution of morphodynamics to mitochondria mechanics and/or mechanosensitivity has not yet been demonstrated. Third, we highlight that mitochondrial mechanics and metabolism are reciprocally regulated, although little is known about the mechanical adaptation of mitochondria in response to metabolic cues. Deciphering the links between mitochondrial morphodynamics, mechanics and metabolism still presents significant technical and conceptual challenges but is crucial both for a better understanding of mechanobiology and for potential novel therapeutic approaches in diseases such as cancer.
Collapse
Affiliation(s)
- Émilie Su
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité - CNRS, UMR 7057, Paris, France
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Université Paris Cité - CNRS, UMR 8236, Paris, France
| | - Catherine Villard
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Université Paris Cité - CNRS, UMR 8236, Paris, France
| | - Jean-Baptiste Manneville
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité - CNRS, UMR 7057, Paris, France
| |
Collapse
|
24
|
Holland SM, Gallo G. Actin cytoskeletal dynamics do not impose an energy drain on growth cone bioenergetics. J Cell Sci 2023; 136:jcs261356. [PMID: 37534394 PMCID: PMC10445737 DOI: 10.1242/jcs.261356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
The regulation of the intracellular level of ATP is a fundamental aspect of bioenergetics. Actin cytoskeletal dynamics have been reported to be an energetic drain in developing neurons and platelets. We addressed the role of actin dynamics in primary embryonic chicken neurons using luciferase assays, and by measurement of the ATP/ADP ratio using the ratiometric reporter PercevalHR and the ATP level using the ratiometric reporter mRuby-iATPSnFR. None of the methods revealed an effect of suppressing actin dynamics on the decline in the neuronal ATP level or the ATP/ADP ratio following shutdown of ATP production. Similarly, we find that treatments that elevate or suppress actin dynamics do not alter the ATP/ADP ratio in growth cones, the subcellular domain with the highest actin dynamics in developing neurons. Collectively, the data indicate that actin cytoskeletal dynamics are not a significant energy drain in developing neurons and that the ATP/ADP ratio is maintained when energy utilization varies. Discrepancies between prior work and the current data are discussed with emphasis on methodology and interpretation of the data.
Collapse
Affiliation(s)
- Sabrina M. Holland
- Lewis Katz School of Medicine at Temple University, Department of Neural Sciences, Shriners Pediatric Research Center, 3500 North Broad St, Philadelphia, PA 19140, USA
| | - Gianluca Gallo
- Lewis Katz School of Medicine at Temple University, Department of Neural Sciences, Shriners Pediatric Research Center, 3500 North Broad St, Philadelphia, PA 19140, USA
| |
Collapse
|
25
|
Young KM, Reinhart-King CA. Cellular mechanosignaling for sensing and transducing matrix rigidity. Curr Opin Cell Biol 2023; 83:102208. [PMID: 37473514 PMCID: PMC10527818 DOI: 10.1016/j.ceb.2023.102208] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
The mechanisms by which cells sense their mechanical environment and transduce the signal through focal adhesions and signaling pathways to the nucleus is an area of key focus for the field of mechanobiology. In the past two years, there has been expansion of our knowledge of commonly studied pathways, such as YAP/TAZ, FAK/Src, RhoA/ROCK, and Piezo1 signaling, as well as the discovery of new interactions, such as the effect of matrix rigidity of cell mitochondrial function and metabolism, which represent a new and exciting direction for the field as a whole. This review covers the most recent advances in the field of substrate stiffness sensing as well as perspective on future directions.
Collapse
Affiliation(s)
- Katherine M Young
- Vanderbilt University Department of Biomedical Engineering 2414 Highland Ave, Nashville, TN 37212, USA
| | - Cynthia A Reinhart-King
- Vanderbilt University Department of Biomedical Engineering 2414 Highland Ave, Nashville, TN 37212, USA.
| |
Collapse
|
26
|
He S, Lei P, Kang W, Cheung P, Xu T, Mana M, Park CY, Wang H, Imada S, Russell JO, Wang J, Wang R, Zhou Z, Chetal K, Stas E, Mohad V, Bruun-Rasmussen P, Sadreyev RI, Hodin RA, Zhang Y, Breault DT, Camargo FD, Yilmaz ÖH, Fredberg JJ, Saeidi N. Stiffness Restricts the Stemness of the Intestinal Stem Cells and Skews Their Differentiation Toward Goblet Cells. Gastroenterology 2023; 164:1137-1151.e15. [PMID: 36871599 PMCID: PMC10200762 DOI: 10.1053/j.gastro.2023.02.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND & AIMS Fibrosis and tissue stiffening are hallmarks of inflammatory bowel disease (IBD). We have hypothesized that the increased stiffness directly contributes to the dysregulation of the epithelial cell homeostasis in IBD. Here, we aim to determine the impact of tissue stiffening on the fate and function of the intestinal stem cells (ISCs). METHODS We developed a long-term culture system consisting of 2.5-dimensional intestinal organoids grown on a hydrogel matrix with tunable stiffness. Single-cell RNA sequencing provided stiffness-regulated transcriptional signatures of the ISCs and their differentiated progeny. YAP-knockout and YAP-overexpression mice were used to manipulate YAP expression. In addition, we analyzed colon samples from murine colitis models and human IBD samples to assess the impact of stiffness on ISCs in vivo. RESULTS We demonstrated that increasing the stiffness potently reduced the population of LGR5+ ISCs and KI-67+-proliferating cells. Conversely, cells expressing the stem cell marker, olfactomedin-4, became dominant in the crypt-like compartments and pervaded the villus-like regions. Concomitantly, stiffening prompted the ISCs to preferentially differentiate toward goblet cells. Mechanistically, stiffening increased the expression of cytosolic YAP, driving the extension of olfactomedin-4+ cells into the villus-like regions, while it induced the nuclear translocation of YAP, leading to preferential differentiation of ISCs toward goblet cells. Furthermore, analysis of colon samples from murine colitis models and patients with IBD demonstrated cellular and molecular remodeling reminiscent of those observed in vitro. CONCLUSIONS Collectively, our findings highlight that matrix stiffness potently regulates the stemness of ISCs and their differentiation trajectory, supporting the hypothesis that fibrosis-induced gut stiffening plays a direct role in epithelial remodeling in IBD.
Collapse
Affiliation(s)
- Shijie He
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Peng Lei
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Wenying Kang
- Department of Otolaryngology-Head and Neck Surgery, Stanford Medical School, Stanford, California
| | - Priscilla Cheung
- Harvard Medical School, Boston, Massachusetts; Stem Cell Program and Department of Hematology/Oncology, Children's Hospital, Boston, Massachusetts
| | - Tao Xu
- Harvard Medical School, Boston, Massachusetts; Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, Massachusetts
| | - Miyeko Mana
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Chan Young Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Hongyan Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Shinya Imada
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jacquelyn O Russell
- Harvard Medical School, Boston, Massachusetts; Stem Cell Program and Department of Hematology/Oncology, Children's Hospital, Boston, Massachusetts
| | - Jianxun Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Ruizhi Wang
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts
| | - Ziheng Zhou
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Kashish Chetal
- Harvard Medical School, Boston, Massachusetts; Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Eric Stas
- Harvard Medical School, Boston, Massachusetts; Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts
| | - Vidisha Mohad
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Peter Bruun-Rasmussen
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ruslan I Sadreyev
- Harvard Medical School, Boston, Massachusetts; Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts; Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Richard A Hodin
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts
| | - David T Breault
- Harvard Medical School, Boston, Massachusetts; Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Fernando D Camargo
- Harvard Medical School, Boston, Massachusetts; Stem Cell Program and Department of Hematology/Oncology, Children's Hospital, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Ömer H Yilmaz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jeffrey J Fredberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Nima Saeidi
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts.
| |
Collapse
|
27
|
Gui Y, Wang Y, Palanza Z, Wang JL, Gupta P, Tao J, Qiao Y, Hargis G, Kreutzer DL, Bastacky SI, Yu Y, Wang Y, Liu S, Fu H, Zhou D. Calponin 2 harnesses metabolic reprogramming to determine kidney fibrosis. Mol Metab 2023; 71:101712. [PMID: 36963615 PMCID: PMC10090436 DOI: 10.1016/j.molmet.2023.101712] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/26/2023] Open
Abstract
OBJECTIVE In the fibrotic kidneys, the extent of a formed deleterious microenvironment is determined by cellular mechanical forces. This process requires metabolism for energy. However, how cellular mechanics and metabolism are connected remains unclear. METHODS A multi-disciplinary approach was employed: the fibrotic kidney disease models were induced by renal ischemia-reperfusion injury and unilateral ureteral obstruction in Calponin 2 (CNN2) knockdown mice. Proteomics, bioinformatics, and in vivo and in vitro molecular experimental pathology studies were performed. RESULT Our proteomics revealed that actin filament binding and cell metabolism are the two most dysregulated events in the fibrotic kidneys. As a prominent actin stabilizer, CNN2 was predominantly expressed in fibroblasts and pericytes. In CKD patients, CNN2 levels was markedly induced in blood. In mice, CNN2 knockdown preserves kidney function and alleviates fibrosis. Global proteomics profiled that CNN2 knockdown enhanced the activities of the key rate-limiting enzymes and regulators of fatty acid oxidation (FAO) in the diseased kidneys. Inhibiting carnitine palmitoyltransferase 1α in the FAO pathway resulted in lipid accumulation and extracellular matrix deposition in the fibrotic kidneys, which were restored after CNN2 knockdown. Bioinformatics and chromatin immunoprecipitation showed that CNN2 interactor, estrogen receptor 2 (ESR2), binds peroxisome proliferator-activated receptor-α (PPARα) to transcriptionally regulate FAO downstream target genes expression amid kidney fibrosis. In vitro, ESR2 knockdown repressed the mRNA levels of PPARα and the key genes in the FAO pathway. Conversely, activation of PPARα reduced CNN2-induced matrix inductions. CONCLUSIONS Our results suggest that balancing cell mechanics and metabolism is crucial to develop therapeutic strategies to halt kidney fibrosis.
Collapse
Affiliation(s)
- Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Yuanyuan Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Zachary Palanza
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Jack L Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Priya Gupta
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Jianling Tao
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yi Qiao
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Geneva Hargis
- University of Connecticut, School of Medicine, Farmington, CT, 06030, USA
| | - Donald L Kreutzer
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Sheldon I Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Yanbao Yu
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| |
Collapse
|
28
|
Liao X, Li X, Liu R. Extracellular-matrix mechanics regulate cellular metabolism: A ninja warrior behind mechano-chemo signaling crosstalk. Rev Endocr Metab Disord 2023; 24:207-220. [PMID: 36385696 DOI: 10.1007/s11154-022-09768-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
Abstract
Mechanical forces are the indispensable constituent of environmental cues, such as gravity, barometric pressure, vibration, and contact with bodies, which are involved in pattern and organogenesis, providing mechanical input to tissues and determining the ultimate fate of cells. Extracellular matrix (ECM) stiffness, the slow elastic force, carries the external physical force load onto the cell or outputs the internal force exerted by the cell and its neighbors into the environment. Accumulating evidence illustrates the pivotal role of ECM stiffness in the regulation of organogenesis, maintenance of tissue homeostasis, and the development of multiple diseases, which is largely fulfilled through its systematical impact on cellular metabolism. This review summarizes the establishment and regulation of ECM stiffness, the mechanisms underlying how ECM stiffness is sensed by cells and signals to modulate diverse cell metabolic pathways, and the physiological and pathological significance of the ECM stiffness-cell metabolism axis.
Collapse
Affiliation(s)
- Xiaoyu Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, 14, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Xin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, 14, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, 14, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
29
|
Tang H, Abouleila Y, Saris A, Shimizu Y, Ottenhoff THM, Mashaghi A. Ebola virus-like particles reprogram cellular metabolism. J Mol Med (Berl) 2023; 101:557-568. [PMID: 36959259 PMCID: PMC10036248 DOI: 10.1007/s00109-023-02309-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
Ebola virus can trigger a release of pro-inflammatory cytokines with subsequent vascular leakage and impairment of clotting finally leading to multiorgan failure and shock after entering and infecting patients. Ebola virus is known to directly target endothelial cells and macrophages, even without infecting them, through direct interactions with viral proteins. These interactions affect cellular mechanics and immune processes, which are tightly linked to other key cellular functions such as metabolism. However, research regarding metabolic activity of these cells upon viral exposure remains limited, hampering our understanding of its pathophysiology and progression. Therefore, in the present study, an untargeted cellular metabolomic approach was performed to investigate the metabolic alterations of primary human endothelial cells and M1 and M2 macrophages upon exposure to Ebola virus-like particles (VLP). The results show that Ebola VLP led to metabolic changes among endothelial, M1, and M2 cells. Differential metabolite abundance and perturbed signaling pathway analysis further identified specific metabolic features, mainly in fatty acid-, steroid-, and amino acid-related metabolism pathways for all the three cell types, in a host cell specific manner. Taken together, this work characterized for the first time the metabolic alternations of endothelial cells and two primary human macrophage subtypes after Ebola VLP exposure, and identified the potential metabolites and pathways differentially affected, highlighting the important role of those host cells in disease development and progression. KEY MESSAGES: • Ebola VLP can lead to metabolic alternations in endothelial cells and M1 and M2 macrophages. • Differential abundance of metabolites, mainly including fatty acids and sterol lipids, was observed after Ebola VLP exposure. • Multiple fatty acid-, steroid-, and amino acid-related metabolism pathways were observed perturbed.
Collapse
Affiliation(s)
- Huaqi Tang
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Yasmine Abouleila
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
30
|
Impact of baculoviral transduction of fluorescent actin on cellular forces. Eur J Cell Biol 2023; 102:151294. [PMID: 36791652 DOI: 10.1016/j.ejcb.2023.151294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Live staining of actin brings valuable information in the field of mechanobiology. Gene transfer of GFP-actin has been reported to disturb cell rheological properties while gene transfer of fluorescent actin binding proteins was not. However the influence of gene transfer on cellular forces in adhered cells has never been investigated. This would provide a more complete picture of mechanical disorders induced by actin live staining for mechanobiology studies. Indeed, most of these techniques were shown to alter cell morphology. Change in cell morphology may in itself be sufficient to perturb cellular forces. Here we focus on quantifying the alterations of cellular stresses that result from baculoviral transduction of GFP-actin in MDCK cell line. We report that GFP-actin transduction increases the proportion of cells with large intracellular or surface stresses, especially in epithelia with low cell density. We show that the enhancement of the mechanical stresses is accompanied by small perturbations of cell shape, but not by a significant change in cell size. We thus conclude that this live staining method enhances the cellular forces but only brings subtle shape alterations.
Collapse
|
31
|
Gui Y, Tao J, Wang Y, Palanza Z, Qiao Y, Hargis G, Kreutzer DL, Liu S, Bastacky SI, Wang Y, Yu Y, Fu H, Zhou D. Calponin 2 harnesses metabolic reprogramming to determine kidney fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522608. [PMID: 36711748 PMCID: PMC9881848 DOI: 10.1101/2023.01.03.522608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the fibrotic kidneys, the extent of a formed deleterious microenvironment is determined by cellular mechanical forces. This process requires metabolism for energy; however, how cellular mechanics and metabolism are connected remains unclear. Our proteomics revealed that actin filament binding and cell metabolism are the two most dysregulated events in the fibrotic kidneys. As a prominent actin stabilizer, Calponin 2 (CNN2) is predominantly expressed in fibroblasts and pericytes. CNN2 knockdown preserves kidney function and alleviates fibrosis. Global proteomics profiled that CNN2 knockdown enhanced the activities of the key rate-limiting enzymes and regulators of fatty acid oxidation (FAO) in diseased kidneys. Inhibiting carnitine palmitoyltransferase 1α in the FAO pathway results in lipid accumulation and extracellular matrix deposition in the fibrotic kidneys, which were restored after CNN2 knockdown. In patients, increased serum CNN2 levels are correlated with lipid content. Bioinformatics and chromatin immunoprecipitation showed that CNN2 interactor, estrogen receptor 2 (ESR2) binds peroxisome proliferator-activated receptor-α (PPARα) to transcriptionally regulate FAO downstream target genes expression amid kidney fibrosis. In vitro , ESR2 knockdown repressed the mRNA levels of PPARα and the key genes in the FAO pathway. Conversely, activation of PPARα reduced CNN2-induced matrix inductions. Our results suggest that balancing cell mechanics and metabolism is crucial to develop therapeutic strategies to halt kidney fibrosis.
Collapse
|
32
|
Wang Y, Wang N, Chen Y, Yang Y. Regulation of micropatterned curvature-dependent FA heterogeneity on cytoskeleton tension and nuclear DNA synthesis of malignant breast cancer cells. J Mater Chem B 2022; 11:99-108. [PMID: 36477803 DOI: 10.1039/d2tb01774a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Breast cancer is considered as a worldwide disease due to its high incidence and malignant metastasis. Although numerous techniques have been developed well to conduct breast cancer therapy, the influence of micropattern-induced interfacial heterogeneity on the molecular mechanism and nuclear signalling transduction of carcinogenesis is rarely announced. In this study, PDMS stencil-assisted micropatterns were fabricated on tissue culture plates to manage cell clustering colony by adjusting initial cell seeding density and the size of microholes. The curvature of each microholes was controlled to construct the interfacial heterogeneity of MDA-MB231 cancer cells at the periphery of micropatterned colony. The distinguished focal adhesion (FA) and cytoskeleton distribution at the central and peripheral regions of the cell colony were regulated by heterogeneous properties. The interfacial heterogeneity of FA and cytoskeleton would induce the biased tension force to encourage more ezrin expression at the periphery and further promote DNA synthesis, therefore disclosing a stem-like phenotype in heterogeneous cells. This study will provide a value source of information for the development of micropattern-induced heterogeneity and the interpretation of metastatic mechanism in malignant breast cancer cells.
Collapse
Affiliation(s)
- Yongtao Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Nana Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yazhou Chen
- Medical 3D Printing center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Yingjun Yang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
33
|
Zhai C, Zhang N, Wang J, Cao M, Luan J, Liu H, Zhang Q, Zhu Y, Xue Y, Li S. Activation of Autophagy Induces Monocrotaline-Induced Pulmonary Arterial Hypertension by FOXM1-Mediated FAK Phosphorylation. Lung 2022; 200:619-631. [PMID: 36107242 DOI: 10.1007/s00408-022-00569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE It has been shown that activation of autophagy promotes the development of pulmonary arterial hypertension (PAH). Meanwhile, forkhead box M1 (FOXM1) has been found to induce autophagy in several types of cancer. However, it is still unclear whether FOXM1 mediates autophagy activation in PAH, and detailed mechanisms responsible for these processes are indefinite. METHOD PAH was induced by a single intraperitoneal injection of monocrotaline (MCT) to rats. The right ventricle systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), percentage of medial wall thickness (%MT), α-smooth muscle actin (α-SMA) staining, and Ki67 staining were performed to evaluate the development of PAH. The protein levels of FOXM1, phospho-focal adhesion kinase (p-FAK), FAK, and LC3B were determined by immunoblotting or immunohistochemistry. RESULTS FOXM1 protein level and FAK activity were significantly increased in MCT-induced PAH rats, this was accompanied with the activation of autophagy. Pharmacological inhibition of FOXM1 or FAK suppressed MCT-induced autophagy activation, decreased RVSP, RVHI and %MT in MCT-induced PAH rats, and inhibited the proliferation of pulmonary arterial smooth muscle cells and pulmonary vessel muscularization in MCT-induced PAH rats. CONCLUSION FOXM1 promotes the development of PAH by inducing FAK phosphorylation and subsequent activation of autophagy in MCT-treated rats.
Collapse
Affiliation(s)
- Cui Zhai
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Nana Zhang
- Center for Regenerative and Reconstructive Medicine, Med-X Institute of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Meng Cao
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Jing Luan
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Huan Liu
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yanting Zhu
- Center of Nephropathy and Hemodialysis, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, People's Republic of China
| | - Yuxin Xue
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
34
|
Onwudiwe K, Burchett AA, Datta M. Mechanical and metabolic interplay in the brain metastatic microenvironment. Front Oncol 2022; 12:932285. [PMID: 36059679 PMCID: PMC9436395 DOI: 10.3389/fonc.2022.932285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
In this Perspective, we provide our insights and opinions about the contribution-and potential co-regulation-of mechanics and metabolism in incurable breast cancer brain metastasis. Altered metabolic activity can affect cancer metastasis as high glucose supply and demand in the brain microenvironment favors aerobic glycolysis. Similarly, the altered mechanical properties of disseminating cancer cells facilitate migration to and metastatic seeding of the brain, where local metabolites support their progression. Cancer cells in the brain and the brain tumor microenvironment often possess opposing mechanical and metabolic properties compared to extracranial cancer cells and their microenvironment, which inhibit the ease of extravasation and metastasis of these cells outside the central nervous system. We posit that the brain provides a metabolic microenvironment that mechanically reinforces the cellular structure of cancer cells and supports their metastatic growth while restricting their spread from the brain to external organs.
Collapse
Affiliation(s)
| | | | - Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
35
|
Kaczmarczyk L, Schleif M, Dittrich L, Williams RH, Koderman M, Bansal V, Rajput A, Schulte T, Jonson M, Krost C, Testaquadra FJ, Bonn S, Jackson WS. Distinct translatome changes in specific neural populations precede electroencephalographic changes in prion-infected mice. PLoS Pathog 2022; 18:e1010747. [PMID: 35960762 PMCID: PMC9401167 DOI: 10.1371/journal.ppat.1010747] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/24/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Selective vulnerability is an enigmatic feature of neurodegenerative diseases (NDs), whereby a widely expressed protein causes lesions in specific cell types and brain regions. Using the RiboTag method in mice, translational responses of five neural subtypes to acquired prion disease (PrD) were measured. Pre-onset and disease onset timepoints were chosen based on longitudinal electroencephalography (EEG) that revealed a gradual increase in theta power between 10- and 18-weeks after prion injection, resembling a clinical feature of human PrD. At disease onset, marked by significantly increased theta power and histopathological lesions, mice had pronounced translatome changes in all five cell types despite appearing normal. Remarkably, at a pre-onset stage, prior to EEG and neuropathological changes, we found that 1) translatomes of astrocytes indicated reduced synthesis of ribosomal and mitochondrial components, 2) glutamatergic neurons showed increased expression of cytoskeletal genes, and 3) GABAergic neurons revealed reduced expression of circadian rhythm genes. These data demonstrate that early translatome responses to neurodegeneration emerge prior to conventional markers of disease and are cell type-specific. Therapeutic strategies may need to target multiple pathways in specific populations of cells, early in disease. Prions are infectious agents composed of a misfolded protein. When isolated from a mammalian brain and transferred to the same host species, prions will cause the same neurodegenerative disease affecting the same brain regions and cell types. This concept of selective vulnerability is also a feature of more common types of neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and Huntington’s. To better understand the mechanisms behind selective vulnerability, we studied disease responses of five cell types with different vulnerabilities in prion-infected mice at two different disease stages. Responses were measured as changes to mRNAs undergoing translation, referred to as the translatome. Before prion-infected mice demonstrated typical disease signs, electroencephalography (a method used clinically to characterize neurodegeneration in humans) revealed brain changes resembling those in human prion diseases, and surprisingly, the translatomes of all cells were drastically changed. Furthermore, before electroencephalography changes emerged, three cell types made unique responses while the most vulnerable cell type did not. These results suggests that mechanisms causing selective vulnerability will be difficult to dissect and that therapies will likely need to be provided before clinical signs emerge and individually engage multiple cell types and their distinct molecular pathways.
Collapse
Affiliation(s)
- Lech Kaczmarczyk
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Melvin Schleif
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Lars Dittrich
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | - Maruša Koderman
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Vikas Bansal
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Germany
- German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Ashish Rajput
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Germany
- Maximon AG, Zug, Switzerland
| | | | - Maria Jonson
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Clemens Krost
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Germany
| | - Walker S. Jackson
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- German Center for Neurodegenerative Diseases, Bonn, Germany
- * E-mail:
| |
Collapse
|
36
|
Wang J, Yang R, Cheng Y, Zhou Y, Zhang T, Wang S, Li H, Jiang W, Zhang X. Methylation of HBP1 by PRMT1 promotes tumor progression by regulating actin cytoskeleton remodeling. Oncogenesis 2022; 11:45. [PMID: 35941115 PMCID: PMC9360041 DOI: 10.1038/s41389-022-00421-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
HBP1 is a sequence-specific transcription factor which generally considered as a crucial growth inhibitor. Posttranslational modification of HBP1 is vital for its function. In this study, we demonstrate that HBP1 is methylated at R378 by PRMT1, which decreases HBP1 protein stability by promoting its ubiquitination and proteasome-mediated degradation. PRMT1-mediated methylation of HBP1 alleviates the repressive effects of HBP1 on tumor metastasis and growth. GSN is identified as a novel target gene of HBP1. Methylation of HBP1 promotes actin cytoskeleton remodeling, glycolysis and tumor progression by downregulating GSN (a vital actin-binding protein) levels. The methylated HBP1-GSN axis is associated with the clinical outcomes of cancer patients. This investigation elucidates the mechanism of how methylated HBP1 facilitates actin cytoskeleton remodeling, thus attenuates its tumor-suppressive function and promotes tumor progression. Targeting methylated HBP1-GSN axis may provide a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Jiyin Wang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Ruixiang Yang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yuning Cheng
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yue Zhou
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Tongjia Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Shujie Wang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Hui Li
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Wei Jiang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Xiaowei Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China.
| |
Collapse
|
37
|
Khalil K, Eon A, Janody F. Cell Architecture-Dependent Constraints: Critical Safeguards to Carcinogenesis. Int J Mol Sci 2022; 23:8622. [PMID: 35955754 PMCID: PMC9369145 DOI: 10.3390/ijms23158622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Animal cells display great diversity in their shape. These morphological characteristics result from crosstalk between the plasma membrane and the force-generating capacities of the cytoskeleton macromolecules. Changes in cell shape are not merely byproducts of cell fate determinants, they also actively drive cell fate decisions, including proliferation and differentiation. Global and local changes in cell shape alter the transcriptional program by a multitude of mechanisms, including the regulation of physical links between the plasma membrane and the nuclear envelope and the mechanical modulation of cation channels and signalling molecules. It is therefore not surprising that anomalies in cell shape contribute to several diseases, including cancer. In this review, we discuss the possibility that the constraints imposed by cell shape determine the behaviour of normal and pro-tumour cells by organizing the whole interconnected regulatory network. In turn, cell behaviour might stabilize cells into discrete shapes. However, to progress towards a fully transformed phenotype and to acquire plasticity properties, pro-tumour cells might need to escape these cell shape restrictions. Thus, robust controls of the cell shape machinery may represent a critical safeguard against carcinogenesis.
Collapse
Affiliation(s)
- Komal Khalil
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (K.K.); (A.E.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Master Programme in Oncology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Alice Eon
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (K.K.); (A.E.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Magistère Européen de Génétique, Université Paris Cité, 5 Rue Thomas Mann, 75013 Paris, France
| | - Florence Janody
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (K.K.); (A.E.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
38
|
Wang J, Eming SA, Ding X. Role of mTOR Signaling Cascade in Epidermal Morphogenesis and Skin Barrier Formation. BIOLOGY 2022; 11:biology11060931. [PMID: 35741452 PMCID: PMC9220260 DOI: 10.3390/biology11060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The skin epidermis is a stratified multilayered epithelium that provides a life-sustaining protective and defensive barrier for our body. The barrier machinery is established and maintained through a tightly regulated keratinocyte differentiation program. Under normal conditions, the basal layer keratinocytes undergo active proliferation and migration upward, differentiating into the suprabasal layer cells. Perturbation of the epidermal differentiation program often results in skin barrier defects and inflammatory skin disorders. The protein kinase mechanistic target of rapamycin (mTOR) is the central hub of cell growth, metabolism and nutrient signaling. Over the past several years, we and others using transgenic mouse models have unraveled that mTOR signaling is critical for epidermal differentiation and barrier formation. On the other hand, there is increasing evidence that disturbed activation of mTOR signaling is significantly implicated in the development of various skin diseases. In this review, we focus on the formation of skin barrier and discuss the current understanding on how mTOR signaling networks, including upstream inputs, kinases and downstream effectors, regulate epidermal differentiation and skin barrier formation. We hope this review will help us better understand the metabolic signaling in the epidermis, which may open new vistas for epidermal barrier defect-associated disease therapy. Abstract The skin epidermis, with its capacity for lifelong self-renewal and rapid repairing response upon injury, must maintain an active status in metabolism. Mechanistic target of rapamycin (mTOR) signaling is a central controller of cellular growth and metabolism that coordinates diverse physiological and pathological processes in a variety of tissues and organs. Recent evidence with genetic mouse models highlights an essential role of the mTOR signaling network in epidermal morphogenesis and barrier formation. In this review, we focus on the recent advances in understanding how mTOR signaling networks, including upstream inputs, kinases and downstream effectors, regulate epidermal morphogenesis and skin barrier formation. Understanding the details of the metabolic signaling will be critical for the development of novel pharmacological approaches to promote skin barrier regeneration and to treat epidermal barrier defect-associated diseases.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China;
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sabine A. Eming
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Institute of Zoology, Developmental Biology Unit, University of Cologne, 50674 Cologne, Germany
- Correspondence: (S.A.E.); (X.D.); Tel.: +86-137-6457-1130 (X.D.)
| | - Xiaolei Ding
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China;
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.A.E.); (X.D.); Tel.: +86-137-6457-1130 (X.D.)
| |
Collapse
|
39
|
Metcalf KJ, Hayward MK, Berens E, Ironside AJ, Stashko C, Hwang ES, Weaver VM. Immunosuppressive glycoproteins associate with breast tumor fibrosis and aggression. Matrix Biol Plus 2022; 14:100105. [PMID: 35392183 PMCID: PMC8981759 DOI: 10.1016/j.mbplus.2022.100105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Tumors feature elevated sialoglycoprotein content. Sialoglycoproteins promote tumor progression and are linked to immune suppression via the sialic acid-Siglec axis. Understanding factors that increase sialoglycoprotein biosynthesis in tumors could identify approaches to improve patient response to immunotherapy. We quantified higher levels of sialoglycoproteins in the fibrotic regions within human breast tumor tissues. Human breast tumor subtypes, which are more fibrotic, similarly featured increased sialoglycoprotein content. Further analysis revealed the breast cancer cells as the primary cell type synthesizing and secreting the tumor tissue sialoglycoproteins and confirmed that the more aggressive, fibrotic breast cancer subtypes expressed the highest levels of sialoglycoprotein biosynthetic genes. The more aggressive breast cancer subtypes also featured greater infiltration of immunosuppressive SIGLEC7, SIGLEC9, and SIGLEC10-pos myeloid cells, indicating that triple-negative breast tumors had higher expression of both immunosuppressive Siglec receptors and their cognate ligands. The findings link sialoglycoprotein biosynthesis and secretion to tumor fibrosis and aggression in human breast tumors. The data suggest targeting of the sialic acid-Siglec axis may comprise an attractive therapeutic target particularly for the more aggressive HER2+ and triple-negative breast cancer subtypes.
Collapse
Affiliation(s)
- Kevin James Metcalf
- Department of Surgery, University of California, San Francisco, CA, United States
| | - Mary-Kate Hayward
- Department of Surgery, University of California, San Francisco, CA, United States
| | - Eric Berens
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Alastair J. Ironside
- Department of Pathology, Western General Hospital, NHS Lothian, Edinburgh, United Kingdom
| | - Connor Stashko
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| | - E. Shelley Hwang
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Valerie M. Weaver
- Department of Surgery, University of California, San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, United States
| |
Collapse
|
40
|
Zeng Y, Hao J, Zhang J, Jiang L, Youn S, Lu G, Yan D, Kang H, Sun Y, Shung KK, Shen K, Zhou Q. Manipulation and Mechanical Deformation of Leukemia Cells by High-Frequency Ultrasound Single Beam. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1889-1897. [PMID: 35468061 PMCID: PMC9753557 DOI: 10.1109/tuffc.2022.3170074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ultrasound single-beam acoustic tweezer system has attracted increasing attention in the field of biomechanics. Cell biomechanics play a pivotal role in leukemia cell functions. To better understand and compare the cell mechanics of the leukemia cells, herein, we fabricated an acoustic tweezer system in-house connected with a 50-MHz high-frequency cylinder ultrasound transducer. Selected leukemia cells (Jurkat, K562, and MV-411 cells) were cultured, trapped, and manipulated by high-frequency ultrasound single beam, which was transmitted from the ultrasound transducer without contacting any cells. The relative deformability of each leukemia cell was measured, characterized, and compared, and the leukemia cell (Jurkat cell) gaining the highest deformability was highlighted. Our results demonstrate that the high-frequency ultrasound single beam can be utilized to manipulate and characterize leukemia cells, which can be applied to study potential mechanisms in the immune system and cell biomechanics in other cell types.
Collapse
|
41
|
Spyropoulos F, Sorrentino A, van der Reest J, Yang P, Waldeck-Weiermair M, Steinhorn B, Eroglu E, Saeedi Saravi SS, Yu P, Haigis M, Christou H, Michel T. Metabolomic and transcriptomic signatures of chemogenetic heart failure. Am J Physiol Heart Circ Physiol 2022; 322:H451-H465. [PMID: 35089810 PMCID: PMC8896991 DOI: 10.1152/ajpheart.00628.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
The failing heart is characterized by elevated levels of reactive oxygen species. We have developed an animal model of heart failure induced by chemogenetic production of oxidative stress in the heart using a recombinant adeno-associated virus (AAV9) expressing yeast d-amino acid oxidase (DAAO) targeted to cardiac myocytes. When DAAO-infected animals are fed the DAAO substrate d-alanine, the enzyme generates hydrogen peroxide (H2O2) in the cardiac myocytes, leading to dilated cardiomyopathy. However, the underlying mechanisms of oxidative stress-induced heart failure remain incompletely understood. Therefore, we investigated the effects of chronic oxidative stress on the cardiac transcriptome and metabolome. Rats infected with recombinant cardiotropic AAV9 expressing DAAO or control AAV9 were treated for 7 wk with d-alanine to stimulate chemogenetic H2O2 production by DAAO and generate dilated cardiomyopathy. After hemodynamic assessment, left and right ventricular tissues were processed for RNA sequencing and metabolomic profiling. DAAO-induced dilated cardiomyopathy was characterized by marked changes in the cardiac transcriptome and metabolome both in the left and right ventricle. Downregulated transcripts are related to energy metabolism and mitochondrial function, accompanied by striking alterations in metabolites involved in cardiac energetics, redox homeostasis, and amino acid metabolism. Upregulated transcripts are involved in cytoskeletal organization and extracellular matrix. Finally, we noted increased metabolite levels of antioxidants glutathione and ascorbate. These findings provide evidence that chemogenetic generation of oxidative stress leads to a robust heart failure model with distinct transcriptomic and metabolomic signatures and set the basis for understanding the underlying pathophysiology of chronic oxidative stress in the heart.NEW & NOTEWORTHY We have developed a "chemogenetic" heart failure animal model that recapitulates a central feature of human heart failure: increased cardiac redox stress. We used a recombinant DAAO enzyme to generate H2O2 in cardiomyocytes, leading to cardiomyopathy. Here we report striking changes in the cardiac metabolome and transcriptome following chemogenetic heart failure, similar to changes observed in human heart failure. Our findings help validate chemogenetic approaches for the discovery of novel therapeutic targets in heart failure.
Collapse
Affiliation(s)
- Fotios Spyropoulos
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrea Sorrentino
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Peiran Yang
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Markus Waldeck-Weiermair
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Benjamin Steinhorn
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Emrah Eroglu
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Seyed Soheil Saeedi Saravi
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul Yu
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcia Haigis
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thomas Michel
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
42
|
Pessoa J, Teixeira J. Cytoskeleton alterations in non-alcoholic fatty liver disease. Metabolism 2022; 128:155115. [PMID: 34974078 DOI: 10.1016/j.metabol.2021.155115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Due to its extremely high prevalence and severity, non-alcoholic fatty liver disease (NALFD) is a serious health and economic concern worldwide. Developing effective methods of diagnosis and therapy demands a deeper understanding of its molecular basis. One of the strategies in such an endeavor is the analysis of alterations in the morphology of liver cells. Such alterations, widely reported in NAFLD patients and disease models, are related to the cytoskeleton. Therefore, the fate of the cytoskeleton components is useful to uncover the molecular basis of NAFLD, to further design innovative approaches for its diagnosis and therapy. MAIN FINDINGS Several cytoskeleton proteins are up-regulated in liver cells of NAFLD patients. Under pathological conditions, keratin 18 is released from hepatocytes and its detection in the blood emerges as a non-invasive diagnosis tool. α-Smooth muscle actin is up-regulated in hepatic stellate cells and its down-regulation has been widely tested as a potential NALFD therapeutic approach. Other cytoskeleton proteins, such as vimentin, are also up-regulated. CONCLUSIONS NAFLD progression involves alterations in expression levels of proteins that build the liver cytoskeleton or associate with it. These findings provide a timely opportunity of developing novel approaches for NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- João Pessoa
- CNC - Center for Neuroscience and Cell Biology, CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - José Teixeira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
43
|
Long noncoding RNA LINC01234 promotes hepatocellular carcinoma progression through orchestrating aspartate metabolic reprogramming. Mol Ther 2022; 30:2354-2369. [DOI: 10.1016/j.ymthe.2022.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/08/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022] Open
|
44
|
Wen H, Fei Y, Cai R, Yao X, Li Y, Wang X, Xue C, Hu Y, Li M, Luo Z. Tumor-activatable biomineralized nanotherapeutics for integrative glucose starvation and sensitized metformin therapy. Biomaterials 2021; 278:121165. [PMID: 34649197 DOI: 10.1016/j.biomaterials.2021.121165] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022]
Abstract
Metformin is a clinically-approved anti-diabetic drug with emerging antitumor potential, but its antitumor activity is highly susceptible to local glucose abundance. Herein, we construct a nanotherapeutic platform based on biocompatible constituents to sensitize tumor cells for metformin therapy via cooperative glucose starvation. The nanoplatform was synthesized through the spontaneous biomineralization of glucose oxidase (GOx) and metformin in amorphous calcium phosphate nanosubstrate, which was further modified with polyethylene glycol and cRGD ligands. This biomineralized nanosystem could efficiently deliver the therapeutic payloads to tumor cells in a targeted and bioresponsive manner. Here GOx could catalyze the oxidation of glucose into gluconic acid and H2O2, thus depleting the glucose in tumor intracellular compartment while accelerating the release of the entrapped therapeutic payloads. The selective glucose deprivation would not only disrupt tumor energy metabolism, but also upregulate the PP2A regulatory subunit B56δ and sensitize tumor cells to the metformin-induced CIP2A inhibition, leading to efficient apoptosis induction via PP2A-GSK3β-MCL-1 axis with negligible side effects. This study may offer new avenues for targeted tumor therapy in the clinical context.
Collapse
Affiliation(s)
- Hong Wen
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Yang Fei
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Ruisi Cai
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xuemei Yao
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Yanan Li
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Xuan Wang
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Chencheng Xue
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, PR China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, PR China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
45
|
Hobson CM, Aaron JS, Heddleston JM, Chew TL. Visualizing the Invisible: Advanced Optical Microscopy as a Tool to Measure Biomechanical Forces. Front Cell Dev Biol 2021; 9:706126. [PMID: 34552926 PMCID: PMC8450411 DOI: 10.3389/fcell.2021.706126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 01/28/2023] Open
Abstract
The importance of mechanical force in biology is evident across diverse length scales, ranging from tissue morphogenesis during embryo development to mechanotransduction across single adhesion proteins at the cell surface. Consequently, many force measurement techniques rely on optical microscopy to measure forces being applied by cells on their environment, to visualize specimen deformations due to external forces, or even to directly apply a physical perturbation to the sample via photoablation or optogenetic tools. Recent developments in advanced microscopy offer improved approaches to enhance spatiotemporal resolution, imaging depth, and sample viability. These advances can be coupled with already existing force measurement methods to improve sensitivity, duration and speed, amongst other parameters. However, gaining access to advanced microscopy instrumentation and the expertise necessary to extract meaningful insights from these techniques is an unavoidable hurdle. In this Live Cell Imaging special issue Review, we survey common microscopy-based force measurement techniques and examine how they can be bolstered by emerging microscopy methods. We further explore challenges related to the accompanying data analysis in biomechanical studies and discuss the various resources available to tackle the global issue of technology dissemination, an important avenue for biologists to gain access to pre-commercial instruments that can be leveraged for biomechanical studies.
Collapse
Affiliation(s)
- Chad M. Hobson
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Jesse S. Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - John M. Heddleston
- Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, FL, United States
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| |
Collapse
|
46
|
MacVicar T, Langer T. Mechanometabolism: Mitochondria promote resilience under pressure. Curr Biol 2021; 31:R859-R861. [PMID: 34256921 DOI: 10.1016/j.cub.2021.05.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mechanical forces regulate metabolism in healthy and cancerous tissue. A new study reveals that extracellular matrix stiffness modulates mitochondrial shape and function. The mechanical reprogramming of mitochondria confers resistance to oxidative stress and promotes survival.
Collapse
Affiliation(s)
- Thomas MacVicar
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|