1
|
Zhang J, Rinne SS, Yin W, Leitao CD, Björklund E, Abouzayed A, Ståhl S, Löfblom J, Orlova A, Gräslund T, Vorobyeva A. Affibody-Drug Conjugates Targeting the Human Epidermal Growth Factor Receptor-3 Demonstrate Therapeutic Efficacy in Mice Bearing Low Expressing Xenografts. ACS Pharmacol Transl Sci 2024; 7:3228-3240. [PMID: 39416966 PMCID: PMC11475273 DOI: 10.1021/acsptsci.4c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024]
Abstract
The outcome of clinical trials evaluating drugs targeting the human epidermal growth factor receptor 3 (HER3) has been poor, with primary concerns related to lack of efficacy. HER3 is considered a difficult target since its overexpression on tumors is relatively low and there is normal expression in many different organs. However, a significant number of patients across different cancer indications have overexpression of HER3 and the development of novel modalities targeting HER3 is therefore warranted. Here, we have investigated the properties of affibody-based drug conjugates targeting HER3. The HER3-targeting affibody molecule ZHER3 was fused in a mono- and bivalent format to an engineered albumin-binding domain (ABD) for in vivo half-life extension and was coupled to the cytotoxic drug DM1 via a non-cleavable maleimidocaproyl (mc) linker. In vivo, a moderate uptake was observed for [99mTc]Tc-labeled ZHER3-ABD-ZHER3-mcDM1 in HER3 expressing BxPC3 tumors (3.5 ± 0.3%IA/g) at 24 h after injection, and clearance was predominately renal-mediated. Treatment of mice with BxPC3 human pancreatic cancer xenografts showed that a combination of ZHER3-ABD-ZHER3-mcDM1 and its cytostatic analog ZHER3-ABD-ZHER3 was efficacious and superior to treatment with only ZHER3-ABD-ZHER3, providing tumor growth inhibition and longer median survival (90 d) in comparison to monotherapy (68 d) and vehicle control (49 d). ZHER3-ABD-ZHER3-mcDM1 was found to be a potent drug conjugate for the treatment of HER3-expressing tumors in mice.
Collapse
Affiliation(s)
- Jie Zhang
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Sara S. Rinne
- Department
of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 751 83 Uppsala, Sweden
| | - Wen Yin
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Charles Dahlsson Leitao
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Elvira Björklund
- Department
of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 751 83 Uppsala, Sweden
| | - Ayman Abouzayed
- Department
of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 751 83 Uppsala, Sweden
| | - Stefan Ståhl
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - John Löfblom
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Anna Orlova
- Department
of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 751 83 Uppsala, Sweden
- Science
for Life Laboratory, Dag Hammarskjöldsv 14C, 751
83 Uppsala, Sweden
| | - Torbjörn Gräslund
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Anzhelika Vorobyeva
- Department
of Immunology, Genetics and Pathology, Uppsala
University, Dag Hammarskjölds
Väg 20, 751 85 Uppsala, Sweden
| |
Collapse
|
2
|
Hassanzadeh Makoui R, Fekri S, Ansari N, Hassanzadeh Makoui M. Investigating the Co-Expression Rate of HER2 and HER3 Biomarkers in Cancer Patients: A Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 2024; 25:2979-2990. [PMID: 39342574 DOI: 10.31557/apjcp.2024.25.9.2979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Many types of cancer express the HER2/HER3 heterodimer, which is a crucial oncogenic unit. Research has shown that when these two biomarkers are expressed together, it correlates with higher tumor aggressiveness and lower overall survival rate. Therefore, many therapies have been developed to target both biomarkers simultaneously. This study aims to collect data on the co-expression levels of these biomarkers across different types of cancers. METHODS A comprehensive search was conducted across PubMed, Scopus, Embase, and Web of Science databases to identify relevant studies. The event rates and their corresponding 95% confidence intervals were calculated. Heterogeneity, subgroup, and meta-regression analyses were conducted based on patients' residency region, age, and gender. The protocol of this study was registered in PROSPERO under ID: CRD42024504256. RESULTS We have detected 60 studies that met all of the inclusion criteria for our research. Out of these, we have focused on a total of 19 studies (with 6,079 participants) related to breast cancer, 9 studies (with 829 participants) related to lung cancer, 6 studies (with 1423 participants) related to gastric cancer, and 4 studies (with 802 participants) related to colorectal cancer for conducting our meta-analysis. According to our results, the co-expression rate of HER2 and HER3 in breast cancer patients is 18.5% (95%CI 11.7-27.9), in colorectal cancer patients is 17.1% (95%CI 2.4-63.4), in gastric cancer patients is 11.3% (95%CI 4.2-17.2), and in lung cancer patients is 12.7% (95%CI 5.2-22.8). The co-expression of HER2 and HER3 in lung cancer has a significant association with patients' gender (P=0.038). CONCLUSION The study found that HER2 and HER3 biomarkers, which are targets for different therapies, are co-expressed in various types of cancer.
Collapse
Affiliation(s)
- Reza Hassanzadeh Makoui
- Department of Cardiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shiva Fekri
- Department of Obstetrics and Gynecology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negar Ansari
- Department of Internal Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | |
Collapse
|
3
|
Oslund RC, Holland PM, Lesley SA, Fadeyi OO. Therapeutic potential of cis-targeting bispecific antibodies. Cell Chem Biol 2024; 31:1473-1489. [PMID: 39111317 DOI: 10.1016/j.chembiol.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024]
Abstract
The growing clinical success of bispecific antibodies (bsAbs) has led to rapid interest in leveraging dual targeting in order to generate novel modes of therapeutic action beyond mono-targeting approaches. While bsAbs that bind targets on two different cells (trans-targeting) are showing promise in the clinic, the co-targeting of two proteins on the same cell surface through cis-targeting bsAbs (cis-bsAbs) is an emerging strategy to elicit new functionalities. This includes the ability to induce proximity, enhance binding to a target, increase target/cell selectivity, and/or co-modulate function on the cell surface with the goal of altering, reversing, or eradicating abnormal cellular activity that contributes to disease. In this review, we focus on the impact of cis-bsAbs in the clinic, their emerging applications, and untangle the intricacies of improving bsAb discovery and development.
Collapse
|
4
|
Zeng H, Ning W, Liu X, Luo W, Xia N. Unlocking the potential of bispecific ADCs for targeted cancer therapy. Front Med 2024; 18:597-621. [PMID: 39039315 DOI: 10.1007/s11684-024-1072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/08/2024] [Indexed: 07/24/2024]
Abstract
Antibody-drug conjugates (ADCs) are biologically targeted drugs composed of antibodies and cytotoxic drugs connected by linkers. These innovative compounds enable precise drug delivery to tumor cells, minimizing harm to normal tissues and offering excellent prospects for cancer treatment. However, monoclonal antibody-based ADCs still present challenges, especially in terms of balancing efficacy and safety. Bispecific antibodies are alternatives to monoclonal antibodies and exhibit superior internalization and selectivity, producing ADCs with increased safety and therapeutic efficacy. In this review, we present available evidence and future prospects regarding the use of bispecific ADCs for cancer treatment, including a comprehensive overview of bispecific ADCs that are currently in clinical trials. We offer insights into the future development of bispecific ADCs to provide novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Hongye Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
5
|
Zong HF, Li X, Han L, Wang L, Liu JJ, Yue YL, Chen J, Ke Y, Jiang H, Xie YQ, Zhang BH, Zhu JW. A novel bispecific antibody drug conjugate targeting HER2 and HER3 with potent therapeutic efficacy against breast cancer. Acta Pharmacol Sin 2024; 45:1727-1739. [PMID: 38605180 PMCID: PMC11272928 DOI: 10.1038/s41401-024-01279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Antibody drug conjugate (ADC) therapy has become one of the most promising approaches in cancer immunotherapy. Bispecific targeting could enhance the efficacy and safety of ADC by improving its specificity, affinity and internalization. In this study we constructed a HER2/HER3-targeting bispecific ADC (BsADC) and characterized its physiochemical properties, target specificity and internalization in vitro, and assessed its anti-tumor activities in breast cancer cell lines and in animal models. The HER2/HER3-targeting BsADC had a drug to antibody ratio (DAR) of 2.89, displayed a high selectivity against the target JIMT-1 breast cancer cells in vitro, as well as a slightly higher level of internalization than HER2- or HER3-monospecific ADCs. More importantly, the bispecific ADC potently inhibited the viability of MCF7, JIMT-1, BT474, BxPC-3 and SKOV-3 cancer cells in vitro. In JIMT-1 breast cancer xenograft mice, a single injection of bispecific ADC (3 mg/kg, i.v.) significantly inhibited the tumor growth with an efficacy comparable to that caused by combined injection of HER2 and HER3-monospecific ADCs (3 mg/kg for each). Our study demonstrates that the bispecific ADC concept can be applied to development of more potent new cancer therapeutics than the monospecific ADCs.
Collapse
Affiliation(s)
- Hui-Fang Zong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Jecho Institute Co., Ltd., Shanghai, 200240, China
| | - Xi Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Han
- Jecho Institute Co., Ltd., Shanghai, 200240, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun-Jun Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ya-Li Yue
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Chen
- Jecho Institute Co., Ltd., Shanghai, 200240, China
| | - Yong Ke
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Jiang
- Jecho Laboratories, Inc., Frederick, MD, 21704, USA
| | - Yue-Qing Xie
- Jecho Institute Co., Ltd., Shanghai, 200240, China
- Jecho Laboratories, Inc., Frederick, MD, 21704, USA
| | - Bao-Hong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jian-Wei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Jecho Institute Co., Ltd., Shanghai, 200240, China.
- Jecho Laboratories, Inc., Frederick, MD, 21704, USA.
| |
Collapse
|
6
|
Sankaran PK, Poskute R, Dewis L, Watanabe Y, Wong V, Fernandez LP, Shannon R, Wong L, Shrubsall R, Carman L, Holt A, Lepore G, Mishra R, Sewell L, Gothard M, Cheeks M, Lindo V. Comprehensive Stress Stability Studies Reveal the Prominent Stability of the Liquid-Formulated Biotherapeutic Asymmetric Monovalent Bispecific IgG1 Monoclonal Antibody Format. J Pharm Sci 2024; 113:2101-2113. [PMID: 38705464 DOI: 10.1016/j.xphs.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
The developed asymmetric monovalent bispecific IgG1 or Duet monoclonal antibody (Duet mAb) has two distinct fragment antigen-binding region (Fab) subunits that target two different epitope specificities sequentially or simultaneously. The design features include unique engineered disulfide bridges, knob-into-hole mutations, and kappa and lambda chains to produce Duet mAbs. These make it structurally and functionally complex, so one expects challenging developability linked to instability, degradation of products and pathways, and limited reports available. Here, we have treated the product with different sources of extreme stress over a lengthy period, including varying heat, pH, photo stress, chemical oxidative stress, accelerated stress in physiological conditions, and forced glycation conditions. The effects of different stress conditions on the product were assessed using various analytical characterization tools to measure product-related substances, post-translational modifications (PTMs), structural integrity, higher-order disulfide linkages, and biological activity. The results revealed degradation products and pathways of Duet mAb. A moderate increase in size, charge, and hydrophobic variants, PTMs, including deamidation, oxidation, isomerization, and glycation were observed, with most conditions exhibiting biological activity. In addition, the characterization of fractionated charge variants, including deamidated species, showed satisfactory biological activity. This study demonstrated the prominent stability of the Duet mAb format comparable to most marketed mAbs.
Collapse
Affiliation(s)
| | - Ryte Poskute
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Lydia Dewis
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Yasunori Watanabe
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Vanessa Wong
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | | | - Richard Shannon
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Lisa Wong
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Rebecca Shrubsall
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Lee Carman
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Alexander Holt
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Giordana Lepore
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Rahul Mishra
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Laura Sewell
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Matt Gothard
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Matthew Cheeks
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Viv Lindo
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
7
|
Song Y, Bienvenu LA, Bongcaron V, Prijaya SA, Maluenda AC, Walsh APG, McFayden JD, Pietersz GA, Peter K, Wang X. Platelet-targeted thromboprophylaxis with a human serum albumin fusion drug: Preventing thrombosis and reducing cardiac ischemia/reperfusion injurywithout bleeding complications. Theranostics 2024; 14:3267-3281. [PMID: 38855181 PMCID: PMC11155409 DOI: 10.7150/thno.97517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/11/2024] [Indexed: 06/11/2024] Open
Abstract
Background: Myocardial infarction (MI) as a consequence of atherosclerosis-associated acute thrombosis is a leading cause of death and disability globally. Antiplatelet and anticoagulant drugs are standard therapies in preventing and treating MI. However, all clinically used drugs are associated with bleeding complications, which ultimately limits their use in patients with a high risk of bleeding. We have developed a new recombinant drug, targ-HSA-TAP, that combines targeting and specific inhibition of activated platelets as well as anticoagulation. This drug is designed and tested for a prolonged circulating half-life, enabling unique thromboprophylaxis without bleeding complications. Methods: Targ-HSA-TAP combines a single-chain antibody (scFv) that targets activated glycoprotein IIb/IIIa on activated platelets, human serum albumin (HSA) for prolonged circulation, and tick anticoagulant peptide (TAP) for coagulation FX inhibition. A non-binding scFv is employed as a non-targeting control (non-targ-HSA-TAP). Its efficacy was investigated in vivo using murine models of acute thrombosis and cardiac ischemia-reperfusion (I/R) injury. Results: Our experiments confirmed the targeting specificity of targ-HSA-TAP to activated platelets and demonstrated effective prevention of platelet aggregation and thrombus formation, as well as FXa inhibition in vitro. Thromboprophylactic administration of targ-HSA-TAP subcutaneously in mice prevented occlusion of the carotid artery after ferric chloride injury as compared to non-targ-HSA-TAP and PBS-control treated mice. By comparing the therapeutic outcomes between targ-TAP and targ-HSA-TAP, we demonstrate the significant improvements brought by the HSA fusion in extending the drug's half-life and enhancing its therapeutic window for up to 16 h post-administration. Importantly, tail bleeding time was not prolonged with targ-HSA-TAP in contrast to the clinically used anticoagulant enoxaparin. Furthermore, in a murine model of cardiac I/R injury, mice administered targ-HSA-TAP 10 h before injury demonstrated preserved cardiac function, with significantly higher ejection fraction and fractional shortening, as compared to the non-targ-HSA-TAP and PBS control groups. Advanced strain analysis revealed reduced myocardial deformation and histology confirmed a reduced infarct size in targ-HSA-TAP treated mice compared to control groups. Conclusion: The inclusion of HSA represents a significant advancement in the design of targeted therapeutic agents for thromboprophylaxis. Our activated platelet-targeted targ-HSA-TAP is a highly effective antithrombotic drug with both anticoagulant and antiplatelet effects while retaining normal hemostasis. The long half-life of targ-HSA-TAP provides the unique opportunity to use this antithrombotic drug for more effective, long-lasting and safer anti-thrombotic prophylaxis. In cases where MI occurs, this prophylactic strategy reduces thrombus burden and effectively reduces cardiac I/R injury.
Collapse
Affiliation(s)
- Yuyang Song
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
| | - Laura A. Bienvenu
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translational and Implementation, La Trobe University, Melbourne, Australia
| | - Viktoria Bongcaron
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Shania A. Prijaya
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ana C. Maluenda
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Aidan P. G. Walsh
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - James D. McFayden
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A. Pietersz
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translational and Implementation, La Trobe University, Melbourne, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Poskute R, Sankaran PK, Sewell L, Lepore G, Shrubsall R, Dewis L, Watanabe Y, Wong V, Pascual Fernandez L, Mishra R, Holt A, Sou S, Harris C, Moreno Rodriguez C, Cankorur-Cetinkaya A, Smith J, Lonska N, Powell A, Cui T, Cheeks M, Lindo V. Identification and quantification of chain-pairing variants or mispaired species of asymmetric monovalent bispecific IgG1 monoclonal antibody format using reverse-phase polyphenyl chromatography coupled electrospray ionization mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1237:124085. [PMID: 38513430 DOI: 10.1016/j.jchromb.2024.124085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Developing a knob-into-hole asymmetric bispecific IgG1 monoclonal antibody (mAb) poses manufacturing challenges due to the expression of chain pairing variants, also called mispaired species, in the desired product. The incorrect pairing of light and heavy chains could result in heterogeneous mispaired species of homodimers, heterodimers, light chain swapping, and low molecular weight species (LMWS). Standard chromatography, capillary electrophoretic, or spectroscopic methods poorly resolve these from the main variants. Here, we report a highly sensitive reverse-phase polyphenyl ultra-high-performance liquid chromatography (RP-UHPLC) method to accurately measure mispaired species of Duet mAb format, an asymmetric IgG1 bispecific mAb, for both process development and quality control analytical tests. Coupled with electrospray ionization mass spectrometry (ESI-MS), it enabled direct online characterization of mispaired species. This single direct assay detected diverse mispaired IgG-like species and LMWS. The method resolved eight disulfide bonds dissociated LMWS and three mispaired LMWS. It also resolved three different types of IgG-like mispaired species, including two homodimers and one heterodimer. The characterization and quantification simultaneously enabled the cell line selection that produces a lesser heterogeneity and lower levels of mispaired species with the desired correctly paired product. The biological activity assessment of samples with increased levels of these species quantified by the method exhibited a linear decline in potency with increasing levels of mispaired species in the desired product. We also demonstrated the utility of the technique for testing in-process intermediate materials to determine and assess downstream purification process capability in removing diverse mispaired IgG-like species and LMWS to a certain level during the downstream purification process. Our investigation demonstrates that adopting this method was vital in developing asymmetric bispecific mAb from the initial stage of cell line development to manufacturing process development. Therefore, this tool could be used in the control strategy to monitor and control mispaired species during manufacturing, thus improving the quality control of the final product.
Collapse
Affiliation(s)
- Ryte Poskute
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | | | - Laura Sewell
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Giordana Lepore
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Rebecca Shrubsall
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Lydia Dewis
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Yasunori Watanabe
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Vanessa Wong
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | | | - Rahul Mishra
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Alexander Holt
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Susie Sou
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Claire Harris
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Cristina Moreno Rodriguez
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Ayca Cankorur-Cetinkaya
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Jennifer Smith
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Nikola Lonska
- Purification Process Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Adam Powell
- Purification Process Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Tingting Cui
- Purification Process Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Matthew Cheeks
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Viv Lindo
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
9
|
Halkidis K, Meng C, Liu S, Mayne L, Siegel DL, Zheng XL. Mechanisms of inhibition of human monoclonal antibodies in immune thrombotic thrombocytopenic purpura. Blood 2023; 141:2993-3005. [PMID: 37023370 PMCID: PMC10315623 DOI: 10.1182/blood.2022019252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 04/08/2023] Open
Abstract
Antibody binding to a plasma metalloprotease, a disintegrin and metalloproteinase with thrombospondin type 1 repeats 13 (ADAMTS13), is necessary for the development of immune thrombotic thrombocytopenic purpura (iTTP). Inhibition of ADAMTS13-mediated von Willebrand factor (VWF) cleavage by such antibodies clearly plays a role in the pathophysiology of the disease, although the mechanisms by which they inhibit ADAMTS13 enzymatic function are not fully understood. At least some immunoglobulin G-type antibodies appear to affect the conformational accessibility of ADAMTS13 domains involved in both substrate recognition and inhibitory antibody binding. We used single-chain fragments of the variable region previously identified via phage display from patients with iTTP to explore the mechanisms of action of inhibitory human monoclonal antibodies. Using recombinant full-length ADAMTS13, truncated ADAMTS13 variants, and native ADAMTS13 in normal human plasma, we found that, regardless of the conditions tested, all 3 inhibitory monoclonal antibodies tested affected enzyme turnover rate much more than substrate recognition of VWF. Hydrogen-to-deuterium exchange plus mass spectrometry experiments with each of these inhibitory antibodies demonstrated that residues in the active site of the catalytic domain of ADAMTS13 are differentially exposed to solvent in the presence and absence of monoclonal antibody binding. These results support the hypothesis that inhibition of ADAMTS13 in iTTP may not necessarily occur because the antibodies directly prevent VWF binding, but instead because of allosteric effects that impair VWF cleavage, likely by affecting the conformation of the catalytic center in the protease domain of ADAMTS13. Our findings provide novel insight into the mechanism of autoantibody-mediated inhibition of ADAMTS13 and pathogenesis of iTTP.
Collapse
Affiliation(s)
- Konstantine Halkidis
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Chan Meng
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Szumam Liu
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Leland Mayne
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA
| | - Don L. Siegel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
- Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
10
|
Jacquot P, Muñoz-Garcia J, Fleury M, Cochonneau D, Gaussin R, Enouf E, Roze C, Ollivier E, Cinier M, Heymann D. Engineering of a Bispecific Nanofitin with Immune Checkpoint Inhibitory Activity Conditioned by the Cross-Arm Binding to EGFR and PDL1. Biomolecules 2023; 13:biom13040636. [PMID: 37189383 DOI: 10.3390/biom13040636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Re-education of the tumor microenvironment with immune checkpoint inhibitors (ICI) has provided the most significant advancement in cancer management, with impressive efficacy and durable response reported. However, low response rates and a high frequency of immune-related adverse events (irAEs) remain associated with ICI therapies. The latter can be linked to their high affinity and avidity for their target that fosters on-target/off-tumor binding and subsequent breaking of immune self-tolerance in normal tissues. Many multispecific protein formats have been proposed to increase the tumor cell’s selectivity of ICI therapies. In this study, we explored the engineering of a bispecific Nanofitin by the fusion of an anti-epidermal growth factor receptor (EGFR) and anti-programmed cell death ligand 1 (PDL1) Nanofitin modules. While lowering the affinity of the Nanofitin modules for their respective target, the fusion enables the simultaneous engagement of EGFR and PDL1, which translates into a selective binding to tumor cells co-expressing EGFR and PDL1 only. We demonstrated that affinity-attenuated bispecific Nanofitin could elicit PDL1 blockade exclusively in an EGFR-directed manner. Overall, the data collected highlight the potential of this approach to enhance the selectivity and safety of PDL1 checkpoint inhibition.
Collapse
|
11
|
Rabia E, Garambois V, Dhommée C, Larbouret C, Lajoie L, Buscail Y, Jimenez-Dominguez G, Choblet-Thery S, Liaudet-Coopman E, Cerutti M, Jarlier M, Ravel P, Gros L, Pirot N, Thibault G, Zhukovsky EA, Gérard PE, Pèlegrin A, Colinge J, Chardès T. Design and selection of optimal ErbB-targeting bispecific antibodies in pancreatic cancer. Front Immunol 2023; 14:1168444. [PMID: 37153618 PMCID: PMC10157173 DOI: 10.3389/fimmu.2023.1168444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
The ErbB family of receptor tyrosine kinases is a primary target for small molecules and antibodies for pancreatic cancer treatment. Nonetheless, the current treatments for this tumor are not optimal due to lack of efficacy, resistance, or toxicity. Here, using the novel BiXAb™ tetravalent format platform, we generated bispecific antibodies against EGFR, HER2, or HER3 by considering rational epitope combinations. We then screened these bispecific antibodies and compared them with the parental single antibodies and antibody pair combinations. The screen readouts included measuring binding to the cognate receptors (mono and bispecificity), intracellular phosphorylation signaling, cell proliferation, apoptosis and receptor expression, and also immune system engagement assays (antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity). Among the 30 BiXAbs™ tested, we selected 3Patri-1Cetu-Fc, 3Patri-1Matu-Fc and 3Patri-2Trastu-Fc as lead candidates. The in vivo testing of these three highly efficient bispecific antibodies against EGFR and HER2 or HER3 in pre-clinical mouse models of pancreatic cancer showed deep antibody penetration in these dense tumors and robust tumor growth reduction. Application of such semi-rational/semi-empirical approach, which includes various immunological assays to compare pre-selected antibodies and their combinations with bispecific antibodies, represents the first attempt to identify potent bispecific antibodies against ErbB family members in pancreatic cancer.
Collapse
Affiliation(s)
- Emilia Rabia
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Véronique Garambois
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Christine Dhommée
- GICC, Groupe Innovation et Ciblage Cellulaire, Université de Tours, Tours, France
| | - Christel Larbouret
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Laurie Lajoie
- GICC, Groupe Innovation et Ciblage Cellulaire, Université de Tours, Tours, France
| | - Yoan Buscail
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
- Réseau d’Histologie Expérimentale de Montpellier, BioCampus, Université de Montpellier, UAR3426 CNRS-US09 INSERM, Montpellier, France
| | - Gabriel Jimenez-Dominguez
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Sylvie Choblet-Thery
- Plateforme Bacfly, Baculovirus et Thérapie, BioCampus, UAR3426 CNRS-US09 INSERM, Saint-Christol-Lèz Alès, France
| | - Emmanuelle Liaudet-Coopman
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Martine Cerutti
- Plateforme Bacfly, Baculovirus et Thérapie, BioCampus, UAR3426 CNRS-US09 INSERM, Saint-Christol-Lèz Alès, France
| | - Marta Jarlier
- ICM, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Patrice Ravel
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Laurent Gros
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
- CNRS, Centre National de la Recherche Scientifique, Paris, France
| | - Nelly Pirot
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
- Réseau d’Histologie Expérimentale de Montpellier, BioCampus, Université de Montpellier, UAR3426 CNRS-US09 INSERM, Montpellier, France
| | - Gilles Thibault
- GICC, Groupe Innovation et Ciblage Cellulaire, Université de Tours, Tours, France
| | - Eugene A. Zhukovsky
- Biomunex Pharmaceuticals, Incubateur Paris Biotech santé, Hopital Cochin, Paris, France
| | | | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Jacques Colinge
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Thierry Chardès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
- Plateforme Bacfly, Baculovirus et Thérapie, BioCampus, UAR3426 CNRS-US09 INSERM, Saint-Christol-Lèz Alès, France
- CNRS, Centre National de la Recherche Scientifique, Paris, France
- *Correspondence: Thierry Chardès,
| |
Collapse
|
12
|
Nazari M, Emamzadeh R, Jahanpanah M, Yazdani E, Radmanesh R. A recombinant affitoxin derived from a HER3 affibody and diphteria-toxin has potent and selective antitumor activity. Int J Biol Macromol 2022; 219:1122-1134. [PMID: 36041577 DOI: 10.1016/j.ijbiomac.2022.08.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
Abstract
High expression of receptor tyrosine-protein kinase erbB-3 (HER3) has been found in several malignancies such as breast cancer. In this study, we designed, produced and evaluated a new affitoxin consisting of a truncated form of diphtheria toxin and a HER3-binding affibody domains. The new affitoxin was expressed in Escherichia coli and purified by affinity chromatography. We evaluated the suitability of affitoxin to kill HER3 positive breast cancer cells with MTT and apoptosis assays. The protein synthesis inhibition was also evaluated. The IC50 value in HER3 negative cells is about 10 times more than HER3 positive cells in new design of affitoxin. The specificity of affitoxin for binding to HER3 positive cells was also investigated with binding assay with flow cytometry. The results show that, the new affitoxin is an anti-cancer molecule with specific binding to HER3 positive cells and may open a new window for the treatment of HER3-positive cancers.
Collapse
Affiliation(s)
- Mahboobeh Nazari
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran; Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.
| | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Maryam Jahanpanah
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Elnaz Yazdani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ramin Radmanesh
- Department of Pharmacoeconomics and Pharmaceutical Management, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Targeting Tumor Cells Overexpressing the Human Epidermal Growth Factor Receptor 3 with Potent Drug Conjugates Based on Affibody Molecules. Biomedicines 2022; 10:biomedicines10061293. [PMID: 35740315 PMCID: PMC9219639 DOI: 10.3390/biomedicines10061293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence suggests that therapy targeting the human epidermal growth factor receptor 3 (HER3) could be a viable route for targeted cancer therapy. Here, we studied a novel drug conjugate, ZHER3-ABD-mcDM1, consisting of a HER3-targeting affibody molecule, coupled to the cytotoxic tubulin polymerization inhibitor DM1, and an albumin-binding domain for in vivo half-life extension. ZHER3-ABD-mcDM1 showed a strong affinity to the extracellular domain of HER3 (KD 6 nM), and an even stronger affinity (KD 0.2 nM) to the HER3-overexpressing pancreatic carcinoma cell line, BxPC-3. The drug conjugate showed a potent cytotoxic effect on BxPC-3 cells with an IC50 value of 7 nM. Evaluation of a radiolabeled version, [99mTc]Tc-ZHER3-ABD-mcDM1, showed a relatively high rate of internalization, with a 27% internalized fraction after 8 h. Further in vivo evaluation showed that it could target BxPC-3 (pancreatic carcinoma) and DU145 (prostate carcinoma) xenografts in mice, with an uptake peaking at 6.3 ± 0.4% IA/g at 6 h post-injection for the BxPC-3 xenografts. The general biodistribution showed uptake in the liver, lung, salivary gland, stomach, and small intestine, organs known to express murine ErbB3 naturally. The results from the study show that ZHER3-ABD-mcDM1 is a highly potent and selective drug conjugate with the ability to specifically target HER3 overexpressing cells. Further pre-clinical and clinical development is discussed.
Collapse
|
14
|
Tan ZC, Orcutt-Jahns BT, Meyer AS. A quantitative view of strategies to engineer cell-selective ligand binding. Integr Biol (Camb) 2021; 13:269-282. [PMID: 34931243 DOI: 10.1093/intbio/zyab019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/12/2022]
Abstract
A critical property of many therapies is their selective binding to target populations. Exceptional specificity can arise from high-affinity binding to surface targets expressed exclusively on target cell types. In many cases, however, therapeutic targets are only expressed at subtly different levels relative to off-target cells. More complex binding strategies have been developed to overcome this limitation, including multi-specific and multivalent molecules, creating a combinatorial explosion of design possibilities. Guiding strategies for developing cell-specific binding are critical to employ these tools. Here, we employ a uniquely general multivalent binding model to dissect multi-ligand and multi-receptor interactions. This model allows us to analyze and explore a series of mechanisms to engineer cell selectivity, including mixtures of molecules, affinity adjustments, valency changes, multi-specific molecules and ligand competition. Each of these strategies can optimize selectivity in distinct cases, leading to enhanced selectivity when employed together. The proposed model, therefore, provides a comprehensive toolkit for the model-driven design of selectively binding therapies.
Collapse
Affiliation(s)
- Zhixin Cyrillus Tan
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA 90024, USA
| | - Brian T Orcutt-Jahns
- Department of Bioengineering, University of California, Los Angeles, CA 90024, USA
| | - Aaron S Meyer
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA 90024, USA.,Department of Bioengineering, University of California, Los Angeles, CA 90024, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90024, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
15
|
HER3 PET Imaging: 68Ga-Labeled Affibody Molecules Provide Superior HER3 Contrast to 89Zr-Labeled Antibody and Antibody-Fragment-Based Tracers. Cancers (Basel) 2021; 13:cancers13194791. [PMID: 34638277 PMCID: PMC8508546 DOI: 10.3390/cancers13194791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary HER3 is a known driver for oncogenesis and therapy resistance in solid cancers. PET imaging could be a useful tool to non-invasively detect and monitor HER3 expression and aid in the selection of patients for HER3-targeted therapy. PET tracers based on therapeutic antibodies have thus far shown limited success in reliably imaging HER3-expressing tumors in clinical trials. Smaller-sized tracers specifically designed for imaging might be needed for higher contrast imaging and sufficient sensitivity. Our group has previously studied the use of radiolabeled affibody molecules for imaging of HER3 expression. In the present study, we compared four different types of potential PET tracers for imaging of HER3 expression in a preclinical model. We demonstrated that the affibody-based tracer, [68Ga]Ga-ZHER3, could provide overall superior imaging contrast to antibody- and antibody-fragment-based tracers shortly after injection. Our results indicate that HER3-targeting affibody molecules are promising agents for PET imaging of HER3 expression. Abstract HER3 (human epidermal growth factor receptor type 3) is a challenging target for diagnostic radionuclide molecular imaging due to the relatively modest overexpression in tumors and substantial expression in healthy organs. In this study, we compared four HER3-targeting PET tracers based on different types of targeting molecules in a preclinical model: the 89Zr-labeled therapeutic antibody seribantumab, a seribantumab-derived F(ab)2-fragment labeled with 89Zr and 68Ga, and the 68Ga-labeled affibody molecule [68Ga]Ga-ZHER3. The novel conjugates were radiolabeled and characterized in vitro using HER3-expressing BxPC-3 and DU145 human cancer cells. Biodistribution was studied using Balb/c nu/nu mice bearing BxPC-3 xenografts. HER3-negative RAMOS xenografts were used to demonstrate binding specificity in vivo. Autoradiography was conducted on the excised tumors. nanoPET/CT imaging was performed. New conjugates specifically bound to HER3 in vitro and in vivo. [68Ga]Ga-DFO-seribantumab-F(ab’)2 was considered unsuitable for imaging due to the low stability and high uptake in normal organs. The highest tumor-to-non-tumor contrast with [89Zr]Zr-DFO-seribantumab and [89Zr]Zr-DFO-seribantumab-F(ab’)2 was achieved at 96 h and 48 h pi, respectively. Despite lower tumor uptake, [68Ga]Ga-ZHER3 provided the best imaging contrast due to the fastest clearance from blood and normal organs. The results of our study suggest that affibody-based tracers are more suitable for PET imaging of HER3 expression than antibody- and antibody-fragment-based tracers.
Collapse
|
16
|
A scDb-based trivalent bispecific antibody for T-cell-mediated killing of HER3-expressing cancer cells. Sci Rep 2021; 11:13880. [PMID: 34230555 PMCID: PMC8260734 DOI: 10.1038/s41598-021-93351-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/23/2021] [Indexed: 01/12/2023] Open
Abstract
HER3 is a member of the EGF receptor family and elevated expression is associated with cancer progression and therapy resistance. HER3-specific T-cell engagers might be a suitable treatment option to circumvent the limited efficacy observed for HER3-blocking antibodies in clinical trials. In this study, we developed bispecific antibodies for T-cell retargeting to HER3-expressing tumor cells, utilizing either a single-chain diabody format (scDb) with one binding site for HER3 and one for CD3 on T-cells or a trivalent bispecific scDb-scFv fusion protein exhibiting an additional binding site for HER3. The scDb-scFv showed increased binding to HER3-expressing cancer cell lines compared to the scDb and consequently more effective T-cell activation and T-cell proliferation. Furthermore, the bivalent binding mode of the scDb-scFv for HER3 translated into more potent T-cell mediated cancer cell killing, and allowed to discriminate between moderate and low HER3-expressing target cells. Thus, our study demonstrated the applicability of HER3 for T-cell retargeting with bispecific antibodies, even at moderate expression levels, and the increased potency of an avidity-mediated specificity gain, potentially resulting in a wider safety window of bispecific T-cell engaging antibodies targeting HER3.
Collapse
|
17
|
Rinne SS, Orlova A, Tolmachev V. PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. Int J Mol Sci 2021; 22:ijms22073663. [PMID: 33915894 PMCID: PMC8036874 DOI: 10.3390/ijms22073663] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The human epidermal growth factor receptor family (EGFR-family, other designations: HER family, RTK Class I) is strongly linked to oncogenic transformation. Its members are frequently overexpressed in cancer and have become attractive targets for cancer therapy. To ensure effective patient care, potential responders to HER-targeted therapy need to be identified. Radionuclide molecular imaging can be a key asset for the detection of overexpression of EGFR-family members. It meets the need for repeatable whole-body assessment of the molecular disease profile, solving problems of heterogeneity and expression alterations over time. Tracer development is a multifactorial process. The optimal tracer design depends on the application and the particular challenges of the molecular target (target expression in tumors, endogenous expression in healthy tissue, accessibility). We have herein summarized the recent preclinical and clinical data on agents for Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPECT) imaging of EGFR-family receptors in oncology. Antibody-based tracers are still extensively investigated. However, their dominance starts to be challenged by a number of tracers based on different classes of targeting proteins. Among these, engineered scaffold proteins (ESP) and single domain antibodies (sdAb) show highly encouraging results in clinical studies marking a noticeable trend towards the use of smaller sized agents for HER imaging.
Collapse
Affiliation(s)
- Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
- Correspondence: ; Tel.: +46-704-250-782
| |
Collapse
|
18
|
Cavaliere A, Sun S, Lee S, Bodner J, Li Z, Huang Y, Moores SL, Marquez-Nostra B. Development of [ 89Zr]ZrDFO-amivantamab bispecific to EGFR and c-MET for PET imaging of triple-negative breast cancer. Eur J Nucl Med Mol Imaging 2021; 48:383-394. [PMID: 32770372 PMCID: PMC7855369 DOI: 10.1007/s00259-020-04978-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Amivantamab is a novel bispecific antibody that simultaneously targets the epidermal growth factor receptor (EGFR) and the hepatocyte growth factor receptor (HGFR/c-MET) that are overexpressed in several types of cancer including triple-negative breast cancer (TNBC). Targeting both receptors simultaneously can overcome resistance to mono-targeted therapy. The purpose of this study is to develop 89Zr-labeled amivantamab as a potential companion diagnostic imaging agent to amivantamab therapy using various preclinical models of TNBC for evaluation. METHODS Amivantamab was conjugated to desferrioxamine (DFO) and radiolabeled with 89Zr to obtain [89Zr]ZrDFO-amivantamab. Binding of the bispecific [89Zr]ZrDFO-amivantamab as well as its mono-specific "single-arm" antibody controls were determined in vitro and in vivo. Biodistribution studies of [89Zr]ZrDFO-amivantamab were performed in MDA-MB-468 xenografts to determine the optimal imaging time point. PET/CT imaging with [89Zr]ZrDFO-amivantamab or its isotype control was performed in a panel of TNBC xenografts with varying levels of EGFR and c-MET expression. RESULTS [89Zr]ZrDFO-amivantamab was synthesized with a specific activity of 148 MBq/mg and radiochemical yield of ≥ 95%. Radioligand binding studies and western blot confirmed the order of EGFR and c-MET expression levels: HCC827 lung cancer cell (positive control) > MDA-MB-468 > MDA-MB-231 > MDA-MB-453. [89Zr]ZrDFO-amivantamab demonstrated bispecific binding in cell lines co-expressed with EGFR and c-MET. PET/CT imaging with [89Zr]ZrDFO-amivantamab in TNBC xenografted mice showed standard uptake value (SUVmean) of 6.0 ± 1.1 in MDA-MB-468, 4.2 ± 1.4 in MDA-MB-231, and 1.5 ± 1.4 in MDA-MB-453 tumors, which are consistent with their receptors' expression levels on the cell surface. CONCLUSION We have successfully prepared a radiolabeled bispecific antibody, [89Zr]ZrDFO-amivantamab, and evaluated its pharmacologic and imaging properties in comparison with its single-arm antibodies and non-specific isotype controls. [89Zr]ZrDFO-amivantamab demonstrated the greatest uptake in tumors co-expressing EGFR and c-MET.
Collapse
Affiliation(s)
- Alessandra Cavaliere
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520, USA
| | - Suxia Sun
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520, USA
- Department of Nutrition and Food Hygiene, Southern Medical University, Guangzhou, Guangdong, China
| | - Supum Lee
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520, USA
| | - Jacob Bodner
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520, USA
| | - Ziqi Li
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520, USA
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520, USA
| | | | - Bernadette Marquez-Nostra
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520, USA.
| |
Collapse
|
19
|
Rau A, Kocher K, Rommel M, Kühl L, Albrecht M, Gotthard H, Aschmoneit N, Noll B, Olayioye MA, Kontermann RE, Seifert O. A bivalent, bispecific Dab-Fc antibody molecule for dual targeting of HER2 and HER3. MAbs 2021; 13:1902034. [PMID: 33752566 PMCID: PMC7993124 DOI: 10.1080/19420862.2021.1902034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Dual targeting of surface receptors with bispecific antibodies is attracting increasing interest in cancer therapy. Here, we present a novel bivalent and bispecific antagonistic molecule (Dab-Fc) targeting human epidermal growth factors 2 and 3 (HER2 and HER3) derived from the Db-Ig platform, which was developed for the generation of multivalent and multispecific antibody molecules. Dab-Fc comprises the variable domains of the anti-HER2 antibody trastuzumab and the anti-HER3 antibody 3-43 assembled into a diabody-like structure stabilized by CH1 and CL domains and further fused to a human γ1 Fc region. The resulting Dab-Fc 2 × 3 molecule retained unhindered binding to both antigens and was able to bind both antigens sequentially. In cellular experiments, the Dab-Fc 2 × 3 molecule strongly bound to different tumor cell lines expressing HER2 and HER3 and was efficiently internalized. This was associated with potent inhibition of the proliferation and migration of these tumor cell lines. Furthermore, IgG-like pharmacokinetics and anti-tumoral activity were demonstrated in a xenograft tumor model of the gastric cancer cell-line NCI-N87. These results illustrate the suitability of our versatile Db-Ig platform technology for the generation of bivalent bispecific molecules, which has been successfully used here for the dual targeting of HER2 and HER3.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/pharmacokinetics
- Antibodies, Bispecific/pharmacology
- Antibody-Dependent Cell Cytotoxicity/drug effects
- Antineoplastic Agents, Immunological/pharmacokinetics
- Antineoplastic Agents, Immunological/pharmacology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Humans
- Immunoglobulin Fc Fragments/pharmacology
- MCF-7 Cells
- Mice, SCID
- Molecular Targeted Therapy
- Neoplasm Invasiveness
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/antagonists & inhibitors
- Receptor, ErbB-3/immunology
- Receptor, ErbB-3/metabolism
- Signal Transduction
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/immunology
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Alexander Rau
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Katharina Kocher
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Mirjam Rommel
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Lennart Kühl
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Maximilian Albrecht
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Hannes Gotthard
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Nadine Aschmoneit
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Bettina Noll
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Monilola A. Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
20
|
Koçer İ, Cox EC, DeLisa MP, Çelik E. Effects of variable domain orientation on anti-HER2 single-chain variable fragment antibody expressed in the Escherichia coli cytoplasm. Biotechnol Prog 2020; 37:e3102. [PMID: 33190426 DOI: 10.1002/btpr.3102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Single-chain variable fragment (scFv) antibodies have great potential for a range of applications including as diagnostic and therapeutic agents. However, production of scFvs is challenging because proper folding and activity depend on the formation of two intrachain disulfide bonds that do not readily form in the cytoplasm of living cells. Functional expression in bacteria therefore involves targeting to the more oxidizing periplasm, but yields in this compartment can be limiting due to secretion bottlenecks and the relatively small volume compared to the cytoplasm. In the present study, we evaluated an anti-HER2 scFv, which is specific for human epidermal growth receptor 2 (HER2) overexpressed in breast cancer, for functional expression in the cytoplasm of Escherichia coli strains BL21(DE3) and SHuffle T7 Express, the latter of which is genetically engineered for cytoplasmic disulfide bond formation. Specifically, we observed much greater solubility and binding activity with SHuffle T7 Express cells, which likely resulted from the more oxidative cytoplasm in this strain background. We also found that SHuffle T7 Express cells were capable of supporting high-level soluble production of anti-HER2 scFvs with intact disulfide bonds independent of variable domain orientation, providing further evidence that SHuffle T7 Express is a promising host for laboratory and preparative expression of functional scFv antibodies.
Collapse
Affiliation(s)
- İlkay Koçer
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey.,Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Emily C Cox
- Biological and Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA.,Biological and Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Eda Çelik
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey.,Institute of Science, Division of Bioengineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|
21
|
Liu M, Apriceno A, Sipin M, Scarpa E, Rodriguez-Arco L, Poma A, Marchello G, Battaglia G, Angioletti-Uberti S. Combinatorial entropy behaviour leads to range selective binding in ligand-receptor interactions. Nat Commun 2020; 11:4836. [PMID: 32973157 PMCID: PMC7515919 DOI: 10.1038/s41467-020-18603-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
From viruses to nanoparticles, constructs functionalized with multiple ligands display peculiar binding properties that only arise from multivalent effects. Using statistical mechanical modelling, we describe here how multivalency can be exploited to achieve what we dub range selectivity, that is, binding only to targets bearing a number of receptors within a specified range. We use our model to characterise the region in parameter space where one can expect range selective targeting to occur, and provide experimental support for this phenomenon. Overall, range selectivity represents a potential path to increase the targeting selectivity of multivalent constructs.
Collapse
Affiliation(s)
- Meng Liu
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
- Institute of Physics, Chinese Academy of Science, Beijing, People's Republic of China
| | - Azzurra Apriceno
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Miguel Sipin
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Edoardo Scarpa
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Laura Rodriguez-Arco
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK
| | - Gabriele Marchello
- Institute for the Physics of Living Systems, University College London, London, UK
- Physical Chemistry Chemical Physics Division, Department of Chemistry, University College London, London, UK
- The UCL EPSRC/JEOL Centre for Liquid Phase Electron Microscopy, London, UK
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
- The UCL EPSRC/JEOL Centre for Liquid Phase Electron Microscopy, London, UK.
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Stefano Angioletti-Uberti
- Institute of Physics, Chinese Academy of Science, Beijing, People's Republic of China.
- Department of Materials, Imperial College London, London, UK.
| |
Collapse
|
22
|
Abstract
Bispecific therapeutics target two distinct antigens simultaneously and provide novel functionalities that are not attainable with single monospecific molecules or combinations of them. The unique potential of bispecific therapeutics is driving extensive efforts to discover synergistic dual targets, design molecular formats to integrate bispecific elements, and accelerate successful clinical translation. In particular, the past decade has witnessed a boom in the design and development of bispecific antibody formats with more than 100 collections to date. Despite the remarkable progress that has been made to expand the number of formats, qualitative fine-tuning of bispecific formats is needed to achieve optimal dual-target engagement based on understanding of the spatiotemporal interdependence of the two physically linked binding specificities and the complex target biology associated with bispecific approaches. This review provides insights into the design parameters - including affinity, valency, and geometry - that need to be considered at an early stage of development in order to take the best advantage of bispecific therapeutics.
Collapse
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, South Korea.
| |
Collapse
|
23
|
Rinne SS, Dahlsson Leitao C, Saleh-Nihad Z, Mitran B, Tolmachev V, Ståhl S, Löfblom J, Orlova A. Benefit of Later-Time-Point PET Imaging of HER3 Expression Using Optimized Radiocobalt-Labeled Affibody Molecules. Int J Mol Sci 2020; 21:ijms21061972. [PMID: 32183096 PMCID: PMC7139902 DOI: 10.3390/ijms21061972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
HER3-binding affibody molecules are a promising format for visualization of HER3 expression. Cobalt-55, a positron-emitting isotope, with a half-life of 17.5 h, allows for next-day imaging. We investigated the influence of the charge of the radiocobalt–chelator complex on the biodistribution of anti-HER3 affibody molecule (HE)3-ZHER3 and compared the best radiocobalt-labeled variant with a recently optimized gallium-labeled variant. Affibody conjugates (HE)3-ZHER3-X (X = NOTA, NODAGA, DOTA, DOTAGA) were labeled with [57Co]Co (surrogate for 55Co). Affinity measurements, binding specificity and cellular processing were studied in two HER3-expressing cancer cell lines. Biodistribution was studied 3 and 24 h post-injection (pi) in mice with HER3-expressing BxPC-3 xenografts and compared to [68Ga]Ga-(HE)3-ZHER3-NODAGA. Micro-single-photon emission tomography/computed tomography (microSPECT/CT) and micro-positron emission tomography/computed tomography (microPET/CT) imaging was performed 3 and 24 h pi. Stably labeled conjugates bound to HER3 with subnanomolar affinity. [57Co]Co-(HE)3-ZHER3-DOTA had the best tumor retention and a significantly lower concentration in blood than other conjugates, leading to superior tumor-to-blood and tumor-to-liver ratios 24 h pi. Compared to [68Ga]Ga-(HE)3-ZHER3-NODAGA 3 h pi, [57Co]Co-(HE)3-ZHER3-DOTA provided superior imaging contrast in liver 24 h pi. Concluding, the composition and charge of the [57Co]Co–chelator complex influenced the uptake in tumors and normal tissue. [57Co]Co-(HE)3-ZHER3-DOTA provided the best imaging properties among the cobalt-labeled conjugates. Delayed imaging of HER3 expression with [57Co]Co-(HE)3-ZHER3-DOTA improved imaging contrast compared to early-time-point imaging with [68Ga]Ga-(HE)3-ZHER3-NODAGA.
Collapse
Affiliation(s)
- Sara S Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Charles Dahlsson Leitao
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Zahra Saleh-Nihad
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Bogdan Mitran
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
24
|
Barabas AZ, Cole CD, Kovacs ZB, Kovacs EI, Lafreniere R, Weir DM. The modified vaccination technique designed to prevent and cure acute and chronic disorders. Hum Antibodies 2020; 28:111-121. [PMID: 31594214 DOI: 10.3233/hab-190396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In spite of enormous efforts there have been no solutions to date for preventing/terminating certain acute and chronic disorders of humans by vaccination or drugs. Yet it is well understood that if the target antigen (ag) could be presented appropriately to the cells of the immune system then solutions could be found. Recently, the Barabas research group has introduced and described the third vaccination method - called modified vaccination technique (MVT) - which has the ability to provide a corrective immune response in experimental animals with an autoimmune kidney disease. Injections of immune complexes - made up of the target ag and specific non-pathogenic IgM antibodies directed against the target ag - achieved downregulation of pathogenic immune responses and tolerance to self was regained. Utilizing the immune system's natural abilities to respond to corrective information, the MVT technique was able to prevent an autoimmune kidney disease from occurring (prophylactic effect) in experimental animals, and when present, terminating it (therapeutic effect) specifically and without measurable side effects.It is predicted that the application of the MVT will have the potential in the future to revolutionize the preventative and therapeutic options for dealing with chronic disorders in humans (such as autoimmune disease, cancer and acute chronic infections) and achieve cures.
Collapse
Affiliation(s)
- Arpad Z Barabas
- Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Chad D Cole
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Zoltan B Kovacs
- Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Erno I Kovacs
- Department of Continuing Medical Education and Professional Development, University of Calgary, Calgary, AB, Canada
| | - Rene Lafreniere
- Department of Surgery, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
25
|
Increase in negative charge of 68Ga/chelator complex reduces unspecific hepatic uptake but does not improve imaging properties of HER3-targeting affibody molecules. Sci Rep 2019; 9:17710. [PMID: 31776413 PMCID: PMC6881397 DOI: 10.1038/s41598-019-54149-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Upregulation of the human epidermal growth factor receptor type 3 (HER3) is a common mechanism to bypass HER-targeted cancer therapy. Affibody-based molecular imaging has the potential for detecting and monitoring HER3 expression during treatment. In this study, we compared the imaging properties of newly generated 68Ga-labeled anti-HER3 affibody molecules (HE)3-ZHER3-DOTA and (HE)3-ZHER3-DOTAGA with previously reported [68Ga]Ga-(HE)3-ZHER3-NODAGA. We hypothesized that increasing the negative charge of the gallium-68/chelator complex would reduce hepatic uptake, which could lead to improved contrast of anti-HER3 affibody-based PET-imaging of HER3 expression. (HE)3-ZHER3-X (X = DOTA, DOTAGA) were produced and labeled with gallium-68. Binding of the new conjugates was specific in HER3 expressing BxPC-3 and DU145 human cancer cells. Biodistribution and in vivo specificity was studied in BxPC-3 xenograft bearing Balb/c nu/nu mice 3 h pi. DOTA- and DOTAGA-containing conjugates had significantly higher concentration in blood than [68Ga]Ga-(HE)3-ZHER3-NODAGA. Presence of the negatively charged 68Ga-DOTAGA complex reduced the unspecific hepatic uptake, but did not improve overall biodistribution of the conjugate. [68Ga]Ga-(HE)3-ZHER3-DOTAGA and [68Ga]Ga-(HE)3-ZHER3-NODAGA had similar tumor-to-liver ratios, but [68Ga]Ga-(HE)3-ZHER3-NODAGA had the highest tumor uptake and tumor-to-blood ratio among the tested conjugates. In conclusion, [68Ga]Ga-(HE)3-ZHER3-NODAGA remains the favorable variant for PET imaging of HER3 expression.
Collapse
|
26
|
Advances in the strategies for designing receptor-targeted molecular imaging probes for cancer research. J Control Release 2019; 305:1-17. [DOI: 10.1016/j.jconrel.2019.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/09/2019] [Accepted: 04/21/2019] [Indexed: 12/24/2022]
|
27
|
Tito NB. Multivalent “attacker and guard” strategy for targeting surfaces with low receptor density. J Chem Phys 2019; 150:184907. [DOI: 10.1063/1.5086277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Nicholas B. Tito
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
28
|
Improved contrast of affibody-mediated imaging of HER3 expression in mouse xenograft model through co-injection of a trivalent affibody for in vivo blocking of hepatic uptake. Sci Rep 2019; 9:6779. [PMID: 31043683 PMCID: PMC6494909 DOI: 10.1038/s41598-019-43145-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/12/2019] [Indexed: 11/08/2022] Open
Abstract
Human epidermal growth factor receptor type 3 (HER3) plays a crucial role in the progression of many cancer types. In vivo radionuclide imaging could be a reliable method for repetitive detection of HER3-expression in tumors. The main challenge of HER3-imaging is the low expression in tumors together with endogenous receptor expression in normal tissues, particularly the liver. A HER3-targeting affibody molecule labeled with radiocobalt via a NOTA chelator [57Co]Co-NOTA-Z08699 has demonstrated the most favorable biodistribution profile with the lowest unspecific hepatic uptake and high activity uptake in tumors. We hypothesized that specific uptake of labeled affibody monomer might be selectively blocked in the liver but not in tumors by a co-injection of non-labeled corresponding trivalent affibody (Z08699)3. Biodistribution of [57Co]Co-NOTA-Z08699 and [111In]In-DOTA-(Z08699)3 was studied in BxPC-3 xenografted mice. [57Co]Co-NOTA-Z08699 was co-injected with unlabeled trivalent affibody DOTA-(Z08699)3 at different monomer:trimer molar ratios. HER3-expression in xenografts was imaged using [57Co]Co-NOTA-Z08699 and [57Co]Co-NOTA-Z08699: DOTA-(Z08699)3. Hepatic activity uptake of [57Co]Co-NOTA-Z08699: DOTA-(Z08699)3 decreased with increasing monomer:trimer molar ratio. The tumor activity uptake and tumor-to-liver ratios were the highest for the 1:3 ratio. SPECT/CT images confirmed the biodistribution data. Imaging of HER3 expression can be improved by co-injection of a radiolabeled monomeric affibody-based imaging probe together with a trivalent affibody.
Collapse
|
29
|
Rinne SS, Leitao CD, Mitran B, Bass TZ, Andersson KG, Tolmachev V, Ståhl S, Löfblom J, Orlova A. Optimization of HER3 expression imaging using affibody molecules: Influence of chelator for labeling with indium-111. Sci Rep 2019; 9:655. [PMID: 30679757 PMCID: PMC6345776 DOI: 10.1038/s41598-018-36827-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Radionuclide molecular imaging of human epidermal growth factor receptor 3 (HER3) expression using affibody molecules could be used for patient stratification for HER3-targeted cancer therapeutics. We hypothesized that the properties of HER3-targeting affibody molecules might be improved through modification of the radiometal-chelator complex. Macrocyclic chelators NOTA (1,4,7-triazacyclononane-N,N',N''-triacetic acid), NODAGA (1-(1,3-carboxypropyl)-4,7-carboxymethyl-1,4,7-triazacyclononane), DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), and DOTAGA (1,4,7,10-tetraazacyclododececane,1-(glutaric acid)-4,7,10-triacetic acid) were conjugated to the C-terminus of anti-HER3 affibody molecule Z08698 and conjugates were labeled with indium-111. All conjugates bound specifically and with picomolar affinity to HER3 in vitro. In mice bearing HER3-expressing xenografts, no significant difference in tumor uptake between the conjugates was observed. Presence of the negatively charged 111In-DOTAGA-complex resulted in the lowest hepatic uptake and the highest tumor-to-liver ratio. In conclusion, the choice of chelator influences the biodistribution of indium-111 labeled anti-HER3 affibody molecules. Hepatic uptake of anti-HER3 affibody molecules could be reduced by the increase of negative charge of the radiometal-chelator complex on the C-terminus without significantly influencing the tumor uptake.
Collapse
Affiliation(s)
- Sara S Rinne
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Charles Dahlsson Leitao
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bogdan Mitran
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Tarek Z Bass
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ken G Andersson
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
30
|
McKnight BN, Kuda-Wedagedara ANW, Sevak KK, Abdel-Atti D, Wiesend WN, Ku A, Selvakumar D, Carlin SD, Lewis JS, Viola-Villegas NT. Imaging EGFR and HER3 through 89Zr-labeled MEHD7945A (Duligotuzumab). Sci Rep 2018; 8:9043. [PMID: 29899472 PMCID: PMC5998059 DOI: 10.1038/s41598-018-27454-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
Tumor resistance to treatment paved the way toward the development of single agent drugs that target multiple molecular signatures amplified within the malignancy. The discovered crosstalk between EGFR and HER3 as well as the role of HER3 in mediating EGFR resistance made these two receptor tyrosine kinases attractive targets. MEHD7945A or duligotuzumab is a single immunotherapy agent that dually targets both molecular signatures. In this study, a positron emission tomography (PET) companion diagnostic to MEHD7945A is reported and evaluated in pancreatic cancer. Tumor accretion and whole body pharmacokinetics of 89Zr-MEHD7945A were established. Specificity of the probe for EGFR and/or HER3 was further examined.
Collapse
Affiliation(s)
- Brooke N McKnight
- Department of Oncology, Karmanos Cancer Institute, 4100 John R. Street, Detroit, MI, 48201, USA
| | | | - Kuntal K Sevak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Dalya Abdel-Atti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Wendy N Wiesend
- Department of Anatomic Pathology, Beaumont Hospital, 3601 West 13 Mile Road, Royal Oak, MI, 48073, USA
| | - Anson Ku
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - Sean D Carlin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Nerissa T Viola-Villegas
- Department of Oncology, Karmanos Cancer Institute, 4100 John R. Street, Detroit, MI, 48201, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
31
|
Imaging of human epidermal growth factor receptors for patient selection and response monitoring – From PET imaging and beyond. Cancer Lett 2018; 419:139-151. [DOI: 10.1016/j.canlet.2018.01.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 12/20/2022]
|
32
|
Gantke T, Weichel M, Herbrecht C, Reusch U, Ellwanger K, Fucek I, Eser M, Müller T, Griep R, Molkenthin V, Zhukovsky EA, Treder M. Trispecific antibodies for CD16A-directed NK cell engagement and dual-targeting of tumor cells. Protein Eng Des Sel 2017; 30:673-684. [PMID: 28981915 DOI: 10.1093/protein/gzx043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/25/2017] [Indexed: 11/12/2022] Open
Abstract
Bispecific antibodies that redirect the lytic activity of cytotoxic immune effector cells, such as T- and NK cells, onto tumor cells have emerged as a highly attractive and clinically validated treatment modality for hematological malignancies. Advancement of this therapeutic concept into solid tumor indications, however, is hampered by the scarcity of targetable antigens that are surface-expressed on tumor cells but demonstrate only limited expression on healthy tissues. To overcome this limitation, the concept of dual-targeting, i.e. the simultaneous targeting of two tumor-expressed surface antigens with limited co-expression on non-malignant cells, with multispecific antibodies has been proposed to increase tumor selectivity of antibody-induced effector cell cytotoxicity. Here, a novel CD16A (FcγRIIIa)-directed trispecific, tetravalent antibody format, termed aTriFlex, is described, that is capable of redirecting NK cell cytotoxicity to two surface-expressed antigens. Using a BCMA/CD200-based in vitro model system, the potential use of aTriFlex antibodies for dual-targeting and selective induction of NK cell-mediated target cell lysis was investigated. Bivalent bispecific target cell binding was found to result in significant avidity gains and up to 17-fold increased in vitro potency. These data suggest trispecific aTriFlex antibodies may support dual-targeting strategies to redirect NK cell cytotoxicity with increased selectivity to enable targeting of solid tumor antigens.
Collapse
Affiliation(s)
- Thorsten Gantke
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Michael Weichel
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Carmen Herbrecht
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Uwe Reusch
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | | | - Ivica Fucek
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Markus Eser
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Thomas Müller
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Remko Griep
- Abcheck s.r.o., Teslova 3, 30100 Plzen, Czech Republic
| | | | - Eugene A Zhukovsky
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany.,Biomunex Pharmaceuticals, 96bis Boulevard Raspail, 75006 Paris, France
| | - Martin Treder
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| |
Collapse
|
33
|
Abstract
Immunotherapy has shown promise in many solid tumors including melanoma and non-small cell lung cancer with an evolving role in breast cancer. Immunotherapy encompasses a wide range of therapies including immune checkpoint inhibition, monoclonal antibodies, bispecific antibodies, vaccinations, antibody-drug conjugates, and identifying other emerging interventions targeting the tumor microenvironment. Increasing efficacy of these treatments in breast cancer patients requires identification of better biomarkers to guide patient selection; recognizing when to initiate these therapies in multi-modality treatment plans; establishing novel assays to monitor immune-mediated responses; and creating combined systemic therapy options incorporating conventional treatments such as chemotherapy and endocrine therapy. This review will focus on the current role and future directions of many of these immunotherapies in breast cancer, as well as highlighting clinical trials that are investigating several of these active issues.
Collapse
|
34
|
Rosestedt M, Andersson KG, Mitran B, Rinne SS, Tolmachev V, Löfblom J, Orlova A, Ståhl S. Evaluation of a radiocobalt-labelled affibody molecule for imaging of human epidermal growth factor receptor 3 expression. Int J Oncol 2017; 51:1765-1774. [PMID: 29039474 DOI: 10.3892/ijo.2017.4152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/25/2017] [Indexed: 11/06/2022] Open
Abstract
The human epidermal growth factor receptor 3 (HER3) is involved in the development of cancer resistance towards tyrosine kinase-targeted therapies. Several HER3‑targeting therapeutics are currently under clinical evaluation. Non-invasive imaging of HER3 expression could improve patient management. Affibody molecules are small engineered scaffold proteins demonstrating superior properties as targeting probes for molecular imaging compared with monoclonal antibodies. Feasibility of in vivo HER3 imaging using affibody molecules has been previously demonstrated. Preclinical studies have shown that the contrast when imaging using anti-HER3 affibody molecules can be improved over time. We aim to develop an agent for PET imaging of HER3 expression using the long-lived positron-emitting radionuclide cobalt-55 (55Co) (T1/2=17.5 h). A long-lived cobalt isotope 57Co was used as a surrogate for 55Co in this study. The anti-HER3 affibody molecule HEHEHE-ZHER3-NOTA was labelled with radiocobalt with high yield, purity and stability. Biodistribution of 57Co-HEHEHE-ZHER3-NOTA was measured in mice bearing DU145 (prostate carcinoma) and LS174T (colorectal carcinoma) xenografts at 3 and 24 h post injection (p.i.). Tumour-to-blood ratios significantly increased between 3 and 24 h p.i. (p<0.05). At 24 h p.i., tumour-to-blood ratios were 6 for DU145 and 8 for LS174T xenografts, respectively. HER3‑expressing xenografts were clearly visualized in a preclinical imaging setting already 3 h p.i., and contrast further improved at 24 h p.i. In conclusion, the radiocobalt-labelled anti-HER3 affibody molecule, HEHEHE-ZHER3-NOTA, is a promising tracer for imaging of HER3 expression in tumours.
Collapse
Affiliation(s)
- Maria Rosestedt
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Ken G Andersson
- Division of Protein Technology, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Bogdan Mitran
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Sara S Rinne
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 83 Uppsala, Sweden
| | - John Löfblom
- Division of Protein Technology, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Anna Orlova
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Stefan Ståhl
- Division of Protein Technology, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
35
|
Optimal multivalent targeting of membranes with many distinct receptors. Proc Natl Acad Sci U S A 2017; 114:7210-7215. [PMID: 28652338 DOI: 10.1073/pnas.1704226114] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells can often be recognized by the concentrations of receptors expressed on their surface. For better (targeted drug treatment) or worse (targeted infection by pathogens), it is clearly important to be able to target cells selectively. A good targeting strategy would result in strong binding to cells with the desired receptor profile and barely binding to other cells. Using a simple model, we formulate optimal design rules for multivalent particles that allow them to distinguish target cells based on their receptor profile. We find the following: (i) It is not a good idea to aim for very strong binding between the individual ligands on the guest (delivery vehicle) and the receptors on the host (cell). Rather, one should exploit multivalency: High sensitivity to the receptor density on the host can be achieved by coating the guest with many ligands that bind only weakly to the receptors on the cell surface. (ii) The concentration profile of the ligands on the guest should closely match the composition of the cognate membrane receptors on the target surface. And (iii) irrespective of all details, the effective strength of the ligand-receptor interaction should be of the order of the thermal energy [Formula: see text], where [Formula: see text] is the absolute temperature and [Formula: see text] is Boltzmann's constant. We present simulations that support the theoretical predictions. We speculate that, using the above design rules, it should be possible to achieve targeted drug delivery with a greatly reduced incidence of side effects.
Collapse
|
36
|
Hayes DA, Kunde DA, Taylor RL, Pyecroft SB, Sohal SS, Snow ET. ERBB3: A potential serum biomarker for early detection and therapeutic target for devil facial tumour 1 (DFT1). PLoS One 2017; 12:e0177919. [PMID: 28591206 PMCID: PMC5462353 DOI: 10.1371/journal.pone.0177919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
Devil Facial Tumour 1 (DFT1) is one of two transmissible neoplasms of Tasmanian devils (Sarcophilus harrisii) predominantly affecting their facial regions. DFT1's cellular origin is that of Schwann cell lineage where lesions are evident macroscopically late in the disease. Conversely, the pre-clinical timeframe from cellular transmission to appearance of DFT1 remains uncertain demonstrating the importance of an effective pre-clinical biomarker. We show that ERBB3, a marker expressed normally by the developing neural crest and Schwann cells, is immunohistohemically expressed by DFT1, therefore the potential of ERBB3 as a biomarker was explored. Under the hypothesis that serum ERBB3 levels may increase as DFT1 invades local and distant tissues our pilot study determined serum ERBB3 levels in normal Tasmanian devils and Tasmanian devils with DFT1. Compared to the baseline serum ERBB3 levels in unaffected Tasmanian devils, Tasmanian devils with DFT1 showed significant elevation of serum ERBB3 levels. Interestingly Tasmanian devils with cutaneous lymphoma (CL) also showed elevation of serum ERBB3 levels when compared to the baseline serum levels of Tasmanian devils without DFT1. Thus, elevated serum ERBB3 levels in otherwise healthy looking devils could predict possible DFT1 or CL in captive or wild devil populations and would have implications on the management, welfare and survival of Tasmanian devils. ERBB3 is also a therapeutic target and therefore the potential exists to consider modes of administration that may eradicate DFT1 from the wild.
Collapse
Affiliation(s)
- Dane A. Hayes
- Department of Primary Industries, Parks Water and Environment, Animal Health Laboratory, Launceston, Tasmania, Australia
- Save the Tasmanian Devil Program, University of Tasmania, Hobart, Tasmania, Australia
- School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, Tasmania, Australia
| | - Dale A. Kunde
- School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, Tasmania, Australia
| | - Robyn L. Taylor
- Save the Tasmanian Devil Program, University of Tasmania, Hobart, Tasmania, Australia
- Department of Primary Industries, Parks Water and Environment, Resource Management and Conservation, Hobart, Tasmania, Australia
| | - Stephen B. Pyecroft
- School of Animal & Veterinary Sciences, Faculty of Science, University of Adelaide, Roseworthy Campus, Roseworthy, South Australia
| | - Sukhwinder Singh Sohal
- School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, Tasmania, Australia
| | - Elizabeth T. Snow
- School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
37
|
Sugiyama A, Umetsu M, Nakazawa H, Niide T, Onodera T, Hosokawa K, Hattori S, Asano R, Kumagai I. A semi high-throughput method for screening small bispecific antibodies with high cytotoxicity. Sci Rep 2017; 7:2862. [PMID: 28588218 PMCID: PMC5460266 DOI: 10.1038/s41598-017-03101-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/24/2017] [Indexed: 01/13/2023] Open
Abstract
Small bispecific antibodies that induce T-cell-mediated cytotoxicity have the potential to damage late-stage tumor masses to a clinically relevant degree, but their cytotoxicity is critically dependent on their structural and functional properties. Here, we constructed an optimized procedure for identifying highly cytotoxic antibodies from a variety of the T-cell-recruiting antibodies engineered from a series of antibodies against cancer antigens of epidermal growth factor receptor family and T-cell receptors. By developing and applying a set of rapid operations for expression vector construction and protein preparation, we screened the cytotoxicity of 104 small antibodies with diabody format and identified some with 103-times higher cytotoxicity than that of previously reported active diabody. The results demonstrate that cytotoxicity is enhanced by synergistic effects between the target, epitope, binding affinity, and the order of heavy-chain and light-chain variable domains. We demonstrate the importance of screening to determine the critical rules for highly cytotoxic antibodies.
Collapse
Affiliation(s)
- Aruto Sugiyama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Teppei Niide
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Tomoko Onodera
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Katsuhiro Hosokawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Shuhei Hattori
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Ryutaro Asano
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Izumi Kumagai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
38
|
Angioletti-Uberti S. Exploiting Receptor Competition to Enhance Nanoparticle Binding Selectivity. PHYSICAL REVIEW LETTERS 2017; 118:068001. [PMID: 28234514 DOI: 10.1103/physrevlett.118.068001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Nanoparticles functionalized with multiple ligands can be programed to bind biological targets depending on the receptors they express, providing a general mechanism exploited in various technologies, from selective drug delivery to biosensing. For binding to be highly selective, ligands should exclusively interact with specific targeted receptors, because the formation of bonds with other, untargeted ones would lead to nonspecific binding and potentially harmful behavior. This poses a particular problem for multivalent nanoparticles, because even very weak bonds can collectively lead to strong binding. A statistical mechanical model is used here to describe how competition between different receptors together with multivalent effects can be harnessed to design ligand-functionalized nanoparticles insensitive to the presence of untargeted receptors, preventing nonspecific binding.
Collapse
Affiliation(s)
- Stefano Angioletti-Uberti
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
- Imperial College London, Department of Materials, London, United Kingdom
| |
Collapse
|
39
|
Krah S, Sellmann C, Rhiel L, Schröter C, Dickgiesser S, Beck J, Zielonka S, Toleikis L, Hock B, Kolmar H, Becker S. Engineering bispecific antibodies with defined chain pairing. N Biotechnol 2017; 39:167-173. [PMID: 28137467 DOI: 10.1016/j.nbt.2016.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 01/07/2023]
Abstract
Bispecific IgG-like antibodies can simultaneously interact with two epitopes on the same or on different antigens. Therefore, these molecules facilitate novel modes of action, which cannot be addressed by conventional monospecific IgGs. However, the generation of such antibodies still appears to be demanding due to their specific architecture comprising four different polypeptide chains that need to assemble correctly. This review focusses on different strategies to circumvent this issue or to enforce a correct chain association with a focus on common-chain bispecific antibodies.
Collapse
Affiliation(s)
- Simon Krah
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany; Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Carolin Sellmann
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany; Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Laura Rhiel
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Christian Schröter
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany; Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Stephan Dickgiesser
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany; Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Jan Beck
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany; Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Björn Hock
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.
| | - Stefan Becker
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany.
| |
Collapse
|
40
|
Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence. Sci Rep 2017; 7:40098. [PMID: 28067257 PMCID: PMC5220356 DOI: 10.1038/srep40098] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/30/2016] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies are considered attractive bio-therapeutic agents owing to their ability to target two distinct disease mediators. Cross-arm avidity targeting of antigen double-positive cancer cells over single-positive normal tissue is believed to enhance the therapeutic efficacy, restrict major escape mechanisms and increase tumor-targeting selectivity, leading to reduced systemic toxicity and improved therapeutic index. However, the interplay of factors regulating target selectivity is not well understood and often overlooked when developing clinically relevant bispecific therapeutics. We show in vivo that dual targeting alone is not sufficient to endow selective tumor-targeting, and report the pivotal roles played by the affinity of the individual arms, overall avidity and format valence. Specifically, a series of monovalent and bivalent bispecific IgGs composed of the anti-HER2 trastuzumab moiety paired with affinity-modulated VH and VL regions of the anti-EGFR GA201 mAb were tested for selective targeting and eradication of double-positive human NCI-H358 non-small cell lung cancer target tumors over single-positive, non-target NCI-H358-HER2 CRISPR knock out tumors in nude mice bearing dual-flank tumor xenografts. Affinity-reduced monovalent bispecific variants, but not their bivalent bispecific counterparts, mediated a greater degree of tumor targeting selectivity, while the overall efficacy against the targeted tumor was not substantially affected.
Collapse
|
41
|
Kintzing JR, Filsinger Interrante MV, Cochran JR. Emerging Strategies for Developing Next-Generation Protein Therapeutics for Cancer Treatment. Trends Pharmacol Sci 2016; 37:993-1008. [PMID: 27836202 PMCID: PMC6238641 DOI: 10.1016/j.tips.2016.10.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
Protein-based therapeutics have been revolutionizing the oncology space since they first appeared in the clinic two decades ago. Unlike traditional small-molecule chemotherapeutics, protein biologics promote active targeting of cancer cells by binding to cell-surface receptors and other markers specifically associated with or overexpressed on tumors versus healthy tissue. While the first approved cancer biologics were monoclonal antibodies, the burgeoning field of protein engineering is spawning research on an expanded range of protein formats and modifications that allow tuning of properties such as target-binding affinity, serum half-life, stability, and immunogenicity. In this review we highlight some of these strategies and provide examples of modified and engineered proteins under development as preclinical and clinical-stage drug candidates for the treatment of cancer.
Collapse
Affiliation(s)
- James R Kintzing
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Maria V Filsinger Interrante
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA; Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
42
|
Sellmann C, Doerner A, Knuehl C, Rasche N, Sood V, Krah S, Rhiel L, Messemer A, Wesolowski J, Schuette M, Becker S, Toleikis L, Kolmar H, Hock B. Balancing Selectivity and Efficacy of Bispecific Epidermal Growth Factor Receptor (EGFR) × c-MET Antibodies and Antibody-Drug Conjugates. J Biol Chem 2016; 291:25106-25119. [PMID: 27694443 DOI: 10.1074/jbc.m116.753491] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/22/2016] [Indexed: 01/29/2023] Open
Abstract
Bispecific antibodies (bsAbs) and antibody-drug conjugates (ADCs) have already demonstrated benefits for the treatment of cancer in several clinical studies, showing improved drug selectivity and efficacy. In particular, simultaneous targeting of prominent cancer antigens, such as EGF receptor (EGFR) and c-MET, by bsAbs has raised increasing interest for potentially circumventing receptor cross-talk and c-MET-mediated acquired resistance during anti-EGFR monotherapy. In this study, we combined the selectivity of EGFR × c-MET bsAbs with the potency of cytotoxic agents via bispecific antibody-toxin conjugation. Affinity-attenuated bispecific EGFR × c-MET antibody-drug conjugates demonstrated high in vitro selectivity toward tumor cells overexpressing both antigens and potent anti-tumor efficacy. Due to basal EGFR expression in the skin, ADCs targeting EGFR in general warrant early safety assessments. Reduction in EGFR affinity led to decreased toxicity in keratinocytes. Thus, the combination of bsAb affinity engineering with the concept of toxin conjugation may be a viable route to improve the safety profile of ADCs targeting ubiquitously expressed antigens.
Collapse
Affiliation(s)
- Carolin Sellmann
- From the Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Protein Engineering and Antibody Technologies and
| | | | - Christine Knuehl
- Merck Research and Development, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany, and
| | | | - Vanita Sood
- the EMD Serono Research and Development Institute, Billerica, Massachusetts 01821
| | - Simon Krah
- From the Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Protein Engineering and Antibody Technologies and
| | - Laura Rhiel
- Protein Engineering and Antibody Technologies and
| | - Annika Messemer
- From the Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - John Wesolowski
- the EMD Serono Research and Development Institute, Billerica, Massachusetts 01821
| | | | | | | | - Harald Kolmar
- From the Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany,
| | - Bjoern Hock
- Protein Engineering and Antibody Technologies and
| |
Collapse
|
43
|
Malm M, Frejd FY, Ståhl S, Löfblom J. Targeting HER3 using mono- and bispecific antibodies or alternative scaffolds. MAbs 2016; 8:1195-1209. [PMID: 27532938 PMCID: PMC5058629 DOI: 10.1080/19420862.2016.1212147] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The human epidermal growth factor receptor 3 (HER3) has in recent years been recognized as a key node in the complex signaling network of many different cancers. It is implicated in de novo and acquired resistance against therapies targeting other growth factor receptors, e.g., EGFR, HER2, and it is a major activator of the PI3K/Akt signaling pathway. Consequently, HER3 has attracted substantial attention, and is today a key target for drugs in clinical development. Sophisticated protein engineering approaches have enabled the generation of a range of different affinity proteins targeting this receptor, including antibodies and alternative scaffolds that are either mono- or bispecific. Here, we describe HER3 and its role as a key tumor target, and give a comprehensive review of HER3-targeted proteins currently in development, including discussions on the opportunities and challenges of targeting this receptor.
Collapse
Affiliation(s)
- Magdalena Malm
- a Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, SE , Stockholm
| | - Fredrik Y Frejd
- b Affibody AB, SE, Stockholm , Sweden.,c Department of Immunology , Genetics and Pathology, Uppsala University , Uppsala , Sweden
| | - Stefan Ståhl
- a Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, SE , Stockholm
| | - John Löfblom
- a Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, SE , Stockholm
| |
Collapse
|
44
|
Da Pieve C, Allott L, Martins CD, Vardon A, Ciobota DM, Kramer-Marek G, Smith G. Efficient [(18)F]AlF Radiolabeling of ZHER3:8698 Affibody Molecule for Imaging of HER3 Positive Tumors. Bioconjug Chem 2016; 27:1839-49. [PMID: 27357023 DOI: 10.1021/acs.bioconjchem.6b00259] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human epidermal growth factor receptor 3 (HER3) is overexpressed in several cancers, being linked to a more resistant phenotype and hence leading to poor patient prognosis. Imaging HER3 is challenging owing to the modest receptor number (<50000 receptors/cell) in overexpressing cancer cells. Therefore, to image HER3 in vivo, high target affinity PET probes need to be developed. This work describes two different [(18)F]AlF radiolabeling strategies of the ZHER3:8698 affibody molecule specifically targeting HER3. The one-pot radiolabeling of ZHER3:8698 performed at 100 °C and using 1,4,7-triazanonane-1,4,7-triacetate (NOTA) as chelator resulted in radiolabeled products with variable purity attributed to radioconjugate thermolysis. An alternative approach based on the inverse electron demand Diels-Alder (IEDDA) reaction between a novel tetrazine functionalized 1,4,7-triazacyclononane-1,4-diacetate (NODA) chelator and the trans-cyclooctene (TCO) functionalized affibody molecule was also investigated. This method enabled the radiolabeling of the protein at room temperature. The [(18)F]AlF-NOTA-ZHER3:8698 and [(18)F]AlF-NODA-ZHER3:8698 conjugates showed a specific uptake at 1 h after injection in high HER3-expressing MCF-7 tumors of 4.36 ± 0.92% ID/g and 4.96 ± 0.65% ID/g, respectively. The current results are encouraging for further investigation of [(18)F]AlF-NOTA-ZHER3:8698 as a HER3 imaging agent.
Collapse
Affiliation(s)
- Chiara Da Pieve
- Division of Radiotherapy and Imaging, The Institute of Cancer Research , 123 Old Brompton Road, London SW7 3RP, U.K
| | - Louis Allott
- Division of Radiotherapy and Imaging, The Institute of Cancer Research , 123 Old Brompton Road, London SW7 3RP, U.K
| | - Carlos D Martins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research , 123 Old Brompton Road, London SW7 3RP, U.K
| | - Andrew Vardon
- Division of Radiotherapy and Imaging, The Institute of Cancer Research , 123 Old Brompton Road, London SW7 3RP, U.K
| | - Daniela M Ciobota
- Division of Radiotherapy and Imaging, The Institute of Cancer Research , 123 Old Brompton Road, London SW7 3RP, U.K
| | - Gabriela Kramer-Marek
- Division of Radiotherapy and Imaging, The Institute of Cancer Research , 123 Old Brompton Road, London SW7 3RP, U.K
| | - Graham Smith
- Division of Radiotherapy and Imaging, The Institute of Cancer Research , 123 Old Brompton Road, London SW7 3RP, U.K
| |
Collapse
|
45
|
Piccione EC, Juarez S, Liu J, Tseng S, Ryan CE, Narayanan C, Wang L, Weiskopf K, Majeti R. A bispecific antibody targeting CD47 and CD20 selectively binds and eliminates dual antigen expressing lymphoma cells. MAbs 2016; 7:946-56. [PMID: 26083076 DOI: 10.1080/19420862.2015.1062192] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Agents that block the anti-phagocytic signal CD47 can synergize with pro-phagocytic anti-tumor antigen antibodies to potently eliminate tumors. While CD47 is overexpressed on cancer cells, its expression in many normal tissues may create an 'antigen sink' that could minimize the therapeutic efficacy of CD47 blocking agents. Here, we report development of bispecific antibodies (BsAbs) that co-target CD47 and CD20, a therapeutic target for non-Hodgkin lymphoma (NHL), that have reduced affinity for CD47 relative to the parental antibody, but retain strong binding to CD20. These characteristics facilitate selective binding of BsAbs to tumor cells, leading to phagocytosis. Treatment of human NHL-engrafted mice with BsAbs reduced lymphoma burden and extended survival while recapitulating the synergistic efficacy of anti-CD47 and anti-CD20 combination therapy. These findings serve as proof of principle for BsAb targeting of CD47 with tumor-associated antigens as a viable strategy to induce selective phagocytosis of tumor cells and recapitulate the synergy of combination antibody therapy. This approach may be broadly applied to cancer to add a CD47 blocking component to existing antibody therapies.
Collapse
Affiliation(s)
- Emily C Piccione
- a Department of Medicine; Division of Hematology, Cancer Institute; and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University , Stanford , CA , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mazor Y, Hansen A, Yang C, Chowdhury PS, Wang J, Stephens G, Wu H, Dall'Acqua WF. Insights into the molecular basis of a bispecific antibody's target selectivity. MAbs 2016; 7:461-9. [PMID: 25730144 PMCID: PMC4622944 DOI: 10.1080/19420862.2015.1022695] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bispecific antibodies constitute a valuable class of therapeutics owing to their ability to bind 2 distinct targets. Dual targeting is thought to enhance biological efficacy, limit escape mechanisms, and increase target selectivity via a strong avidity effect mediated by concurrent binding to both antigens on the surface of the same cell. However, factors that regulate the extent of target selectivity are not well understood. We show that dual targeting alone is not sufficient to promote efficient target selectivity, and report the substantial roles played by the affinity of the individual arms, overall avidity and valence. More particularly, various monovalent bispecific IgGs composed of an anti-CD70 moiety paired with variants of the anti-CD4 mAb ibalizumab were tested for preferential binding and selective depletion of CD4+/CD70+ T cells over cells expressing only one of the target antigens that resulted from antibody dependent cell-mediated cytotoxicity. Variants exhibiting reduced CD4 affinity showed a greater degree of target selectivity, while the overall efficacy of the bispecific molecule was not affected.
Collapse
Affiliation(s)
- Yariv Mazor
- a Department of Antibody Discovery and Protein Engineering; MedImmune ; Gaithersburg , MD , USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zheng S, Moores S, Jarantow S, Pardinas J, Chiu M, Zhou H, Wang W. Cross-arm binding efficiency of an EGFR x c-Met bispecific antibody. MAbs 2016; 8:551-61. [PMID: 26761634 DOI: 10.1080/19420862.2015.1136762] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Multispecific proteins, such as bispecific antibodies (BsAbs), that bind to two different ligands are becoming increasingly important therapeutic agents. Such BsAbs can exhibit markedly increased target binding and target residence time when both pharmacophores bind simultaneously to their targets. The cross-arm binding efficiency (χ) describes an increase in apparent affinity when a BsAb binds to the second target or receptor (R2) following its binding to the first target or receptor (R1) on the same cell. χ is an intrinsic characteristic of a BsAb mostly related to the binding epitopes on R1 and R2. χ can have significant impacts on the binding to R2 for BsAbs targeting two receptors on the same cell. JNJ-61186372, a BsAb that targets epidermal growth factor receptor (EGFR) and c-Met, was used as the model compound for establishing a method to characterize χ. The χ for JNJ-61186372 was successfully determined via fitting of in vitro cell binding data to a ligand binding model that incorporated χ. The model-derived χ value was used to predict the binding of JNJ-61186372 to individual EGFR and c-Met receptors on tumor cell lines, and the results agreed well with the observed IC50 for EGFR and c-Met phosphorylation inhibition by JNJ-61186372. Consistent with the model, JNJ-61186372 was shown to be more effective than the combination therapy of anti-EGFR and anti-c-Met monovalent antibodies at the same dose level in a mouse xenograft model. Our results showed that χ is an important characteristic of BsAbs, and should be considered for rationale design of BsAbs targeting two membrane bound targets on the same cell.
Collapse
Affiliation(s)
| | | | | | | | - Mark Chiu
- b Biologics Research , Janssen R&D US
| | | | - Weirong Wang
- a Biologics Clinical Pharmacology , Janssen R&D US
| |
Collapse
|
48
|
Akbari V, Sadeghi HMM, Jafarian-Dehkordi A, Abedi D, Chou CP. Improved biological activity of a single chain antibody fragment against human epidermal growth factor receptor 2 (HER2) expressed in the periplasm of Escherichia coli. Protein Expr Purif 2015; 116:66-74. [DOI: 10.1016/j.pep.2015.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/08/2015] [Indexed: 11/25/2022]
|
49
|
Miura T, Nagamune T, Kawahara M. Ligand-inducible dimeric antibody for selecting antibodies against a membrane protein based on mammalian cell proliferation. Biotechnol Bioeng 2015; 113:1113-23. [DOI: 10.1002/bit.25858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/23/2015] [Accepted: 10/13/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Tomohiro Miura
- Department of Bioengineering; Graduate School of Engineering, The University of Tokyo; Tokyo Japan
| | - Teruyuki Nagamune
- Department of Bioengineering; Graduate School of Engineering, The University of Tokyo; Tokyo Japan
- Department of Chemistry and Biotechnology; Graduate School of Engineering, The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku; Tokyo 113-8656 Japan
| | - Masahiro Kawahara
- Department of Chemistry and Biotechnology; Graduate School of Engineering, The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku; Tokyo 113-8656 Japan
| |
Collapse
|
50
|
Rosestedt M, Andersson KG, Mitran B, Tolmachev V, Löfblom J, Orlova A, Ståhl S. Affibody-mediated PET imaging of HER3 expression in malignant tumours. Sci Rep 2015; 5:15226. [PMID: 26477646 PMCID: PMC4609989 DOI: 10.1038/srep15226] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/17/2015] [Indexed: 01/02/2023] Open
Abstract
Human epidermal growth factor receptor 3 (HER3) is involved in the progression of various cancers and in resistance to therapies targeting the HER family. In vivo imaging of HER3 expression would enable patient stratification for anti-HER3 immunotherapy. Key challenges with HER3-targeting are the relatively low expression in HER3-positive tumours and HER3 expression in normal tissues. The use of positron-emission tomography (PET) provides advantages of high resolution, sensitivity and quantification accuracy compared to SPECT. Affibody molecules, imaging probes based on a non-immunoglobulin scaffold, provide high imaging contrast shortly after injection. The aim of this study was to evaluate feasibility of PET imaging of HER3 expression using (68)Ga-labeled affibody molecules. The anti-HER3 affibody molecule HEHEHE-Z08698-NOTA was successfully labelled with (68)Ga with high yield, purity and stability. The agent bound specifically to HER3-expressing cancer cells in vitro and in vivo. At 3 h pi, uptake of (68)Ga-HEHEHE-Z08698-NOTA was significantly higher in xenografts with high HER3 expression (BT474, BxPC-3) than in xenografts with low HER3 expression (A431). In xenografts with high expression, tumour-to-blood ratios were >20, tumour-to-muscle >15, and tumour-to-bone >7. HER3-positive xenografts were visualised using microPET 3 h pi. In conclusion, PET imaging of HER3 expression is feasible using (68)Ga-HEHEHE-Z08698-NOTA shortly after administration.
Collapse
Affiliation(s)
- Maria Rosestedt
- Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Ken G Andersson
- Division of Protein Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bogdan Mitran
- Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - John Löfblom
- Division of Protein Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Orlova
- Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Stefan Ståhl
- Division of Protein Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|