1
|
Egusquiza-Alvarez CA, Moreno-Londoño AP, Alvarado-Ortiz E, Ramos-Godínez MDP, Sarabia-Sánchez MA, Castañeda-Patlán MC, Robles-Flores M. Inhibition of Multifunctional Protein p32/C1QBP Promotes Cytostatic Effects in Colon Cancer Cells by Altering Mitogenic Signaling Pathways and Promoting Mitochondrial Damage. Int J Mol Sci 2024; 25:2712. [PMID: 38473963 DOI: 10.3390/ijms25052712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The protein p32 (C1QBP) is a multifunctional and multicompartmental homotrimer that is overexpressed in many cancer types, including colon cancer. High expression levels of C1QBP are negatively correlated with the survival of patients. Previously, we demonstrated that C1QBP is an essential promoter of migration, chemoresistance, clonogenic, and tumorigenic capacity in colon cancer cells. However, the mechanisms underlying these functions and the effects of specific C1QBP protein inhibitors remain unexplored. Here, we show that the specific pharmacological inhibition of C1QBP with the small molecule M36 significantly decreased the viability rate, clonogenic capacity, and proliferation rate of different colon cancer cell lines in a dose-dependent manner. The effects of the inhibitor of C1QBP were cytostatic and non-cytotoxic, inducing a decreased activation rate of critical pro-malignant and mitogenic cellular pathways such as Akt-mTOR and MAPK in RKO colon cancer cells. Additionally, treatment with M36 significantly affected the mitochondrial integrity and dynamics of malignant cells, indicating that p32/C1QBP plays an essential role in maintaining mitochondrial homeostasis. Altogether, our results reinforce that C1QBP is an important oncogene target and that M36 may be a promising therapeutic drug for the treatment of colon cancer.
Collapse
Affiliation(s)
| | - Angela Patricia Moreno-Londoño
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Eduardo Alvarado-Ortiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - María Del Pilar Ramos-Godínez
- Departamento de Microscopía Electrónica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City 14080, Mexico
| | - Miguel Angel Sarabia-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | | | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
2
|
Trevisan-Silva D, Cosenza-Contreras M, Oliveira UC, da Rós N, Andrade-Silva D, Menezes MC, Oliveira AK, Rosa JG, Sachetto ATA, Biniossek ML, Pinter N, Santoro ML, Nishiyama-Jr MY, Schilling O, Serrano SMT. Systemic toxicity of snake venom metalloproteinases: Multi-omics analyses of kidney and blood plasma disturbances in a mouse model. Int J Biol Macromol 2023; 253:127279. [PMID: 37806411 DOI: 10.1016/j.ijbiomac.2023.127279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Snakebite envenomation is classified as a Neglected Tropical Disease. Bothrops jararaca venom induces kidney injury and coagulopathy. HF3, a hemorrhagic metalloproteinase of B. jararaca venom, participates in the envenomation pathogenesis. We evaluated the effects of HF3 in mouse kidney and blood plasma after injection in the thigh muscle, mimicking a snakebite. Transcriptomic analysis showed differential expression of 31 and 137 genes related to kidney pathology after 2 h and 6 h, respectively. However, only subtle changes were observed in kidney proteome, with differential abundance of 15 proteins after 6 h, including kidney injury markers. N-terminomic analysis of kidney proteins showed 420 proteinase-generated peptides compatible with meprin specificity, indicating activation of host proteinases. Plasma analysis revealed differential abundance of 90 and 219 proteins, respectively, after 2 h and 6 h, including coagulation-cascade and complement-system components, and creatine-kinase, whereas a semi-specific search of N-terminal peptides indicated activation of endogenous proteinases. HF3 promoted host reactions, altering the gene expression and the proteolytic profile of kidney tissue, and inducing plasma proteome imbalance driven by changes in abundance and proteolysis. The overall response of the mouse underscores the systemic action of a hemorrhagic toxin that transcends local tissue damage and is related to known venom-induced systemic effects.
Collapse
Affiliation(s)
- Dilza Trevisan-Silva
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Miguel Cosenza-Contreras
- Faculty of Medicine, Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ursula C Oliveira
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Nancy da Rós
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Débora Andrade-Silva
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Milene C Menezes
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Ana Karina Oliveira
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | | | | | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Niko Pinter
- Faculty of Medicine, Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | | | - Milton Y Nishiyama-Jr
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Oliver Schilling
- Faculty of Medicine, Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany.
| | - Solange M T Serrano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
3
|
Egusquiza-Alvarez CA, Robles-Flores M. An approach to p32/gC1qR/HABP1: a multifunctional protein with an essential role in cancer. J Cancer Res Clin Oncol 2022; 148:1831-1854. [PMID: 35441886 DOI: 10.1007/s00432-022-04001-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
P32/gC1qR/HABP1 is a doughnut-shaped acidic protein, highly conserved in eukaryote evolution and ubiquitous in the organism. Although its canonical subcellular localization is the mitochondria, p32 can also be found in the cytosol, nucleus, cytoplasmic membrane, and it can be secreted. Therefore, it is considered a multicompartmental protein. P32 can interact with many physiologically divergent ligands in each subcellular location and modulate their functions. The main ligands are C1q, hyaluronic acid, calreticulin, CD44, integrins, PKC, splicing factor ASF/SF2, and several microbial proteins. Among the functions in which p32 participates are mitochondrial metabolism and dynamics, apoptosis, splicing, immune response, inflammation, and modulates several cell signaling pathways. Notably, p32 is overexpressed in a significant number of epithelial tumors, where its expression level negatively correlates with patient survival. Several studies of gain and/or loss of function in cancer cells have demonstrated that p32 is a promoter of malignant hallmarks such as proliferation, cell survival, chemoresistance, angiogenesis, immunoregulation, migration, invasion, and metastasis. All of this strongly suggests that p32 is a potential diagnostic molecule and therapeutic target in cancer. Indeed, preclinical advances have been made in developing therapeutic strategies using p32 as a target. They include tumor homing peptides, monoclonal antibodies, an intracellular inhibitor, a p32 peptide vaccine, and p32 CAR T cells. These advances are promising and will allow soon to include p32 as part of targeted cancer therapies.
Collapse
Affiliation(s)
| | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
4
|
Koo BH, Won MH, Kim YM, Ryoo S. Arginase II protein regulates Parkin-dependent p32 degradation that contributes to Ca2+-dependent eNOS activation in endothelial cells. Cardiovasc Res 2021; 118:1344-1358. [PMID: 33964139 PMCID: PMC8953445 DOI: 10.1093/cvr/cvab163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Aims Arginase II (ArgII) plays a key role in the regulation of Ca2+ between the cytosol and mitochondria in a p32-dependent manner. p32 contributes to endothelial nitric oxide synthase (eNOS) activation through the Ca2+/CaMKII/AMPK/p38MAPK/Akt signalling cascade. Therefore, we investigated a novel function of ArgII in the regulation of p32 stability. Methods and results mRNA levels were measured by quantitative reverse transcription-PCR, and protein levels and activation were confirmed by western blot analysis. Ca2+ concentrations were measured by FACS analysis and a vascular tension assay was performed. ArgII bound to p32, and ArgII protein knockdown using siArgII facilitated the ubiquitin-dependent proteasomal degradation of p32. β-lactone, a proteasome inhibitor, inhibited the p32 degradation associated with endothelial dysfunction in a Ca2+-dependent manner. The amino acids Lys154, Lys 180, and Lys220 of the p32 protein were identified as putative ubiquitination sites. When these sites were mutated, p32 was resistant to degradation in the presence of siArgII, and endothelial function was impaired. Knockdown of Pink/Parkin as an E3-ubiquitin ligase with siRNAs resulted in increased p32, decreased [Ca2+]c, and attenuated CaMKII-dependent eNOS activation by siArgII. siArgII-dependent Parkin activation was attenuated by KN93, a CaMKII inhibitor. Knockdown of ArgII mRNA and its gene, but not inhibition of its activity, accelerated the interaction between p32 and Parkin and reduced p32 levels. In aortas of ArgII−/− mice, p32 levels were reduced by activated Parkin and inhibition of CaMKII attenuated Parkin-dependent p32 lysis. siParkin blunted the phosphorylation of the activated CaMKII/AMPK/p38MAPK/Akt/eNOS signalling cascade. However, ApoE−/− mice fed a high-cholesterol diet had greater ArgII activity, significantly attenuated phosphorylation of Parkin, and increased p32 levels. Incubation with siArgII augmented p32 ubiquitination through Parkin activation, and induced signalling cascade activation. Conclusion The results suggest a novel function for ArgII protein in Parkin-dependent ubiquitination of p32 that is associated with Ca2+-mediated eNOS activation in endothelial cells.
Collapse
Affiliation(s)
| | | | - Young-Myeong Kim
- Molecular and Cellular Biochemistry, Kangwon National University, Chuncheon, 24341, Korea
| | | |
Collapse
|
5
|
Choi K, Koo BH, Yoon BJ, Jung M, Yun HY, Jeon BH, Won MH, Kim YM, Mun JY, Lim HK, Ryoo S. Overexpressed p32 localized in the endoplasmic reticulum and mitochondria negatively regulates calcium‑dependent endothelial nitric oxide synthase activit. Mol Med Rep 2020; 22:2395-2403. [PMID: 32705193 PMCID: PMC7411372 DOI: 10.3892/mmr.2020.11307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/14/2020] [Indexed: 11/23/2022] Open
Abstract
The p32 protein plays a crucial role in the regulation of cytosolic Ca2+ concentrations ([Ca2+]c) that contributes to the Ca2+-dependent signaling cascade. Using an adenovirus and plasmid p32-overexpression system, the aim of the study was to evaluate the role of p32 in the regulation of [Ca2+] and its potential associated with Ca2+-dependent endothelial nitric oxide synthase (eNOS) activation in endothelial cells. Using electron and confocal microscopic analysis, p32 overexpression was observed to be localized to mitochondria and the endoplasmic reticulum and played an important role in Ca2+ translocation, resulting in increased [Ca2+] in these organelles and reducing cytosolic [Ca2+] ([Ca2+]c). This decreased [Ca2+]c following p32 overexpression attenuated the Ca2+-dependent signaling cascade of calcium/calmodulin dependent protein kinase II (CaMKII)/AKT/eNOS phosphorylation. Moreover, in aortic endothelia of wild-type mice intravenously administered adenovirus encoding the p32 gene, increased p32 levels reduced NO production and accelerated reactive oxygen species (ROS) generation. In a vascular tension assay, p32 overexpression decreased acetylcholine (Ach)-induced vasorelaxation and augmented phenylephrine (PE)-dependent vasoconstriction. Notably, decreased levels of arginase II (ArgII) protein using siArgII were associated with downregulation of overexpressed p32 protein, which contributed to CaMKII-dependent eNOS phosphorylation at Ser1177. These results indicated that increased protein levels of p32 caused endothelial dysfunction through attenuation of the Ca2+-dependent signaling cascade and that ArgII protein participated in the stability of p32. Therefore, p32 may be a novel target for the treatment of vascular diseases associated with endothelial disorders.
Collapse
Affiliation(s)
- Kwanhoon Choi
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon 26426, Republic of Korea
| | - Bon-Hyeock Koo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Byeong Jun Yoon
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Minkyo Jung
- Department of Neural Circuits Research, Korea Brain Research Institute, Dong, Daegu 41068, Republic of Korea
| | - Hye Young Yun
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon 26426, Republic of Korea
| | - Byung Hwa Jeon
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Young Mun
- Department of Neural Circuits Research, Korea Brain Research Institute, Dong, Daegu 41068, Republic of Korea
| | - Hyun Kyo Lim
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon 26426, Republic of Korea
| | - Sungwoo Ryoo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
6
|
de Souza BM, Rodrigues M, de Oliveira FS, da Silva LPA, Bouças AP, Portinho CP, Dos Santos BP, Camassola M, Rocha D, Lysakowski S, Martini J, Leitão CB, Nardi NB, Bauer AC, Crispim D. Improvement of human pancreatic islet quality after co-culture with human adipose-derived stem cells. Mol Cell Endocrinol 2020; 505:110729. [PMID: 31972330 DOI: 10.1016/j.mce.2020.110729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/30/2019] [Accepted: 01/17/2020] [Indexed: 01/08/2023]
Abstract
The aim of this study was to investigate whether co-culture of human islets with adipose-derived stem cells (ASCs) can improve islet quality and to evaluate which factors play a role in the protective effect of ASCs against islet dysfunction. Islets and ASCs were cultured in three experimental groups for 24 h, 48 h, and 72 h: 1) indirect co-culture of islets with ASC monolayer (Islets/ASCs); 2) islets alone; and 3) ASCs alone. Co-culture with ASCs improved islet viability and function in all culture time-points analyzed. VEGFA, HGF, IL6, IL8, IL10, CCL2, IL1B, and TNF protein levels were increased in supernatants of islet/ASC group compared to islets alone, mainly after 24 h. Moreover, VEGFA, IL6, CCL2, HIF1A, XIAP, CHOP, and NFKBIA genes were differentially expressed in islets from the co-culture condition compared to islets alone. In conclusion, co-culture of islets with ASCs promotes improvements in islet quality.
Collapse
Affiliation(s)
- Bianca M de Souza
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil.
| | - Michelle Rodrigues
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil
| | - Fernanda S de Oliveira
- Laboratory of Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Liana P A da Silva
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil
| | - Ana P Bouças
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil
| | - Ciro P Portinho
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil
| | - Bruno P Dos Santos
- Laboratory for Tissue Bioengineering (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Melissa Camassola
- Laboratory for Stem Cells and Tissue Engineering, Post-Graduation Program in Cellular and Molecular Biology Applied to Health, Universidade Luterana do Brasil, Canoas, RS, Brazil
| | - Dagoberto Rocha
- Post-Graduation Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Simone Lysakowski
- Organ Procurement Organization, Santa Casa de Misericórdia de Porto Alegre. Porto Alegre, RS, Brazil
| | - Juliano Martini
- Transplant Center, Surgery Department, Hospital Dom Vicente Scherer, Santa Casa de Misericórdia de Porto Alegre. Porto Alegre, RS, Brazil
| | - Cristiane B Leitão
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil
| | - Nance B Nardi
- Laboratory for Stem Cells and Tissue Engineering, Post-Graduation Program in Cellular and Molecular Biology Applied to Health, Universidade Luterana do Brasil, Canoas, RS, Brazil
| | - Andrea C Bauer
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil
| | - Daisy Crispim
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Koo BH, Won MH, Kim YM, Ryoo S. p32-Dependent p38 MAPK Activation by Arginase II Downregulation Contributes to Endothelial Nitric Oxide Synthase Activation in HUVECs. Cells 2020; 9:cells9020392. [PMID: 32046324 PMCID: PMC7072651 DOI: 10.3390/cells9020392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/26/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022] Open
Abstract
Arginase II reciprocally regulates endothelial nitric oxide synthase (eNOS) through a p32-dependent Ca2+ control. We investigated the signaling pathway of arginase II-dependent eNOS phosphorylation. Western blot analysis was applied for examining protein activation and [Ca2+]c was analyzed by microscopic and FACS analyses. Nitric oxide (NO) and reactive oxygen species (ROS) productions were measured using specific fluorescent dyes under microscopy. NO signaling pathway was tested by measuring vascular tension. Following arginase II downregulation by chemical inhibition or gene knockout (KO, ArgII−/−), increased eNOS phosphorylation at Ser1177 and decreased phosphorylation at Thr495 was depend on p38 MAPK activation, which induced by CaMKII activation through p32-dependent increase in [Ca2+]c. The protein amount of p32 negatively regulated p38 MAPK activation. p38 MAPK contributed to Akt-induced eNOS phosphorylation at Ser1177 that resulted in accelerated NO production and reduced reactive oxygen species production in aortic endothelia. In vascular tension assay, p38 MAPK inhibitor decreased acetylcholine-induced vasorelaxation responses and increased phenylephrine-dependent vasoconstrictive responses. In ApoE−/− mice fed a high cholesterol diet, arginase II inhibition restored p32/CaMKII/p38 MAPK/Akt/eNOS signaling cascade that was attenuated by p38 MAPK inhibition. Here, we demonstrated a novel signaling pathway contributing to understanding of the relationship between arginase II, endothelial dysfunction, and atherogenesis.
Collapse
Affiliation(s)
- Bon-Hyeock Koo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Sungwoo Ryoo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
- Correspondence: ; Tel.: +82-33-250-8534; Fax: +82-33-251-3990
| |
Collapse
|
8
|
Wang J, Li H, Sun M, Yang Y, Yang Q, Liu B, Liu F, Hu W, Zhang Y. Early Onset of Combined Oxidative Phosphorylation Deficiency in Two Chinese Brothers Caused by a Homozygous (Leu275Phe) Mutation in the C1QBP Gene. Front Pediatr 2020; 8:583047. [PMID: 33344382 PMCID: PMC7738465 DOI: 10.3389/fped.2020.583047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial diseases constitute a group of heterogeneous hereditary diseases caused by impairments in mitochondrial oxidative phosphorylation and abnormal cellular energy metabolism. C1QBP plays an important role in mitochondrial homeostasis. In this study, clinical, laboratory examinations, 12-lead electrocardiographic, ultrasonic cardiogram, and magnetic resonance imaging data were collected from four members of a Chinese family. Whole exome were amplified and sequenced for the proband. The structure of protein encoded by the mutation was predicted using multiple software programs. The proband was a 14-year old boy with myocardial hypertrophy, exercise intolerance, ptosis, and increased lactate. His 9-year old brother exhibited similar clinical manifestations while the phenomenon of ptosis was not as noticeable as the proband. The onset of this disease was in infancy in both cases. They were born after uneventful pregnancies of five generation blood relative Chinese parents. A homozygous mutation (Leu275Phe) in the C1QBP gene was identified in both brothers in an autosomal recessive inherited pattern. Their parents were heterozygous mutation carriers without clinical manifestations. We demonstrated that a homozygous C1QBP- P.Leu275Phe mutation in an autosomal recessive inherited mode of inheritance caused early onset combined oxidative phosphorylation deficiency 33 (COXPD 33) (OMIM:617713) in two brothers from a Chinese family.
Collapse
Affiliation(s)
- Jie Wang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China.,Xi'an Key Laboratory of Children's Health and Diseases, Xi'an, China
| | - Huan Li
- Xi'an Key Laboratory of Children's Health and Diseases, Xi'an, China.,Department of Cardiology of Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Min Sun
- Department of Cardiology of Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Yang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China.,Xi'an Key Laboratory of Children's Health and Diseases, Xi'an, China
| | - Qianli Yang
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bailing Liu
- Department of Ultrasound of Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fang Liu
- Department of Ultrasound of Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wen Hu
- Department of Radiology of Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanmin Zhang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China.,Xi'an Key Laboratory of Children's Health and Diseases, Xi'an, China.,Department of Cardiology of Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Koo BH, Hwang HM, Yi BG, Lim HK, Jeon BH, Hoe KL, Kwon YG, Won MH, Kim YM, Berkowitz DE, Ryoo S. Arginase II Contributes to the Ca 2+/CaMKII/eNOS Axis by Regulating Ca 2+ Concentration Between the Cytosol and Mitochondria in a p32-Dependent Manner. J Am Heart Assoc 2019; 7:e009579. [PMID: 30371203 PMCID: PMC6222941 DOI: 10.1161/jaha.118.009579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Arginase II activity contributes to reciprocal regulation of endothelial nitric oxide synthase (eNOS). We tested the hypotheses that arginase II activity participates in the regulation of Ca2+/Ca2+/calmodulin‐dependent kinase II/eNOS activation, and this process is dependent on mitochondrial p32. Methods and Results Downregulation of arginase II increased the concentration of cytosolic Ca2+ ([Ca2+]c) and decreased mitochondrial Ca2+ ([Ca2+]m) in microscopic and fluorescence‐activated cell sorting analyses, resulting in augmented eNOS Ser1177 phosphorylation and decreased eNOS Thr495 phosphorylation through Ca2+/Ca2+/calmodulin‐dependent kinase II. These changes were observed in human umbilical vein endothelial cells treated with small interfering RNA against p32 (sip32). Using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, fluorescence immunoassay, and ion chromatography, inhibition of arginase II reduced the amount of spermine, a binding molecule, and the release of Ca2+ from p32. In addition, arginase II gene knockdown using small interfering RNA and knockout arginase II‐null mice resulted in reduced p32 protein level. In the aortas of wild‐type mice, small interfering RNA against p32 induced eNOS Ser1177 phosphorylation and enhanced NO‐dependent vasorelaxation. Arginase activity, p32 protein expression, spermine amount, and [Ca2+]m were increased in the aortas from apolipoprotein E (ApoE−/−) mice fed a high‐cholesterol diet, and intravenous administration of small interfering RNA against p32 restored Ca2+/Ca2+/calmodulin‐dependent kinase II‐dependent eNOS Ser1177 phosphorylation and improved endothelial dysfunction. The effects of arginase II downregulation were not associated with elevated NO production when tested in aortic endothelia from eNOS knockout mice. Conclusions These data demonstrate a novel function of arginase II in regulation of Ca2+‐dependent eNOS phosphorylation. This novel mechanism drives arginase activation, mitochondrial dysfunction, endothelial dysfunction, and atherogenesis.
Collapse
Affiliation(s)
- Bon-Hyeock Koo
- 1 Department of Biology School of medicine Kangwon National University Chuncheon Korea
| | - Hye-Mi Hwang
- 1 Department of Biology School of medicine Kangwon National University Chuncheon Korea
| | - Bong-Gu Yi
- 1 Department of Biology School of medicine Kangwon National University Chuncheon Korea
| | - Hyun Kyo Lim
- 4 Department of Anesthesiology and Pain Medicine Yonsei University Wonju College of Medicine Wonju Korea
| | - Byeong Hwa Jeon
- 5 Infectious Signaling Network Research Center Department of Physiology School of Medicine Chungnam National University Daejeon Korea
| | - Kwang Lae Hoe
- 6 Department of New Drug Discovery and Development Chungnam National University Daejeon Korea
| | | | - Moo-Ho Won
- 2 Department of Neurobiology School of medicine Kangwon National University Chuncheon Korea
| | - Young Myeong Kim
- 3 College of Natural Sciences and Departments of Molecular and Cellular Biochemistry School of medicine Kangwon National University Chuncheon Korea
| | - Dan E Berkowitz
- 8 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - Sungwoo Ryoo
- 1 Department of Biology School of medicine Kangwon National University Chuncheon Korea
| |
Collapse
|
10
|
George S, Viswanathan R, Sapkal GN. Molecular aspects of the teratogenesis of rubella virus. Biol Res 2019; 52:47. [PMID: 31455418 PMCID: PMC6712747 DOI: 10.1186/s40659-019-0254-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/12/2019] [Indexed: 11/10/2022] Open
Abstract
Rubella or German measles is an infection caused by rubella virus (RV). Infection of children and adults is usually characterized by a mild exanthematous febrile illness. However, RV is a major cause of birth defects and fetal death following infection in pregnant women. RV is a teratogen and is a major cause of public health concern as there are more than 100,000 cases of congenital rubella syndrome (CRS) estimated to occur every year. Several lines of evidence in the field of molecular biology of RV have provided deeper insights into the teratogenesis process. The damage to the growing fetus in infected mothers is multifactorial, arising from a combination of cellular damage, as well as its effect on the dividing cells. This review focuses on the findings in the molecular biology of RV, with special emphasis on the mitochondrial, cytoskeleton and the gene expression changes. Further, the review addresses in detail, the role of apoptosis in the teratogenesis process.
Collapse
Affiliation(s)
- Suji George
- Diagnostic Virology Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra 411001 India
| | - Rajlakshmi Viswanathan
- Diagnostic Virology Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra 411001 India
| | - Gajanan N. Sapkal
- Diagnostic Virology Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra 411001 India
| |
Collapse
|
11
|
Hong X, Yu Z, Chen Z, Jiang H, Niu Y, Huang Z. High molecular weight fibroblast growth factor 2 induces apoptosis by interacting with complement component 1 Q subcomponent-binding protein in vitro. J Cell Biochem 2018; 119:8807-8817. [PMID: 30159917 PMCID: PMC6220755 DOI: 10.1002/jcb.27131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/04/2018] [Indexed: 02/05/2023]
Abstract
Fibroblast growth factor 2 (FGF2) is a multifunctional cell growth factor that regulates cell proliferation, differentiation, adhesion, migration, and apoptosis. FGF2 has multiple isoforms, including an 18-kDa low molecular weight isoform (lo-FGF2) and 22-, 23-, 24-, and 34-kDa high molecular weight isoforms (hi-FGF2). Hi-FGF2 overexpression induces chromatin compaction, which requires the mitochondria and leads to apoptosis. Complement component 1 Q subcomponent-binding protein (C1QBP) plays an important role in mitochondria-dependent apoptosis by regulating the opening of the mitochondrial permeability transition pore. However, the interaction between C1QBP and hi-FGF2 and its role in hi-FGF2-mediated apoptosis remain unclear. Here, we found that hi-FGF2 overexpression induced depolarization of the mitochondrial membrane, cytochrome c release into the cytosol, and a considerable increase in C1QBP messenger RNA and protein expression. Furthermore, coimmunoprecipitation results showed that the mitochondrial protein, C1QBP, interacts with hi-FGF2. C1QBP knockdown using small interfering RNA significantly decreased the localization of hi-FGF2 to the mitochondria and increased the rate of apoptosis. Our results highlight a novel mechanism underlying hi-FGF2-induced, mitochondria-driven cell death involving the direct interaction between hi-FGF2 and C1QBP and the upregulation of C1QBP expression.
Collapse
Affiliation(s)
- Xiaobing Hong
- The Second Affiliated Hospital, Shantou University Medical CollegeShantouChina
| | - Zelin Yu
- The Second Affiliated Hospital, Shantou University Medical CollegeShantouChina
| | - Zhonglin Chen
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Hongyan Jiang
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Yongdong Niu
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Zhanqin Huang
- Department of PharmacologyShantou University Medical CollegeShantouChina
| |
Collapse
|
12
|
Saito T, Uchiumi T, Yagi M, Amamoto R, Setoyama D, Matsushima Y, Kang D. Cardiomyocyte-specific loss of mitochondrial p32/C1qbp causes cardiomyopathy and activates stress responses. Cardiovasc Res 2018; 113:1173-1185. [PMID: 28498888 DOI: 10.1093/cvr/cvx095] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 05/09/2017] [Indexed: 12/16/2022] Open
Abstract
Aims Mitochondria are important organelles, dedicated to energy production. Mitochondrial p32/C1qbp, which functions as an RNA and protein chaperone, interacts with mitochondrial mRNA and is indispensable for mitochondrial function through its regulation of mitochondrial translation in cultured cell lines. However, the precise role of p32/C1qbp in vivo is poorly understood because of embryonic lethality in the systemic p32-deficient mouse. The goal of this study was to examine the physiological function of mitochondrial p32/C1qbp in the heart. Methods and results We investigated the role of p32 in regulating cardiac function in mice using a Cre-loxP recombinase technology against p32 with tamoxifen-inducible knockdown or genetic ablation during postnatal periods. Cardiomyocyte-specific deletion of p32 resulted in contractile dysfunction, cardiac dilatation and cardiac fibrosis, compared with hearts of control mice. We also found decreased COX1 expression, decreased rates of oxygen consumption and increased oxidative stress, indicating that these mice had cardiac mitochondrial dysfunction provoked by p32-deficiency at early stage. Next, we investigated lifespan in cardiac-specific p32-deficient mice. The mice died beginning at 12 months and their median lifespan was ∼14 months. Cardiac mitochondria in the p32-deficient mice showed disordered alignment, enlargement and abnormalities in their internal structure by electron microscopy. We observed that, in p32-deficient compared with control myocytes, AMPKɑ was constitutively phosphorylated and 4EBP-1 and ribosomal S6K were less phosphorylated, suggesting impairment of mammalian target of rapamycin signalling. Finally, we found that expression levels of mitokines such as FGF21 and of integrated stress response genes were significantly increased. Metabolic analysis demonstrated that the urea cycle was impaired in the p32-deficient hearts. Conclusion These findings support a key role for mitochondrial p32 protein in cardiac myocytes modulating mitochondrial translation and function, and thereby survival.
Collapse
Affiliation(s)
- Toshiro Saito
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Rie Amamoto
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan.,Department of Nutritional Sciences, Faculty of Health and Welfare, Seinan Jo Gakuin University, Kokurakita-Ku, Kitakyushu 803-0835, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Yuichi Matsushima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| |
Collapse
|
13
|
Saha P, Datta K. Multi-functional, multicompartmental hyaluronan-binding protein 1 (HABP1/p32/gC1qR): implication in cancer progression and metastasis. Oncotarget 2018. [PMID: 29535843 PMCID: PMC5828189 DOI: 10.18632/oncotarget.24082] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cancer is a complex, multi-factorial, multi-stage disease and a global threat to human health. Early detection of nature and stage of cancer is highly crucial for disease management. Recent studies have proved beyond any doubt about the involvement of the ubiquitous, myriad ligand binding, multi-functional human protein, hyaluronan-binding protein 1 (HABP1), which is identical to the splicing factor associated protein (p32) and the receptor of the globular head of the complement component (gC1qR) in tumorigenesis and cancer metastasis. Simultaneously three laboratories have discovered and named this protein separately as mentioned. Subsequently, different scientists have worked on the distinct functions in cellular processes ranging from immunological response, splicing mechanism, sperm-oocyte interactions, cell cycle regulation to cancer and have concentrated in their respective area of interest, referring it as either p32 or gC1qR or HABP1. HABP1 overexpression has been reported in almost all the tissue-specific forms of cancer and correlated with stage and poor prognosis in patients. In order to tackle this deadly disease and for therapeutic intervention, it is imperative to focus on all the regulatory aspects of this protein. Hence, this work is an attempt to combine an assortment of information on this protein to have an overview, which suggests its use as a diagnostic marker for cancer. The knowledge might assist in the designing of drugs for therapeutic intervention of HABP1/p32/gC1qR regulated specific ligand mediated pathways in cancer.
Collapse
Affiliation(s)
- Paramita Saha
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kasturi Datta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
14
|
Feichtinger RG, Oláhová M, Kishita Y, Garone C, Kremer LS, Yagi M, Uchiumi T, Jourdain AA, Thompson K, D'Souza AR, Kopajtich R, Alston CL, Koch J, Sperl W, Mastantuono E, Strom TM, Wortmann SB, Meitinger T, Pierre G, Chinnery PF, Chrzanowska-Lightowlers ZM, Lightowlers RN, DiMauro S, Calvo SE, Mootha VK, Moggio M, Sciacco M, Comi GP, Ronchi D, Murayama K, Ohtake A, Rebelo-Guiomar P, Kohda M, Kang D, Mayr JA, Taylor RW, Okazaki Y, Minczuk M, Prokisch H. Biallelic C1QBP Mutations Cause Severe Neonatal-, Childhood-, or Later-Onset Cardiomyopathy Associated with Combined Respiratory-Chain Deficiencies. Am J Hum Genet 2017; 101:525-538. [PMID: 28942965 PMCID: PMC5630164 DOI: 10.1016/j.ajhg.2017.08.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/11/2017] [Indexed: 11/16/2022] Open
Abstract
Complement component 1 Q subcomponent-binding protein (C1QBP; also known as p32) is a multi-compartmental protein whose precise function remains unknown. It is an evolutionary conserved multifunctional protein localized primarily in the mitochondrial matrix and has roles in inflammation and infection processes, mitochondrial ribosome biogenesis, and regulation of apoptosis and nuclear transcription. It has an N-terminal mitochondrial targeting peptide that is proteolytically processed after import into the mitochondrial matrix, where it forms a homotrimeric complex organized in a doughnut-shaped structure. Although C1QBP has been reported to exert pleiotropic effects on many cellular processes, we report here four individuals from unrelated families where biallelic mutations in C1QBP cause a defect in mitochondrial energy metabolism. Infants presented with cardiomyopathy accompanied by multisystemic involvement (liver, kidney, and brain), and children and adults presented with myopathy and progressive external ophthalmoplegia. Multiple mitochondrial respiratory-chain defects, associated with the accumulation of multiple deletions of mitochondrial DNA in the later-onset myopathic cases, were identified in all affected individuals. Steady-state C1QBP levels were decreased in all individuals' samples, leading to combined respiratory-chain enzyme deficiency of complexes I, III, and IV. C1qbp-/- mouse embryonic fibroblasts (MEFs) resembled the human disease phenotype by showing multiple defects in oxidative phosphorylation (OXPHOS). Complementation with wild-type, but not mutagenized, C1qbp restored OXPHOS protein levels and mitochondrial enzyme activities in C1qbp-/- MEFs. C1QBP deficiency represents an important mitochondrial disorder associated with a clinical spectrum ranging from infantile lactic acidosis to childhood (cardio)myopathy and late-onset progressive external ophthalmoplegia.
Collapse
Affiliation(s)
- René G Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Yoshihito Kishita
- Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan; Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Caterina Garone
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust, MRC Building, Cambridge CB2 0XY, UK; Department of Neurology, Columbia University Medical Center, New York, NY 10032-3784, USA
| | - Laura S Kremer
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Alexis A Jourdain
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Genome Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Aaron R D'Souza
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust, MRC Building, Cambridge CB2 0XY, UK
| | - Robert Kopajtich
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Johannes Koch
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Wolfgang Sperl
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Elisa Mastantuono
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Saskia B Wortmann
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Germaine Pierre
- South West Regional Metabolic Department, Bristol Royal Hospital for Children, Bristol BS1 3NU, UK
| | - Patrick F Chinnery
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust, MRC Building, Cambridge CB2 0XY, UK
| | - Zofia M Chrzanowska-Lightowlers
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert N Lightowlers
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York, NY 10032-3784, USA
| | - Sarah E Calvo
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Genome Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Genome Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Maurizio Moggio
- Neuromuscular Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Monica Sciacco
- Neuromuscular Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giacomo P Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Ronchi
- Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba 266-0007, Japan
| | - Akira Ohtake
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Pedro Rebelo-Guiomar
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust, MRC Building, Cambridge CB2 0XY, UK; Graduate Program in Areas of Basic and Applied Biology, University of Porto, 4099-002 Porto, Portugal
| | - Masakazu Kohda
- Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan; Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Johannes A Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Yasushi Okazaki
- Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan; Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust, MRC Building, Cambridge CB2 0XY, UK
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| |
Collapse
|
15
|
Wang Y, Su J, Yuan B, Fu D, Niu Y, Yue D. The role of C1QBP in CSF-1-dependent PKCζ activation and macrophage migration. Exp Cell Res 2017; 362:11-16. [PMID: 28965866 DOI: 10.1016/j.yexcr.2017.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 11/30/2022]
Abstract
Macrophages view as double agents in tumor progression. Trafficking of macrophages to the proximity of tumors is mediated by colony-stimulating factor-1 (CSF-1), a growth factor. In this study, we investigated the role of complement1q-binding protein (C1QBP)/ atypical protein kinase C ζ (PKCζ) in CSF-1-induced macrophage migration. Disruption of C1QBP expression impaired chemotaxis and adhesion of macrophage. Phosphorylation of PKCζ is an essential component in macrophage chemotaxis signaling pathway. C1QBP could interact with PKCζ in macrophage. C1QBP knockdown inhibited CSF-1 induced phosphorylation of PKCζ and integrin-β1. However, C1QBP knockdown didn't affect the phosphorylation of PKCζ induced by MCP-1. Furthermore, CSF-1 from RCC cell condition medium promoted macrophage chemotaxis and adhesion. Taken together, our results demonstrated that C1QBP plays an essential role in CSF-1 induced migration of macrophages.
Collapse
Affiliation(s)
- Yong Wang
- Department of Urology, Tianjin Medical University Second Hospital, Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300211, China
| | - Jing Su
- School of Laboratory Medicine, Tianjin Medical University, Tianjin 300203, China
| | - Bo Yuan
- School of Laboratory Medicine, Tianjin Medical University, Tianjin 300203, China
| | - Donghe Fu
- School of Laboratory Medicine, Tianjin Medical University, Tianjin 300203, China
| | - Yuanjie Niu
- Department of Urology, Tianjin Medical University Second Hospital, Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300211, China
| | - Dan Yue
- School of Laboratory Medicine, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
16
|
Kim K, Kim MJ, Kim KH, Ahn SA, Kim JH, Cho JY, Yeo SG. C1QBP is upregulated in colon cancer and binds to apolipoprotein A-I. Exp Ther Med 2017; 13:2493-2500. [PMID: 28565870 PMCID: PMC5443300 DOI: 10.3892/etm.2017.4249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/28/2016] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the expression of complement component 1, q subcomponent-binding protein (C1QBP) in colon cancer cells, and identify proteins that interact with C1QBP. Total proteins were extracted from both the tumor and normal tissues of 22 patients with colon cancer and analyzed using liquid chromatography-mass spectrometry (LC-MS) to identify proteins that were differentially-expressed in tumor tissues. C1QBP overexpression was induced in 293T cells using a pFLAG-CMV2 expression vector. Overexpressed FLAG-tagged C1QBP protein was then immunoprecipitated using anti-FLAG antibodies and C1QBP-interacting proteins were screened using LC-MS analysis of the immunoprecipitates. The C1QBP-interacting proteins were confirmed using reverse-immunoprecipitation and the differential expression of C1QBP in tissues and cell lines was confirmed using western blot analysis. LC-MS analysis revealed that C1QBP exhibited a typical tumor expression pattern. Two immune-reactive signals (33 and 14 kDa) were detected in normal and tumor tissues from 19 patients. Furthermore, 14 kDa C1QBP protein was upregulated in the tumors of 15 patients. In total, 39 proteins were identified as candidate C1QBP-interacting proteins, and an interaction between C1QBP and apolipoprotein A-I was confirmed. The present study indicates that C1QBP is involved in colon cancer carcinogenesis, and that the mechanisms underlying the established anti-tumor properties of apolipoprotein A-I may include interacting with and inhibiting the activity of C1QBP.
Collapse
Affiliation(s)
- Kun Kim
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Min-Jeong Kim
- Department of Radiology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Gyeonggi 14068, Republic of Korea
| | - Kyung-Hee Kim
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Sun-A Ahn
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Jong Heon Kim
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Seung-Gu Yeo
- Department of Radiation Oncology, Soonchunhyang University College of Medicine, Soonchunhyang University Hospital, Cheonan, South Chungcheong 31151, Republic of Korea
| |
Collapse
|
17
|
A trans-platinum(II) complex induces apoptosis in cancer stem cells of breast cancer. Bioorg Med Chem 2017; 25:269-276. [DOI: 10.1016/j.bmc.2016.10.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 11/18/2022]
|
18
|
Mathupala SP, Guthikonda M, Sloan AE. RNAi Based Approaches to the Treatment of Malignant Glioma. Technol Cancer Res Treat 2016; 5:261-9. [PMID: 16700622 DOI: 10.1177/153303460600500313] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
RNA interference (RNAi) is a recently discovered, powerful molecular mechanism that can be harnessed to engineer gene-specific silencing in mammalian tissues. A mechanism, where short double-stranded RNA (dsRNA) molecules, when introduced into cells elicit specific “knock-down” of gene expression via degradation of targeted messenger RNA, has lately become the technique of choice for analysis of gene function in oncology research. Thus, RNAi is currently being extensively evaluated as a potential therapeutic strategy against malignant gliomas, since surgical, radiological, and chemotherapeutic interventions during the past few decades have done little to improve the poor prognosis rate for patients with these dreaded tumors. This review summarizes the pre-clinical studies that are currently underway to test the validity of RNAi as a potential therapeutic strategy against malignant gliomas, and discusses the potential technical Hurdles that remain to be overcome before the technique can become a promising clinical therapy to combat this frequently lethal disease.
Collapse
Affiliation(s)
- Saroj P Mathupala
- Department of Neurological Surgery, Karmanos Cancer Institute, Wayne State University School of Medicine, 808 HWCRC, 4100 John R. Road, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
19
|
Kurze C, Dosselli R, Grassl J, Le Conte Y, Kryger P, Baer B, Moritz RFA. Differential proteomics reveals novel insights into Nosema-honey bee interactions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:42-49. [PMID: 27784614 DOI: 10.1016/j.ibmb.2016.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
Host manipulation is a common strategy by parasites to reduce host defense responses, enhance development, host exploitation, reproduction and, ultimately, transmission success. As these parasitic modifications can reduce host fitness, increased selection pressure may result in reciprocal adaptations of the host. Whereas the majority of studies on host manipulation have explored resistance against parasites (i.e. ability to prevent or limit an infection), data describing tolerance mechanisms (i.e. ability to limit harm of an infection) are scarce. By comparing differential protein abundance, we provide evidence of host-parasite interactions in the midgut proteomes of N. ceranae-infected and uninfected honey bees from both Nosema-tolerant and Nosema-sensitive lineages. We identified 16 proteins out of 661 protein spots that were differentially abundant between experimental groups. In general, infections of Nosema resulted in an up-regulation of the bee's energy metabolism. Additionally, we identified 8 proteins that were differentially abundant between tolerant and sensitive honey bees regardless of the Nosema infection. Those proteins were linked to metabolism, response to oxidative stress and apoptosis. In addition to bee proteins, we also identified 3 Nosema ceranae proteins. Interestingly, abundance of two of these Nosema proteins were significantly higher in infected Nosema-sensitive honeybees relative to the infected Nosema-tolerant lineage. This may provide a novel candidate for studying the molecular interplay between N. ceranae and its honey bee host in more detail.
Collapse
Affiliation(s)
- Christoph Kurze
- Martin-Luther-Universität Halle-Wittenberg, Institute for Biology/Molecular Ecology, Hoher Weg 4, 06120 Halle (Saale), Germany; The University of Western Australia, Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), Crawley, Western Australia 6009, Australia; Pennsylvania State University, Center for Infectious Disease Dynamics, W249 Millennium Science Complex, University Park, PA 16802, United States.
| | - Ryan Dosselli
- The University of Western Australia, Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), Crawley, Western Australia 6009, Australia
| | - Julia Grassl
- The University of Western Australia, Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), Crawley, Western Australia 6009, Australia
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon Cedex 9, France
| | - Per Kryger
- Aarhus University, Department of Agroecology/Section of Entomology and Plant Pathology, Flakkebjerg, 4200, Slagelse, Denmark
| | - Boris Baer
- The University of Western Australia, Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), Crawley, Western Australia 6009, Australia
| | - Robin F A Moritz
- Martin-Luther-Universität Halle-Wittenberg, Institute for Biology/Molecular Ecology, Hoher Weg 4, 06120 Halle (Saale), Germany; German Institute for Integrative Biodiversity Research (iDiv), Bio City, 04103 Leipzig, Germany; University of Pretoria, Department of Zoology and Entomology, Pretoria, 0002, South Africa
| |
Collapse
|
20
|
Momcilovic O, Sivapatham R, Oron TR, Meyer M, Mooney S, Rao MS, Zeng X. Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson's Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations. PLoS One 2016; 11:e0154890. [PMID: 27191603 PMCID: PMC4871453 DOI: 10.1371/journal.pone.0154890] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/20/2016] [Indexed: 11/19/2022] Open
Abstract
We report generation of induced pluripotent stem cell (iPSC) lines from ten Parkinson’s disease (PD) patients carrying SNCA, PARK2, LRRK2, and GBA mutations, and one age-matched control. After validation of pluripotency, long-term genome stability, and integration-free reprogramming, eight of these lines (one of each SNCA, LRRK2 and GBA, four PARK2 lines, and the control) were differentiated into neural stem cells (NSC) and subsequently to dopaminergic cultures. We did not observe significant differences in the timeline of neural induction and NSC derivation between the patient and control line, nor amongst the patient lines, although we report considerable variability in the efficiency of dopaminergic differentiation among patient lines. We performed whole genome expression analyses of the lines at each stage of differentiation (fibroblast, iPSC, NSC, and dopaminergic culture) in an attempt to identify alterations by large-scale evaluation. While gene expression profiling clearly distinguished cells at different stages of differentiation, no mutation-specific clustering or difference was observed, though consistent changes in patient lines were detected in genes associated mitochondrial biology. We further examined gene expression in a stress model (MPTP-induced dopaminergic neuronal death) using two clones from the SNCA triplication line, and detected changes in genes associated with mitophagy. Our data suggested that even a well-characterized line of a monogenic disease may not be sufficient to determine the cause or mechanism of the disease, and highlights the need to use more focused strategies for large-scale data analysis.
Collapse
Affiliation(s)
- Olga Momcilovic
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Renuka Sivapatham
- Buck Institute for Research on Aging, Novato, CA, United States of America
- University of Southern Denmark, Odense, Denmark
| | - Tal Ronnen Oron
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | | | - Sean Mooney
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | | | - Xianmin Zeng
- Buck Institute for Research on Aging, Novato, CA, United States of America
- XCell Science, Novato, CA, United States of America
- * E-mail:
| |
Collapse
|
21
|
Li K, Gao B, Li J, Chen H, Li Y, Wei Y, Gong D, Gao J, Zhang J, Tan W, Wen T, Zhang L, Huang L, Xiang R, Lin P, Wei Y. ZNF32 protects against oxidative stress-induced apoptosis by modulating C1QBP transcription. Oncotarget 2015; 6:38107-26. [PMID: 26497555 PMCID: PMC4741987 DOI: 10.18632/oncotarget.5646] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/06/2015] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS)-driven oxidative stress has been recognized as a critical inducer of cancer cell death in response to therapeutic agents. Our previous studies have demonstrated that zinc finger protein (ZNF)32 is key to cell survival upon oxidant stimulation. However, the mechanisms by which ZNF32 mediates cell death remain unclear. Here, we show that at moderate levels of ROS, Sp1 directly binds to two GC boxes within the ZNF32 promoter to activate ZNF32 transcription. Alternatively, at cytotoxic ROS concentrations, ZNF32 expression is repressed due to decreased binding activity of Sp1. ZNF32 overexpression maintains mitochondrial membrane potential and enhances the antioxidant capacity of cells to detoxify ROS, and these effects promote cell survival upon pro-oxidant agent treatment. Alternatively, ZNF32-deficient cells are more sensitive and vulnerable to oxidative stress-induced cell injury. Mechanistically, we demonstrate that complement 1q-binding protein (C1QBP) is a direct target gene of ZNF32 that inactivates the p38 MAPK pathway, thereby exerting the protective effects of ZNF32 on oxidative stress-induced apoptosis. Taken together, our findings indicate a novel mechanism by which the Sp1-ZNF32-C1QBP axis protects against oxidative stress and implicate a promising strategy that ZNF32 inhibition combined with pro-oxidant anticancer agents for hepatocellular carcinoma treatment.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Binding Sites
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Dose-Response Relationship, Drug
- Female
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Hep G2 Cells
- Humans
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Membrane Potential, Mitochondrial
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Oxidants/pharmacology
- Oxidative Stress/drug effects
- Promoter Regions, Genetic
- RNA Interference
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Sp1 Transcription Factor/metabolism
- Time Factors
- Transcription, Genetic/drug effects
- Transcriptional Activation
- Transfection
- Xenograft Model Antitumor Assays
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Kai Li
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bo Gao
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- Department of Pathology, College of Clinical Medicine, Dali University, Dali, China
| | - Jun Li
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Haining Chen
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyan Li
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yuyan Wei
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Di Gong
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Junping Gao
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jie Zhang
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Weiwei Tan
- Department Biorepository, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tianfu Wen
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Le Zhang
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lugang Huang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Xiang
- Department of Clinical Medicine, School of Medicine, Nankai University, and Collaborative Innovation Center for Biotherapy, Tianjin, China
| | - Ping Lin
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yuquan Wei
- Department of Cancer Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
22
|
Liu Z, Kato A, Oyama M, Kozuka-Hata H, Arii J, Kawaguchi Y. Role of Host Cell p32 in Herpes Simplex Virus 1 De-Envelopment during Viral Nuclear Egress. J Virol 2015; 89:8982-98. [PMID: 26085152 PMCID: PMC4524097 DOI: 10.1128/jvi.01220-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/09/2015] [Indexed: 01/15/2023] Open
Abstract
To clarify the function(s) of the herpes simplex virus 1 (HSV-1) major virion structural protein UL47 (also designated VP13/14), we screened cells overexpressing UL47 for UL47-binding cellular proteins. Tandem affinity purification of transiently expressed UL47 coupled with mass spectrometry-based proteomics technology and subsequent analyses showed that UL47 interacted with cell protein p32 in HSV-1-infected cells. Unlike in mock-infected cells, p32 accumulated at the nuclear rim in HSV-1-infected cells, and this p32 recruitment to the nuclear rim required UL47. p32 formed a complex(es) with HSV-1 proteins UL31, UL34, Us3, UL47, and/or ICP22 in HSV-1-infected cells. All these HSV-1 proteins were previously reported to be important for HSV-1 nuclear egress, in which nucleocapsids bud through the inner nuclear membrane (primary envelopment) and the enveloped nucleocapsids then fuse with the outer nuclear membrane (de-envelopment). Like viral proteins UL31, UL34, Us3, and UL47, p32 was detected in primary enveloped virions. p32 knockdown reduced viral replication and induced membranous invaginations adjacent to the nuclear rim containing primary enveloped virions and aberrant localization of UL31 and UL34 in punctate structures at the nuclear rim. These effects of p32 knockdown were reduced in the absence of UL47. Therefore, the effects of p32 knockdown in HSV-1 nuclear egress were similar to those of the previously reported mutation(s) in HSV-1 regulatory proteins for HSV-1 de-envelopment during viral nuclear egress. Collectively, these results suggested that p32 regulated HSV-1 de-envelopment and replication in a UL47-dependent manner. IMPORTANCE In this study, we have obtained data suggesting that (i) the HSV-1 major virion structural protein UL47 interacted with host cell protein p32 and mediated the recruitment of p32 to the nuclear rim in HSV-1-infected cells; (ii) p32 was a component of the HSV-1 nuclear egress complex (NEC), whose core components were UL31 and UL34; and (iii) p32 regulated HSV-1 de-envelopment during viral nuclear egress. It has been reported that p32 was a component of human cytomegalovirus NEC and was required for efficient disintegration of nuclear lamina, which has been thought to facilitate HSV-1 primary envelopment during viral nuclear egress. Thus, p32 appeared to be a core component of herpesvirus NECs, like UL31 and UL34 homologs in other herpesviruses, and to play multiple roles in herpesvirus nuclear egress.
Collapse
Affiliation(s)
- Zhuoming Liu
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akihisa Kato
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun Arii
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Jiao H, Su GQ, Dong W, Zhang L, Xie W, Yao LM, Chen P, Wang ZX, Liou YC, You H. Chaperone-like protein p32 regulates ULK1 stability and autophagy. Cell Death Differ 2015:xyza201534. [PMID: 26001217 DOI: 10.1038/xyza.2015.34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/06/2015] [Accepted: 02/27/2015] [Indexed: 11/09/2022] Open
Abstract
Mitophagy mediates clearance of dysfunctional mitochondria, and represents one type of mitochondrial quality control, which is essential for optimal mitochondrial bioenergetics. p32, a chaperone-like protein, is crucial for maintaining mitochondrial membrane potential and oxidative phosphorylation. However, the relationship between p32 and mitochondrial homeostasis has not been addressed. Here, we identified p32 as a key regulator of ULK1 stability by forming complex with ULK1. p32 depletion potentiated K48-linked but impaired K63-linked polyubiquitination of ULK1, leading to proteasome-mediated degradation of ULK1. As a result, silencing p32 profoundly impaired starvation-induced autophagic flux and the clearance of damaged mitochondria caused by mitochondrial uncoupler. Importantly, restoring ULK1 expression in p32-depleted cells rescued autophagy and mitophagy defects. Our findings highlight a cytoprotective role of p32 under starvation conditions by regulating ULK1 stability, and uncover a crucial role of the p32-ULK1-autophagy axis in coordinating stress response, cell survival and mitochondrial homeostasis.Cell Death and Differentiation advance online publication, 24 April 2015; doi:10.1038/cdd.2015.34.
Collapse
Affiliation(s)
- H Jiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - G-Q Su
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - W Dong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - L Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - W Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - L-M Yao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - P Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Z-X Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Y-C Liou
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - H You
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
24
|
Jiao H, Su GQ, Dong W, Zhang L, Xie W, Yao LM, Chen P, Wang ZX, Liou YC, You H. Chaperone-like protein p32 regulates ULK1 stability and autophagy. Cell Death Differ 2015; 22:1812-23. [PMID: 25909887 DOI: 10.1038/cdd.2015.34] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/06/2015] [Accepted: 02/27/2015] [Indexed: 02/02/2023] Open
Abstract
Mitophagy mediates clearance of dysfunctional mitochondria, and represents one type of mitochondrial quality control, which is essential for optimal mitochondrial bioenergetics. p32, a chaperone-like protein, is crucial for maintaining mitochondrial membrane potential and oxidative phosphorylation. However, the relationship between p32 and mitochondrial homeostasis has not been addressed. Here, we identified p32 as a key regulator of ULK1 stability by forming complex with ULK1. p32 depletion potentiated K48-linked but impaired K63-linked polyubiquitination of ULK1, leading to proteasome-mediated degradation of ULK1. As a result, silencing p32 profoundly impaired starvation-induced autophagic flux and the clearance of damaged mitochondria caused by mitochondrial uncoupler. Importantly, restoring ULK1 expression in p32-depleted cells rescued autophagy and mitophagy defects. Our findings highlight a cytoprotective role of p32 under starvation conditions by regulating ULK1 stability, and uncover a crucial role of the p32-ULK1-autophagy axis in coordinating stress response, cell survival and mitochondrial homeostasis.
Collapse
Affiliation(s)
- H Jiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - G-Q Su
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - W Dong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - L Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - W Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - L-M Yao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - P Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Z-X Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Y-C Liou
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - H You
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
25
|
Völgyi K, Gulyássy P, Háden K, Kis V, Badics K, Kékesi KA, Simor A, Györffy B, Tóth EA, Lubec G, Juhász G, Dobolyi A. Synaptic mitochondria: a brain mitochondria cluster with a specific proteome. J Proteomics 2015; 120:142-57. [PMID: 25782751 DOI: 10.1016/j.jprot.2015.03.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/16/2015] [Accepted: 03/04/2015] [Indexed: 01/15/2023]
Abstract
UNLABELLED The synapse is a particularly important compartment of neurons. To reveal its molecular characteristics we isolated whole brain synaptic (sMito) and non-synaptic mitochondria (nsMito) from the mouse brain with purity validated by electron microscopy and fluorescence activated cell analysis and sorting. Two-dimensional differential gel electrophoresis and mass spectrometry based proteomics revealed 22 proteins with significantly higher and 34 proteins with significantly lower levels in sMito compared to nsMito. Expression differences in some oxidative stress related proteins, such as superoxide dismutase [Mn] (Sod2) and complement component 1Q subcomponent-binding protein (C1qbp), as well as some tricarboxylic acid cycle proteins, including isocitrate dehydrogenase subunit alpha (Idh3a) and ATP-forming β subunit of succinyl-CoA ligase (SuclA2), were verified by Western blot, the latter two also by immunohistochemistry. The data suggest altered tricarboxylic acid metabolism in energy supply of synapse while the marked differences in Sod2 and C1qbp support high sensitivity of synapses to oxidative stress. Further functional clustering demonstrated that proteins with higher synaptic levels are involved in synaptic transmission, lactate and glutathione metabolism. In contrast, mitochondrial proteins associated with glucose, lipid, ketone metabolism, signal transduction, morphogenesis, protein synthesis and transcription were enriched in nsMito. Altogether, the results suggest a specifically tuned composition of synaptic mitochondria. BIOLOGICAL SIGNIFICANCE Neurons communicate with each other through synapse, a compartment metabolically isolated from the cell body. Mitochondria are concentrated in presynaptic terminals by active transport to provide energy supply for information transfer. Mitochondrial composition in the synapse may be different than in the cell body as some examples have demonstrated altered mitochondrial composition with cell type and cellular function in the muscle, heart and liver. Therefore, we posed the question whether protein composition of synaptic mitochondria reflects its specific functions. The determined protein difference pattern was in accordance with known functional specialties of high demand synaptic mitochondria. The data also suggest specifically tuned metabolic fluxes for energy production by means of interaction with glial cells surrounding the synapse. These findings provide possible mechanisms for dynamically adapting synaptic mitochondrial output to actual demand. In turn, an increased vulnerability of synaptic mitochondria to oxidative stress is implied by the data. This is important from theoretical but potentially also from therapeutic aspects. Mitochondria are known to be affected in some neurodegenerative and psychiatric disorders, and proteins with elevated level in synaptic mitochondria, e.g. C1qbp represent targets for future drug development, by which synaptic and non-synaptic mitochondria can be differentially affected.
Collapse
Affiliation(s)
- Katalin Völgyi
- MTA-ELTE NAP Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary; Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Péter Gulyássy
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-TTK NAP MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Krisztina Háden
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Viktor Kis
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Kata Badics
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Katalin Adrienna Kékesi
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Attila Simor
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Balázs Györffy
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Eszter Angéla Tóth
- Department of Immunology, Eötvös Loránd University, Budapest H-1117, Hungary; Faculty of Science Research and Instrument Core Facility (ELTE FS-RICF), Eötvös Loránd University, Budapest H-1117, Hungary
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Vienna A-1090, Austria
| | - Gábor Juhász
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-TTK NAP MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Arpád Dobolyi
- MTA-ELTE NAP Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary.
| |
Collapse
|
26
|
Wang Y, Yang Y, Wu S, Pan S, Zhou C, Ma Y, Ru Y, Dong S, He B, Zhang C, Cao Y. p32 is a novel target for viral protein ICP34.5 of herpes simplex virus type 1 and facilitates viral nuclear egress. J Biol Chem 2014; 289:35795-805. [PMID: 25355318 PMCID: PMC4276848 DOI: 10.1074/jbc.m114.603845] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/23/2014] [Indexed: 12/25/2022] Open
Abstract
As a large double-stranded DNA virus, herpes simplex virus type 1 (HSV-1) assembles capsids in the nucleus where the viral particles exit by budding through the inner nuclear membrane. Although a number of viral and host proteins are involved, the machinery of viral egress is not well understood. In a search for host interacting proteins of ICP34.5, which is a virulence factor of HSV-1, we identified a cellular protein, p32 (gC1qR/HABP1), by mass spectrophotometer analysis. When expressed, ICP34.5 associated with p32 in mammalian cells. Upon HSV-1 infection, p32 was recruited to the inner nuclear membrane by ICP34.5, which paralleled the phosphorylation and rearrangement of nuclear lamina. Knockdown of p32 in HSV-1-infected cells significantly reduced the production of cell-free viruses, suggesting that p32 is a mediator of HSV-1 nuclear egress. These observations suggest that the interaction between HSV-1 ICP34.5 and p32 leads to the disintegration of nuclear lamina and facilitates the nuclear egress of HSV-1 particles.
Collapse
Affiliation(s)
- Yu Wang
- From the Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yin Yang
- From the Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Songfang Wu
- From the Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuang Pan
- From the Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chaodong Zhou
- Department of Biochemistry, Institute for Drug Control, Tianjin 300070, China
| | - Yijie Ma
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois 60612, and
| | - Yongxin Ru
- Department of Electron Microscopy, Institute of Hematology and Blood Diseases Hospital, Peking Union College, Tianjin 300020, China
| | - Shuxu Dong
- Department of Electron Microscopy, Institute of Hematology and Blood Diseases Hospital, Peking Union College, Tianjin 300020, China
| | - Bin He
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois 60612, and
| | - Cuizhu Zhang
- From the Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China,
| | - Youjia Cao
- From the Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China,
| |
Collapse
|
27
|
Poly (ADP-ribose) polymerase inhibition synergizes with the NF-κB inhibitor DHMEQ to kill hepatocellular carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2662-73. [DOI: 10.1016/j.bbamcr.2014.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 01/10/2023]
|
28
|
Xiao K, Wang Y, Chang Z, Lao Y, Chang DC. p32, a novel binding partner of Mcl-1, positively regulates mitochondrial Ca2+ uptake and apoptosis. Biochem Biophys Res Commun 2014; 451:322-8. [DOI: 10.1016/j.bbrc.2014.07.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/27/2014] [Indexed: 10/25/2022]
|
29
|
p32 protein levels are integral to mitochondrial and endoplasmic reticulum morphology, cell metabolism and survival. Biochem J 2013; 453:381-91. [PMID: 23692256 PMCID: PMC3727215 DOI: 10.1042/bj20121829] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
p32 [also known as HABP1 (hyaluronan-binding protein 1), gC1qR (receptor for globular head domains complement 1q) or C1qbp (complement 1q-binding protein)] has been shown previously to have both mitochondrial and non-mitochondrial localization and functions. In the present study, we show for the first time that endogenous p32 protein is a mitochondrial protein in HeLa cells under control and stress conditions. In defining the impact of altering p32 levels in these cells, we demonstrate that the overexpression of p32 increased mitochondrial fibrils. Conversely, siRNA-mediated p32 knockdown enhanced mitochondrial fragmentation accompanied by a loss of detectable levels of the mitochondrial fusion mediator proteins Mfn (mitofusin) 1 and Mfn2. More detailed ultrastructure analysis by transmission electron microscopy revealed aberrant mitochondrial structures with less and/or fragmented cristae and reduced mitochondrial matrix density as well as more punctate ER (endoplasmic reticulum) with noticeable dissociation of their ribosomes. The analysis of mitochondrial bioenergetics showed significantly reduced capacities in basal respiration and oxidative ATP turnover following p32 depletion. Furthermore, siRNA-mediated p32 knockdown resulted in differential stress-dependent effects on cell death, with enhanced cell death observed in the presence of hyperosmotic stress or cisplatin treatment, but decreased cell death in the presence of arsenite. Taken together, our studies highlight the critical contributions of the p32 protein to the morphology of mitochondria and ER under normal cellular conditions, as well as important roles of the p32 protein in cellular metabolism and various stress responses.
Collapse
|
30
|
Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc Natl Acad Sci U S A 2013; 110:E3281-90. [PMID: 23918355 DOI: 10.1073/pnas.1303669110] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The future of safe cell-based therapy rests on overcoming teratoma/tumor formation, in particular when using human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Because the presence of a few remaining undifferentiated hPSCs can cause undesirable teratomas after transplantation, complete removal of these cells with no/minimal damage to differentiated cells is a prerequisite for clinical application of hPSC-based therapy. Having identified a unique hESC signature of pro- and antiapoptotic gene expression profile, we hypothesized that targeting hPSC-specific antiapoptotic factor(s) (i.e., survivin or Bcl10) represents an efficient strategy to selectively eliminate pluripotent cells with teratoma potential. Here we report the successful identification of small molecules that can effectively inhibit these antiapoptotic factors, leading to selective and efficient removal of pluripotent stem cells through apoptotic cell death. In particular, a single treatment of hESC-derived mixed population with chemical inhibitors of survivin (e.g., quercetin or YM155) induced selective and complete cell death of undifferentiated hPSCs. In contrast, differentiated cell types (e.g., dopamine neurons and smooth-muscle cells) derived from hPSCs survived well and maintained their functionality. We found that quercetin-induced selective cell death is caused by mitochondrial accumulation of p53 and is sufficient to prevent teratoma formation after transplantation of hESC- or hiPSC-derived cells. Taken together, these results provide the "proof of concept" that small-molecule targeting of hPSC-specific antiapoptotic pathway(s) is a viable strategy to prevent tumor formation by selectively eliminating remaining undifferentiated pluripotent cells for safe hPSC-based therapy.
Collapse
|
31
|
Abstract
Capsid proteins are obligatory components of infectious virions. Their primary structural function is to protect viral genomes during entry and exit from host cells. Evidence suggests that these proteins can also modulate the activity and specificity of viral replication complexes. More recently, it has become apparent that they play critical roles at the virus–host interface. Here, we discuss how capsid proteins of RNA viruses interact with key host cell proteins and pathways to modulate cell physiology in order to benefit virus replication. Capsid–host cell interactions may also have implications for viral disease. Understanding how capsids regulate virus–host interactions may lead to the development of novel antiviral therapies based on targeting the activities of cellular proteins.
Collapse
Affiliation(s)
- Steven Willows
- Department of Cell Biology, University of Alberta, 5–14 Medical Sciences Building, Edmonton, T6G 2H7, Canada
| | - Shangmei Hou
- Department of Cell Biology, University of Alberta, 5–14 Medical Sciences Building, Edmonton, T6G 2H7, Canada
| | - Tom C Hobman
- Department of Li Ka Shing Institute of Virology, University of Alberta, 5–14 Medical Sciences Building, Edmonton, T6G 2H7, Canada
| |
Collapse
|
32
|
Chang I, Majid S, Saini S, Zaman MS, Yamamura S, Chiyomaru T, Shahryari V, Fukuhara S, Deng G, Dahiya R, Tanaka Y. Hrk mediates 2-methoxyestradiol-induced mitochondrial apoptotic signaling in prostate cancer cells. Mol Cancer Ther 2013; 12:1049-59. [PMID: 23580416 DOI: 10.1158/1535-7163.mct-12-1187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer is one of the most prevalent cancers in males and ranks as the second most common cause of cancer-related deaths. 2-methoxyestradiol (2-ME), an endogenous estrogen metabolite, is a promising anticancer agent for various types of cancers. Although 2-ME has been shown to activate c-Jun-NH2-kinase (JNK) and mitochondrial-dependent apoptotic signaling pathways, the underlying mechanisms, including downstream effectors, remain unclear. Here, we report that the human Bcl-2 homology 3 (BH3)-only protein harakiri (Hrk) is a critical effector of 2-ME-induced JNK/mitochondria-dependent apoptosis in prostate cancer cells. Hrk mRNA and protein are preferentially upregulated by 2-ME, and Hrk induction is dependent on the JNK activation of c-Jun. Hrk knockdown prevents 2-ME-mediated apoptosis by attenuating the decrease in mitochondrial membrane potential, subsequent cytochrome c (cyt c) release, and caspase activation. Involvement of the proapoptotic protein Bak in this process suggested the possible interaction between Hrk and Bak. Thus, Hrk activation by 2-ME or its overexpression displaced Bak from the complex with antiapoptotic protein Bcl-xL, whereas deletion of the Hrk BH3 domain abolished its interaction with Bcl-xL, reducing the proapoptotic function of Hrk. Finally, Hrk is also involved in the 2-ME-mediated reduction of X-linked inhibitor of apoptosis through Bak activation in prostate cancer cells. Together, our findings suggest that induction of the BH3-only protein Hrk is a critical step in 2-ME activation of the JNK-induced apoptotic pathway, targeting mitochondria by liberating proapoptotic protein Bak.
Collapse
Affiliation(s)
- Inik Chang
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
This review focuses on the role of cyclophilin D (CypD) as a prominent mediator of the mitochondrial permeability transition pore (MPTP) and subsequent effects on cardiovascular physiology and pathology. Although a great number of reviews have been written on the MPTP and its effects on cell death, we focus on the biology surrounding CypD itself and the non-cell death physiologic functions of the MPTP. A greater understanding of the physiologic functions of the MPTP and its regulation by CypD will likely suggest novel therapeutic approaches for cardiovascular disease, both dependent and independent of programmed necrotic cell death mechanisms.
Collapse
Affiliation(s)
- John W. Elrod
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Jeffery D. Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, Ohio, USA
| |
Collapse
|
34
|
Synergistic silencing by promoter methylation and reduced AP-2α transactivation of the proapoptotic HRK gene confers apoptosis resistance and enhanced tumor growth. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:84-95. [PMID: 23159945 DOI: 10.1016/j.ajpath.2012.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/06/2012] [Accepted: 09/18/2012] [Indexed: 02/05/2023]
Abstract
The Harakiri (HRK) gene encodes an important proapoptotic mitochondrial protein of the Bcl-2 family. HRK is expressed in normal tissues but is decreased in many cancers such as melanoma, the mechanisms of which have not been fully elucidated. Here, we demonstrate that HRK is silenced by hypermethylation of a major proximal CpG island in the HRK promoter. Furthermore, we show that HRK is a novel target gene regulated by the transcription factor AP-2α, which interacts with an AP-2α binding site in the HRK promoter. Hypermethylation of the major proximal CpG island (which contains the AP-2α binding site within the most densely methylated -218- to -194-bp region) inhibited AP-2α binding and transcriptional activity. Artificial overexpression of AP-2α in melanoma cells up-regulated HRK transcription, which was further restored by treatment with DNA methyltransferase inhibitor 5-azacytidine. Artificial overexpression of HRK by recombinant adenovirus induced caspase-dependent apoptosis, inhibited melanoma cell growth in vitro, and markedly reduced in vivo melanoma growth in a nude mouse xenograft model. RNA interference by siHRK or siAP-2α reversed the above effects. We conclude that the synergistic effects of HRK promoter hypermethylation and loss of AP-2α transactivation lead to HRK gene silencing and confer resistance to apoptosis and enhanced tumor growth. These novel molecular lesions may provide the basis for new therapeutic approaches to treating AP-2α- and HRK-deficient cancers.
Collapse
|
35
|
Yagi M, Uchiumi T, Takazaki S, Okuno B, Nomura M, Yoshida SI, Kanki T, Kang D. p32/gC1qR is indispensable for fetal development and mitochondrial translation: importance of its RNA-binding ability. Nucleic Acids Res 2012; 40:9717-37. [PMID: 22904065 PMCID: PMC3479211 DOI: 10.1093/nar/gks774] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
p32 is an evolutionarily conserved and ubiquitously expressed multifunctional protein. Although p32 exists at diverse intra and extracellular sites, it is predominantly localized to the mitochondrial matrix near the nucleoid associated with mitochondrial transcription factor A. Nonetheless, its function in the matrix is poorly understood. Here, we determined p32 function via generation of p32-knockout mice. p32-deficient mice exhibited mid-gestation lethality associated with a severe developmental defect of the embryo. Primary embryonic fibroblasts isolated from p32-knockout embryos showed severe dysfunction of the mitochondrial respiratory chain, because of severely impaired mitochondrial protein synthesis. Recombinant p32 binds RNA, not DNA, and endogenous p32 interacts with all mitochondrial messenger RNA species in vivo. The RNA-binding ability of p32 is well correlated with the mitochondrial translation. Co-immunoprecipitation revealed the close association of p32 with the mitoribosome. We propose that p32 is required for functional mitoribosome formation to synthesize proteins within mitochondria.
Collapse
Affiliation(s)
- Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Genetic analysis in Drosophila reveals a role for the mitochondrial protein p32 in synaptic transmission. G3-GENES GENOMES GENETICS 2012; 2:59-69. [PMID: 22384382 PMCID: PMC3276185 DOI: 10.1534/g3.111.001586] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/08/2011] [Indexed: 11/18/2022]
Abstract
Mitochondria located within neuronal presynaptic terminals have been shown to play important roles in the release of chemical neurotransmitters. In the present study, a genetic screen for synaptic transmission mutants of Drosophila has identified the first mutation in a Drosophila homolog of the mitochondrial protein P32. Although P32 is highly conserved and has been studied extensively, its physiological role in mitochondria remains unknown and it has not previously been implicated in neural function. The Drosophila P32 mutant, referred to as dp32EC1, exhibited a temperature-sensitive (TS) paralytic behavioral phenotype. Moreover, electrophysiological analysis at adult neuromuscular synapses revealed a TS reduction in the amplitude of excitatory postsynaptic currents (EPSC) and indicated that dP32 functions in neurotransmitter release. These studies are the first to address P32 function in Drosophila and expand our knowledge of mitochondrial proteins contributing to synaptic transmission.
Collapse
|
37
|
McGee AM, Douglas DL, Liang Y, Hyder SM, Baines CP. The mitochondrial protein C1qbp promotes cell proliferation, migration and resistance to cell death. Cell Cycle 2011; 10:4119-27. [PMID: 22101277 DOI: 10.4161/cc.10.23.18287] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Complement 1q-Binding Protein (C1qbp) is a mitochondrial protein reported to be upregulated in cancer. However, whether C1qbp plays a tumor suppressive or tumorigenic role in the progression of cancer is controversial. Moreover, the exact effects of C1qbp on cell proliferation, migration, and death/survival have not been definitely proven. To this end, we comprehensively examined the effects of C1qbp on mitochondrial-dependent cell death, proliferation, and migration in both normal and breast cancer cells using genetic gain- and loss-of-function approaches. In normal fibroblasts, overexpression of C1qbp protected the cells against staurosporine-induce apoptosis, increased proliferation, decreased cellular ATP, and increased cell migration in a wound-healing assay. In contrast, the opposite effects were observed in fibroblasts depleted of C1qbp by RNA interference. C1qbp expression was found to be markedly elevated in 4 different human breast cancer cell lines as well as in ductal and adenocarcinoma tumors from breast cancer patients. Stable knockdown of C1qbp by shRNA in the aggressive MDA-MB-231 breast cancer cell line greatly reduced cell proliferation, increased ATP levels, and decreased cell migration compared to control shRNA-transfected cells. Moreover, C1qbp knockdown elicited a significant increase in doxorubicin-induced apoptosis in the MDA-MB-231 cells. Finally, C1qbp upregulation was not restricted to breast cancer cells and tumors, as levels of C1qbp were also found to be significantly elevated in both human lung and colon cancer cell lines and carcinomas. Together, these results establish a pro-tumor, rather than anti-tumor, role for C1qbp, and indicate that C1qbp could serve as a molecular target for cancer therapeutics.
Collapse
Affiliation(s)
- Allison M McGee
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | | | | | | | |
Collapse
|
38
|
Yoshikawa H, Komatsu W, Hayano T, Miura Y, Homma K, Izumikawa K, Ishikawa H, Miyazawa N, Tachikawa H, Yamauchi Y, Isobe T, Takahashi N. Splicing factor 2-associated protein p32 participates in ribosome biogenesis by regulating the binding of Nop52 and fibrillarin to preribosome particles. Mol Cell Proteomics 2011; 10:M110.006148. [PMID: 21536856 DOI: 10.1074/mcp.m110.006148] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribosome biogenesis starts with transcription of the large ribosomal RNA precursor (47S pre-rRNA), which soon combines with numerous factors to form the 90S pre-ribosome in the nucleolus. Although the subsequent separation of the pre-90S particle into pre-40S and pre-60S particles is critical for the production process of mature small and large ribosomal subunits, its molecular mechanisms remain undetermined. Here, we present evidence that p32, fibrillarin (FBL), and Nop52 play key roles in this separation step. Mass-based analyses combined with immunoblotting showed that p32 associated with 155 proteins including 31 rRNA-processing factors (of which nine were components of small subunit processome, and six were those of RIX1 complex), 13 chromatin remodeling components, and six general transcription factors required for RNA polymerase III-mediated transcription. Of these, a late rRNA-processing factor Nop52 interacted directly with p32. Immunocytochemical analyses demonstrated that p32 colocalized with an early rRNA-processing factor FBL or Nop52 in the nucleolus and Cajal bodies, but was excluded from the nucleolus after actinomycin D treatment. p32 was present in the pre-ribosomal fractions prepared by cell fractionation or separated by ultracentrifugation of the nuclear extract. p32 also associated with pre-rRNAs including 47S/45S and 32S pre-rRNAs. Furthermore, knockdown of p32 with a small interfering RNA slowed the early processing from 47S/45S pre-rRNAs to 18S rRNA and 32S pre-rRNA. Finally, Nop52 was found to compete with FBL for binding to p32 probably in the nucleolus. Given the fact that FBL and Nop52 are associated with pre-ribosome particles distinctly different from each other, we suggest that p32 is a new rRNA maturation factor involved in the remodeling from pre-90S particles to pre-40S and pre-60S particles that requires the exchange of FBL for Nop52.
Collapse
Affiliation(s)
- Harunori Yoshikawa
- Department of Applied Life Science, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rizvi F, Heimann T, Herrnreiter A, O'Brien WJ. Mitochondrial dysfunction links ceramide activated HRK expression and cell death. PLoS One 2011; 6:e18137. [PMID: 21483866 PMCID: PMC3069046 DOI: 10.1371/journal.pone.0018137] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/26/2011] [Indexed: 11/24/2022] Open
Abstract
Purpose Cell death is an essential process in normal development and homeostasis. In
eyes, corneal epithelial injury leads to the death of cells in underlying
stroma, an event believed to initiate corneal wound healing. The molecular
basis of wound induced corneal stromal cell death is not understood in
detail. Studies of others have indicated that ceramide may play significant
role in stromal cell death following LASIK surgery. We have undertaken the
present study to investigate the mechanism of death induced by C6 ceramide
in cultures of human corneal stromal (HCSF) fibroblasts. Methods Cultures of HCSF were established from freshly excised corneas. Cell death
was induced in low passage (p<4) cultures of HCSF by treating the cells
with C6 ceramide or C6 dihydroceramide as a control. Cell death was assessed
by Live/Dead cell staining with calcein AM and ethidium homodimer-1 as well
as Annexin V staining, caspase activation and TUNEL staining Mitochondrial
dysfunction was assessed by Mito Sox Red, JC-1 and cytochrome C release Gene
expression was examined by qPCR and western blotting. Results Our data demonstrate ceramide caused mitochondrial dysfunction as evident
from reduced MTT staining, cyto c release from
mitochondria, enhanced generation of ROS, and loss in mitochondrial membrane
potential (ΔΨm). Cell death was evident from Live -Dead
Cell staining and the inability to reestablish cultures from detached cells.
Ceramide induced the expression of the harikari gene(HRK) and up-regulated
JNK phosphorylation. In ceramide treated cells HRK was translocated to
mitochondria, where it was found to interact with mitochondrial protein p32.
The data also demonstrated HRK, p32 and BAD interaction. Ceramide-induced
expression of HRK, mitochondrial dysfunction and cell death were reduced by
HRK knockdown with HRK siRNA. Conclusion Our data document that ceramide is capable of inducing death of corneal
stromal fibroblasts through the induction of HRK mediated mitochondria
dysfunction.
Collapse
Affiliation(s)
- Farhan Rizvi
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee,
Wisconsin, United States of America
- * E-mail: (FR); (WJOB)
| | - Tom Heimann
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee,
Wisconsin, United States of America
| | - Anja Herrnreiter
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee,
Wisconsin, United States of America
| | - William J. O'Brien
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee,
Wisconsin, United States of America
- Department of Microbiology/Molecular Genetics, Medical College of
Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail: (FR); (WJOB)
| |
Collapse
|
40
|
Broederdorf LJ, Voth DE. Cheating death: a coxiella effector prevents apoptosis. Front Microbiol 2011; 2:43. [PMID: 21747783 PMCID: PMC3128945 DOI: 10.3389/fmicb.2011.00043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 12/26/2022] Open
Affiliation(s)
- Laura J Broederdorf
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | | |
Collapse
|
41
|
Ilkow CS, Goping IS, Hobman TC. The Rubella virus capsid is an anti-apoptotic protein that attenuates the pore-forming ability of Bax. PLoS Pathog 2011; 7:e1001291. [PMID: 21379337 PMCID: PMC3040668 DOI: 10.1371/journal.ppat.1001291] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 01/12/2011] [Indexed: 11/18/2022] Open
Abstract
Apoptosis is an important mechanism by which virus-infected cells are eliminated from the host. Accordingly, many viruses have evolved strategies to prevent or delay apoptosis in order to provide a window of opportunity in which virus replication, assembly and egress can take place. Interfering with apoptosis may also be important for establishment and/or maintenance of persistent infections. Whereas large DNA viruses have the luxury of encoding accessory proteins whose primary function is to undermine programmed cell death pathways, it is generally thought that most RNA viruses do not encode these types of proteins. Here we report that the multifunctional capsid protein of Rubella virus is a potent inhibitor of apoptosis. The main mechanism of action was specific for Bax as capsid bound Bax and prevented Bax-induced apoptosis but did not bind Bak nor inhibit Bak-induced apoptosis. Intriguingly, interaction with capsid protein resulted in activation of Bax in the absence of apoptotic stimuli, however, release of cytochrome c from mitochondria and concomitant activation of caspase 3 did not occur. Accordingly, we propose that binding of capsid to Bax induces the formation of hetero-oligomers that are incompetent for pore formation. Importantly, data from reverse genetic studies are consistent with a scenario in which the anti-apoptotic activity of capsid protein is important for virus replication. If so, this would be among the first demonstrations showing that blocking apoptosis is important for replication of an RNA virus. Finally, it is tempting to speculate that other slowly replicating RNA viruses employ similar mechanisms to avoid killing infected cells. Among the variety of defense systems employed by mammalian cells to combat virus infection, apoptosis or programmed cell death is the most drastic response. Some large DNA viruses encode proteins whose sole function is to block apoptosis. Conversely, very little is known about whether RNA viruses encode analogous proteins. In many cases, RNA viruses are able to replicate before cell death occurs, which may be one reason why so little thought has been given to this topic. However, a number of RNA viruses, some of which are important human pathogens, have slow replication cycles and it stands to reason that they must block apoptosis during this time period. Here we show that the multifunctional capsid protein of Rubella virus is a potent inhibitor of apoptosis. Data from reverse genetic experiments suggest that the anti-apoptotic function of a virus-encoded protein is important for replication of an RNA virus. We anticipate that other slowly replicating RNA viruses may employ similar mechanisms and, as such, these studies have implications for development of novel anti-virals and vaccines.
Collapse
Affiliation(s)
- Carolina S. Ilkow
- Department of Cell Biology, University of Alberta, Edmonton, Canada
- School of Molecular and Systems Medicine, University of Alberta, Edmonton, Canada
| | - Ing Swie Goping
- School of Molecular and Systems Medicine, University of Alberta, Edmonton, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Canada
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Tom C. Hobman
- Department of Cell Biology, University of Alberta, Edmonton, Canada
- School of Molecular and Systems Medicine, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
42
|
McGEE AM, Baines CP. Complement 1q-binding protein inhibits the mitochondrial permeability transition pore and protects against oxidative stress-induced death. Biochem J 2011; 433:119-25. [PMID: 20950273 PMCID: PMC3512559 DOI: 10.1042/bj20101431] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Opening of the MPT (mitochondrial permeability transition) pore is a critical event in mitochondrial-mediated cell death. However, with the exception of CypD (cyclophilin D), the exact molecular composition of the MPT pore remains uncertain. C1qbp (complement 1q-binding protein) has recently been hypothesized to be an essential component of the MPT pore complex. To investigate whether C1qbp indeed plays a critical role in MPT and cell death, we conducted both gain-of-function and loss-of-function experiments in MEFs (mouse embryonic fibroblasts). We first confirmed that C1qbp is a soluble protein that localizes to the mitochondrial matrix in mouse cells and tissues. Similarly, overexpression of C1qbp in MEFs using an adenovirus resulted in its exclusive localization to mitochondria. To our surprise, increased C1qbp protein levels actually suppressed H2O2-induced MPT and cell death. Antithetically, knockdown of endogenous C1qbp with siRNA (small interfering RNA) sensitized the MEFs to H2O2-induced MPT and cell death. Moreover, we found that C1qbp could directly bind to CypD. Therefore C1qbp appears to act as an endogenous inhibitor of the MPT pore, most likely through binding to CypD, and thus protects cells against oxidative stress.
Collapse
Affiliation(s)
- Allison M. McGEE
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, 65211, U.S.A
| | - Christopher P. Baines
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, 65211, U.S.A
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri, 65211, U.S.A
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri, 65211, U.S.A
| |
Collapse
|
43
|
Milli A, Perego P, Beretta GL, Corvo A, Righetti PG, Carenini N, Corna E, Zuco V, Zunino F, Cecconi D. Proteomic Analysis of Cellular Response to Novel Proapoptotic Agents Related to Atypical Retinoids in Human IGROV-1 Ovarian Carcinoma Cells. J Proteome Res 2010; 10:1191-207. [DOI: 10.1021/pr100963n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Alberto Milli
- Dipartimento di Biotecnologie, Laboratorio di Proteomica e Spettrometria di Massa, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Paola Perego
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Giovanni L. Beretta
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Alice Corvo
- Dipartimento di Biotecnologie, Laboratorio di Proteomica e Spettrometria di Massa, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Pier Giorgio Righetti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
| | - Nives Carenini
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Elisabetta Corna
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Valentina Zuco
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Franco Zunino
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Daniela Cecconi
- Dipartimento di Biotecnologie, Laboratorio di Proteomica e Spettrometria di Massa, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
44
|
Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proc Natl Acad Sci U S A 2010; 107:18997-9001. [PMID: 20944063 DOI: 10.1073/pnas.1004380107] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coxiella burnetii and Legionella pneumophila are evolutionarily related pathogens with different intracellular infection strategies. C. burnetii persists within and is transmitted by mammalian hosts, whereas, L. pneumophila is found primarily in the environment associated with protozoan hosts. Although a type IV secretion system encoded by the defect in organelle trafficking (dot) and intracellular multiplication (icm) genes is a virulence determinant that remains highly conserved in both bacteria, the two pathogens encode a different array of effector proteins that are delivered into host cells by the Dot/Icm machinery. This difference suggests that adaptations to evolutionarily distinct hosts may be reflected in the effector protein repertoires displayed by these two pathogens. Here we provide evidence in support of this hypothesis. We show that a unique C. burnetii effector from the ankyrin repeat (Ank) family called AnkG interferes with the mammalian apoptosis pathway. AnkG was found to interact with the host protein gC1qR (p32). Either the addition of AnkG to the repertoire of L. pneumophila effector proteins or the silencing of p32 in mouse dendritic cells resulted in a gain of function that allowed intracellular replication of L. pneumophila in these normally restrictive mammalian host cells by preventing rapid pathogen-induced apoptosis. These data indicate that p32 regulates pathogen-induced apoptosis and that AnkG functions to block this pathway. Thus, emergence of an effector protein that interferes with a proapoptotic signaling pathway directed against intracellular bacteria correlates with adaptation of a pathogen to mammalian hosts.
Collapse
|
45
|
Abstract
There is ample evidence to suggest that a dramatic decrease in mitochondrial Ca(2+) retention may contribute to the cell death associated with stroke, excitotoxicity, ischemia and reperfusion, and neurodegenerative diseases. Mitochondria from all studied tissues can accumulate and store Ca(2+) , but the maximum Ca(2+) storage capacity varies widely and exhibits striking tissue specificity. There is currently no explanation for this fact. Precipitation of Ca(2+) and phosphate in the mitochondrial matrix has been suggested to be the major form of storage of accumulated Ca(2+) in mitochondria. How this precipitate is formed is not known. The molecular identity of almost all proteins involved in Ca(2+) transport, storage and formation of the permeability transition pore is also unknown. This review summarizes studies aimed at identifying these proteins, and describes the properties of a known mitochondrial protein that may be involved in Ca(2+) transport and the structure of the permeability transition pore.
Collapse
|
46
|
Ilkow CS, Willows SD, Hobman TC. Rubella virus capsid protein: a small protein with big functions. Future Microbiol 2010; 5:571-84. [PMID: 20353299 DOI: 10.2217/fmb.10.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Virus replication occurs in the midst of a life or death struggle between the virus and the infected host cell. To limit virus replication, host cells can activate a number of antiviral pathways, the most drastic of which is programmed cell death. Whereas large DNA viruses have the luxury of encoding accessory proteins whose main function is to interfere with host cell defences, the genomes of RNA viruses are not large enough to encode proteins of this type. Recent studies have revealed that proteins encoded by RNA viruses often play multiple roles in the battles between viruses and host cells. In this article, we discuss the many functions of the rubella virus capsid protein. This protein has well-defined roles in virus assembly, but recent research suggests that it also functions to modulate virus replication and block host cell defences.
Collapse
Affiliation(s)
- Carolina S Ilkow
- Department of Cell Biology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| | | | | |
Collapse
|
47
|
Sprehe M, Fisk JC, McEvoy SM, Read LK, Schumacher MA. Structure of the Trypanosoma brucei p22 protein, a cytochrome oxidase subunit II-specific RNA-editing accessory factor. J Biol Chem 2010; 285:18899-908. [PMID: 20392699 PMCID: PMC2881812 DOI: 10.1074/jbc.m109.066597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Kinetoplastid RNA (k-RNA) editing is a complex process in the mitochondria of kinetoplastid protozoa, including Trypanosoma brucei, that involves the guide RNA-directed insertion and deletion of uridines from precursor-mRNAs to produce mature, translatable mRNAs. k-RNA editing is performed by multiprotein complexes called editosomes. Additional non-editosome components termed k-RNA-editing accessory factors affect the extent of editing of specific RNAs or classes of RNAs. The T. brucei p22 protein was identified as one such accessory factor. Here we show that p22 contributes to cell growth in the procyclic form of T. brucei and functions as a cytochrome oxidase subunit II-specific k-RNA-editing accessory factor. To gain insight into its functions, we solved the crystal structure of the T. brucei p22 protein to 2.0-A resolution. The p22 structure consists of a six-stranded, antiparallel beta-sheet flanked by five alpha-helices. Three p22 subunits combine to form a tight trimer that is primarily stabilized by interactions between helical residues. One side of the trimer is strikingly acidic, while the opposite face is more neutral. Database searches show p22 is structurally similar to human p32, which has a number of functions, including regulation of RNA splicing. p32 interacts with a number of target proteins via its alpha1 N-terminal helix, which is among the most conserved regions between p22 and p32. Co-immunoprecipitation studies showed that p22 interacts with the editosome and the k-RNA accessory protein, TbRGG2, and alpha1 of p22 was shown to be important for the p22-TbRGG2 interaction. Thus, these combined studies suggest that p22 mediates its role in k-RNA editing by acting as an adaptor protein.
Collapse
Affiliation(s)
- Mareen Sprehe
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
The rubella virus (RV) capsid is an RNA-binding protein that functions in nucleocapsid assembly at the Golgi complex, the site of virus budding. In addition to its role in virus assembly, pools of capsid associate with mitochondria, a localization that is not consistent with virus assembly. Here we examined the interaction of capsid with mitochondria and showed that this viral protein inhibits the import and processing of mitochondrial precursor proteins in vitro. Moreover, RV-infected cells were found to contain lower intramitochondrial levels of matrix protein p32. In addition to inhibiting the translocation of substrates into mammalian mitochondria, capsid efficiently blocked import into yeast mitochondria, thereby suggesting that it acts by targeting a highly conserved component of the translocation apparatus. Finally, mutation of a cluster of five arginine residues in the amino terminus of capsid, though not interfering with its binding to mitochondria, abrogated its ability to block protein import into mitochondria. This is the first report of a viral protein that affects the import of proteins into mitochondria.
Collapse
|
49
|
Sansonno D, Tucci FA, Ghebrehiwet B, Lauletta G, Peerschke EIB, Conteduca V, Russi S, Gatti P, Sansonno L, Dammacco F. Role of the receptor for the globular domain of C1q protein in the pathogenesis of hepatitis C virus-related cryoglobulin vascular damage. THE JOURNAL OF IMMUNOLOGY 2009; 183:6013-20. [PMID: 19828637 DOI: 10.4049/jimmunol.0902038] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mixed cryoglobulinemia (MC) is a lymphoproliferative disorder observed in approximately 10 to 15% of hepatitis C virus (HCV)-infected patients. Circulating, nonenveloped HCV core protein, which has been detected in cryoprecipitable immune complexes, interacts with immunocytes through the receptor for the globular domain of C1q protein (gC1q-R). In this study, we have evaluated circulating gC1q-R levels in chronically HCV-infected patients, with and without MC. These levels were significantly higher in MC patients than in those without MC and in healthy controls and paralleled specific mRNA expression in PBL. Soluble gC1q-R circulates as a complexed form containing both C1q and HCV core proteins. Higher serum gC1q-R levels negatively correlated with circulating concentrations of the C4d fragment. The presence of sequestered C4d in the vascular bed of skin biopsies from MC patients was indicative of in situ complement activation. In vitro studies showed that release of soluble gC1q-R is regulated by HCV core-mediated inhibition of cell proliferation. Our results indicate that up-regulation of gC1q-R expression is a distinctive feature of MC, and that dysregulated shedding of C1q-R molecules contributes to vascular cryoglobulin-induced damage via the classic complement-mediated pathway.
Collapse
Affiliation(s)
- Domenico Sansonno
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen YB, Jiang CT, Zhang GQ, Wang JS, Pang D. Increased expression of hyaluronic acid binding protein 1 is correlated with poor prognosis in patients with breast cancer. J Surg Oncol 2009; 100:382-6. [PMID: 19565630 DOI: 10.1002/jso.21329] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Hyaluronic acid binding protein 1 (HABP1), a family of proteins interacting with hyaluronan (HA), had been associated with cell adhesion and tumor invasion. The aim of this study was to investigate the correlation between clinicopathologic factors and patient survival time with the expression of HABP1 in breast cancer patients. METHODS Expression of HABP1 mRNA and protein were detected with real-time quantitative PCR and immunohistochemical staining in 63 breast cancer and non-cancerous matched tissues. RESULTS The mRNA expression level of HABP1 was unrelated to the patient's age, tumor size, histological grade, TNM stage. However, it proved to be positively related to axillary nodes metastasis (P = 0.008). Furthermore, it was shown that the survival rate of patients with low HABP1 expression was significantly higher than that of patients with high HABP1 expression (P = 0.025). Multivariate analysis revealed that HABP1 mRNA expression level was a significant factor for predicting prognosis (P = 0.022). The immunohistochemistry results showed that the expression level of HABP1 in breast cancer cells was higher than that in normal breast cells. CONCLUSION HABP1 might be an independent predictive factor for breast cancer prognosis and up-regulation of HABP1 might play an important role in the metastasis of breast cancer.
Collapse
Affiliation(s)
- Yan-Bo Chen
- Department of Breast Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, PR China
| | | | | | | | | |
Collapse
|