1
|
La Frazia S, Pauciullo S, Zulian V, Garbuglia AR. Viral Oncogenesis: Synergistic Role of Genome Integration and Persistence. Viruses 2024; 16:1965. [PMID: 39772271 PMCID: PMC11728759 DOI: 10.3390/v16121965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Persistence is a strategy used by many viruses to evade eradication by the immune system, ensuring their permanence and transmission within the host and optimizing viral fitness. During persistence, viruses can trigger various phenomena, including target organ damage, mainly due to an inflammatory state induced by infection, as well as cell proliferation and/or immortalization. In addition to immune evasion and chronic inflammation, factors contributing to viral persistence include low-level viral replication, the accumulation of viral mutants, and, most importantly, maintenance of the viral genome and reliance on viral oncoprotein production. This review focuses on the process of genome integration, which may occur at different stages of infection (e.g., HBV), during the chronic phase of infection (e.g., HPV, EBV), or as an essential part of the viral life cycle, as seen in retroviruses (HIV, HTLV-1). It also explores the close relationship between integration, persistence, and oncogenesis. Several models have been proposed to describe the genome integration process, including non-homologous recombination, looping, and microhomology models. Integration can occur either randomly or at specific genomic sites, often leading to genome destabilization. In some cases, integration results in the loss of genomic regions or impairs the regulation of oncogene and/or oncosuppressor expression, contributing to tumor development.
Collapse
Affiliation(s)
- Simone La Frazia
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Silvia Pauciullo
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.); (A.R.G.)
| | - Verdiana Zulian
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.); (A.R.G.)
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.); (A.R.G.)
| |
Collapse
|
2
|
Okura T, Takahashi T, Kameya T, Mizukoshi F, Nakai Y, Kakizaki M, Nishi M, Otsuki N, Kimura H, Miyakawa K, Shirato K, Kamitani W, Ryo A. MARCH8 Restricts RSV Replication by Promoting Cellular Apoptosis Through Ubiquitin-Mediated Proteolysis of Viral SH Protein. Viruses 2024; 16:1935. [PMID: 39772241 PMCID: PMC11680241 DOI: 10.3390/v16121935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Numerous host factors function as intrinsic antiviral effectors to attenuate viral replication. MARCH8 is an E3 ubiquitin ligase that has been identified as a host restriction factor that inhibits the replication of various viruses. This study elucidated the mechanism by which MARCH8 restricts respiratory syncytial virus (RSV) replication through selective degradation of the viral small hydrophobic (SH) protein. We demonstrated that MARCH8 directly interacts with RSV-SH and catalyzes its ubiquitination at lysine 13, leading to SH degradation via the ubiquitin-lysosomal pathway. Functionally, MARCH8 expression enhances RSV-induced apoptosis through SH degradation, ultimately reducing viral titers. Conversely, an RSV strain harboring the SH-K13R mutation exhibited prolonged SH protein stability and attenuated apoptosis in infected cells, even in the presence of MARCH8. Targeted depletion of MARCH8 enhances cellular survival and potentially increases viral persistence. These findings demonstrate that MARCH8 promotes the early elimination of virus-infected cells by abrogating the anti-apoptotic function of SH, thereby reducing viral transmission. Our study provides novel insights into the interplay between host restriction factors and viral evasion strategies, potentially providing new therapeutic approaches for RSV infections.
Collapse
Affiliation(s)
- Takashi Okura
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (T.K.); (F.M.); (Y.N.); (M.K.); (M.N.); (N.O.); (K.S.)
| | - Tatsuki Takahashi
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan; (T.T.); (W.K.)
| | - Taichi Kameya
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (T.K.); (F.M.); (Y.N.); (M.K.); (M.N.); (N.O.); (K.S.)
- Life Science Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Chuo-ku 259-1146, Kanagawa, Japan
| | - Fuminori Mizukoshi
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (T.K.); (F.M.); (Y.N.); (M.K.); (M.N.); (N.O.); (K.S.)
| | - Yusuke Nakai
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (T.K.); (F.M.); (Y.N.); (M.K.); (M.N.); (N.O.); (K.S.)
| | - Masatoshi Kakizaki
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (T.K.); (F.M.); (Y.N.); (M.K.); (M.N.); (N.O.); (K.S.)
| | - Mayuko Nishi
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (T.K.); (F.M.); (Y.N.); (M.K.); (M.N.); (N.O.); (K.S.)
| | - Noriyuki Otsuki
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (T.K.); (F.M.); (Y.N.); (M.K.); (M.N.); (N.O.); (K.S.)
| | - Hirokazu Kimura
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki 370-0006, Gunma, Japan;
| | - Kei Miyakawa
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan;
- Department of Microbiology, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Kanagawa, Japan
| | - Kazuya Shirato
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (T.K.); (F.M.); (Y.N.); (M.K.); (M.N.); (N.O.); (K.S.)
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan; (T.T.); (W.K.)
| | - Akihide Ryo
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (T.K.); (F.M.); (Y.N.); (M.K.); (M.N.); (N.O.); (K.S.)
- Department of Microbiology, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Kanagawa, Japan
| |
Collapse
|
3
|
Bertzbach LD, Ip WH, von Stromberg K, Dobner T, Grand RJ. A comparative review of adenovirus A12 and C5 oncogenes. Curr Opin Virol 2024; 67:101413. [PMID: 38865835 DOI: 10.1016/j.coviro.2024.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Oncogenic viruses contribute to 15% of global human cancers. To achieve that, virus-encoded oncoproteins deregulate cellular transcription, antagonize common cellular pathways, and thus drive cell transformation. Notably, adenoviruses were the first human viruses proven to induce cancers in diverse animal models. Over the past decades, human adenovirus (HAdV)-mediated oncogenic transformation has been pivotal in deciphering underlying molecular mechanisms. Key adenovirus oncoproteins, encoded in early regions 1 (E1) and 4 (E4), co-ordinate these processes. Among the different adenovirus species, the most extensively studied HAdV-C5 displays lower oncogenicity than HAdV-A12. A complete understanding of the different HAdV-A12 and HAdV-C5 oncoproteins in virus-mediated cell transformation, as summarized here, is relevant for adenovirus research and offers broader insights into viral transformation and oncogenesis.
Collapse
Affiliation(s)
- Luca D Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Martinistraße 52, 20251 Hamburg, Germany
| | - Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Martinistraße 52, 20251 Hamburg, Germany
| | - Konstantin von Stromberg
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Martinistraße 52, 20251 Hamburg, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Martinistraße 52, 20251 Hamburg, Germany.
| | - Roger J Grand
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
4
|
Markovic M, Mitrovic S, Dagovic A, Jovanovic D, Nikolic T, Ivosevic A, Milosavljevic MZ, Vojinovic R, Petrovic M. Does the Expression of Vascular Endothelial Growth Factor (VEGF) and Bcl-2 Have a Prognostic Significance in Advanced Non-Small Cell Lung Cancer? Healthcare (Basel) 2023; 11:healthcare11030292. [PMID: 36766867 PMCID: PMC9914895 DOI: 10.3390/healthcare11030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Lung cancer is the most common cause of mortality from malignant tumors worldwide. The five-year survival rate for people with advanced stages varies considerably, from 35.4% to 6.9%. The angiogenic potential of bcl2 is not well known, nor is the way in which tumor cells with excessive bcl2 expression affect VEGF production. Hypothetically, given that tumor growth, progression and metastasis are dependent on angiogenesis, the antiapoptotic effect is expected to form a link between these two molecules. The aim of this study was to evaluate the relationship between bcl-2 and VEGF expression, clinicopathological features and survival in 216 patients with advanced NSCLC. Archival tumor tissues were examined by immunohistochemistry for the expression of bcl-2 and VEGF. Immunoreactivity for bcl-2 was observed in 41.4% of NSCLCs, 51% of squamous and 34.8% of adenocarcinomas-expressed Bcl-2. There was an inverse correlation of mononuclear stromal reaction and bcl-2 expression in adenocarcinoma (p < 0.0005). A total of 71.8% NSCLCs were VEGF positive, 56% of squamous and 82.2% of adenocarcinomas. High level of VEGF expression was significantly associated with histology type (p = 0.043), low histology grade (p = 0.014), clinical stage IV (p = 0.018), smoking history (p = 0.008) and EGFR mutations (p = 0.026). There was an inverse correlation in the expression of Bcl-2 and VEGF in NSCLC patients (p = 0.039, r = -0.163). Two-year survival of patients with unresectable NSCLC was 39.3%, and 50% of patients were alive at 17 months. Our results demonstrated no difference in survival for patients in advanced NSCLC grouped by bcl-2 and VEGF status. Additionally, we observed an inverse correlation in the expression of Bcl-2 and VEGF in NSCLC and mononuclear reaction and bcl-2 expression in adenocarcinomas.
Collapse
Affiliation(s)
- Marina Markovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Medical Oncology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
- Correspondence: ; Tel.: +381-65-808-0877 or +381-34-505-356
| | - Aleksandar Dagovic
- Department of Medical Oncology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
- Department of Oncology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dalibor Jovanovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Tomislav Nikolic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Clinic for Nephrology and Dyalisis, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Anita Ivosevic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Clinic for Rheumatology and Allergology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Milos Z. Milosavljevic
- Department of Pathology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Radisa Vojinovic
- Department of Radiology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
- Department of Radiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marina Petrovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Pulmonology Clinic, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
5
|
Wang Y, Xu S, Han C, Huang Y, Wei J, Wei S, Qin Q. Modulatory effects of curcumin on Singapore grouper iridovirus infection-associated apoptosis and autophagy in vitro. FISH & SHELLFISH IMMUNOLOGY 2022; 131:84-94. [PMID: 36206994 DOI: 10.1016/j.fsi.2022.09.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Singapore grouper iridovirus (SGIV) with high pathogenicity can cause great economic losses to aquaculture industry. Thus, it is of urgency to find effective antiviral strategies to combat SGIV. Curcumin has been demonstrated effective antiviral activity on SGIV infection. However, the molecular mechanism behind this action needs to be further explanations. In view of the fact that apoptosis (type I programmed cell death) and autophagy (type II programmed cell death) were key regulators during SGIV infection, we aimed to investigate the relevance between antiviral activity of curcumin and SGIV-associated programmed and clarify the role of potential signaling pathways. Our results showed that curcumin suppressed SGIV-induced apoptosis. At the same time, the activities of caspase-3/8/9 and activating protein-1 (AP-1), P53, nuclear factor-κB (NF-ΚB) promoters were inhibited. Besides, the activation of extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen activate protein kinase (p38 MAPK) signal pathways were suppressed in curcumin-treated cells. On the other hand, curcumin down-regulated protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway to promote autophagy representing by increased LC3 II and Beclin1 expression. Curcumin also hindered the transition of cells from G1 to S phase, as well as down-regulating the expression of CyclinD1. Our findings revealed the resistance curcumin induced to the effects of DNA virus on cell apoptosis and autophagy and the insights gained from this study may be of assistance to understand the molecular mechanism of curcumin against DNA virus infection.
Collapse
Affiliation(s)
- Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Suifeng Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengzong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 528478, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
6
|
Tessier TM, Dodge MJ, MacNeil KM, Evans AM, Prusinkiewicz MA, Mymryk JS. Almost famous: Human adenoviruses (and what they have taught us about cancer). Tumour Virus Res 2021; 12:200225. [PMID: 34500123 PMCID: PMC8449131 DOI: 10.1016/j.tvr.2021.200225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Papillomaviruses, polyomaviruses and adenoviruses are collectively categorized as the small DNA tumour viruses. Notably, human adenoviruses were the first human viruses demonstrated to be able to cause cancer, albeit in non-human animal models. Despite their long history, no human adenovirus is a known causative agent of human cancers, unlike a subset of their more famous cousins, including human papillomaviruses and human Merkel cell polyomavirus. Nevertheless, seminal research using human adenoviruses has been highly informative in understanding the basics of cell cycle control, gene expression, apoptosis and cell differentiation. This review highlights the contributions of human adenovirus research in advancing our knowledge of the molecular basis of cancer.
Collapse
Affiliation(s)
- Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Martin A Prusinkiewicz
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
7
|
Nehme Z, Pasquereau S, Haidar Ahmad S, Coaquette A, Molimard C, Monnien F, Algros MP, Adotevi O, Diab Assaf M, Feugeas JP, Herbein G. Polyploid giant cancer cells, stemness and epithelial-mesenchymal plasticity elicited by human cytomegalovirus. Oncogene 2021; 40:3030-3046. [PMID: 33767437 DOI: 10.1038/s41388-021-01715-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022]
Abstract
A growing body of evidence is recognizing human cytomegalovirus (HCMV) as a potential oncogenic virus. We hereby provide the first experimental in vitro evidence for HCMV as a reprogramming vector, through the induction of dedifferentiation of mature human mammary epithelial cells (HMECs), generation of a polyploid giant cancer cell (PGCC) phenotype characterized by sustained growth of blastomere-like cells, in concordance with the acquisition of embryonic stem cells characteristics and epithelial-mesenchymal plasticity. HCMV presence parallels the succession of the observed cellular and molecular events potentially ensuing the transformation process. Correlation between PGCCs detection and HCMV presence in breast cancer tissue further validates our hypothesis in vivo. Our study indicates that some clinical HCMV strains conserve the potential to transform HMECs and fit with a "blastomere-like" model of oncogenesis, which may be relevant in the pathophysiology of breast cancer and other adenocarcinoma, especially of poor prognosis.
Collapse
Affiliation(s)
- Zeina Nehme
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France
- Lebanese University, Beyrouth, Lebanon
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France
| | - Sandy Haidar Ahmad
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France
- Lebanese University, Beyrouth, Lebanon
| | | | - Chloé Molimard
- Department of Pathology, CHRU Besançon, Besançon, France
| | - Franck Monnien
- Department of Pathology, CHRU Besançon, Besançon, France
| | | | - Olivier Adotevi
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | | | - Jean-Paul Feugeas
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.
- Department of Virology, CHRU Besançon, Besançon, France.
| |
Collapse
|
8
|
Spectrum-Wide Exploration of Human Adenoviruses for Breast Cancer Therapy. Cancers (Basel) 2020; 12:cancers12061403. [PMID: 32486014 PMCID: PMC7352696 DOI: 10.3390/cancers12061403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022] Open
Abstract
Oncolytic adenoviruses (Ads) are promising tools for cancer therapeutics. However, most Ad-based therapies utilize Ad type 5 (Ad5), which displays unsatisfying efficiency in clinical trials, partly due to the low expression levels of its primary coxsackievirus and adenovirus receptor (CAR) on tumor cells. Since the efficacy of virotherapy strongly relies on efficient transduction of targeted tumor cells, initial screening of a broad range of viral agents to identify the most effective vehicles is essential. Using a novel Ad library consisting of numerous human Ads representing known Ad species, we evaluated the transduction efficiencies in four breast cancer (BC) cell lines. For each cell line over 20 Ad types were screened in a high-throughput manner based on reporter assays. Ad types featuring high transduction efficiencies were further investigated with respect to the percentage of transgene-positive cells and efficiencies of cellular entry in individual cell lines. Additionally, oncolytic assay was performed to test tumor cell lysis efficacy of selected Ad types. We found that all analyzed BC cell lines show low expression levels of CAR, while alternative receptors such as CD46, DSG-2, and integrins were also detected. We identified Ad3, Ad35, Ad37, and Ad52 as potential candidates for BC virotherapy.
Collapse
|
9
|
Ip WH, Dobner T. Cell transformation by the adenovirus oncogenes E1 and E4. FEBS Lett 2019; 594:1848-1860. [PMID: 31821536 DOI: 10.1002/1873-3468.13717] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
Abstract
Extensive studies on viral-mediated oncogenic transformation by human adenoviruses have revealed much of our current understanding on the molecular mechanisms that are involved in the process. To date, these studies have shown that cell transformation is a multistep process regulated by the cooperation of several adenoviral gene products encoded in the early regions 1 (E1) and 4 (E4). Early region 1A immortalizes primary rodent cells, whereas co-expression of early region protein 1B induces full manifestation of the transformed phenotype. Beside E1 proteins, also some E4 proteins have partial transforming activities through regulating many cellular pathways. Here, we summarize recent data of how adenoviral oncoproteins may contribute to viral transformation and discuss the challenge of pinpointing the underlying mechanisms.
Collapse
Affiliation(s)
- Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
10
|
Grisham RN, Moore KN, Gordon MS, Harb W, Cody G, Halpenny DF, Makker V, Aghajanian CA. Phase Ib Study of Binimetinib with Paclitaxel in Patients with Platinum-Resistant Ovarian Cancer: Final Results, Potential Biomarkers, and Extreme Responders. Clin Cancer Res 2018. [PMID: 29844129 DOI: 10.1158/1078-0432.ccr-18-0494] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Epithelial ovarian cancer (EOC) is a molecularly diverse disease. MEK inhibition targets tumors harboring MAPK pathway alterations and enhances paclitaxel-induced apoptosis in EOC. This phase Ib study evaluated the MEK inhibitor binimetinib combined with paclitaxel in patients with platinum-resistant EOC.Patients and Methods: Patients received intravenous weekly paclitaxel with oral binimetinib in three different administration schedules. Outcomes were assessed by RECIST and CGIC CA-125 response criteria. Tumor samples were analyzed using next-generation sequencing.Results: Thirty-four patients received ≥1 binimetinib dose. A 30-mg twice-a-day continuous or 45-mg twice-a-day intermittent binimetinib dose was deemed the recommended phase II dose (RP2D) in combination with 80 mg/m2 i.v. weekly paclitaxel. Rate of grade 3/4 adverse events was 65%. The best overall response rate was 18%-one complete (CR) and four partial responses (PR)-among 28 patients with RECIST-measurable disease. Eleven patients achieved stable disease (SD), yielding a clinical benefit rate (CR+PR+SD) of 57%. Response rates, per both RECIST and CA-125 criteria, were highest in the 45-mg twice-a-day continuous cohort and lowest in the 45-mg twice-a-day intermittent cohort. All four evaluable patients with MAPK pathway-altered tumors experienced clinical benefit.Conclusions: The combination of binimetinib and intravenous weekly paclitaxel was tolerable in this patient population. The RP2D of binimetinib in combination with paclitaxel was 30 mg twice a day as a continuous or 45 mg twice a day as an intermittent dose. Although response rates were modest, a higher clinical benefit rate was seen in patients harboring alterations affecting the MAPK pathway. Clin Cancer Res; 24(22); 5525-33. ©2018 AACR.
Collapse
Affiliation(s)
- Rachel N Grisham
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Kathleen N Moore
- Stephenson Oklahoma Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma
| | | | - Wael Harb
- Horizon Oncology Research, Inc., Lafayette, Indiana
| | - Gwendolyn Cody
- New York University School of Medicine, New York, New York
| | - Darragh F Halpenny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vicky Makker
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Carol A Aghajanian
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
11
|
Nattress CB, Halldén G. Advances in oncolytic adenovirus therapy for pancreatic cancer. Cancer Lett 2018; 434:56-69. [PMID: 29981812 DOI: 10.1016/j.canlet.2018.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023]
Abstract
Survival rates for pancreatic cancer patients have remained unchanged for the last four decades. The most aggressive, and most common, type of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC), which has the lowest 5-year survival rate of all cancers globally. The poor prognosis is typically due to late presentation of often non-specific symptoms and rapid development of resistance to all current therapeutics, including the standard-of-care cytotoxic drug gemcitabine. While early surgical intervention can significantly prolong patient survival, there are few treatment options for late-stage non-resectable metastatic disease, resulting in mostly palliative care. In addition, a defining feature of pancreatic cancer is the immunosuppressive and impenetrable desmoplastic stroma that blocks access to tumour cells by therapeutic drugs. The limited effectiveness of conventional chemotherapeutics reveals an urgent need to develop novel therapies with different mechanisms of action for this malignancy. An emerging alternative to current therapeutics is oncolytic adenoviruses; these engineered biological agents have proven efficacy and tumour-selectivity in preclinical pancreatic cancer models, including models of drug-resistant cancer. Safety of oncolytic adenoviral mutants has been extensively assessed in clinical trials with only limited toxicity to normal healthy tissue being reported. Promising efficacy in combination with gemcitabine was demonstrated in preclinical and clinical studies. A recent surge in novel adenoviral mutants entering clinical trials for pancreatic cancer indicates improved efficacy through activation of the host anti-tumour responses. The potential for adenoviruses to synergise with chemotherapeutics, activate anti-tumour immune responses, and contribute to stromal dissemination render these mutants highly attractive candidates for improved patient outcomes. Currently, momentum is gathering towards the development of systemically-deliverable mutants that are able to overcome anti-viral host immune responses, erythrocyte binding and hepatic uptake, to promote elimination of primary and metastatic lesions. This review will cover the key components of pancreatic cancer oncogenesis; novel oncolytic adenoviruses; clinical trials; and the current progress in overcoming the challenges of systemic delivery.
Collapse
Affiliation(s)
- Callum Baird Nattress
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, United Kingdom
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, United Kingdom.
| |
Collapse
|
12
|
Baker AT, Aguirre-Hernández C, Halldén G, Parker AL. Designer Oncolytic Adenovirus: Coming of Age. Cancers (Basel) 2018; 10:E201. [PMID: 29904022 PMCID: PMC6025169 DOI: 10.3390/cancers10060201] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
The licensing of talimogene laherparepvec (T-Vec) represented a landmark moment for oncolytic virotherapy, since it provided unequivocal evidence for the long-touted potential of genetically modified replicating viruses as anti-cancer agents. Whilst T-Vec is promising as a locally delivered virotherapy, especially in combination with immune-checkpoint inhibitors, the quest continues for a virus capable of specific tumour cell killing via systemic administration. One candidate is oncolytic adenovirus (Ad); it’s double stranded DNA genome is easily manipulated and a wide range of strategies and technologies have been employed to empower the vector with improved pharmacokinetics and tumour targeting ability. As well characterised clinical and experimental agents, we have detailed knowledge of adenoviruses’ mechanisms of pathogenicity, supported by detailed virological studies and in vivo interactions. In this review we highlight the strides made in the engineering of bespoke adenoviral vectors to specifically infect, replicate within, and destroy tumour cells. We discuss how mutations in genes regulating adenoviral replication after cell entry can be used to restrict replication to the tumour, and summarise how detailed knowledge of viral capsid interactions enable rational modification to eliminate native tropisms, and simultaneously promote active uptake by cancerous tissues. We argue that these designer-viruses, exploiting the viruses natural mechanisms and regulated at every level of replication, represent the ideal platforms for local overexpression of therapeutic transgenes such as immunomodulatory agents. Where T-Vec has paved the way, Ad-based vectors now follow. The era of designer oncolytic virotherapies looks decidedly as though it will soon become a reality.
Collapse
Affiliation(s)
- Alexander T Baker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - Carmen Aguirre-Hernández
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Alan L Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| |
Collapse
|
13
|
Grisham RN, Moore KN, Gordon MS, Harb W, Cody G, Halpenny DF, Makker V, Aghajanian CA. Phase Ib Study of Binimetinib with Paclitaxel in Patients with Platinum-Resistant Ovarian Cancer: Final Results, Potential Biomarkers, and Extreme Responders. Clin Cancer Res 2018; 24:5525-5533. [PMID: 29844129 DOI: 10.1158/1078-0432.ccr-18-0494] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/12/2018] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
Abstract
Purpose: Epithelial ovarian cancer (EOC) is a molecularly diverse disease. MEK inhibition targets tumors harboring MAPK pathway alterations and enhances paclitaxel-induced apoptosis in EOC. This phase Ib study evaluated the MEK inhibitor binimetinib combined with paclitaxel in patients with platinum-resistant EOC.Patients and Methods: Patients received intravenous weekly paclitaxel with oral binimetinib in three different administration schedules. Outcomes were assessed by RECIST and CGIC CA-125 response criteria. Tumor samples were analyzed using next-generation sequencing.Results: Thirty-four patients received ≥1 binimetinib dose. A 30-mg twice-a-day continuous or 45-mg twice-a-day intermittent binimetinib dose was deemed the recommended phase II dose (RP2D) in combination with 80 mg/m2 i.v. weekly paclitaxel. Rate of grade 3/4 adverse events was 65%. The best overall response rate was 18%-one complete (CR) and four partial responses (PR)-among 28 patients with RECIST-measurable disease. Eleven patients achieved stable disease (SD), yielding a clinical benefit rate (CR+PR+SD) of 57%. Response rates, per both RECIST and CA-125 criteria, were highest in the 45-mg twice-a-day continuous cohort and lowest in the 45-mg twice-a-day intermittent cohort. All four evaluable patients with MAPK pathway-altered tumors experienced clinical benefit.Conclusions: The combination of binimetinib and intravenous weekly paclitaxel was tolerable in this patient population. The RP2D of binimetinib in combination with paclitaxel was 30 mg twice a day as a continuous or 45 mg twice a day as an intermittent dose. Although response rates were modest, a higher clinical benefit rate was seen in patients harboring alterations affecting the MAPK pathway. Clin Cancer Res; 24(22); 5525-33. ©2018 AACR.
Collapse
Affiliation(s)
- Rachel N Grisham
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Kathleen N Moore
- Stephenson Oklahoma Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma
| | | | - Wael Harb
- Horizon Oncology Research, Inc., Lafayette, Indiana
| | - Gwendolyn Cody
- New York University School of Medicine, New York, New York
| | - Darragh F Halpenny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vicky Makker
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Carol A Aghajanian
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
14
|
Man YKS, Davies JA, Coughlan L, Pantelidou C, Blázquez-Moreno A, Marshall JF, Parker AL, Halldén G. The Novel Oncolytic Adenoviral Mutant Ad5-3Δ-A20T Retargeted to αvβ6 Integrins Efficiently Eliminates Pancreatic Cancer Cells. Mol Cancer Ther 2018; 17:575-587. [PMID: 29367266 DOI: 10.1158/1535-7163.mct-17-0671] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/27/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022]
Abstract
Metastatic pancreatic ductal adenocarcinomas (PDAC) are incurable due to the rapid development of resistance to all current therapeutics. Oncolytic adenoviral mutants have emerged as a promising new strategy that negates such resistance. In contrast to normal tissue, the majority of PDACs express the αvβ6 integrin receptor. To exploit this feature, we modified our previously reported oncolytic adenovirus, AdΔΔ, to selectively target αvβ6 integrins to facilitate systemic delivery. Structural modifications to AdΔΔ include the expression of the small but potent αvβ6-binding peptide, A20FMDV2, and ablation of binding to the native coxsackie and adenovirus receptor (CAR) within the fiber knob region. The resultant mutant, Ad5-3Δ-A20T, infected and killed αvβ6 integrin-expressing cells more effectively than the parental wild-type (Ad5wt) virus and AdΔΔ. Viral uptake through αvβ6 integrins rather than native viral receptors (CAR, αvβ3 and αvβ5 integrins) promoted viral propagation and spread. Superior efficacy of Ad5-3Δ-A20T compared with Ad5wt was demonstrated in 3D organotypic cocultures, and similar potency between the two viruses was observed in Suit-2 in vivo models. Importantly, Ad5-3Δ-A20T infected pancreatic stellate cells at low levels, which may further facilitate viral spread and cancer cell elimination either as a single agent or in combination with the chemotherapy drug, gemcitabine. We demonstrate that Ad5-3Δ-A20T is highly selective for αvβ6 integrin-expressing pancreatic cancer cells, and with further development, this new and exciting strategy can potentially be extended to improve the systemic delivery of adenoviruses to pancreatic cancer patients. Mol Cancer Ther; 17(2); 575-87. ©2018 AACR.
Collapse
Affiliation(s)
- Y K Stella Man
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, United Kingdom
| | - James A Davies
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Alfonso Blázquez-Moreno
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - John F Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, United Kingdom
| | - Alan L Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, United Kingdom.
| |
Collapse
|
15
|
Aguirre-Hernández C, Maya-Pineda H, Millán JS, Man YKS, Lu YJ, Halldén G. Sensitisation to mitoxantrone-induced apoptosis by the oncolytic adenovirus Ad∆∆ through Bcl-2-dependent attenuation of autophagy. Oncogenesis 2018; 7:6. [PMID: 29362360 PMCID: PMC5833340 DOI: 10.1038/s41389-017-0020-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/12/2017] [Accepted: 11/01/2017] [Indexed: 01/29/2023] Open
Abstract
Anti-apoptotic Bcl-2 is frequently activated in human malignant cells to promote cell survival and inhibit cell death. Replication-selective oncolytic adenoviruses deleted in the functional Bcl-2 homologue E1B19K potently synergise with apoptosis-inducing chemotherapeutic drugs, including mitoxantrone for prostate cancer. Here, we demonstrate that our previously generated oncolytic mutant Ad∆∆ (E1B19K- and E1ACR2-deleted) caused potent synergistic apoptotic cell death in both drug-sensitive 22Rv1, and drug-insensitive PC3 and PC3M prostate cancer cells. The synergistic cell killing was dependent on Bcl-2 expression and was prevented by Bcl-2 knockdown, which led to activation of the autophagy pathway. Mitoxantrone-induced autophagy, which was decreased in combination with Ad∆∆-infection resulting in increased apoptosis. Expression of the viral E1A12S protein alone mimicked the synergistic effects with Ad∆∆ in combination with mitoxantrone while intact wild-type virus (Ad5) had no effect. Early and late-stage inhibition of autophagy by Atg7 knockdown and chloroquine respectively, promoted apoptotic cell killing with mitoxantrone similar to Ad∆∆. These findings revealed currently unexplored actions of E1B19K-deleted oncolytic adenoviruses and the central role of Bcl-2 in the synergistic cell killing. This study suggests that cancers with functional Bcl-2 expression may be selectively re-sensitised to drugs by Ad∆∆.
Collapse
Affiliation(s)
- Carmen Aguirre-Hernández
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Héctor Maya-Pineda
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Julia San Millán
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Y K Stella Man
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Yong-Jie Lu
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
16
|
The E1B19K-deleted oncolytic adenovirus mutant AdΔ19K sensitizes pancreatic cancer cells to drug-induced DNA-damage by down-regulating Claspin and Mre11. Oncotarget 2017; 7:15703-24. [PMID: 26872382 PMCID: PMC4941271 DOI: 10.18632/oncotarget.7310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/27/2016] [Indexed: 11/25/2022] Open
Abstract
Adenovirus-mediated sensitization of cancer cells to cytotoxic drugs depends on simultaneous interactions of early viral genes with cell death and survival pathways. It is unclear what cellular factors mediate these interactions in the presence of DNA-damaging drugs. We found that adenovirus prevents Chk1-mediated checkpoint activation through inactivation of Mre11 and downregulation of the pChk1 adaptor-protein, Claspin, in cells with high levels of DNA-damage induced by the cytotoxic drugs gemcitabine and irinotecan. The mechanisms for Claspin downregulation involve decreased transcription and increased degradation, further attenuating pChk1-mediated signalling. Live cell imaging demonstrated that low doses of gemcitabine caused multiple mitotic aberrations including multipolar spindles, micro- and multi-nucleation and cytokinesis failure. A mutant virus with the anti-apoptotic E1B19K-gene deleted (AdΔ19K) further enhanced cell killing, Claspin downregulation, and potentiated drug-induced DNA damage and mitotic aberrations. Decreased Claspin expression and inactivation of Mre11 contributed to the enhanced cell killing in combination with DNA-damaging drugs. These results reveal novel mechanisms that are utilised by adenovirus to ensure completion of its life cycle in the presence of cellular DNA damage. Taken together, our findings reveal novel cellular targets that may be exploited when developing improved anti-cancer therapeutics.
Collapse
|
17
|
McLachlan J, Gore M, Banerjee S. Targeting the mitogen-activated protein kinase pathway in low-grade serous carcinoma of the ovary. Pharmacogenomics 2016; 17:1353-63. [PMID: 27469379 DOI: 10.2217/pgs.16.24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Until recently, there has been little change in the management of epithelial ovarian cancer with the majority of women receiving identical systemic therapy, regardless of histological subtype. The heterogeneity of epithelial ovarian cancer is now well established, with distinct subtypes characterized by specific molecular alterations and patterns of clinical behavior. Low-grade serous carcinoma is a rare subtype associated with an indolent biological behavior and inherent resistance to chemotherapy. The mitogen-activated protein kinase pathway plays a prominent role in the pathogenesis of low-grade serous carcinoma, and provides an attractive target for novel therapeutic agents. Selumetinib, a MEK1/2 inhibitor, demonstrates promising efficacy in women with relapsed low-grade serous carcinoma, and further trials of MEK-inhibition are underway. Translational research will be essential to identify predictive biomarkers for this treatment approach.
Collapse
Affiliation(s)
- Jennifer McLachlan
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London, SW3 6JJ, UK
| | - Martin Gore
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London, SW3 6JJ, UK
| | - Susana Banerjee
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London, SW3 6JJ, UK
| |
Collapse
|
18
|
Abstract
Prostate cancer is a leading cause of cancer-related death and morbidity in men in the Western world. Tumor progression is dependent on functioning androgen receptor signaling, and initial administration of antiandrogens and hormone therapy (androgen-deprivation therapy) prevent growth and spread. Tumors frequently develop escape mechanisms to androgen-deprivation therapy and progress to castration-resistant late-stage metastatic disease that, in turn, inevitably leads to resistance to all current therapeutics, including chemotherapy. In spite of the recent development of more effective inhibitors of androgen–androgen receptor signaling such as enzalutamide and abiraterone, patient survival benefits are still limited. Oncolytic adenoviruses have proven efficacy in prostate cancer cells and cause regression of tumors in preclinical models of numerous drug-resistant cancers. Data from clinical trials demonstrate that adenoviral mutants have limited toxicity to normal tissues and are safe when administered to patients with various solid cancers, including prostate cancer. While efficacy in response to adenovirus administration alone is marginal, findings from early-phase trials targeting local-ized and metastatic prostate cancer suggest improved efficacy in combination with cytotoxic drugs and radiation therapy. Here, we review recent progress in the development of multimodal oncolytic adenoviruses as biological therapeutics to improve on tumor elimination in prostate cancer patients. These optimized mutants target cancer cells by several mechanisms including viral lysis and by expression of cytotoxic transgenes and immune-stimulatory factors that activate the host immune system to destroy both infected and noninfected prostate cancer cells. Additional modifications of the viral capsid proteins may support future systemic delivery of oncolytic adenoviruses.
Collapse
Affiliation(s)
- Katrina Sweeney
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, London, UK
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, London, UK
| |
Collapse
|
19
|
Libertini G. Phylogeny of aging and related phenoptotic phenomena. BIOCHEMISTRY (MOSCOW) 2015; 80:1529-46. [DOI: 10.1134/s0006297915120019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Lin L, Qin Y, Wu H, Chen Y, Wu S, Si X, Wang H, Wang T, Zhong X, Zhai X, Tong L, Pan B, Zhang F, Zhong Z, Wang Y, Zhao W. Pyrrolidine dithiocarbamate inhibits enterovirus 71 replication by down-regulating ubiquitin-proteasome system. Virus Res 2014; 195:207-16. [PMID: 25456405 DOI: 10.1016/j.virusres.2014.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/25/2014] [Accepted: 10/10/2014] [Indexed: 12/22/2022]
Abstract
Enterovirus 71 (EV71) is the main causative pathogen of hand, foot, and mouth disease (HFMD). The severe neurological complications caused by EV71 infection and the lack of effective therapeutic medicine underline the importance of searching for antiviral substances. Pyrrolidine dithiocarbamate (PDTC), an antioxidant, has been reported to inhibit the replication of coxsackievirus B (CVB) through dysregulating ubiquitin-proteasome system (UPS). In this study, we demonstrated that PDTC exerted potent antiviral effect on EV71. Viral RNA synthesis, viral protein expression, and the production of viral progeny were significantly reduced by the treatment of PDTC in Vero cells infected with EV71. Similar to the previous report about the inhibitory effect of PDTC on UPS, we found that PDTC treatment led to decreased levels of polyubiquitinated proteins in EV71-infected cells. The inhibitory effect of PDTC on UPS was further confirmed by the increased accumulation of cell cycle regulatory proteins p21 and p53, which are normally degraded through UPS, while the expression levels of both proteins remained unchanged. We also showed that PDTC had no impact on the activity of proteasome. Thus, we demonstrated that the down-regulation of PDTC on UPS was the result of its inhibition on ubiquitination. More importantly, this study provides evidence that the inhibition on UPS was required for the antiviral activity of PDTC, since MG132, a potent proteasome inhibitor, significantly inhibited the cytopathic effect and viral protein synthesis in EV71-infected cells. We also found that the antioxidant property of PDTC did not contribute to its antiviral effect, since N-acetyl-l-cysteine, a potent antioxidant, could not inhibit viral replication. In addition, CPE and viral protein synthesis were not inhibited in the cells pretreated with PDTC 2h before viral infection and then cultured in the media with no PDTC supplement, while the antioxidant effect of PDTC was retained. PDTC also showed significant inhibition on apoptosis induced by EV71 infection when it was applied at the early stage of viral infection. Our results collectively suggest that PDTC could be a potential anti-EV71 compound which possesses both antiviral and anti-apoptotic capacity.
Collapse
Affiliation(s)
- Lexun Lin
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Ying Qin
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Heng Wu
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Shuo Wu
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Xiaoning Si
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Hui Wang
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Xiaoyan Zhong
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Xia Zhai
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Lei Tong
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Bo Pan
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China.
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China.
| |
Collapse
|
21
|
Wei F, Wang H, Chen X, Li C, Huang Q. Dissecting the roles of E1A and E1B in adenoviral replication and RCAd-enhanced RDAd transduction efficacy on tumor cells. Cancer Biol Ther 2014; 15:1358-66. [PMID: 25019940 DOI: 10.4161/cbt.29842] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oncolytic viruses have recently received widespread attention for their potential in innovative cancer therapy. Many telomerase promoter-regulated oncolytic adenoviral vectors retain E1A and E1B. However, the functions of E1A and E1B proteins in the oncolytic role of replication-competent adenovirus (RCAd) and RCAd enhanced transduction of replication defective adenoviruses (RDAd) have not been addressed well. In this study, we constructed viruses expressing E1A alone, E1A plus E1B-19 kDa, and E1A plus E1B-19 kDa/55 kDa. We then tested their roles in oncolysis and replication of RCAd as well as their roles in RCAd enhanced transfection rate and transgene expression of RDAd in various cancer cells in vitro and in xenografted human NCI-H460 tumors in nude mice. We demonstrated that RCAds expressing E1A alone and plus E1B-19 kDa exhibited an obvious ability in replication and oncolytic effects as well as enhanced RDAd replication and transgene expression, with the former showed more effective oncolysis, while the latter exhibited superior viral replication and transgene promotion activity. However, RCAd expressing both E1A and E1B-19 kDa/55 kDa was clearly worst in all these abilities. The effects of E1A and E1B observed through using RCAd were further validated by using plasmids expressing E1A alone, E1A plus E1B-19 kDa, and E1A plus E1B-19 kDa/55 kDa proteins. Our study provided evidence that E1A was essential for inducing replication and oncolytic effects of RCAd as well as RCAd enhanced RDAd transduction, and expression of E1B-19 kDa other than E1B-55 kDa could promote these effects. E1B-55 kDa is not necessary for the oncolytic effects of adenoviruses and somehow inhibits RCAd-mediated RDAd replication and transgene expression.
Collapse
Affiliation(s)
- Fang Wei
- Experimental Research Center; First People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai, PR China
| | - Huiping Wang
- Experimental Research Center; First People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai, PR China
| | - Xiafang Chen
- Experimental Research Center; First People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai, PR China
| | - Chuanyuan Li
- Department of Dermatology; Duke University Medical Center; Durham, NC USA
| | - Qian Huang
- Cancer Center; First People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai, PR China
| |
Collapse
|
22
|
Anand SK, Tikoo SK. Viruses as modulators of mitochondrial functions. Adv Virol 2013; 2013:738794. [PMID: 24260034 PMCID: PMC3821892 DOI: 10.1155/2013/738794] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/30/2013] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are multifunctional organelles with diverse roles including energy production and distribution, apoptosis, eliciting host immune response, and causing diseases and aging. Mitochondria-mediated immune responses might be an evolutionary adaptation by which mitochondria might have prevented the entry of invading microorganisms thus establishing them as an integral part of the cell. This makes them a target for all the invading pathogens including viruses. Viruses either induce or inhibit various mitochondrial processes in a highly specific manner so that they can replicate and produce progeny. Some viruses encode the Bcl2 homologues to counter the proapoptotic functions of the cellular and mitochondrial proteins. Others modulate the permeability transition pore and either prevent or induce the release of the apoptotic proteins from the mitochondria. Viruses like Herpes simplex virus 1 deplete the host mitochondrial DNA and some, like human immunodeficiency virus, hijack the host mitochondrial proteins to function fully inside the host cell. All these processes involve the participation of cellular proteins, mitochondrial proteins, and virus specific proteins. This review will summarize the strategies employed by viruses to utilize cellular mitochondria for successful multiplication and production of progeny virus.
Collapse
Affiliation(s)
- Sanjeev K. Anand
- Vaccine & Infection Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
- Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
| | - Suresh K. Tikoo
- Vaccine & Infection Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
- Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
- School of Public Health, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
| |
Collapse
|
23
|
Tovilovic G, Ristic B, Milenkovic M, Stanojevic M, Trajkovic V. The Role and Therapeutic Potential of Autophagy Modulation in Controlling Virus-Induced Cell Death. Med Res Rev 2013; 34:744-67. [DOI: 10.1002/med.21303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gordana Tovilovic
- Institute for Biological Research; University of Belgrade; Despot Stefan Boulevard 142 11000 Belgrade Serbia
| | - Biljana Ristic
- Institute of Microbiology and Immunology; School of Medicine; University of Belgrade; Dr. Subotica 1 11000 Belgrade Serbia
| | - Marina Milenkovic
- Institute of Microbiology and Immunology; School of Medicine; University of Belgrade; Dr. Subotica 1 11000 Belgrade Serbia
| | - Maja Stanojevic
- Institute of Microbiology and Immunology; School of Medicine; University of Belgrade; Dr. Subotica 1 11000 Belgrade Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology; School of Medicine; University of Belgrade; Dr. Subotica 1 11000 Belgrade Serbia
| |
Collapse
|
24
|
Saha A, Robertson ES. Impact of EBV essential nuclear protein EBNA-3C on B-cell proliferation and apoptosis. Future Microbiol 2013; 8:323-52. [PMID: 23464371 DOI: 10.2217/fmb.12.147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
For over 40 years, EBV infection has been implicated in the etiology of a variety of lymphoid malignancies with the exceptional ability to drive resting B cells to continuously proliferate by successfully overriding cellular apoptotic stimuli. EBV utilizes the normal physiology of B-cell differentiation to persist within the memory B-cell pool of the immunocompetent host and subsequently establishes a life-long latent infection. During latency, out of a subset of viral genes expressed, EBNA-3C is one of the essential antigens required for in vitro primary B-cell transformation. EBNA-3C acts as a transcriptional coregulator by interacting with various cellular and viral factors. For the last 10 years, we have been actively engaged in discerning the biological significance of these interactions and revealed that EBNA-3C primarily targets two important cellular pathways - cell cycle and apoptosis. This review aims to summarize our current knowledge on EBNA-3C-mediated functions and describe how EBNA-3C seizes these cellular pathways that eventually promote B-cell lymphomagenesis. A scrupulous understanding of the critical relationship between EBNA-3C and these cellular machineries will not only aid in elucidating EBV pathogenesis, but also largely facilitate the development of novel diagnostic, as well as therapeutic, strategies against a vast range of EBV-associated B-cell lymphomas.
Collapse
Affiliation(s)
- Abhik Saha
- Presidency University, Department of Biotechnology, 86/1, College Street, Kolkata-700073, West Bengal, India
| | | |
Collapse
|
25
|
Yacobi-Sharon K, Namdar Y, Arama E. Alternative germ cell death pathway in Drosophila involves HtrA2/Omi, lysosomes, and a caspase-9 counterpart. Dev Cell 2013; 25:29-42. [PMID: 23523076 DOI: 10.1016/j.devcel.2013.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 01/03/2013] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Abstract
In both flies and mammals, almost one-third of the newly emerging male germ cells are spontaneously eliminated before entering meiosis. Here, we show that in Drosophila, germ cell death (GCD) involves the initiator caspase Dronc independently of the apoptosome and the main executioner caspases. Electron microscopy of dying germ cells revealed mixed morphologies of apoptosis and necrosis. We further show that the lysosomes and their catabolic enzymes, but not macroautophagy, are involved in the execution of GCD. We then identified, in a screen, the Parkinson's disease-associated mitochondrial protease, HtrA2/Omi, as an important mediator of GCD, acting mainly through its catalytic activity rather than by antagonizing inhibitor of apoptosis proteins. Concomitantly, other mitochondrial-associated factors were also implicated in GCD, including Pink1 (but not Parkin), the Bcl-2-related proteins, and endonuclease G, which establish the mitochondria as central mediators of GCD. These findings uncover an alternative developmental cell death pathway in metazoans.
Collapse
Affiliation(s)
- Keren Yacobi-Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
26
|
The p53 protein does not facilitate adenovirus type 5 replication in normal human cells. J Virol 2013; 87:6044-6. [PMID: 23487462 DOI: 10.1128/jvi.00129-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although several adenovirus type 5 (Ad5) proteins prevent deleterious consequences of activation of p53, it has been reported that viral replication proceeds more efficiently when human tumor cells produce wild-type compared to mutant p53. We have now exploited RNA interference and lentiviral vectors to achieve essentially complete knockdown of p53 in normal human cells: no effects on the kinetics or efficiency of viral gene expression or production of infectious particles were observed.
Collapse
|
27
|
Wang H, Wei F, Li H, Ji X, Li S, Chen X. Combination of oncolytic adenovirus and endostatin inhibits human retinoblastoma in an in vivo mouse model. Int J Mol Med 2012; 31:377-85. [PMID: 23229955 DOI: 10.3892/ijmm.2012.1197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/06/2012] [Indexed: 11/06/2022] Open
Abstract
There is a critical need for new paradigms in retinoblastoma (RB) treatment that would more efficiently inhibit tumor growth while sparing the vision of patients. Oncolytic adenoviruses with the ability to selectively replicate and kill tumor cells are a promising strategy for cancer gene therapy. Exploration of a novel targeting strategy for RB utilizing combined oncolytic adenovirus and anti-angiogenesis therapy was applied over the course of the current study with positive results. The oncolytic adenoviruses Ad-E2F1 p-E1A and Ad-TERT p-E1 were constructed. The E1 region was regulated by the E2F-1 promoter or the human telomerase reverse transcriptase (hTERT) promoter, respectively. Effects on both replication and promotion of enhanced green fluorescent protein (EGFP) expression were observed in the replication-defective adenovirus Ad-EGFP in diverse cancer cell lines, HXO-RB44, Y79, Hep3B, NCIH460, MCF-7 and HLF. The cancer cell death induced by these agents was also explored. The in situ RB model demonstrated that mice with tumors treated with the oncolytic adenovirus and replication-defective adenovirus Ad-endostatin exhibited notable cancer cell death. This anticancer effect was further examined by stereo microscope, and the survival rate of experimental mice was determined. Both Ad-E2F1 p-E1A and Ad-TERT p-E1 replicated specifically in cancer cells in vitro and promoted EGFP expression in Ad-EGFP, although Ad-E2F1 p-E1A demonstrated superior EGFP promotion activity than Ad-TERT p-E1. In Hep3B, NCIH460 and MCF-7 cells, the number of Ad-TERT p-E1 copies was observed to exceed of the number of Ad-E2F1 p-E1A copies by a minimum of 10-fold. Furthermore, Ad-TERT p-E1 demonstrated significantly superior oncolytic effects in the RB mouse model, and Ad-endostatin effectively suppressed tumor growth and extended the overall lifespan of subjects; however, the Ad-E2F1 p-E1A was clearly less effective in attaining these goals. Most notably, the antitumor effect and survival rate of subjects in the combined Ad-TERT p-E1 + Ad-endostatin group were higher than those treated with either single Ad-TERT p-E1 (p=0.097, p=0.022, respectively) or Ad-endostatin (p=0.037, p=0.006, respectively). In conclusion, application of transcription factor E2F-1 and human telomerase reverse transcriptase (hTERT) promoters to control E1 offer some guarantee that not only is RB gene therapy effective, but it is also safe. Combination therapy using the oncolytic adenovirus Ad-TERT p-E1 and replication-defective adenovirus Ad-endostatin demonstrates desirable oncolysis in the in situ RB mouse model. Additionally, E1B19K is important in the RB tumor suppression effect of oncolytic adenoviruses.
Collapse
Affiliation(s)
- Huiping Wang
- Experimental Research Center, The First People's Hospital, Shanghai Jiaotong University, Shanghai 201620, P.R. China
| | | | | | | | | | | |
Collapse
|
28
|
Halldén G, Portella G. Oncolytic virotherapy with modified adenoviruses and novel therapeutic targets. Expert Opin Ther Targets 2012; 16:945-58. [PMID: 22880939 DOI: 10.1517/14728222.2012.712962] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Numerous oncolytic viral mutants derived from a variety of strains have antitumor efficacy with limited or no toxicity to normal tissue. While all modes of administration were determined to be safe in patients with solid cancers refractory to current standard of care, this therapeutic approach requires further improvements to achieve definite efficacy. AREAS COVERED We review the most promising clinical developments with several oncolytic viruses. The focus is on preclinical and clinical findings with replication-selective adenoviral mutants including ONYX-015, H101 and Ad5ΔCR mutants that, to date, are the most studied oncolytic viruses. Cellular pathways reported to play a role in virus-induced cell killing are reviewed as potential targets for the development of more effective combinatorial therapies. EXPERT OPINION The most promising clinical outcomes for metastatic cancers have been reported for oncolytic vaccinia and herpes virus mutants expressing the cytokine GMCSF. However, highly efficacious and selective adenoviral mutants have been developed that interact synergistically with cytotoxic drugs in model systems. We anticipate that by delineating the cellular targets for synergistic cancer cell killing in response to adenoviral mutants and drugs such as apoptosis and autophagy signaling, greatly improved anticancer therapies will result in the near future.
Collapse
Affiliation(s)
- Gunnel Halldén
- Queen Mary University of London, Barts Cancer Institute, Centre for Molecular Oncology, London, UK
| | | |
Collapse
|
29
|
Macaire H, Riquet A, Moncollin V, Biémont-Trescol MC, Duc Dodon M, Hermine O, Debaud AL, Mahieux R, Mesnard JM, Pierre M, Gazzolo L, Bonnefoy N, Valentin H. Tax protein-induced expression of antiapoptotic Bfl-1 protein contributes to survival of human T-cell leukemia virus type 1 (HTLV-1)-infected T-cells. J Biol Chem 2012; 287:21357-70. [PMID: 22553204 DOI: 10.1074/jbc.m112.340992] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human T lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATLL). ATLL is a severe malignancy with no effective treatment. HTLV-1 regulatory proteins Tax and HTLV-1 basic leucine zipper factor (HBZ) play a major role in ATLL development, by interfering with cellular functions such as CD4(+) T-cell survival. In this study, we observed that the expression of Bfl-1, an antiapoptotic protein of the Bcl-2 family, is restricted to HTLV-1-infected T-cell lines and to T-cells expressing both Tax and HBZ proteins. We showed that Tax-induced bfl-1 transcription through the canonical NF-κB pathway. Moreover, we demonstrated that Tax cooperated with c-Jun or JunD, but not JunB, transcription factors of the AP-1 family to stimulate bfl-1 gene activation. By contrast, HBZ inhibited c-Jun-induced bfl-1 gene activation, whereas it increased JunD-induced bfl-1 gene activation. We identified one NF-κB, targeted by RelA, c-Rel, RelB, p105/p50, and p100/p52, and two AP-1, targeted by both c-Jun and JunD, binding sites in the bfl-1 promoter of T-cells expressing both Tax and HBZ. Analyzing the potential role of antiapoptotic Bcl-2 proteins in HTLV-1-infected T-cell survival, we demonstrated that these cells are differentially sensitive to silencing of Bfl-1, Bcl-x(L), and Bcl-2. Indeed, both Bfl-1 and Bcl-x(L) knockdowns decreased the survival of HTLV-1-infected T-cell lines, although no cell death was observed after Bcl-2 knockdown. Furthermore, we demonstrated that Bfl-1 knockdown sensitizes HTLV-1-infected T-cells to ABT-737 or etoposide treatment. Our results directly implicate Bfl-1 and Bcl-x(L) in HTLV-1-infected T-cell survival and suggest that both Bfl-1 and Bcl-x(L) represent potential therapeutic targets for ATLL treatment.
Collapse
|
30
|
Argiris K, Panethymitaki C, Tavassoli M. Naturally occurring, tumor-specific, therapeutic proteins. Exp Biol Med (Maywood) 2011; 236:524-36. [PMID: 21521711 DOI: 10.1258/ebm.2011.011004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The emerging approach to cancer treatment known as targeted therapies offers hope in improving the treatment of therapy-resistant cancers. Recent understanding of the molecular pathogenesis of cancer has led to the development of targeted novel drugs such as monoclonal antibodies, small molecule inhibitors, mimetics, antisense and small interference RNA-based strategies, among others. These compounds act on specific targets that are believed to contribute to the development and progression of cancers and resistance of tumors to conventional therapies. Delivered individually or combined with chemo- and/or radiotherapy, such novel drugs have produced significant responses in certain types of cancer. Among the most successful novel compounds are those which target tyrosine kinases (imatinib, trastuzumab, sinutinib, cetuximab). However, these compounds can cause severe side-effects as they inhibit pathways such as epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor, which are also important for normal functions in non-transformed cells. Recently, a number of proteins have been identified which show a remarkable tumor-specific cytotoxic activity. This toxicity is independent of tumor type or specific genetic changes such as p53, pRB or EGFR aberrations. These tumor-specific killer proteins are either derived from common human and animal viruses such as E1A, E4ORF4 and VP3 (apoptin) or of cellular origin, such as TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) and MDA-7 (melanoma differentiation associated-7). This review aims to present a current overview of a selection of these proteins with preferential toxicity among cancer cells and will provide an insight into the possible mechanism of action, tumor specificity and their potential as novel tumor-specific cancer therapeutics.
Collapse
|
31
|
Radhakrishnan S, Miranda E, Ekblad M, Holford A, Pizarro MT, Lemoine NR, Halldén G. Efficacy of oncolytic mutants targeting pRb and p53 pathways is synergistically enhanced when combined with cytotoxic drugs in prostate cancer cells and tumor xenografts. Hum Gene Ther 2010; 21:1311-25. [PMID: 20497039 DOI: 10.1089/hum.2010.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Replication-selective oncolytic adenoviruses have proven safety records with promising clinical outcomes. However, strategies to improve efficacy are still required. Here we report greatly improved antitumor efficacy for both attenuated (dl1520) and highly potent (dl922–947) oncolytic mutants in combination with the current standard of care for late-stage hormone-independent prostate cancers, mitoxantrone or docetaxel. In agreement with previous reports, dl922–947 had superior potency compared with dl1520 both as a single agent and in combination with cytotoxic drugs. The dl922–947 mutant caused significant synergistic cell killing in both drug-insensitive and -sensitive prostate cancer cell lines, PC3 and DU145, respectively, when combined with docetaxel or mitoxantrone. The magnitude of the synergistic response was greatest for dl1520 whereas overall efficacy was greatest for dl922–947, and the latter was also more efficacious in vivo in prostate cancer models. In DU145 and PC3 cells increased viral uptake (up to 9- and 8-fold, respectively), E1A expression, and altered cell cycle progression contributed to the synergistic cell killing. A similar trend was also detected in LNCaP cells. Potent E1A expression was essential for the response. In murine xenograft models (DU145 and PC3) tumor growth inhibition was improved when suboptimal doses of docetaxel and viral mutants were combined. These findings demonstrate that the efficacy of highly potent oncolytic mutants such as dl922–947 that target the retinoblastoma protein (pRb) pathway could be further enhanced even with low drug doses, and support the deletion of the E1ACR2 region in future candidate adenoviruses for treatment of hormone-independent prostate cancers.
Collapse
Affiliation(s)
- Suresh Radhakrishnan
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
32
|
Upton JW, Kaiser WJ, Mocarski ES. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 2010; 7:302-313. [PMID: 20413098 DOI: 10.1016/j.chom.2010.03.006] [Citation(s) in RCA: 472] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/27/2010] [Accepted: 03/12/2010] [Indexed: 12/15/2022]
Abstract
Viral infection activates cytokine expression and triggers cell death, the modulation of which is important for successful pathogenesis. Necroptosis is a form of programmed necrosis dependent on two related RIP homotypic interaction motif (RHIM)-containing signaling adaptors, receptor-interacting protein kinases (RIP) 1 and 3. We find that murine cytomegalovirus infection induces RIP3-dependent necrosis. Whereas RIP3 kinase activity and RHIM-dependent interactions control virus-associated necrosis, virus-induced death proceeds independently of RIP1 and is therefore distinct from TNFalpha-dependent necroptosis. Viral M45-encoded inhibitor of RIP activation (vIRA) targets RIP3 during infection and disrupts RIP3-RIP1 interactions characteristic of TNFalpha-induced necroptosis, thereby suppressing both death pathways. Importantly, attenuation of vIRA mutant virus in wild-type mice is normalized in RIP3-deficient mice. Thus, vIRA function validates necrosis as central to host defense against viral infections and highlights the benefit of multiple virus-encoded cell-death suppressors that inhibit not only apoptotic, but also necrotic mechanisms of virus clearance.
Collapse
Affiliation(s)
- Jason W Upton
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William J Kaiser
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
33
|
Semliki forest virus-induced endoplasmic reticulum stress accelerates apoptotic death of mammalian cells. J Virol 2010; 84:7369-77. [PMID: 20427528 DOI: 10.1128/jvi.02310-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The alphavirus Semliki Forest virus (SFV) and its derived vectors induce apoptosis in mammalian cells. Here, we show that apoptosis is associated with the loss of mitochondrial membrane potential followed by the activation of caspase-3, caspase-8, and caspase-9. Cell death can be partially suppressed by treatment with the pan-caspase inhibitor zVAD-fmk. To determine the role of SFV structural proteins in cell death, the temporal course of cell death was compared in cells infected with SFV and cells infected with SFV virus replicon particles (VRPs) lacking some or all of the virus structural genes. In the absence of virus structural proteins, cell death was delayed. The endoplasmic reticulum (ER) stress response, as determined by the splicing of X-box binding protein 1 (XBP1) transcripts and the activation of caspase-12, was activated in virus-infected cells but not in VRP (SFV lacking structural genes)-infected cells. The C/EBP-homologous protein (CHOP) was upregulated by both virus and VRP infections. The virus envelope proteins but not the virus capsid protein triggered ER stress. These results demonstrate that in NIH 3T3 cells, SFV envelope glycoproteins trigger the unfolded protein response of the ER and accelerate apoptotic cell death initiated by virus replicase activity.
Collapse
|
34
|
Oberg D, Yanover E, Adam V, Sweeney K, Costas C, Lemoine NR, Halldén G. Improved potency and selectivity of an oncolytic E1ACR2 and E1B19K deleted adenoviral mutant in prostate and pancreatic cancers. Clin Cancer Res 2010; 16:541-53. [PMID: 20068104 DOI: 10.1158/1078-0432.ccr-09-1960] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Replication-selective oncolytic adenoviruses are a promising class of tumor-targeting agents with proven safety in hundreds of patients. However, clinical responses have been limited and viral mutants with higher potency are needed. Here, we report on the generation of a novel set of mutants with improved efficacy in prostate and pancreatic carcinoma models. Currently, no curative treatments are available for late-stage metastatic prostate or rapidly progressing pancreatic cancers. EXPERIMENTAL DESIGN Adenovirus type 5 mutants were created with deletions in the E1ACR2 region for tumor selectivity and/or the E1B19K gene for attenuated replication in vivo; all constructs retain the E3 genes intact. Cell-killing efficacy, replication, and cytotoxicity in combination with chemotherapeutics were investigated in normal cells (PrEC and NHBE), seven carcinoma cell lines, and human (PC3 and DU145) and murine (TRAMPC, CMT-64, and CMT-93) tumor models in vivo. RESULTS The double-deleted AdDeltaDelta (DeltaE1ACR2 and DeltaE1B19K) mutant had high cell-killing activity in prostate, pancreatic, and lung carcinomas. Replication was similar to wild-type in all tumor cells and was attenuated in normal cells to levels less than the single-deleted AdDeltaCR2 mutant. AdDeltaDelta combined with the chemotherapeutics docetaxel and mitoxantrone resulted in synergistically enhanced cell killing and greatly improved antitumor efficacy in prostate xenografts in vivo. In murine immunocompetent in vivo models efficacy was greater for mutants with the E3B genes intact even in the absence of viral replication, indicating attenuated macrophage-dependent clearance. CONCLUSIONS These data suggest that the novel oncolytic mutant AdDeltaDelta is a promising candidate for targeting of solid tumors specifically in combination with chemotherapeutics.
Collapse
Affiliation(s)
- Daniel Oberg
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
35
|
Tarakanova VL, Wold WSM. Adenovirus E1A and E1B-19K proteins protect human hepatoma cells from transforming growth factor beta1-induced apoptosis. Virus Res 2009; 147:67-76. [PMID: 19854227 DOI: 10.1016/j.virusres.2009.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/14/2009] [Accepted: 10/14/2009] [Indexed: 01/19/2023]
Abstract
Primary and some transformed hepatocytes undergo apoptosis in response to transforming growth factor beta1 (TGFbeta). We report that infection with species C human adenovirus conferred resistance to TGFbeta-induced apoptosis in human hepatocellular carcinoma cells (Huh-7). Protection against TGFbeta-mediated cell death in adenovirus-infected cells correlated with the maintenance of normal nuclear morphology, lack of pro-caspases 8 and 3 processing, maintenance of the mitochondrial membrane potential, and lack of cellular DNA degradation. The TGFbeta pro-apoptotic signaling pathway was blocked upstream of mitochondria in adenovirus-infected cells. Both the N-terminal sequences of the E1A proteins and the E1B-19K protein were necessary to protect infected cells against TGFbeta-induced apoptosis.
Collapse
Affiliation(s)
- Vera L Tarakanova
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | | |
Collapse
|
36
|
Noteborn MHM. Proteins selectively killing tumor cells. Eur J Pharmacol 2009; 625:165-73. [PMID: 19836376 DOI: 10.1016/j.ejphar.2009.06.068] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 01/04/2023]
Abstract
All human cells have a genetic program that upon activation will cause cell death, named apoptosis. Cancer cells can grow due to unbalances in proliferation, cell cycle regulation and their apoptosis machinery: genomic mutations resulting in non-functional pro-apoptosis proteins or over-expression of anti-apoptosis proteins form the basis of tumor formation. Surprisingly, lessons learned from viruses show that cancer cannot be regarded simply as the opposite of apoptosis. For instance, adenovirus can only transform cells when both its anti- and pro-apoptotic proteins are produced. Oncolytic viruses are known to replicate selectively in tumor cells resulting in cell death. Proteins derived from viruses, i.e. chicken anemia virus (CAV)-derived apoptosis-inducing protein (apoptin), adenovirus early region 4 open reading frame (E4orf4) and parvovirus-H1 derived non-structural protein 1 (NS1), the human alpha-lactalbumin made lethal to tumor cells (HAMLET), which is present in human milk or the human cytokines melanoma differentiation-associated gene-7 (mda-7) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) have all the ability to induce tumor-selective apoptosis. The tumor-selective apoptosis-inducing proteins seem to interact with transforming survival processes, which can become redirected by these proteins into cell death. Transformation-related processes have been identified, which seem to be crucial for the tumor-selectively killing activity of these proteins. For instance, the transformation-related protein phosphatase 2A (PP2A) plays a role in the induction of tumor-selective apoptosis. The proteins mda-7, TRAIL and HAMLET are already successfully tested in first clinical trials. Proteins harboring tumor-selective apoptosis characteristics represent, therefore, a therapeutic potential and a tool for unraveling tumor-related processes. Fundamental molecular and (pre)clinical therapeutic studies of the various tumor-selective apoptosis-inducing proteins apoptin, E4orf4, HAMLET, mda-7, NS1, TRAIL and related proteins will be discussed.
Collapse
Affiliation(s)
- Mathieu H M Noteborn
- Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
37
|
Feinstein-Rotkopf Y, Arama E. Can't live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis 2009; 14:980-95. [PMID: 19373560 DOI: 10.1007/s10495-009-0346-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the pioneering discovery that the genetic cell death program in C. elegans is executed by the cysteine-aspartate protease (caspase) CED3, caspase activation has become nearly synonymous with apoptosis. A critical mass of data accumulated in the past few years, have clearly established that apoptotic caspases can also participate in a variety of non-apoptotic processes. The roles of caspases during these processes and the regulatory mechanisms that prevent unrestrained caspase activity remain to be fully investigated, and may vary in different cellular contexts. Significantly, some of these processes, such as terminal differentiation of vertebrate lens fiber cells and red blood cells, as well as spermatid terminal differentiation and dendritic pruning of sensory neurons in Drosophila, all involve proteolytic degradation of major cellular compartments, and are conceptually, molecularly, biochemically, and morphologically reminiscent of apoptosis. Moreover, some of these model systems bear added values for the study of caspase activation/apoptosis. For example, the Drosophila sperm differentiation is the only system known in invertebrate which absolutely requires the mitochondrial pathway (i.e. Cyt c). The existence of testis-specific genes for many of the components in the electron transport chain, including Cyt c, facilitates the use of the Drosophila sperm system to investigate possible roles of these otherwise essential proteins in caspase activation. Caspases are also involved in a wide range of other vital processes of non-degenerative nature, indicating that these proteases play much more diverse roles than previously assumed. In this essay, we review genetic, cytological, and molecular studies conducted in Drosophila, vertebrate, and cultured cells, which underlie the foundations of this newly emerging field.
Collapse
|
38
|
The hepatitis C virus core protein contains a BH3 domain that regulates apoptosis through specific interaction with human Mcl-1. J Virol 2009; 83:9993-10006. [PMID: 19605477 DOI: 10.1128/jvi.00509-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) core protein is known to modulate apoptosis and contribute to viral replication and pathogenesis. In this study, we have identified a Bcl-2 homology 3 (BH3) domain in the core protein that is essential for its proapoptotic property. Coimmunoprecipitation experiments showed that the core protein interacts specifically with the human myeloid cell factor 1 (Mcl-1), a prosurvival member of the Bcl-2 family, but not with other prosurvival members (Bcl-X(L) and Bcl-w). Moreover, the overexpression of Mcl-1 protects against core-induced apoptosis. By using peptide mimetics, core was found to release cytochrome c from isolated mitochondria when complemented with Bad. Thus, core is a bona fide BH3-only protein having properties similar to those of Noxa, a BH3-only member of the Bcl-2 family that binds preferentially to Mcl-1. There are three critical hydrophobic residues in the BH3 domain of the core protein, and they are essential for the proapoptotic property of the core protein. Furthermore, the genotype 1b core protein is more effective than the genotype 2a core protein in inducing apoptosis due to a single-amino-acid difference at one of these hydrophobic residues (residue 119). Replacing this residue in the J6/JFH-1 infectious clone (genotype 2a) with the corresponding amino acid in the genotype 1b core protein produced a mutant virus, J6/JFH-1(V119L), which induced significantly higher levels of apoptosis in the infected cells than the parental J6/JFH-1 virus. Furthermore, the core protein of J6/JFH-1(V119L), but not that of J6/JFH-1, interacted with Mcl-1 in virus-infected cells. Taken together, the core protein is a novel BH3-only viral homologue that contributes to the induction of apoptosis during HCV infection.
Collapse
|
39
|
Antiapoptotic activity of the cardiovirus leader protein, a viral "security" protein. J Virol 2009; 83:7273-84. [PMID: 19420082 DOI: 10.1128/jvi.00467-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apoptosis is a common antiviral defensive mechanism that potentially limits viral reproduction and spread. Many viruses possess apoptosis-suppressing tools. Here, we show that the productive infection of HeLa cells with encephalomyocarditis virus (a cardiovirus) was not accompanied by full-fledged apoptosis (although the activation of caspases was detected late in infection) but rather elicited a strong antiapoptotic state, as evidenced by the resistance of infected cells to viral and nonviral apoptosis inducers. The development of the antiapoptotic state appeared to depend on a function(s) of the viral leader (L) protein, since its mutational inactivation resulted in the efflux of cytochrome c from mitochondria, the early activation of caspases, and the appearance of morphological and biochemical signs of apoptosis in a significant proportion of infected cells. Infection with both wild-type and L-deficient viruses induced the fragmentation of mitochondria, which in the former case was not accompanied with cytochrome c efflux. Although the exact nature of the antiapoptotic function(s) of cardioviruses remains obscure, our results suggested that it includes previously undescribed mechanisms operating upstream and possibly downstream of the mitochondrial level, and that L is involved in the control of these mechanisms. We propose that cardiovirus L belongs to a class of viral proteins, dubbed here security proteins, whose roles consist solely, or largely, in counteracting host antidefenses. Unrelated L proteins of other picornaviruses as well as their highly variable 2A proteins also may be security proteins. These proteins appear to be independent acquisitions in the evolution of picornaviruses, implying multiple cases of functional (though not structural) convergence.
Collapse
|
40
|
Zhao F, Hou NB, Yang XL, He X, Liu Y, Zhang YH, Wei CW, Song T, Li L, Ma QJ, Zhong H. Ataxia telangiectasia-mutated-Rad3-related DNA damage checkpoint signaling pathway triggered by hepatitis B virus infection. World J Gastroenterol 2008; 14:6163-70. [PMID: 18985806 PMCID: PMC2761577 DOI: 10.3748/wjg.14.6163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To explore whether acute cellular DNA damage response is induced upon hepatitis B virus (HBV) infection and the effects of the HBV infection.
METHODS: We incubated HL7702 hepatocytes with HBV-positive serum, mimicking a natural HBV infection process. We used immunoblotting to evaluate protein expression levels in HBV-infected cells or in non-infected cells; immunofluorescence to show ATR foci ands Chk1 phosphorylation foci formation; flow cytometry to analyze the cell cycle and apoptosis; ultraviolet (UV) radiation and ionizing radiation (IR)-treated cells to mimic DNA damage; and Trypan blue staining to count the viable cells.
RESULTS: We found that HBV infection induced an increased steady state of ATR protein and increased phosphorylation of multiple downstream targets including Chk1, p53 and H2AX. In contrast to ATR and its target, the phosphorylated form of ATM at Ser-1981 and its downstream substrate Chk2 phosphorylation at Thr-68 did not visibly increase upon infection. However, the level of Mre11 and p21 were reduced beginning at 0.5 h after HBV-positive serum addition. Also, HBV infection led to transient cell cycle arrest in the S and the G2 phases without accompanying increased apoptosis. Research on cell survival changes upon radiation following HBV infection showed that survival of UV-treated host cells was greatly increased by HBV infection, owing to the reduced apoptosis. Meanwhile, survival of IR-treated host cells was reduced by HBV infection.
CONCLUSION: HBV infection activates ATR DNA damage response to replication stress and abrogates the checkpoint signaling controlled by DNA damage response.
Collapse
|
41
|
Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H, Sun Y, Ouyang X, Gerald WL, Cordon-Cardo C, Abate-Shen C. Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest 2008; 118:3051-64. [PMID: 18725989 DOI: 10.1172/jci34764] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 06/25/2008] [Indexed: 01/05/2023] Open
Abstract
The AKT/mammalian target of rapamycin (AKT/mTOR) and ERK MAPK signaling pathways have been shown to cooperate in prostate cancer progression and the transition to androgen-independent disease. We have now tested the effects of combinatorial inhibition of these pathways on prostate tumorigenicity by performing preclinical studies using a genetically engineered mouse model of prostate cancer. We report here that combination therapy using rapamycin, an inhibitor of mTOR, and PD0325901, an inhibitor of MAPK kinase 1 (MEK; the kinase directly upstream of ERK), inhibited cell growth in cultured prostate cancer cell lines and tumor growth particularly for androgen-independent prostate tumors in the mouse model. We further showed that such inhibition leads to inhibition of proliferation and upregulated expression of the apoptotic regulator Bcl-2-interacting mediator of cell death (Bim). Furthermore, analyses of human prostate cancer tissue microarrays demonstrated that AKT/mTOR and ERK MAPK signaling pathways are often coordinately deregulated during prostate cancer progression in humans. We therefore propose that combination therapy targeting AKT/mTOR and ERK MAPK signaling pathways may be an effective treatment for patients with advanced prostate cancer, in particular those with hormone-refractory disease.
Collapse
Affiliation(s)
- Carolyn Waugh Kinkade
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shkreta L, Froehlich U, Paquet ÉR, Toutant J, Elela SA, Chabot B. Anticancer drugs affect the alternative splicing of Bcl-x and other human apoptotic genes. Mol Cancer Ther 2008; 7:1398-409. [DOI: 10.1158/1535-7163.mct-08-0192] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Wong WWL, Puthalakath H. Bcl-2 family proteins: the sentinels of the mitochondrial apoptosis pathway. IUBMB Life 2008; 60:390-7. [PMID: 18425793 DOI: 10.1002/iub.51] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bcl-2 family members are the arbiters of mitochondrial apoptotic pathway, which is conserved through evolution. The stoichiometry of pro- versus antiapoptotic Bcl-2 family members in the cell determines whether the cell lives or dies. This fine balance is regulated at the transcriptional or posttranslational level in response to various cellular cues. These signals are transmitted through the upstream molecules in the pathway, that is, the BH3-only molecules that results in the activation of the adaptor molecules, Bax and Bak, at the mitochondrial surface ensuing mitochondrial dysfunction and apoptosis. Understanding the activation process offers a great potential in the therapeutic intervention of many diseases such as cancer and autoimmune disorders.
Collapse
Affiliation(s)
- W Wei-Lynn Wong
- Department of Biochemistry, School of Molecular Sciences, La Trobe University, Bundoora, Victoria, Australia
| | | |
Collapse
|
44
|
Jurak I, Schumacher U, Simic H, Voigt S, Brune W. Murine cytomegalovirus m38.5 protein inhibits Bax-mediated cell death. J Virol 2008; 82:4812-22. [PMID: 18321965 PMCID: PMC2346748 DOI: 10.1128/jvi.02570-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 02/27/2008] [Indexed: 11/20/2022] Open
Abstract
Many viruses encode proteins that inhibit the induction of programmed cell death at the mitochondrial checkpoint. Murine cytomegalovirus (MCMV) encodes the m38.5 protein, which localizes to mitochondria and protects human HeLa cells and fibroblasts from apoptosis triggered by proteasome inhibitors but not from Fas-induced apoptosis. However, the ability of this protein to suppress the apoptosis of murine cells and its role during MCMV infection have not been investigated previously. Here we show that m38.5 is expressed at early time points during MCMV infection. Cells infected with MCMVs lacking m38.5 showed increased sensitivity to cell death induced by staurosporine, MG132, or the viral infection itself compared to the sensitivity of cells infected with wild-type MCMV. This defect was eliminated when an m38.5 or Bcl-X(L) gene was inserted into the genome of a deletion mutant. Using fibroblasts deficient in the proapoptotic Bcl-2 family proteins Bak and/or Bax, we further demonstrated that m38.5 protected from Bax- but not Bak-mediated apoptosis and interacted with Bax in infected cells. These results consolidate the role of m38.5 as a viral mitochondrion-localized inhibitor of apoptosis and its functional similarity to the human cytomegalovirus UL37x1 gene product. Although the m38.5 gene is not homologous to the UL37x1 gene at the sequence level, m38.5 is conserved among rodent cytomegaloviruses. Moreover, the fact that MCMV-infected cells are protected from both Bak- and Bax-mediated cell death suggests that MCMV possesses an additional, as-yet-unidentified mechanism to block Bak-mediated apoptosis.
Collapse
Affiliation(s)
- Igor Jurak
- Division of Viral Infections, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | | | | | | | | |
Collapse
|
45
|
Guo ZS, Thorne SH, Bartlett DL. Oncolytic virotherapy: molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1785:217-31. [PMID: 18328829 PMCID: PMC2888475 DOI: 10.1016/j.bbcan.2008.02.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/01/2008] [Accepted: 02/04/2008] [Indexed: 01/13/2023]
Abstract
Tremendous advances have been made in developing oncolytic viruses (OVs) in the last few years. By taking advantage of current knowledge in cancer biology and virology, specific OVs have been genetically engineered to target specific molecules or signal transduction pathways in cancer cells in order to achieve efficient and selective replication. The viral infection and amplification eventually induce cancer cells into cell death pathways and elicit host antitumor immune responses to further help eliminate cancer cells. Specifically targeted molecules or signaling pathways (such as RB/E2F/p16, p53, IFN, PKR, EGFR, Ras, Wnt, anti-apoptosis or hypoxia) in cancer cells or tumor microenvironment have been studied and dissected with a variety of OVs such as adenovirus, herpes simplex virus, poxvirus, vesicular stomatitis virus, measles virus, Newcastle disease virus, influenza virus and reovirus, setting the molecular basis for further improvements in the near future. Another exciting new area of research has been the harnessing of naturally tumor-homing cells as carrier cells (or cellular vehicles) to deliver OVs to tumors. The trafficking of these tumor-homing cells (stem cells, immune cells and cancer cells), which support proliferation of the viruses, is mediated by specific chemokines and cell adhesion molecules and we are just beginning to understand the roles of these molecules. Finally, we will highlight some avenues deserving further study in order to achieve the ultimate goals of utilizing various OVs for effective cancer treatment.
Collapse
Affiliation(s)
- Z Sheng Guo
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
46
|
Backendorf C, Visser AE, de Boer AG, Zimmerman R, Visser M, Voskamp P, Zhang YH, Noteborn M. Apoptin: therapeutic potential of an early sensor of carcinogenic transformation. Annu Rev Pharmacol Toxicol 2008; 48:143-69. [PMID: 17848136 DOI: 10.1146/annurev.pharmtox.48.121806.154910] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The avian virus-derived protein apoptin induces p53-independent apoptosis in a tumor-specific way. Apoptin acts as a multimeric complex and forms superstructures upon binding to DNA. In tumor cells, apoptin is phosphorylated and mainly nuclear, whereas in normal cells it is unphosphorylated, cytoplasmic, and becomes readily neutralized. Interestingly, apoptin phosphorylation, nuclear translocation, and apoptosis can transiently be induced in normal cells by cotransfecting SV40 large T oncogene, indicating that apoptin recognizes early stages of oncogenic transformation. In cancer cells, apoptin appears to recognize survival signals, which it is able to redirect into cell death impulses. Apoptin targets include DEDAF, Nur77, Nmi, Hippi, and the potential drug target APC1. Apoptin-transgenic mice and animal tumor models have revealed apoptin as a safe and efficient antitumor agent, resulting in significant tumor regression. Future antitumor therapies could use apoptin either as a therapeutic bullet or as an early sensor of druggable tumor-specific processes.
Collapse
Affiliation(s)
- Claude Backendorf
- Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Rice KC, Bayles KW. Molecular control of bacterial death and lysis. Microbiol Mol Biol Rev 2008; 72:85-109, table of contents. [PMID: 18322035 PMCID: PMC2268280 DOI: 10.1128/mmbr.00030-07] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although the phenomenon of bacterial cell death and lysis has been studied for over 100 years, the contribution of these important processes to bacterial physiology and development has only recently been recognized. Contemporary study of cell death and lysis in a number of different bacteria has revealed that these processes, once thought of as being passive and unregulated, are actually governed by highly complex regulatory systems. An emerging paradigm in this field suggests that, analogous to programmed cell death in eukaryotes, regulated cell death and lysis in bacteria play an important role in both developmental processes, such as competence and biofilm development, and the elimination of damaged cells, such as those irreversibly injured by environmental or antibiotic stress. Further study in this exciting field of bacterial research may provide new insight into the potential evolutionary link between control of cell death in bacteria and programmed cell death (apoptosis) in eukaryotes.
Collapse
Affiliation(s)
- Kelly C Rice
- Department of Microbiology and Pathology, University of Nebraska Medical Center, 668 S. 41st St., PYH4014, Omaha, NE 68198-6245, USA
| | | |
Collapse
|
48
|
Seifert F, Struffert T, Hildebrandt M, Blümcke I, Brück W, Staykov D, Huttner HB, Hilz MJ, Schwab S, Bardutzky J. In vivo detection of hepatitis C virus (HCV) RNA in the brain in a case of encephalitis: evidence for HCV neuroinvasion. Eur J Neurol 2008; 15:214-8. [DOI: 10.1111/j.1468-1331.2007.02044.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Mathew R, Degenhardt K, Haramaty L, Karp CM, White E. Immortalized mouse epithelial cell models to study the role of apoptosis in cancer. Methods Enzymol 2008; 446:77-106. [PMID: 18603117 DOI: 10.1016/s0076-6879(08)01605-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human cancer cell lines are widely used to model cancer but also have serious limitations. As an alternate approach, we have developed immortalized mouse epithelial cell model systems that are applicable to different tissue types and involve generation of immortalized cell lines that are genetically defined. By applying these model systems to mutant mice, we have extended the powerful approach of mouse genetics to in vitro analysis. By use of this model we have generated immortal epithelial cells that are either competent or deficient for apoptosis by different gain- and loss-of-function mutations that have revealed important mechanisms of tumor progression and treatment resistance. Furthermore, we have derived immortalized, isogenic mouse kidney, mammary, prostate, and ovarian epithelial cell lines to address the issues of tissue specificity. One of the major advantages of these immortalized mouse epithelial cell lines is the ability to perform biochemical analysis, screening, and further genetic manipulations. Moreover, the ability to generate tumor allografts in mice allows the integration of in vitro and in vivo approaches to delineate the mechanistic aspects of tumorigenesis. These model systems can be used effectively to determine the molecular requirements of epithelial tumorigenesis and tumor-promoting functions. This approach provides an efficient way to study the role of apoptosis in cancer and also enables the interrogation and identification of potential chemotherapeutic targets involving this pathway. Applying this technology to other mouse models can provide insight into additional aspects of oncogenesis.
Collapse
Affiliation(s)
- Robin Mathew
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Recent studies have revealed that the regulated death of bacterial cells is important for biofilm development. Following cell death, a sub-population of the dead bacteria lyse and release genomic DNA, which then has an essential role in intercellular adhesion and biofilm stability. This Opinion focuses on the role of regulated cell death and lysis in biofilm development and provides a functional comparison between bacterial programmed cell death and apoptosis. The hypothesis that the differential regulation of these processes during biofilm development contributes to the antibiotic tolerance of biofilm cells is also explored.
Collapse
Affiliation(s)
- Kenneth W Bayles
- Department of Pathology & Microbiology, University of Nebraska Medical Center, 986,495 Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|