1
|
Feola S, Chiaro J, Cerullo V. Integrating immunopeptidome analysis for the design and development of cancer vaccines. Semin Immunol 2023; 67:101750. [PMID: 37003057 DOI: 10.1016/j.smim.2023.101750] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
The repertoire of naturally presented peptides within the MHC (major histocompatibility complex) or HLA (human leukocyte antigens) system on the cellular surface of every mammalian cell is referred to as ligandome or immunopeptidome. This later gained momentum upon the discovery of CD8 + T cells able to recognize and kill cancer cells in an MHC-I antigen-restricted manner. Indeed, cancer immune surveillance relies on T cell recognition of MHC-I-restricted peptides, making the identification of those peptides the core for designing T cell-based cancer vaccines. Moreover, the breakthrough of antibodies targeting immune checkpoint molecules has led to a new and strong interest in discovering suitable targets for CD8 +T cells. Therapeutic cancer vaccines are designed for the artificial generation and/or stimulation of CD8 +T cells; thus, their combination with ICIs to unleash the breaks of the immune system comes as a natural consequence to enhance anti-tumor efficacy. In this context, the identification and knowledge of peptide candidates take advantage of the fast technology updates in immunopeptidome and mass spectrometric methodologies, paying the way to the rational design of vaccines for immunotherapeutic approaches. In this review, we discuss mainly the role of immunopeptidome analysis and its application for the generation of therapeutic cancer vaccines with main focus on HLA-I peptides. Here, we review cancer vaccine platforms based on two different preparation methods: pathogens (viruses and bacteria) and not (VLPs, nanoparticles, subunits vaccines) that exploit discoveries in the ligandome field to generate and/or enhance anti-tumor specific response. Finally, we discuss possible drawbacks and future challenges in the field that remain still to be addressed.
Collapse
Affiliation(s)
- Sara Feola
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy Helsinki University, Viikinkaari 5E, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Haartmaninkatu 8, Finland
| | - Jacopo Chiaro
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy Helsinki University, Viikinkaari 5E, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Haartmaninkatu 8, Finland
| | - Vincenzo Cerullo
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy Helsinki University, Viikinkaari 5E, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Haartmaninkatu 8, Finland; Department of Molecular Medicine and Medical Biotechnology, Naples University "Federico II", S. Pansini 5, Italy.
| |
Collapse
|
2
|
Bao F, Liu M, Gai W, Hua Y, Li J, Han C, Zai Z, Li J, Hua Z. Bacteria-mediated tumor-targeted delivery of tumstatin (54-132) significantly suppresses tumor growth in mouse model by inhibiting angiogenesis and promoting apoptosis. Front Med 2022; 16:873-882. [PMID: 36152127 DOI: 10.1007/s11684-022-0925-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 01/30/2022] [Indexed: 01/19/2023]
Abstract
Tumor growth is an angiogenesis-dependent process and accompanied by the formation of hypoxic areas. Tumstatin is a tumor-specific angiogenesis inhibitor that suppresses the proliferation and induces the apoptosis of tumorous vascular endothelial cells. VNP20009, an attenuated Salmonella typhimurium strain, preferentially accumulates in the hypoxic areas of solid tumors. In this study, a novel Salmonella-mediated targeted expression system of tumstatin (VNP-Tum5) was developed under the control of the hypoxia-induced J23100 promoter to obtain anti-tumor efficacy in mice. Treatment with VNP-Tum5 effectively suppressed tumor growth and prolonged survival in the mouse model of B16F10 melanoma. VNP-Tum5 exhibited a higher efficacy in inhibiting the proliferation and inducing the necrosis and apoptosis of B16F10 cells in vitro and in vivo compared with VNP (control). VNP-Tum5 significantly inhibited the proliferation and migration of mouse umbilical vascular endothelial cells to impede angiogenesis. VNP-Tum5 downregulated the expression of anti-vascular endothelial growth factor A, platelet endothelial cell adhesion molecule-1, phosphorylated phosphoinositide 3 kinase, and phosphorylated protein kinase B and upregulated the expression of cleaved-caspase 3 in tumor tissues. This study is the first to use tumstatin-transformed VNP20009 as a tumor-targeted system for treatment of melanoma by combining anti-tumor and anti-angiogenic effects.
Collapse
Affiliation(s)
- Feifei Bao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Mengjie Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wenhua Gai
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuwei Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Chao Han
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ziyu Zai
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiahuang Li
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, 213164, China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, 213164, China.
| |
Collapse
|
3
|
Effective oral delivery of gp100 plasmid vaccine against metastatic melanoma through multi-faceted blending-by-blending nanogels. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 22:102114. [DOI: 10.1016/j.nano.2019.102114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/29/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022]
|
4
|
Pathogen-Associated Molecular Patterns Induced Crosstalk between Dendritic Cells, T Helper Cells, and Natural Killer Helper Cells Can Improve Dendritic Cell Vaccination. Mediators Inflamm 2016; 2016:5740373. [PMID: 26980946 PMCID: PMC4766350 DOI: 10.1155/2016/5740373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/30/2015] [Indexed: 12/29/2022] Open
Abstract
A coordinated cellular interplay is of crucial importance in both host defense against pathogens and malignantly transformed cells. The various interactions of Dendritic Cells (DC), Natural Killer (NK) cells, and T helper (Th) cells can be influenced by a variety of pathogen-associated molecular patterns (PAMPs) and will lead to enhanced CD8+ effector T cell responses. Specific Pattern Recognition Receptor (PRR) triggering during maturation enables DC to enhance Th1 as well as NK helper cell responses. This effect is correlated with the amount of IL-12p70 released by DC. Activated NK cells are able to amplify the proinflammatory cytokine profile of DC via the release of IFN-γ. The knowledge on how PAMP recognition can modulate the DC is of importance for the design and definition of appropriate therapeutic cancer vaccines. In this review we will discuss the potential role of specific PAMP-matured DC in optimizing therapeutic DC-based vaccines, as some of these DC are efficiently activating Th1, NK cells, and cytotoxic T cells. Moreover, to optimize these vaccines, also the inhibitory effects of tumor-derived suppressive factors, for example, on the NK-DC crosstalk, should be taken into account. Finally, the suppressive role of the tumor microenvironment in vaccination efficacy and some proposals to overcome this by using combination therapies will be described.
Collapse
|
5
|
Daudel D, Weidinger G, Spreng S. Use of attenuated bacteria as delivery vectors for DNA vaccines. Expert Rev Vaccines 2014; 6:97-110. [PMID: 17280482 DOI: 10.1586/14760584.6.1.97] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Live, attenuated bacterial vaccines (LBV) are promising candidates for the induction of a broad-based immune response directed at recombinant heterologous antigens and the corresponding pathogen. LBVs allow vaccination through the mucosal surfaces and specific targeting of professional antigen-presenting cells located at the inductive sites of the immune system. A novel approach exploits attenuated intracellular bacteria as delivery vectors for eukaryotic antigen-expression plasmids (so-called DNA vaccines). Candidate carrier bacteria include attenuated strains of Gram-positive and Gram-negative bacteria. These bacteria have been shown to deliver DNA vaccines to human cells in vitro and have also proven their in vivo efficacy in several experimental animal models of infectious diseases and different cancers. The clinical assessment of the safety, immunogenicity and efficacy of these candidate strains will be the next challenging step towards live bacterial DNA vaccines.
Collapse
Affiliation(s)
- Damini Daudel
- Berna Biotech AG, Rehhagstrasse 79, CH-3018 Berne, Switzerland.
| | | | | |
Collapse
|
6
|
DNA vaccination: using the patient's immune system to overcome cancer. Clin Dev Immunol 2010; 2010:169484. [PMID: 21197271 PMCID: PMC3010826 DOI: 10.1155/2010/169484] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/08/2010] [Accepted: 10/21/2010] [Indexed: 12/15/2022]
Abstract
Cancer is one of the most challenging diseases of today. Optimization of standard treatment protocols consisting of the main columns of chemo- and radiotherapy followed or preceded by surgical intervention is often limited by toxic side effects and induction of concomitant malignancies and/or development of resistant mechanisms. This requires the development of therapeutic strategies which are as effective as standard therapies but permit the patients a life without severe negative side effects. Along this line, the development of immunotherapy in general and the innovative concept of DNA vaccination in particular may provide a venue to achieve this goal. Using the patient's own immune system by activation of humoral and cellular immune responses to target the cancer cells has shown first promising results in clinical trials and may allow reduced toxicity standard therapy regimen in the future. The main challenge of this concept is to transfer the plethora of convincing preclinical and early clinical results to an effective treatment of patients.
Collapse
|
7
|
Herbert N, Haferkamp A, Schmitz-Winnenthal HF, Zöller M. Concomitant tumor and autoantigen vaccination supports renal cell carcinoma rejection. THE JOURNAL OF IMMUNOLOGY 2010; 185:902-16. [PMID: 20548033 DOI: 10.4049/jimmunol.0902683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Efficient tumor vaccination frequently requires adjuvant. Concomitant induction of an autoimmune response is discussed as a means to strengthen a weak tumor Ag-specific response. We asked whether the efficacy of dendritic cell (DC) vaccination with the renal cell carcinoma Ags MAGE-A9 (MAGE9) and G250 could be strengthened by covaccination with the renal cell carcinoma autoantigen GOLGA4. BALB/c mice were vaccinated with DC loaded with MHC class I-binding peptides of MAGE9 or G250 or tumor lysate, which sufficed for rejection of low-dose RENCA-MAGE9 and RENCA-G250 tumor grafts, but only retarded tumor growth at 200 times the tumor dose at which 100% of animals will develop a tumor. Instead, 75-100% of mice prevaccinated concomitantly with Salmonella typhimurium transformed with GOLGA4 cDNA in a eukaryotic expression vector rejected 200 times the tumor dose at which 100% of animals will develop tumor. In a therapeutic setting, the survival rate increased from 20-40% by covaccination with S. typhimurium-GOLGA4. Autoantigen covaccination significantly strengthened tumor Ag-specific CD4(+) and CD8(+) T cell expansion, particularly in peptide-loaded DC-vaccinated mice. Covaccination was accompanied by an increase in inflammatory cytokines, boosted IL-12 and IFN-gamma expression, and promoted a high tumor Ag-specific CTL response. Concomitant autoantigen vaccination also supported CCR6, CXCR3, and CXCR4 upregulation and T cell recruitment into the tumor. It did not affect regulatory T cells, but slightly increased myeloid-derived suppressor cells. Thus, tumor cell eradication was efficiently strengthened by concomitant induction of an immune response against a tumor Ag and an autoantigen expressed by the tumor cell. Activation of autoantigen-specific Th cells strongly supports tumor-specific Th cells and thereby CTL activation.
Collapse
Affiliation(s)
- Nicolás Herbert
- Department of Tumor Cell Biology, University Hospital of Surgery, University of Heidelberg, Germany
| | | | | | | |
Collapse
|
8
|
Paterson Y, Guirnalda PD, Wood LM. Listeria and Salmonella bacterial vectors of tumor-associated antigens for cancer immunotherapy. Semin Immunol 2010; 22:183-9. [PMID: 20299242 PMCID: PMC4411241 DOI: 10.1016/j.smim.2010.02.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 02/15/2010] [Indexed: 01/30/2023]
Abstract
This review covers the use of the facultative intracellular bacteria, Listeriamonocytogenes and Salmonella enterica serovar typhimurium as delivery systems for tumor-associated antigens in tumor immunotherapy. Because of their ability to infect and survive in antigen presenting cells, these bacteria have been harnessed to deliver tumor antigens to the immune system both as bacterially expressed proteins and encoded on eukaryotic plasmids. They do this in the context of strong innate immunity, which provides the required stimulus to the immune response to break tolerance against those tumor-associated antigens that bear homology to self. Here we describe differences in the properties of these bacteria as vaccine vectors, a summary of the major therapies they have been applied to and their advancement towards the clinic.
Collapse
Affiliation(s)
- Yvonne Paterson
- University of Pennsylvania, Department of Microbiology, 323 Johnson Pavilion, 36th St. and Hamilton Walk, Philadelphia, PA 19104-6076, United States.
| | | | | |
Collapse
|
9
|
The efficacy of an IL-1alpha vaccine depends on IL-1RI availability and concomitant myeloid-derived suppressor cell reduction. J Immunother 2009; 32:552-64. [PMID: 19483654 DOI: 10.1097/cji.0b013e31819b7b9e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We recently reported that tumor-derived interleukin (IL)-1beta strongly promotes tumor growth by inducing myeloid-derived suppressor cell (MDSC) and regulatory T-cell (T(reg)) expansion. To see whether redirection of an immune response can be achieved through immune response-supporting IL-1alpha application, IL-1RI competent (IL-1RI(comp)) and IL-1RI-deficient (IL-1RI(-/-)) mice received IL-1alpha cDNA-transformed attenuated Salmonella typhimurium (SL-IL-1alpha) and/or lysates from methycholanthrene-induced IL-1(comp) or IL-1(-/-) fibrosarcoma cells. Vaccination with SL-IL-1alpha and/or tumor lysate exerted only a minor effect on the survival of IL-1alpha/beta(-/-) and none on IL-1alpha(comp) tumor-bearing mice despite induction of a potent antitumor response, that was overridden by intratumoral and systemic expansion of MDSC. Application of all-trans-retinoic acid together with anti-CD25 efficiently coped with MDSC and T(reg) expansion. Vaccination concomitantly with application of all-trans-retinoic acid and anti-CD25 treatment significantly increased the survival time and rate of IL-1alpha/beta(comp), but even of IL-1alpha(-/-)beta(comp) IL-1RI(comp) tumor-bearing mice. Instead, in IL-1RI(-/-) mice, though MDSC expansion was weaker, SL-IL-1alpha application hardly displayed any therapeutic efficacy, which implies signal transduction through IL-1alpha binding to the IL-1RI as an essential component for immune response induction. Taken together, IL-1alpha can efficiently support tumor vaccination, as far as expansion of MDSC and T(reg) is controlled. However, care should be taken to interfere with MDSC expansion/activation not through a blockade of the IL-1RI, which is the preferential target of IL-1alpha.
Collapse
|
10
|
Abstract
The discovery that genes can be functionally transferred from bacteria to mammalian cells has suggested the possible use of bacterial vectors as gene delivery vehicles for vaccines. Attenuated invasive human intestinal bacteria, such as Salmonella and Shigella, have been used as plasmid DNA vaccine carriers and their potency has been evaluated in several animal models. This delivery system allows the administration of DNA vaccines together with associated bacterial immunostimulators directly to professional antigen presenting cells via human mucosal surfaces. Various strategies have been taken to improve the use of this delivery system to achieve robust immune responses at both mucosal and systemic sites of the immunized animals.
Collapse
Affiliation(s)
- F Xu
- Vaccine Research Department, Chiron Corporation, Emeryville, CA 94608, USA.
| | | |
Collapse
|
11
|
Abdul-Wahid A, Faubert G. Mucosal delivery of a transmission-blocking DNA vaccine encoding Giardia lamblia CWP2 by Salmonella typhimurium bactofection vehicle. Vaccine 2007; 25:8372-83. [PMID: 17996337 DOI: 10.1016/j.vaccine.2007.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 10/01/2007] [Accepted: 10/07/2007] [Indexed: 01/26/2023]
Abstract
In this study, we investigated the use of Salmonella typhimurium (STM1 strain) as a bactofection vehicle to deliver a transmission-blocking DNA vaccine (TBDV) plasmid to the intestinal immune system. The gene encoding the full length cyst wall protein-2 (CWP2) from Giardia lamblia was subcloned into the pCDNA3 mammalian expression vector and stably introduced into S. typhimurium STM1. Eight-week-old female BALB/c mice were orally immunized every 2 weeks, for a total of three immunizations. Vaccinated and control mice were sacrificed 1 week following the last injection. Administration of the DNA vaccine led to the production of CWP2-specific cellular immune responses characterized by a mixed Th1/Th2 response. Using ELISA, antigen-specific IgA and IgG antibodies were detected in intestinal secretions. Moreover, analysis of sera demonstrated that the DNA immunization also stimulated the production of CWP2-specific IgG antibodies that were mainly of the IgG2a isotype. Finally, challenge infection with live Giardia muris cysts revealed that mice receiving the CWP2-encoding DNA vaccine were able to reduce cyst shedding by approximately 60% compared to control mice. These results demonstrate, for the first time, the development of parasite transmission-blocking immunity at the intestinal level following the administration of a mucosal DNA vaccine delivered by S. typhimurium STM1.
Collapse
Affiliation(s)
- Aws Abdul-Wahid
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Montréal, Québec, Canada H9X-3V9
| | | |
Collapse
|
12
|
Haferkamp A, Hohenfellner M, Hautmann R, Zöller M. [Renal cell carcinoma associated proteins. Isolation, cloning and immunogenicity evaluation]. Urologe A 2007; 46:1292-8. [PMID: 17628779 DOI: 10.1007/s00120-007-1418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- B-Lymphocytes/immunology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/pathology
- Cloning, Molecular
- Disease Progression
- Humans
- Immunotherapy, Adoptive
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Kidney Neoplasms/pathology
- Mice
- Mice, SCID
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/immunology
- Neoplasm Staging
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
- A Haferkamp
- Urologische Klinik, Universitätsklinikum, Im Neuenheimer Feld 110, 69120 Heidelberg.
| | | | | | | |
Collapse
|
13
|
Shilling DA, Smith MJ, Tyther R, Sheehan D, England K, Kavanagh EG, Redmond HP, Shanahan F, O'Mahony L. Salmonella typhimurium stimulation combined with tumour-derived heat shock proteins induces potent dendritic cell anti-tumour responses in a murine model. Clin Exp Immunol 2007; 149:109-16. [PMID: 17459080 PMCID: PMC1942028 DOI: 10.1111/j.1365-2249.2007.03393.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Appropriate activation of the immune system and effective targeting of tumour cells are the primary hurdles to be overcome for cancer immunotherapy to be successful and applicable to a wide range of tumour types. Our studies have examined the ability of bacterial-stimulated dendritic cells (DCs), loaded with tumour-associated antigens, to inhibit tumour growth in a murine model. Immature murine bone marrow-derived DCs were stimulated in vitro with the cytoplasmic fraction (CM) of Salmonella typhimurium in combination with heat shock proteins (hsps) from 4T1 tumours, isolated using heparin affinity chromatography. Activated DCs were administered subcutaneously. Tumours were generated by orthotopic inoculation of 4T1 cells in Balb/c mice. Primary tumour growth was measured using Vernier calipers, while lung metastases were measured using the clonogenic assay. S. typhimurium CM induced potent tumour necrosis factor (TNF)-alpha responses from DCs accompanied by significant up-regulation of CD80 and CD86 expression. When injected into mice, bacterial-stimulated DCs loaded with 4T1 hsps inhibited the formation of new 4T1 tumours and reduced the growth rate of established tumours. In addition, the number of lung metastatic nodules was reduced significantly in the DC-treated mice (1.6 +/- 0.6 versus 245.9 +/- 55.6, P = 0.0015). DCs stimulated with CM alone, exposed to tumour hsps alone or exposed to tumour hsps from an unrelated tumour cell line did not induce a protective immune response. Dendritic cells primed with a proinflammatory bacterial stimulus and tumour-associated antigens induce a protective anti-tumour immune response in this murine model.
Collapse
Affiliation(s)
- D A Shilling
- Alimentary Pharmabiotic Centre, National University of Ireland, Cork, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Parsa S, Pfeifer B. Engineering bacterial vectors for delivery of genes and proteins to antigen-presenting cells. Mol Pharm 2007; 4:4-17. [PMID: 17233543 DOI: 10.1021/mp0600889] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacterial vectors offer a biological route to gene and protein delivery with this article featuring delivery to antigen-presenting cells (APCs). Primarily in the context of immune stimulation against infectious disease or cancer, the goal of bacterially mediated delivery is to overcome the hurdles to effective macromolecule delivery. This review will present several bacterial vectors as macromolecule (protein or gene) delivery devices with both innate and acquirable (or engineered) biological features to facilitate delivery to APCs. The review will also present topics related to large-scale manufacture, storage, and distribution that must be considered if the bacterial delivery devices are ever to be used in a global market.
Collapse
Affiliation(s)
- Saba Parsa
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | |
Collapse
|
15
|
Eisenstark A, Kazmierczak RA, Dino A, Khreis R, Newman D, Schatten H. Development of Salmonella strains as cancer therapy agents and testing in tumor cell lines. Methods Mol Biol 2007; 394:323-354. [PMID: 18363243 DOI: 10.1007/978-1-59745-512-1_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Despite significant progress in the development of new drugs and radiation, deaths due to cancer remain high. Many novel therapies are in clinical trials and offer better solutions, but more innovative approaches are needed to eradicate the various subpopulations that exist in solid tumors. Since 1997, the use of bacteria for cancer therapy has gained increased attention. Salmonella Typhimurium strains have been shown to have a remarkably high affinity for tumor cells. The use of bacterial strains to target tumors is a relatively new research method that has not yet reached the point of clinical success. The first step in assessing the effectiveness of bacterial tumor therapy will require strain development and preclinical comparisons of candidate strains, which is the focus of this chapter. Several investigators have developed strains of Salmonella with reduced toxicity and capacity to deliver anti-tumor agents. Although methods for obtaining safe therapeutic strains have been relatively successful, there is still need for further genetic engineering before successful clinical use in human patients. As described by Forbes et al. in 2003, the main stumbling block is that, while bacteria preferentially embed within tumor cells, they fail to spread within the tumor and finish the eradication process. Further engineering might focus on creating Salmonella that remove motility limitations, including increased affinity toward tumor-generated chemotactic attractants and induction of matrix-degrading enzymes.
Collapse
Affiliation(s)
- Abraham Eisenstark
- Cancer Research Center and Division of Biological Sciences, University of Missouri, Columbia, USA
| | | | | | | | | | | |
Collapse
|
16
|
Agorio C, Schreiber F, Sheppard M, Mastroeni P, Fernandez M, Martinez MA, Chabalgoity JA. Live attenuatedSalmonella as a vector for oral cytokine gene therapy in melanoma. J Gene Med 2007; 9:416-23. [PMID: 17410612 DOI: 10.1002/jgm.1023] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Systemic administration of cytokines has shown therapeutic benefits in cancer patients; however, serious adverse effects associated with direct protein administration prevent the wide use of this approach. We have assessed the capacity of live attenuated Salmonella to act as a vector for oral cytokine-gene therapy. Salmonella orally administered to melanoma-bearing mice was found to accumulate within the tumor, reaching up to 10(5) bacteria per gram of tumor by day 21 after bacterial inoculation. Numbers of bacteria recovered from tumor did not differ from those recovered from liver or spleen at any time point. Recombinant bacteria carrying eukaryotic expression vectors encoding the murine IL-4 or IL-18 genes were administered to groups of mice with established subcutaneous melanoma tumors. We found that a single oral dose of Salmonella carrying any of the cytokine-encoding plasmids resulted in significantly increased survival time, as compared with mice that received Salmonella carrying the parental plasmid or PBS. Increased levels of IFNgamma were found in sera of animals receiving either of the cytokine-encoding bacteria, but not in mice receiving Salmonella alone or PBS. Co-administration of both recombinant bacteria maximized the production of IFNgamma. Overall these results suggest that cytokine-encoding Salmonella can be an effective and safer alternative to systemic administration of cytokines for immunotherapy of cancer.
Collapse
Affiliation(s)
- Caroline Agorio
- Laboratory for Vaccine Research, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Av. Navarro 3051, Montevideo, Uruguay
| | | | | | | | | | | | | |
Collapse
|
17
|
Singh R, Paterson Y. Listeria monocytogenes as a vector for tumor-associated antigens for cancer immunotherapy. Expert Rev Vaccines 2006; 5:541-52. [PMID: 16989634 DOI: 10.1586/14760584.5.4.541] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
As a facultative intracellular bacterium, Listeria monocytogenes has adapted to live within the cytosol of the host cell. It is actively taken up by antigen-presenting cells through phagocytosis, and as Listeria survive within these cells, it is an ideal vector for the delivery of antigens to be processed and presented through both the class I and II antigen-processing pathways. Once phagocytosed, Listeria produces virulence factors within the phagolysosome of the host cell, which allows it to break out of this organelle and live in the host cytosol. It is possible that these virulence factors can enhance the immunogenicity of tumor-associated antigens, which are poorly immunogenic. Recent progress in the development of this bacterium as a vaccine vector for tumor-associated antigens is discussed in the context of bacterial vectors in general. In several mouse models, Listeria-based vaccines have been demonstrated to be an effective method of influencing tumor growth and eliciting potent antitumor immune responses. Safety issues and the transition of Listeria into human clinical trials will also be discussed in this review.
Collapse
Affiliation(s)
- Reshma Singh
- University of Pennsylvania School of Medicine, Department of Microbiology, 323 Johnson Pavilion, Philadelphia, PA 19104-6076, USA.
| | | |
Collapse
|
18
|
Abstract
The ability of bacteria to mediate gene transfer has only recently been established and these observations have led to the utilization of various bacterial strains in gene therapy. The types of bacteria used include attenuated strains of Salmonella, Shigella, Listeria, and Yersinia, as well as non-pathogenic Escherichia coli. For some of these vectors, the mechanism of DNA transfer from the bacteria to the mammalian cell is not yet fully understood but their potential to deliver therapeutic molecules has been demonstrated in vitro and in vivo in experimental models. Therapeutic benefits have been observed in vaccination against infectious diseases, immunotherapy against cancer, and topical delivery of immunomodulatory cytokines in inflammatory bowel disease. In the case of attenuated Salmonella, used as a tumour-targeting vector, clinical trials in humans have demonstrated the proof of principle but they have also highlighted the need for the generation of strains with reduced toxicities and improved colonization properties. Altogether, the encouraging results obtained in the studies presented in this review justify further development of bacteria as a therapeutic vector against many types of pathology.
Collapse
Affiliation(s)
- Georges Vassaux
- Cancer Research UK Molecular Oncology Unit, Barts and The London School of Medicine and Dentistry, John Vane Science Centre, Charterhouse Square, UK.
| | | | | | | |
Collapse
|
19
|
Chou CK, Hung JY, Liu JC, Chen CT, Hung MC. An attenuated Salmonella oral DNA vaccine prevents the growth of hepatocellular carcinoma and colon cancer that express alpha-fetoprotein. Cancer Gene Ther 2006; 13:746-52. [PMID: 16410824 DOI: 10.1038/sj.cgt.7700927] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Antitumor vaccination therapies using attenuated Salmonella typhimurium carrying plasmid DNA encoding tumor-associated antigens are currently under preclinical development. In the present study, we first established a useful method to facilitate in vivo monitoring of attenuated S. typhimurium uptake using a bioluminescent lux gene operon plasmid. Following transformation with the lux gene operon construct, mice were fed with various amounts of attenuated S. typhimurium-lux to monitor in vivo clearance over a period of 24 h. We found that the ingested attenuated S. typhimurium-lux cells were almost cleared out 9 h postfeeding, as judged by a significant decrease in bioluminescence. We further examined the therapeutic efficacy of vaccination using attenuated S. typhimurium carrying the mouse alpha-fetoprotein (AFP) gene against a cancer line CT26-murine alpha-feto protein (mAFP) that stably expresses AFP and mouse hepatocellular carcinoma (HCC) Hepa1-6. Attenuated S. typhimurium oral DNA vaccine was found to promote protective immunity against both CT26-mAFP and Hepa1-6 tumor cells growth. The oral DNA vaccine significantly increased the life span of tumor-challenged mice in both tumor models. Together, these results suggest that vaccination with the attenuated S. typhimurium oral DNA vaccine that carries the AFP gene could be a promising strategy to prevent HCC development.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antigens, Neoplasm/immunology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/prevention & control
- Cell Line
- Cell Line, Tumor
- Colonic Neoplasms/immunology
- Colonic Neoplasms/prevention & control
- Cytotoxicity, Immunologic
- Genes, Bacterial
- Humans
- Immune Tolerance
- Liver Neoplasms/immunology
- Liver Neoplasms/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Operon
- Plasmids
- Salmonella typhimurium/genetics
- Salmonella typhimurium/immunology
- T-Lymphocytes/immunology
- Vaccines, Attenuated
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Xenograft Model Antitumor Assays
- alpha-Fetoproteins/genetics
- alpha-Fetoproteins/immunology
Collapse
Affiliation(s)
- C-K Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | | | | | | |
Collapse
|
20
|
Hummel S, Apte RN, Qimron U, Vitacolonna M, Porgador A, Zöller M. Tumor Vaccination by Salmonella typhimurium After Transformation with a Eukaryotic Expression Vector in Mice. J Immunother 2005; 28:467-79. [PMID: 16113603 DOI: 10.1097/01.cji.0000170359.92090.8b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transformed attenuated Salmonella typhimurium (ST) have been suggested as an efficient means of tumor vaccination. However, ST themselves might be immunosuppressive, and the question has arisen as to whether this impedes vaccination efficacy even if ST are transformed with a eukaryotic expression vector such that "tumor antigen" will be transcribed by the host. The question was evaluated using a mutant SL7207, where the yej operon, which interferes with MHC I-mediated presentation, had been inactivated (SL7207DeltayejE). Mice were vaccinated with SL7207 or SL7207DeltayejE transformed with a eukaryotic expression vector carrying the lacZ or the gp100 gene and later received lacZ-transfected RENCA or YC8 or gp100-expressing B16F1 tumor cells. In vaccinated mice, tumor growth started with a delay and some animals remained tumor-free; however, the tumor growth rate remained unaltered. No significant difference was seen between SL7207DeltayejE versus SL7207 vaccinated mice. The latter finding contrasted with ex vivo analyses where vaccination with SL7207DeltayejE, compared with SL7207, induced a significantly stronger response, including nonadaptive defense mechanisms. The failure to detect a superior vaccination efficacy of SL7207DeltayejE in vivo could be attributed to a stronger effect of the yej operon on MHC-mediated antigen presentation when driven by a prokaryotic promoter. Also, additional Salmonella genes apparently interfere with maintenance of a sustained immune response. Thus, the immunosuppressive yej operon affects innate and adaptive immunity. However, when ST are carriers for eukaryotic-expressed tumor antigens, yej does not severely hamper induction of an immune response.
Collapse
Affiliation(s)
- Susanne Hummel
- Department of Tumor Progression and Tumor Defense, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
The use of live attenuated bacterial vaccine strains allows the targeted delivery of macromolecules to mammalian cells and tissues via the mucosal route. Depending on their specific virulence mechanisms and inherent metabolic preferences, bacteria invade certain cell types and body niches where they consequently deliver their cargo. Recently, the ability of attenuated strains of Salmonella, Shigella and Yersinia spp., as well as Listeria monocytogenes and invasive Escherichia coli, to deliver eukaryotic expression plasmids into mammalian cells in vitro and in vivo has been discovered. The great potential of bacteria-mediated transfer of plasmid DNA encoding vaccine antigens and/or therapeutic molecules was demonstrated in experimental animal models of infectious diseases, tumours and gene deficiencies. The exact mechanism of DNA transfer from the bacterial vector into the mammalian host is not yet completely known. The understanding of molecular events during bacterial DNA transfer, however, will further the development of bacterial vector systems with great promise for various clinical applications.
Collapse
Affiliation(s)
- Holger Loessner
- Molecular Immunology, GBF, German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| | | |
Collapse
|
22
|
Schoen C, Stritzker J, Goebel W, Pilgrim S. Bacteria as DNA vaccine carriers for genetic immunization. Int J Med Microbiol 2004; 294:319-35. [PMID: 15532991 DOI: 10.1016/j.ijmm.2004.03.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genetic immunization with plasmid DNA vaccines has proven to be a promising tool in conferring protective immunity in various experimental animal models of infectious diseases or tumors. Recent research focuses on the use of bacteria, in particular enteroinvasive species, as effective carriers for DNA vaccines. Attenuated strains of Shigella flexneri, Salmonella spp., Yersinia enterocolitica or Listeria monocytogenes have shown to be attractive candidates to target DNA vaccines to immunological inductive sites at mucosal surfaces. This review summarizes recent progress in bacteria-mediated delivery of plasmid DNA vaccines in the field of infectious diseases and cancer.
Collapse
Affiliation(s)
- Christoph Schoen
- Department of Microbiology, Biocenter of the University, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
23
|
Zöller M. Immunotherapy of cancer by active vaccination: does allogeneic bone marrow transplantation after non-myeloablative conditioning provide a new option? Technol Cancer Res Treat 2003; 2:237-60. [PMID: 12779354 DOI: 10.1177/153303460300200307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The critical role of antigen-specific T cells in cancer immunotherapy has been amply demonstrated in many model systems. Though success of clinical trials still remains far behind expectation, the continuous improvement in our understanding of the biology of the immune response will provide the basis of optimized cancer vaccines and allow for new modalities of cancer treatment. This review focuses on the current status of active therapeutic vaccination and future prospects. The latter will mainly be concerned with allogeneic bone marrow cell transplantation after non-myeloablative conditioning, because it is my belief that this approach could provide a major breakthrough in cancer immunotherapy. Concerning active vaccination protocols the following aspects will be addressed: i) the targets of immunotherapeutic approaches; ii) the response elements needed for raising a therapeutically successful immune reaction; iii) ways to achieve an optimal confrontation of the immune system with the tumor and iv) supportive regimen of immunomodulation. Hazards which one is most frequently confronted with in trials to attack tumors with the inherent weapon of immune defense will only be briefly mentioned. Many question remain to be answered in the field of allogeneic bone marrow transplantation after non-myeloablative conditioning to optimize the therapeutic setting for this likely very powerful tool of cancer therapy. Current considerations to improve engraftment and to reduce graft versus host disease while strengthening graft versus tumor reactivity will be briefly reviewed. Finally, I will discuss whether tumor-reactive T cells can be "naturally" maintained during the process of T cell maturation in the allogeneic host. Provided this hypothesis can be substantiated, a T cell vaccine will meet a pool of virgin T cells in the allogeneically reconstituted host, which are tolerant towards the host, but not anergised towards tumor antigens presented by MHC molecules of the host.
Collapse
Affiliation(s)
- Margot Zöller
- Dept. of Tumor Progression & Immune Defense, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|
24
|
Affiliation(s)
- A M Chakrabarty
- Department of Microbiology & Immunology, University of Illinois, College of Medicine, Chicago 60612, USA.
| |
Collapse
|
25
|
Weiss S. Transfer of eukaryotic expression plasmids to mammalian hosts by attenuated Salmonella spp. Int J Med Microbiol 2003; 293:95-106. [PMID: 12755370 DOI: 10.1078/1438-4221-00248] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transkingdom transfer of DNA from bacteria to other organisms, well established for bacteria, yeast and plants, was recently also extended to mammalian host cells. Attenuated intracellular bacteria or non-pathogenic bacteria equipped with adhesion and invasion properties have been demonstrated to transfer eukaryotic expression plasmids in vitro and in vivo. Here the mucosal application of attenuated Salmonella enterica spp. as DNA carrier for the induction of immune responses towards protein antigens encoded by expression plasmids, their use to complement genetic defects or deliver immunotherapeutic proteins is reviewed. Plasmid transfer has been reported for Salmonella typhimurium, S. typhi and S. choleraesuis so far but clearly other Salmonella strains should be able to transfer expression plasmids as well. Transfer of DNA is effected most likely by bacterial death within the host cell resulting from metabolic attenuation. Since these bacteria remain in the phagocytic vacuole it is unclear how the DNA from such dying bacteria is delivered to the nucleus of infected cells. Nevertheless, the efficiency that has been observed was astonishingly high, reaching close to 100% under certain conditions. Gene transfer in vivo was mainly directed towards vaccination strategies either as vaccination against infectious microorganisms or model tumors. Interestingly, in some cases tolerance against autologous antigens could be broken. In general, this type of immunization was more efficacious than either direct application of antigen, vaccination with naked DNA or using the same bacterium as a heterologous carrier expressing the antigen via a prokaryotic promoter. The ease of generating such vehicles for gene transfer combined with technology validated for mass vaccination programs and the efficacy of induction of protective immune responses makes Salmonella as carrier for mucosal DNA vaccination a highly attractive area for further research and development.
Collapse
Affiliation(s)
- Siegfried Weiss
- Molecular Immunology, GBF, German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| |
Collapse
|
26
|
Garmory HS, Brown KA, Titball RW. Salmonella vaccines for use in humans: present and future perspectives. FEMS Microbiol Rev 2002; 26:339-53. [PMID: 12413664 DOI: 10.1111/j.1574-6976.2002.tb00619.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In recent years there has been significant progress in the development of attenuated Salmonella enterica serovar Typhi strains as candidate typhoid fever vaccines. In clinical trials these vaccines have been shown to be well tolerated and immunogenic. For example, the attenuated S. enterica var. Typhi strains CVD 908-htrA (aroC aroD htrA), Ty800 (phoP phoQ) and chi4073 (cya crp cdt) are all promising candidate typhoid vaccines. In addition, clinical trials have demonstrated that S. enterica var. Typhi vaccines expressing heterologous antigens, such as the tetanus toxin fragment C, can induce immunity to the expressed antigens in human volunteers. In many cases, the problems associated with expression of antigens in Salmonella have been successfully addressed and the future of Salmonella vaccine development is very promising.
Collapse
Affiliation(s)
- Helen S Garmory
- Department of Biomedical Sciences, Dstl Chemical and Biological Sciences, Porton Down, Salisbury SP4 0JQ, UK.
| | | | | |
Collapse
|
27
|
Zöller M. Unexpected induction of unresponsiveness by vaccination with transformed Salmonella typhimurium. J Immunother 2002; 25:162-75. [PMID: 12074046 DOI: 10.1097/00002371-200203000-00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rats vaccinated with attenuated Salmonella typhimurium transformed with a vector containing the v2 exon of CD44 (SL-v2) were not protected and developed thymic metastases at a high rate. This was surprising because there was evidence for concomitant induction of a CD44v2-specific helper and cytotoxic T-cell response. The inefficacy of vaccination was partly caused by tumor escape and tumor-induced immunosuppression. More important were the facts that (i) BSpl2v2 cells migrated from the intraperitoneal implantation site to the thymus and (ii) after vaccination with transformed attenuated Salmonella typhimurium, a small number of dendritic cells, which had transcribed the cDNA insert, were detected in the thymus. In the thymic environment, these v2 presenting dendritic cells, as well as the BSp12v2 tumor cells, supported tolerance induction. Thus, vaccination with tumor-associated differentiation antigens, which in many instances have induced antitumor response, may deteriorate survival time and rate if vaccination is accompanied by presentation of the antigen during intrathymic T-cell selection.
Collapse
Affiliation(s)
- Margot Zöller
- Department of Tumor Progression and Immune Defense, German Cancer Research Center, Heidelberg.
| |
Collapse
|