1
|
Zhu YX, Li ZY, Yu ZL, Lu YT, Liu JX, Chen JR, Xie ZZ. The underlying mechanism and therapeutic potential of IFNs in viral-associated cancers. Life Sci 2025; 361:123301. [PMID: 39675548 DOI: 10.1016/j.lfs.2024.123301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Interferons (IFNs) are a diverse family of cytokines secreted by various cells, including immune cells, fibroblasts, and certain viral-parasitic cells. They are classified into three types and encompass 21 subtypes based on their sources and properties. The regulatory functions of IFNs closely involve cell surface receptors and several signal transduction pathways. Initially investigated for their antiviral properties, IFNs have shown promise in combating cancer-associated viruses, making them a potent therapeutic approach. Most IFNs have been identified for their role in inhibiting cancer; however, they have also demonstrated cancer-promoting effects under specific conditions. These mechanisms primarily rely on immune regulation and cytotoxic effects, significantly impacting cancer progression. Despite widespread use of IFN-based therapies in viral-related cancers, ongoing research aims to develop more effective treatments. This review synthesizes the signal transduction pathways and regulatory capabilities of IFNs, highlighting their connections with viruses, cancers, and emerging clinical treatments.
Collapse
Affiliation(s)
- Yu-Xin Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zi-Yi Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zi-Lu Yu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Yu-Tong Lu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Jia-Xiang Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Jian-Rui Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zhen-Zhen Xie
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| |
Collapse
|
2
|
Repas J, Frlic T, Snedec T, Kopitar AN, Sourij H, Janež A, Pavlin M. Physiologically Achievable Concentration of 2-Deoxy-D-Glucose Stimulates IFN-γ Secretion in Activated T Cells In Vitro. Int J Mol Sci 2024; 25:10384. [PMID: 39408714 PMCID: PMC11476708 DOI: 10.3390/ijms251910384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
2-deoxy-D-glucose (2DG) is a glycolysis and protein N-glycosylation inhibitor with promising anti-tumor and immunomodulatory effects. However, 2DG can also suppress T cell function, including IFN-γ secretion. Few human T cell studies have studied low-dose 2DG, which can increase IFN-γ in a Jurkat clone. We therefore investigated 2DG's effect on IFN-γ in activated human T cells from PBMCs, with 2DG treatment commenced either concurrently with activation or 48 h after activation. Concurrent 2DG treatment decreased IFN-γ secretion in a dose-dependent manner. However, 2DG treatment of pre-activated T cells had a hormetic effect on IFN-γ, with 0.15-0.6 mM 2DG (achievable in vivo) increasing and >2.4 mM 2DG reducing its secretion. In contrast, IL-2 levels declined monotonously with increasing 2DG concentration. Lower 2DG concentrations reduced PD-1 and increased CD69 expression regardless of treatment timing. The absence of increased T-bet or Eomes expression or IFNG transcription suggests another downstream mechanism. 2DG dose-dependently induced the unfolded protein response, suggesting a possible role in increased IFN-γ secretion, possibly by increasing the ER folding capacity for IFN-γ via increased chaperone expression. Overall, low-dose, short-term 2DG exposure could potentially improve the T cell anti-tumor response.
Collapse
Affiliation(s)
- Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.R.); (T.F.); (T.S.)
| | - Tjaša Frlic
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.R.); (T.F.); (T.S.)
| | - Tadeja Snedec
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.R.); (T.F.); (T.S.)
| | - Andreja Nataša Kopitar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Harald Sourij
- Trials Unit for Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria;
| | - Andrej Janež
- Clinical Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.R.); (T.F.); (T.S.)
- Group for Nano- and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Shiffer EM, Oyer JL, Copik AJ, Parks GD. Parainfluenza Virus 5 V Protein Blocks Interferon Gamma-Mediated Upregulation of NK Cell Inhibitory Ligands and Improves NK Cell Killing of Neuroblastoma Cells. Viruses 2024; 16:1270. [PMID: 39205244 PMCID: PMC11359056 DOI: 10.3390/v16081270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Natural killer (NK) cells can be effective immunotherapeutic anti-cancer agents due to their ability to selectively target and kill tumor cells. This activity is modulated by the interaction of NK cell receptors with inhibitory ligands on the surface of target cells. NK cell inhibitory ligands can be upregulated on tumor cell surfaces in response to interferon-gamma (IFN-γ), a cytokine which is produced by activated NK cells. We hypothesized that the resistance of tumor cells to NK cell killing could be overcome by expression of the parainfluenza virus 5 (PIV5) V protein, which has known roles in blocking IFN-γ signaling. This was tested with human PM21-NK cells produced through a previously developed particle-based method which yields superior NK cells for immunotherapeutic applications. Infection of human SK-N-SH neuroblastoma cells with PIV5 blocked IFN-γ-mediated upregulation of three NK cell inhibitory ligands and enhanced in vitro killing of these tumor cells by PM21-NK cells. SK-N-SH cells transduced to constitutively express the V protein alone were resistant to IFN-γ-mediated increases in cell surface expression of NK cell inhibitory ligands. Real-time in vitro cell viability assays demonstrated that V protein expression in SK-N-SH cells was sufficient to increase PM21-NK cell-mediated killing. Toward a potential therapeutic application, transient lentiviral delivery of the V gene also enhanced PM21-NK cell killing in vitro. Our results provide the foundation for novel therapeutic applications of V protein expression in combination with ex vivo NK cell therapy to effectively increase the killing of tumor cells.
Collapse
Affiliation(s)
| | | | | | - Griffith D. Parks
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (E.M.S.); (J.L.O.); (A.J.C.)
| |
Collapse
|
4
|
Freeman P, Bellomo G, Ireland L, Abudula M, Luckett T, Oberst M, Stafferton R, Ghaneh P, Halloran C, Schmid MC, Mielgo A. Inhibition of insulin-like growth factors increases production of CXCL9/10 by macrophages and fibroblasts and facilitates CD8 + cytotoxic T cell recruitment to pancreatic tumours. Front Immunol 2024; 15:1382538. [PMID: 39165364 PMCID: PMC11334161 DOI: 10.3389/fimmu.2024.1382538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with an urgent unmet clinical need for new therapies. Using a combination of in vitro assays and in vivo preclinical models we demonstrate that therapeutic inhibition of the IGF signalling axis promotes the accumulation of CD8+ cytotoxic T cells within the tumour microenvironment of PDAC tumours. Mechanistically, we show that IGF blockade promotes macrophage and fibroblast production of the chemokines CXCL9 and CXCL10 to facilitate CD8+ T cell recruitment and trafficking towards the PDAC tumour. Exploring this pathway further, we show that IGF inhibition leads to increased STAT1 transcriptional activity, correlating with a downregulation of the AKT/STAT3 signalling axis, in turn promoting Cxcl9 and Cxcl10 gene transcription. Using patient derived tumour explants, we also demonstrate that our findings translate into the human setting. PDAC tumours are frequently described as "immunologically cold", therefore bolstering CD8+ T cell recruitment to PDAC tumours through IGF inhibition may serve to improve the efficacy of immune checkpoint inhibitors which rely on the presence of CD8+ T cells in tumours.
Collapse
Affiliation(s)
- Patrick Freeman
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gaia Bellomo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Ireland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Maidinaimu Abudula
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Teifion Luckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael Oberst
- Department of Oncology Research, AstraZeneca, One Medimmune Way, Gaithersburg, MD, United States
| | - Ruth Stafferton
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Paula Ghaneh
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Chris Halloran
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael C. Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Nandi I, Ji L, Smith HW, Avizonis D, Papavasiliou V, Lavoie C, Pacis A, Attalla S, Sanguin-Gendreau V, Muller WJ. Targeting fatty acid oxidation enhances response to HER2-targeted therapy. Nat Commun 2024; 15:6587. [PMID: 39097623 PMCID: PMC11297952 DOI: 10.1038/s41467-024-50998-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
Metabolic reprogramming, a hallmark of tumorigenesis, involves alterations in glucose and fatty acid metabolism. Here, we investigate the role of Carnitine palmitoyl transferase 1a (Cpt1a), a key enzyme in long-chain fatty acid (LCFA) oxidation, in ErbB2-driven breast cancers. In ErbB2+ breast cancer models, ablation of Cpt1a delays tumor onset, growth, and metastasis. However, Cpt1a-deficient cells exhibit increased glucose dependency that enables survival and eventual tumor progression. Consequently, these cells exhibit heightened oxidative stress and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Inhibiting Nrf2 or silencing its expression reduces proliferation and glucose consumption in Cpt1a-deficient cells. Combining the ketogenic diet, composed of LCFAs, or an anti-ErbB2 monoclonal antibody (mAb) with Cpt1a deficiency significantly perturbs tumor growth, enhances apoptosis, and reduces lung metastasis. Using an immunocompetent model, we show that Cpt1a inhibition promotes an antitumor immune microenvironment, thereby enhancing the efficacy of anti-ErbB2 mAbs. Our findings underscore the importance of targeting fatty acid oxidation alongside HER2-targeted therapies to combat resistance in HER2+ breast cancer patients.
Collapse
Affiliation(s)
- Ipshita Nandi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Linjia Ji
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Harvey W Smith
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Daina Avizonis
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Vasilios Papavasiliou
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Cynthia Lavoie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Alain Pacis
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada
| | - Sherif Attalla
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Virginie Sanguin-Gendreau
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Hedley KE, Gomez HM, Kecelioglu E, Carroll OR, Jobling P, Horvat JC, Tadros MA. Neonatal Chlamydia muridarum respiratory infection causes neuroinflammation within the brainstem during the early postnatal period. J Neuroinflammation 2024; 21:158. [PMID: 38879567 PMCID: PMC11179230 DOI: 10.1186/s12974-024-03150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
Respiratory infections are one of the most common causes of illness and morbidity in neonates worldwide. In the acute phase infections are known to cause wide-spread peripheral inflammation. However, the inflammatory consequences to the critical neural control centres for respiration have not been explored. Utilising a well characterised model of neonatal respiratory infection, we investigated acute responses within the medulla oblongata which contains key respiratory regions. Neonatal mice were intranasally inoculated within 24 h of birth, with either Chlamydia muridarum or sham-infected, and tissue collected on postnatal day 15, the peak of peripheral inflammation. A key finding of this study is that, while the periphery appeared to show no sex-specific effects of a neonatal respiratory infection, sex had a significant impact on the inflammatory response of the medulla oblongata. There was a distinct sex-specific response in the medulla coincident with peak of peripheral inflammation, with females demonstrating an upregulation of anti-inflammatory cytokines and males showing very few changes. Microglia also demonstrated sex-specificity with the morphology of females and males differing based upon the nuclei. Astrocytes showed limited changes during the acute response to neonatal infection. These data highlight the strong sex-specific impact of a respiratory infection can have on the medulla in the acute inflammatory phase.
Collapse
Affiliation(s)
- Kateleen E Hedley
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Henry M Gomez
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Eda Kecelioglu
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Olivia R Carroll
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Phillip Jobling
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jay C Horvat
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Melissa A Tadros
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
7
|
Ghosh C, Kakar R, Hoyle RG, Liu Z, Guo C, Li J, Wang XY, Sun Y. Type I gamma phosphatidylinositol phosphate 5-kinase i5 controls cell sensitivity to interferon. Dev Cell 2024; 59:1028-1042.e5. [PMID: 38452758 PMCID: PMC11043016 DOI: 10.1016/j.devcel.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/21/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
The interferon signaling pathway is critical for host defense by serving diverse functions in both innate and adaptive immune responses. Here, we show that type I gamma phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an enzyme that synthesizes phosphatidylinositol-4,5-bisphosphate (PI4,5P2), controls the sensitivity to interferon in both human and mouse cells. PIPKIγi5 directly binds to the interferon-gamma (IFN-γ) downstream effector signal transducer and activator of transcription 1 (STAT1), which suppresses the STAT1 dimerization, IFN-γ-induced STAT1 nuclear translocation, and transcription of IFN-γ-responsive genes. Depletion of PIPKIγi5 significantly enhances IFN-γ signaling and strengthens an antiviral response. In addition, PIPKIγi5-synthesized PI4,5P2 can bind to STAT1 and promote the PIPKIγi5-STAT1 interaction. Similar to its interaction with STAT1, PIPKIγi5 is capable of interacting with other members of the STAT family, including STAT2 and STAT3, thereby suppressing the expression of genes mediated by these transcription factors. These findings identify the function of PIPKIγi5 in immune regulation.
Collapse
Affiliation(s)
- Chinmoy Ghosh
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ruchi Kakar
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rosalie G Hoyle
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zheng Liu
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jiong Li
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yue Sun
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
8
|
Seo SH, Lee JE, Ham DW, Shin EH. Toxoplasma gondii IST suppresses inflammatory and apoptotic responses by inhibiting STAT1-mediated signaling in IFN-γ/TNF-α-stimulated hepatocytes. PARASITES, HOSTS AND DISEASES 2024; 62:30-41. [PMID: 38443768 PMCID: PMC10915271 DOI: 10.3347/phd.23129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
The dense granule protein of Toxoplasma gondii, inhibitor of signal transducer and activator of transcription 1 (IST) is an inhibitor of signal transducer and activator of transcription 1 (STAT1) transcriptional activity that binds to STAT1 and regulates the expression of inflammatory molecules in host cells. A sterile inflammatory liver injury in pathological acute liver failures occurs when excessive innate immune function, such as the massive release of IFN-γ and TNF-α, is activated without infection. In relation to inflammatory liver injury, we hypothesized that Toxoplasma gondii inhibitor of STAT1 transcription (TgIST) can inhibit the inflammatory response induced by activating the STAT1/IRF-1 mechanism in liver inflammation. This study used IFN-γ and TNF-α as inflammatory inducers at the cellular level of murine hepatocytes (Hepa-1c1c7) to determine whether TgIST inhibits the STAT1/IRF-1 axis. In stable cells transfected with TgIST, STAT1 expression decreased with a decrease in interferon regulatory factor (IRF)-1 levels. Furthermore, STAT1 inhibition of TgIST resulted in lower levels of NF-κB and COX2, as well as significantly lower levels of class II transactivator (CIITA), iNOS, and chemokines (CLXCL9/10/11). TgIST also significantly reduced the expression of hepatocyte proapoptotic markers (Caspase3/8/9, P53, and BAX), which are linked to sterile inflammatory liver injury. TgIST also reduced the expression of adhesion (ICAM-1 and VCAM-1) and infiltration markers of programmed death-ligand 1 (PD-L1) induced by hepatocyte and tissue damage. TgIST restored the cell apoptosis induced by IFN-γ/TNF-α stimulation. These results suggest that TgIST can inhibit STAT1-mediated inflammatory and apoptotic responses in hepatocytes stimulated with proinflammatory cytokines.
Collapse
Affiliation(s)
- Seung-Hwan Seo
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases, Seoul 03080,
Korea
| | - Ji-Eun Lee
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases, Seoul 03080,
Korea
| | - Do-Won Ham
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases, Seoul 03080,
Korea
| | - Eun-Hee Shin
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases, Seoul 03080,
Korea
- Seoul National University Bundang Hospital Medical Science, Seongnam 13620,
Korea
| |
Collapse
|
9
|
Fakir S, Barabutis N. Growth hormone-releasing hormone antagonists counteract interferon-γ - induced barrier dysfunction in bovine and human endothelial cells. Cytokine 2024; 173:156416. [PMID: 37952313 PMCID: PMC10842054 DOI: 10.1016/j.cyto.2023.156416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
GHRH regulates the secretion of GH from the anterior pituitary gland. An emerging body of evidence suggests that the activities of that neuropeptide are not limited to the GH/IGF-I axis, but they expand towards the mediation of inflammatory processes. GHRHAnt were developed to oppose the activities of GHRH in malignancies, and have been associated with strong anti-inflammatory and anti-oxidative effects in a diverse variety of tissues, including the lungs. In the present study we report that GHRHAnt oppose interferon-γ - induced paracellular hyperpermeability and reactive oxygen species generation in bovine and human pulmonary endothelial cells; and suppress interferon-γ - triggered STAT3, cofilin and ERK1/2 activation. Our observations substantiate previous findings on the protective effects of GHRHAnt in endothelial inflammation and barrier break-down.
Collapse
Affiliation(s)
- Saikat Fakir
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
10
|
Taifour T, Attalla SS, Zuo D, Gu Y, Sanguin-Gendreau V, Proud H, Solymoss E, Bui T, Kuasne H, Papavasiliou V, Lee CG, Kamle S, Siegel PM, Elias JA, Park M, Muller WJ. The tumor-derived cytokine Chi3l1 induces neutrophil extracellular traps that promote T cell exclusion in triple-negative breast cancer. Immunity 2023; 56:2755-2772.e8. [PMID: 38039967 DOI: 10.1016/j.immuni.2023.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/22/2023] [Accepted: 11/05/2023] [Indexed: 12/03/2023]
Abstract
In triple-negative breast cancer (TNBC), stromal restriction of CD8+ T cells associates with poor clinical outcomes and lack of responsiveness to immune-checkpoint blockade (ICB). To identify mediators of T cell stromal restriction, we profiled murine breast tumors lacking the transcription factor Stat3, which is commonly hyperactive in breast cancers and promotes an immunosuppressive tumor microenvironment. Expression of the cytokine Chi3l1 was decreased in Stat3-/- tumors. CHI3L1 expression was elevated in human TNBCs and other solid tumors exhibiting T cell stromal restriction. Chi3l1 ablation in the polyoma virus middle T (PyMT) breast cancer model generated an anti-tumor immune response and delayed mammary tumor onset. These effects were associated with increased T cell tumor infiltration and improved response to ICB. Mechanistically, Chi3l1 promoted neutrophil recruitment and neutrophil extracellular trap formation, which blocked T cell infiltration. Our findings provide insight into the mechanism underlying stromal restriction of CD8+ T cells and suggest that targeting Chi3l1 may promote anti-tumor immunity in various tumor types.
Collapse
Affiliation(s)
- Tarek Taifour
- McGill University, Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Montreal, QC H4A 3J1, Canada; Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Sherif Samer Attalla
- Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; McGill University, Department of Biochemistry, Faculty of Medicine, Montreal, QC H3A 1A3, Canada
| | - Dongmei Zuo
- Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Yu Gu
- Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; McGill University, Department of Biochemistry, Faculty of Medicine, Montreal, QC H3A 1A3, Canada
| | | | - Hailey Proud
- Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; McGill University, Department of Biochemistry, Faculty of Medicine, Montreal, QC H3A 1A3, Canada
| | - Emilie Solymoss
- McGill University, Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Montreal, QC H4A 3J1, Canada; Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Tung Bui
- Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Hellen Kuasne
- Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | | | - Chun Geun Lee
- Brown University, Molecular Biology and Immunology, Faculty of Medicine, Providence, RI 02903, USA
| | - Suchitra Kamle
- Brown University, Molecular Biology and Immunology, Faculty of Medicine, Providence, RI 02903, USA
| | - Peter M Siegel
- McGill University, Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Montreal, QC H4A 3J1, Canada; Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; McGill University, Department of Biochemistry, Faculty of Medicine, Montreal, QC H3A 1A3, Canada
| | - Jack A Elias
- Brown University, Molecular Biology and Immunology, Faculty of Medicine, Providence, RI 02903, USA
| | - Morag Park
- McGill University, Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Montreal, QC H4A 3J1, Canada; Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; McGill University, Department of Biochemistry, Faculty of Medicine, Montreal, QC H3A 1A3, Canada
| | - William J Muller
- McGill University, Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Montreal, QC H4A 3J1, Canada; Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; McGill University, Department of Biochemistry, Faculty of Medicine, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
11
|
Kamte YS, Chandwani MN, London NM, Potosnak CE, Leak RK, O'Donnell LA. Perturbations in neural stem cell function during a neurotropic viral infection in juvenile mice. J Neurochem 2023; 166:809-829. [PMID: 37530081 DOI: 10.1111/jnc.15914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
Viral infections of the central nervous system (CNS) often cause worse neurological outcomes in younger hosts. Throughout childhood, the brain undergoes extensive development and refinement to produce functional neural networks. Network function is maintained partly with the help of neural stem cells (NSCs) that replace neuronal and glia subtypes in the two neurogenic niches of the brain (the hippocampus and subventricular zone). Accumulating evidence suggests that viruses disrupt NSC function in adulthood and infancy, but the in vivo impact of childhood infections on acute and long-term NSC function is unknown. Using a juvenile mouse model of measles virus (MeV) infection, where only mature neurons in the brain are infected, we defined the effects of the antiviral immune response on NSCs from juvenile to adult stages of life. We found that (a) virus persists in the brains of survivors despite an anti-viral immune response; (b) NSC numbers decrease dramatically during early infection, but ultimately stabilize in adult survivors; (c) infection is associated with mild apoptosis throughout the juvenile brain, but NSC proliferation is unchanged; (d) the loss of NSC numbers is dependent upon the stage of NSC differentiation; and (e) immature neurons increase early during infection, concurrent with depletion of NSC pools. Collectively, we show that NSCs are exquisitely sensitive to the inflammatory microenvironment created during neuron-restricted MeV infection in juveniles, responding with an early loss of NSCs but increased neurogenesis. These studies provide insight into potential cellular mechanisms associated with long-term neurological deficits in survivors of childhood CNS infections.
Collapse
Affiliation(s)
- Yashika S Kamte
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Manisha N Chandwani
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Natalie M London
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Chloe E Potosnak
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Rehana K Leak
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Lauren A O'Donnell
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Crosstalk of TNF-α, IFN-γ, NF-kB, STAT1 and redox signaling in lipopolysaccharide/D-galactosamine/dimethylsulfoxide-induced fulminant hepatic failure in mice. Saudi Pharm J 2023; 31:370-381. [PMID: 37026046 PMCID: PMC10071328 DOI: 10.1016/j.jsps.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Purpose The clinical study of fulminant hepatic failure is challenging due to its high mortality and relative rarity, necessitating reliance on pre-clinical models to gain insight into its pathophysiology and develop potential therapies. Methods and Results In our study, the combination of the commonly used solvent dimethyl sulfoxide to the current-day model of lipopolysaccharide/d-galactosamine-caused fulminant hepatic failure was found to cause significantly greater hepatic damage, as indicated by alanine aminotransferase level. The effect was dose-dependent, with the maximum increase in alanine aminotransferase observed following 200 μl/kg dimethyl sulfoxide co-administration. Co-administration of 200 μl/kg dimethyl sulfoxide also remarkably increased histopathological changes induced by lipopolysaccharide/d-galactosamine. Importantly, alanine aminotransferase levels and survival rate in the 200 μl/kg dimethyl sulfoxide co-administration groups were both greater than those in the classical lipopolysaccharide/d-galactosamine model. We found that dimethyl sulfoxide co-administration aggravated lipopolysaccharide/d-galactosamine-caused liver damage by stimulating inflammatory signaling, as indicated by tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) levels. Further, nuclear factor kappa B (NF-kB) and transcription factor activator 1 (STAT1) were upregulated, as was neutrophil recruitment, indicated by myeloperoxidase activity. Hepatocyte apoptosis was also increased, and greater nitro-oxidative stress was noted, as determined based on nitric oxide, malondialdehyde, and glutathione levels. Conclusion Co-treatment with low doses of dimethyl sulfoxide enhanced the lipopolysaccharide/d-galactosamine-caused hepatic failure in animals, with higher toxicity and greater survival rates. The current findings also highlight the potential danger of using dimethyl sulfoxide as a solvent in experiments involving the hepatic immune system, suggesting that the new lipopolysaccharide/d-galactosamine/dimethyl sulfoxide model described herein could be used for pharmacological screening with the goal to better understand hepatic failure and evaluate treatment approaches.
Collapse
|
13
|
Park J, Son MJ, Ho CC, Lee SH, Kim Y, An J, Lee SK. Transcriptional inhibition of STAT1 functions in the nucleus alleviates Th1 and Th17 cell-mediated inflammatory diseases. Front Immunol 2022; 13:1054472. [PMID: 36591260 PMCID: PMC9800178 DOI: 10.3389/fimmu.2022.1054472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
T helper 1 cells (Th1 cells) and T helper 17 cells (Th17 cells) play pivotal roles in the pathogenesis of various autoimmune diseases, including psoriasis and inflammatory bowel disease (IBD). Signal transducer and activator of transcription 1 (STAT1) regulates the Th1 and Th17 cell lineage commitment at an early stage and maintains their immunological functions in vitro and in vivo. The previous strategies to block STAT1 functions to treat autoimmune diseases inhibit Th1 cell activity but simultaneously cause hyper-activation of Th17 cells. Herein, to modulate the functions of pathogenic Th1 and Th17 cells without genetic modification in normal physiological conditions, we generated the nucleus-deliverable form of the transcription modulation domain of STAT1 (ndSTAT1-TMD), which can be transduced into the nucleus of the target cells in a dose- and time-dependent manner without affecting the cell viability and T cell activation signaling events. ndSTAT1-TMD significantly blocked the differentiation of naïve CD4+ T cells into Th1 or Th17 cells via competitive inhibition of endogenous STAT1-mediated transcription, which did not influence Th2 and Treg cell differentiation. When the gene expression profile of Th1 or Th17 cells after ndSTAT1-TMD treatment was analyzed by mRNA sequencing, the expression of the genes involved in the differentiation capacity and the immunological functions of Th1 or Th17 cells were substantially reduced. The therapeutic potential of ndSTAT1-TMD was tested in the animal model of psoriasis and colitis, whose pathogenesis is mainly contributed by Th1 or/and Th17 cells. The symptoms and progression of psoriasis and colitis were significantly alleviated by ndSTAT1-TMD treatment, comparable to anti-IL-17A antibody treatment. In conclusion, our study demonstrates that ndSTAT1-TMD can be a new therapeutic reagent for Th1/17 cell-mediated autoimmune diseases by modulating the functions of pathogenic Th1 and Th17 cells together.
Collapse
Affiliation(s)
- Jiyoon Park
- Department of Biotechnology, Yonsei University of Life Science and Biotechnology, Seoul, South Korea
| | - Min-Ji Son
- Department of Biotechnology, Yonsei University of Life Science and Biotechnology, Seoul, South Korea
| | - Chun-Chang Ho
- Department of Biotechnology, Yonsei University of Life Science and Biotechnology, Seoul, South Korea
| | - Su-Hyeon Lee
- Department of Biotechnology, Yonsei University of Life Science and Biotechnology, Seoul, South Korea
| | - Yuna Kim
- Department of Biotechnology, Yonsei University of Life Science and Biotechnology, Seoul, South Korea
| | - Jaekyeung An
- Department of Biotechnology, Yonsei University of Life Science and Biotechnology, Seoul, South Korea
| | - Sang-Kyou Lee
- Department of Biotechnology, Yonsei University of Life Science and Biotechnology, Seoul, South Korea
- Good T Cells, Inc., Seoul, South Korea
| |
Collapse
|
14
|
Interferon-γ Stimulates Interleukin-27 Derived from Dendritic Cells to Regulate Th9 Differentiation through STAT1/3 Pathway. DISEASE MARKERS 2022; 2022:1542112. [PMID: 36304255 PMCID: PMC9596272 DOI: 10.1155/2022/1542112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022]
Abstract
The initiation and progression of allergic asthma (AA) are associated with complex interactions between inflammation and immune response. Herein, we report the specific mechanisms underlying the molecular action of interferon (IFN)-γ in AA regulation. We speculated that IFN-γ inhibits Th9 differentiation by regulating the secretion of interleukin (IL)-27 from dendritic cells (DCs), thereby suppressing airway inflammation in asthma. We constructed a mouse model of ovalbumin-induced AA and overexpressed IFN-γ to evaluate the effect on the IL-27/Th9 axis via the in vitro effect of IFN-γ on IL-27 secretion by DCs and their influence on Th9 differentiation and asthmatic inflammation. IFN-γ overexpression reduced the proportion of Th9 cells and DCs and altered lung morphology and cytokine production in AA-induced mice, thus suppressing the AA phenotype. In addition, exogenous IFN-γ stimulation promoted the secretion of IL-27 and suppressed Th9 differentiation of CD4+ T cells via signal transducer and activator of transcription 1/3 (STAT1/3) signaling in a time-dependent manner. This study aimed to clarify the regulatory effect and mechanism of the IFN-γ/DCs/IL-27/Th9 axis on AA and provide novel insights for effective targeted treatment of asthma.
Collapse
|
15
|
Kalliara E, Kardynska M, Bagnall J, Spiller DG, Müller W, Ruckerl D, Śmieja J, Biswas SK, Paszek P. Post-transcriptional regulatory feedback encodes JAK-STAT signal memory of interferon stimulation. Front Immunol 2022; 13:947213. [PMID: 36238296 PMCID: PMC9552616 DOI: 10.3389/fimmu.2022.947213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Immune cells fine tune their responses to infection and inflammatory cues. Here, using live-cell confocal microscopy and mathematical modelling, we investigate interferon-induced JAK-STAT signalling in innate immune macrophages. We demonstrate that transient exposure to IFN-γ stimulation induces a long-term desensitisation of STAT1 signalling and gene expression responses, revealing a dose- and time-dependent regulatory feedback that controls JAK-STAT responses upon re-exposure to stimulus. We show that IFN-α/β1 elicit different level of desensitisation from IFN-γ, where cells refractory to IFN-α/β1 are sensitive to IFN-γ, but not vice versa. We experimentally demonstrate that the underlying feedback mechanism involves regulation of STAT1 phosphorylation but is independent of new mRNA synthesis and cognate receptor expression. A new feedback model of the protein tyrosine phosphatase activity recapitulates experimental data and demonstrates JAK-STAT network’s ability to decode relative changes of dose, timing, and type of temporal interferon stimulation. These findings reveal that STAT desensitisation renders cells with signalling memory of type I and II interferon stimulation, which in the future may improve administration of interferon therapy.
Collapse
Affiliation(s)
- Eirini Kalliara
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Malgorzata Kardynska
- Department of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Zabrze, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - James Bagnall
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David G. Spiller
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Werner Müller
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Dominik Ruckerl
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jarosław Śmieja
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Subhra K. Biswas
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- *Correspondence: Pawel Paszek,
| |
Collapse
|
16
|
Vollmuth N, Schlicker L, Guo Y, Hovhannisyan P, Janaki-Raman S, Kurmasheva N, Schmitz W, Schulze A, Stelzner K, Rajeeve K, Rudel T. c-Myc plays a key role in IFN-γ-induced persistence of Chlamydia trachomatis. eLife 2022; 11:76721. [PMID: 36155135 PMCID: PMC9512400 DOI: 10.7554/elife.76721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (Ctr) can persist over extended times within their host cell and thereby establish chronic infections. One of the major inducers of chlamydial persistence is interferon-gamma (IFN-γ) released by immune cells as a mechanism of immune defence. IFN-γ activates the catabolic depletion of L-tryptophan (Trp) via indoleamine-2,3-dioxygenase (IDO), resulting in persistent Ctr. Here, we show that IFN-γ induces the downregulation of c-Myc, the key regulator of host cell metabolism, in a STAT1-dependent manner. Expression of c-Myc rescued Ctr from IFN-γ-induced persistence in cell lines and human fallopian tube organoids. Trp concentrations control c-Myc levels most likely via the PI3K-GSK3β axis. Unbiased metabolic analysis revealed that Ctr infection reprograms the host cell tricarboxylic acid (TCA) cycle to support pyrimidine biosynthesis. Addition of TCA cycle intermediates or pyrimidine/purine nucleosides to infected cells rescued Ctr from IFN-γ-induced persistence. Thus, our results challenge the longstanding hypothesis of Trp depletion through IDO as the major mechanism of IFN-γ-induced metabolic immune defence and significantly extends the understanding of the role of IFN-γ as a broad modulator of host cell metabolism.
Collapse
Affiliation(s)
- Nadine Vollmuth
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Lisa Schlicker
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yongxia Guo
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pargev Hovhannisyan
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | | | - Naziia Kurmasheva
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Würzburg, Germany
| | - Almut Schulze
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Biochemistry and Molecular Biology, University of Wuerzburg, Würzburg, Germany
| | - Kathrin Stelzner
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Karthika Rajeeve
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
17
|
Pavlinek A, Matuleviciute R, Sichlinger L, Dutan Polit L, Armeniakos N, Vernon AC, Srivastava DP. Interferon-γ exposure of human iPSC-derived neurons alters major histocompatibility complex I and synapsin protein expression. Front Psychiatry 2022; 13:836217. [PMID: 36186864 PMCID: PMC9515429 DOI: 10.3389/fpsyt.2022.836217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Human epidemiological data links maternal immune activation (MIA) during gestation with increased risk for psychiatric disorders with a putative neurodevelopmental origin, including schizophrenia and autism. Animal models of MIA provide evidence for this association and suggest that inflammatory cytokines represent one critical link between maternal infection and any potential impact on offspring brain and behavior development. However, to what extent specific cytokines are necessary and sufficient for these effects remains unclear. It is also unclear how specific cytokines may impact the development of specific cell types. Using a human cellular model, we recently demonstrated that acute exposure to interferon-γ (IFNγ) recapitulates molecular and cellular phenotypes associated with neurodevelopmental disorders. Here, we extend this work to test whether IFNγ can impact the development of immature glutamatergic neurons using an induced neuronal cellular system. We find that acute exposure to IFNγ activates a signal transducer and activator of transcription 1 (STAT1)-pathway in immature neurons, and results in significantly increased major histocompatibility complex I (MHCI) expression at the mRNA and protein level. Furthermore, acute IFNγ exposure decreased synapsin I/II protein in neurons but did not affect the expression of synaptic genes. Interestingly, complement component 4A (C4A) gene expression was significantly increased following acute IFNγ exposure. This study builds on our previous work by showing that IFNγ-mediated disruption of relevant synaptic proteins can occur at early stages of neuronal development, potentially contributing to neurodevelopmental disorder phenotypes.
Collapse
Affiliation(s)
- Adam Pavlinek
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Rugile Matuleviciute
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Laura Sichlinger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Lucia Dutan Polit
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Nikolaos Armeniakos
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Anthony Christopher Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Deepak Prakash Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Morana O, Nieto‐Garai JA, Björkholm P, Bernardino de la Serna J, Terrones O, Arboleya A, Ciceri D, Rojo‐Bartolomé I, Blouin CM, Lamaze C, Lorizate M, Contreras F. Identification of a New Cholesterol-Binding Site within the IFN-γ Receptor that is Required for Signal Transduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105170. [PMID: 35166455 PMCID: PMC9008429 DOI: 10.1002/advs.202105170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/26/2022] [Indexed: 05/05/2023]
Abstract
The cytokine interferon-gamma (IFN-γ) is a master regulator of innate and adaptive immunity involved in a broad array of human diseases that range from atherosclerosis to cancer. IFN-γ exerts it signaling action by binding to a specific cell surface receptor, the IFN-γ receptor (IFN-γR), whose activation critically depends on its partition into lipid nanodomains. However, little is known about the impact of specific lipids on IFN-γR signal transduction activity. Here, a new conserved cholesterol (chol) binding motif localized within its single transmembrane domain is identified. Through direct binding, chol drives the partition of IFN-γR2 chains into plasma membrane lipid nanodomains, orchestrating IFN-γR oligomerization and transmembrane signaling. Bioinformatics studies show that the signature sequence stands for a conserved chol-binding motif presented in many mammalian membrane proteins. The discovery of chol as the molecular switch governing IFN-γR transmembrane signaling represents a significant advance for understanding the mechanism of lipid selectivity by membrane proteins, but also for figuring out the role of lipids in modulating cell surface receptor function. Finally, this study suggests that inhibition of the chol-IFNγR2 interaction may represent a potential therapeutic strategy for various IFN-γ-dependent diseases.
Collapse
Affiliation(s)
- Ornella Morana
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Jon Ander Nieto‐Garai
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Patrik Björkholm
- Center for Biomembrane ResearchDepartment of Biochemistry and BiophysicsStockholm UniversityStockholmSE‐106 91Sweden
- Science for Life LaboratoryStockholm UniversitySolnaSE‐171 21Sweden
| | - Jorge Bernardino de la Serna
- National Heart and Lung InstituteFaculty of MedicineImperial College LondonSouth KensingtonSir Alexander Fleming BuildingLondonSW7 2AZUK
- Central Laser FacilityRutherford Appleton LaboratoryMRC‐Research Complex at HarwellScience and Technology Facilities CouncilHarwellOX11 0QXUK
- NIHR Imperial Biomedical Research CentreLondonSW7 2AZUK
| | - Oihana Terrones
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Aroa Arboleya
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Dalila Ciceri
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Iratxe Rojo‐Bartolomé
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Cédric M. Blouin
- Institut Curie ‐ Centre de RecherchePSL Research UniversityMembrane Mechanics and Dynamics of Intracellular Signaling LaboratoryParis75248France
- Institut National de la Santé et de la Recherche Médicale (INSERM)ParisU1143France
- Centre National de la Recherche Scientifique (CNRS)UMR 3666Paris75248France
| | - Christophe Lamaze
- Institut Curie ‐ Centre de RecherchePSL Research UniversityMembrane Mechanics and Dynamics of Intracellular Signaling LaboratoryParis75248France
- Institut National de la Santé et de la Recherche Médicale (INSERM)ParisU1143France
- Centre National de la Recherche Scientifique (CNRS)UMR 3666Paris75248France
| | - Maier Lorizate
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Francesc‐Xabier Contreras
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48011Spain
| |
Collapse
|
19
|
Sotolongo Bellón J, Birkholz O, Richter CP, Eull F, Kenneweg H, Wilmes S, Rothbauer U, You C, Walter MR, Kurre R, Piehler J. Four-color single-molecule imaging with engineered tags resolves the molecular architecture of signaling complexes in the plasma membrane. CELL REPORTS METHODS 2022; 2:100165. [PMID: 35474965 PMCID: PMC9017138 DOI: 10.1016/j.crmeth.2022.100165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/19/2021] [Accepted: 01/13/2022] [Indexed: 12/22/2022]
Abstract
Localization and tracking of individual receptors by single-molecule imaging opens unique possibilities to unravel the assembly and dynamics of signaling complexes in the plasma membrane. We present a comprehensive workflow for imaging and analyzing receptor diffusion and interaction in live cells at single molecule level with up to four colors. Two engineered, monomeric GFP variants, which are orthogonally recognized by anti-GFP nanobodies, are employed for efficient and selective labeling of target proteins in the plasma membrane with photostable fluorescence dyes. This labeling technique enables us to quantitatively resolve the stoichiometry and dynamics of the interferon-γ (IFNγ) receptor signaling complex in the plasma membrane of living cells by multicolor single-molecule imaging. Based on versatile spatial and spatiotemporal correlation analyses, we identify ligand-induced receptor homo- and heterodimerization. Multicolor single-molecule co-tracking and quantitative single-molecule Förster resonance energy transfer moreover reveals transient assembly of IFNγ receptor heterotetramers and confirms its structural architecture.
Collapse
Affiliation(s)
- Junel Sotolongo Bellón
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Oliver Birkholz
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Christian P. Richter
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Florian Eull
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Hella Kenneweg
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Stephan Wilmes
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
- Division of Cell Signalling and Immunology, University of Dundee, School of Life Sciences, Dundee, UK
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard-Karls-University, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Changjiang You
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Mark R. Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rainer Kurre
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
20
|
Wiede LL, Drover S. Western Blot Analysis of Lapatinib-Mediated Inhibition of the Epidermal Growth Factor Receptor 2 (HER2) Pathway in Breast Cancer Cells. Methods Mol Biol 2022; 2508:183-195. [PMID: 35737241 DOI: 10.1007/978-1-0716-2376-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Western blotting is an excellent technique to investigate aberrations and/or therapy-induced changes in signaling proteins in cancer. Using an in vitro system, we prepared whole cell lysates from HER2-overexpressing breast cancer cell lines, treated or not with the tyrosine kinase inhibitor, lapatinib, in the presence and absence of IFN-γ. Here we describe the protocol whereby proteins in the lysates were separated by SDS-PAGE, electrophoretically transferred to nitrocellulose membranes followed by an enzyme-linked immunoassay and chemiluminescence to reveal the relevant phosphorylated and dephosphorylated proteins. Herein, Western blot analysis confirmed lapatinib dephosphorylated HER2 and downstream signaling proteins and IFN-γ induced phosphorylation of STAT1.
Collapse
Affiliation(s)
- Louisa L Wiede
- Immunology and Infectious Diseases Group, Division of BioMedical Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada
| | - Sheila Drover
- Immunology and Infectious Diseases Group, Division of BioMedical Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada.
| |
Collapse
|
21
|
Sauerer T, Lischer C, Weich A, Berking C, Vera J, Dörrie J. Single-Molecule RNA Sequencing Reveals IFNγ-Induced Differential Expression of Immune Escape Genes in Merkel Cell Polyomavirus-Positive MCC Cell Lines. Front Microbiol 2021; 12:785662. [PMID: 35003017 PMCID: PMC8727593 DOI: 10.3389/fmicb.2021.785662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and highly aggressive cancer, which is mainly caused by genomic integration of the Merkel cell polyomavirus and subsequent expression of a truncated form of its large T antigen. The resulting primary tumor is known to be immunogenic and under constant pressure to escape immune surveillance. Because interferon gamma (IFNγ), a key player of immune response, is secreted by many immune effector cells and has been shown to exert both anti-tumoral and pro-tumoral effects, we studied the transcriptomic response of MCC cells to IFNγ. In particular, immune modulatory effects that may help the tumor evade immune surveillance were of high interest to our investigation. The effect of IFNγ treatment on the transcriptomic program of three MCC cell lines (WaGa, MKL-1, and MKL-2) was analyzed using single-molecule sequencing via the Oxford Nanopore platform. A significant differential expression of several genes was detected across all three cell lines. Subsequent pathway analysis and manual annotation showed a clear upregulation of genes involved in the immune escape of tumor due to IFNγ treatment. The analysis of selected genes on protein level underlined our sequencing results. These findings contribute to a better understanding of immune escape of MCC and may help in clinical treatment of MCC patients. Furthermore, we demonstrate that single-molecule sequencing can be used to assess characteristics of large eukaryotic transcriptomes and thus contribute to a broader access to sequencing data in the community due to its low cost of entry.
Collapse
Affiliation(s)
- Tatjana Sauerer
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christopher Lischer
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Adrian Weich
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Carola Berking
- Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Julio Vera
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Jan Dörrie
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
22
|
Interferon-γ induces interleukin-6 production by neutrophils via the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. BMC Res Notes 2021; 14:447. [PMID: 34895310 PMCID: PMC8666078 DOI: 10.1186/s13104-021-05860-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Interferon-gamma (IFN-γ) is overexpressed in rheumatoid synovium and thought to be involved in the pathogenesis of rheumatoid arthritis (RA). In this study, we examined our hypothesis that IFN-γ activates innate immune cells and upregulates inflammatory cytokines. Peripheral blood neutrophils were stimulated with IFN-γ in the presence or absence of Janus kinase (JAK) inhibitors. Interleukin-6 (IL-6) mRNA and protein expression were analyzed using real-time polymerase chain reaction (PCR) method and enzyme-linked immunosorbent assay. Protein phosphorylation of JAKs or STAT1 was assessed by Western blot using phospho-specific antibodies. Results IFN-γ stimulation induces IL-6 expression in protein and mRNA levels in human neutrophils. Furthermore, IFN-γ stimulation induces JAK1/JAK2 phosphorylation and downstream signal transducer and activator of transcription (STAT) 1 phosphorylation in human neutrophils. Although all JAKi, blocked IFN-γ-induced JAK1.2/STAT1 phosphorylation at higher concentrations (100 nM), baricitinib most efficiently inhibited IFN-γ-induced JAK1.2/STAT1 phosphorylation at lower concentrations (≤ 25 nM). Among these JAKi, baricitinib was the most potent regulator for IFN-γ-induced IL-6 production in human neutrophils. Our data indicate that IFN-γ upregulates IL-6 production via the JAK1/2-STAT1 pathway in human innate immune cells. Furthermore, this IFN-γ-mediated IL-6 induction via JAK/STAT was downregulated by JAKi. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05860-w.
Collapse
|
23
|
Schroeder JH, Roberts LB, Meissl K, Lo JW, Hromadová D, Hayes K, Zabinski T, Read E, Moreira Heliodoro C, Reis R, Howard JK, Grencis RK, Neves JF, Strobl B, Lord GM. Sustained Post-Developmental T-Bet Expression Is Critical for the Maintenance of Type One Innate Lymphoid Cells In Vivo. Front Immunol 2021; 12:760198. [PMID: 34795671 PMCID: PMC8594445 DOI: 10.3389/fimmu.2021.760198] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILC) play a significant role in the intestinal immune response and T-bet+ CD127+ group 1 cells (ILC1) have been linked to the pathogenesis of human inflammatory bowel disease (IBD). However, the functional importance of ILC1 in the context of an intact adaptive immune response has been controversial. In this report we demonstrate that induced depletion of T-bet using a Rosa26-Cre-ERT2 model resulted in the loss of intestinal ILC1, pointing to a post-developmental requirement of T-bet expression for these cells. In contrast, neither colonic lamina propria (cLP) ILC2 nor cLP ILC3 abundance were altered upon induced deletion of T-bet. Mechanistically, we report that STAT1 or STAT4 are not required for intestinal ILC1 development and maintenance. Mice with induced deletion of T-bet and subsequent loss of ILC1 were protected from the induction of severe colitis in vivo. Hence, this study provides support for the clinical development of an IBD treatment based on ILC1 depletion via targeting T-bet or its downstream transcriptional targets.
Collapse
Affiliation(s)
- Jan-Hendrik Schroeder
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Luke B. Roberts
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Katrin Meissl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jonathan W. Lo
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dominika Hromadová
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kelly Hayes
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Tomasz Zabinski
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Emily Read
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Wellcome Trust Cell Therapies and Regenerative Medicine PhD Programme, London, United Kingdom
| | | | - Rita Reis
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Jane K. Howard
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College, London, United Kingdom
| | - Richard K. Grencis
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Joana F. Neves
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Graham M. Lord
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
24
|
Abstract
Cerebral toxoplasmosis and cerebral malaria are two important neurological diseases caused by protozoan parasites. In this review, we discuss recent findings regarding the innate immune responses of microglia and astrocytes to Toxoplasma and Plasmodium infection. In both infections, these tissue-resident glial cells perform a sentinel function mediated by alarmin crosstalk that licenses adaptive type 1 immunity in the central nervous system. Divergent protective or pathogenic effects of type 1 activation of these astrocytes and microglia are revealed depending on the inherent lytic potential of the protozoan parasite.
Collapse
Affiliation(s)
- Azadeh Nasuhidehnavi
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - George S Yap
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
25
|
Ryu DB, Lim JY, Kim TW, Shin S, Lee SE, Park G, Min CK. Preclinical evaluation of JAK1/2 inhibition by ruxolitinib in a murine model of chronic graft-versus-host disease. Exp Hematol 2021; 98:36-46.e2. [PMID: 33811972 DOI: 10.1016/j.exphem.2021.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/09/2021] [Accepted: 03/28/2021] [Indexed: 12/21/2022]
Abstract
The objective of this study was to examine the therapeutic effect of ruxolitinib, an orally administered selective Janus kinase (JAK) 1/2 inhibitor, on chronic graft-versus-host disease (cGVHD) using a murine model of sclerodermatous GVHD (scl-GVHD). Compared with scl-GVHD controls, ruxolitinib-treated recipients had scl-GVHD of significantly attenuated clinical and pathological severity in the skin and decreased frequencies of effector cells, CD4+ T cells, and CD11b+ macrophage/monocytes. Regulatory CD4+ Foxp3+ T cells were expanded whereas interferon-γ (IFN-γ)-producing CD4+ T cells were significantly decreased in ruxolitinib-treated recipients. Ruxolitinib suppressed not only the production of IFN-γ from CD4+ T cells and monocyte chemoattractant protein 1 (MCP-1) from CD11b+ macrophage/monocytes, but also the proliferation of these cells in vitro. Levels of both cytokines (IFN-γ and MCP-1) were also reduced in the spleen and skin of ruxolitinib-treated recipients in vivo. IFN-γ-induced MCP-1 production and migration of RAW 264.7 cells, a macrophage cell line, were inhibited by ruxolitinib. However, supplementation with MCP-1 restored this effect of ruxolitinib. In addition, blocking JAK-STAT signaling using ruxolitinib reduced the activation of STAT1 in stimulated immune effector cells. Taken together, these results suggest that ruxolitinib can prevent scl-GVHD by suppressing IFN-γ produced by T cells and MCP-1 expression in macrophage/monocytes via inhibition of JAK-STAT signaling.
Collapse
Affiliation(s)
- Da-Bin Ryu
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Ji-Young Lim
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Tae-Woo Kim
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Seoho Shin
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Sung-Eun Lee
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Gyeongsin Park
- Department of Pathology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Chang-Ki Min
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
26
|
The M1/M2 spectrum and plasticity of malignant pleural effusion-macrophage in advanced lung cancer. Cancer Immunol Immunother 2020; 70:1435-1450. [PMID: 33175182 PMCID: PMC8053174 DOI: 10.1007/s00262-020-02781-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Malignant pleural effusion (MPE)-macrophage (Mφ) of lung cancer patients within unique M1/M2 spectrum showed plasticity in M1-M2 transition. The M1/M2 features of MPE-Mφ and their significance to patient outcomes need to be clarified; furthermore, whether M1-repolarization could benefit treatment remains unclear. METHODS Total 147 stage-IV lung adenocarcinoma patients undergoing MPE drainage were enrolled for profiling and validation of their M1/M2 spectrum. In addition, the MPE-Mφ signature on overall patient survival was analyzed. The impact of the M1-polarization strategy of patient-derived MPE-Mφ on anti-cancer activity was examined. RESULTS We found that MPE-Mφ expressed both traditional M1 (HLA-DRA) and M2 (CD163) markers and showed a wide range of M1/M2 spectrum. Most of the MPE-Mφ displayed diverse PD-L1 expression patterns, while the low PD-L1 expression group was correlated with higher levels of IL-10. Among these markers, we identified a novel two-gene MPE-Mφ signature, IL-1β and TGF-β1, representing the M1/M2 tendency, which showed a strong predictive power in patient outcomes in our MPE-Mφ patient cohort (N = 60, p = 0.013) and The Cancer Genome Atlas Lung Adenocarcinoma dataset (N = 478, p < 0.0001). Significantly, β-glucan worked synergistically with IFN-γ to reverse the risk signature by repolarizing the MPE-Mφ toward the M1 pattern, enhancing anti-cancer activity. CONCLUSIONS We identified MPE-Mφ on the M1/M2 spectrum and plasticity and described a two-gene M1/M2 signature that could predict the outcome of late-stage lung cancer patients. In addition, we found that "re-education" of these MPE-Mφ toward anti-cancer M1 macrophages using clinically applicable strategies may overcome tumor immune escape and benefit anti-cancer therapies.
Collapse
|
27
|
COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat Biotechnol 2020; 38:970-979. [DOI: 10.1038/s41587-020-0602-4] [Citation(s) in RCA: 616] [Impact Index Per Article: 123.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
|
28
|
Li L, Chen SN, Laghari ZA, Huang B, Huo HJ, Li N, Nie P. Receptor complex and signalling pathway of the two type II IFNs, IFN-γ and IFN-γrel in mandarin fish or the so-called Chinese perch Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 97:98-112. [PMID: 30922782 DOI: 10.1016/j.dci.2019.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
IFN-γ, as the sole member of mammalian type II IFN, is a multifunctional cytokine which exerts its effects through two distinct IFN-γ receptors, IFNGR1 and IFNGR2. However, in teleost fish, another IFN-γ homologous gene, namely IFN-γ related gene (IFN-γrel), has been identified. Although IFN-γ and IFN-γrel genes have been described in some fish species, many important aspects remain poorly understood in relation with their signalling and function. In the present study, IFN-γ and IFN-γrel, as well as their receptors, cytokine receptor family B (CRFB) 17, CRFB13, two of which are homologous to IFNGR1 in mammals, and CRFB6, homolomous to IFNGR2, have been characterized in mandarin fish, Siniperca chuatsi. It was revealed that the two type IFN members exhibit antiviral activity, and IFN-γ transduces downstream signalling through CRFB13 and CRFB6, while IFN-γrel interacts with CRFB17 to activate downstream signalling. Moreover, IFN-γ and IFN-γrel have been shown to exert antiviral biological activity in a STAT1-dependent manner. Intracellular domain analysis of CRFB17 and CRFB13 demonstrated that the Y386 tyrosine residue of CRFB13 is required for the activation of the IFN-γ-mediated biologic response, and the Y324 and Y370 residues in CRFB17 are required to activate IFN-γrel signalling.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Zubair Ahmed Laghari
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Bei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Hui Jun Huo
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - P Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
29
|
Chevillard C, Nunes JPS, Frade AF, Almeida RR, Pandey RP, Nascimento MS, Kalil J, Cunha-Neto E. Disease Tolerance and Pathogen Resistance Genes May Underlie Trypanosoma cruzi Persistence and Differential Progression to Chagas Disease Cardiomyopathy. Front Immunol 2018; 9:2791. [PMID: 30559742 PMCID: PMC6286977 DOI: 10.3389/fimmu.2018.02791] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023] Open
Abstract
Chagas disease is caused by infection with the protozoan Trypanosoma cruzi and affects over 8 million people worldwide. In spite of a powerful innate and adaptive immune response in acute infection, the parasite evades eradication, leading to a chronic persistent infection with low parasitism. Chronically infected subjects display differential patterns of disease progression. While 30% develop chronic Chagas disease cardiomyopathy (CCC)-a severe inflammatory dilated cardiomyopathy-decades after infection, 60% of the patients remain disease-free, in the asymptomatic/indeterminate (ASY) form, and 10% develop gastrointestinal disease. Infection of genetically deficient mice provided a map of genes relevant for resistance to T. cruzi infection, leading to the identification of multiple genes linked to survival to infection. These include pathogen resistance genes (PRG) needed for intracellular parasite destruction, and genes involved in disease tolerance (protection against tissue damage and acute phase death-DTG). All identified DTGs were found to directly or indirectly inhibit IFN-γ production or Th1 differentiation. We hypothesize that the absolute need for DTG to control potentially lethal IFN-γ PRG activity leads to T. cruzi persistence and establishment of chronic infection. IFN-γ production is higher in CCC than ASY patients, and is the most highly expressed cytokine in CCC hearts. Key DTGs that downmodulate IFN-γ, like IL-10, and Ebi3/IL27p28, are higher in ASY patients. Polymorphisms in PRG and DTG are associated with differential disease progression. We thus hypothesize that ASY patients are disease tolerant, while an imbalance of DTG and IFN-γ PRG activity leads to the inflammatory heart damage of CCC.
Collapse
Affiliation(s)
| | - João Paulo Silva Nunes
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Amanda Farage Frade
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
- Department of Bioengineering, Brazil University, São Paulo, Brazil
| | - Rafael Ribeiro Almeida
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Ramendra Pati Pandey
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Marilda Savóia Nascimento
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Jorge Kalil
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| |
Collapse
|
30
|
Nairz M, Dichtl S, Schroll A, Haschka D, Tymoszuk P, Theurl I, Weiss G. Iron and innate antimicrobial immunity-Depriving the pathogen, defending the host. J Trace Elem Med Biol 2018; 48:118-133. [PMID: 29773170 DOI: 10.1016/j.jtemb.2018.03.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/25/2018] [Accepted: 03/06/2018] [Indexed: 02/08/2023]
Abstract
The acute-phase response is triggered by the presence of infectious agents and danger signals which indicate hazards for the integrity of the mammalian body. One central feature of this response is the sequestration of iron into storage compartments including macrophages. This limits the availability of this essential nutrient for circulating pathogens, a host defence strategy known as 'nutritional immunity'. Iron metabolism and the immune response are intimately linked. In infections, the availability of iron affects both the efficacy of antimicrobial immune pathways and pathogen proliferation. However, host strategies to withhold iron from microbes vary according to the localization of pathogens: Infections with extracellular bacteria such as Staphylococcus aureus, Streptococcus, Klebsiella or Yersinia stimulate the expression of the iron-regulatory hormone hepcidin which targets the cellular iron-exporter ferroportin-1 causing its internalization and blockade of iron egress from absorptive enterocytes in the duodenum and iron-recycling macrophages. This mechanism disrupts both routes of iron delivery to the circulation, contributes to iron sequestration in the mononuclear phagocyte system and mediates the hypoferraemia of the acute phase response subsequently resulting in the development of anaemia of inflammation. When intracellular microbes are present, other strategies of microbial iron withdrawal are needed. For instance, in macrophages harbouring intracellular pathogens such as Chlamydia, Mycobacterium tuberculosis, Listeria monocytogenes or Salmonella Typhimurium, ferroportin-1-mediated iron export is turned on for the removal of iron from infected cells. This also leads to reduced iron availability for intra-macrophage pathogens which inhibits their growth and in parallel strengthens anti-microbial effector pathways of macrophages including the formation of inducible nitric oxide synthase and tumour necrosis factor. Iron plays a key role in infectious diseases both as modulator of the innate immune response and as nutrient for microbes. We need to gain a more comprehensive understanding of how the body can differentially respond to infection by extra- or intracellular pathogens. This knowledge may allow us to modulate mammalian iron homeostasis pharmaceutically and to target iron-acquisition systems of pathogens, thus enabling us to treat infections with novel strategies that act independent of established antimicrobials.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria.
| | - Stefanie Dichtl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Andrea Schroll
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - David Haschka
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| |
Collapse
|
31
|
Kulling PM, Olson KC, Hamele CE, Toro MF, Tan SF, Feith DJ, Loughran TP. Dysregulation of the IFN-γ-STAT1 signaling pathway in a cell line model of large granular lymphocyte leukemia. PLoS One 2018; 13:e0193429. [PMID: 29474442 PMCID: PMC5825082 DOI: 10.1371/journal.pone.0193429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/09/2018] [Indexed: 02/04/2023] Open
Abstract
T cell large granular lymphocyte leukemia (T-LGLL) is a rare incurable disease that is characterized by defective apoptosis of cytotoxic CD8+ T cells. Chronic activation of the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a hallmark of T-LGLL. One manifestation is the constitutive phosphorylation of tyrosine 701 of STAT1 (p-STAT1). T-LGLL patients also exhibit elevated serum levels of the STAT1 activator, interferon-γ (IFN-γ), thus contributing to an inflammatory environment. In normal cells, IFN-γ production is tightly controlled through induction of IFN-γ negative regulators. However, in T-LGLL, IFN-γ signaling lacks this negative feedback mechanism as evidenced by excessive IFN-γ production and decreased levels of suppressors of cytokine signaling 1 (SOCS1), a negative regulator of IFN-γ. Here we characterize the IFN-γ-STAT1 pathway in TL-1 cells, a cell line model of T-LGLL. TL-1 cells exhibited lower IFN-γ receptor protein and mRNA expression compared to an IFN-γ responsive cell line. Furthermore, IFN-γ treatment did not induce JAK2 or STAT1 activation or transcription of IFN-γ-inducible gene targets. However, IFN-β induced p-STAT1 and subsequent STAT1 gene transcription, demonstrating a specific IFN-γ signaling defect in TL-1 cells. We utilized siRNA targeting of STAT1, STAT3, and STAT5b to probe their role in IL-2-mediated IFN-γ regulation. These studies identified STAT5b as a positive regulator of IFN-γ production. We also characterized the relationship between STAT1, STAT3, and STAT5b proteins. Surprisingly, p-STAT1 was positively correlated with STAT3 levels while STAT5b suppressed the activation of both STAT1 and STAT3. Taken together, these results suggest that the dysregulation of the IFN-γ-STAT1 signaling pathway in TL-1 cells likely results from low levels of the IFN-γ receptor. The resulting inability to induce negative feedback regulators explains the observed elevated IL-2 driven IFN-γ production. Future work will elucidate the best way to target this pathway, with the ultimate goal to find a better therapeutic for T-LGLL.
Collapse
Affiliation(s)
- Paige M. Kulling
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
- Department of Pathology, University of Virginia; Charlottesville, VA United States of America
| | - Kristine C. Olson
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
| | - Cait E. Hamele
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
| | - Mariella F. Toro
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
| | - Su-Fern Tan
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
| | - David J. Feith
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
| | - Thomas P. Loughran
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
- * E-mail:
| |
Collapse
|
32
|
Castiglioni S, Miranda V, Cazzaniga A, Campanella M, Nichelatti M, Andena M, Maier JAM. Femtograms of Interferon-γ Suffice to Modulate the Behavior of Jurkat Cells: A New Light in Immunomodulation. Int J Mol Sci 2017; 18:ijms18122715. [PMID: 29244717 PMCID: PMC5751316 DOI: 10.3390/ijms18122715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 01/29/2023] Open
Abstract
Since interferon-γ (IFN-γ) tunes both innate and adaptive immune systems, it was expected to enter clinical practice as an immunomodulatory drug. However, the use of IFN-γ has been limited by its dose-dependent side effects. Low-dose medicine, which is emerging as a novel strategy to treat diseases, might circumvent this restriction. Several clinical studies have proved the efficacy of therapies with a low dose of cytokines subjected to kinetic activation, while no in vitro data are available. To fill this gap, we investigated whether low concentrations, in the femtogram range, of kinetically activated IFN-γ modulate the behavior of Jurkat cells, a widely used experimental model that has importantly contributed to the present knowledge about T cell signaling. In parallel, IFN-γ in the nanogram range was used and shown to activate Signal transducer and activator of transcription (STAT)-1 and then to induce suppressor of cytokine signaling-1 (SOCS-1), which inhibits downstream signaling. When added together, femtograms of IFN-γ interfere with the transduction cascade activated by nanograms of IFN-γ by prolonging the activation of STAT-1 through the downregulation of SOCS-1. We conclude that femtograms of IFN-γ exert an immunomodulatory action in Jurkat cells.
Collapse
Affiliation(s)
- Sara Castiglioni
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, I-20157 Milan, Italy.
| | - Vincenzo Miranda
- Clinical Research Unit, GUNA S.p.a., Via Palmanova, 71, 20132 Milan, Italy.
| | - Alessandra Cazzaniga
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, I-20157 Milan, Italy.
| | | | - Michele Nichelatti
- Service of Biostatistics Hematology Department Niguarda Ca' Granda Hospital, 20162 Milan, Italy.
| | - Marco Andena
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, I-20157 Milan, Italy.
| | - Jeanette A M Maier
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, I-20157 Milan, Italy.
| |
Collapse
|
33
|
Looking for Pyroptosis-Modulating miRNAs as a Therapeutic Target for Improving Myocardium Survival. Mediators Inflamm 2015; 2015:254871. [PMID: 26491223 PMCID: PMC4600493 DOI: 10.1155/2015/254871] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/15/2015] [Indexed: 11/17/2022] Open
Abstract
Pyroptosis is the most recently identified type of regulated cell death with inflammatory response and has characteristics distinct from those of apoptosis or necrosis. Recently, independent studies have reported that small noncoding RNAs termed microRNAs (miRNAs) are involved in the regulation of pyroptosis. Nevertheless, only a handful of empirical data regarding miRNA-dependent regulation of pyroptosis is currently available. This review is aimed to provide a current update on the role of miRNAs in pyroptosis and to offer suggestions for future studies probing miRNAs as a linker connecting pyroptosis to various cardiovascular diseases (CVDs) and their potential as a therapeutic target for preventing excessive cell death of myocardium during CVDs.
Collapse
|
34
|
Hansen MF, Greibe E, Skovbjerg S, Rohde S, Kristensen ACM, Jensen TR, Stentoft C, Kjær KH, Kronborg CS, Martensen PM. Folic acid mediates activation of the pro-oncogene STAT3 via the Folate Receptor alpha. Cell Signal 2015; 27:1356-68. [PMID: 25841994 DOI: 10.1016/j.cellsig.2015.03.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/14/2015] [Accepted: 03/29/2015] [Indexed: 01/01/2023]
Abstract
The signal transducer and activator of transcription 3 (STAT3) is a well-described pro-oncogene found constitutively activated in several cancer types. Folates are B vitamins that, when taken up by cells through the Reduced Folate Carrier (RFC), are essential for normal cell growth and replication. Many cancer cells overexpress a glycophosphatidylinositol (GPI)-anchored Folate Receptor α (FRα). The function of FRα in cancer cells is still poorly described, and it has been suggested that transport of folate is not its primary function in these cells. We show here that folic acid and folinic acid can activate STAT3 through FRα in a Janus Kinase (JAK)-dependent manner, and we demonstrate that gp130 functions as a transducing receptor for this signalling. Moreover, folic acid can promote dose dependent cell proliferation in FRα-positive HeLa cells, but not in FRα-negative HEK293 cells. After folic acid treatment of HeLa cells, up-regulation of the STAT3 responsive genes Cyclin A2 and Vascular Endothelial Growth Factor (VEGF) were verified by qRT-PCR. The identification of this FRα-STAT3 signal transduction pathway activated by folic and folinic acid contributes to the understanding of the involvement of folic acid in preventing neural tube defects as well as in tumour growth. Previously, the role of folates in these diseases has been attributed to their roles as one-carbon unit donors following endocytosis into the cell. Our finding that folic acid can activate STAT3 via FRα adds complexity to the established roles of B9 vitamins in cancer and neural tube defects.
Collapse
Affiliation(s)
- Mariann F Hansen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Eva Greibe
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Signe Skovbjerg
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Sarah Rohde
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Anders C M Kristensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Trine R Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Charlotte Stentoft
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Karina H Kjær
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Camilla S Kronborg
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Pia M Martensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
35
|
Chapat C, Corbo L. Novel roles of the CCR4-NOT complex. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:883-901. [PMID: 25044499 DOI: 10.1002/wrna.1254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 12/21/2022]
Abstract
The CCR4-NOT complex is a multi-subunit protein complex evolutionarily conserved across eukaryotes which regulates several aspects of gene expression. A fascinating model is emerging in which this complex acts as a regulation platform, controlling gene products 'from birth to death' through the coordination of different cellular machineries involved in diverse cellular functions. Recently the CCR4-NOT functions have been extended to the control of the innate immune response through the regulation of interferon signaling. Thus, a more comprehensive picture of how CCR4-NOT allows the rapid adaptation of cells to external stress, from transcription to mRNA and protein decay, is presented and discussed here. Overall, CCR4-NOT permits the efficient and rapid adaptation of cellular gene expression in response to changes in environmental conditions and stimuli.
Collapse
Affiliation(s)
- Clément Chapat
- Université Lyon 1, Lyon, France; CNRS UMR 5286, Lyon, France; Inserm U1052, Lyon, France; Cancer Research Center of Lyon, Centre Léon Bérard, Lyon, France
| | | |
Collapse
|
36
|
Krause CD, Izotova LS, Pestka S. Analytical use of multi-protein Fluorescence Resonance Energy Transfer to demonstrate membrane-facilitated interactions within cytokine receptor complexes. Cytokine 2013; 64:298-309. [PMID: 23769803 PMCID: PMC3770794 DOI: 10.1016/j.cyto.2013.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 12/17/2022]
Abstract
Experiments measuring Fluorescence Resonance Energy Transfer (FRET) between cytokine receptor chains and their associated proteins led to hypotheses describing their organization in intact cells. These interactions occur within a larger protein complex or within a given nano-environment. To illustrate this complexity empirically, we developed a protocol to analyze FRET among more than two fluorescent proteins (multi-FRET). In multi-FRET, we model FRET among more than two fluorophores as the sum of all possible pairwise interactions within the complex. We validated our assumption by demonstrating that FRET among pairs within a fluorescent triplet resembled FRET between each pair measured in the absence of the third fluorophore. FRET between two receptor chains increases with increasing FRET between the ligand-binding chain (e.g., IFN-γR1, IL-10R1 and IFN-λR1) and an acylated fluorescent protein that preferentially resides within subsections of the plasma membrane. The interaction of IL-10R2 with IFN-λR1 or IL-10R1 results in decreased FRET between IL-10R2 and the acylated fluorescent protein. Finally, we analyzed FRET among four fluorescent proteins to demonstrate that as FRET between IFN-γR1 and IFN-γR2 or between IFN-αR1 and IFN-αR2c increases, FRET among other pairs of proteins changes within each complex.
Collapse
Affiliation(s)
- Christopher D Krause
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School - The University of Medicine and Dentistry of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08855, USA.
| | | | | |
Collapse
|
37
|
Shankar R, Johnson MP, Williamson NA, Cullinane F, Purcell AW, Moses EK, Brennecke SP. Molecular markers of preterm labor in the choriodecidua. Reprod Sci 2009; 17:297-310. [PMID: 20009011 DOI: 10.1177/1933719109353454] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Because relevant biochemical changes are known to begin at the choriodecidual interface some weeks before actual clinical onset of labor, we hypothesized that the preterm choriodecidua may display gene and protein expression patterns specific to preterm labor. Transcriptomic (microarray) and proteomic (2-dimensional gel electrophoresis [2DGE]) profiling methodologies were used to compare changes in choriodecidual tissue collected from women who delivered before 35 weeks of gestation following spontaneous preterm labor (n = 12) and gestation-matched nonlaboring controls (n = 7). Additionally, 2DGE was used to compare differences in protein expression during term and preterm labor and to construct a choriodecidual proteome map. Overall, expressed transcripts and proteins indicated active tissue remodeling independent of labor status and an association with inflammatory processes during labor. Spontaneous, infection-induced and abruption-associated preterm deliveries were each defined by distinct transcriptional profiles. Proteins osteoglycin and progesterone receptor component 2 (PGRMC2) were upregulated during term and preterm labor while galectin 1, annexin 3, annexin 5, and protein disulfide isomerase (PDI) were upregulated only during preterm labor, suggesting a probable association with the underlying pathology. Together, these results represent novel data that warrant further investigations to elucidate plausible causal relationships of these molecules with spontaneous preterm delivery.
Collapse
Affiliation(s)
- Renu Shankar
- Department of Obstetrics & Gynaecology, The University of Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Interferons (IFNs) were discovered 50 years ago independently by Isaacs and Lindemann and by Nagata and Kojima. When it was later realized that IFNs are active at very low concentrations, research began to determine how their powerful effects were generated from such a small initial signal. It has since been established that interferons, as well as all other cytokines, employ cell surface receptors to translate their presence in the serum to a potent cellular response to a viral infection. These receptor complexes are composed of multiple distinct glycosylated transmembrane polypeptides, a number of protein tyrosine kinases, and interact transiently with a large variety of other proteins including transcription factors, phosphatases, signaling repressors, and adaptor proteins coupling the receptor to alternative signaling pathways. Three major receptor complexes exist that are exclusive to each of three major classes of interferon. Even though the effects of each major class of interferon vary physiologically, each receptor complex interacts with its ligand in similar ways and activates similar signaling cascades. In this mini-review, we take a historical perspective at the major events in the characterization of interferon receptors, discussing interesting results that still need to be explained.
Collapse
Affiliation(s)
- Christopher D Krause
- Department of Molecular Genetics, Microbiology, and Immunology, Robert Wood Johnson Medical School - The University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|