1
|
Diener C, Holscher HD, Filek K, Corbin KD, Moissl-Eichinger C, Gibbons SM. Metagenomic estimation of dietary intake from human stool. Nat Metab 2025; 7:617-630. [PMID: 39966520 PMCID: PMC11949708 DOI: 10.1038/s42255-025-01220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025]
Abstract
Dietary intake is tightly coupled to gut microbiota composition, human metabolism and the incidence of virtually all major chronic diseases. Dietary and nutrient intake are usually assessed using self-reporting methods, including dietary questionnaires and food records, which suffer from reporting biases and require strong compliance from study participants. Here, we present Metagenomic Estimation of Dietary Intake (MEDI): a method for quantifying food-derived DNA in human faecal metagenomes. We show that DNA-containing food components can be reliably detected in stool-derived metagenomic data, even when present at low abundances (more than ten reads). We show how MEDI dietary intake profiles can be converted into detailed metabolic representations of nutrient intake. MEDI identifies the onset of solid food consumption in infants, shows significant agreement with food frequency questionnaire responses in an adult population and shows agreement with food and nutrient intake in two controlled-feeding studies. Finally, we identify specific dietary features associated with metabolic syndrome in a large clinical cohort without dietary records, providing a proof-of-concept for detailed tracking of individual-specific, health-relevant dietary patterns without the need for questionnaires.
Collapse
Affiliation(s)
- Christian Diener
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria.
- Institute for Systems Biology, Seattle, WA, USA.
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Klara Filek
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Karen D Corbin
- AdventHealth Translational Research Institute, Orlando, FL, USA
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- eScience Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
de Calbiac H, Imbard A, de Lonlay P. Cellular mechanisms of acute rhabdomyolysis in inherited metabolic diseases. J Inherit Metab Dis 2025; 48:e12781. [PMID: 39135340 DOI: 10.1002/jimd.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 12/28/2024]
Abstract
Acute rhabdomyolysis (RM) constitutes a life-threatening emergency resulting from the (acute) breakdown of skeletal myofibers, characterized by a plasma creatine kinase (CK) level exceeding 1000 IU/L in response to a precipitating factor. Genetic predisposition, particularly inherited metabolic diseases, often underlie RM, contributing to recurrent episodes. Both sporadic and congenital forms of RM share common triggers. Considering the skeletal muscle's urgent need to rapidly adjust to environmental cues, sustaining sufficient energy levels and functional autophagy and mitophagy processes are vital for its preservation and response to stressors. Crucially, the composition of membrane lipids, along with lipid and calcium transport, and the availability of adenosine triphosphate (ATP), influence membrane biophysical properties, membrane curvature in skeletal muscle, calcium channel signaling regulation, and determine the characteristics of autophagic organelles. Consequently, a genetic defect involving ATP depletion, aberrant calcium release, abnormal lipid metabolism and/or lipid or calcium transport, and/or impaired anterograde trafficking may disrupt autophagy resulting in RM. The complex composition of lipid membranes also alters Toll-like receptor signaling and viral replication. In response, infections, recognized triggers of RM, stimulate increased levels of inflammatory cytokines, affecting skeletal muscle integrity, energy metabolism, and cellular trafficking, while elevated temperatures can reduce the activity of thermolabile enzymes. Overall, several mechanisms can account for RMs and may be associated in the same disease-causing RM.
Collapse
Affiliation(s)
- Hortense de Calbiac
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
| | - Apolline Imbard
- Service de Biochimie, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Faculté de pharmacie, LYPSIS, Université Paris Saclay, Orsay, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| | - Pascale de Lonlay
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| |
Collapse
|
3
|
Diener C, Gibbons SM. Metagenomic estimation of dietary intake from human stool. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578701. [PMID: 38370672 PMCID: PMC10871216 DOI: 10.1101/2024.02.02.578701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Dietary intake is tightly coupled to gut microbiota composition, human metabolism, and to the incidence of virtually all major chronic diseases. Dietary and nutrient intake are usually quantified using dietary questionnaires, which tend to focus on broad food categories, suffer from self-reporting biases, and require strong compliance from study participants. Here, we present MEDI (Metagenomic Estimation of Dietary Intake): a method for quantifying dietary intake using food-derived DNA in stool metagenomes. We show that food items can be accurately detected in metagenomic shotgun sequencing data, even when present at low abundances (>10 reads). Furthermore, we show how dietary intake, in terms of DNA abundance from specific organisms, can be converted into a detailed metabolic representation of nutrient intake. MEDI could identify the onset of solid food consumption in infants and it accurately predicted food questionnaire responses in an adult population. Additionally, we were able to identify specific dietary features associated with metabolic syndrome in a large clinical cohort, providing a proof-of-concept for detailed quantification of individual-specific dietary patterns without the need for questionnaires.
Collapse
Affiliation(s)
- Christian Diener
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- Institute for Systems Biology, Seattle, WA, USA
| | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- eScience Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Zou X, Su H, Zhang F, Zhang H, Yeerbolati Y, Xu X, Chao Z, Zheng L, Jiang B. Bioimprinted lipase-catalyzed synthesis of medium- and long-chain structured lipids rich in docosahexaenoic acid for infant formula. Food Chem 2023; 424:136450. [PMID: 37247604 DOI: 10.1016/j.foodchem.2023.136450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
Medium- and long-chain structured lipids (MLSLs) rich in docosahexaenoic acid (DHA) were obtained in shorter reaction time by acidolysis of single-cell oil (DHASCO) from Schizochytrium sp. with caprylic acid (CA) using a lipase bioimprinted with fatty acids as a catalyst. The conditions for preparation of the bioimprinted lipase for the acidolysis reaction were firstly optimized and the activity of the obtained lipase was 2.17 times higher than that of the non-bioimprinted. The bioimprinted lipase was then used as a catalyst and the reaction conditions were optimized. Under the optimal conditions, the equilibrium could be achieved in 4 h, and the total and sn-1,3 CA contents in the product were 29.18% and 42.34%, respectively, and the total and sn-2 DHA contents were 46.26% and 70.12%, respectively. Such MLSLs rich in sn-1,3 CA and sn-2 DHA are beneficial for DHA absorption, and thus have potential for use in infant formula.
Collapse
Affiliation(s)
- Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Heng Su
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Fengcheng Zhang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Hongjiang Zhang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yeliaman Yeerbolati
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Xiuli Xu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Zhonghao Chao
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| |
Collapse
|
5
|
Total Usual Nutrient Intakes and Nutritional Status of United Arab Emirates Children (4 Years-12.9 Years): Findings from the Kids Nutrition and Health Survey (KNHS) 2021. Nutrients 2023; 15:nu15010234. [PMID: 36615891 PMCID: PMC9824044 DOI: 10.3390/nu15010234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
This study aims at investigating the anthropometric status and food consumption patterns of children in the United Arab Emirates (UAE) and assessing their adherence to nutrient and dietary recommendations. It is a population-based cross-sectional survey of 690 children (4-12.9 years), from 3 major Emirates. Socio-demographic and anthropometric characteristics were collected. Dietary intakes were assessed using the 24-hour recall approach. Of the total sample, 4% were stunted, 8% were wasted and 28% were overweight/obese. A third of participating children consumed above the Estimated Energy Requirement, while the majority's intakes carbohydrate, total fat, and protein were within the recommendations; whereas over 70% and 90% of participants consumed above the WHO daily limits of free sugars and saturated fats, respectively. Inadequate intakes of linoleic acid (36% of children), alpha-linolenic acid (91%) and dietary fiber (100%) were observed. All children failed to meet the recommendation for vitamin D and considerable proportions had inadequate intakes of vitamin A, calcium, zinc, folate, and magnesium. Compared with the American Heart Association/American Academy of Pediatrics recommendations, low dietary adherence was noted for fruits (9%), vegetables (4%), and milk/dairy (14%). These findings may be used in the development of nutritional policies aimed at improving the diets of children in the UAE.
Collapse
|
6
|
Choi KM, Kim JJ, Yoo J, Kim KS, Gu Y, Eom J, Jeong H, Kim K, Nam KT, Park YS, Chung JY, Seo JY. The interferon-inducible protein viperin controls cancer metabolic reprogramming to enhance cancer progression. J Clin Invest 2022; 132:157302. [PMID: 36227691 PMCID: PMC9753993 DOI: 10.1172/jci157302] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic reprogramming is an important cancer hallmark. However, the mechanisms driving metabolic phenotypes of cancer cells are unclear. Here, we show that the interferon-inducible (IFN-inducible) protein viperin drove metabolic alteration in cancer cells. Viperin expression was observed in various types of cancer and was inversely correlated with the survival rates of patients with gastric, lung, breast, renal, pancreatic, or brain cancer. By generating viperin knockdown or stably expressing cancer cells, we showed that viperin, but not a mutant lacking its iron-sulfur cluster-binding motif, increased lipogenesis and glycolysis via inhibition of fatty acid β-oxidation in cancer cells. In the tumor microenvironment, deficiency of fatty acids and oxygen as well as production of IFNs upregulated viperin expression via the PI3K/AKT/mTOR/HIF-1α and JAK/STAT pathways. Moreover, viperin was primarily expressed in cancer stem-like cells (CSCs) and functioned to promote metabolic reprogramming and enhance CSC properties, thereby facilitating tumor growth in xenograft mouse models. Collectively, our data indicate that viperin-mediated metabolic alteration drives the metabolic phenotype and progression of cancer.
Collapse
Affiliation(s)
- Kyung Mi Choi
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong Jin Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihye Yoo
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Ku Sul Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Youngeun Gu
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - John Eom
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyungeun Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Negro M, Cerullo G, Parimbelli M, Ravazzani A, Feletti F, Berardinelli A, Cena H, D'Antona G. Exercise, Nutrition, and Supplements in the Muscle Carnitine Palmitoyl-Transferase II Deficiency: New Theoretical Bases for Potential Applications. Front Physiol 2021; 12:704290. [PMID: 34408664 PMCID: PMC8365340 DOI: 10.3389/fphys.2021.704290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Carnitine palmitoyltransferase II (CPTII) deficiency is the most frequent inherited disorder regarding muscle fatty acid metabolism, resulting in a reduced mitochondrial long-chain fatty acid oxidation during endurance exercise. This condition leads to a clinical syndrome characterized by muscle fatigue and/or muscle pain with a variable annual frequency of severe rhabdomyolytic episodes. While since the CPTII deficiency discovery remarkable scientific advancements have been reached in genetic analysis, pathophysiology and diagnoses, the same cannot be said for the methods of treatments. The current recommendations remain those of following a carbohydrates-rich diet with a limited fats intake and reducing, even excluding, physical activity, without, however, taking into account the long-term consequences of this approach. Suggestions to use carnitine and medium chain triglycerides remain controversial; conversely, other potential dietary supplements able to sustain muscle metabolism and recovery from exercise have never been taken into consideration. The aim of this review is to clarify biochemical mechanisms related to nutrition and physiological aspects of muscle metabolism related to exercise in order to propose new theoretical bases of treatment which, if properly tested and validated by future trials, could be applied to improve the quality of life of these patients.
Collapse
Affiliation(s)
- Massimo Negro
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Giuseppe Cerullo
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, Naples, Italy
| | - Mauro Parimbelli
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Alberto Ravazzani
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Fausto Feletti
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | | | - Hellas Cena
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.,Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, University of Pavia, Pavia, Italy
| | - Giuseppe D'Antona
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy.,Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Maternal Docosahexaenoic Acid Status during Pregnancy and Its Impact on Infant Neurodevelopment. Nutrients 2020; 12:nu12123615. [PMID: 33255561 PMCID: PMC7759779 DOI: 10.3390/nu12123615] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Dietary components are essential for the structural and functional development of the brain. Among these, docosahexaenoic acid, 22:6n-3 (DHA), is critically necessary for the structure and development of the growing fetal brain in utero. DHA is the major n-3 long-chain polyunsaturated fatty acid in brain gray matter representing about 15% of all fatty acids in the human frontal cortex. DHA affects neurogenesis, neurotransmitter, synaptic plasticity and transmission, and signal transduction in the brain. Data from human and animal studies suggest that adequate levels of DHA in neural membranes are required for maturation of cortical astrocyte, neurovascular coupling, and glucose uptake and metabolism. Besides, some metabolites of DHA protect from oxidative tissue injury and stress in the brain. A low DHA level in the brain results in behavioral changes and is associated with learning difficulties and dementia. In humans, the third trimester-placental supply of maternal DHA to the growing fetus is critically important as the growing brain obligatory requires DHA during this window period. Besides, DHA is also involved in the early placentation process, essential for placental development. This underscores the importance of maternal intake of DHA for the structural and functional development of the brain. This review describes DHA’s multiple roles during gestation, lactation, and the consequences of its lower intake during pregnancy and postnatally on the 2019 brain development and function.
Collapse
|
9
|
LIRA GM, LOPEZ AMQ, NANES GMDF, SILVA FGC, NASCIMENTO TGD. The effect of herbal salt as a natural antioxidant in preserving fish during freezing storage. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.31420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Joshi PR, Zierz S. Muscle Carnitine Palmitoyltransferase II (CPT II) Deficiency: A Conceptual Approach. Molecules 2020; 25:molecules25081784. [PMID: 32295037 PMCID: PMC7221885 DOI: 10.3390/molecules25081784] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 11/16/2022] Open
Abstract
Carnitine palmitoyltransferase (CPT) catalyzes the transfer of long- and medium-chain fatty acids from cytoplasm into mitochondria, where oxidation of fatty acids takes place. Deficiency of CPT enzyme is associated with rare diseases of fatty acid metabolism. CPT is present in two subforms: CPT I at the outer mitochondrial membrane and carnitine palmitoyltransferase II (CPT II) inside the mitochondria. Deficiency of CPT II results in the most common inherited disorder of long-chain fatty acid oxidation affecting skeletal muscle. There is a lethal neonatal form, a severe infantile hepato-cardio-muscular form, and a rather mild myopathic form characterized by exercise-induced myalgia, weakness, and myoglobinuria. Total CPT activity (CPT I + CPT II) in muscles of CPT II-deficient patients is generally normal. Nevertheless, in some patients, not detectable to reduced total activities are also reported. CPT II protein is also shown in normal concentration in patients with normal CPT enzymatic activity. However, residual CPT II shows abnormal inhibition sensitivity towards malonyl-CoA, Triton X-100 and fatty acid metabolites in patients. Genetic studies have identified a common p.Ser113Leu mutation in the muscle form along with around 100 different rare mutations. The biochemical consequences of these mutations have been controversial. Hypotheses include lack of enzymatically active protein, partial enzyme deficiency and abnormally regulated enzyme. The recombinant enzyme experiments that we recently conducted have shown that CPT II enzyme is extremely thermoliable and is abnormally inhibited by different emulsifiers and detergents such as malonyl-CoA, palmitoyl-CoA, palmitoylcarnitine, Tween 20 and Triton X-100. Here, we present a conceptual overview on CPT II deficiency based on our own findings and on results from other studies addressing clinical, biochemical, histological, immunohistological and genetic aspects, as well as recent advancements in diagnosis and therapeutic strategies in this disorder.
Collapse
|
11
|
Ntenda PAM. Association of low birth weight with undernutrition in preschool-aged children in Malawi. Nutr J 2019; 18:51. [PMID: 31477113 PMCID: PMC6719380 DOI: 10.1186/s12937-019-0477-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/21/2019] [Indexed: 01/31/2023] Open
Abstract
Background Malnutrition refers to deficiencies, excesses, or imbalances in a person’s intake of energy and/or nutrients. The term malnutrition is a broad term encompassing the three conditions namely undernutrition (micronutrient-related malnutrition), over-nutrition (overweight and obesity), and diet-related non-communicable diseases. Undernutrition is defined as the outcome of insufficient food intake and repeated infectious diseases. Low birth weight (LBW) is cited as a risk factor for mortality and morbidity in young children. However, its association with undernutrition has received little attention. Thus, the current study aimed to examine the relationship between LBW and undernutrition in Malawi. Methods A cross-sectional study was conducted using data from the Malawi Demographic and Health Survey (MDHS) 2015–16. Children whose Z-scores for each of the following indices height-for-age, weight-for-height, and weight-for-age were below the minus two standard deviations (−2SD) from the median of the World Health Organization’s (WHO) reference population were considered to be stunted, wasted and underweight, respectively. LBW was defined as babies whose birth weight was less than 2500 g. The multivariate logistic regression models were performed using surveylogistic while controlling various confounding factors in the six different models. Results The prevalence of stunted, underweight, wasted, and LBW were reported as follows, 39%. 11, 2, and 10% respectively. Compared to children with normal/average birth weight, those with LBW had significantly higher odds of being stunted [adjusted odds ratio (aOR): 1.72; 95% confidence interval (CI): 1.35–2.20), underweight (aOR: 2.30; 95% CI: 1.68–3.14) and wasted (aOR: 1.47; 95% CI: 1.38–4.25) respectively. Conclusions LBW was a strong predictor of all the three indices of undernutrition. Interventions that aim at improving the growth and development of children during the early years should consider addressing factors that trigger LBW. Electronic supplementary material The online version of this article (10.1186/s12937-019-0477-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter Austin Morton Ntenda
- School of Public Health and Family Medicine, Department of Public Health, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre, 3, Malawi.
| |
Collapse
|
12
|
da Luz PAC, Andrighetto C, Lupatini GC, Aranha HS, Trivelin GA, Mateus GP, Santos CT, Francisco CDL, Castilhos AM, Jorge AM. Effect of integrated crop-livestock systems in carcass and meat quality of Nellore cattle. Livest Sci 2019. [DOI: 10.1016/j.livsci.2018.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Echeverría F, Valenzuela R, Catalina Hernandez-Rodas M, Valenzuela A. Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources. Prostaglandins Leukot Essent Fatty Acids 2017; 124:1-10. [PMID: 28870371 DOI: 10.1016/j.plefa.2017.08.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/10/2017] [Accepted: 08/09/2017] [Indexed: 01/25/2023]
Abstract
Docosahexaenoic acid (C22: 6n-3, DHA) is a long-chain polyunsaturated fatty acid of marine origin fundamental for the formation and function of the nervous system, particularly the brain and the retina of humans. It has been proposed a remarkable role of DHA during human evolution, mainly on the growth and development of the brain. Currently, DHA is considered a critical nutrient during pregnancy and breastfeeding due their active participation in the development of the nervous system in early life. DHA and specifically one of its derivatives known as neuroprotectin D-1 (NPD-1), has neuroprotective properties against brain aging, neurodegenerative diseases and injury caused after brain ischemia-reperfusion episodes. This paper discusses the importance of DHA in the human brain given its relevance in the development of the tissue and as neuroprotective agent. It is also included a critical view about the ways to supply this noble fatty acid to the population.
Collapse
Affiliation(s)
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | | | - Alfonso Valenzuela
- Lipid Center, Institute of Nutrition and Food Technology (INTA), University of Chile and Faculty of Medicine,, University de Los Andes, Santiago, Chile
| |
Collapse
|
14
|
Nakata S, Seki Y, Nomura M, Fukuhara K, Denda M. Characteristic Isotherms for a Mixed Molecular Layer Composed of Phospholipid and Fatty Acid. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Satoshi Nakata
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526
- Japan Science and Technology Agency, CREST, Tokyo
| | - Yota Seki
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526
| | - Mio Nomura
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526
| | - Koichi Fukuhara
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526
| | - Mitsuhiro Denda
- Japan Science and Technology Agency, CREST, Tokyo
- Shiseido Global Innovation Center, 2-2-1 Hayabuchi, Tuzuki-ku, Yokohama, Kanagawa 224-8558
| |
Collapse
|
15
|
Relationship between changes in polyunsaturated fatty acids and aging-related arterial stiffness in overweight subjects 50 years or older over a 3-year period. J Clin Lipidol 2017; 11:185-194.e2. [DOI: 10.1016/j.jacl.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/10/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022]
|
16
|
Smuts M, Malan L. Perspectives on the use of seed oils in the South African diet. SOUTH AFRICAN JOURNAL OF CLINICAL NUTRITION 2016. [DOI: 10.1080/16070658.2016.1215872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Metabolism, health and fillet nutritional quality in Atlantic salmon (Salmo salar) fed diets containing n-3-rich microalgae. J Nutr Sci 2015; 4:e24. [PMID: 26495116 PMCID: PMC4611082 DOI: 10.1017/jns.2015.14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/10/2015] [Accepted: 04/22/2015] [Indexed: 01/12/2023] Open
Abstract
Microalgae, as primary producers of EPA and DHA, are among the most prominent alternative sources to fish oil for n-3 long-chain PUFA in animal and human nutrition. The present study aimed to assess technical, nutritional and fish health aspects of producing n-3-rich Atlantic salmon (Salmo salar) fish fillets by dietary supplementation of increasing levels of a DHA-producing Schizochytrium sp. and reduced or without use of supplemental fish oil. Atlantic salmon smolt were fed diets with graded levels of microalgae for 12 weeks, during which all fish showed high feed intake rates with postprandial plasma leptin levels inversely correlating with final mean fish body weights. Fish performance was optimal in all experimental treatments (thermal growth coefficient about 4·0 and feed conversion ratio 0·8-0·9), protein digestibility was equal in all diets, whereas dietary lipid digestibility inversely correlated with the dietary levels of the SFA 16 : 0. Fillet quality was good and similar to the control in all treatments in terms of n-3 long-chain PUFA content, gaping, texture and liquid losses during thawing. Histological fluorescence staining and immunofluorescence analysis of salmon intestines (midgut: base of intestine and villi) revealed significant effects on slime, goblet cell production and inducible nitric oxide synthase (iNOS) activity with increasing levels of dietary Schizochytrium sp. supplementation. Microarray analysis did not reveal any signs of toxicity, stress, inflammation or any other negative effects from Schizochytrium sp. supplementation in diets for Atlantic salmon.
Collapse
Key Words
- 0_ScYE, 0 g/kg Scizochytrium sp. + yeast extract (control)
- 15_ScYE, 150 g/kg Scizochytrium sp. + yeast extract
- 1_ScYE, 10 g/kg Scizochytrium sp. + yeast extract
- 6_ScYE, 60 g/kg Scizochytrium sp. + yeast extract
- ADC, apparent digestibility coefficient
- CK, creatine kinase
- FAME, fatty acid methyl esters
- FCR, feed conversion ratio
- Farmed salmon fish fillet nutritional quality
- ISO, International Organization for Standardization
- Microalgae
- ScYE, Scizochytrium sp. + yeast extract
- TGC, thermal growth coefficient
- iNOS, inducible nitric oxide synthase
- n-3 LC-PUFA, n-3 long-chain PUFA
- n-3 Long-chain PUFA
Collapse
|
18
|
Safety and efficacy of parenteral fish oil-containing lipid emulsions in premature neonates. J Pediatr Gastroenterol Nutr 2015; 60:708-16. [PMID: 25514619 DOI: 10.1097/mpg.0000000000000665] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of the study was to evaluate the safety and efficacy of fish oil-containing (FO) lipid emulsions that are rich in ω-3 fatty acids for parenteral nutrition in preterm neonates by using data retrieved from randomized controlled trials. METHODS We performed a meta-analysis of 8 randomized controlled trials representing 483 premature neonates to compare FO with control (CO) lipid emulsions. RESULTS This meta-analysis revealed that the levels of ω-3 fatty acids in the form of docosahexaenoic acid, eicosapentaenoic acid, and arachidonic acid (% of total fatty acids) in plasma were statistically higher in FO groups (mean difference [MD] -0.7%, 95% confidence interval [CI] -1.05 to -0.36, P < 0.001; MD -1.31%, 95% CI -1.40 to -1.21, P < 0.001). The differences were found in red blood cell (RBC) membranes. The levels of arachidonic acid (% of total fatty acids) as ω-6 fatty acid in plasma and red blood cell membranes were significantly lower in FO groups (MD 1.27%, 95% CI 1.12-1.42, P < 0.001) (MD 0.92%, 95% CI 0.12-1.72, P = 0.02). The mean body weight, serum level of bilirubin, triglycerides or C-reactive protein, all-cause mortality, and rate of lipid emulsion-associated complications were, however, not different between FO and CO groups. CONCLUSIONS The level of docosahexaenoic acid is efficiently improved by FO lipid emulsions. The changes observed in eicosapentaenoic acid and arachidonic acid, and the associated safety issue, however, remain to be clarified. Any clinical benefit or detrimental effect of using FO in premature neonates cannot be demonstrated by the present study.
Collapse
|
19
|
Varela-López A, Quiles JL, Cordero M, Giampieri F, Bullón P. Oxidative Stress and Dietary Fat Type in Relation to Periodontal Disease. Antioxidants (Basel) 2015; 4:322-44. [PMID: 26783708 PMCID: PMC4665476 DOI: 10.3390/antiox4020322] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is one of the main factors studied to explain the pathophysiological mechanisms of inflammatory conditions, such as periodontitis. In this respect, nutrition may be of great importance. Actually, research on nutrients' effects on periodontal diseases has expanded to include those influencing the redox status, which correlates to the inflammatory process. Dietary fat or lipids are often blamed as the major source of excess energy. Consequently, when caloric intake exceeds energy expenditure, the resultant substrate-induced increase in citric acid cycle activity generates an excess of reactive oxygen species (ROS). In addition, dietary fatty acid intake influences in relative fatty acid composition of biological membranes determining its susceptibility to oxidative alterations. From this standpoint, here, we reviewed studies analyzing the dietary fat role in periodontal disease. Research data suggest that periodontal health could be achieved by main dietary strategies which include substitution of saturated fats with monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), particularly n-3 PUFA. Maybe in the future, we should analyze the diet and provide some advice to periodontitis patients to improve treatment outcomes.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, Granada 18100, Spain.
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, Granada 18100, Spain.
| | - Mario Cordero
- Department of Periodontology, Dental School, University of Sevilla, C/Avicena s.n., Sevilla 41009, Spain.
| | - Francesca Giampieri
- Department of Clinical Sciences, Marche Polytechnic University, Ancona 60100, Italy.
| | - Pedro Bullón
- Department of Periodontology, Dental School, University of Sevilla, C/Avicena s.n., Sevilla 41009, Spain.
| |
Collapse
|
20
|
Nehra D, Fallon EM, Potemkin AK, Voss SD, Mitchell PD, Valim C, Belfort MB, Bellinger DC, Duggan C, Gura KM, Puder M. A comparison of 2 intravenous lipid emulsions: interim analysis of a randomized controlled trial. JPEN J Parenter Enteral Nutr 2013; 38:693-701. [PMID: 23770843 DOI: 10.1177/0148607113492549] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/13/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To assess the safety and efficacy of a fish oil-based intravenous fat emulsion (FIFE) in reducing the incidence of cholestasis in neonates compared with the traditional soybean oil-based intravenous fat emulsion (SIFE). METHODS A double-blind randomized controlled trial was conducted. Nineteen neonates were enrolled (10 SIFE; 9 FIFE). Nutrition assessments and laboratory studies were serially obtained for the duration of PN support or until 6 months' corrected gestational age. Neurodevelopmental outcomes were assessed at 6 and 24 months' corrected age. RESULTS There were no differences between groups in demographic characteristics, with an overall median age of 2 days, gestational age of 36 weeks, and birth weight of 2410 g. There were no differences between groups in baseline laboratory values other than alkaline phosphatase (lower in the FIFE group) or in the duration of parenteral nutrition (PN), amount of enteral intake, or the number of operative procedures. The incidence of cholestasis among enrolled patients was significantly lower than expected, resulting in early study termination and an inability to assess for differences in the incidence of cholestasis. The FIFE was associated with no increased risk of growth impairment, coagulopathy, infectious complications, hypertriglyceridemia, or adverse neurodevelopmental outcomes. No patient developed essential fatty acid deficiency. CONCLUSION The FIFE at 1 g/kg/d was well tolerated in the neonates recruited for this study. Given the necessary early termination of this study, a follow-up trial with revised eligibility criteria is necessary to determine whether the provision of FIFE decreases the incidence of PN-cholestasis compared with the traditional SIFE.
Collapse
Affiliation(s)
- Deepika Nehra
- Department of Surgery and the Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Erica M Fallon
- Department of Surgery and the Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexis K Potemkin
- Department of Surgery and the Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephan D Voss
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul D Mitchell
- Department of Statistics and the Clinical Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Clarissa Valim
- Department of Statistics and the Clinical Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mandy B Belfort
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David C Bellinger
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher Duggan
- Division of Gastroenterology/Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kathleen M Gura
- Department of Pharmacy, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark Puder
- Department of Surgery and the Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Sakurai K, Asahi K, Kanesaki Y, Hayashi Y, Asai J, Yuza T, Watanabe K, Katoh T, Watanabe T. Dietary Perilla Seed Oil Supplement Increases Plasma Omega-3 Polyunsaturated Fatty Acids and Ameliorates Immunoglobulin A Nephropathy in High Immunoglobulin A Strain of ddY Mice. ACTA ACUST UNITED AC 2011; 119:e33-9. [DOI: 10.1159/000327589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 03/07/2011] [Indexed: 12/22/2022]
|
22
|
Safety and efficacy of a lipid emulsion containing a mixture of soybean oil, medium-chain triglycerides, olive oil, and fish oil: a randomised, double-blind clinical trial in premature infants requiring parenteral nutrition. J Pediatr Gastroenterol Nutr 2010; 51:514-21. [PMID: 20531018 DOI: 10.1097/mpg.0b013e3181de210c] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Safety, tolerability, and efficacy of a novel lipid emulsion containing a mixture of soybean oil, medium-chain triglycerides, olive oil, and fish oil (SMOFlipid 20%) with reduced n-6 fatty acids (FA), increased monounsaturated and n-3 FA, and enriched in vitamin E were evaluated in premature infants compared with a soybean oil-based emulsion. PATIENTS AND METHODS Sixty (30/30) premature neonates (age 3-7 days, gestational age ≤ 34 weeks, birth weights 1000-2500 g) received parenteral nutrition (PN) with either SMOFlipid 20% (study group) or a conventional lipid emulsion (Intralipid 20%, control group) for a minimum of 7 up to 14 days. Lipid supply started at 0.5 g · kg body weight(-1) · day(-1) on day 1 and increased stepwise (by 0.5 g) up to 2 g · kg body weight(-1) · day(-1) on days 4 to 14. Safety and efficacy parameters were assessed on days 0, 8, and 15 if PN was continued. RESULTS Adverse events, serum triglycerides, vital signs, local tolerance, and clinical laboratory did not show noticeable group differences, confirming the safety of study treatment. At study end, γ-glutamyl transferase was lower in the study versus the control group (107.8 ± 81.7 vs 188.8 ± 176.7 IU/L, P < 0.05). The relative increase in body weight (day 8 vs baseline) was 5.0% ± 6.5% versus 5.1% ± 6.6% (study vs control, not significant). In the study group, an increase in n-3 FA in red blood cell phospholipids and n-3:n-6 FA ratio was observed. Plasma α-tocopherol (study vs control) was increased versus baseline on day 8 (26.35 ± 10.03 vs 3.67 ± 8.06 μmol/L, P < 0.05) and at study termination (26.97 ± 18.32 vs 8.73 ± 11.41 μmol/L, P < 0.05). CONCLUSIONS Parenteral infusion of SMOFlipid was safe and well tolerated and showed a potential beneficial influence on cholestasis, n-3 FA, and vitamin E status in premature infants requiring PN.
Collapse
|
23
|
Abstract
OBJECTIVE To determine the extent to which levels of membrane eicosapentaenoic (EPA)+docosahexaenoic acids (DHA) (the omega-3 index) were associated with depression in patients with acute coronary syndrome (ACS). Depression is associated with worse cardiovascular (CV) outcomes in patients with ACS. Reduced levels of blood cell membrane omega-3 (n-3) fatty acids (FAs), an emerging risk factor for both CV disease and depression, may help to explain the link between depression and adverse CV outcomes. METHODS We measured membrane FA composition in 759 patients with confirmed ACS. The analysis included not only EPA and DHA but also the n-6 FAs linoleic and arachidonic acids (LA and AA). Depressive symptoms were measured with the Patient Health Questionnaire-9 (PHQ). Multivariable linear regression was used to adjust for demographic and clinical characteristics. RESULTS There was a significant inverse relationship between the n-3 index and depressive symptoms (PHQ) in the fully adjusted model (p = .034). For every 4.54% point rise in the n-3 index, there was a 1-point decline in depressive symptoms. In contrast to the n-3 FAs, membrane levels of the n-6 FAs LA and AA were not different between depressed and nondepressed ACS patients. CONCLUSION We found an inverse relationship between the n-3 index and the prevalence of depressive symptoms in patients with ACS. Therefore, this study supports the hypothesis that reduced n-3 FA tissue levels are a common and potentially modifiable link between depression and adverse CV outcomes.
Collapse
|
24
|
Abstract
With greater focus on chronic disease prevention, renewed attention has been directed toward understanding the pathophysiology of various medical conditions and the development of newer medical treatments to prevent and treat complications. There has been immense interest in evaluating societal lifestyles, cultural attitudes toward health, and dietary influences on health conditions. The omega-3 fatty acids have become a focus of interest, and recent research and trial evidence have highlighted their effects, including potential clinical advantages. Despite this progress, the precise mechanisms through which omega-3 fatty acids act remain poorly understood. These agents are now recommended as secondary prevention after acute myocardial infarction, and ongoing large clinical trials should provide insight into the use of omega-3 fatty acids in heart failure and the primary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Puneet Kakar
- University Department of Medicine, City Hospital, Birmingham B18 7QH, UK.
| | | | | |
Collapse
|
25
|
Brooks JD, Milne GL, Yin H, Sanchez SC, Porter NA, Morrow JD. Formation of highly reactive cyclopentenone isoprostane compounds (A3/J3-isoprostanes) in vivo from eicosapentaenoic acid. J Biol Chem 2008; 283:12043-55. [PMID: 18263929 DOI: 10.1074/jbc.m800122200] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Omega-3 (omega-3) polyunsaturated fatty acids (PUFAs) found in marine fish oils are known to suppress inflammation associated with a wide variety of diseases. Eicosapentaenoic acid (EPA) is one of the most abundant omega-3 fatty acids in fish oil, but the mechanism(s) by which EPA exerts its beneficial effects is unknown. Recent studies, however, have demonstrated that oxidized EPA, rather than native EPA, possesses anti-atherosclerotic, anti-inflammatory, and anti-proliferative effects. Very few studies to date have investigated which EPA oxidation products are responsible for this bioactivity. Our research group has previously reported that anti-inflammatory prostaglandin A(2)-like and prostaglandin J(2)-like compounds, termed A(2)/J(2)-isoprostanes (IsoPs), are produced in vivo by the free radical-catalyzed peroxidation of arachidonic acid and represent one of the major products resulting from the oxidation of this PUFA. Based on these observations, we questioned whether cyclopentenone-IsoP compounds are formed from the oxidation of EPA in vivo. Herein, we report the formation of cyclopentenone-IsoP molecules, termed A(3)/J(3)-IsoPs, formed in abundance in vitro and in vivo from EPA peroxidation. Chemical approaches coupled with gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) were used to structurally characterize these compounds as A(3)/J(3)-IsoPs. We found that levels of these molecules increase approximately 200-fold with oxidation of EPA in vitro from a basal level of 0.8 +/- 0.4 ng/mg EPA to 196 +/- 23 ng/mg EPA after 36 h. We also detected these compounds in significant amounts in fresh liver tissue from EPA-fed rats at basal levels of 19 +/- 2 ng/g tissue. Amounts increased to 102 +/- 15 ng/g tissue in vivo in settings of oxidative stress. These studies have, for the first time, definitively characterized novel, highly reactive A/J-ring IsoP compounds that form in abundance from the oxidation of EPA in vivo.
Collapse
Affiliation(s)
- Joshua D Brooks
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
26
|
Joardar A, Das S. Effect of fatty acids isolated from edible oils like mustard, linseed or coconut on astrocytes maturation. Cell Mol Neurobiol 2007; 27:973-83. [PMID: 17823864 PMCID: PMC11517276 DOI: 10.1007/s10571-007-9204-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/11/2007] [Indexed: 10/22/2022]
Abstract
The omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA, 22:6n-3) has been previously shown to facilitate some of the vital functions of astrocytes. Since some dietary oils contain alpha-linolenic acid (ALA, 18:3n-3), which is a precursor of DHA, we examined their effect on astrocyte development. Fatty acids (FAs) were isolated from commonly used oils and their compositions were determined by GLC. FAs from three oils, viz. coconut, mustard and linseed were studied for their effect on astrocyte morphology. Parallel studies were conducted with FAs from the same oils after heating for 72 h. Unlike coconut oil, FAs from mustard and linseed, both heated and raw, caused significant morphogenesis of astrocytes in culture. ss-AR binding was also substantially increased in astrocytes treated with FAs from raw mustard and linseed oils as compared to astrocytes grown in normal medium. The expression profile of the isoforms of GFAP showed that astrocyte maturation by FAs of mustard and linseed oil was associated with appearance of acidic variants of GFAP and disappearance of some neutral isoforms similar to that observed in cultures grown in serum containing medium or in the presence of DHA. Taken together, the study highlights the contribution of specific dietary oils in facilitating astrocyte development that can have potential impact on human health.
Collapse
Affiliation(s)
- Anindita Joardar
- Neurobiology Division, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032 India
| | - Sumantra Das
- Neurobiology Division, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032 India
| |
Collapse
|
27
|
Biró L, Regöly-Mérei A, Nagy K, Péter S, Arató G, Szabó C, Martos E, Antal M. Dietary Habits of School Children: Representative Survey in Metropolitan Elementary Schools – Part Two. ANNALS OF NUTRITION AND METABOLISM 2007; 51:454-60. [PMID: 18025819 DOI: 10.1159/000111166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 04/28/2007] [Indexed: 11/19/2022]
Affiliation(s)
- Lajos Biró
- National Institute of Food Safety and Nutrition, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Shah AP, Ichiuji AM, Han JK, Traina M, El-Bialy A, Meymandi SK, Wachsner RY. Cardiovascular and endothelial effects of fish oil supplementation in healthy volunteers. J Cardiovasc Pharmacol Ther 2007; 12:213-9. [PMID: 17875948 DOI: 10.1177/1074248407304749] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Consumption of fish oil (FO) is associated with reduced adverse cardiovascular events. In a randomized, blinded, placebo-controlled trial, 26 subjects (17 men and 9 women; mean age [+/- SD] 31 +/- 3.7 years) received 1 g FO capsule (n = 14) or placebo (1 g of corn oil, n = 12) for 14 days. At day 0 and day 14, heart rate (HR), blood pressure, endothelium-dependent brachial artery flow-mediated vasodilation (EDV), and endothelium-independent nitroglycerin-mediated vasodilation (EIDV) were assessed with ultrasound. FO supplementation resulted in a significant increase in EDV (20.4% +/- 13.2% vs 9.9% +/- 5.4%; P = .036) and EIDV (32.6% +/- 16.8% vs 18.0% +/- 14.9%; P = .043). Resting HR decreased by a mean of 5.9 +/- 9.4 bpm (FO) compared with placebo (mean increase of 0.73 +/- 4.8 bpm [P = .05]). FO supplementation in healthy subjects is associated with improved endothelial function and decreased resting HR.
Collapse
Affiliation(s)
- Atman Prabodh Shah
- David Geffen School of Medicine at UCLA, Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Gao L, Yin H, Milne GL, Porter NA, Morrow JD. Formation of F-ring isoprostane-like compounds (F3-isoprostanes) in vivo from eicosapentaenoic acid. J Biol Chem 2006; 281:14092-9. [PMID: 16569632 DOI: 10.1074/jbc.m601035200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Eicosapentaenoic acid (EPA, C20:5, omega-3) is the most abundant polyunsaturated fatty acid (PUFA) in fish oil. Recent studies suggest that the beneficial effects of fish oil are due, in part, to the generation of various free radical-generated non-enzymatic bioactive oxidation products from omega-3 PUFAs, although the specific molecular species responsible for these effects have not been identified. Our research group has previously reported that pro-inflammatory prostaglandin F2-like compounds, termed F2-isoprostanes (IsoPs), are produced in vivo by the free radical-catalyzed peroxidation of arachidonic acid and represent one of the major products resulting from the oxidation of this PUFA. Based on these observations, we questioned whether F2-IsoP-like compounds (F3-IsoPs) are formed from the oxidation of EPA in vivo. Oxidation of EPA in vitro yielded a series of compounds that were structurally established to be F3-IsoPs using a number of chemical and mass spectrometric approaches. The amounts formed were extremely large (up to 8.7 + 1.0 microg/mg EPA) and greater than levels of F2-IsoPs generated from arachidonic acid. We then examined the formation of F3-IsoPs in vivo in mice. Levels of F3-IsoPs in tissues such as heart are virtually undetectable at baseline, but supplementation of animals with EPA markedly increases quantities up to 27.4 + 5.6 ng/g of heart. Interestingly, EPA supplementation also markedly reduced levels of pro-inflammatory arachidonate-derived F2-IsoPs by up to 64% (p < 0.05). Our studies provide the first evidence that identify F3-IsoPs as novel oxidation products of EPA that are generated in vivo. Further understanding of the biological consequences of F3-IsoP formation may provide valuable insights into the cardioprotective mechanism of EPA.
Collapse
Affiliation(s)
- Ling Gao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
30
|
Xu Y, Knipp GT, Cook TJ. Effects of di-(2-ethylhexyl)-phthalate and its metabolites on the lipid profiling in rat HRP-1 trophoblast cells. Arch Toxicol 2005; 80:293-8. [PMID: 16328440 DOI: 10.1007/s00204-005-0047-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
The highly directional maternal-to-fetal transfer of essential fatty acids (EFAs) across the placenta plays a critical role in guiding proper fetal development. Exposure to xenobiotics that may alter the fetal supply of EFAs/lipids could lead to fetal toxicity. Since the placenta is the first fetal arising organ that regulates fetal fatty acid homeostasis, the fatty acid/lipid composition in the placenta may serve as an indicator of fetal composition. In this study, we investigated the effects of the peroxisome proliferator chemical di-(2-ethylhexyl)-phthalate (DEHP), a widely used plasticizer and ubiquitous environmental contaminant, and its selective metabolites, mono-(2-ethylhexyl)-phthalate (MEHP) and 2-ethylhexanoic acid (EHA) on the lipid metabolome in a rat HRP-1 trophoblast model. The concentrations of ten lipid classes (cholesterol esters, diacylglycerol, triacylglycerides, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, lysophosphatidylcholine, cardiolipin, and sphingomyelin) were determined, as well as the individual fatty acid compositions, especially the omega-3 and omega-6 family of EFAs. The level of each lipid class was significantly increased upon exposure to the agents, with MEHP and EHA generally showing higher increases than DEHP. The same trends were observed in comparing the fatty acid compositions. For example, the omega-3/omega-6 fatty acids ratio did not change, although the levels of omega-3 and omega-6 fatty acids were significantly elevated upon exposure. These results suggest that DEHP and its metabolites can alter lipid metabolome in a rat placental cell line, implying that these compounds may contribute to aberrant placental EFA/lipid homeostasis caused by peroxisome proliferation, and potentially result in abnormal fetal development.
Collapse
Affiliation(s)
- Yan Xu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy and the Environmental & Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
31
|
Abstract
Cardiac disease continues to be a major cause of death in the Western world. Several preventive measures can be implemented to reduce the risk of a cardiac event. One of these measures is diet. A diet that is rich in fatty fish provides a considerable quantity of omega-3-fatty acids. These fatty acids have been shown to reduce the risk of cardiac events such as arrhythmias, stroke and thrombosis. The nurse has a key health education role to play in the promotion of healthy eating in order to reduce the incidence of cardiac events in patients with existing cardiac disease.
Collapse
MESH Headings
- Arachidonic Acids/metabolism
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/prevention & control
- Cause of Death
- Cholesterol/chemistry
- Cholesterol/metabolism
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/prevention & control
- Diet, Fat-Restricted
- Dietary Supplements
- Fatty Acids, Omega-3/chemistry
- Fatty Acids, Omega-3/metabolism
- Fatty Acids, Omega-3/therapeutic use
- Heart Diseases/epidemiology
- Heart Diseases/etiology
- Heart Diseases/prevention & control
- Humans
- Hypercholesterolemia/complications
- Hypercholesterolemia/metabolism
- Hypercholesterolemia/prevention & control
- Hypertension/complications
- Hypertension/prevention & control
- Hypertriglyceridemia/complications
- Hypertriglyceridemia/prevention & control
- Incidence
- Interleukins/metabolism
- Nurse's Role
- Patient Education as Topic
- Risk Factors
- Thrombosis/complications
- Thrombosis/prevention & control
- Tumor Necrosis Factors/metabolism
- United Kingdom/epidemiology
Collapse
Affiliation(s)
- Maggi Banning
- The School of Health and Social Sciences, Middlesex University, Archway Campus, London
| |
Collapse
|
32
|
Korotkova M, Gabrielsson BG, Holmäng A, Larsson BM, Hanson LA, Strandvik B. Gender-related long-term effects in adult rats by perinatal dietary ratio of n-6/n-3 fatty acids. Am J Physiol Regul Integr Comp Physiol 2005; 288:R575-9. [PMID: 15699360 DOI: 10.1152/ajpregu.00342.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidemiological studies in humans have shown that perinatal nutrition affects health later in life. We have previously shown that the ratio of n-6 to n-3 polyunsaturated fatty acids (PUFA) in the maternal diet affects serum leptin levels and growth of the suckling pups. The aim of the present study was to investigate the long-term effects of various ratios of the dietary n-6 and n-3 PUFA during the perinatal period on serum leptin, insulin, and triacylglycerol, as well as body growth in the adult offspring. During late gestation and throughout lactation, rats were fed an isocaloric diet containing 7 wt% fat, either as linseed oil (n-3 diet), soybean oil (n-6/n-3 diet), or sunflower oil (n-6 diet). At 3 wk of age, the n-6/n-3 PUFA ratios in the serum phospholipids of the offspring were 2.5, 8.3, and 17.5, respectively. After weaning, all pups were given a standard chow. At the 28th postnatal wk, mean body weight and fasting insulin levels were significantly increased in the rats fed the n-6/n-3 diet perinatally compared with the other groups. The systolic blood pressure and serum triacylglycerol levels were only increased in adult male rats of the same group. These data suggest that the balance between n-6 and n-3 PUFA during perinatal development affects several metabolic parameters in adulthood, especially in the male animals.
Collapse
Affiliation(s)
- Marina Korotkova
- Dept. of Pediatrics, The Queen Silvia Children's Hospital, SU/Ostra, SE 41685 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
33
|
Xu Y, Knipp GT, Cook TJ. Expression of CYP4A isoforms in developing rat placental tissue and rat trophoblastic cell models. Placenta 2005; 26:218-25. [PMID: 15708123 DOI: 10.1016/j.placenta.2004.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2004] [Indexed: 12/31/2022]
Abstract
Maintaining fatty acid homeostasis during pregnancy is critical for normal fetal development. As an organ that controls nutrient supply from the mother to the fetus, the placenta plays a significant role in guiding fatty acid transfer to the developing fetus. The cytochrome P450 4A (CYP4A) subfamily of metabolizing enzymes is a group of structurally and functionally conserved proteins that are specialized in the omega/omega-1 hydroxylation of saturated and unsaturated fatty acids and their derivatives. To understand the function of the CYP4A system in the placenta and its significance in maintaining fetal fatty acid homeostasis, information about the placental expression of individual CYP4A isoforms is required. In the present study, we have elucidated the temporal and spatial patterns of expression of the four known rat CYP4A isoforms (CYP4A1, CYP4A2, CYP4A3, and CYP4A8) in the junctional and labyrinthine zones of the developing rat chorioallantoic placenta as well as two rat trophoblastic cell lines, HRP-1 and Rcho-1, using semi-quantitative RT-PCR and immunohistochemical analyses. The mRNA from the four rat CYP4A isoforms was detected in the developing rat placenta with CYP4A1 exhibiting the strongest expression (4A1 > 4A2 >> 4A3 approximately equal to 4A8). CYP4A1 was also detected by immunohistochemical staining in the developing rat placenta. We also observed CYP4A1 in both HRP-1 and Rcho-1 cells by RT-PCR, suggesting the utility of these cells as in vitro tools to study the effects of xenobiotics on placental fatty acid metabolism. Establishing the expression of CYP4A isoforms in these tissues and cell models provides a framework for further investigation of their functional and physiological significance in guiding proper fetal development.
Collapse
Affiliation(s)
- Y Xu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
34
|
Duttaroy AK. Therapy and clinical trials. Curr Opin Lipidol 2004; 15:377-9. [PMID: 15166798 DOI: 10.1097/00041433-200406000-00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Asim K Duttaroy
- Department of Nutrition, University of Oslo, PO Box 1046, Blindern, N-316 Oslo, Norway
| |
Collapse
|
35
|
Abstract
Beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) have been reported in recent epidemiologic studies and randomized clinical trials in a variety of cardiovascular and autoimmune diseases. Fish and marine oils are the most abundant and convenient sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the two major n-3 fatty acids that serve as substrates for cyclooxygenase and lipoxygenase pathways leading to less potent inflammatory mediators than those produced through the n-6 PUFA substrate, arachidonic acid. N-3 PUFA can also suppress inflammatory and/or immunologic responses through eicosanoid-independent mechanisms. Although the pathophysiology of IgA nephropathy is incompletely understood, it is likely that n-3 PUFA prevents renal disease progression by interfering with a number of effector pathways triggered by mesangial immune-complex deposition. In addition, potential targets of n-3 PUFA relevant to renal disease progression could be similar to those involved in preventing the development and progression of cardiovascular disease by lowering blood pressure, reducing serum lipid levels, decreasing vascular resistance, or preventing thrombosis. In IgA nephropathy, efficacy of n-3 PUFA contained in fish oil supplements has been tested with varying results. The largest randomized clinical trial performed by our collaborative group provided strong evidence that treatment for 2 years with a daily dose of 1.8 g of EPA and 1.2 g of DHA slowed the progression of renal disease in high-risk patients. These benefits persisted after 6.4 years of follow up. With safety, composition, and dosing convenience in mind, we can recommend two products that are available as pharmaceutical-grade fish-oil concentrates, Omacor (Pronova Biocare, Oslo, Norway) and Coromega (European Reference Botanical Laboratories, Carlsbad, CA).
Collapse
Affiliation(s)
- James V Donadio
- Division of Nephrology, the Department of Medicine, and the Department of Laboratory Medicine and Pathology, Mayo Clinic & Mayo Foundation, Rochester, MN, USA.
| | | |
Collapse
|
36
|
Uauy R, Castillo C. Lipid requirements of infants: implications for nutrient composition of fortified complementary foods. J Nutr 2003; 133:2962S-72S. [PMID: 12949394 DOI: 10.1093/jn/133.9.2962s] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dietary lipids have traditionally been considered as solely part of the exchangeable energy supply. The main consideration in infant nutrition has been the amount of fat that can be tolerated and digested by infants and young children. The significance of the composition of dietary fat has received little attention. Presently, there is a growing interest in the quality of dietary lipid supply in early childhood as a major determinant of growth, infant development and long-term health. Thus, the selection of dietary lipids during the first years of life is now considered to be critically important for health and good nutrition throughout the life course. Over the past decades interest has focused on the role of essential lipids in central nervous system development and of fatty acids and cholesterol in lipoprotein metabolism throughout life. Lipids are structural components of all tissues and are indispensable for cell and plasma membrane synthesis. The brain, retina and other neural tissues are particularly rich in long-chain PUFA. Some (n-6) and (n-3) fatty acids are precursors for eicosanoid formation; these are powerful mediators of numerous cell and tissue functions. Recommendations for infant nutrition and implications of these for the nutrient composition of complementary foods are presented and discussed. There is more to fat than its role as a key fuel in energy metabolism and body energy storage; lipids are essential for tissue growth, cardiovascular health, brain development and function throughout the life course.
Collapse
Affiliation(s)
- Ricardo Uauy
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | | |
Collapse
|
37
|
Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Arterioscler Thromb Vasc Biol 2003; 23:e20-30. [PMID: 12588785 DOI: 10.1161/01.atv.0000038493.65177.94] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Miret S, Sáiz MP, Mitjavila MT. Effects of fish oil- and olive oil-rich diets on iron metabolism and oxidative stress in the rat. Br J Nutr 2003; 89:11-8. [PMID: 12568660 DOI: 10.1079/bjn2002737] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of the present study was to examine the effects of fish oil (FO)- and olive oil (OO)-rich diets on Fe metabolism and oxidative stress. Rats were fed for 16 weeks with diets containing 50 g lipids/kg; either OO, maize oil (MO) or FO. OO or MO diets contained a standard amount (100 mg/kg) of all-rac-alpha-tocopheryl acetate. FO diets were supplemented with 0, 100 or 200 mg all-rac-alpha-tocopheryl acetate/kg (FO-0, FO-1 or FO-2 diets, respectively). At the end of the feeding period, we measured non-haem Fe stores in liver and spleen, and erythrocyte and reticulocyte count. We also determined antioxidants and products derived from lipid peroxidation in plasma and erythrocytes. Our results showed reduced non-haem Fe stores in rats fed any of the FO diets. Reticulocyte percentage was higher in the rats fed FO-0 and FO-1. Plasma alpha-tocopherol was very low in rats fed the FO-0 diet. Rats fed the FO-1 and FO-2 diets showed higher alpha-tocopherol in plasma than the FO-0 group but lower than the MO or OO groups. We did not observe such differences in the alpha-tocopherol content in erythrocyte membranes. Superoxide dismutase and glutathione peroxidase activities were lower in the erythrocytes of rats fed the FO-0 diet. The products derived from lipid peroxidation were also higher in the FO groups. The administration of FO-rich diets increased lipid peroxidation and affected Fe metabolism. On the other hand, the OO-rich diet did not increase oxidative stress and did not alter Fe metabolism. Based on these results, we conclude that FO supplementation should be advised carefully.
Collapse
Affiliation(s)
- S Miret
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal, 645, Spain
| | | | | |
Collapse
|
39
|
|
40
|
Korotkova M, Gabrielsson B, Lönn M, Hanson LA, Strandvik B. Leptin levels in rat offspring are modified by the ratio of linoleic to alpha-linolenic acid in the maternal diet. J Lipid Res 2002; 43:1743-9. [PMID: 12364559 DOI: 10.1194/jlr.m200105-jlr200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The supply of polyunsaturated fatty acids (PUFA) is important for optimal fetal and postnatal development. We have previously shown that leptin levels in suckling rats are reduced by maternal PUFA deficiency. In the present study, we evaluated the effect of maternal dietary intake of (n-3) and (n-6) PUFA on the leptin content in rat milk and serum leptin levels in suckling pups. For the last 10 days of gestation and throughout lactation, the rats were fed an isocaloric diet containing 7% linseed oil (n-3 diet), sunflower oil (n-6 diet), or soybean oil (n-6/n-3 diet). Body weight, body length, inguinal fat pad weight, and adipocyte size of the pups receiving the n-3 diet were significantly lower during the whole suckling period compared with n-6/n-3 fed pups. Body and fat pad weights of the n-6 fed pups were in between the other two groups at week one, but not different from the n-6/n-3 group at week 3. Feeding dams the n-3 diet resulted in decreased serum leptin levels in the suckling pups compared with pups in the n-6/n-3 group. The mean serum leptin levels of the n-6 pups were between the other two groups but not different from either group. There were no differences in the milk leptin content between the groups. These results show that the balance between the n-6 and n-3 PUFA in the maternal diet rather than amount of n-6 or n-3 PUFA per se could be important for adipose tissue growth and for maintaining adequate serum leptin levels in the offspring.
Collapse
Affiliation(s)
- Marina Korotkova
- Departments of Pediatrics, Research Centre for Endocrinology and Metabolism, Göteborg University, Sweden.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Placental fatty acid transfer is critical to meet the foetal requirements necessary for the biosynthesis of biological membranes, myelin, and various signaling molecules. The primary objective of this research was to elucidate the placental expression patterns of genes that may potentially regulate placental fatty acid transfer and homeostasis. In this study, we have elucidated the temporal and spatial patterns of expression of peroxisome proliferator-activated receptor (PPAR) and 9-cis retinoic acid receptor (RXR) isoforms in the junctional and labyrinth zones of the developing rat chorioallantoic placenta and in human term placenta. PPAR (alpha, beta, and gamma) and RXR (alpha, beta, and gamma) isoforms are nuclear hormone receptors that are known to regulate gene transcription and protein expression levels of fatty acid transport and metabolism mediating proteins through the formation of a DNA binding heterodimer complex. In the present study, the expression patterns of PPAR and RXR isoforms were determined in developing rat placenta and human term placenta using RT-PCR and immunohistochemical analyses. PPARalpha, beta, gamma, RXRalpha, beta and gamma were expressed in both junctional (invasive/endocrine function) and labyrinth (transport barrier) zones of the rat placenta, from day 13 to day 21 of gestation. In the human term placenta, PPARalpha, beta, gamma, RXRalpha and gamma were observed, while RXRbeta was not detected. Immunocytochemistry staining results determined the presence of PPARalpha, beta, gamma, RXRalpha and gamma to be specific to the syncytial trophoblast layer of the human chorionic villi. The presence of PPAR and RXR isoforms in both the rat and human placentas suggest that PPAR and RXR isoforms are potential regulators of placental lipid transfer and homeostasis. Our work provides a framework for the further investigation of PPAR and RXR isoform specific regulation of placental fatty acid uptake, transport and metabolism.
Collapse
Affiliation(s)
- Q Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8022, USA
| | | | | |
Collapse
|
42
|
Garcia-Calatayud S, Ruiz JI, García-Fuentes M, Dierssen M, Flórez J, Crespo PS. Long-chain polyunsaturated fatty acids in rat maternal milk, offspring brain and peripheral tissues in essential fatty acid deficiency. Clin Chem Lab Med 2002; 40:278-84. [PMID: 12005218 DOI: 10.1515/cclm.2002.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fatty acid status in humans is usually related to plasma or red blood cell fatty acid profiles. The aim of the study was to explore whether a maternal deficiency in dietary essential fatty acids would differentially affect lipid fractions in several tissues of the offspring, including brain. Female Wistar rats were fed an essential fatty acid-deficient diet during 3 months before mating. The fatty acid composition of different lipid fractions was examined in maternal milk, and in plasma, red blood cells, liver, adipose tissue, cerebral cortex and hippocampus of the offspring using thin layer and capillary column gas chromatography. Lipid fractions from most tissues of deprived offspring showed a common fatty acid profile characterized by elevated 20:3 omega9/20:4 omega6 ratio, and decreased docosahexaenoic acid and arachidonic acid. However, arachidonic acid was not affected in brain, even though 22:5 omega6 was increased in phospholipids of cerebral cortex and hippocampus. The present results demonstrate different degrees of resistance to essential fatty acid deficiency in lipid fractions and tissues. This suggests a priority distribution of arachidonic acid to preferential areas and shows that blood phospholipid fatty acids do not exactly reflect brain phospholipid status.
Collapse
|
43
|
Rum P, Hornstra G. The n-3 and n-6 polyunsaturated fatty acid composition of plasma phospholipids in pregnant women and their infants. relationship with maternal linoleic acid intake. Clin Chem Lab Med 2002; 40:32-9. [PMID: 11916268 DOI: 10.1515/cclm.2002.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The availability of long-chain polyunsaturated fatty acids during infancy has been related to neonatal growth and development. Fatty acid concentration at birth is an important predictor of postnatal level. The primary aim of this study was to provide a description of the distribution of n-3 and n-6 polyunsaturated fatty acids in the plasma phospholipid fraction of pregnant women remaining on a Western-style diet and their neonates. The plasma phospholipid polyunsaturated fatty acid composition was determined by gas-liquid chromatography in 889 mother-infant pairs. Blood samples were taken during the first, second and third trimester of pregnancy, at delivery, and from the umbilical vein at birth. Mean (+/- SD) fatty acid concentrations are reported in mg/l and as percentage of total fatty acids (% wt/wt). In addition, the 10th, 25th, 50th, 75th and 90th percentiles are given. The distribution of docosahexaenoic acid (22:6n-3) and arachidonic acid (20:4n-6) concentrations in umbilical plasma phospholipids is also reported as a function of gestational age and maternal linoleic acid intake during pregnancy. This data can be be used as a reference for future studies and may aid in identifying term infants with a relatively low long-chain polyene status at birth.
Collapse
Affiliation(s)
- Patrick Rum
- Nutrition and Toxicology Research Institute Maastricht, University of Maastricht, The Netherlands.
| | | |
Collapse
|
44
|
Abstract
The fat requirements of children can be judged according to 4 criteria: 1) the possible obligate needs of fat as a metabolic fuel, 2) the provision of a sufficiently energy-dense diet to meet energy needs, 3) the adequate supply of essential fatty acids, and 4) the supply of sufficient fat to allow adequate absorption of fat-soluble vitamins. In these respects the fat requirements of children in developing countries are probably similar to those of children in affluent nations except for the additional needs imposed by environmental stresses, particularly recurrent infections. In many developing countries, the low energy density of weaning foods appears to be a major contributor to growth faltering and ultimate malnutrition. Evidence from doubly labeled water studies suggests that these diets are adequate when children are healthy but fail to support rapid catch-up growth after diarrhea and other infections. The issues in determining and meeting the fat needs of children in developing countries are illustrated with use of detailed comparative dietary data from a rural community in The Gambia and from Cambridge, United Kingdom. The outstanding feature of the Gambian data is the great importance of breast milk as a source of fat and essential fatty acids up until the end of the second year of life. Weaning foods and adult foods contain low amounts of fat, which causes a sharp transition from adequate fat intakes to probable inadequate fat intakes when children are weaned from the breast. The effects of such low fat intakes, particularly in terms of immune function, require investigation.
Collapse
Affiliation(s)
- A M Prentice
- MRC International Nutrition Group, London, and MRC Human Nutrition Research, Cambridge, United Kingdom.
| | | |
Collapse
|
45
|
Abstract
There is mounting evidence that developmental dyslexia is a neurodevelopmental disorder which involves abnormalities of fatty acid metabolism, particularly with respect to certain long-chain highly unsaturated fatty acids (HUFAs). Psychophysical evidence also strongly suggests that dyslexics may have visual deficits as well as phonological problems. Specifically, these visual deficits appear to be related to the magnocellular pathway, which is specialized for processing fast, rapidly-changing information about the visual scene. It remains unclear how these two aspects of dyslexia - fatty acid processing and visual magnocellular function - could be related. We propose some hypotheses - necessarily speculative, given the paucity of biochemical research in this field to date - which address this question.
Collapse
Affiliation(s)
- K E Taylor
- University Laboratory of Physiology, Oxford, UK.
| | | |
Collapse
|
46
|
|