1
|
Gilcher C, Jungen M, Schweiggert R, Steingass CB. Comparative HPLC-DAD-ESI-QTOF-HR-MS/MS analyses of phenolic compounds of authentic lemon, lime, orange, and grapefruit juices. Food Chem 2025; 485:144416. [PMID: 40286581 DOI: 10.1016/j.foodchem.2025.144416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Detailed knowledge about phenolic compounds of Citrus fruits and derived juices is important for investigations into Citrus product authentication as well as for their potential health benefits. We present an HPLC-DAD-ESI-QTOF-HR-MS/MS method for the identification and simultaneous quantitation of more than 50 compounds ranging from polar phenolic acids over flavonoid glycosides to apolar coumarins, psoralens, and polymethoxyflavones in lemon, lime, orange, and grapefruit juices. Hydroxycinnamic acid derivatives mainly comprised esters with aldaric acids, N-p-coumaroylputrescine, and N-feruloylputrescine. Predominant flavonoids were flavone-C- and O-glycosides, flavonol- and flavanone-O-glycosides, and polymethoxyflavones. Mass fragmentations of flavone-C- and O-glycosides as well as limocitrin glycosides and their acylated derivatives carrying malonyl- and/or hydroxymethylglutaryl moieties are proposed. The presence of diverse phenolic compounds in juices from four Citrus species was confirmed and numerous novel constituents were assigned. Total levels of phenolic constituents in the aforementioned Citrus juices are presented.
Collapse
Affiliation(s)
- Caroline Gilcher
- Department of Beverage Research, Chair Analysis & Technology of Plant-based Foods, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany.
| | - Markus Jungen
- SGF International, Marie-Curie-Ring 10a, 55291 Saulheim, Germany.
| | - Ralf Schweiggert
- Department of Beverage Research, Chair Analysis & Technology of Plant-based Foods, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany.
| | - Christof B Steingass
- Department of Beverage Research, Chair Analysis & Technology of Plant-based Foods, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany.
| |
Collapse
|
2
|
Ogunro OB. An updated and comprehensive review of the health benefits and pharmacological activities of hesperidin. Biochem Biophys Res Commun 2025; 772:151974. [PMID: 40414011 DOI: 10.1016/j.bbrc.2025.151974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/27/2025]
Abstract
OBJECTIVES This review aims to comprehensively assess the health benefits and pharmacological activities of hesperidin, a flavonoid commonly found in citrus fruits. It consolidates recent research findings to provide insights into hesperidin's diverse health-promoting effects. KEY FINDINGS Hesperidin has gained significant attention recently for its notable pharmacological activities and potential health benefits. Studies reveal its antioxidant properties, protecting cells from oxidative damage, and its anti-inflammatory effects, inhibiting pro-inflammatory cytokines and enzymes. Also, hesperidin shows promise in cardiovascular health by reducing blood pressure and cholesterol levels and enhancing endothelial function. It also exhibits anticancer potential by hindering cell proliferation, inducing apoptosis, and suppressing tumour growth. Moreover, hesperidin demonstrates neuroprotective effects, potentially mitigating neuroinflammation and oxidative stress associated with neurodegenerative diseases. Furthermore, it displays beneficial effects in metabolic disorders such as diabetes, obesity, and fatty liver disease by influencing glucose metabolism, lipid profile, and insulin sensitivity. SUMMARY Hesperidin exhibits a wide range of health benefits and pharmacological activities, making it a promising candidate for therapeutic interventions in various diseases. Its antioxidant, anti-inflammatory, cardiovascular, anticancer, neuroprotective, and metabolic effects underscore its potential as a valuable natural compound for promoting health and preventing chronic diseases.
Collapse
Affiliation(s)
- Olalekan Bukunmi Ogunro
- Drug Discovery, Toxicology, and Pharmacology Research Laboratory, Department of Biological Sciences, KolaDaisi University, Ibadan, Nigeria.
| |
Collapse
|
3
|
Silla A, Punzo A, Caliceti C, Barbalace MC, Hrelia S, Malaguti M. The Role of Antioxidant Compounds from Citrus Waste in Modulating Neuroinflammation: A Sustainable Solution. Antioxidants (Basel) 2025; 14:581. [PMID: 40427463 PMCID: PMC12108332 DOI: 10.3390/antiox14050581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
In normal conditions, neuroinflammation induces microglia and astrocyte activation to maintain brain homeostasis. However, excessive or prolonged neuroinflammation can inflict harmful damage on brain tissue. Numerous factors can trigger chronic neuroinflammation, ultimately leading to neurodegeneration. In this context, considering the pressing need for novel, natural approaches to mitigate neuroinflammatory damage, attention has turned to unconventional sources such as agricultural by-products. Citrus fruits are widely consumed globally, producing substantial waste, including peels, seeds, and pulp. Traditionally regarded as agricultural waste, these by-products are now recognized as valuable reservoirs of bioactive compounds, including flavonoids, carotenoids, terpenoids, and limonoids. Among these, citrus polyphenols-particularly flavanones like hesperidin, naringenin, and eriocitrin-have emerged as potent modulators of neuroinflammatory pathways through their multifaceted interactions with cellular antioxidant systems, pro-inflammatory signaling cascades, neurovascular integrity, and gut-brain axis dynamics. This review aims to characterize the key molecules present in citrus waste and synthesizes preclinical and clinical evidence to elucidate the biochemical mechanisms underlying neuroinflammation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Alessia Silla
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.S.); (A.P.); (C.C.)
| | - Angela Punzo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.S.); (A.P.); (C.C.)
| | - Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.S.); (A.P.); (C.C.)
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy; (M.C.B.); (M.M.)
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy; (M.C.B.); (M.M.)
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy; (M.C.B.); (M.M.)
| |
Collapse
|
4
|
Kuşi M, Becer E, Vatansever HS. Basic approach on the protective effects of hesperidin and naringin in Alzheimer's disease. Nutr Neurosci 2025; 28:550-562. [PMID: 39225173 DOI: 10.1080/1028415x.2024.2397136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. This situation imposes a great burden on individuals, both economically and socially. Today, an effective method for treating the disease and protective approach to tau accumulation has not been developed yet. Studies have been conducted on the effects of hesperidin and naringin flavonoids found in citrus fruits on many diseases. METHODS In this review, the pathophysiology of AD is defined, and the effects of hesperidin and naringin on these factors are summarized. RESULTS Studies have shown that both components may potentially affect AD due to their antioxidative and anti-inflammatory properties. Based on these effects of the components, it has been shown that they may have ameliorative effects on Aβ, α-synuclein aggregation, tau pathology, and cognitive functions in the pathophysiology of AD. DISCUSSION There are studies suggesting that hesperidin and naringin may be effective in the prevention/treatment of AD. When these studies are examined, it is seen that more studies should be conducted on the subject.
Collapse
Affiliation(s)
- Müjgan Kuşi
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
- Research Center for Science, Technology and Engineering (BILTEM), Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
| | - Eda Becer
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | - Hafize Seda Vatansever
- DESAM Institute, Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
5
|
Ju L, Shao Q, Fang Z, Trevisi E, Chen M, Song Y, Gao W, Lei L, Li X, Liu G, Du X. Dietary supplementation with citrus peel extract in transition period improves rumen microbial composition and ameliorates energy metabolism and lactation performance of dairy cows. J Anim Sci Biotechnol 2024; 15:152. [PMID: 39516884 PMCID: PMC11549748 DOI: 10.1186/s40104-024-01110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND During the transition period, excessive negative energy balance (NEB) lead to metabolic disorders and reduced milk yield. Rumen microbes are responsible for resolving plant material and producing volatile fatty acids (VFA), which are the primary energy source for cows. In this study, we aimed to investigate the effect of citrus peel extract (CPE) supplementation on rumen microbiota composition, energy metabolism and milk performance of peripartum dairy cows. METHODS Dairy cows were fed either a basal diet (CON group) or the same basal diet supplemented with CPE via intragastric administration (4 g/d, CPE group) for 6 weeks (3 weeks before and 3 weeks after calving; n = 15 per group). Samples of serum, milk, rumen fluid, adipose tissue, and liver were collected to assess the effects of CPE on rumen microbiota composition, rumen fermentation parameters, milk performance, and energy metabolic status of dairy cows. RESULTS CPE supplementation led to an increase in milk yield, milk protein and lactose contents, and serum glucose levels, while reduced serum concentrations of non-esterified fatty acid, β-hydroxybutyric acid, insulin, aspartate aminotransferase, alanine aminotransferase, and haptoglobin during the first month of lactation. CPE supplementation also increased the content of ruminal VFA. Compared to the CON group, the abundance of Prevotellaceae, Methanobacteriaceae, Bacteroidales_RF16_group, and Selenomonadaceae was found increased, while the abundance of Oscillospiraceae, F082, Ruminococcaceae, Christensenellaceae, Muribaculaceae UCG-011, Saccharimonadaceae, Hungateiclostridiaceae, and Spirochaetaceae in the CPE group was found decreased. In adipose tissue, CPE supplementation decreased lipolysis, and inflammatory response, while increased insulin sensitivity. In the liver, CPE supplementation decreased lipid accumulation, increased insulin sensitivity, and upregulated expression of genes involved in gluconeogenesis. CONCLUSIONS Our findings suggest that CPE supplementation during the peripartum period altered rumen microbiota composition and increased ruminal VFA contents, which further improved NEB and lactation performance, alleviated lipolysis and inflammatory response in adipose tissue, reduced lipid accumulation and promoted gluconeogenesis in liver. Thus, CPE might contribute to improve energy metabolism and consequently lactation performance of dairy cows during the transition period.
Collapse
Affiliation(s)
- Lingxue Ju
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Qi Shao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhiyuan Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Meng Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
6
|
Naskar R, Ghosh A, Bhattacharya R, Chakraborty S. A critical appraisal of geroprotective activities of flavonoids in terms of their bio-accessibility and polypharmacology. Neurochem Int 2024; 180:105859. [PMID: 39265701 DOI: 10.1016/j.neuint.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Flavonoids, a commonly consumed natural product, elicit health-benefits such as antioxidant, anti-inflammatory, antiviral, anti-allergic, hepatoprotective, anti-carcinogenic and neuroprotective activities. Several studies have reported the beneficial role of flavonoids in improving memory, learning, and cognition in clinical settings. Their mechanism of action is mediated through the modulation of multiple signalling cascades. This polypharmacology makes them an attractive natural scaffold for designing and developing new effective therapeutics for complex neurological disorders like Alzheimer's disease and Parkinson's disease. Flavonoids are shown to inhibit crucial targets related to neurodegenerative disorders (NDDs), including acetylcholinesterase, butyrylcholinesterase, β-secretase, γ-secretase, α-synuclein, Aβ protein aggregation and neurofibrillary tangles formation. Conserved neuro-signalling pathways related to neurotransmitter biogenesis and inactivation, ease of genetic manipulation and tractability, cost-effectiveness, and their short lifespan make Caenorhabditis elegans one of the most frequently used models in neuroscience research and high-throughput drug screening for neurodegenerative disorders. Here, we critically appraise the neuroprotective activities of different flavonoids based on clinical trials and epidemiological data. This review provides critical insights into the absorption, metabolism, and tissue distribution of various classes of flavonoids, as well as detailed mechanisms of the observed neuroprotective activities at the molecular level, to rationalize the clinical data. We further extend the review to critically evaluate the scope of flavonoids in the disease management of neurodegenerative disorders and review the suitability of C. elegans as a model organism to study the neuroprotective efficacy of flavonoids and natural products.
Collapse
Affiliation(s)
- Roumi Naskar
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Anirrban Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Raja Bhattacharya
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India.
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
7
|
Muralidharan J, Romain C, Chung L, Alcaraz P, Martínez-Noguera FJ, Keophiphath M, Lelouvier B, Ancel P, Gaborit B, Cases J. Effect of Sinetrol ® Xpur on metabolic health and adiposity by interactions with gut microbiota: a randomized, open label, dose-response clinical trial. Nutr Metab (Lond) 2024; 21:83. [PMID: 39415279 PMCID: PMC11484468 DOI: 10.1186/s12986-024-00851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Sinetrol® Xpur is a polyphenolic ingredient rich in citrus flavonoids that has shown weight loss effects in previous studies. The dose dependent nature, gut microbial actions of this product has not been explored previously, thus presented in this study. METHODS In this open label study, we evaluated the effect of Sinetrol® Xpur supplementation on healthy but overweight/obese adults (20-50 yrs) for 16 weeks. Participants (n = 20) were randomly allocated to a high dose group (HD, 1800 mg/day) or low dose group (LD, 900 mg/day) of the product for 16 weeks. Fat composition, gut microbial composition, were evaluated using MRI and 16S rDNA sequencing respectively at week 1 and 16. RESULTS We observed HDL, HbA1C, LDL and leptin improved significantly over 16 weeks, irrespective of the dosage. There was a trend for decrease in visceral adipose tissue (VAT), BMI over time and body weight displayed a trend for dose dependent decrease. Eubacterium xylanophilum, Ruminococcacea UCG-004 genus which increased in HD and LD respectively were negatively associated to VAT. Both doses increased butyrate producers such as Eubacterium ruminantium and Ruminococcaceae NK4A214 genus. CONCLUSIONS Overall chronic supplementation of Sinetrol® Xpur, irrespective of their dose improved HDL, HbA1c, LDL and leptin and tended to decrease visceral adipose tissue via changes in gut microbiota. Trial registration number NCT03823196.
Collapse
Affiliation(s)
| | - Cindy Romain
- Fytexia, ZAE via Europa-3 rue d'Athènes, 34350, Vendres, France
| | - Linda Chung
- Research Center for High Performance Sport-UCAM Universidad Católica de Murcia, Murcia, Spain
| | - Pedro Alcaraz
- Research Center for High Performance Sport-UCAM Universidad Católica de Murcia, Murcia, Spain
| | | | - Mayoura Keophiphath
- DIVA Expertise, Centre Pierre Potier, 1 place Pierre Potier, 31100, Toulouse, France
| | | | - Patricia Ancel
- INSERM, INRA, C2VN, Aix Marseille Univ, Marseille, France
| | | | - Julien Cases
- Fytexia, ZAE via Europa-3 rue d'Athènes, 34350, Vendres, France.
| |
Collapse
|
8
|
Sbai O, Torrisi F, Fabrizio FP, Rabbeni G, Perrone L. Effect of the Mediterranean Diet (MeDi) on the Progression of Retinal Disease: A Narrative Review. Nutrients 2024; 16:3169. [PMID: 39339769 PMCID: PMC11434766 DOI: 10.3390/nu16183169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Worldwide, the number of individuals suffering from visual impairment, as well as those affected by blindness, is about 600 million and it will further increase in the coming decades. These diseases also seriously affect the quality of life in working-age individuals. Beyond the characterization of metabolic, genetic, and environmental factors related to ocular pathologies, it is important to verify how lifestyle may participate in the induction of the molecular pathways underlying these diseases. On the other hand, scientific studies are also contributing to investigations as to whether lifestyle could intervene in modulating pathophysiological cellular responses, including the production of metabolites and neurohormonal factors, through the intake of natural compounds capable of interfering with molecular mechanisms that lead to ocular diseases. Nutraceuticals are promising in ameliorating pathophysiological complications of ocular disease such as inflammation and neurodegeneration. Moreover, it is important to characterize the nutritional patterns and/or natural compounds that may be beneficial against certain ocular diseases. The adherence to the Mediterranean diet (MeDi) is proposed as a promising intervention for the prevention and amelioration of several eye diseases. Several characteristic compounds and micronutrients of MeDi, including vitamins, carotenoids, flavonoids, and omega-3 fatty acids, are proposed as adjuvants against several ocular diseases. In this review, we focus on studies that analyze the effects of MeDi in ameliorating diabetic retinopathy, macular degeneration, and glaucoma. The analysis of knowledge in this field is requested in order to provide direction on recommendations for nutritional interventions aimed to prevent and ameliorate ocular diseases.
Collapse
Affiliation(s)
- Oualid Sbai
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT02, Institut Pasteur de Tunis, Tunis 1068, Tunisia
| | - Filippo Torrisi
- Faculty of Medicine and Surgery, University KORE of Enna, 94100 Enna, Italy
| | | | - Graziella Rabbeni
- Faculty of Medicine and Surgery, University KORE of Enna, 94100 Enna, Italy
| | - Lorena Perrone
- Faculty of Medicine and Surgery, University KORE of Enna, 94100 Enna, Italy
| |
Collapse
|
9
|
Elshaer M, Osman SK, Mohammed AM, Zayed G. Co-crystallization of Hesperidin with different co-formers to enhance solubility, antioxidant and anti-inflammatory activities. Pharm Dev Technol 2024; 29:691-702. [PMID: 39045751 DOI: 10.1080/10837450.2024.2378498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/07/2024] [Indexed: 07/25/2024]
Abstract
Hesperidin (HSP) is a natural flavonoid glycoside with very low aqueous solubility and a slow dissolution rate, limiting its effectiveness. This study aims to address these issues by creating co-crystals of hesperidin with water-soluble small molecules (co-formers) such as L-arginine, glutathione, glycine, and nicotinamide. Using the solvent drop grinding method, we prepared three different molar ratios of hesperidin to co-formers (1:1, 1:3, and 1:5) and conducted in-vitro solubility and dissolution studies. The results demonstrated that the prepared co-crystals exhibited significantly enhanced solubility and dissolution rates compared to untreated hesperidin. Of particular note, the HSP co-crystals formula (HSP: L-arg 1:5) displayed approximately 4.5 times higher dissolution than pure hesperidin. Further analysis using FTIR, powder x-ray diffraction patterns, and DSC thermograms validated the formation of co-crystals between HSP and L-arginine. Additionally, co-crystallization with L-arginine improved the in vitro anti-inflammatory and antioxidant activities of hesperidin compared to the untreated drug. This study highlights the potential of using water-soluble small molecules (co-formers) through co-crystallization to enhance the solubility, dissolution, and biological activities of poorly water-soluble drugs. Furthermore, in vivo studies are crucial to validate these promising results.
Collapse
Affiliation(s)
- Mahmoud Elshaer
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Shaaban K Osman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ahmed M Mohammed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Gamal Zayed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
10
|
Yaghoubi N, Gholamzad A, Naji T, Gholamzad M. In vitro evaluation of PLGA loaded hesperidin on colorectal cancer cell lines: an insight into nano delivery system. BMC Biotechnol 2024; 24:52. [PMID: 39095760 PMCID: PMC11297711 DOI: 10.1186/s12896-024-00882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Colorectal cancer is a common disease worldwide with non-specific symptoms such as blood in the stool, bowel movements, weight loss and fatigue. Chemotherapy drugs can cause side effects such as nausea, vomiting and a weakened immune system. The use of antioxidants such as hesperidin could reduce the side effects, but its low bioavailability is a major problem. In this research, we aimed to explore the drug delivery and efficiency of this antioxidant on the HCT116 colorectal cancer cell line by loading hesperidin into PLGA nanoparticles. MATERIALS AND METHODS Hesperidin loaded PLGA nanoparticles were produced by single emulsion evaporation method. The physicochemical properties of the synthesized hesperidin-loaded nanoparticles were determined using SEM, AFM, FT-IR, DLS and UV-Vis. Subsequently, the effect of the PLGA loaded hesperidin nanoparticles on the HCT116 cell line after 48 h was investigated by MTT assay at three different concentrations of the nanoparticles. RESULT The study showed that 90% of hesperidin were loaded in PLGA nanoparticles by UV-Vis spectrophotometry and FT-IR spectrum. The nanoparticles were found to be spherical and uniform with a hydrodynamic diameter of 76.2 nm in water. The release rate of the drug was about 93% after 144 h. The lowest percentage of cell viability of cancer cells was observed at a concentration of 10 µg/ml of PLGA nanoparticles loaded with hesperidin. CONCLUSION The results indicate that PLGA nanoparticles loaded with hesperidin effectively reduce the survival rate of HCT116 colorectal cancer cells. However, further studies are needed to determine the appropriate therapeutic dosage and to conduct animal and clinical studies.
Collapse
Affiliation(s)
- Narges Yaghoubi
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Tahere Naji
- Department of Basic Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
11
|
Atoki AV, Aja PM, Shinkafi TS, Ondari EN, Awuchi CG. Naringenin: its chemistry and roles in neuroprotection. Nutr Neurosci 2024; 27:637-666. [PMID: 37585716 DOI: 10.1080/1028415x.2023.2243089] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
According to epidemiological research, as the population ages, neurological illnesses are becoming a bigger issue. Despite improvements in the treatment of these diseases, there are still widespread worries about how to find a long-lasting remedy. Several neurological diseases can be successfully treated with natural substances. As a result, current research has been concentrated on finding effective neuroprotective drugs with improved efficacy and fewer side effects. Naringenin is one potential treatment for neurodegenerative diseases. Many citrus fruits, tomatoes, bergamots, and other fruits are rich in naringenin, a flavonoid. This phytochemical is linked to a variety of biological functions. Naringenin has attracted a lot of interest for its ability to exhibit neuroprotection through several mechanisms. In the current article, we present evidence from the literature that naringenin reduces neurotoxicity and oxidative stress in brain tissues. Also, the literatures that are currently accessible shows that naringenin reduces neuroinflammation and other neurological anomalies. Additionally, we found several studies that touted naringenin as a promising anti-amyloidogenic, antidepressant, and neurotrophic treatment option. This review's major goal is to reflect on advancements in knowledge of the molecular processes that underlie naringenin's possible neuroprotective effects. Furthermore, this article also provides highlights of Naringenin with respect to its chemistry and pharmacokinetics.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Pure and Applied Sciences, Department of Biological Sciences, Kisii University, Kisii, Kenya
| | - Chinaza Godswill Awuchi
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Natural and Applied Sciences, Kampala International University, Kampala, Uganda
| |
Collapse
|
12
|
Thompson AS, Jennings A, Bondonno NP, Tresserra-Rimbau A, Parmenter BH, Hill C, Perez-Cornago A, Kühn T, Cassidy A. Higher habitual intakes of flavonoids and flavonoid-rich foods are associated with a lower incidence of type 2 diabetes in the UK Biobank cohort. Nutr Diabetes 2024; 14:32. [PMID: 38778045 PMCID: PMC11111454 DOI: 10.1038/s41387-024-00288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
AIM To examine the associations of a diet high in flavonoid-rich foods, as reflected by a "Flavodiet Score" (FDS), the major individual food contributors to flavonoid intake, and flavonoid subclasses with type 2 diabetes (T2D) risk in the UK Biobank cohort. MATERIALS AND METHODS Flavonoid intakes were estimated from ≥2 dietary assessments among 113,097 study participants [age at enrolment: 56 ± 8 years; 57% female] using the U.S Department of Agriculture (USDA) databases. Multivariable Cox proportional hazards models were used to investigate associations between dietary exposures and T2D. RESULTS During 12 years of follow-up, 2628 incident cases of T2D were identified. A higher FDS (compared to lower [Q4 vs. Q1]), characterised by an average of 6 servings of flavonoid-rich foods per day, was associated with a 26% lower T2D risk [HR: 0.74 (95% CI: 0.66-0.84), ptrend = <0.001]. Mediation analyses showed that lower body fatness and basal inflammation, as well as better kidney and liver function partially explain this association. In food-based analyses, higher intakes of black or green tea, berries, and apples were significantly associated with 21%, 15%, and 12% lower T2D risk. Among individual flavonoid subclasses, 19-28% lower risks of T2D were observed among those with the highest, compared to lowest intakes. CONCLUSIONS A higher consumption of flavonoid-rich foods was associated with lower T2D risk, potentially mediated by benefits to obesity/sugar metabolism, inflammation, kidney and liver function. Achievable increases in intakes of specific flavonoid-rich foods have the potential to reduce T2D risk.
Collapse
Affiliation(s)
- Alysha S Thompson
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Amy Jennings
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Nicola P Bondonno
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
- Danish Cancer Society Research Centre (DCRC), Copenhagen, Denmark
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Anna Tresserra-Rimbau
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
- Department of Nutrition, Food Science and Gastronomy, XIA, School of Pharmacy and Food Sciences, INSA, University of Barcelona, 08921, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029, Madrid, Spain
| | - Benjamin H Parmenter
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Claire Hill
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Aurora Perez-Cornago
- Nuffield Department of Population Health, Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Tilman Kühn
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK.
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
- Medical University of Vienna, Center for Public Health, Vienna, Austria.
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg, Germany.
| | - Aedín Cassidy
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
13
|
de Souza ABF, de Matos NA, Castro TDF, Costa GDP, Talvani A, Nagato AC, de Menezes RCA, Bezerra FS. Preventive effects of hesperidin in an experimental model ofs acute lung inflammation. Respir Physiol Neurobiol 2024; 323:104240. [PMID: 38417564 DOI: 10.1016/j.resp.2024.104240] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
In this study, we hypothesized that long-term administration of hesperidin can modulate the inflammatory response and oxidative stress in animals submitted to mechanical ventilation (MV). Twenty-five C57BL/6 male mice were divided into 5 groups: control, MV, animals receiving hesperidin in three doses 10, 25 and 50 mg/kg. The animals received the doses of hesperidin for 30 days via orogastric gavage, and at the end of the period the animals were submitted to MV. In animals submitted to MV, increased lymphocyte, neutrophil and monocyte/macrophage cell counts were observed in the blood and airways. Associated to this, MV promoted an increase in inflammatory cytokine levels such as CCL2, IL-12 and TNFα. The daily administration of hesperidin in the three doses prevented the effects caused by MV, which was observed by a lower influx of inflammatory cells into the airways, a reduction in inflammatory markers and less oxidative damage.
Collapse
Affiliation(s)
- Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Akinori Cardozo Nagato
- Immunopathology Laboratory and Experimental Pathology, Reproductive Biology Center (CRB), Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Rodrigo Cunha Alvim de Menezes
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Mohammed ASA, Mohácsi G, Naveed M, Prorok J, Jost N, Virág L, Baczkó I, Topal L, Varró A. Cellular electrophysiological effects of the citrus flavonoid hesperetin in dog and rabbit cardiac ventricular preparations. Sci Rep 2024; 14:7237. [PMID: 38538818 PMCID: PMC10973458 DOI: 10.1038/s41598-024-57828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
Recent experimental data shows that hesperetin, a citrus flavonoid, affects potassium channels and can prolong the QTc interval in humans. Therefore, in the present study we investigated the effects of hesperetin on various transmembrane ionic currents and on ventricular action potentials. Transmembrane current measurements and action potential recordings were performed by patch-clamp and the conventional microelectrode techniques in dog and rabbit ventricular preparations. At 10 µM concentration hesperetin did not, however, at 30 µM significantly decreased the amplitude of the IK1, Ito, IKr potassium currents. Hesperetin at 3-30 µM significantly and in a concentration-dependent manner reduced the amplitude of the IKs current. The drug significantly decreased the amplitudes of the INaL and ICaL currents at 30 µM. Hesperetin (10 and 30 µM) did not change the action potential duration in normal preparations, however, in preparations where the repolarization reserve had been previously attenuated by 100 nM dofetilide and 1 µg/ml veratrine, caused a moderate but significant prolongation of repolarization. These results suggest that hesperetin at close to relevant concentrations inhibits the IKs outward potassium current and thereby reduces repolarization reserve. This effect in certain specific situations may prolong the QT interval and consequently may enhance proarrhythmic risk.
Collapse
Affiliation(s)
- Aiman Saleh A Mohammed
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Mohácsi
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
| | - Muhammad Naveed
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
| | - János Prorok
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Research Network, Szeged, Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Research Network, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary.
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Research Network, Szeged, Hungary.
| | - Leila Topal
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary.
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Research Network, Szeged, Hungary.
| |
Collapse
|
15
|
Ji Z, Deng W, Chen D, Liu Z, Shen Y, Dai J, Zhou H, Zhang M, Xu H, Dai B. Recent understanding of the mechanisms of the biological activities of hesperidin and hesperetin and their therapeutic effects on diseases. Heliyon 2024; 10:e26862. [PMID: 38486739 PMCID: PMC10937595 DOI: 10.1016/j.heliyon.2024.e26862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Flavonoids are natural phytochemicals that have therapeutic effects and act in the prevention of several pathologies. These phytochemicals can be found in lemon, sweet orange, bitter orange, clementine. Hesperidin and hesperetin are citrus flavonoids from the flavanones subclass that have anti-inflammatory, antioxidant, antitumor and antibacterial potential. Preclinical studies and clinical trials demonstrated therapeutical effects of hesperidin and its aglycone hesperetin in various diseases, such as bone diseases, cardiovascular diseases, neurological diseases, respiratory diseases, digestive diseases, urinary tract diseases. This review provides a comprehensive overview of the biological activities of hesperidin and hesperetin, their therapeutic potential in various diseases and their associated molecular mechanisms. This article also discusses future considerations for the clinical applications of hesperidin and hesperetin.
Collapse
Affiliation(s)
| | | | - Dong Chen
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Zhidong Liu
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Yucheng Shen
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Jiuming Dai
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Hai Zhou
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Miao Zhang
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Hucheng Xu
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Bin Dai
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| |
Collapse
|
16
|
Hsieh CY, Tsai PW, Tomioka Y, Matsumoto Y, Akiyama Y, Wang CC, Tayo LL, Lee CJ. Chronopharmacology of diuresis via metabolic profiling and key biomarker discovery of the traditional Chinese prescription Ji-Ming-San using tandem mass spectrometry in rat models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155260. [PMID: 38176264 DOI: 10.1016/j.phymed.2023.155260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Ji-Ming-Shan (JMS) is a traditional prescription used for patients with rheumatism, tendons swelling, relief of foot pain, athlete's foot, diuresis, gout. Although many studies have investigated the active compounds in each herb, the functional mechanism behind its therapeutic effect remains unclear. STUDY DESIGN Metabolic cages for sample collection. The serum components obtained from the experimental animals were analyzed using LC-MS/MS. Furthermore, cross-analysis using the software MetaboAnalyst and Venn diagrams were used to investigate chronopharmacology of JMS in the animal models. PURPOSE The aim of this study is to analyze the diuretic effects of JMS and to explore their chronopharmacology involved in organ regulation through four-quarter periods from serum samples of rat models. METHODS Metabolic cages were used for collecting the urine samples and PocketChem UA PU-4010, Fuji DRI-CHEM 800 were used to examine the urine biochemical parameters. The serum components were identified through ultra-performance liquid chromatography-quadrupole time-of-flight (UPLC-Q-TOF) with a new developed method. Cross analysis, Venn diagram, MetaboAnalyst were used to investigate the key biomarker and major metabolism route with the oral administration of the drug. RESULT JMS significantly changed the 6 h urine volume with no observed kidney toxicity. Urine pH value ranges from 7.0 to 7.5. The chronopharmacology of JMS diuresis activity were 0-6 and 6-12 groups. UPLC-Q-TOF analyses identified 243 metabolites which were determined in positive mode and negative mode respectively. With cross analysis in the Venn diagram, one key biomarker naringenin-7-O-glucoside has been identified. Major metabolic pathways such as 1: Glycerophospholipid metabolism, 2: Primary bile acid biosynthesis, 3: Sphingolipid metabolism, 4: Riboflavin metabolism, 5: Linoleic acid metabolism, 6: Butanoate metabolism. CONCLUSION JMS significantly changed the urine output of animals in the 0-6 and 6-12 groups. No change in urine pH was observed and also kidney toxicity. A new UPLC-Q-TOF method was developed for the detection of the metabolites of JMS after oral administration. The cross analysis with Venn diagram and identified the key biomarker of JMS namely naringenin-7-O-glucoside. The results showed that six major pathways are involved in the gastrointestinal system and the liver. This study demonstrated the capability of JMS prescription in the regulation of diuresis and identified a key biomarker that is responsible for its therapeutic effect.
Collapse
Affiliation(s)
- Cheng-Yang Hsieh
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Postal address: Teaching & research building, 250 Wu-Hsing Street, Taipei 110, Taiwan; Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai Japan
| | - Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai Japan
| | - Yotaro Matsumoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai Japan
| | - Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai Japan
| | - Ching-Chiung Wang
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Postal address: Teaching & research building, 250 Wu-Hsing Street, Taipei 110, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Lemmuel L Tayo
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, Intramuros, 1002 Metro Manila, Manila, Philippines; Department of Biology, School of Medicine and Health Sciences Mapua University, Makati, Philippines
| | - Chia-Jung Lee
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Postal address: Teaching & research building, 250 Wu-Hsing Street, Taipei 110, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
17
|
Bansal K, Singh V, Singh S, Mishra S. Neuroprotective Potential of Hesperidin as Therapeutic Agent in the Treatment of Brain Disorders: Preclinical Evidence-based Review. Curr Mol Med 2024; 24:316-326. [PMID: 36959141 DOI: 10.2174/1566524023666230320144722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 03/25/2023]
Abstract
Neurodegenerative disorders (NDs) are progressive morbidities that represent a serious health issue in the aging world population. There is a contemporary upsurge in worldwide interest in the area of traditional remedies and phytomedicines are widely accepted by researchers due to their health-promoted effects and fewer side effects. Hesperidin, a flavanone glycoside present in the peels of citrus fruits, possesses various biological activities including anti-inflammatory and antioxidant actions. In various preclinical studies, hesperidin has provided significant protective actions in a variety of brain disorders such as Alzheimer's disease, epilepsy, Parkinson's disease, multiple sclerosis, depression, neuropathic pain, etc. as well as their underlying mechanisms. The findings indicate that the neuroprotective effects of hesperidin are mediated by modulating antioxidant defence activities and neural growth factors, diminishing apoptotic and neuro-inflammatory pathways. This review focuses on the potential role of hesperidin in managing and treating diverse brain disorders.
Collapse
Affiliation(s)
- Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Vanshita Singh
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Sakshi Singh
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Samiksha Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| |
Collapse
|
18
|
Muralidharan J, Romain C, Bresciani L, Mena P, Angelino D, Del Rio D, Chung LH, Alcaraz PE, Cases J. Nutrikinetics and urinary excretion of phenolic compounds after a 16-week supplementation with a flavanone-rich ingredient. Food Funct 2023; 14:10506-10519. [PMID: 37943075 DOI: 10.1039/d3fo02820h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Background: Polyphenols are a broad group of compounds with a complex metabolic fate. Flavanones and their metabolites provide cardiovascular protection and assistance in long-term body composition management. Objective: This study evaluates the nutrikinetics and the bioavailability of phenolic compounds after both acute and chronic supplementation with a flavanone-rich product, namely Sinetrol® Xpur, in healthy overweight and obese volunteers. Design: An open-label study including 20 volunteers was conducted for 16 weeks. Participants received Sinetrol® Xpur, either a low dose (900 mg per day) or a high dose (1800 mg per day), in capsules during breakfast and lunch. They were advised to follow an individualized isocaloric diet and avoid a list of polyphenol-rich foods 48 hours before and during the pharmacokinetic measurements. Results: Over 20 phase II and colonic metabolites were measured in the plasma. Two peaks were observed at 1 h and 7h-10 h after the first capsule ingestion. No significant differences in the AUC were observed in circulating metabolites between both doses. In urine excretion, 53 metabolites were monitored, including human phase II and colonic metabolites, at weeks 1 and 16. Cumulative urine excretion was higher after the high dose than after the low dose in both acute and chronic studies. Total urinary metabolites were significantly lower in week 16 compared to week 1. Conclusion: Although the urinary excreted metabolites reduced significantly over 16 weeks, the circulating metabolites did not decrease significantly. This study suggests that chronic intake might not offer the same bioavailability as in the acute study, and this effect does not seem to be dose-dependent. The clinical trial registry number is NCT03823196.
Collapse
Affiliation(s)
| | - Cindy Romain
- Fytexia, ZAE via Europa - 3 rue d'Athènes, 34350 Vendres, France.
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Donato Angelino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, 64100, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Linda H Chung
- Research Center for High Performance Sport - UCAM Universidad Católica de Murcia, Murcia, Spain
- Department of Food and Nutrition Technology, Universidad Católica de Murcia, Murcia, Spain
| | - Pedro E Alcaraz
- Research Center for High Performance Sport - UCAM Universidad Católica de Murcia, Murcia, Spain
- Department of Food and Nutrition Technology, Universidad Católica de Murcia, Murcia, Spain
| | - Julien Cases
- Fytexia, ZAE via Europa - 3 rue d'Athènes, 34350 Vendres, France.
| |
Collapse
|
19
|
Abd El-Hack ME, de Oliveira MC, Attia YA, Kamal M, Almohmadi NH, Youssef IM, Khalifa NE, Moustafa M, Al-Shehri M, Taha AE. The efficacy of polyphenols as an antioxidant agent: An updated review. Int J Biol Macromol 2023; 250:126525. [PMID: 37633567 DOI: 10.1016/j.ijbiomac.2023.126525] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/07/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Global production of the two major poultry products, meat and eggs, has increased quickly. This, in turn, indicates both the relatively low cost and the customers' desire for these secure and high-quality products. Natural feed additives have become increasingly popular to preserve and enhance the health and productivity of poultry and livestock. We consume a lot of polyphenols, which are a kind of micronutrient. These are phytochemicals with positive effects on cardiovascular, cognitive, anti-inflammatory, detoxifying, anti-tumor, anti-pathogen, a catalyst for growth, and immunomodulating functions, among extra health advantages. Furthermore, high quantities of polyphenols have unknown and occasionally unfavorable impacts on the digestive tract health, nutrient assimilation, the activity of digestive enzymes, vitamin and mineral assimilation, the performance of the laying hens, and the quality of the eggs. This review clarifies the numerous sources, categories, biological functions, potential limitations on usage, and effects of polyphenols on poultry performance, egg composition, exterior and interior quality traits.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | | | - Youssef A Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Animal and Poultry Production, Faculty of Agriculture, Damnahur University, Damanhour 22516, Egypt
| | - Mahmoud Kamal
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Najlaa H Almohmadi
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O Box 715, Makkah 21955, Saudi Arabia
| | - Islam M Youssef
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohammed Al-Shehri
- Department of Biology, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22578, Egypt
| |
Collapse
|
20
|
Bednarska K, Fecka I, Scheijen JLJM, Ahles S, Vangrieken P, Schalkwijk CG. A Citrus and Pomegranate Complex Reduces Methylglyoxal in Healthy Elderly Subjects: Secondary Analysis of a Double-Blind Randomized Cross-Over Clinical Trial. Int J Mol Sci 2023; 24:13168. [PMID: 37685975 PMCID: PMC10488144 DOI: 10.3390/ijms241713168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Reactive α-dicarbonyls (α-DCs), such as methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), are potent precursors in the formation of advanced glycation end products (AGEs). In particular, MGO and MGO-derived AGEs are thought to be involved in the development of vascular complications in diabetes. Experimental studies showed that citrus and pomegranate polyphenols can scavenge α-DCs. Therefore, the aim of this study was to evaluate the effect of a citrus and pomegranate complex (CPC) on the α-DCs plasma levels in a double-blind, placebo-controlled cross-over trial, where thirty-six elderly subjects were enrolled. They received either 500 mg of Citrus sinensis peel extract and 200 mg of Punica granatum concentrate in CPC capsules or placebo capsules for 4 weeks, with a 4-week washout period in between. For the determination of α-DCs concentrations, liquid chromatography tandem mass spectrometry was used. Following four weeks of CPC supplementation, plasma levels of MGO decreased by 9.8% (-18.7 nmol/L; 95% CI: -36.7, -0.7 nmol/L; p = 0.042). Our findings suggest that CPC supplementation may represent a promising strategy for mitigating the conditions associated with MGO involvement. This study was registered on clinicaltrials.gov as NCT03781999.
Collapse
Affiliation(s)
- Katarzyna Bednarska
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Izabela Fecka
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
- The Committee on Therapeutics and Pharmaceutical Sciences, The Polish Academy of Sciences, Pl. Defilad 1, 00-901 Warsaw, Poland
| | - Jean L. J. M. Scheijen
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.J.M.S.); (P.V.); (C.G.S.)
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Sanne Ahles
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
- BioActor BV, 6229 GS Maastricht, The Netherlands
| | - Philippe Vangrieken
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.J.M.S.); (P.V.); (C.G.S.)
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Casper G. Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.J.M.S.); (P.V.); (C.G.S.)
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
21
|
José FJS, Collado-Fernández M, Álvarez-Castellanos PP. Variation, during Shelf Life, of Functional Properties of Biscuits Enriched with Fibers Extracted from Artichoke ( Cynara scolymus L.). Nutrients 2023; 15:3329. [PMID: 37571267 PMCID: PMC10421366 DOI: 10.3390/nu15153329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
To boost revaluation of industrial by-products of artichoke, this research tries to determine the stability throughout storage of phenolic compounds and their antioxidant activity in biscuits enriched with fiber-rich powders extracted from b y-products of artichokes (FRPA). To determine the most stable extraction method, biscuits were formulated with FRPA extracted by two different environmentally friendly extraction solvents: water (W) and a solution of 1% CaCl2∙5H2O (CA) and compared with biscuits made with pea fiber (P) and control biscuits (B) without fiber added. Initially and during storage, the biscuits enriched with FRPA (W, CA) showed a higher content of bioavailable polyphenols and antioxidant activity compared to the control biscuits (B) and the reference fiber (P, pea fiber). In conclusion, FRPA are an excellent source of bioavailable fiber with antioxidant activity, but especially the FRPA extracted with 1% CaCl2∙5H2O (CA), and they could present a good alternative to the use of pea fiber.
Collapse
Affiliation(s)
- Francisco José San José
- Centro de Innovación y Tecnología Alimentaria de La Rioja, CTIC-CITA La Rioja C/Los Huertos 2, 26500 Calahorra, La Rioja, Spain
- Departamento de Biotecnología y Ciencia de Los Alimentos, Universidad de Burgos, Plaza Misael Bañuelos, sn., 09001 Burgos, Spain;
| | - Montserrat Collado-Fernández
- Departamento de Biotecnología y Ciencia de Los Alimentos, Universidad de Burgos, Plaza Misael Bañuelos, sn., 09001 Burgos, Spain;
| | - Pino P. Álvarez-Castellanos
- Departamento de Ingeniería Agrícola, Universidad Católica de Ávila, UCAV, C/Canteros, sn., 05005 Ávila, Spain;
| |
Collapse
|
22
|
Shekaari H, Zafarani-Moattar MT, Mokhtarpour M, Faraji S. Solubility of hesperidin drug in aqueous biodegradable acidic choline chloride-based deep eutectic solvents. Sci Rep 2023; 13:11276. [PMID: 37438381 DOI: 10.1038/s41598-023-38120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
Important efforts have been made over the past years to improve the drug acts, which leads to the discovery of novel drug preparations and delivery systems. The selection of suitable green solvents for novel drug discovery and drug delivery depends on a molecular-level understanding of the interaction between drug molecules and the solvents. Deep eutectic solvents (DESs) are already used in sustainable extraction methods of natural products for their very high solvent power, high chemical and thermal stability, non-toxicity, and non-flammable. The thermodynamic investigation provides deep and complete knowledge of interactions and the choice of appropriate and suitable production compounds in pharmaceutical fields. Particularly, the analysis of drugs+DESs in aqueous media is a central issue in many types of research. This research is aimed to determine hesperidin (HES) solubility in water and DES solvents [choline chloride/citric acid (ChCl/CA), choline chloride/oxalic acid (ChCl/OA), choline chloride/malonic acid (ChCl/MA), and choline chloride/lactic acid (ChCl/LA)] at temperature range (298.15-313.15 K). Furthermore, the measured solubility data of HES in studied aqueous DESs solutions was fitted by models of Van't Hoff-Jouyban-Acree and Modified Apelblat-Jouyban-Acree. Finally, the Hansen solubility parameters as thermodynamic aspect for analyzing the dissolution processes for the four investigated aqueous DESs solutions were estimated.
Collapse
Affiliation(s)
- Hemayat Shekaari
- Department of Physical Chemistry, University of Tabriz, Tabriz, Iran.
| | | | | | - Saeid Faraji
- Department of Physical Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
23
|
Sip S, Sip A, Miklaszewski A, Żarowski M, Cielecka-Piontek J. Zein as an Effective Carrier for Hesperidin Delivery Systems with Improved Prebiotic Potential. Molecules 2023; 28:5209. [PMID: 37446871 DOI: 10.3390/molecules28135209] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Hesperidin is a polyphenol derived from citrus fruits that has a broad potential for biological activity and the ability to positively modify the intestinal microbiome. However, its activity is limited by its low solubility and, thus, its bioavailability-this research aimed to develop a zein-based hesperidin system with increased solubility and a sustained release profile. The study used triple systems enriched with solubilizers to maximize solubility. The best system was the triple system hesperidin-zein-Hpβ-CD, for which the solubility improved by more than six times. A significant improvement in the antioxidant activity and the ability to inhibit α-glucosidase was also demonstrated, due to an improved solubility. A release profile analysis was performed in the subsequent part of the experiments, confirming the sustained release profile of hesperidin, while improving the solubility. Moreover, the ability of selected probiotic bacteria to metabolize hesperidin and the effect of this flavonoid compound on their growth were investigated.
Collapse
Affiliation(s)
- Szymon Sip
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Anna Sip
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Andrzej Miklaszewski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49, 60-355 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
24
|
Paczkowska-Walendowska M, Miklaszewski A, Cielecka-Piontek J. Improving Solubility and Permeability of Hesperidin through Electrospun Orange-Peel-Extract-Loaded Nanofibers. Int J Mol Sci 2023; 24:ijms24097963. [PMID: 37175671 PMCID: PMC10178203 DOI: 10.3390/ijms24097963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Orange peel, which is a rich source of polyphenolic compounds, including hesperidin, is produced as waste in production. Therefore, optimization of the extraction of hesperidin was performed to obtain its highest content. The influence of process parameters such as the kind of extraction mixture, its temperature and the number of repetitions of the cycles on hesperidin content, the total content of phenolic compounds and antioxidant (DPPH scavenging assay) as well as anti-inflammation activities (inhibition of hyaluronidase activity) was checked. Methanol and temperature were key parameters determining the efficiency of extraction in terms of the possibility of extracting compounds with the highest biological activity. The optimal parameters of the orange peel extraction process were 70% of methanol in the extraction mixture, a temperature of 70 °C and 4 cycles per 20 min. The second part of the work focuses on developing electrospinning technology to synthesize nanofibers of polyvinylpyrrolidone (PVP) and hydroxypropyl-β-cyclodextrin (HPβCD) loaded with hesperidin-rich orange peel extract. This is a response to the circumvention of restrictions in the use of hesperidin due to its poor bioavailability resulting from low solubility and permeability. Dissolution studies showed improved hesperidin solubility (over eight-fold), while the PAMPA-GIT assay confirmed significantly better transmucosal penetration (over nine-fold). A DPPH scavenging assay of antioxidant activity as well as inhibition of hyaluronidase to express anti-inflammation activity was established for hesperidin in prepared electrospun nanofibers, especially those based on HPβCD and PVP. Thus, hesperidin-rich orange peel nanofibers may have potential buccal applications to induce improved systemic effects with pro-health biological activity.
Collapse
Affiliation(s)
| | - Andrzej Miklaszewski
- Faculty of Mechanical Engineering and Management, Institute of Materials Science and Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
25
|
Prasad S, Kumar V, Singh C, Singh A. Crosstalk between phytochemicals and inflammatory signaling pathways. Inflammopharmacology 2023; 31:1117-1147. [PMID: 37022574 DOI: 10.1007/s10787-023-01206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Novel bioactive constituents from natural sources are actively being investigated. The phytochemicals in these phenolic compounds are believed to have a variety of beneficial effects on human health. Several phenolic compounds have been found in plants. The antioxidant potential of phenols has been discussed in numerous studies along with their anti-inflammatory effects on pro-inflammatory cytokine, inducible cyclooxygenase-2, and nitric oxide synthase. Through current study, an attempt is made to outline and highlight a wide variety of inflammation-associated signaling pathways that have been modified by several natural compounds. These signaling pathways include nuclear factor-kappa B (NF-кB), activator protein (AP)-1, protein tyrosine kinases (PTKs), mitogen-activated protein kinases (MAPKs), nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factors, tyrosine phosphatidylinositol 3-kinase (PI3K)/AKT, and the ubiquitin-proteasome system. In light of the influence of natural substances on signaling pathways, their impact on the production of inflammatory mediator is highlighted in this review.
Collapse
Affiliation(s)
- Sonima Prasad
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, H.N.B. Garhwal University, Srinagar, Garhwal, 246174, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| |
Collapse
|
26
|
Camacho MDM, Martínez-Lahuerta JJ, García-Martínez E, Igual M, Martínez-Navarrete N. Bioavailability of Bioactive Compounds from Reconstituted Grapefruit Juice as Affected by the Obtention Process. Molecules 2023; 28:molecules28072904. [PMID: 37049665 PMCID: PMC10095604 DOI: 10.3390/molecules28072904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Much attention has been paid to the health benefits of including fruits and vegetables in the diet. However, for the compounds responsible for this beneficial effect to be effective at the level of the human organism, they must be available for absorption after digestion. In this sense, in vivo studies are needed to demonstrate the bioavailability of these compounds and their physiological activity. In order to provide information in this regard, this study collects data on the levels of vitamin C (VC) and naringenin (NAG) in the blood serum of the 11 volunteer participants in this trial, before and after consuming two different grapefruit juices. The juices were prepared by rehydrating the grapefruit powder obtained by freeze-drying (FD) the fruit puree or by spray-drying (SD) the liquefied grapefruit. No significant differences (p > 0.05) neither by juice nor by participant were observed in any case. The mean relative increase of VC, NAG and the radical scavenging ability (RSA) in blood serum due to grapefruit juices intake was 12%, 28% and 26%, respectively. Just VC showed a positive and significant Pearson's correlation with RSA. The mean bioavailability of VC was quantified as 1.529 ± 0.002 mg VC/L serum per 100 mg of VC ingested.
Collapse
Affiliation(s)
- María Del Mar Camacho
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Juan José Martínez-Lahuerta
- CA Juan Llorens, Departamento Valencia-Hospital General, Consellería de Sanitat Universal i Salud Pública, Generalitat Valenciana, 46008 Valencia, Spain
| | - Eva García-Martínez
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Marta Igual
- I-Food IAD, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Nuria Martínez-Navarrete
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
27
|
Qiu M, Wei W, Zhang J, Wang H, Bai Y, Guo DA. A Scientometric Study to a Critical Review on Promising Anticancer and Neuroprotective Compounds: Citrus Flavonoids. Antioxidants (Basel) 2023; 12:antiox12030669. [PMID: 36978916 PMCID: PMC10045114 DOI: 10.3390/antiox12030669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Flavonoids derived from citrus plants are favored by phytomedicinal researchers due to their wide range of biological activities, and relevant studies have been sustained for 67 years (since the first paper published in 1955). In terms of a scientometric and critical review, the scientometrics of related papers, chemical structures, and pharmacological action of citrus flavonoids were comprehensively summarized. The modern pharmacological effects of citrus flavonoids are primarily focused on their anticancer activities (such as breast cancer, gastric cancer, lung cancer, and liver cancer), neuroprotective effects (such as anti-Alzheimer’s disease, Parkinson’s disease), and metabolic diseases. Furthermore, the therapeutic mechanism of cancers (including inducing apoptosis, inhibiting cell proliferation, and inhibiting cancer metastasis), neuroprotective effects (including antioxidant and anti-inflammatory), and metabolic diseases (such as non-alcoholic fatty liver disease, type 2 diabetes mellitus) were summarized and discussed. We anticipate that this review could provide an essential reference for anti-cancer and neuroprotective research of citrus flavonoids and provide researchers with a comprehensive understanding of citrus flavonoids.
Collapse
Affiliation(s)
- Mingyang Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianqing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hanze Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuxin Bai
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-an Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence:
| |
Collapse
|
28
|
Bellavite P. Neuroprotective Potentials of Flavonoids: Experimental Studies and Mechanisms of Action. Antioxidants (Basel) 2023; 12:antiox12020280. [PMID: 36829840 PMCID: PMC9951959 DOI: 10.3390/antiox12020280] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Neurological and neurodegenerative diseases, particularly those related to aging, are on the rise, but drug therapies are rarely curative. Functional disorders and the organic degeneration of nervous tissue often have complex causes, in which phenomena of oxidative stress, inflammation and cytotoxicity are intertwined. For these reasons, the search for natural substances that can slow down or counteract these pathologies has increased rapidly over the last two decades. In this paper, studies on the neuroprotective effects of flavonoids (especially the two most widely used, hesperidin and quercetin) on animal models of depression, neurotoxicity, Alzheimer's disease (AD) and Parkinson's disease are reviewed. The literature on these topics amounts to a few hundred publications on in vitro and in vivo models (notably in rodents) and provides us with a very detailed picture of the action mechanisms and targets of these substances. These include the decrease in enzymes that produce reactive oxygen and ferroptosis, the inhibition of mono-amine oxidases, the stimulation of the Nrf2/ARE system, the induction of brain-derived neurotrophic factor production and, in the case of AD, the prevention of amyloid-beta aggregation. The inhibition of neuroinflammatory processes has been documented as a decrease in cytokine formation (mainly TNF-alpha and IL-1beta) by microglia and astrocytes, by modulating a number of regulatory proteins such as Nf-kB and NLRP3/inflammasome. Although clinical trials on humans are still scarce, preclinical studies allow us to consider hesperidin, quercetin, and other flavonoids as very interesting and safe dietary molecules to be further investigated as complementary treatments in order to prevent neurodegenerative diseases or to moderate their deleterious effects.
Collapse
|
29
|
Mhalhel K, Sicari M, Pansera L, Chen J, Levanti M, Diotel N, Rastegar S, Germanà A, Montalbano G. Zebrafish: A Model Deciphering the Impact of Flavonoids on Neurodegenerative Disorders. Cells 2023; 12:252. [PMID: 36672187 PMCID: PMC9856690 DOI: 10.3390/cells12020252] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past century, advances in biotechnology, biochemistry, and pharmacognosy have spotlighted flavonoids, polyphenolic secondary metabolites that have the ability to modulate many pathways involved in various biological mechanisms, including those involved in neuronal plasticity, learning, and memory. Moreover, flavonoids are known to impact the biological processes involved in developing neurodegenerative diseases, namely oxidative stress, neuroinflammation, and mitochondrial dysfunction. Thus, several flavonoids could be used as adjuvants to prevent and counteract neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Zebrafish is an interesting model organism that can offer new opportunities to study the beneficial effects of flavonoids on neurodegenerative diseases. Indeed, the high genome homology of 70% to humans, the brain organization largely similar to the human brain as well as the similar neuroanatomical and neurochemical processes, and the high neurogenic activity maintained in the adult brain makes zebrafish a valuable model for the study of human neurodegenerative diseases and deciphering the impact of flavonoids on those disorders.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Maria Levanti
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Nicolas Diotel
- Université de la Réunion, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, F-97490 Sainte-Clotilde, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
30
|
Orange juice intake and lipid profile: a systematic review and meta-analysis of randomised controlled trials. J Nutr Sci 2023; 12:e37. [PMID: 37008412 PMCID: PMC10052563 DOI: 10.1017/jns.2023.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/19/2023] Open
Abstract
Abstract
Dyslipidaemia is a metabolic anomaly which has been related to numerous morbidities. Orange juice (OJ) is a popular flavonoid-rich drink consumed worldwide. Due to the existing controversies regarding its impact on blood lipids, we decided to investigate the impact of OJ supplementation on lipid profile parameters. Major scientific databases (Cochrane library, Scopus, PubMed and Embase) were searched. Pooled effects sizes were reported as weighted mean difference (WMD) and 95 % confidence intervals (CIs). Out of 6334 articles retrieved by the initial search, 9 articles met our inclusion criteria. Overall, supplementation with OJ did not exert any significant effects on blood levels of TG (WMD −1·53 mg/dl, 95 % CI −6·39, 3·32, P = 0·536), TC (WMD −5·91 mg/dl, 95 % CI −13·26, 1·43, P = 0·114) or HDL-C (WMD 0·61 mg/ dl, 95 % CI −0·61, 1·82, P = 0·333). OJ consumption did reduce LDL-C levels significantly (WMD −8·35 mg/dl, 95 % CI −15·43, −1·26, P = 0·021). Overall, we showed that the consumption of OJ may not be beneficial in improving serum levels of TG, TC or HDL-C. Contrarily, we showed that daily intake of OJ, especially more than 500 ml/d, might be effective in reducing LDL-C levels. In the light of the existing inconsistencies, we propose that further high-quality interventions be conducted in order to make a solid conclusion.
Collapse
|
31
|
Visvanathan R, Williamson G. Review of factors affecting citrus polyphenol bioavailability and their importance in designing in vitro, animal, and intervention studies. Compr Rev Food Sci Food Saf 2022; 21:4509-4545. [PMID: 36183163 DOI: 10.1111/1541-4337.13057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 07/07/2022] [Accepted: 09/07/2022] [Indexed: 01/28/2023]
Abstract
Evidence from in vitro, animal, and human studies links citrus fruit consumption with several health-promoting effects. However, many in vitro studies disregard bioavailability data, a key factor determining responses in humans. Citrus (poly)phenol metabolism and bioavailability follow specific pathways that vary widely among individuals and are affected by several intrinsic (age, sex, gut microbiota, metabolic state, genetic polymorphisms) and extrinsic (food matrix, co-consumed food, (poly)phenol solubility, dose, food processing, lifestyle) factors. The gut microbiota is crucial to both absorption of citrus (poly)phenols and the production of catabolites, and absorption of both takes place mostly in the colon. Citrus (poly)phenol absorption can reach up to 100% in some individuals when the sum of the gut microbiota products are taken into account. This review emphasizes the importance of understanding citrus (poly)phenol absorption, metabolism, and bioavailability using evidence primarily derived from human studies in designing in vitro, animal, and further human clinical studies.
Collapse
Affiliation(s)
- Rizliya Visvanathan
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| |
Collapse
|
32
|
Moriwaki M, Kito K, Nakagawa R, Tominaga E, Kapoor MP, Matsumiya Y, Fukuhara T, Yamagata H, Katsumata T, Minegawa K. Mutagenic, Acute, and Subchronic Toxicity Studies of the Hesperetin-7-Glucoside-β-Cyclodextrin Inclusion Complex. Int J Toxicol 2022; 42:50-62. [PMID: 36280476 PMCID: PMC9841476 DOI: 10.1177/10915818221134022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hesperetin glucosides such as hesperidin and hesperetin-7-glucoside are abundantly present in citrus fruits and have various pharmacological properties. However, the potential toxicity of hesperetin glucosides remains unclear. An initial assessment of the safety of hesperetin-7-glucoside-β-cyclodextrin inclusion complex (HPTGCD) as a functional food ingredient was undertaken to assess toxicity and mutagenic potential. A bacterial reverse mutation assay (Ames test) using Salmonella typhimurium (strains TA98, TA1535, TA100, and TA1537) and Escherichia coli (strain WP2 uvrA) with HPTGCD (up to 5000 µg/plate) in the absence and presence of metabolic activation was negative. In a single oral (gavage) toxicity study in male and female rats, HPTGCD at dose up to 2000 mg/kg did not produce mortality nor clinical signs of toxicity or change in body weight. In a subchronic oral (dietary admix) toxicity study in rats receiving 0, 1.5, 3, and 5% HPTGCD for 13 weeks, no adverse effects were noted and the no-observed-adverse-effect level (NOAEL) was 5% in the diet (equivalent to 3267.7 mg/kg/day for males and to 3652.4 mg/kg/day for females). These results provide initial evidence of the safety of HPTGCD.
Collapse
Affiliation(s)
- Masamitsu Moriwaki
- Taiyo Kagaku Co. Ltd., Nutrition
Division, Mie, Japan,Masamitsu Moriwaki, Taiyo Kagaku Co. Ltd.,
Nutrition Division, 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan.
| | - Kento Kito
- Taiyo Kagaku Co. Ltd., Nutrition
Division, Mie, Japan
| | - Ryo Nakagawa
- Taiyo Kagaku Co. Ltd., Nutrition
Division, Mie, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sheridan R, Spelman K. Polyphenolic promiscuity, inflammation-coupled selectivity: Whether PAINs filters mask an antiviral asset. Front Pharmacol 2022; 13:909945. [PMID: 36339544 PMCID: PMC9634583 DOI: 10.3389/fphar.2022.909945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2023] Open
Abstract
The Covid-19 pandemic has elicited much laboratory and clinical research attention on vaccines, mAbs, and certain small-molecule antivirals against SARS-CoV-2 infection. By contrast, there has been comparatively little attention on plant-derived compounds, especially those that are understood to be safely ingested at common doses and are frequently consumed in the diet in herbs, spices, fruits and vegetables. Examining plant secondary metabolites, we review recent elucidations into the pharmacological activity of flavonoids and other polyphenolic compounds and also survey their putative frequent-hitter behavior. Polyphenols, like many drugs, are glucuronidated post-ingestion. In an inflammatory milieu such as infection, a reversion back to the active aglycone by the release of β-glucuronidase from neutrophils and macrophages allows cellular entry of the aglycone. In the context of viral infection, virions and intracellular virus particles may be exposed to promiscuous binding by the polyphenol aglycones resulting in viral inhibition. As the mechanism's scope would apply to the diverse range of virus species that elicit inflammation in infected hosts, we highlight pre-clinical studies of polyphenol aglycones, such as luteolin, isoginkgetin, quercetin, quercetagetin, baicalein, curcumin, fisetin and hesperetin that reduce virion replication spanning multiple distinct virus genera. It is hoped that greater awareness of the potential spatial selectivity of polyphenolic activation to sites of pathogenic infection will spur renewed research and clinical attention for natural products antiviral assaying and trialing over a wide array of infectious viral diseases.
Collapse
Affiliation(s)
| | - Kevin Spelman
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
- Health Education and Research, Driggs, ID, United States
| |
Collapse
|
34
|
Shi X, Zhao L, Niu L, Yan Y, Chen Q, Jin Y, Li X. Oral Intervention of Narirutin Ameliorates the Allergic Response of Ovalbumin Allergy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13313-13326. [PMID: 36217946 DOI: 10.1021/acs.jafc.2c05383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A new intervention was investigated for the induction of oral tolerance (OT) of OVA using narirutin by in vivo and in vitro experiments combined with network pharmacology and structural analysis of molecular docking. Narirutin (and its metabolism naringenin) has effects on OT by affecting B cell function, DCs, and T cell response by prediction. It was verified that narirutin could affect B cell function of secreting antibodies, thereby reducing the ability of DCs to absorb antigens by affecting GATA3, CCR7, STAT5, and MHCII expression and regulating T cell response by suppressing Th2 and improving Treg cells in vivo. Molecular docking showed that steric hindrance effects may be the reason for weaker binding energy with targets of narirutin. However, this does not mean that it has no bioactivity, for it can inhibit mast cell degranulation. This finding is interesting because it offers the possibility of using natural compounds to promote oral tolerance.
Collapse
Affiliation(s)
- Xiaolei Shi
- College of Food Science and Engineering, Jilin University, Changchun130012, P. R. China
| | - Lina Zhao
- College of Food Science and Engineering, Jilin University, Changchun130012, P. R. China
| | - Liyan Niu
- College of Food Science and Engineering, Jilin University, Changchun130012, P. R. China
| | - Yixuan Yan
- College of Food Science and Engineering, Jilin University, Changchun130012, P. R. China
| | - Qiushi Chen
- College of Food Science and Engineering, Jilin University, Changchun130012, P. R. China
| | - Yongri Jin
- College of Chemistry, Jilin University, Changchun130012, P. R. China
| | - Xuwen Li
- College of Chemistry, Jilin University, Changchun130012, P. R. China
| |
Collapse
|
35
|
Ding S, Wang P, Pang X, Zhang L, Qian L, Jia X, Chen W, Ruan S, Sun L. The new exploration of pure total flavonoids extracted from Citrus maxima (Burm.) Merr. as a new therapeutic agent to bring health benefits for people. Front Nutr 2022; 9:958329. [PMID: 36276813 PMCID: PMC9582534 DOI: 10.3389/fnut.2022.958329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The peel and fruit of Citrus varieties have been a raw material for some traditional Chinese medicine (TCM). Pure total flavonoids from Citrus maxima (Burm.) Merr. (PTFC), including naringin, hesperidin, narirutin, and neohesperidin, have been attracted increasing attention for their multiple clinical efficacies. Based on existing in vitro and in vivo research, this study systematically reviewed the biological functions of PTFC and its components in preventing or treating liver metabolic diseases, cardiovascular diseases, intestinal barrier dysfunction, as well as malignancies. PTFC and its components are capable of regulating glycolipid metabolism, blocking peroxidation and persistent inflammation, inhibiting tumor progression, protecting the integrity of intestinal barrier and positively regulating intestinal microbiota, while the differences in fruit cultivation system, picking standard, manufacturing methods, delivery system and individual intestinal microecology will have impact on the specific therapeutic effect. Thus, PTFC is a promising drug for the treatment of some chronic diseases, as well as continuous elaborate investigations are necessary to improve its effectiveness and bioavailability.
Collapse
Affiliation(s)
- Shuning Ding
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peipei Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi Pang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Leyin Zhang
- Department of Medical Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Lihui Qian
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinru Jia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenqian Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
36
|
Zou J, Wang J, Ye W, Lu J, Li C, Zhang D, Ye W, Xu S, Chen C, Liu P, Liu Z. Citri Reticulatae Pericarpium (Chenpi): A multi-efficacy pericarp in treating cardiovascular diseases. Biomed Pharmacother 2022; 154:113626. [PMID: 36058153 DOI: 10.1016/j.biopha.2022.113626] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
Citri Reticulatae Pericarpium (CRP) has been utilized as a versatile medicinal herb with wide cardiovascular benefits in Asian nations for centuries. Accumulating evidence suggests that CRP and its components are effective in preventing cardiovascular diseases (CVDs) such as atherosclerosis, myocardial infarction, myocardial ischemia, arrhythmia, cardiac hypertrophy, heart failure, and hypertension. Studies show that the two most bioactive components of CRP are flavonoids and volatile oils. The cardiovascular protective effects of CRP have attracted considerable research interest due to its hypolipidemic, antiplatelet activity, antioxidant and anti-inflammatory effects. Hereby, we provide a rigorous and up-to-date overview of the cardiovascular protective properties and the potential molecular targets of CRP, and finally highlight the pharmacokinetics and the therapeutic potential of the main pharmacologically active components of CRP to treat CVDs.
Collapse
Affiliation(s)
- Jiami Zou
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, 511436 Guangzhou, China
| | - Jiaojiao Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, 511436 Guangzhou, China; Department of Critical Care Medicine, Maoming People's Hospital, Maoming, 525000 Guangdong, China
| | - Weile Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, 511436 Guangzhou, China
| | - Jing Lu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chengzhi Li
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, 511436 Guangzhou, China
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, 511436 Guangzhou, China
| | - Suowen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chunbo Chen
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, 525000 Guangdong, China
| | - Peiqing Liu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhiping Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, 511436 Guangzhou, China.
| |
Collapse
|
37
|
Dehghan M, Fathinejad F, Farzaei MH, Barzegari E. In silico unraveling of molecular anti-neurodegenerative profile of Citrus medica flavonoids against novel pharmaceutical targets. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Li X, Yao Y, Wang Y, Hua L, Wu M, Chen F, Deng ZY, Luo T. Effect of Hesperidin Supplementation on Liver Metabolomics and Gut Microbiota in a High-Fat Diet-Induced NAFLD Mice Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11224-11235. [PMID: 36048007 DOI: 10.1021/acs.jafc.2c02334] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study investigated the mechanism underlying the impact of hesperidin (HES) on nonalcoholic fatty liver (NAFLD). C57BL/6J male mice were administered a low-fat diet, high-fat diet (HFD), or HFD plus 0.2% (wt/wt) HES (HFD + HES) diet. After 16 weeks of intervention, the mice in the HFD+HES group showed a lower final body weight and liver weight and improved serum lipid profiles when compared with the HFD group. Alleviation of liver dysfunction induced by HFD was observed in HES-fed mice, and the expression of genes involved in lipid metabolism was also altered. Moreover, HES changed the composition of the intestinal microbiota and enriched specific genera such as Bacteroidota. Liver metabolomics analysis indicated that HES enhanced the abundance of metabolites in arginine-related as well as mitochondrial oxidation-related pathways, and these metabolites were predicted to be positively correlated with the gut genera enriched by HES. Together, these results indicate that HFD-fed mice supplemented with HES showed a markedly regulated hepatic metabolism concurrent with shifts in specific gut bacteria.
Collapse
Affiliation(s)
- Xiaoping Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yexuan Yao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Lun Hua
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611134, China
| | - Min Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Fang Chen
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | | |
Collapse
|
39
|
Hesperetin from Root Extract of Clerodendrum petasites S. Moore Inhibits SARS-CoV-2 Spike Protein S1 Subunit-Induced NLRP3 Inflammasome in A549 Lung Cells via Modulation of the Akt/MAPK/AP-1 Pathway. Int J Mol Sci 2022; 23:ijms231810346. [PMID: 36142258 PMCID: PMC9498987 DOI: 10.3390/ijms231810346] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Inhibition of inflammatory responses from the spike glycoprotein of SARS-CoV-2 (Spike) by targeting NLRP3 inflammasome has recently been developed as an alternative form of supportive therapy besides the traditional anti-viral approaches. Clerodendrum petasites S. Moore (C. petasites) is a Thai traditional medicinal plant possessing antipyretic and anti-inflammatory activities. In this study, C. petasites ethanolic root extract (CpEE) underwent solvent-partitioned extraction to obtain the ethyl acetate fraction of C. petasites (CpEA). Subsequently, C. petasites extracts were determined for the flavonoid contents and anti-inflammatory properties against spike induction in the A549 lung cells. According to the HPLC results, CpEA significantly contained higher amounts of hesperidin and hesperetin flavonoids than CpEE (p < 0.05). A549 cells were then pre-treated with either C. petasites extracts or its active flavonoids and were primed with 100 ng/mL of spike S1 subunit (Spike S1) and determined for the anti-inflammatory properties. The results indicate that CpEA (compared with CpEE) and hesperetin (compared with hesperidin) exhibited greater anti-inflammatory properties upon Spike S1 induction through a significant reduction in IL-6, IL-1β, and IL-18 cytokine releases in A549 cells culture supernatant (p < 0.05). Additionally, CpEA and hesperetin significantly inhibited the Spike S1-induced inflammatory gene expressions (NLRP3, IL-1β, and IL-18, p < 0.05). Mechanistically, CpEA and hesperetin attenuated inflammasome machinery protein expressions (NLRP3, ASC, and Caspase-1), as well as inactivated the Akt/MAPK/AP-1 pathway. Overall, our findings could provide scientific-based evidence to support the use of C. petasites and hesperetin in the development of supportive therapies for the prevention of COVID-19-related chronic inflammation.
Collapse
|
40
|
Kapoor MP, Moriwaki M, Minoura K, Timm D, Abe A, Kito K. Structural Investigation of Hesperetin-7-O-Glucoside Inclusion Complex with β-Cyclodextrin: A Spectroscopic Assessment. Molecules 2022; 27:molecules27175395. [PMID: 36080157 PMCID: PMC9457751 DOI: 10.3390/molecules27175395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Flavonoids are biologically active natural products of great interest for their potential applications in functional foods and pharmaceuticals. A hesperetin-7-O-glucoside inclusion complex with β-cyclodextrin (HEPT7G/βCD; SunActive® HCD) was formulated via the controlled enzymatic hydrolysis of hesperidin with naringinase enzyme. The conversion rate was nearly 98%, estimated using high-performance liquid chromatography analysis. The objective of this study was to investigate the stability, solubility, and spectroscopic features of the HEPT7G/βCD inclusion complex using Fourier-transform infrared (FTIR), Raman, ultraviolet–visible absorption (UV–vis), 1H- and 13C- nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), liquid chromatography/mass spectroscopy (LC–MS), scanning electron microscopy (SEM), and powdered X-ray diffraction (PXRD) spectroscopic techniques including zeta potential, Job’s plot, and phase solubility measurements. The effects of complexation on the profiles of supramolecular interactions in analytic features, especially the chemical shifts of β-CD protons in the presence of the HEPT7G moiety, were evaluated. The stoichiometric ratio, stability, and solubility constants (binding affinity) describe the extent of complexation of a soluble complex in 1:1 stoichiometry that exhibits a greater affinity and fits better into the β-CD inner cavity. The NMR spectroscopy results identified two different configurations of the HEPT7G moiety and revealed that the HEPT7G/βCD inclusion complex has both –2S and –2R stereoisomers of hesperetin-7-O-glucoside possibly in the –2S/–2R epimeric ratio of 1/1.43 (i.e., –2S: 41.1% and –2R: 58.9%). The study indicated that encapsulation of the HEPT7G moiety in β-CD is complete inclusion, wherein both ends of HEPT7G are included in the β-CD inner hydrophobic cavity. The results showed that the water solubility and thermal stability of HEPT7G were apparently increased in the inclusion complex with β-CD. This could potentially lead to increased bioavailability of HEPT7G and enhanced health benefits of this flavonoid.
Collapse
Affiliation(s)
- Mahendra P. Kapoor
- Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi 510-0844, Japan
- Correspondence:
| | - Masamitsu Moriwaki
- Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi 510-0844, Japan
| | - Katsuhiko Minoura
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Derek Timm
- Taiyo International Inc., Minneapolis, MN 55416, USA
| | - Aya Abe
- Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi 510-0844, Japan
| | - Kento Kito
- Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi 510-0844, Japan
| |
Collapse
|
41
|
A Comparative Study of Hesperetin, Hesperidin and Hesperidin Glucoside: Antioxidant, Anti-Inflammatory, and Antibacterial Activities In Vitro. Antioxidants (Basel) 2022; 11:antiox11081618. [PMID: 36009336 PMCID: PMC9405481 DOI: 10.3390/antiox11081618] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/21/2022] Open
Abstract
The antioxidant, anti-inflammatory and antibacterial activities of hesperetin, hesperidin and hesperidin glucoside with different solubility were compared in vitro. Hesperetin was prepared by enzymatic hydrolysis from hesperidin, and hesperidin glucoside composed of hesperidin mono-glucoside was prepared from hesperidin through enzymatic transglycosylation. Solubility of the compounds was different: the partition coefficient (log P) was 2.85 ± 0.02 for hesperetin, 2.01 ± 0.02 for hesperidin, and −3.04 ± 0.03 for hesperidin glucoside. Hesperetin showed a higher effect than hesperidin and hesperidin glucoside on radical scavenging activity in antioxidant assays, while hesperidin and hesperidin glucoside showed similar activity. Cytotoxicity was low in the order of hesperidin glucoside, hesperidin, and hesperetin in murine macrophage RAW264.7 cells. Treatment of the cells with each compound reduced the levels of inflammatory mediators, nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). Hesperetin was most effective at relatively low concentrations, however, hesperidin glucoside was also effective at higher concentration. Hesperetin showed higher antibacterial activity than hesperidin in both Gram-positive and -negative bacteria, and hesperidin glucoside showed similarly higher activity with hesperetin depending on the bacterial strain. In conclusion, hesperetin in the form of aglycone showed more potent biological activity than hesperidin and hesperidin glucoside. However, hesperidin glucoside, the highly soluble form, has been shown to increase the activity compared to poorly soluble hesperidin.
Collapse
|
42
|
Abd El-Hack ME, Salem HM, Khafaga AF, Soliman SM, El-Saadony MT. Impacts of polyphenols on laying hens' productivity and egg quality: A review. J Anim Physiol Anim Nutr (Berl) 2022; 107:928-947. [PMID: 35913074 DOI: 10.1111/jpn.13758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 12/20/2022]
Abstract
There has been a rapid increase in the world's output of main poultry products (meat and eggs). This reflects customer desire for these high-quality and safe products and the comparatively low price. Recently, natural feed additives, plants and products have been increasingly popular in the poultry and livestock industries to maintain and improve their health and production. Polyphenols are a type of micronutrient that is plentiful in our diet. They are phytochemicals that have health benefits, notably cardiovascular, cognitive function, antioxidant, anti-mutagenic, anti-inflammatory, antistress, anti-tumour, anti-pathogen, detoxification, growth-promoting and immunomodulating activities. On the other hand, excessive polyphenol levels have an unclear and sometimes negative impact on gastrointestinal tract health, nutrient digestion, digestive enzyme activity, vitamin, mineral absorption, laying hens performance and egg quality. As a result, this review illuminated polyphenols' various sources, classifications, biological activities, potential usage restrictions and effects on poultry, layer productivity and egg external and internal quality.
Collapse
Affiliation(s)
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Soliman M Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
43
|
Imperatrice M, Cuijpers I, Troost FJ, Sthijns MMJPE. Hesperidin Functions as an Ergogenic Aid by Increasing Endothelial Function and Decreasing Exercise-Induced Oxidative Stress and Inflammation, Thereby Contributing to Improved Exercise Performance. Nutrients 2022; 14:nu14142955. [PMID: 35889917 PMCID: PMC9316530 DOI: 10.3390/nu14142955] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
The regulation of blood flow to peripheral muscles is crucial for proper skeletal muscle functioning and exercise performance. During exercise, increased mitochondrial oxidative phosphorylation leads to increased electron leakage and consequently induces an increase in ROS formation, contributing to DNA, lipid, and protein damage. Moreover, exercise may increase blood- and intramuscular inflammatory factors leading to a deterioration in endurance performance. The aim of this review is to investigate the potential mechanisms through which the polyphenol hesperidin could lead to enhanced exercise performance, namely improved endothelial function, reduced exercise-induced oxidative stress, and inflammation. We selected in vivo RCTs, animal studies, and in vitro studies in which hesperidin, its aglycone form hesperetin, hesperetin-metabolites, or orange juice are supplemented at any dosage and where the parameters related to endothelial function, oxidative stress, and/or inflammation have been measured. The results collected in this review show that hesperidin improves endothelial function (via increased NO availability), inhibits ROS production, decreases production and plasma levels of pro-inflammatory markers, and improves anaerobic exercise outcomes (e.g., power, speed, energy). For elite and recreational athletes, hesperidin could be used as an ergogenic aid to enhance muscle recovery between training sessions, optimize oxygen and nutrient supplies to the muscles, and improve anaerobic performance.
Collapse
Affiliation(s)
- Maria Imperatrice
- BioActor BV, Gaetano Martinolaan 50, 6229 GS Maastricht, The Netherlands
- Correspondence: (M.I.); (I.C.)
| | - Iris Cuijpers
- Food Innovation and Health, Department of Human Biology, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.J.T.); (M.M.J.P.E.S.)
- Correspondence: (M.I.); (I.C.)
| | - Freddy J. Troost
- Food Innovation and Health, Department of Human Biology, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.J.T.); (M.M.J.P.E.S.)
| | - Mireille M. J. P. E. Sthijns
- Food Innovation and Health, Department of Human Biology, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.J.T.); (M.M.J.P.E.S.)
| |
Collapse
|
44
|
Hesperidin Bioavailability Is Increased by the Presence of 2S-Diastereoisomer and Micronization-A Randomized, Crossover and Double-Blind Clinical Trial. Nutrients 2022; 14:nu14122481. [PMID: 35745211 PMCID: PMC9231284 DOI: 10.3390/nu14122481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Hesperidin is a flavanone abundantly found in citrus fruits for which health beneficial effects have been reported. However, hesperidin shows a low bioavailability among individuals. The aim of this study was to evaluate the effects of the micronization process and 2R- and 2S-hesperidin diastereoisomers ratio on hesperidin bioavailability. In a first phase, thirty healthy individuals consumed 500 mL of orange juice with 345 mg of hesperidin, and the levels of hesperidin metabolites excreted in urine were determined. In the second phase, fifteen individuals with intermediate hesperidin metabolite levels excreted in urine were randomized in a crossover, postprandial and double-blind intervention study. Participants consumed 500 mg of the hesperidin-supplemented Hesperidin epimeric mixture (HEM), the micronized Hesperidin epimeric mixture (MHEM) and micronized 2S-Hesperidin (M2SH) in each study visit with 1 week of washout. Hesperidin metabolites and catabolites were determined in blood and urine obtained at different timepoints over a 24 h period. The bioavailability—relative urinary hesperidin excretion (% of hesperidin ingested)—of M2SH (70 ± 14%) formed mainly by 2S-diastereoisomer was significantly higher than the bioavailability of the MHEM (55 ± 15%) and HEM (43 ± 8.0%), which consisted of a mixture of both hesperidin diastereoisomers. Relative urinary excretion of hesperidin metabolites for MHEM (9.2 ± 1.6%) was significantly higher compared to the HEM (5.2 ± 0.81%) and M2SH (3.6 ± 1.0%). In conclusion, the bioavailability of 2S-hesperidin extract was higher compared to the standard mixture of 2S-/2R-hesperidin extract due to a greater formation of hesperidin catabolites. Furthermore, the micronization process increased hesperidin bioavailability.
Collapse
|
45
|
Hesperidin: A Review on Extraction Methods, Stability and Biological Activities. Nutrients 2022; 14:nu14122387. [PMID: 35745117 PMCID: PMC9227685 DOI: 10.3390/nu14122387] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Hesperidin is a bioflavonoid occurring in high concentrations in citrus fruits. Its use has been associated with a great number of health benefits, including antioxidant, antibacterial, antimicrobial, anti-inflammatory and anticarcinogenic properties. The food industry uses large quantities of citrus fruit, especially for the production of juice. It results in the accumulation of huge amounts of by-products such as peels, seeds, cell and membrane residues, which are also a good source of hesperidin. Thus, its extraction from these by-products has attracted considerable scientific interest with aim to use as natural antioxidants. In this review, the extraction and determination methods for quantification of hesperidin in fruits and by-products are presented and discussed as well as its stability and biological activities.
Collapse
|
46
|
Multidimensional in silico strategy for identification of natural polyphenols-based SARS-CoV-2 main protease (M pro) inhibitors to unveil a hope against COVID-19. Comput Biol Med 2022; 145:105452. [PMID: 35364308 PMCID: PMC8957318 DOI: 10.1016/j.compbiomed.2022.105452] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/13/2021] [Accepted: 03/23/2022] [Indexed: 12/16/2022]
Abstract
SARS-CoV-2, a rapidly spreading new strain of human coronavirus, has affected almost all the countries around the world. The lack of specific drugs against SARS-CoV-2 is a significant hurdle towards the successful treatment of COVID-19. Thus, there is an urgent need to boost up research for the development of effective therapeutics against COVID-19. In the current study, we investigated the efficacy of 81 medicinal plant-based bioactive compounds against SARS-CoV-2 Mpro by using various in silico techniques. The interaction affinities of polyphenolic compounds towards SARS-CoV-2 Mpro was assessed via intramolecular (by Quantum Mechanic), intermolecular (by Molecular Docking), and spatial (by Molecular Dynamic) simulations. Our obtained result demonstrate that Hesperidin, rutin, diosmin, and apiin are most effective compounds agents against SARS-CoV-2 Mpro as compared to Nelfinavir (positive control). This study will hopefully pave a way for advanced experimental research to evaluate the in vitro and in vivo efficacy of these compounds for the treatment of COVID-19.
Collapse
|
47
|
Mitra S, Lami MS, Uddin TM, Das R, Islam F, Anjum J, Hossain MJ, Emran TB. Prospective multifunctional roles and pharmacological potential of dietary flavonoid narirutin. Biomed Pharmacother 2022; 150:112932. [PMID: 35413599 DOI: 10.1016/j.biopha.2022.112932] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Plant-based phytochemicals are now being used to treat plenty of physiological diseases. Herbal drugs have gained popularity in recent years because of their strength, purity, and cheap cost-effectiveness. Citrus fruits contain significant amounts of flavanones, which falls to the category of polyphenols. Flavanones occupy a major fraction of the total polyphenols present in the plasma when orange juice is taken highly or in moderate states. Narirutin is a disaccharide derivative available in citrus fruits, primarily dihydroxy flavanone. From a pharmacological viewpoint, narirutin is a bioactive phytochemical with therapeutic efficacy. Many experimental researches were published on the use of narirutin. Anticancer activity, neuroprotection, stress relief, hepatoprotection, anti-allergic activity, antidiabetic activity, anti-adipogenic activity, anti-obesity action, and immunomodulation are a couple of the primary pharmacological properties. Narirutin also has antioxidant, and anti-inflammatory activities. The ultimate goal of this review is to provide the current scenario of pharmacological research with narirutin; to make a better understanding for therapeutic potential of narirutin, as well as its biosynthesis strategies and side effects. Extensive literature searches and studies were undertaken to determine the pharmacological properties of narirutin.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mashia Subha Lami
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tanvir Mahtab Uddin
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Juhaer Anjum
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh.
| |
Collapse
|
48
|
Variability in the Beneficial Effects of Phenolic Compounds: A Review. Nutrients 2022; 14:nu14091925. [PMID: 35565892 PMCID: PMC9101290 DOI: 10.3390/nu14091925] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
When analysing the beneficial effects of phenolic compounds, several factors that exert a clear influence should be taken into account. The content of phenolic compounds in foods is highly variable, directly affecting individual dietary intake. Once ingested, these compounds have a greater or lesser bioaccessibility, defined as the amount available for absorption in the intestine after digestion, and a certain bioavailability, defined as the proportion of the molecule that is available after digestion, absorption and metabolism. Among the external factors that modify the content of phenolic compounds in food are the variety, the cultivation technique and the climate. Regarding functional foods, it is important to take into account the role of the selected food matrix, such as dairy matrices, liquid or solid matrices. It is also essential to consider the interactions between phenolic compounds as well as the interplay that occurs between these and several other components of the diet (macro- and micronutrients) at absorption, metabolism and mechanism of action levels. Furthermore, there is a great inter-individual variability in terms of phase II metabolism of these compounds, composition of the microbiota, and metabolic state or metabotype to which the subject belongs. All these factors introduce variability in the responses observed after ingestion of foods or nutraceuticals containing phenolic compounds.
Collapse
|
49
|
Comparison of the inhibitory properties of the fruit component naringenin and its glycosides against OATP1A2 genetic variants. Drug Metab Pharmacokinet 2022; 46:100464. [DOI: 10.1016/j.dmpk.2022.100464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 01/11/2023]
|
50
|
A Narrative Review of the Effects of Citrus Peels and Extracts on Human Brain Health and Metabolism. Nutrients 2022; 14:nu14091847. [PMID: 35565814 PMCID: PMC9103913 DOI: 10.3390/nu14091847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
As life expectancy increases, age-associated diseases such as Alzheimer's disease (AD) become a major health problem. The onset of AD involves neurological dysfunction due to amyloid-β accumulation, tau hyperphosphorylation, oxidative stress, and neuroinflammation in the brain. In addition, lifestyle-related diseases-such as dyslipidemia, diabetes, obesity, and vascular dysfunction-increase the risk of developing dementia. The world population ages, prompting the development of new strategies to maintain brain health and prevent the onset of dementia in older and preclinical patients. Citrus fruits are abundant polymethoxylated flavone and flavanone sources. Preclinical studies reported that these compounds have neuroprotective effects in models of dementia such as AD. Interestingly, clinical and epidemiological studies appear to support preclinical evidence and show improved cognitive function and reduced associated disease risk in healthy individuals and/or patients. This review summarizes the recent evidence of the beneficial effects of citrus peels and extracts on human cognition and related functions.
Collapse
|