1
|
Liu Q, Liu Y, Feng H, Zhang N, Yang Z. High salt diet causally increases metabolic dysfunction-associated steatotic liver disease risk: A bidirectional mendelian randomization study. Nutr Res 2025; 136:94-104. [PMID: 40184888 DOI: 10.1016/j.nutres.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 04/07/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver disorder associated with metabolic and lifestyle factors, affecting approximately 25% of the global population. Although high salt intake has been implicated as a potential dietary risk factor, its causal relationship with MASLD remains uncertain. We hypothesized that genetic liability to higher salt intake causally increases the risk of MASLD. To address this, bidirectional Mendelian Randomization (MR) analysis was performed to evaluate the causal relationship between "salt added to food" and MASLD. Genetic variants were used as instrumental variables across large-scale genome-wide association study datasets from the UK Biobank and multiple MASLD cohorts. The inverse variance weighting method served as the primary analytical approach, with sensitivity analyses, including MR-Egger and MR-PRESSO, to evaluate pleiotropy and heterogeneity. Forward MR analysis demonstrated a significant association between "salt added to food" and increased MASLD risk across three MASLD datasets: odds ratio (OR) = 1.538, 95% confidence interval (CI): 1.145-2.067, P = .004; OR = 1.787, 95% CI: 1.247-2.561, P = .002; and OR = 2.094, 95% CI: 1.274-3.442, P = .004. Sensitivity analyses indicated low heterogeneity and no evidence of pleiotropy. Reverse MR analysis did not demonstrate a causal effect of MASLD on "salt added to food". These findings provide robust genetic evidence that "salt added to food" is a causal risk factor for MASLD, emphasizing the importance of dietary salt reduction in MASLD prevention strategies. This study supports public health recommendations advocating reduced salt intake to promote liver health and prevent MASLD.
Collapse
Affiliation(s)
- Qi Liu
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China; Institute of Hepatobiliary Surgery, Key Laboratory of Digital Hepatobiliary Surgery of Chinese People's Liberation Army, Beijing, China; Medical School of Chinese People's Liberation Army, Beijing, China.
| | - Yuyang Liu
- Department of Neurosurgery, 920th Hospital of Joint Logistics Support Force, Kunming, China.
| | - Hui Feng
- Department of Zhantansi Outpatient, Jingzhong Medical District of Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Ning Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China; Institute of Hepatobiliary Surgery, Key Laboratory of Digital Hepatobiliary Surgery of Chinese People's Liberation Army, Beijing, China.
| | - Zhanyu Yang
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China; Institute of Hepatobiliary Surgery, Key Laboratory of Digital Hepatobiliary Surgery of Chinese People's Liberation Army, Beijing, China; Medical School of Chinese People's Liberation Army, Beijing, China.
| |
Collapse
|
2
|
Jiang Y, Li Q, Huang YL, Zhang W. Urgency Prediction for Medical Laboratory Tests Through Optimal Sparse Decision Tree: Case Study With Echocardiograms. JMIR AI 2025; 4:e64188. [PMID: 39879091 PMCID: PMC11822316 DOI: 10.2196/64188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/18/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
BACKGROUND In the contemporary realm of health care, laboratory tests stand as cornerstone components, driving the advancement of precision medicine. These tests offer intricate insights into a variety of medical conditions, thereby facilitating diagnosis, prognosis, and treatments. However, the accessibility of certain tests is hindered by factors such as high costs, a shortage of specialized personnel, or geographic disparities, posing obstacles to achieving equitable health care. For example, an echocardiogram is a type of laboratory test that is extremely important and not easily accessible. The increasing demand for echocardiograms underscores the imperative for more efficient scheduling protocols. Despite this pressing need, limited research has been conducted in this area. OBJECTIVE The study aims to develop an interpretable machine learning model for determining the urgency of patients requiring echocardiograms, thereby aiding in the prioritization of scheduling procedures. Furthermore, this study aims to glean insights into the pivotal attributes influencing the prioritization of echocardiogram appointments, leveraging the high interpretability of the machine learning model. METHODS Empirical and predictive analyses have been conducted to assess the urgency of patients based on a large real-world echocardiogram appointment dataset (ie, 34,293 appointments) sourced from electronic health records encompassing administrative information, referral diagnosis, and underlying patient conditions. We used a state-of-the-art interpretable machine learning algorithm, the optimal sparse decision tree (OSDT), renowned for its high accuracy and interpretability, to investigate the attributes pertinent to echocardiogram appointments. RESULTS The method demonstrated satisfactory performance (F1-score=36.18% with an improvement of 1.7% and F2-score=28.18% with an improvement of 0.79% by the best-performing baseline model) in comparison to the best-performing baseline model. Moreover, due to its high interpretability, the results provide valuable medical insights regarding the identification of urgent patients for tests through the extraction of decision rules from the OSDT model. CONCLUSIONS The method demonstrated state-of-the-art predictive performance, affirming its effectiveness. Furthermore, we validate the decision rules derived from the OSDT model by comparing them with established medical knowledge. These interpretable results (eg, attribute importance and decision rules from the OSDT model) underscore the potential of our approach in prioritizing patient urgency for echocardiogram appointments and can be extended to prioritize other laboratory test appointments using electronic health record data.
Collapse
Affiliation(s)
- Yiqun Jiang
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, United States
| | - Qing Li
- Department of Industrial & Manufacturing Systems Engineering, Iowa State University, Ames, IA, United States
| | - Yu-Li Huang
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, United States
| | - Wenli Zhang
- Department of Information Systems and Business Analytics, Iowa State University, Ames, IA, United States
| |
Collapse
|
3
|
Muzammil AN, Barathan M, Yazid MD, Sulaiman N, Makpol S, Mohamed Ibrahim N, Jaafar F, Abdullah NAH. A systematic scoping review of the multifaceted role of phoenixin in metabolism: insights from in vitro and in vivo studies. Front Endocrinol (Lausanne) 2024; 15:1406531. [PMID: 39398330 PMCID: PMC11466790 DOI: 10.3389/fendo.2024.1406531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Phoenixin (PNX) is an emerging neuropeptide that plays a significant role in regulating metabolism and reproduction. This comprehensive review examines findings from human, in vivo, and in vitro studies to elucidate the functions of PNX in metabolic processes. PNX has been identified as a key player in essential metabolic pathways, including energy homeostasis, glucose, lipid and electrolyte metabolism, and mitochondrial dynamics. It modulates food and fluid intake, influences glucose and lipid profiles, and affects mitochondrial biogenesis and function. PNX is abundantly expressed in the hypothalamus, where it plays a crucial role in regulating reproductive hormone secretion and maintaining energy balance. Furthermore, PNX is also expressed in peripheral tissues such as the heart, spleen, and pancreas, indicating its involvement in the regulation of metabolism across central and peripheral systems. PNX is a therapeutic peptide that operates through the G protein-coupled receptor 173 (GPR173) at the molecular level. It activates signaling pathways such as cAMP-protein kinase A (PKA) and Epac-ERK, which are crucial for metabolic regulation. Research suggests that PNX may be effective in managing metabolic disorders like obesity and type 2 diabetes, as well as reproductive health issues like infertility. Since metabolic processes are closely linked to reproduction, further understanding of PNX's role in these areas is necessary to develop effective management/treatments. This review aims to highlight PNX's involvement in metabolism and identify gaps in current knowledge regarding its impact on human health. Understanding the mechanisms of PNX's action is crucial for the development of novel therapeutic strategies for the treatment of metabolic disorders and reproductive health issues, which are significant public health concerns globally.
Collapse
Affiliation(s)
- Adiba Najwa Muzammil
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Nadiah Sulaiman
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Faizul Jaafar
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Nur Atiqah Haizum Abdullah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Yurtsever I, Atasoy B, Bozkurt S, Yıldız GB, Balsak S, Yabul F, Donmez Z, Selvitop R, Karaman O, Toluk O, Alkan A. Diffusion tensor imaging findings in the hunger and satiety centers of the brain after bariatric surgery: a preliminary study. Ir J Med Sci 2024; 193:191-197. [PMID: 37231150 DOI: 10.1007/s11845-023-03389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE To investigate the alterations in the diffusion tensor imaging (DTI) parameters measured in the hunger and satiety centers of the brain before and after bariatric surgery (BS) in morbidly obese patients. METHODS Fourty morbidly obese patients were evaluated before and after BS. Mean diffusivity (MD) and fractional anisotropy (FA) values were calculated from 14 related brain locations, and the DTI parameters were analyzed. RESULTS After the BS, the mean BMI of the patients decreased from 47.53 ± 5.21 to 31.48 ± 4.21. The MD and FA values in the all of the hunger and satiety centers was found statistically significant different in the pre-surgery period compared to the post-surgery period (for each; p-value < 0.001). CONCLUSION The FA and MD changes after BS may be attributed to reversible neuroinflammatory alterations in the hunger and satiety centers. Decreased MD and FA values after BS may be explained by the neuroplastic structural recovery in the related brain locations.
Collapse
Affiliation(s)
- Ismail Yurtsever
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey.
| | - Bahar Atasoy
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Suleyman Bozkurt
- Department of General Surgery, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Gulsen Babacan Yıldız
- Department of Neurology, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Serdar Balsak
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Fatma Yabul
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Zeynep Donmez
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Rabia Selvitop
- Department of Neurology, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Ozcan Karaman
- Department of Endocrinoloy and Metabolism, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Ozlem Toluk
- Department of Biostatistics, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Alpay Alkan
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| |
Collapse
|
5
|
Tarabeih N, Kalinkovich A, Ashkenazi S, Cherny SS, Shalata A, Livshits G. Relationships between Circulating Biomarkers and Body Composition Parameters in Patients with Metabolic Syndrome: A Community-Based Study. Int J Mol Sci 2024; 25:881. [PMID: 38255954 PMCID: PMC10815336 DOI: 10.3390/ijms25020881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome (MetS) is a complex disease involving multiple physiological, biochemical, and metabolic abnormalities. The search for reliable biomarkers may help to better elucidate its pathogenesis and develop new preventive and therapeutic strategies. In the present population-based study, we looked for biomarkers of MetS among obesity- and inflammation-related circulating factors and body composition parameters in 1079 individuals (with age range between 18 and 80) belonging to an ethnically homogeneous population. Plasma levels of soluble markers were measured by using ELISA. Body composition parameters were assessed using bioimpedance analysis (BIA). Statistical analysis, including mixed-effects regression, with MetS as a dependent variable, revealed that the most significant independent variables were mainly adipose tissue-related phenotypes, including fat mass/weight (FM/WT) [OR (95% CI)], 2.77 (2.01-3.81); leptin/adiponectin ratio (L/A ratio), 1.50 (1.23-1.83); growth and differentiation factor 15 (GDF-15) levels, 1.32 (1.08-1.62); inflammatory markers, specifically monocyte to high-density lipoprotein cholesterol ratio (MHR), 2.53 (2.00-3.15), and a few others. Additive Bayesian network modeling suggests that age, sex, MHR, and FM/WT are directly associated with MetS and probably affect its manifestation. Additionally, MetS may be causing the GDF-15 and L/A ratio. Our novel findings suggest the existence of complex, age-related, and possibly hierarchical relationships between MetS and factors associated with obesity.
Collapse
Affiliation(s)
- Nader Tarabeih
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (N.T.); (S.A.)
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.K.); (S.S.C.)
| | - Shai Ashkenazi
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (N.T.); (S.A.)
| | - Stacey S. Cherny
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.K.); (S.S.C.)
| | - Adel Shalata
- The Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel;
| | - Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (N.T.); (S.A.)
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.K.); (S.S.C.)
| |
Collapse
|
6
|
Johnson RJ, Sánchez-Lozada LG, Lanaspa MA. The fructose survival hypothesis as a mechanism for unifying the various obesity hypotheses. Obesity (Silver Spring) 2024; 32:12-22. [PMID: 37846155 DOI: 10.1002/oby.23920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 10/18/2023]
Abstract
The pathogenesis of obesity remains contested. Although genetics is important, the rapid rise in obesity with Western culture and diet suggests an environmental component. Today, some of the major hypotheses for obesity include the energy balance hypothesis, the carbohydrate-insulin model, the protein-leverage hypothesis, and the seed oil hypothesis. Each hypothesis has its own support, creating controversy over their respective roles in driving obesity. Here we propose that all hypotheses are largely correct and can be unified by another dietary hypothesis, the fructose survival hypothesis. Fructose is unique in resetting ATP levels to a lower level in the cell as a consequence of suppressing mitochondrial function, while blocking the replacement of ATP from fat. The low intracellular ATP levels result in carbohydrate-dependent hunger, impaired satiety (leptin resistance), and metabolic effects that result in the increased intake of energy-dense fats. This hypothesis emphasizes the unique role of carbohydrates in stimulating intake while fat provides the main source of energy. Thus, obesity is a disorder of energy metabolism, in which there is low usable energy (ATP) in the setting of elevated total energy. This leads to metabolic effects independent of excess energy while the excess energy drives weight gain.
Collapse
Affiliation(s)
- Richard J Johnson
- Division of Nephrology, Rocky Mountain VA Medical Center, Aurora, Colorado, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura G Sánchez-Lozada
- Laboratory of Renal Physiopathology, Instituto Nacional de Cardiologia Ignacio Chavez, Mexico City, Mexico
| | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Stuard Sambhariya W, Trautmann IJ, Robertson DM. Insulin-like growth factor binding protein-3 mediates hyperosmolar stress-induced mitophagy through the mechanistic target of rapamycin. J Biol Chem 2023; 299:105239. [PMID: 37690686 PMCID: PMC10637961 DOI: 10.1016/j.jbc.2023.105239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Hyperosmolarity of the ocular surface triggers inflammation and pathological damage in dry eye disease (DED). In addition to a reduction in quality of life, DED causes vision loss and when severe, blindness. Mitochondrial dysfunction occurs as a consequence of hyperosmolar stress. We have previously reported on a role for the insulin-like growth factor binding protein-3 (IGFBP-3) in the regulation of mitochondrial ultrastructure and metabolism in mucosal surface epithelial cells; however, this appears to be context-specific. Due to the finding that IGFBP-3 expression is decreased in response to hyperosmolar stress in vitro and in an animal model of DED, we next sought to determine whether the hyperosmolar stress-mediated decrease in IGFBP-3 alters mitophagy, a key mitochondrial quality control mechanism. Here we show that hyperosmolar stress induces mitophagy through differential regulation of BNIP3L/NIX and PINK1-mediated pathways. In corneal epithelial cells, this was independent of p62. The addition of exogenous IGFBP-3 abrogated the increase in mitophagy. This occurred through regulation of mTOR, highlighting the existence of a new IGFBP-3-mTOR signaling pathway. Together, these findings support a novel role for IGFBP-3 in mediating mitochondrial quality control in DED and have broad implications for epithelial tissues subject to hyperosmolar stress and other mitochondrial diseases.
Collapse
Affiliation(s)
- Whitney Stuard Sambhariya
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ian J Trautmann
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Danielle M Robertson
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
8
|
Johnson RJ, Lanaspa MA, Sanchez-Lozada LG, Tolan D, Nakagawa T, Ishimoto T, Andres-Hernando A, Rodriguez-Iturbe B, Stenvinkel P. The fructose survival hypothesis for obesity. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220230. [PMID: 37482773 PMCID: PMC10363705 DOI: 10.1098/rstb.2022.0230] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/04/2023] [Indexed: 07/25/2023] Open
Abstract
The fructose survival hypothesis proposes that obesity and metabolic disorders may have developed from over-stimulation of an evolutionary-based biologic response (survival switch) that aims to protect animals in advance of crisis. The response is characterized by hunger, thirst, foraging, weight gain, fat accumulation, insulin resistance, systemic inflammation and increased blood pressure. The process is initiated by the ingestion of fructose or by stimulating endogenous fructose production via the polyol pathway. Unlike other nutrients, fructose reduces the active energy (adenosine triphosphate) in the cell, while blocking its regeneration from fat stores. This is mediated by intracellular uric acid, mitochondrial oxidative stress, the inhibition of AMP kinase and stimulation of vasopressin. Mitochondrial oxidative phosphorylation is suppressed, and glycolysis stimulated. While this response is aimed to be modest and short-lived, the response in humans is exaggerated due to gain of 'thrifty genes' coupled with a western diet rich in foods that contain or generate fructose. We propose excessive fructose metabolism not only explains obesity but the epidemics of diabetes, hypertension, non-alcoholic fatty liver disease, obesity-associated cancers, vascular and Alzheimer's dementia, and even ageing. Moreover, the hypothesis unites current hypotheses on obesity. Reducing activation and/or blocking this pathway and stimulating mitochondrial regeneration may benefit health-span. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
Collapse
Affiliation(s)
- Richard J. Johnson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80016, USA
| | - Miguel A. Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80016, USA
| | - L. Gabriela Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología ‘Ignacio Chavez’, Mexico City 14080, Mexico
| | - Dean Tolan
- Biology Department, Boston University, Boston, MA 02215, USA
| | - Takahiko Nakagawa
- Department of Nephrology, Rakuwakai-Otowa Hospital, Kyoto 607-8062, Japan
| | - Takuji Ishimoto
- Department of Nephrology and Rheumatology, Aichi Medical University, Aichi 480-1103, Japan
| | - Ana Andres-Hernando
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80016, USA
| | - Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición ‘Salvador Zubirán’, Mexico City 14080, Mexico
| | - Peter Stenvinkel
- Department of Renal Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
9
|
Johnson RJ, Lee SMK, Sánchez-Lozada LG, Kanbay M, Bansal A, Tolan DR, Bjornstad P, Lanaspa MA, Maesaka J. Fructose: A New Variable to Consider in SIADH and the Hyponatremia Associated With Long-Distance Running? Am J Kidney Dis 2023; 82:105-112. [PMID: 36940740 PMCID: PMC10330032 DOI: 10.1053/j.ajkd.2023.01.443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/01/2023] [Indexed: 03/23/2023]
Abstract
Fructose has recently been proposed to stimulate vasopressin secretion in humans. Fructose-induced vasopressin secretion is not only postulated to result from ingestion of fructose-containing drinks but may also occur from endogenous fructose production via activation of the polyol pathway. This raises the question of whether fructose might be involved in some cases of vasopressin-induced hyponatremia, especially in situations where the cause is not fully known such as in the syndrome of inappropriate secretion of diuretic hormone (SIADH) and exercise-associated hyponatremia, which has been observed in marathon runners. Here we discuss the new science of fructose and vasopressin, and how it may play a role in some of these conditions, as well as in the complications associated with rapid treatment (such as the osmotic demyelination syndrome). Studies to test the role of fructose could provide new pathophysiologic insights as well as novel potential treatment strategies for these common conditions.
Collapse
Affiliation(s)
- Richard J Johnson
- Division of Renal Diseases and Hypertension, Anschutz Medical Campus, University of Colorado, Aurora, Colorado.
| | | | | | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, School of Medicine, Koc University, Istanbul, Turkey
| | - Anip Bansal
- Division of Renal Diseases and Hypertension, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Dean R Tolan
- Biology Department, Boston University, Boston Massachusetts
| | - Petter Bjornstad
- Division of Renal Diseases and Hypertension, Anschutz Medical Campus, University of Colorado, Aurora, Colorado; Section of Endocrinology, Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - John Maesaka
- Department of Medicine and Division of Nephrology and Hypertension, NYU Langone Hospitals, Mineola, New York
| |
Collapse
|
10
|
Delle C, Cankar N, Digebjerg Holgersson C, Hvorup Knudsen H, Schiøler Nielsen E, Kjaerby C, Mori Y, Nedergaard M, Weikop P. Long-term high-fat diet increases glymphatic activity in the hypothalamus in mice. Sci Rep 2023; 13:4137. [PMID: 36914703 PMCID: PMC10011420 DOI: 10.1038/s41598-023-30630-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Obesity affects millions of people worldwide and is associated with an increased risk of cognitive decline. The glymphatic system is a brain-wide metabolic waste clearance system, dysfunction of which is linked to dementia. We herein examined glymphatic transport in mice with long-term obesity induced by a high-fat diet for 10 months. The obese mice developed hypertension and elevated heart rate, neuroinflammation and gliosis, but not apparent systemic inflammation. Surprisingly, glymphatic inflow was globally unaffected by the high-fat diet except for the hypothalamus, which displayed increased influx and elevated AQP4 vascular polarization compared to the normal weight control group. We propose that a long-term high-fat diet induced metabolic alteration of hypothalamic neurons and neuroinflammation, which in turn enhanced glymphatic clearance in the effected brain region.
Collapse
Affiliation(s)
- Christine Delle
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Neža Cankar
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Christian Digebjerg Holgersson
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Helle Hvorup Knudsen
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Elise Schiøler Nielsen
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Celia Kjaerby
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.
- Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, Rochester, NY, 14642, USA.
| | - Pia Weikop
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| |
Collapse
|
11
|
Dmitrieva NI, Gagarin A, Liu D, Wu CO, Boehm M. Middle-age high normal serum sodium as a risk factor for accelerated biological aging, chronic diseases, and premature mortality. EBioMedicine 2023; 87:104404. [PMID: 36599719 PMCID: PMC9873684 DOI: 10.1016/j.ebiom.2022.104404] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND It is known that some people age faster than others, some people live into old age disease-free, while others develop age-related chronic diseases. With a rapidly aging population and an emerging chronic diseases epidemic, finding mechanisms and implementing preventive measures that could slow down the aging process has become a new challenge for biomedical research and public health. In mice, lifelong water restriction shortens the lifespan and promotes degenerative changes. Here, we test the hypothesis that optimal hydration may slow down the aging process in humans. METHODS We performed a cohort analysis of data from the Atherosclerosis Risk in Communities study with middle-age enrollment (45-66 years, n = 15,752) and 25 years follow-up. We used serum sodium, as a proxy for hydration habits. To estimate the relative speed of aging, we calculated the biological age (BA) from age-dependent biomarkers and assessed risks of chronic diseases and premature mortality. FINDINGS The analysis showed that middle age serum sodium >142 mmol/l is associated with a 39% increased risk to develop chronic diseases (hazard ratio [HR] = 1.39, 95% confidence interval [CI]:1.18-1.63) and >144 mmol/l with 21% elevated risk of premature mortality (HR = 1.21, 95% CI:1.02-1.45). People with serum sodium >142 mmol/l had up to 50% higher odds to be older than their chronological age (OR = 1.50, 95% CI:1.14-1.96). A higher BA was associated with an increased risk of chronic diseases (HR = 1.70, 95% CI:1.50-1.93) and premature mortality (HR = 1.59, 95% CI 1.39-1.83). INTERPRETATION People whose middle-age serum sodium exceeds 142 mmol/l have increased risk to be biologically older, develop chronic diseases and die at younger age. Intervention studies are needed to confirm the link between hydration and aging. FUNDING This work was funded by Intramural Research program of the National Heart, Lung, and Blood Institute (NHLBI). The ARIC study has been funded in whole or in part with federal funds from the NHLBI; the National Institutes of Health (NIH); and the Department of Health and Human Services.
Collapse
Affiliation(s)
- Natalia I Dmitrieva
- The Laboratory of Cardiovascular Regenerative Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA.
| | - Alessandro Gagarin
- The Laboratory of Cardiovascular Regenerative Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Delong Liu
- The Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Colin O Wu
- Office of Biostatistics Research, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Manfred Boehm
- The Laboratory of Cardiovascular Regenerative Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| |
Collapse
|
12
|
Dos-Santos RC, Ishioka G, Cognuck SQ, Mantovani M, Caliman IF, Elias LLK, Antunes-Rodrigues J. High-fat diet changes the behavioural and hormonal responses to water deprivation in male Wistar rats. Exp Physiol 2022; 107:1454-1466. [PMID: 36114682 DOI: 10.1113/ep090513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the effect of an obesogenic diet on the control of hydromineral balance in rats? What is the main finding and its importance? The results showed that, when dehydrated, rats fed a high-fat diet drink less water than their control-diet-fed counterparts. Changes in aquaporin-7 and peroxisome proliferator-activated receptor α expression in the white adipose tissue might be involved. ABSTRACT High-fat diet (HFD) increases fat accumulation, glycaemia and blood triglycerides and is used as a model to study obesity. Besides the metabolic changes, obesity likely affects water intake. We assessed the effects of HFD on behavioural and hormonal responses to water deprivation. Additionally, we measured if the adipose tissue is differentially affected by water deprivation in control and HFD-fed rats. HFD rats showed a decreased basal water intake when compared to control-fed rats. When subjected to 48 h of water deprivation, as expected, both control and HFD rats drank more water than the hydrated rats. However, the increase in water intake was lessened in HFD dehydrated rats. Similarly, the increase in haematocrit in dehydrated rats was less pronounced in HFD dehydrated rats. These results suggest that HFD diminishes drinking behaviour. White adipose tissue weight, glycaemia and plasma glycerol concentration were increased in HFD rats; however, after 48 h of water deprivation, these parameters were significantly decreased in dehydrated HFD rats, when compared to controls. The increase in adipose tissue caused by HFD may mitigate the effects of dehydration, possibly through the increased production of metabolic water caused by lipolysis in the adipocytes. Oxytocin possibly mediates the lipolytic response, since both its secretion and receptor expression are affected by dehydration in both control and HFD rats, which suggests that oxytocin signalling is maintained in these conditions. Changes in mediators of lipolysis, such as aquaporin-7 and peroxisome proliferator-activated receptor α, might contribute to the different effects observed in control and HFD rats.
Collapse
Affiliation(s)
- Raoni Conceição Dos-Santos
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Ishioka
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Susana Quiros Cognuck
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Milene Mantovani
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Izabela Facco Caliman
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucila Leico Kagohara Elias
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José Antunes-Rodrigues
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
13
|
Dmitrieva NI, Liu D, Wu CO, Boehm M. Middle age serum sodium levels in the upper part of normal range and risk of heart failure. Eur Heart J 2022; 43:3335-3348. [PMID: 35348651 PMCID: PMC10263272 DOI: 10.1093/eurheartj/ehac138] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 07/29/2023] Open
Abstract
AIMS With increasing prevalence of heart failure (HF) owing to the ageing population, identification of modifiable risk factors is important. In a mouse model, chronic hypohydration induced by lifelong water restriction promotes cardiac fibrosis. Hypohydration elevates serum sodium. Here, we evaluate the association of serum sodium at middle age as a measure of hydration habits with risk to develop HF. METHODS AND RESULTS We analysed data from Atherosclerosis Risk in Communities study with middle age enrolment (45-66 years) and 25 years of follow-up. Participants without water balance dysregulation were selected: serum sodium within normal range (135-146 mmol/L), not diabetic, not obese and free of HF at baseline (N = 11 814). In time-to-event analysis, HF risk was increased by 39% if middle age serum sodium exceeded 143 mmol/L corresponding to 1% body weight water deficit [hazard ratio 1.39, 95% confidence interval (CI) 1.14-1.70]. In a retrospective case-control analysis performed on 70- to 90-year-old attendees of Visit 5 (N = 4961), serum sodium of 142.5-143 mmol/L was associated with 62% increase in odds of left ventricular hypertrophy (LVH) diagnosis [odds ratio (OR) 1.62, 95% CI 1.03-2.55]. Serum sodium above 143 mmol/L was associated with 107% increase in odds of LVH (OR 2.07, 95% CI 1.30-3.28) and 54% increase in odds of HF (OR 1.54, 95% CI 1.06-2.23). As a result, prevalence of HF and LVH was increased among 70- to 90-year-old participants with higher middle age serum sodium. CONCLUSION Middle age serum sodium above 142 mmol is a risk factor for LVH and HF. Maintaining good hydration throughout life may slow down decline in cardiac function and decrease prevalence of HF.
Collapse
Affiliation(s)
- Natalia I Dmitrieva
- The Laboratory of Cardiovascular Regenerative Medicine, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Delong Liu
- The Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Colin O Wu
- Office of Biostatistics Research, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Manfred Boehm
- The Laboratory of Cardiovascular Regenerative Medicine, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Role of high-salt diet in non-alcoholic fatty liver disease: a mini-review of the evidence. Eur J Clin Nutr 2022; 76:1053-1059. [PMID: 34773093 DOI: 10.1038/s41430-021-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 11/08/2022]
Abstract
With the rising incidence of both obesity and diabetes, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. However, lifestyle intervention remains to be an effective approach for NAFLD due to lack of therapeutic medication. Recently, salt, an essential micronutrient free of calories, has raised a global concern owing to its wide-range healthy relevance. Accumulated evidence has suggested that a long-term high-salt diet (HSD) independently increases the risk of NAFLD. In the past decades, a number of studies have been reported regarding the mechanism of much investigation concerning HSD-induced NAFLD. Here, we review the updates in epidemiology and molecular mechanism of HSD-induced NAFLD and provide a novel insight into the role of HSD in the regulation of lipid metabolism.
Collapse
|
15
|
Bourouti KE, Konstantaros C, Gaitanaki C, Aggeli IK. Severe Hyperosmotic Stress Issues an ER Stress-Mediated “Death Sentence” in H9c2 Cells, with p38-MAPK and Autophagy “Coming to the Rescue”. Biomedicines 2022; 10:biomedicines10061421. [PMID: 35740442 PMCID: PMC9219732 DOI: 10.3390/biomedicines10061421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
With several cardiovascular pathologies associated with osmotic perturbations, researchers are in pursuit of identifying the signaling sensors, mediators and effectors involved, aiming at formulating novel diagnostic and therapeutic strategies. In the present study, H9c2 cells were treated with 0.5 M sorbitol to elicit hyperosmotic stress. Immunoblotting as well as cell viability analyses revealed the simultaneous but independent triggering of multiple signaling pathways. In particular, our findings demonstrated the phosphorylation of eukaryotic translation initiation factor 2 (eIF2α) and upregulation of the immunoglobulin heavy-chain-binding protein (BiP) expression, indicating the onset of the Integrated Stress Response (IRS) and endoplasmic reticulum stress (ERS), respectively. In addition, autophagy was also induced, evidenced by the enhancement of Beclin-1 protein expression and of AMP-dependent kinase (AMPK) and Raptor phosphorylation levels. The involvement of a Na+/H+ exchanger-1 (NHE-1) as well as NADPH oxidase (Nox) in 0.5 M sorbitol-induced eIF2α phosphorylation was also indicated. Of note, while inhibition of ERS partially alleviated the detrimental effect of 0.5 M sorbitol on H9c2 cellular viability, attenuation of p38-MAPK activity and late phase autophagy further mitigated it. Deciphering the mode of these pathways’ potential interactions and of their complications may contribute to the quest for effective clinical interventions against associated cardiovascular diseases.
Collapse
|
16
|
Johnson RJ, García-Arroyo FE, Gonzaga-Sánchez G, Vélez-Orozco KA, Álvarez-Álvarez YQ, Aparicio-Trejo OE, Tapia E, Osorio-Alonso H, Andrés-Hernando A, Nakagawa T, Kuwabara M, Kanbay M, Lanaspa MA, Sánchez-Lozada LG. Current Hydration Habits: The Disregarded Factor for the Development of Renal and Cardiometabolic Diseases. Nutrients 2022; 14:2070. [PMID: 35631211 PMCID: PMC9145744 DOI: 10.3390/nu14102070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/21/2023] Open
Abstract
Improper hydration habits are commonly disregarded as a risk factor for the development of chronic diseases. Consuming an intake of water below recommendations (underhydration) in addition to the substitution of sugar-sweetened beverages (SSB) for water are habits deeply ingrained in several countries. This behavior is due to voluntary and involuntary dehydration; and because young children are exposed to SSB, the preference for a sweet taste is profoundly implanted in the brain. Underhydration and SSB intake lead to mild hyperosmolarity, which stimulates biologic processes, such as the stimulation of vasopressin and the polyol-fructose pathway, which restore osmolarity to normal but at the expense of the continued activation of these biological systems. Unfortunately, chronic activation of the vasopressin and polyol-fructose pathways has been shown to mediate many diseases, such as obesity, diabetes, metabolic syndrome, chronic kidney disease, and cardiovascular disease. It is therefore urgent that we encourage educational and promotional campaigns that promote the evaluation of personal hydration status, a greater intake of potable water, and a reduction or complete halting of the drinking of SSB.
Collapse
Affiliation(s)
- Richard J. Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Fernando E. García-Arroyo
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Guillermo Gonzaga-Sánchez
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Kevin A. Vélez-Orozco
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Yamnia Quetzal Álvarez-Álvarez
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Omar Emiliano Aparicio-Trejo
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Edilia Tapia
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Horacio Osorio-Alonso
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Ana Andrés-Hernando
- Division of Nephrology and Hypertension, Oregon Health Sciences University, Portland, OR 97239, USA; (A.A.-H.); (M.A.L.)
| | - Takahiko Nakagawa
- Department of Nephrology, Rakuwakai Otowa Hospital, Kyoto 607-8062, Japan;
| | - Masanari Kuwabara
- Intensive Care Unit, Toranomon Hospital, Tokyo 105-8470, Japan;
- Department of Cardiology, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Mehmet Kanbay
- Division of Nephrology, Department of Internal Medicine, Koc University School of Medicine, Istanbul 34010, Turkey;
| | - Miguel A. Lanaspa
- Division of Nephrology and Hypertension, Oregon Health Sciences University, Portland, OR 97239, USA; (A.A.-H.); (M.A.L.)
| | - Laura Gabriela Sánchez-Lozada
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| |
Collapse
|
17
|
Comparing thirst and spot urine concentrations in humans of differing body sizes: An observational study. Physiol Behav 2021; 245:113673. [PMID: 34921838 DOI: 10.1016/j.physbeh.2021.113673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/02/2021] [Accepted: 12/12/2021] [Indexed: 11/21/2022]
Abstract
Elevated body mass index (BMI) has been associated with elevated urine osmolality (UOsm), despite having higher total water intake, but it is unclear if overweight/obese individuals have reduced thirst. In this observational study, we found that overweight/obese individuals had higher UOsm compared to normal-weight individuals (749 ± 37 vs. 624 ± 35 mmol•kg-1; P < 0.01) while possessing similar thirst ratings (56.4 ± 3 vs. 51.6 ± 3 mm; P = 0.3). In this observational study, overweight/obese individuals possessed more concentrated urine in the absence of higher thirst perception.
Collapse
|
18
|
Wen S, Xu S, Nguyen T, Gong M, Yan H, Zhou L. Metabolic Effects on Body Components After a Three-Month Physical Intervention in Overweight Medical Staff. Cureus 2021; 13:e19027. [PMID: 34824937 PMCID: PMC8612068 DOI: 10.7759/cureus.19027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose This study analyzes the metabolic effects on body components of short-term standard physical training interventions in the staff of a Chinese hospital. Methods and materials We analyzed annual medical examinations, including blood sampling, ultrasound examinations, etc., and selected 10 overweight voluntary participants to take part in formal physical training, and a body composition analyzer DBA-550 (Donghuayuan Medical Co., Ltd, Beijing, China) was used to analyze body components' change before physical training interventions and the first month and third month after the physical intervention. Results The intervention significantly decreased body mass index (BMI) (p<0.05). Plasma lipids, triglyceride, and waist/hip ratio in females, trunk circumference in males, and limb circumference in females changed significantly (p<0.05). The body composition analysis showed that alterations in lean mass, fat weight, and fat percentage were not significant. Moreover, the segmental skeletal weight stable and segmental edema indices changed significantly but were within the normal range. Conclusions Three months of short-term physical intervention effectively lower body weight and fat, but more significant changes in long-term intervention and larger groups can be expected. Besides, the body composition analyzer proved reliable and can modify more individualized treatment plans for overweight and obese individuals.
Collapse
Affiliation(s)
- Song Wen
- Endocrinology, Shanghai Pudong Hospital, Shanghai, CHN
| | - Shuren Xu
- Physical Examination Center, Shanghai Pudong Hospital, Shanghai, CHN
| | | | - Min Gong
- Endocrinology, Shanghai Pudong Hospital, Shanghai, CHN
| | - Huafang Yan
- Physical Examination Center, Shanghai Pudong Hospital, Shanghai, CHN
| | - Ligang Zhou
- Endocrinology, Shanghai Pudong Hospital, Shanghai, CHN
| |
Collapse
|
19
|
Kim HR, Jeon JW, Bae HJ, Shin JA, Ham YR, Na KR, Lee KW, Choi DE, Hyon YK. Body Fat Plays an Important Role in of Bioimpedance Spectroscopy-Based Dry Weight Measurement Error for Patients with Hemodialysis. Diagnostics (Basel) 2021; 11:diagnostics11101907. [PMID: 34679605 PMCID: PMC8535067 DOI: 10.3390/diagnostics11101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 12/02/2022] Open
Abstract
Accurate dry weight (DW) estimation is important for hemodialysis patients. Although bioimpedance spectroscopy (BIS) is commonly used to measure DW, the BIS-based DW frequently differs from the clinical DW. We analyzed the characteristics of patients whose BIS-based DWs were over- and underestimated. In this retrospective cohort study, we evaluated 1555 patients undergoing maintenance hemodialysis in Chungnam National University Hospital. The gap (DWCP-BIS) was calculated by comparing the BIS and clinical DWs. We analyzed the clinical characteristics of patients with positive (n = 835) and negative (n = 720) gaps. Compared with other patients, the DWCP-BIS-positive group had higher extracellular water (ECW) level and extracellular/intracellular water index (E/I) and had lower weight, body mass index (BMI), lean tissue index (LTI), fat tissue index (FTI), fat mass (FAT), and adipose tissue mass (ATM). The DWCP-BIS-negative group exhibited elevated BMI, FTI, FAT, and ATM; however, it had lower height, ECW, and E/I. Linear regression analysis revealed that FAT significantly predicted DWCP accuracy. The clinical DW of patients with a low fat mass tended to be underestimated, while the clinical DW of patients with comparatively large fat reserves tended to be overestimated. These characteristics will aid in the reduction of BIS-based DW errors.
Collapse
Affiliation(s)
- Hae-Ri Kim
- Department of Nephrology, Chungnam National University Sejong Hospital, Sejong 30099, Korea; (H.-R.K.); (J.-W.J.)
| | - Jae-Wan Jeon
- Department of Nephrology, Chungnam National University Sejong Hospital, Sejong 30099, Korea; (H.-R.K.); (J.-W.J.)
| | - Hong-Jin Bae
- Department of Nephrology, Cheongju St. Mary’s Hospital, Cheongju 28323, Korea;
| | - Jin-Ah Shin
- Department of Medical Science, Medical School, Chungnam National University, Daejeon 35015, Korea;
| | - Young-Rok Ham
- Nephrology, Medical School, Chungnam National University, Daejeon 35015, Korea; (Y.-R.H.); (K.-R.N.); (K.-W.L.)
| | - Ki-Ryang Na
- Nephrology, Medical School, Chungnam National University, Daejeon 35015, Korea; (Y.-R.H.); (K.-R.N.); (K.-W.L.)
| | - Kang-Wook Lee
- Nephrology, Medical School, Chungnam National University, Daejeon 35015, Korea; (Y.-R.H.); (K.-R.N.); (K.-W.L.)
| | - Dae-Eun Choi
- Department of Medical Science, Medical School, Chungnam National University, Daejeon 35015, Korea;
- Nephrology, Medical School, Chungnam National University, Daejeon 35015, Korea; (Y.-R.H.); (K.-R.N.); (K.-W.L.)
- Correspondence: (D.-E.C.); (Y.-K.H.)
| | - Yun-Kyong Hyon
- Division of Industrial Mathematics, Data Analytics Team, National Institute for Mathematical Sciences, Daejeon 34047, Korea
- Correspondence: (D.-E.C.); (Y.-K.H.)
| |
Collapse
|
20
|
Jacques PF, Rogers G, Stookey JD, Perrier ET. Water Intake and Markers of Hydration Are Related to Cardiometabolic Risk Biomarkers in Community-Dwelling Older Adults: A Cross-Sectional Analysis. J Nutr 2021; 151:3205-3213. [PMID: 34383920 PMCID: PMC8485913 DOI: 10.1093/jn/nxab233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Emerging evidence links underhydration and habitual low water intake to higher cardiometabolic risk, but evidence is limited in community-dwelling older adults. OBJECTIVES The objective is to examine if higher water intake and better hydration are associated with better cardiometabolic health. METHODS This cross-sectional analysis using general linear models included 2238 participants from the Framingham Heart Study Second Generation and First Generation Omni cohorts with an estimated glomerular filtration rate >30 mL·min-1·1.73 m-2 and a valid FFQ for assessment of water intake. Of these participants, 2219 had fasting spot urinary creatinine data and 950 had 24-h urine creatinine data to assess hydration. Cardiometabolic risk factors included fasting glucose, triglycerides (TGs), total cholesterol (TC), HDL cholesterol, and calculated LDL cholesterol; glycated hemoglobin (HbA1c); C-reactive protein (CRP); and systolic (SBP) and diastolic (DBP) blood pressure. RESULTS The combined cohorts were on average aged 70 y; 55% were women. Mean (95% CI) daily total water intakes were 2098 (2048, 2150) mL for men and 2109 (2063, 2156) mL for women. Total daily water, beverage (including plain water), and plain water intakes demonstrated significant positive trends with HDL cholesterol (P < 0.01). TG concentrations were significantly lower among the highest plain water consumers (P < 0.05). The 24-h urine concentration, as measured by creatinine, was positively associated with LDL cholesterol and TG concentrations ( P < 0.01) and inversely associated with HDL cholesterol concentrations (P < 0.002). Neither water intake nor urine concentration was associated with glucose or HbA1c (P > 0.05). CONCLUSIONS Our findings of a consistent pattern between circulating lipid concentrations and different water sources and hydration markers support an association between hydration and lipid metabolism in older adults and add to the growing evidence that inadequate water intake and underhydration may lead to higher cardiometabolic risk.
Collapse
Affiliation(s)
- Paul F Jacques
- USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Gail Rogers
- USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | | | - Erica T Perrier
- Health, Hydration & Nutrition Science, Danone Research, Palaiseau, France
| |
Collapse
|
21
|
Associations of Urine Specific Gravity With Body Mass Index and Lean Body Mass at the Population Level: Implications for Hydration Monitoring. Int J Sport Nutr Exerc Metab 2021; 31:475-481. [PMID: 34470907 DOI: 10.1123/ijsnem.2021-0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/10/2021] [Accepted: 06/30/2021] [Indexed: 11/18/2022]
Abstract
Urine specific gravity (USG) thresholds are used in practice and research to determine hypohydration. However, some limited research has found that body size and body composition may impact USG, suggesting that fixed cutoffs may be insensitive. Cross-sectional data from 3,634 participants of the 2007-2008 National Health and Nutrition Examination Survey were analyzed. Along with USG, body mass index (BMI), estimated lean body mass (LBM), and dietary intake were quantified. Logistic regression models were used to evaluate whether higher quintiles of BMI and LBM were associated with elevated USG (USG ≥ 1.020 and ≥1.025) after accounting for dietary moisture and sodium. The USG (1.018 ± 0.0003 vs. 1.015 ± 0.0004); BMI (28.4 ± 0.2 vs. 28.0 ± 0.2 kg/m2); LBM (60.9 ± 0.3 vs. 42.2 ± 0.2 kg); dietary moisture (3,401 ± 92 vs. 2,759 ± 49 g/day); and dietary sodium (4,171 ± 85 vs. 2,959 ± 50) were greater in men than in women (p < .05). Men and women in the fifth quintiles of BMI or LBM (vs. Quintile 1) had greater odds (2.00-3.68, p < .05) of elevated USG. (The only exception was for the association between BMI and USG ≥ 1.025 in men.) Being in Quintile 4 of LBM or BMI (vs. Quintile 1) also tended to be associated with higher odds of elevated of USG, though this pattern was more consistent when using USG ≥ 1.020 than USG ≥ 1.025. In summary, BMI and LBM are associated with USG at the population level. These results affirm that USG depends on body size and composition and raise questions about using fixed USG thresholds for determining hypohydration, particularly for people in the upper quintiles of BMI and LBM.
Collapse
|
22
|
Visceral fat reduction and increase of intracellular fluid in weight loss participants on antihypertension medication. Cardiovasc Endocrinol Metab 2021; 10:31-36. [PMID: 33634253 DOI: 10.1097/xce.0000000000000222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/09/2020] [Indexed: 11/25/2022]
Abstract
Objectives Complex physiological interactions between hypertension and obesity contribute to and perpetuate a heightened morbidity and mortality. With the prevalence of both hypertension and obesity reaching epidemic proportions, we asked whether antihypertensive medications affect the ability of participants to achieve the same level of body composition improvements as other participants in a comprehensive weight loss program focused on reduction of visceral adipose tissue. Methods Data was analyzed from 2200 subjects completing a commercially available, expert supervised weight loss program including ~6 weeks of a proprietary, nutritionally complete, very low-calorie diet (VLCD) followed by a ~3-week structured transition back to a normal dietary intake. Overall, 33% of the subjects reported taking at least one prescription antihypertensive medication. Results Our data show participants in both groups (± antihypertensive drugs) achieved clinically relevant and statistically significant improvements in standard measures of weight loss and endpoints directly related to inflammation and hypertension. Conclusion A nonpharmacologic, nonsurgical VLCD-based weight loss and metabolic health program is capable of producing clinically meaningful improvements in body composition and physiological endpoints, including those linked to hypertension, cardiovascular disease and inflammation, and is as equally effective for adults taking prescription antihypertensives as it is for those participants who are not.
Collapse
|
23
|
Segar JL, Balapattabi K, Reho JJ, Grobe CC, Burnett CML, Grobe JL. Quantification of body fluid compartmentalization by combined time-domain nuclear magnetic resonance and bioimpedance spectroscopy. Am J Physiol Regul Integr Comp Physiol 2021; 320:R44-R54. [PMID: 33085913 PMCID: PMC7847054 DOI: 10.1152/ajpregu.00227.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/22/2023]
Abstract
The measurement of fluid compartmentalization, or the distribution of fluid volume between extracellular (ECF) and intracellular (ICF) spaces, historically requires complicated, burdensome, and often terminal methodologies that do not permit repeated or longitudinal experiments. New technologies including time-domain nuclear magnetic resonance (TD-NMR)-based methods allow for highly accurate measurements of total body water (TBW) within minutes in a noninvasive manner, but do not permit dissection of ECF versus ICF reservoirs. In contrast, methods such as bioimpedance spectroscopy (BIS) allow dissection of ECF versus ICF reservoirs but are hampered by dependence on many nuanced details in data collection that undermine confidence in experimental results. Here, we present a novel combinatorial use of these two technologies (NMR/BIS) to improve the accuracy of BIS-based assessments of ECF and ICF, while maintaining the advantages of these minimally invasive methods. Briefly, mice undergo TD-NMR and BIS-based measures, and then fat masses as derived by TD-NMR are used to correct BIS outputs. Mice of the C57BL/6J background were studied using NMR/BIS methods to assess the effects of acute furosemide injection and diet-induced obesity on fluid compartmentalization, and to examine the influence of sex, body mass and composition, and diet on TBW, ECF, and ICF. We discovered that in mice, sex and body size/composition have substantial and interactive effects on fluid compartmentalization. We propose that the combinatorial use of NMR/BIS methods will enable a revisioning of the types of longitudinal, kinetic studies that can be performed to understand the impact of various interventions on body fluid homeostasis.
Collapse
Affiliation(s)
- Jeffrey L Segar
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Connie C Grobe
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Colin M L Burnett
- Division of Cardiology, Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
24
|
Chronic Dehydration in Nursing Home Residents. Nutrients 2020; 12:nu12113562. [PMID: 33233662 PMCID: PMC7709028 DOI: 10.3390/nu12113562] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/12/2023] Open
Abstract
Chronic dehydration mainly occurs due to insufficient fluid intake over a lengthy period of time, and nursing home residents are thought to be at high risk for chronic dehydration. However, few studies have investigated chronic dehydration, and new diagnostic methods are needed. Therefore, in this study, we aimed to identify risk factors for chronic dehydration by measuring serum osmolality in nursing home residents and also to evaluate whether examining the inferior vena cava (IVC) and determining the IVC collapsibility index (IVC-CI) by ultrasound can be helpful in the diagnosis of chronic dehydration. A total of 108 Japanese nursing home residents aged ≥65 years were recruited. IVC measurement was performed using a portable handheld ultrasound device. Fifteen residents (16.9%) were classified as having chronic dehydration (serum osmolality ≥295 mOsm/kg). Multivariate logistic regression analysis showed that chronic dehydration was associated with dementia (odds ratio (OR), 6.290; 95% confidential interval (CI), 1.270–31.154) and higher BMI (OR, 1.471; 95% CI, 1.105–1.958) but not with IVC or IVC-CI. Cognitive function and body weight of residents should be considered when establishing a strategy for preventing chronic dehydration in nursing homes.
Collapse
|
25
|
Meade RD, Akerman AP, Notley SR, McGinn R, Poirier P, Gosselin P, Kenny GP. Physiological factors characterizing heat-vulnerable older adults: A narrative review. ENVIRONMENT INTERNATIONAL 2020; 144:105909. [PMID: 32919284 DOI: 10.1016/j.envint.2020.105909] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/24/2020] [Accepted: 06/17/2020] [Indexed: 05/26/2023]
Abstract
More frequent and intense periods of extreme heat (heatwaves) represent the most direct challenge to human health posed by climate change. Older adults are particularly vulnerable, especially those with common age-associated chronic health conditions (e.g., cardiovascular disease, hypertension, obesity, type 2 diabetes, chronic kidney disease). In parallel, the global population is aging and age-associated disease rates are on the rise. Impairments in the physiological responses tasked with maintaining homeostasis during heat exposure have long been thought to contribute to increased risk of health disorders in older adults during heatwaves. As such, a comprehensive overview of the provisional links between age-related physiological dysfunction and elevated risk of heat-related injury in older adults would be of great value to healthcare officials and policy makers concerned with protecting heat-vulnerable sectors of the population from the adverse health impacts of heatwaves. In this narrative review, we therefore summarize our current understanding of the physiological mechanisms by which aging impairs the regulation of body temperature, hemodynamic stability and hydration status. We then examine how these impairments may contribute to acute pathophysiological events common during heatwaves (e.g., heatstroke, major adverse cardiovascular events, acute kidney injury) and discuss how age-associated chronic health conditions may exacerbate those impairments. Finally, we briefly consider the importance of physiological research in the development of climate-health programs aimed at protecting heat-vulnerable individuals.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ryan McGinn
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Paul Poirier
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Pierre Gosselin
- Institut National de Santé Publique du Québec and Université Laval, Québec, Québec, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
26
|
Stookey JD, Kavouras SA. Water Researchers Do Not Have a Strategic Plan for Gathering Evidence to Inform Water Intake Recommendations to Prevent Chronic Disease. Nutrients 2020; 12:nu12113359. [PMID: 33142720 PMCID: PMC7692653 DOI: 10.3390/nu12113359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Confusion has persisted for decades in the United States (U.S.) over how much plain water to drink, despite national water intake recommendations which are based on high quality scientific evidence. This editorial summarizes the definition, alignment and coordination of evidence that informs the current U.S. adequate intake (AI) recommendations for water. It highlights gaps in the evidence that perpetuate confusion and opportunity to address the gaps through strategic planning.
Collapse
|
27
|
Bjørke-Monsen AL, Mikalsen SM, Ueland GÅ, Aaseth J, Whist JE. Low serum sodium concentrations in patients with obesity normalizes with weight loss. Clin Nutr ESPEN 2020; 41:405-411. [PMID: 33487297 DOI: 10.1016/j.clnesp.2020.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND & AIMS Obesity is associated with higher extracellular fluid (ECF) compared to intracellular fluid (ICF) volume and this dysregulation is associated with hypertension and abdominal obesity, associated with metabolic syndrome. As sodium is predominantly an extracellular cation, a higher ECF/ICF ratio will lower serum sodium concentration. The aim of the study was to see whether weight loss, due to dieting and bariatric surgery, had any impact on serum sodium concentrations in patients with severe obesity. METHODS Patients with a BMI ≥35 kg/m2 admitted for bariatric surgery at Innlandet Hospital Trust, Norway during 2012-14 were included in the study (n = 119). Clinical data and blood samples were recorded at inclusion, after mean six months of dieting, as well as six and 12 months after bariatric surgery. RESULTS At inclusion, mean serum sodium was in the lower normal range, 138.3 (SD 2.4) mmol/L, but increased to 141.8 (SD 1.9) mmol/L after weight loss. The increase was significantly correlated to total weight loss (rho: 0.29, p = 0.007). Twelve months after surgery, serum sodium was significantly higher in patients with a normal BMI (<25 kg/m2) compared to patients with overweight. CONCLUSION Obesity and hypertension are associated with body fluid dysregulation affecting serum sodium concentrations. As mild hyponatremia, even within the normal sodium range, is associated with increased total mortality and major cardiovascular disease events, serum sodium might be a potential risk marker in patients with obesity.
Collapse
Affiliation(s)
- Anne-Lise Bjørke-Monsen
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.
| | | | | | - Jan Aaseth
- Department of Research, Innlandet Hospital Trust, 2380, Brumunddal, Norway
| | - Jon Elling Whist
- Laboratory of Medical Biochemistry, Innlandet Hospital Trust, 2609, Lillehammer, Norway; Department of Research, Innlandet Hospital Trust, 2380, Brumunddal, Norway
| |
Collapse
|
28
|
Total body water by BIA in children and young adults with normal and excessive weight. PLoS One 2020; 15:e0239212. [PMID: 33031479 PMCID: PMC7544096 DOI: 10.1371/journal.pone.0239212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022] Open
Abstract
Background Estimation of total body water (TBW) is essential for clinical care. Objective Evaluation of changes in TBW by bioelectrical impedance analysis (BIA) in children and young adults with excessive weight. Design Data was collected in individuals aged 3–21 years with normal (n = 202) or excessive body weight (n = 133). The BIA results from individuals with normal weight were compared with two previously published studies in children by isotope dilution methods. Results Individuals with excessive weight had a higher mean TBW (27.87 L, SE 0.368) for height and age as compared to individuals with normal weight (23.95 L, SE 0.298), P<0.001. However, individuals with excessive weight had lower mean TBW (24.93 L, SE 0.37) for weight and body surface area (BSA) as compared to individuals with normal weight (26.94 L, SE 0.287), P<0.001. Comparison with two previously published studies showed no significant differences in mean TBW with one ((p = 1.00) but a significant difference with another study (p = 0.001). Conclusions Individuals with excessive weight had 16.5% higher mean TBW for height and age and 7.4% lower TBW for weight and BSA as compared to normal weight individuals. Our study validates the feasibility of data collection in pediatric outpatient setting by BIA.
Collapse
|
29
|
Circulating Levels of Visceral Adipose Tissue-Derived Serine Protease Inhibitor (Vaspin) Appear as a Marker of Musculoskeletal Pain Disability. Diagnostics (Basel) 2020; 10:diagnostics10100797. [PMID: 33049941 PMCID: PMC7599595 DOI: 10.3390/diagnostics10100797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/16/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022] Open
Abstract
Musculoskeletal pain (MSP), specifically low back pain (LBP), is often associated with several adipose tissue-derived cytokines (adipokines) and body composition, but their correlations with the LBP-related disability/severity phenotypes remain poorly understood. In this cross-sectional study, two self-reported validated questionnaires were used to collect back pain and disability data in an ethnically homogeneous family-based population sample (N = 1078). Plasma levels of relatively new adipokines, vaspin and adipsin, were detected by ELISA. Body composition parameters, including fat, skeletal muscle mass, extracellular water (ECW), and others were assessed through bioelectrical impedance analysis (BIA) technology. Statistical analysis was conducted, accounting for the familial composition of the sample. The multiple regression analyses with four LBP-related phenotypes as dependent variables consistently showed, for the first time, the significant associations with vaspin levels, regardless of other covariates. The odds ratios (OR)/SD ranged between 1.24 (95%CI = 1.03-1.50) and 1.33 (95%CI = 1.07-1.64), depending on the LBP phenotype. Among the tested body composition covariates, only ECW levels displayed consistent and highly significant associations with all tested LBP phenotypes (OR from 1.43, 95%CI = 1.14-1.79 to 1.68, 95%CI = 1.26-2.24). The results clearly suggest that circulating concentrations of vaspin and ECW levels could serve as biomarkers of MSP/LBP severity and complications.
Collapse
|
30
|
Luetkens JA, Voigt M, Faron A, Isaak A, Mesropyan N, Dabir D, Sprinkart AM, Pieper CC, Chang J, Attenberger U, Kuetting D, Thomas D. Influence of hydration status on cardiovascular magnetic resonance myocardial T1 and T2 relaxation time assessment: an intraindividual study in healthy subjects. J Cardiovasc Magn Reson 2020; 22:63. [PMID: 32892751 PMCID: PMC7487526 DOI: 10.1186/s12968-020-00661-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/07/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Myocardial native T1 and T2 relaxation time mapping are sensitive to pathological increase of myocardial water content (e.g. myocardial edema). However, the influence of physiological hydration changes as a possible confounder of relaxation time assessment has not been studied. The purpose of this study was to evaluate, whether changes in myocardial water content due to dehydration and hydration might alter myocardial relaxation times in healthy subjects. METHODS A total of 36 cardiovascular magnetic resonance (CMR) scans were performed in 12 healthy subjects (5 men, 25.8 ± 3.2 years). Subjects underwent three successive CMR scans: (1) baseline scan, (2) dehydration scan after 12 h of fasting (no food or water), (3) hydration scan after hydration. CMR scans were performed for the assessment of myocardial native T1 and T2 relaxation times and cardiac function. For multiple comparisons, repeated measures ANOVA or the Friedman test was used. RESULTS There was no change in systolic blood pressure or left ventricular ejection fraction between CMR scans (P > 0.05, respectively). T1 relaxation times were significantly reduced with dehydration (987 ± 27 ms [baseline] vs. 968 ± 29 ms [dehydration] vs. 986 ± 28 ms [hydration]; P = 0.006). Similar results were observed for T2 relaxation times (52.9 ± 1.8 ms [baseline] vs. 51.5 ± 2.0 ms [dehydration] vs. 52.2 ± 1.9 ms [hydration]; P = 0.020). CONCLUSIONS Dehydration may lead to significant alterations in relaxation times and thereby may influence precise, repeatable and comparable assessment of native T1 and T2 relaxation times. Hydration status should be recognized as new potential confounder of native T1 and T2 relaxation time assessment in clinical routine.
Collapse
Affiliation(s)
- Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany.
| | - Marilia Voigt
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Anton Faron
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Narine Mesropyan
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Darius Dabir
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Alois M Sprinkart
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Johannes Chang
- Department of Internal Medicine I, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Daniel Thomas
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| |
Collapse
|
31
|
Aydin V, Akici A, Sakarya S, Akman M, Fak AS. Baseline characteristics predicting clinical outcomes and serious adverse events in middle-aged hypertensive women: a subanalysis of the SPRINT in women aged <65 years. Turk J Med Sci 2020; 50:1298-1306. [PMID: 32490642 PMCID: PMC7491286 DOI: 10.3906/sag-1907-144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 05/23/2020] [Indexed: 11/03/2022] Open
Abstract
Background/aim The predictability of clinical outcomes in hypertension in specific patient groups, especially underrepresented populations is the key to rational treatment. This study aimed to investigate the impact of baseline characteristics of <65-year-old hypertensive women with an increased risk of cardiovascular events, managed with standard- or intensive-approach, on their clinical outcomes and serious adverse events (SAEs). Materials and methods Baseline characteristics of <65-year-old hypertensive women (n = 1247) in SPRINT, a multicenter randomized trial to compare standard and intensive antihypertensive treatment, were analyzed with Cox-regression method to determine potential predictors of the clinical outcomes and SAEs. The primary outcome was the composite of myocardial infarction (MI), non-MI acute coronary syndrome, stroke, heart failure, or cardiovascular death. Results The primary outcome occurred in 3.1% and SAEs in 27.6% of the population. The treatment groups were similar in terms of the primary outcome, SAEs, or their individual components. The primary outcome occurred significantly more in current smokers vs. nonsmokers (HR: 2.85, 95% CI: 1.34–6.09). The subjects who were on aspirin in the intensive-group were significantly more likely to develop the primary outcome (HR: 3.17, 95% CI: 1.23-8.19) and MI (HR: 10.15, 95% CI: 1.19-86.88) compared with those not using aspirin. The risk of overall SAEs was significantly higher in blacks vs. nonblacks (HR: 1.27, 95% CI: 1.01-1.58), in current-smokers vs. nonsmokers (HR: 1.59, 95% CI: 1.23-2.05), and those with vs. without chronic kidney disease (CKD), (HR: 1.38, 95% CI: 1.08-1.77). The likelihood of SAEs significantly increased with age (HR: 1.04, 95% CI: 1.01-1.07). Conclusion Smoking, aspirin, CKD, black race, and age seemed as important baseline characteristics in follow-up of <65-year-old hypertensive women, also depending on therapeutic strategy. Clinicians are expected to consider these critical parameters for effective antihypertensive management that promotes better outcomes in this middle-aged female population.
Collapse
Affiliation(s)
- Volkan Aydin
- Hypertension and Atherosclerosis Research Center (HIPAM), Marmara University, İstanbul, Turkey
| | - Ahmet Akici
- Hypertension and Atherosclerosis Research Center (HIPAM), Marmara University, İstanbul, Turkey
| | - Sibel Sakarya
- Department of Public Health, School of Medicine, Koç University, İstanbul, Turkey
| | - Mehmet Akman
- Hypertension and Atherosclerosis Research Center (HIPAM), Marmara University, İstanbul, Turkey
| | - Ali Serdar Fak
- Hypertension and Atherosclerosis Research Center (HIPAM), Marmara University, İstanbul, Turkey
| |
Collapse
|
32
|
Bethancourt HJ, Swanson ZS, Nzunza R, Huanca T, Conde E, Kenney WL, Young SL, Ndiema E, Braun D, Pontzer H, Rosinger AY. Hydration in relation to water insecurity, heat index, and lactation status in two small-scale populations in hot-humid and hot-arid environments. Am J Hum Biol 2020; 33:e23447. [PMID: 32583580 DOI: 10.1002/ajhb.23447] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES This study compared the prevalence of concentrated urine (urine specific gravity ≥1.021), an indicator of hypohydration, across Tsimane' hunter-forager-horticulturalists living in hot-humid lowland Bolivia and Daasanach agropastoralists living in hot-arid Northern Kenya. It tested the hypotheses that household water and food insecurity would be associated with higher odds of hypohydration. METHODS This study collected spot urine samples and corresponding weather data along with data on household water and food insecurity, demographics, and health characteristics among 266 Tsimane' households (N = 224 men, 235 women, 219 children) and 136 Daasanach households (N = 107 men, 120 women, 102 children). RESULTS The prevalence of hypohydration among Tsimane' men (50.0%) and women (54.0%) was substantially higher (P < .001) than for Daasanach men (15.9%) and women (17.5%); the prevalence of hypohydration among Tsimane' (37.0%) and Daasanach (31.4%) children was not significantly different (P = .33). Multiple logistic regression models suggested positive but not statistically significant trends between household water insecurity and odds of hypohydration within populations, yet some significant joint effects of water and food insecurity were observed. Heat index (2°C) was associated with a 23% (95% confidence interval [CI]: 1.09-1.40, P = .001), 34% (95% CI: 1.18-1.53, P < .0005), and 23% (95% CI: 1.04-1.44, P = .01) higher odds of hypohydration among Tsimane' men, women, and children, respectively, and a 48% (95% CI: 1.02-2.15, P = .04) increase in the odds among Daasanach women. Lactation status was also associated with hypohydration among Tsimane' women (odds ratio = 3.35, 95% CI: 1.62-6.95, P = .001). CONCLUSION These results suggest that heat stress and reproductive status may have a greater impact on hydration status than water insecurity across diverse ecological contexts.
Collapse
Affiliation(s)
- Hilary J Bethancourt
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Zane S Swanson
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | | | - Tomas Huanca
- Centro Boliviano de Investigacion y Desarrollo Socio Integral (CBIDSI), San Borja, Bolivia
| | - Esther Conde
- Centro Boliviano de Investigacion y Desarrollo Socio Integral (CBIDSI), San Borja, Bolivia
| | - W Larry Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sera L Young
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Emmanuel Ndiema
- Department of Earth Sciences, National Museums of Kenya, Nairobi, Kenya
| | - David Braun
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA.,Department of Human Evolution, Max Planck Institute of Evolutionary Anthropology, Leipzig, Germany
| | - Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA.,Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Asher Y Rosinger
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Anthropology, The Pennsylvania State University, Pennsylvania, USA
| |
Collapse
|
33
|
Pigott A, Obermair A, Janda M, Vagenas D, Ward LC, Reul-Hirche H, Hayes SC. Incidence and risk factors for lower limb lymphedema associated with endometrial cancer: Results from a prospective, longitudinal cohort study. Gynecol Oncol 2020; 158:375-381. [PMID: 32499070 DOI: 10.1016/j.ygyno.2020.04.702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Evidence on the incidence and risk factors for lower limb lymphedema (LLL) associated with endometrial cancer is limited. Our objective was to use data from a prospective, longitudinal gynecological cancer cohort study to determine LLL incidence up to 24 months post-diagnosis of endometrial cancer and to explore the relationship between personal and treatment-related factors and risk of developing LLL. METHODS Women recently diagnosed with endometrial cancer (n = 235) were evaluated at regular intervals post-diagnosis (up to 3-monthly) using bioimpedance spectroscopy (BIS) and self-reported leg swelling (SRLS). RESULTS Incidence of LLL at 24 months post-diagnosis was 33% and 45% according to BIS and SRLS, respectively. When analyses were restricted to obese women, incidence at 24 months post-diagnosis increased to 67% (BIS) and 54% (SRLS). Following adjusted analyses, higher body mass index was associated with higher odds of baseline lymphedema (BIS: OR 1.91, 95% CI 1.47-2.49, p < .01; SRLS: OR 1.06, 95% CI 1.00-1.12, p < .01) and LLL incidence by 24 months post-diagnosis (BIS: OR 1.29, 95% CI: 0.99-1.68, p = .055; SRLS: OR 1.06, 95% CI 1.02-1.11, p = .008). According to SRLS, presence of comorbidities was also associated with baseline lymphedema (OR: 1.43, 95% CI: 1.15-1.78, p = .001), and more extensive lymph node dissection (OR 1.06, 95% CI: 1.01-1.12, p = .026) and receipt of chemotherapy (OR: 2.65, 95% CI: 1.12-6.29, p = .027) were identified as risk factors for lymphedema incidence. CONCLUSIONS These findings suggest that LLL following endometrial cancer is common, particularly in women with high body mass index, or comorbidities, and those requiring more extensive lymph node dissection or chemotherapy. Future studies should examine the potential of weight loss intervention as a strategy to reduce LLL incidence.
Collapse
Affiliation(s)
- Amanda Pigott
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia; Princess Alexandra Hospital, Occupational Therapy Department, Brisbane, Queensland, Australia.
| | - Andreas Obermair
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia; Royal Brisbane and Women's Hospital, Queensland Centre of Gynaecological Research, Brisbane, Queensland, Australia
| | - Monika Janda
- Centre for Health Services Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Dimitrios Vagenas
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Leigh C Ward
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Hildegard Reul-Hirche
- Royal Brisbane and Women's Hospital, Physiotherapy Department, Brisbane, Queensland, Australia
| | - Sandra C Hayes
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Menzies Health Institute Queensland, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
34
|
Volcko KL, Carroll QE, Brakey DJ, Daniels D. High-fat diet alters fluid intake without reducing sensitivity to glucagon-like peptide-1 receptor agonist effects. Physiol Behav 2020; 221:112910. [PMID: 32283107 DOI: 10.1016/j.physbeh.2020.112910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
Abstract
Rats that are maintained on a high-fat diet (HFD) differ from controls in many ways, but how HFD maintenance affects water intake and drinking behavior has not been well studied. This is unfortunate because diet and obesity may influence fluid balance in humans through a mechanism that is poorly understood. We therefore tested the hypothesis that HFD maintenance affects water intake in rats. Water intake and drinking behavior are, in part, controlled by the actions of glucagon-like peptide-1 (GLP-1), a peptide which is well studied for its hypophagic effects. Previous studies have shown that HFD maintenance impairs the ability of GLP-1 receptor agonists to suppress food intake when the drug is administered peripherally, but not centrally. The effects of GLP-1 on fluid intake are thought to rely more on central receptor activation; therefore, a secondary aim of these experiments was to shed additional light on the location of GLP-1 responsive cells that mediate feeding vs drinking behavior. We maintained male Sprague-Dawley rats on HFD or low-fat diet (LFD) for six weeks and measured body weight, food intake, water intake, and drinking behavior. We then tested the relative contributions of diet and body weight on food intake and water intake after peripheral and central injections of GLP-1 receptor agonist Exendin-4 (Ex4). We found that HFD maintenance reduced the amount of water consumed, when intake was corrected for body weight. Consistent with other reports, rats on HFD showed a smaller suppression of food intake when given Ex4 peripherally, but not centrally. Water intake suppression when given Ex4 did not differ by diet or body weight regardless of injection site, however, adding support to the hypothesis that only central GLP-1 receptors are involved in water intake.
Collapse
Affiliation(s)
- K Linnea Volcko
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260 USA; Behavioral Neuroscience Program, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
| | - Quinn E Carroll
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260 USA; Behavioral Neuroscience Program, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
| | - Destiny J Brakey
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260 USA; Behavioral Neuroscience Program, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
| | - Derek Daniels
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260 USA; Behavioral Neuroscience Program, University at Buffalo, State University of New York, Buffalo, NY 14260 USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260 USA.
| |
Collapse
|
35
|
Underhydration Is Associated with Obesity, Chronic Diseases, and Death Within 3 to 6 Years in the U.S. Population Aged 51-70 Years. Nutrients 2020; 12:nu12040905. [PMID: 32224908 PMCID: PMC7230456 DOI: 10.3390/nu12040905] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Nationally representative data from the National Health and Nutrition Examination Survey (NHANES) indicate that over 65% of adults aged 51–70 years in the U.S. do not meet hydration criteria. They have hyponatremia (serum sodium < 135 mmol/L) and/or underhydration (serum sodium >145 mmol/L, spot urine volume <50 mL, and/or spot urine osmolality ≥500 mmol/kg). To explore potential public health implications of not meeting hydration criteria, data from the NHANES 2009–2012 and National Center for Health Statistics Linked Mortality Files for fasting adults aged 51–70 years (sample n = 1200) were used to determine if hyponatremia and/or underhydration were cross-sectionally associated with chronic health conditions and/or longitudinally associated with chronic disease mortality. Underhydration accounted for 97% of the population group not meeting hydration criteria. In weighted multivariable adjusted Poisson models, underhydration was significantly associated with increased prevalence of obesity, high waist circumference, insulin resistance, diabetes, low HDL, hypertension, and metabolic syndrome. Over 3–6 years of follow-up, 33 chronic disease deaths occurred in the sample, representing an estimated 1,084,144 deaths in the U.S. Alongside chronic health conditions, underhydration was a risk factor for an estimated 863,305 deaths. Independent of the chronic health conditions evaluated, underhydration was a risk factor for 128,107 deaths. In weighted multivariable Cox models, underhydration was associated with 4.21 times greater chronic disease mortality (95% CI: 1.29–13.78, p = 0.019). Zero chronic disease deaths were observed for people who met the hydration criteria and did not already have a chronic condition in 2009–2012. Further work should consider effects of underhydration on population health.
Collapse
|
36
|
Impending Low Intake Dehydration at Admission to A Geriatric Ward- Prevalence and Correlates in a Cross-Sectional Study. Nutrients 2020; 12:nu12020398. [PMID: 32024303 PMCID: PMC7071250 DOI: 10.3390/nu12020398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Dehydration risk increases with frailty and functional dependency, but a limited number of studies have evaluated this association in hospitalized geriatric patients. This cross-sectional study aimed to assess the prevalence and determinants of dehydration in patients admitted to the geriatric ward. Dehydration was diagnosed when calculated osmolarity was above 295 mMol/L. Logistic regression analyses (direct and stepwise backward) were used to assess determinants of impending dehydration. 358 of 416 hospitalized patients (86.1%) were included: 274 (76.5%) women, and 309 (86.4%) 75+ year-old. Dehydration was diagnosed in 209 (58.4%) cases. Significantly higher odds for impending dehydration were observed only for chronic kidney disease with trends for diabetes and procognitive medication when controlling for several health, biochemical, and nutritional parameters and medications. After adjusting for “dementia” the negative effect of “taking procognitive medications” became a significant one. Chronic kidney disease, diabetes, taking procognitive medications and hypertension were the main variables for the outcome prediction according to the stepwise backward regression analysis. This may indicate an additional benefit of reducing the risk of dehydration when using procognitive drugs in older patients with dementia.
Collapse
|
37
|
Cabrera-Cruz H, Oróstica L, Plaza-Parrochia F, Torres-Pinto I, Romero C, Vega M. The insulin-sensitizing mechanism of myo-inositol is associated with AMPK activation and GLUT-4 expression in human endometrial cells exposed to a PCOS environment. Am J Physiol Endocrinol Metab 2020; 318:E237-E248. [PMID: 31874063 DOI: 10.1152/ajpendo.00162.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine-metabolic disorder characterized by hyperandrogenism and ovulatory dysfunction but also obesity and hyperinsulinemia. These characteristics induce an insulin-resistant state in tissues such as the endometrium, affecting its reproductive functions. Myo-inositol (MYO) is an insulin-sensitizing compound used in PCOS patients; however, its insulin-sensitizing mechanism is unclear. To understand the relationship of MYO with insulin action in endometrial cells, sodium/myo-inositol transporter 1 (SMIT-1) (MYO-transporter), and MYO effects on protein levels related to the insulin pathway were evaluated. SMIT-1 was assessed in endometrial tissue from women with normal weight, obesity, insulin resistance, and PCOS; additionally, using an in vitro model of human endometrial cells exposed to an environment resembling hyperinsulinemic-obese-PCOS, MYO effect was evaluated on p-AMPK and GLUT-4 levels and glucose uptake by Western blot, immunocytochemistry, and confocal microscopy, respectively. SMIT-1 was detected in endometrial tissue from all groups and decreased in PCOS and obesity (P < 0.05 vs. normal weight). In the in vitro model, PCOS conditions decreased p-AMPK levels, while they were restored with MYO (P < 0.05). The diminished GLUT-4 protein levels promoted by PCOS environment were restored by MYO through SMIT-1 and p-AMPK-dependent mechanism (P < 0.05). Also, MYO restored glucose uptake in cells under PCOS condition through a p-AMPK-dependent mechanism. Finally, these results were similar to those obtained with metformin treatment in the same in vitro conditions. Consequently, MYO could be a potential insulin sensitizer through its positive effects on insulin-resistant tissues as PCOS-endometrium, acting through SMIT-1, provoking AMPK activation and elevated GLUT-4 levels and, consequently, increase glucose uptake by human endometrial cells. Therefore, MYO may be used as an effective treatment option in insulin-resistant PCOS women.
Collapse
Affiliation(s)
- Heidy Cabrera-Cruz
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital, University of Chile, Santiago, Chile
- Department of Bioanalysis and Immunology, Faculty of Sciences, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | - Lorena Oróstica
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital, University of Chile, Santiago, Chile
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad Diego Portales, Santiago, Chile
| | - Francisca Plaza-Parrochia
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital, University of Chile, Santiago, Chile
| | - Ignacio Torres-Pinto
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital, University of Chile, Santiago, Chile
| | - Carmen Romero
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital, University of Chile, Santiago, Chile
- Department of Obstetrics and Gynecology, Clinical Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Margarita Vega
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital, University of Chile, Santiago, Chile
- Department of Obstetrics and Gynecology, Clinical Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
38
|
Rosinger AY. Biobehavioral variation in human water needs: How adaptations, early life environments, and the life course affect body water homeostasis. Am J Hum Biol 2019; 32:e23338. [PMID: 31631450 DOI: 10.1002/ajhb.23338] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 01/22/2023] Open
Abstract
Body water homeostasis is critical for optimal physiological and cognitive function for humans. The majority of research has illustrated the negative biological consequences of failing to meet water needs. The human body has several mechanisms for detecting, regulating, and correcting body water deficits and excesses. However, variation exists in total water intake and how people meet those water needs as well as thirst thresholds and how well people tolerate water restriction. An evolutionary and developmental framework provides an underexplored perspective into human water needs by examining how adaptations, early life experiences and environments, as well as life course changes in health states and behaviors may shape these critical factors in body water homeostasis. This article first reviews biological and behavioral adaptations to water scarcity among animals and humans. It then examines human variation in water intake in a mostly water secure environment through the analysis of National Health and Nutrition Examination Survey dietary data and the link between water intake patterns and hydration biomarkers. Next, it reviews existing evidence of how maternal water restriction in utero and during lactation shape vasopressin release, thirst thresholds, drinking patterns, and body water homeostasis for the infant. Early life water restriction appears to have implications for hydration status, body size, and cardiovascular health. Finally, it examines how life course changes in health states and behaviors, including obesity, sleep, and parasitic infection, affect body water homeostasis. This article poses new questions about the plasticity and shaping of human water needs, thirst, and hydration behaviors.
Collapse
Affiliation(s)
- Asher Y Rosinger
- Department of Biobehavioral Health, Pennsylvania State University, State College, Pennsylvania.,Department of Anthropology, Pennsylvania State University, State College, Pennsylvania
| |
Collapse
|
39
|
Norris OC, Schermerhorn T. The mean cell volume difference (dMCV) reflects serum hypertonicity in diabetic dogs. PLoS One 2019; 14:e0219864. [PMID: 31335875 PMCID: PMC6650031 DOI: 10.1371/journal.pone.0219864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
Serum hypertonicity may develop during diabetes mellitus due to hyperglycemia and other biochemical changes. Hypertonicity may produce detrimental cellular and systemic effects and has been identified as a serum marker for some clinical disorders. In non-diabetic dogs, the mean cell volume difference, a novel erythrocyte measure, is increased by serum hypertonicity. However, it is not known whether hyperglycemic hypertonicity produces a similar change. The hypothesis that the mean cell volume difference could detect serum hypertonicity in diabetes was investigated in a group of thirty-two dogs with naturally-occurring diabetes mellitus that were prospectively recruited over a 1-year period from the outpatient population of a veterinary teaching hospital. The effect of hyperglycemia on the mean cell volume difference and the ability of the mean cell volume difference to predict serum hypertonicity were examined. Serum hyperosmolality and hypertonicity due to hyperglycemia was present in 91% and 94% of dogs, respectively. Hyperglycemia was the principal cause identified for serum hypertonicity and hyperosmolality. Using a cut-off value of ≥ 3 μm3 for the mean cell volume difference, serum hypertonicity ≥ 320 mmol/kg was identified with 79% sensitivity and 61% specificity. The dMCV correlated with changes in serum glucose, tonicity, and measured osmolality. Dogs with a mean cell volume difference ≥ 3 μm3 were at risk for serum tonicity ≥ 320 mmol/kg (risk ratio = 2.2) and serum glucose ≥ 13.9 mmol/L (risk ratio = 2.3). In conclusion, the mean cell volume difference is a useful surrogate marker for detecting serum hypertonicity in diabetic dogs and elevated mean cell volume difference is associated with increased risks for clinically relevant serum hypertonicity and hyperglycemia.
Collapse
Affiliation(s)
- Olga C. Norris
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Thomas Schermerhorn
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
40
|
Rosinger AY, Ice G. Secondary data analysis to answer questions in human biology. Am J Hum Biol 2019; 31:e23232. [PMID: 30861603 DOI: 10.1002/ajhb.23232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/03/2019] [Accepted: 02/18/2019] [Indexed: 11/08/2022] Open
Abstract
Despite a growing number of publicly available datasets, the use of these datasets for secondary analyses in human biology is less common compared with other fields. Secondary analysis of existing data offers an opportunity for human biologists to ask unique questions through an evolutionary and biocultural lens, allowing for an analysis of cultural and structural nuances that affect health. Leveraging publicly available datasets for human biology research is a way for students and established researchers to complement their data collection, use existing data for master's and doctoral theses, pilot test questions, and use existing data to answer interesting new questions or explore questions at the population level. Here we describe where publicly available data are stored, highlighting some data repositories and how to access them. We then discuss how to decide which dataset is right, depending on the research question. Next, we describe steps to construct datasets, analytical considerations and methodological challenges, best practices, and limitations depending on the structure of the study. We close by highlighting a number of publicly available datasets that have been used by human biologists and other datasets that may be of interest to the community, including research that has been conducted on some example datasets.
Collapse
Affiliation(s)
- Asher Y Rosinger
- Department of Biobehavioral Health, Pennsylvania State University, State College, Pennsylvania.,Department of Anthropology, Pennsylvania State University, State College, Pennsylvania
| | - Gillian Ice
- Department Social Medicine, Ohio University, Heritage College of Osteopathic Medicine, Athens, Ohio.,Global Health Initiative, College of Health Sciences and Professions, Athens, Ohio
| |
Collapse
|
41
|
Hosseiniyan Khatibi SM, Zununi Vahed F, Sharifi S, Ardalan M, Mohajel Shoja M, Zununi Vahed S. Osmolytes resist against harsh osmolarity: Something old something new. Biochimie 2019; 158:156-164. [PMID: 30629975 DOI: 10.1016/j.biochi.2019.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022]
Abstract
From the halophilic bacteria to human, cells have to survive under the stresses of harsh environments. Hyperosmotic stress is a process that triggers cell shrinkage, oxidative stress, DNA damage, and apoptosis and it potentially contributes to a number of human diseases. Remarkably, by high salts and organic solutes concentrations, a variety of organisms struggle with these conditions. Different strategies have been developed for cellular osmotic adaptations among which organic osmolyte synthesis/accumulation is a conserved once. Osmolytes are naturally occurring solutes used by cells of several halophilic (micro) organisms to preserve cell volume and function. In this review, the osmolytes diversity and their protective roles in harsh hyperosmolar environments from bacteria to human cells are highlighted. Moreover, it provides a close look at mammalian kidney osmoregulation at a molecular level. This review provides a concise view on the recent developments and advancements on the applications of osmolytes. Identification of disease-related osmolytes and their targeted-delivery may be used as a therapeutic measurement for treatment of the pathological conditions and the inherited diseases related to protein misfolding and aggregation. The molecular and cellular aspects of cell adaptation against harsh environmental osmolarity will benefit the development of effective drugs for many diseases.
Collapse
Affiliation(s)
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|
42
|
Roles of osmolytes in protein folding and aggregation in cells and their biotechnological applications. Int J Biol Macromol 2018; 109:483-491. [DOI: 10.1016/j.ijbiomac.2017.12.100] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/19/2017] [Indexed: 12/19/2022]
|
43
|
High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism. Proc Natl Acad Sci U S A 2018; 115:3138-3143. [PMID: 29507217 DOI: 10.1073/pnas.1713837115] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dietary guidelines for obesity typically focus on three food groups (carbohydrates, fat, and protein) and caloric restriction. Intake of noncaloric nutrients, such as salt, are rarely discussed. However, recently high salt intake has been reported to predict the development of obesity and insulin resistance. The mechanism for this effect is unknown. Here we show that high intake of salt activates the aldose reductase-fructokinase pathway in the liver and hypothalamus, leading to endogenous fructose production with the development of leptin resistance and hyperphagia that cause obesity, insulin resistance, and fatty liver. A high-salt diet was also found to predict the development of diabetes and nonalcoholic fatty liver disease in a healthy population. These studies provide insights into the pathogenesis of obesity and diabetes and raise the potential for reduction in salt intake as an additional interventional approach for reducing the risk for developing obesity and metabolic syndrome.
Collapse
|
44
|
Rabbani G. WITHDRAWN: Role of osmolytes in protein folding and aggregation in cells and its applications in biotechnology. Int J Biol Macromol 2017:S0141-8130(17)32827-1. [PMID: 29137994 DOI: 10.1016/j.ijbiomac.2017.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 11/26/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Gulam Rabbani
- Department of Medical Biotechnology, YeungNam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
45
|
Peña-Oyarzun D, Troncoso R, Kretschmar C, Hernando C, Budini M, Morselli E, Lavandero S, Criollo A. Hyperosmotic stress stimulates autophagy via polycystin-2. Oncotarget 2017; 8:55984-55997. [PMID: 28915568 PMCID: PMC5593539 DOI: 10.18632/oncotarget.18995] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
Various intracellular mechanisms are activated in response to stress, leading to adaptation or death. Autophagy, an intracellular process that promotes lysosomal degradation of proteins, is an adaptive response to several types of stress. Osmotic stress occurs under both physiological and pathological conditions, provoking mechanical stress and activating various osmoadaptive mechanisms. Polycystin-2 (PC2), a membrane protein of the polycystin family, is a mechanical sensor capable of activating the cell signaling pathways required for cell adaptation and survival. Here we show that hyperosmotic stress provoked by treatment with hyperosmolar concentrations of sorbitol or mannitol induces autophagy in HeLa and HCT116 cell lines. In addition, we show that mTOR and AMPK, two stress sensor proteins involved modulating autophagy, are downregulated and upregulated, respectively, when cells are subjected to hyperosmotic stress. Finally, our findings show that PC2 is required to promote hyperosmotic stress-induced autophagy. Downregulation of PC2 prevents inhibition of hyperosmotic stress-induced mTOR pathway activation. In conclusion, our data provide new insight into the role of PC2 as a mechanosensor that modulates autophagy under hyperosmotic stress conditions.
Collapse
Affiliation(s)
- Daniel Peña-Oyarzun
- Advanced Center for Chronic Diseases, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Advanced Center for Chronic Diseases, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Catalina Kretschmar
- Advanced Center for Chronic Diseases, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Cecilia Hernando
- Advanced Center for Chronic Diseases, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Mauricio Budini
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Eugenia Morselli
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| |
Collapse
|
46
|
Rosinger AY, Lawman HG, Akinbami LJ, Ogden CL. The role of obesity in the relation between total water intake and urine osmolality in US adults, 2009-2012. Am J Clin Nutr 2016; 104:1554-1561. [PMID: 27935519 PMCID: PMC7392307 DOI: 10.3945/ajcn.116.137414] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/05/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Adequate water intake is critical to physiologic and cognitive functioning. Although water requirements increase with body size, it remains unclear whether weight status modifies the relation between water intake and hydration status. OBJECTIVE We examined how the association between water intake and urine osmolality, which is a hydration biomarker, varied by weight status. DESIGN NHANES cross-sectional data (2009-2012) were analyzed in 9601 nonpregnant adults aged ≥20 y who did not have kidney failure. Weight status was categorized with the use of body mass index on the basis of measured height and weight (underweight or normal weight, overweight, and obesity). Urine osmolality was determined with the use of freezing-point depression osmometry. Hypohydration was classified according to the following age-dependent formula: ≥831 mOsm/kg - [3.4 × (age - 20 y)]. Total water intake was determined with the use of a 24-h dietary recall and was dichotomized as adequate or low on the basis of the Institute of Medicine's adequate intake recommendations for men and women (men: ≥3.7 or <3.7 L; nonlactating women: ≥2.7 or <2.7 L; lactating women: ≥3.8 or <3.8 L for adequate or low intakes, respectively). We tested interactions and conducted linear and log-binomial regressions. RESULTS Total water intake (P = 0.002), urine osmolality (P < 0.001), and hypohydration prevalence (P < 0.001) all increased with higher weight status. Interactions between weight status and water intake status were significant in linear (P = 0.005) and log-binomial (P = 0.015) models, which were then stratified. The prevalence ratio of hypohydration between subjects with adequate water intake and those with low water intake was 0.56 (95% CI: 0.43, 0.73) in adults who were underweight or normal weight, 0.67 (95% CI: 0.57, 0.79) in adults who were overweight, and 0.78 (95% CI: 0.70, 0.88) in adults who were obese. CONCLUSION On a population level, obesity modifies the association between water intake and hydration status.
Collapse
Affiliation(s)
- Asher Y Rosinger
- Epidemic Intelligence Service, Atlanta, GA;
- Division of Health and Nutrition Examination Surveys, National Center for Health Statistics, CDC, Hyattsville, MD; and
| | - Hannah G Lawman
- Division of Health and Nutrition Examination Surveys, National Center for Health Statistics, CDC, Hyattsville, MD; and
| | - Lara J Akinbami
- Division of Health and Nutrition Examination Surveys, National Center for Health Statistics, CDC, Hyattsville, MD; and
- Public Health Service, Rockville, MD
| | - Cynthia L Ogden
- Division of Health and Nutrition Examination Surveys, National Center for Health Statistics, CDC, Hyattsville, MD; and
| |
Collapse
|
47
|
Glaser J, Lemery J, Rajagopalan B, Diaz HF, García-Trabanino R, Taduri G, Madero M, Amarasinghe M, Abraham G, Anutrakulchai S, Jha V, Stenvinkel P, Roncal-Jimenez C, Lanaspa MA, Correa-Rotter R, Sheikh-Hamad D, Burdmann EA, Andres-Hernando A, Milagres T, Weiss I, Kanbay M, Wesseling C, Sánchez-Lozada LG, Johnson RJ. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy. Clin J Am Soc Nephrol 2016; 11:1472-1483. [PMID: 27151892 PMCID: PMC4974898 DOI: 10.2215/cjn.13841215] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Climate change has led to significant rise of 0.8°C-0.9°C in global mean temperature over the last century and has been linked with significant increases in the frequency and severity of heat waves (extreme heat events). Climate change has also been increasingly connected to detrimental human health. One of the consequences of climate-related extreme heat exposure is dehydration and volume loss, leading to acute mortality from exacerbations of pre-existing chronic disease, as well as from outright heat exhaustion and heat stroke. Recent studies have also shown that recurrent heat exposure with physical exertion and inadequate hydration can lead to CKD that is distinct from that caused by diabetes, hypertension, or GN. Epidemics of CKD consistent with heat stress nephropathy are now occurring across the world. Here, we describe this disease, discuss the locations where it appears to be manifesting, link it with increasing temperatures, and discuss ongoing attempts to prevent the disease. Heat stress nephropathy may represent one of the first epidemics due to global warming. Government, industry, and health policy makers in the impacted regions should place greater emphasis on occupational and community interventions.
Collapse
Affiliation(s)
- Jason Glaser
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Johnson RJ, Stenvinkel P, Jensen T, Lanaspa MA, Roncal C, Song Z, Bankir L, Sánchez-Lozada LG. Metabolic and Kidney Diseases in the Setting of Climate Change, Water Shortage, and Survival Factors. J Am Soc Nephrol 2016; 27:2247-56. [PMID: 27283495 PMCID: PMC4978060 DOI: 10.1681/asn.2015121314] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Climate change (global warming) is leading to an increase in heat extremes and coupled with increasing water shortage, provides a perfect storm for a new era of environmental crises and potentially, new diseases. We use a comparative physiologic approach to show that one of the primary mechanisms by which animals protect themselves against water shortage is to increase fat mass as a means for providing metabolic water. Strong evidence suggests that certain hormones (vasopressin), foods (fructose), and metabolic products (uric acid) function as survival signals to help reduce water loss and store fat (which also provides a source of metabolic water). These mechanisms are intricately linked with each other and stimulated by dehydration and hyperosmolarity. Although these mechanisms were protective in the setting of low sugar and low salt intake in our past, today, the combination of diets high in fructose and salty foods, increasing temperatures, and decreasing available water places these survival signals in overdrive and may be accelerating the obesity and diabetes epidemics. The recent discovery of multiple epidemics of CKD occurring in agricultural workers in hot and humid environments may represent harbingers of the detrimental consequences of the combination of climate change and overactivation of survival pathways.
Collapse
Affiliation(s)
- Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado;
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Jensen
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado
| | - Carlos Roncal
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado
| | - Zhilin Song
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado
| | - Lise Bankir
- Institut National de las Santé et de la Recherche Medicalé UMRS 1138, Centre de Recherche des Cordeliers, Paris, France; and
| | - Laura G Sánchez-Lozada
- Laboratory of Renal Physiopathology, Instituto Nacional de Cardiologia Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
49
|
Stookey JJD. Negative, Null and Beneficial Effects of Drinking Water on Energy Intake, Energy Expenditure, Fat Oxidation and Weight Change in Randomized Trials: A Qualitative Review. Nutrients 2016; 8:nu8010019. [PMID: 26729162 PMCID: PMC4728633 DOI: 10.3390/nu8010019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 01/08/2023] Open
Abstract
Drinking water has heterogeneous effects on energy intake (EI), energy expenditure (EE), fat oxidation (FO) and weight change in randomized controlled trials (RCTs) involving adults and/or children. The aim of this qualitative review of RCTs was to identify conditions associated with negative, null and beneficial effects of drinking water on EI, EE, FO and weight, to generate hypotheses about ways to optimize drinking water interventions for weight management. RCT conditions that are associated with negative or null effects of drinking water on EI, EE and/or FO in the short term are associated with negative or null effects on weight over the longer term. RCT conditions that are associated with lower EI, increased EE and/or increased FO in the short term are associated with less weight gain or greater weight loss over time. Drinking water instead of caloric beverages decreases EI when food intake is ad libitum. Drinking water increases EE in metabolically-inflexible, obese individuals. Drinking water increases FO when blood carbohydrate and/or insulin concentrations are not elevated and when it is consumed instead of caloric beverages or in volumes that alter hydration status. Further research is needed to confirm the observed associations and to determine if/what specific conditions optimize drinking water interventions for weight management.
Collapse
Affiliation(s)
- Jodi J D Stookey
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA.
| |
Collapse
|
50
|
Galindo-Villegas J, Montalban-Arques A, Liarte S, de Oliveira S, Pardo-Pastor C, Rubio-Moscardo F, Meseguer J, Valverde MA, Mulero V. TRPV4-Mediated Detection of Hyposmotic Stress by Skin Keratinocytes Activates Developmental Immunity. THE JOURNAL OF IMMUNOLOGY 2015; 196:738-49. [PMID: 26673139 DOI: 10.4049/jimmunol.1501729] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/11/2015] [Indexed: 11/19/2022]
Abstract
As an organism is exposed to pathogens during very early development, specific defense mechanisms must take effect. In this study, we used a germ-free zebrafish embryo model to show that osmotic stress regulates the activation of immunity and host protection in newly hatched embryos. Mechanistically, skin keratinocytes were responsible for both sensing the hyposmolarity of the aquatic environment and mediating immune effector mechanisms. This occurred through a transient potential receptor vanilloid 4/Ca(2+)/TGF-β-activated kinase 1/NF-κB signaling pathway. Surprisingly, the genes encoding antimicrobial effectors, which do not have the potential to cause tissue damage, are constitutively expressed during development, independently of both commensal microbes and osmotic stress. Our results reveal that osmotic stress is associated with the induction of developmental immunity in the absence of tissue damage and point out to the embryo skin as the first organ with full capacities to mount an innate immune response.
Collapse
Affiliation(s)
- Jorge Galindo-Villegas
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Espinardo Campus, University of Murcia, 30100 Murcia, Spain; and
| | - Ana Montalban-Arques
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Espinardo Campus, University of Murcia, 30100 Murcia, Spain; and
| | - Sergio Liarte
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Espinardo Campus, University of Murcia, 30100 Murcia, Spain; and
| | - Sofia de Oliveira
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Espinardo Campus, University of Murcia, 30100 Murcia, Spain; and
| | - Carlos Pardo-Pastor
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Pompeu Fabra University, 08002 Barcelona, Spain
| | - Fanny Rubio-Moscardo
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Pompeu Fabra University, 08002 Barcelona, Spain
| | - José Meseguer
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Espinardo Campus, University of Murcia, 30100 Murcia, Spain; and
| | - Miguel A Valverde
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Pompeu Fabra University, 08002 Barcelona, Spain
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Espinardo Campus, University of Murcia, 30100 Murcia, Spain; and
| |
Collapse
|