1
|
González-Aguado R, Gallo-Terán J, Onecha E, Morales-Angulo C. Cochleo-vestibular phenotype in patients with pathogenic variations in the ACTG1 gene. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2025; 76:512217. [PMID: 40120934 DOI: 10.1016/j.otoeng.2025.512217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/05/2024] [Indexed: 03/25/2025]
Abstract
OBJECTIVE This study aimed to investigate the prevalence of pathogenic, likely pathogenic, and variants of unknown significance in the ACTG1 gene among families with suspected bilateral sensorineural hearing loss of genetic origin. Additionally, the research aimed to elucidate the cochleovestibular phenotype of individuals carrying these variants. METHODS A cohort of 365 unrelated families with sensorineural hearing loss participated in this study. Genetic analysis was conducted using Next-Generation Sequencing (NGS). RESULTS The study identified c.94C>A and c.721G>A pathogenic variants in heterozygosity in the ACTG1 gene among three probands. Two of these cases exhibited an autosomal dominant inheritance pattern, while the third was a de novo variant. Additionally, three other family members underwent genetic and audiological evaluations. Onset of hearing loss typically occurred between the first and second decades of life, initially affecting high frequencies and gradually extending to all frequencies. Treatment with hearing aids yielded favourable outcomes in all cases. CONCLUSIONS Pathogenic variants in the ACTG1 gene were found to be rare in the studied population. Nonetheless, these variants should be considered in families presenting with postlingual bilateral sensorineural hearing loss, particularly when high-frequency hearing loss progressively worsens to profound levels.
Collapse
Affiliation(s)
- Rocío González-Aguado
- Department of Otolaryngology, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain; Faculty of Medicine, University of Cantabria, Spain; Institute for Research Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Jaime Gallo-Terán
- Department of Radiology, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Eshter Onecha
- Department of Genetics, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain; Cellular signaling and therapeutic targets in cancer, Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), Spain
| | - Carmelo Morales-Angulo
- Faculty of Medicine, University of Cantabria, Spain; Head of the Department of Otolaryngology, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain; Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain.
| |
Collapse
|
2
|
Greve JN, Marquardt A, Heiringhoff R, Reindl T, Thiel C, Di Donato N, Taft MH, Manstein DJ. The non-muscle actinopathy-associated mutation E334Q in cytoskeletal γ-actin perturbs interaction of actin filaments with myosin and ADF/cofilin family proteins. eLife 2024; 12:RP93013. [PMID: 38446501 PMCID: PMC10942649 DOI: 10.7554/elife.93013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Various heterozygous cytoskeletal γ-actin mutations have been shown to cause Baraitser-Winter cerebrofrontofacial syndrome, non-syndromic hearing loss, or isolated eye coloboma. Here, we report the biochemical characterization of human cytoskeletal γ-actin carrying mutation E334Q, a mutation that leads to a hitherto unspecified non-muscle actinopathy. Following expression, purification, and removal of linker and thymosin β4 tag sequences, the p.E334Q monomers show normal integration into linear and branched actin filaments. The mutation does not affect thermal stability, actin filament nucleation, elongation, and turnover. Model building and normal mode analysis predict significant differences in the interaction of p.E334Q filaments with myosin motors and members of the ADF/cofilin family of actin-binding proteins. Assays probing the interactions of p.E334Q filaments with human class 2 and class 5 myosin motor constructs show significant reductions in sliding velocity and actin affinity. E334Q differentially affects cofilin-mediated actin dynamics by increasing the rate of cofilin-mediated de novo nucleation of actin filaments and decreasing the efficiency of cofilin-mediated filament severing. Thus, it is likely that p.E334Q-mediated changes in myosin motor activity, as well as filament turnover, contribute to the observed disease phenotype.
Collapse
Affiliation(s)
- Johannes N Greve
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Anja Marquardt
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Robin Heiringhoff
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Theresia Reindl
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Claudia Thiel
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | | | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
- Division for Structural Biochemistry, Hannover Medical SchoolHannoverGermany
- RESiST, Cluster of Excellence 2155, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
3
|
Ghiselli S, Parmeggiani G, Zambonini G, Cuda D. Hearing Loss in Baraitser-Winter Syndrome: Case Reports and Review of the Literature. J Clin Med 2024; 13:1500. [PMID: 38592426 PMCID: PMC10935159 DOI: 10.3390/jcm13051500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Baraitser-Winter Syndrome (BRWS) is a rare autosomal dominant condition associated with hearing loss (HL). In the literature, two types of this condition are reported, Baraitser-Winter type 1 (BRWS1) and type 2 (BRWS2) produced by specific pathogenetic variants of two different genes, ACTB for BRWS1 and ACTG1 for BRWS2. In addition to syndromic BRWS2, some pathogenic variants in ACTG1 are associated also to another pathologic entity, the "Autosomal dominant non-syndromic hearing loss 20/26". In these syndromes, typical craniofacial features, sensory impairment (vision and hearing) and intellectual disabilities are frequently present. Heart anomalies, renal and gastrointestinal involvement and seizure are also common. Wide inter- and intra-familial variety in the phenotypic spectrum is reported. Some phenotypic aspects of these syndromes are not yet fully described, such as the degree and progression of HL, and better knowledge of them could be useful for correct follow-up and treatment. Methods and Results: In this study, we report two cases of children with HL and diagnosis of BRWS and a review of the current literature on HL in these syndromes.
Collapse
Affiliation(s)
- Sara Ghiselli
- Department of Otorhinolaryngology, AUSL Piacenza, 29121 Piacenza, Italy; (G.Z.); (D.C.)
| | | | - Giulia Zambonini
- Department of Otorhinolaryngology, AUSL Piacenza, 29121 Piacenza, Italy; (G.Z.); (D.C.)
| | - Domenico Cuda
- Department of Otorhinolaryngology, AUSL Piacenza, 29121 Piacenza, Italy; (G.Z.); (D.C.)
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| |
Collapse
|
4
|
Yuan Y, Yan D, Skidmore J, Chapagain P, Liu X, He S. Responsiveness of the electrically stimulated cochlear nerve in patients with a missense variant in ACTG1: Preliminary Results. FRONTIERS IN AUDIOLOGY AND OTOLOGY 2023; 1:1213323. [PMID: 38590973 PMCID: PMC11000624 DOI: 10.3389/fauot.2023.1213323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
This preliminary study identified a missense variant in ACTG1 (NM_001614.5) in a family with autosomal dominant non-syndromic hearing loss (ADNSHL). The responsiveness of the electrically-stimulated cochlear nerve (CN) in two implanted participants with this missense change was also evaluated and reported. Genetic testing was done using a custom capture panel (MiamiOtoGenes) and whole exome sequencing. The responsiveness of the electrically-stimulated CN was evaluated in two members of this family (G1 and G4) using the electrically evoked compound action potential (eCAP). eCAP results from these two participants were compared with those measured three implanted patient populations: children with cochlear nerve deficiency, children with idiopathic hearing loss and normal-sized cochlear nerves, and postligually deafened adults. Sequencing of ACTG1 identified a missense c.737A>T (p. Gln246Leu) variant in ACTG1 (NM_001614.5) which is most likely the genetic cause of ADNSHL in this family. eCAP results measured in these two participants showed substantial variations. The results indicated the missense c.737A>T (p. Gln246Leu) variant in ACTG1 (NM_001614.5) co-segregated with hearing loss in this family. The responsiveness of the electrically-stimulated CN can vary among patients with the same genetic variants, which suggests the importance of evaluating the functional status of the CN for individual CI patients.
Collapse
Affiliation(s)
- Yi Yuan
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Denise Yan
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jeffrey Skidmore
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Prem Chapagain
- Department of Physics and Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Xuezhong Liu
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T. MacDonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shuman He
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Audiology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| |
Collapse
|
5
|
Aldè M, Cantarella G, Zanetti D, Pignataro L, La Mantia I, Maiolino L, Ferlito S, Di Mauro P, Cocuzza S, Lechien JR, Iannella G, Simon F, Maniaci A. Autosomal Dominant Non-Syndromic Hearing Loss (DFNA): A Comprehensive Narrative Review. Biomedicines 2023; 11:1616. [PMID: 37371710 DOI: 10.3390/biomedicines11061616] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Autosomal dominant non-syndromic hearing loss (HL) typically occurs when only one dominant allele within the disease gene is sufficient to express the phenotype. Therefore, most patients diagnosed with autosomal dominant non-syndromic HL have a hearing-impaired parent, although de novo mutations should be considered in all cases of negative family history. To date, more than 50 genes and 80 loci have been identified for autosomal dominant non-syndromic HL. DFNA22 (MYO6 gene), DFNA8/12 (TECTA gene), DFNA20/26 (ACTG1 gene), DFNA6/14/38 (WFS1 gene), DFNA15 (POU4F3 gene), DFNA2A (KCNQ4 gene), and DFNA10 (EYA4 gene) are some of the most common forms of autosomal dominant non-syndromic HL. The characteristics of autosomal dominant non-syndromic HL are heterogenous. However, in most cases, HL tends to be bilateral, post-lingual in onset (childhood to early adulthood), high-frequency (sloping audiometric configuration), progressive, and variable in severity (mild to profound degree). DFNA1 (DIAPH1 gene) and DFNA6/14/38 (WFS1 gene) are the most common forms of autosomal dominant non-syndromic HL affecting low frequencies, while DFNA16 (unknown gene) is characterized by fluctuating HL. A long audiological follow-up is of paramount importance to identify hearing threshold deteriorations early and ensure prompt treatment with hearing aids or cochlear implants.
Collapse
Affiliation(s)
- Mirko Aldè
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giovanna Cantarella
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Diego Zanetti
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Lorenzo Pignataro
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Ignazio La Mantia
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Luigi Maiolino
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Ferlito
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Paola Di Mauro
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Cocuzza
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Jérôme René Lechien
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giannicola Iannella
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Francois Simon
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Antonino Maniaci
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| |
Collapse
|
6
|
Graziani L, Cinnirella G, Ferradini V, Conte C, Bascio FL, Bengala M, Sangiuolo F, Novelli G. A likely pathogenic ACTG1 variant in a child showing partial phenotypic overlap with Baraitser-Winter syndrome. Am J Med Genet A 2023; 191:1565-1569. [PMID: 36810952 DOI: 10.1002/ajmg.a.63157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
Baraitser-Winter syndrome (BRWS) is a rare autosomal dominant disease (AD) caused by heterozygous variants in ACTB (BRWS1) or ACTG1 (BRWS2) genes. BRWS features developmental delay/intellectual disability of variable degree and craniofacial dysmorphisms. Brain abnormalities (especially pachygyria), microcephaly, epilepsy, as well as hearing impairment, cardiovascular and genitourinary abnormalities may be present. We report on a 4-year-old female, who was addressed to our institution because of psychomotor delay associated with microcephaly and dysmorphic features, short stature, mild bilateral sensorineural hearing loss, mild cardiac septal hypertrophy, and abdominal swelling. Clinical exome sequencing detected a c.617G>A p.(Arg206Gln) de novo variant in ACTG1 gene. Such variant has been previously reported in association with a form of AD nonsyndromic sensorineural progressive hearing loss and we classified it as likely pathogenic according to ACMG/AMP criteria, despite our patient's phenotype only partially overlapped BWRS2. Our finding supports the extreme variability of the ACTG1-related disorders, ranging from classical BRWS2 to nuanced clinical expressions not fitting the original description, and occasionally featuring previously undescribed clinical findings.
Collapse
Affiliation(s)
- Ludovico Graziani
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giacomo Cinnirella
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Valentina Ferradini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Conte
- Tor Vergata University Hospital, Medical Genetics Unit, Rome, Italy
| | - Federica Lo Bascio
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Bengala
- Tor Vergata University Hospital, Medical Genetics Unit, Rome, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Tor Vergata University Hospital, Medical Genetics Unit, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Tor Vergata University Hospital, Medical Genetics Unit, Rome, Italy
| |
Collapse
|
7
|
De Novo ACTG1 Variant Expands the Phenotype and Genotype of Partial Deafness and Baraitser-Winter Syndrome. Int J Mol Sci 2022; 23:ijms23020692. [PMID: 35054877 PMCID: PMC8776155 DOI: 10.3390/ijms23020692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Actin molecules are fundamental for embryonic structural and functional differentiation; γ-actin is specifically required for the maintenance and function of cytoskeletal structures in the ear, resulting in hearing. Baraitser–Winter Syndrome (B-WS, OMIM #243310, #614583) is a rare, multiple-anomaly genetic disorder caused by mutations in either cytoplasmically expressed actin gene, ACTB (β-actin) or ACTG1 (γ-actin). The resulting actinopathies cause characteristic cerebrofrontofacial and developmental traits, including progressive sensorineural deafness. Both ACTG1-related non-syndromic A20/A26 deafness and B-WS diagnoses are characterized by hypervariable penetrance in phenotype. Here, we identify a 28th patient worldwide carrying a mutated γ-actin ACTG1 allele, with mildly manifested cerebrofrontofacial B-WS traits, hypervariable penetrance of developmental traits and sensorineural hearing loss. This patient also displays brachycephaly and a complete absence of speech faculty, previously unreported for ACTG1-related B-WS or DFNA20/26 deafness, representing phenotypic expansion. The patient’s exome sequence analyses (ES) confirms a de novo ACTG1 variant previously unlinked to the pathology. Additional microarray analysis uncover no further mutational basis for dual molecular diagnosis in our patient. We conclude that γ-actin c.542C > T, p.Ala181Val is a dominant pathogenic variant, associated with mildly manifested facial and cerebral traits typical of B-WS, hypervariable penetrance of developmental traits and sensorineural deafness. We further posit and present argument and evidence suggesting ACTG1-related non-syndromic DFNA20/A26 deafness is a manifestation of undiagnosed ACTG1-related B-WS.
Collapse
|
8
|
DFNA20/26 and Other ACTG1-Associated Phenotypes: A Case Report and Review of the Literature. Audiol Res 2021; 11:582-593. [PMID: 34698053 PMCID: PMC8544197 DOI: 10.3390/audiolres11040052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
Since the early 2000s, an ever-increasing subset of missense pathogenic variants in the ACTG1 gene has been associated with an autosomal-dominant, progressive, typically post-lingual non-syndromic hearing loss (NSHL) condition designed as DFNA20/26. ACTG1 gene encodes gamma actin, the predominant actin protein in the cytoskeleton of auditory hair cells; its normal expression and function are essential for the stereocilia maintenance. Different gain-of-function pathogenic variants of ACTG1 have been associated with two major phenotypes: DFNA20/26 and Baraitser-Winter syndrome, a multiple congenital anomaly disorder. Here, we report a novel ACTG1 variant [c.625G>A (p. Val209Met)] in an adult patient with moderate-severe NSHL characterized by a downsloping audiogram. The patient, who had a clinical history of slowly progressive NSHL and tinnitus, was referred to our laboratory for the analysis of a large panel of NSHL-associated genes by next generation sequencing. An extensive review of previously reported ACTG1 variants and their associated phenotypes was also performed.
Collapse
|
9
|
Phillips CL, Welch BA, Garrett MR, Grayson BE. Regional heterogeneity in rat Peyer's patches through whole transcriptome analysis. Exp Biol Med (Maywood) 2021; 246:513-522. [PMID: 33236653 PMCID: PMC7934146 DOI: 10.1177/1535370220973014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
Peyer's patches are gut-associated lymphoid tissue located throughout the intestinal wall. Peyer's patches consist of highly organized ovoid-shaped follicles, classified as non-encapsulated lymphatic tissues, populated with B cells, T cells, macrophages, and dendritic cells and function as an organism's intestinal surveillance. Limited work compares the gene profiles of Peyer's patches derived from different intestinal regions. In the current study, we first performed whole transcriptome analysis using RNAseq to compare duodenal and ileal Peyer's patches obtained from the small intestine of Long Evans rats. Of the 12,300 genes that were highly expressed, 18.5% were significantly different between the duodenum and ileum. Using samples obtained from additional subjects (n = 10), we validated the novel gene expression patterns in Peyer's patches obtained from the three regions of the small intestine. Rats had a significantly reduced number of Peyer's patches in the duodenum in comparison to either the jejunum or ileum. Regional differences in structural, metabolic, and immune-related genes were validated. Genes such as alcohol dehydrogenase 1, gap junction protein beta 2, and serine peptidase inhibitor clade b, member 1a were significantly reduced in the ileum in comparison to other regions. On the other hand, genes such as complement C3d receptor type, lymphocyte cytosolic protein 1, and lysozyme C2 precursor were significantly lower in the duodenum. In summary, the gene expression pattern of Peyer's patches is influenced by intestinal location and may contribute to its role in that segment.
Collapse
Affiliation(s)
- Charles L Phillips
- Program in Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bradley A Welch
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Michael R Garrett
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bernadette E Grayson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
10
|
Modiolar Proximity of Slim Modiolar Electrodes and Cochlear Duct Length: Correlation for Potential Basis of Customized Cochlear Implantation With Perimodiolar Electrodes. Ear Hear 2020; 42:323-333. [PMID: 32826506 DOI: 10.1097/aud.0000000000000920] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Recent studies have shown that cochlear duct length (CDL) varies among individuals and could significantly influence the final position of the electrode and its trajectory in the cochlea. Given this, we hypothesized that the degree of modiolar proximity of novel slim modiolar electrodes, such as CI532 and CI632, can also be affected by CDL. To test this hypothesis, we retrospectively evaluated individual CDL to determine if there is any significant correlation of CDL with degree of modiolar proximity. METHODS Fifty-one ears from 38 subjects implanted with slim modiolar electrodes by a single surgeon through the round window approach using the pull-back technique were included. Our cohort was classified according to the deafness onset (congenital versus postlingual) and the degree of modiolar proximity (less versus tight) with reference to the spiral diameter made by the slim modiolar electrodes in situ on transorbital x ray. We then analyzed the CDL and its metrics using a readily available surgical preplanning tool (OTOPLAN) to obtain comparable data. RESULTS Among 30 ears associated with congenital deafness, 9 ears (30%) showed less modiolar proximity, while none of the 21 ears from 19 subjects with postlingual deafness exhibited "less modiolar proximity" based on our criteria. In this study, CDL showed significant variation among subjects. Importantly, a significant inverse correlation between spiral diameter and CDL (ρ = -0.581, p < 0.001) was found, showing that shorter CDLs have longer spiral diameter and less modiolar proximity. Moreover, further pull-back technique characterized by pulling out the electrode a little bit more in cases with shorter CDL, if not always, exhibited tighter modiolar proximity. CONCLUSION A preponderance of less modiolar proximity of the electrode was observed exclusively among congenital deafness cases, demonstrated by a less tight spiral configuration even under the pull-back technique. Our data suggest that shorter CDL is associated with a less tight spiral configuration of slim modiolar electrodes postoperatively. Depending on the insertion technique, the differential degree of modiolar proximity of slim modiolar electrodes can be alleviated in cases with short CDL, which justifies cochlear duct length-based customized insertion of slim modiolar electrodes.
Collapse
|
11
|
Eshraghi AA, Polineni SP, Davies C, Shahal D, Mittal J, Al-Zaghal Z, Sinha R, Jindal U, Mittal R. Genotype-Phenotype Correlation for Predicting Cochlear Implant Outcome: Current Challenges and Opportunities. Front Genet 2020; 11:678. [PMID: 32765579 PMCID: PMC7381205 DOI: 10.3389/fgene.2020.00678] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
The use and utility of cochlear implantation has rapidly increased in recent years as technological advances in the field have expanded both the efficacy and eligible patient population for implantation. This review aims to serve as a general overview of the most common hearing disorders that have favorable auditory outcomes with cochlear implants (CI). Hearing loss in children caused by congenital cytomegalovirus infection, syndromic conditions including Pendred Syndrome, and non-syndromic genetic conditions such as hearing impairment associated with GJB2 mutations have shown to be successfully managed by CI. Furthermore, cochlear implantation provides the auditory rehabilitation for the most common etiology of hearing loss in adults and age-related hearing loss (ARHL) or presbycusis. However, in some cases, cochlear implantation have been associated with some challenges. Regarding implantation in children, studies have shown that sometimes parents seem to have unrealistic expectations regarding the ability of CI to provide auditory rehabilitation and speech improvement. Given the evidence revealing the beneficial effects of early intervention via CI in individuals with hearing disorders especially hearing loss due to genetic etiology, early auditory and genetic screening efforts may yield better clinical outcomes. There is a need to better understand genotype-phenotype correlations and CI outcome, so that effective genetic counseling and successful treatment strategies can be developed at the appropriate time for hearing impaired individuals.
Collapse
Affiliation(s)
- Adrien A. Eshraghi
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
- Department of Neurological Surgery, Miller School of Medicine, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Sai P. Polineni
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - Camron Davies
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - David Shahal
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - Jeenu Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - Zaid Al-Zaghal
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - Rahul Sinha
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - Urmi Jindal
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - Rahul Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| |
Collapse
|
12
|
Yan Y, Xu H, Zhang L, Zhou X, Qian X, Zhou J, Huang Y, Ge W, Wang W. RRAD suppresses the Warburg effect by downregulating ACTG1 in hepatocellular carcinoma. Onco Targets Ther 2019; 12:1691-1703. [PMID: 30881024 PMCID: PMC6400130 DOI: 10.2147/ott.s197844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is a common malignancy with poor prognosis and limited therapeutic options. Ras-related associated with diabetes (RRAD) belongs to the subfamily of Ras-related GTPases and is associated with several types of cancer, including HCC, although the mechanisms involving RRAD in HCC remains unknown. Patients and methods We aimed to elucidate the role of RRAD and whether it affects glucose metabolism in HCC by immunohistochemically examining tissue samples from HCC patients and assessing the effect of RRAD overexpression and knockdown on the glucose metabolism, proliferation, cell cycle, and apoptosis of HCC cell lines SK-Hep-1 and Huh7, as well as on tumor progression in vivo. Results We demonstrated that RRAD binds to actin gamma 1 (ACTG1). RRAD suppressed aerobic glycolysis in HCC by downregulating ACTG1. On the other hand, ACTG1 promoted HCC proliferation by regulating the cell cycle via downregulation of cyclins and cyclin-dependent kinases and inhibited apoptosis through the mitochondrial apoptosis pathway in vitro. In addition, RRAD retarded tumor growth by downregulating ACTG1 in vivo. ACTG1 was overexpressed in HCC tissues compared with adjacent normal tissues, whereas the expression of RRAD was low in tumor tissues. Low RRAD levels were significantly correlated with large tumor size and advanced tumor stage; high ACTG1 levels were significantly correlated with advanced tumor stage. Furthermore, Kaplan–Meier survival curves showed that HCC patients with high RRAD and low ACTG1 expression may have a better prognosis. Conclusion We have shown that RRAD exhibits a tumor-suppressing role in HCC by downregulating glucose metabolism and ACTG1 expression, thus lowering cell proliferation, arresting the cell cycle, and increasing apoptosis. These findings indicate that ACTG1 may act as a downstream effector of RRAD and open a new avenue for potential HCC treatment.
Collapse
Affiliation(s)
- Yingcai Yan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,
| | - Hao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,
| | - Linshi Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,
| | - Xiaohu Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,
| | - Xiaohui Qian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,
| | - Jiarong Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,
| | - Yu Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,
| | - Wenhao Ge
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,
| | - Weilin Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, .,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, .,State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Zhejiang University, Hangzhou, China,
| |
Collapse
|
13
|
Liu WH, Chang PY, Chang SC, Lu JJ, Wu CM. Mutation screening in non-syndromic hearing loss patients with cochlear implantation by massive parallel sequencing in Taiwan. PLoS One 2019; 14:e0211261. [PMID: 30682115 PMCID: PMC6347456 DOI: 10.1371/journal.pone.0211261] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 01/10/2019] [Indexed: 01/05/2023] Open
Abstract
Objectives To explore the molecular epidemiology of rare deafness genes in Taiwanese sensorineural hearing impairment (SNHI) patients with cochlear implantation (CI) by performing massive parallel sequencing (MPS) and correlating genetic factors and CI outcomes. Methods We enrolled 41 Taiwanese non-syndromic deafness patients with CI that lacked known mutations in common deafness genes. All probands were screened by a targeted exon amplification method that used massively parallel sequencing to screen a customized panel that included 40 relatively rare non-syndromic deafness genes. Results Thirteen candidate variants in nine relatively rare deafness genes (MYO15A, TMC1, MYH14, MYO3A, ACTG1, COL11A2, DSPP, GRHL2, and WFS1) were identified in 24.4% (10/41) of the non-syndromic deafness probands with CI. According to the ACMG Standards and Guidelines, five variants in MYO15A and ACTG1 were classified as likely pathogenic variants. Two of three multi-generational pedigrees exhibiting deafness were analyzed for the segregation of the disorder with the possible disease-causing variants. Patients with variants detected in most of the identified variant-bearing genes showed relatively good CI outcomes. Conclusions We successfully identified candidate variants in partially deaf Taiwanese probands who lacked the known mutations in common deafness genes. Comparing the progress of hearing rehabilitation in CI patients with their apparent causative variants and the expression profiles of their altered genes allowed us to speculate on how alterations in specific gene sets may influence outcomes in hearing rehabilitation after CI.
Collapse
Affiliation(s)
- Wei-Hsiu Liu
- Department of Laboratory Medicine, Chang-Gung Memorial Hospital, Linkou Branch, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
- Department of Otolaryngology—Head and Neck Surgery, Chang-Gung Memorial Hospital, Linkou Branch, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Pi-Yueh Chang
- Department of Medical Biotechnology and Laboratory Science, Chang-Gung University, Taoyuan, Taiwan
- Department of Medical Research, Chang-Gung Memorial Hospital and Graduate of Institute of Clinical Medical Science, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Cheng Chang
- Department of Medical Biotechnology and Laboratory Science, Chang-Gung University, Taoyuan, Taiwan
- Department of Medical Research, Chang-Gung Memorial Hospital and Graduate of Institute of Clinical Medical Science, Chang Gung University, Taoyuan, Taiwan
| | - Jang-Jih Lu
- Department of Medical Biotechnology and Laboratory Science, Chang-Gung University, Taoyuan, Taiwan
- Department of Medical Research, Chang-Gung Memorial Hospital and Graduate of Institute of Clinical Medical Science, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (CMW); (J-JL)
| | - Che-Ming Wu
- Department of Otolaryngology—Head and Neck Surgery, Chang-Gung Memorial Hospital, Linkou Branch, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
- * E-mail: (CMW); (J-JL)
| |
Collapse
|
14
|
Vélez-Ortega AC, Frolenkov GI. Building and repairing the stereocilia cytoskeleton in mammalian auditory hair cells. Hear Res 2019; 376:47-57. [PMID: 30638948 DOI: 10.1016/j.heares.2018.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
Despite all recent achievements in identification of the molecules that are essential for the structure and mechanosensory function of stereocilia bundles in the auditory hair cells of mammalian species, we still have only a rudimentary understanding of the mechanisms of stereocilia formation, maintenance, and repair. Important molecular differences distinguishing mammalian auditory hair cells from hair cells of other types and species have been recently revealed. In addition, we are beginning to solve the puzzle of the apparent life-long stability of the stereocilia bundles in these cells. New data link the stability of the cytoskeleton in the mammalian auditory stereocilia with the normal activity of mechanotransduction channels. These data suggest new ideas on how a terminally-differentiated non-regenerating hair cell in the mammalian cochlea may repair and tune its stereocilia bundle throughout the life span of the organism.
Collapse
Affiliation(s)
- A Catalina Vélez-Ortega
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY, 40536-0298, USA.
| | - Gregory I Frolenkov
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY, 40536-0298, USA.
| |
Collapse
|
15
|
Morgan A, Lenarduzzi S, Cappellani S, Pecile V, Morgutti M, Orzan E, Ghiselli S, Ambrosetti U, Brumat M, Gajendrarao P, La Bianca M, Faletra F, Grosso E, Sirchia F, Sensi A, Graziano C, Seri M, Gasparini P, Girotto G. Genomic Studies in a Large Cohort of Hearing Impaired Italian Patients Revealed Several New Alleles, a Rare Case of Uniparental Disomy (UPD) and the Importance to Search for Copy Number Variations. Front Genet 2018; 9:681. [PMID: 30622556 PMCID: PMC6309105 DOI: 10.3389/fgene.2018.00681] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/07/2018] [Indexed: 11/13/2022] Open
Abstract
Hereditary hearing loss (HHL) is a common disorder characterized by a huge genetic heterogeneity. The definition of a correct molecular diagnosis is essential for proper genetic counseling, recurrence risk estimation, and therapeutic options. From 20 to 40% of patients carry mutations in GJB2 gene, thus, in more than half of cases it is necessary to look for causative variants in the other genes so far identified (~100). In this light, the use of next-generation sequencing technologies has proved to be the best solution for mutational screening, even though it is not always conclusive. Here we describe a combined approach, based on targeted re-sequencing (TRS) of 96 HHL genes followed by high-density SNP arrays, aimed at the identification of the molecular causes of non-syndromic HHL (NSHL). This strategy has been applied to study 103 Italian unrelated cases, negative for mutations in GJB2, and led to the characterization of 31% of them (i.e., 37% of familial and 26.3% of sporadic cases). In particular, TRS revealed TECTA and ACTG1 genes as major players in the Italian population. Furthermore, two de novo missense variants in ACTG1 have been identified and investigated through protein modeling and molecular dynamics simulations, confirming their likely pathogenic effect. Among the selected patients analyzed by SNP arrays (negative to TRS, or with a single variant in a recessive gene) a molecular diagnosis was reached in ~36% of cases, highlighting the importance to look for large insertions/deletions. Moreover, copy number variants analysis led to the identification of the first case of uniparental disomy involving LOXHD1 gene. Overall, taking into account the contribution of GJB2, plus the results from TRS and SNP arrays, it was possible to reach a molecular diagnosis in ~51% of NSHL cases. These data proved the usefulness of a combined approach for the analysis of NSHL and for the definition of the epidemiological picture of HHL in the Italian population.
Collapse
Affiliation(s)
- Anna Morgan
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | | | | - Vanna Pecile
- IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| | | | - Eva Orzan
- IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Sara Ghiselli
- IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Umberto Ambrosetti
- Audiologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Marco Brumat
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | | | | | | - Enrico Grosso
- Medical Genetics Unit, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Fabio Sirchia
- IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Alberto Sensi
- Medical Genetics Unit, Department of Clinical Pathology, Azienda Unità Sanitaria Locale (AUSL) della Romagna, Cesena, Italy
| | - Claudio Graziano
- Unit of Medical Genetics, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Marco Seri
- Unit of Medical Genetics, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| |
Collapse
|
16
|
Gao B, Li S, Tan Z, Ma L, Liu J. ACTG1 and TLR3 are biomarkers for alcohol-associated hepatocellular carcinoma. Oncol Lett 2018; 17:1714-1722. [PMID: 30675230 PMCID: PMC6341811 DOI: 10.3892/ol.2018.9757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
Alcohol consumption is a risk factor for the development of hepatocellular carcinoma (HCC); however, the association between alcohol and HCC remains unknown. The present study aimed to identify key genes related to alcohol-associated HCC to improve the current understanding of the pathology of this disease. Alcohol-associated and non-alcohol-associated HCC samples in the GSE50579 dataset of the Gene Omnibus Database were analyzed to investigate altered gene expression. Integrated bioinformatics methods were employed to clarify the biological functions of the differentially expressed genes (DEGs), including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interactions (PPIs). The present study reported that candidate biomarker micro (mi)RNAs via TargetScan Human 7.1. DEGs and their associated miRNAs (according to bioinformatics analysis) were validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Additionally, 284 EGs from the GSE50579 dataset were revealed. In GO term analysis, DEGs were closely associated with the ‘regulation of nucleic acid metabolism’. KEGG pathway analysis indicated that the DEGs were tightly engaged in the ‘VEGF and VEGF receptor signaling network’, ‘proteoglycan syndecan-mediated signaling events’, ‘erbB receptor signaling’ and ‘β1 integrin cell surface interactions’. According to the results of PPI and heat map analysis, the main hub genes were centrin 3 (CETN3), Toll-like receptor 3 (TLR3), receptor tyrosine-protein kinase (ERBB4), heat shock protein family member 8, actin γ1 (ACTG1) and α-smooth muscle actin. it was demonstrated that the ACTG1, TLR3, miR-6819-3p and miRΝΑ (miR)-6877-3P had undefined associations. Furthermore, RT-qPCR analysis revealed that miR-6819-3p and miR-6877-3P may enhance the expression levels of ACTG1 and inhibit the expression levels of TLR3 in alcohol-associated HCC tissues. TLR3 and ACTG1 were proposed as potential biomarkers of alcohol-associated HCC. Investigation into the regulatory functions of miR-6819-3p and miR-6877-3P may provide novel insights into the treatment of alcohol-associated HCC.
Collapse
Affiliation(s)
- Bing Gao
- School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, P.R. China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Shicheng Li
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zhen Tan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Leina Ma
- Cancer Institute, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266021, P.R. China.,Qingdao Cancer Institute, Qingdao, Shandong 266021, P.R. China
| | - Jia Liu
- School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, P.R. China
| |
Collapse
|
17
|
Vedula P, Kashina A. The makings of the 'actin code': regulation of actin's biological function at the amino acid and nucleotide level. J Cell Sci 2018; 131:131/9/jcs215509. [PMID: 29739859 DOI: 10.1242/jcs.215509] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The actin cytoskeleton plays key roles in every eukaryotic cell and is essential for cell adhesion, migration, mechanosensing, and contractility in muscle and non-muscle tissues. In higher vertebrates, from birds through to mammals, actin is represented by a family of six conserved genes. Although these genes have evolved independently for more than 100 million years, they encode proteins with ≥94% sequence identity, which are differentially expressed in different tissues, and tightly regulated throughout embryogenesis and adulthood. It has been previously suggested that the existence of such similar actin genes is a fail-safe mechanism to preserve the essential function of actin through redundancy. However, knockout studies in mice and other organisms demonstrate that the different actins have distinct biological roles. The mechanisms maintaining this distinction have been debated in the literature for decades. This Review summarizes data on the functional regulation of different actin isoforms, and the mechanisms that lead to their different biological roles in vivo We focus here on recent studies demonstrating that at least some actin functions are regulated beyond the amino acid level at the level of the actin nucleotide sequence.
Collapse
Affiliation(s)
- Pavan Vedula
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Kashina
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Wang L, Yan D, Qin L, Li T, Liu H, Li W, Mittal R, Yong F, Chapagain P, Liao S, Liu X. Amino acid 118 in the Deafness Causing (DFNA20/26) ACTG1 gene is a Mutational Hot Spot. GENE REPORTS 2018; 11:264-269. [PMID: 30599039 DOI: 10.1016/j.genrep.2018.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Hearing loss is an economically and socially important cause of human morbidity, affecting 360 million people (over 5% of the world's population), of whom 32 million are children. Of the estimated minimum of 50% of hereditary hearing loss, non-syndromic hearing loss (NSHL) accounts for more than 70%. The autosomal dominant non-syndromic hearing loss (ADNSHL) is highly heterogeneous. To date, 67 ADNSHL loci (DFNA1-67) have been mapped; however, only 35 causative genes have been cloned since 1997 (http://hereditaryhearingloss.org/). Methods To identify the genetic basis of hereditary hearing loss in a Chinese family with ADNSHL, we undertook a targeted sequencing of 180 genes using a custom capture panel (MiamiOtoGenes). Results The onset of hearing loss in the family occurred between the ages of 15 and 18 years. Hearing loss was bilateral, started in the high frequency and progressed to lower frequencies. The c.353A>T (K118M) in the AC TG1 gene was identified by panel and was confirmed by Sanger sequencing and was present in all affected family members. So far, five of the 23 DFNA20/26 families worldwide have been found to carry mutation involving the residue K118. Conclusions This is the first report of K118M mutation in the ACTG1 gene causing hearing loss in the Chinese population. The present data are in line with previous evidence to suggest that codon K118 of ACTG1 may represent a mutational hot spot that justifies a mutation screen for diagnostic purpose in the genetically heterogeneous group of DFNA20/26.
Collapse
Affiliation(s)
- Li Wang
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, USA
| | - Litao Qin
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Li
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjian Liu
- Department of Otorhinolaryngology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Wan Li
- Department of Otorhinolaryngology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Rahul Mittal
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Yong
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, Florida.,Biomolecular Sciences Institute, Florida International University, Miami, Florida
| | - Shixiu Liao
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|
19
|
Lee CG, Jang J, Jin HS. A novel missense mutation in the ACTG1 gene in a family with congenital autosomal dominant deafness: A case report. Mol Med Rep 2018; 17:7611-7617. [PMID: 29620237 PMCID: PMC5983957 DOI: 10.3892/mmr.2018.8837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/12/2017] [Indexed: 12/20/2022] Open
Abstract
The ACTG1 gene encodes the cytoskeletal protein γ-actin, which functions in non-muscle cells and is abundant in the auditory hair cells of the cochlea. Autosomal dominant missense mutations in ACTG1 are associated with DFNA20/26, a disorder that is typically characterized by post-lingual progressive hearing loss. To date, 17 missense mutations in ACTG1 have been reported in 20 families with DFNA20/26. The present study described a small family with autosomal dominant nonsyndromic hearing loss. A novel heterozygous missense mutation, c.94C>T (p.Pro32Ser), in ACTG1 was identified using the TruSight One sequencing panel. Notably, congenital hearing loss in our proband was identified by newborn hearing screening at birth. In silico predictions of protein structure and function indicate that the p.Pro32Ser mutation may result in conformational changes in γ-actin. The present study expands the understanding of the phenotypic effects of heterozygous missense mutations in the ACTG1 gene. In specific, the present results emphasize that mutations in ACTG1 result in a diverse spectrum of onset ages, including congenital in addition to post-lingual onset.
Collapse
Affiliation(s)
- Cha Gon Lee
- Division of Child Neurology, Department of Pediatrics, Nowon Eulji Medical Center, Eulji University, Seoul 01830, Republic of Korea
| | - Jahyeon Jang
- Green Cross Genome, Yongin, Gyeonggi 16924, Republic of Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Chungcheongnam 31499, Republic of Korea
| |
Collapse
|
20
|
Mittal R, Patel AP, Nguyen D, Pan DR, Jhaveri VM, Rudman JR, Dharmaraja A, Yan D, Feng Y, Chapagain P, Lee DJ, Blanton SH, Liu XZ. Genetic basis of hearing loss in Spanish, Hispanic and Latino populations. Gene 2018; 647:297-305. [PMID: 29331482 PMCID: PMC5806531 DOI: 10.1016/j.gene.2018.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/02/2018] [Accepted: 01/06/2018] [Indexed: 12/13/2022]
Abstract
Hearing loss (HL) is the most common neurosensory disorder affecting humans. The screening, prevention and treatment of HL require a better understanding of the underlying molecular mechanisms. Genetic predisposition is one of the most common factors that leads to HL. Most HL studies include few Spanish, Hispanic and Latino participants, leaving a critical gap in our understanding about the prevalence, impact, unmet health care needs, and genetic factors associated with hearing impairment among Spanish, Hispanic and Latino populations. The few studies which have been performed show that the gene variants commonly associated with HL in non-Spanish and non-Hispanic populations are infrequently responsible for hearing impairment in Spanish as well as Hispanic and Latino populations (hereafter referred to as Hispanic). To design effective screening tools to detect HL in Spanish and Hispanic populations, studies must be conducted to determine the gene variants that are most commonly associated with hearing impairment in this racial/ethnic group. In this review article, we summarize gene variants and loci associated with HL in Spanish and Hispanic populations. Identifying new genetic variants associated with HL in Spanish and Hispanic populations will pave the way to develop effective screening tools and therapeutic strategies for HL.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amit P Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Desiree Nguyen
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Debbie R Pan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vasanti M Jhaveri
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jason R Rudman
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Arjuna Dharmaraja
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China
| | - Prem Chapagain
- Department of Physics and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - David J Lee
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susan H Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China; Tsinghua University School of Medicine, Beijing 10084, China; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
21
|
Yates TM, Turner CL, Firth HV, Berg J, Pilz DT. Baraitser-Winter cerebrofrontofacial syndrome. Clin Genet 2016; 92:3-9. [PMID: 27625340 DOI: 10.1111/cge.12864] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 01/31/2023]
Abstract
Baraitser-Winter cerebrofrontofacial syndrome (BWCFF) (BRWS; MIM #243310, 614583) is a rare developmental disorder affecting multiple organ systems. It is characterised by intellectual disability (mild to severe) and distinctive facial appearance (metopic ridging/trigonocephaly, bilateral ptosis, hypertelorism). The additional presence of cortical malformations (pachygyria/lissencephaly) and ocular colobomata are also suggestive of this syndrome. Other features include moderate short stature, contractures, congenital cardiac disease and genitourinary malformations. BWCFF is caused by missense mutations in the cytoplasmic beta- and gamma-actin genes ACTB and ACTG1. We provide an overview of the clinical characteristics (including some novel findings in four recently diagnosed patients), diagnosis, management, mutation spectrum and genetic counselling.
Collapse
Affiliation(s)
- T M Yates
- Department of Medical Genetics, University of Glasgow, Glasgow, UK
| | - C L Turner
- Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital, Exeter, UK
| | - H V Firth
- Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - J Berg
- Department of Clinical Genetics, Ninewells Hospital, Dundee, UK
| | - D T Pilz
- West of Scotland Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
22
|
Jepsen L, Kruth KA, Rubenstein PA, Sept D. Two Deafness-Causing Actin Mutations (DFNA20/26) Have Allosteric Effects on the Actin Structure. Biophys J 2016; 111:323-332. [PMID: 27463135 PMCID: PMC4968419 DOI: 10.1016/j.bpj.2016.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/03/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Point mutations in γ-cytoplasmic actin have been shown to result in autosomal-dominant, nonsyndromic, early-onset deafness. Two mutations at the same site, K118M and K118N, provide a unique opportunity to compare the effects of two dissimilar amino acid substitutions that produce a similar phenotype in humans. K118 resides in a helix that runs from K113 to T126, and mutations that alter the position, dynamics, and/or biochemistry of this helix can result in a wide range of pathologies. Using a combination of computational and experimental studies, both employing yeast actin, we find that these mutations at K118 result in changes in the structure and dynamics of the DNase-I loop, alterations in the structure of the H73 loop as well as the side-chain orientations of W79 and W86, changes in nucleotide exchange rates, and significant shifts in the twist of the actin monomer. Interestingly, in the case of K118N, the twist of the monomer is nearly identical to that of the F-actin protomer, and in vitro polymerization assays show that this mutation results in faster polymerization. Taken together, these results indicate that mutations at this site give rise to a series of small changes that can be tolerated in vivo but result in misregulation of actin assembly and dynamics.
Collapse
Affiliation(s)
- Lauren Jepsen
- Bioinformatics Graduate Program, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Karina A Kruth
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Peter A Rubenstein
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
23
|
Di Donato N, Kuechler A, Vergano S, Heinritz W, Bodurtha J, Merchant SR, Breningstall G, Ladda R, Sell S, Altmüller J, Bögershausen N, Timms AE, Hackmann K, Schrock E, Collins S, Olds C, Rump A, Dobyns WB. Update on the ACTG1-associated Baraitser-Winter cerebrofrontofacial syndrome. Am J Med Genet A 2016; 170:2644-51. [PMID: 27240540 DOI: 10.1002/ajmg.a.37771] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 11/08/2022]
Abstract
Baraitser-Winter cerebrofrontofacial syndrome is caused by heterozygous missense mutations in one of the two ubiquitous cytoplasmic actin-encoding genes ACTB and ACTG1. Recently, we characterized the large cohort of 41 patients presenting with this condition. Our series contained 34 patients with mutations in ACTB and only nine with ACTG1 mutations. Here, we report on seven unrelated patients with six mutations in ACTG1-four novel and two previously reported. Only one of seven patients was clinically diagnosed with this disorder and underwent ACTB/ACTG1 targeted sequencing, four patients were screened as a part of the large lissencephaly cohort and two were tested with exome sequencing. Retrospectively, facial features were compatible with the diagnosis but significantly milder than previously reported in four patients, and non-specific in one. The pattern of malformations of cortical development was highly similar in four of six patients with available MRI images and encompassed frontal predominant pachygyria merging with the posterior predominant band heterotopia. Two remaining patients showed mild involvement consistent with bilaterally simplified gyration over the frontal lobes. Taken together, we expand the clinical spectrum of the ACTG1-associated Baraitser-Winter cerebrofrontofacial syndrome demonstrating the mild end of the facial and brain manifestations. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nataliya Di Donato
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany
| | - Samantha Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, Virginia
| | | | - Joann Bodurtha
- Medical College of Virginia, Department of Human and Molecular Genetics, Richmond, Virginia
| | - Sabiha R Merchant
- Department of Pediatric Neurology, New York Presbyterian Hospital and Weill Cornell Medical College, New York, New York
| | - Galen Breningstall
- Department of Pediatric Neurology, Gillette Children's Specialty Healthcare, St. Paul, Minnesota
| | - Roger Ladda
- Penn State Hershey Children's Hospital, Hershey, Pennsylvania
| | - Susan Sell
- Penn State Hershey Children's Hospital, Hershey, Pennsylvania
| | | | - Nina Bögershausen
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington
| | - Karl Hackmann
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Evelin Schrock
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sarah Collins
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Carissa Olds
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Andreas Rump
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, University of Washington, Seattle, Washington.,Department of Neurology, University of Washington, Seattle, Washington
| |
Collapse
|
24
|
Yuan Y, Gao X, Huang B, Lu J, Wang G, Lin X, Qu Y, Dai P. Phenotypic Heterogeneity in a DFNA20/26 family segregating a novel ACTG1 mutation. BMC Genet 2016; 17:33. [PMID: 26832775 PMCID: PMC4736096 DOI: 10.1186/s12863-016-0333-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic factors play an important role in hearing loss, contributing to approximately 60% of cases of congenital hearing loss. Autosomal dominant deafness accounts for approximately 20% of cases of hereditary hearing loss. Diseases with autosomal dominant inheritance often show pleiotropy, different degrees of penetrance, and variable expressivity. METHODS A three-generation Chinese family with autosomal dominant nonsyndromic hearing impairment (ADNSHI) was enrolled in this study. Audiometric data and blood samples were collected from the family. In total, 129 known human deafness genes were sequenced using next-generation sequencing (NGS) to identify the responsible gene mutation in the family. Whole Exome Sequencing (WES) was performed to exclude any other variant that cosegregated with the phenotype. RESULTS The age of onset of the affected family members was the second decade of life. The condition began with high-frequency hearing impairment in all family members excluding III:2. The novel ACTG1 c.638A > G (p.K213R) mutation was found in all affected family members and was not found in the unaffected family members. A heterozygous c.638A > G mutation in ACTG1 and homozygous c.109G > A (p.V37I) mutation in GJB2 were found in III:2, who was born with hearing loss. The WES result concurred with that of targeted sequencing of known deafness genes. CONCLUSIONS The novel mutation p.K213R in ACTG1 was found to be co-segregated with hearing loss and the genetic cause of ADNSHI in this family. A homozygous mutation associated with recessive inheritance only rarely co-acts with a dominant mutation to result in hearing loss in a dominant family. In such cases, the mutations in the two genes, as in ACTG1 and GJB2 in the present study, may result in a more severe phenotype. Targeted sequencing of known deafness genes is one of the best choices to identify the genetic cause in hereditary hearing loss families.
Collapse
Affiliation(s)
- Yongyi Yuan
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China. .,Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, 572000, People's Republic of China.
| | - Xue Gao
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Bangqing Huang
- Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, 572000, People's Republic of China.
| | - Jingqiao Lu
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, 30322-3030, USA.
| | - Guojian Wang
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, 30322-3030, USA.
| | - Yan Qu
- Third hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050051, People's Republic of China.
| | - Pu Dai
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| |
Collapse
|
25
|
Abstract
Actin is the central building block of the actin cytoskeleton, a highly regulated filamentous network enabling dynamic processes of cells and simultaneously providing structure. Mammals have six actin isoforms that are very conserved and thus share common functions. Tissue-specific expression in part underlies their differential roles, but actin isoforms also coexist in various cell types and tissues, suggesting specific functions and preferential interaction partners. Gene deletion models, antibody-based staining patterns, gene silencing effects, and the occurrence of isoform-specific mutations in certain diseases have provided clues for specificity on the subcellular level and its consequences on the organism level. Yet, the differential actin isoform functions are still far from understood in detail. Biochemical studies on the different isoforms in pure form are just emerging, and investigations in cells have to deal with a complex and regulated system, including compensatory actin isoform expression.
Collapse
Affiliation(s)
- Christophe Ampe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000, Ghent, Belgium.
| | - Marleen Van Troys
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000, Ghent, Belgium
| |
Collapse
|
26
|
Andrade LR. Evidence for changes in beta- and gamma-actin proportions during inner ear hair cell life. Cytoskeleton (Hoboken) 2015; 72:282-91. [PMID: 26033950 DOI: 10.1002/cm.21227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/11/2015] [Accepted: 05/21/2015] [Indexed: 12/18/2022]
Abstract
Cytoplasmic actin isoforms beta (β-) and gamma (γ-) perform crucial physiological roles in inner ear hair cells (HC). The stereocilium, which is structured by parallel actin filaments composed of both isoforms, is the responsive organelle to mechanical stimuli such as sound, gravity and head movements. Modifications in isoform proportions affect the function of the stereocilia as previously shown in genetic studies of mutant mice. Here, immunogold labeling TEM studies in mice showed that both β- and γ-actin isoforms colocalize throughout stereocilia actin filaments, adherens junctions and cuticular plates as early as embryonic stage 16.5. Gold-particle quantification indicated that there was 40% more γ- actin than β-actin at E16.5. In contrast, β- and γ-actin were equally concentrated in adult stereocilia of cochlear and vestibular HC. Interestingly, all actin-based structures presented almost five-fold more β-actin than γ-actin in 22 month- old mice, suggesting that γ-actin is probably under-expressed during the aging process. These data provide evidence of dynamic modifications of the actin isoforms in stereocilia, cuticular plates and cell junctions during the whole HC life.
Collapse
Affiliation(s)
- Leonardo R Andrade
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.,Laboratory of Biomineralization, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
27
|
Miyagawa M, Nishio SY, Ichinose A, Iwasaki S, Murata T, Kitajiri SI, Usami SI. Mutational Spectrum and Clinical Features of Patients With ACTG1 Mutations Identified by Massively Parallel DNA Sequencing. Ann Otol Rhinol Laryngol 2015; 124 Suppl 1:84S-93S. [DOI: 10.1177/0003489415575057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives: ACTG1 has been reported to be a causative gene for autosomal dominant sensorineural hearing loss, DFNA20/26. In this study we sought to clarify the detailed mutational spectrum, clinical features, and genotype-phenotype correlations. Methods: Massively parallel DNA sequencing (MPS) of 63 target candidate genes was used to screen 1120 Japanese hearing loss patients. Results: MPS screening successfully identified 4 ACTG1 mutations in 5 families. The majority of patients showed high frequency–involved progressive hearing loss, with the age of onset mostly in the first or second decade. One patient received electric acoustic stimulation (EAS), which showed a good outcome. Conclusions: Target exon-sequencing using MPS was proven to be a powerful new clinical diagnostic tool for the identification of rare causative genes such as ACTG1. The present clinical findings not only confirmed those previous reports but also provided important new clinical information.
Collapse
Affiliation(s)
- Maiko Miyagawa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Aya Ichinose
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Satoshi Iwasaki
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Otorhinolaryngology, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Takaaki Murata
- Department of Otorhinolaryngology, Gunma University School of Medicine, Maebashi, Japan
| | - Shin-ichiro Kitajiri
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shin-ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
28
|
Rubenstein PA, Wen KK. Insights into the effects of disease-causing mutations in human actins. Cytoskeleton (Hoboken) 2014; 71:211-29. [PMID: 24574087 DOI: 10.1002/cm.21169] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/13/2013] [Accepted: 02/19/2014] [Indexed: 01/04/2023]
Abstract
Mutations in all six actins in humans have now been shown to cause diseases. However, a number of factors have made it difficult to gain insight into how the changes in actin functions brought about by these pathogenic mutations result in the disease phenotype. These include the presence of multiple actins in the same cell, limited accessibility to pure mutant material, and complexities associated with the structures and their component cells that manifest the diseases. To try to circumvent these difficulties, investigators have turned to the use of model systems. This review describes these various approaches, the initial results obtained using them, and the insight they have provided into allosteric mechanisms that govern actin function. Although results so far have not explained a particular disease phenotype at the molecular level, they have provided valuable insight into actin function at the mechanistic level which can be utilized in the future to delineate the molecular bases of these different actinopathies.
Collapse
Affiliation(s)
- Peter A Rubenstein
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | |
Collapse
|
29
|
Luo Y, Kong F, Wang Z, Chen D, Liu Q, Wang T, Xu R, Wang X, Yang JY. Loss of ASAP3 destabilizes cytoskeletal protein ACTG1 to suppress cancer cell migration. Mol Med Rep 2013; 9:387-94. [PMID: 24284654 DOI: 10.3892/mmr.2013.1831] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 10/31/2013] [Indexed: 11/06/2022] Open
Abstract
ArfGAP with SH3 domain, ankyrin repeat and PH domain 3 (ASAP3), previously known as ACAP4, DDEFL1 and UPLC1, is considered to be an important regulator in cancer cell migration/invasion and actin-based cytoskeletal remodeling. However, the underlying mechanisms through which ASAP3 mediates these processes are not well-elucidated. This study reported that in certain types of cancer cells, loss of ASAP3 suppressed cell migration/invasion, in part by destabilizing γ-actin-1 (ACTG1), a cytoskeletal protein considered to be an integral component of the cell migratory machinery, essential for the rearrangement of the dynamic cytoskeletal networks and important in diseases, such as brain malformation, hearing loss and cancer development. The data, for the first time, link ASAP3 with ACTG1 in the regulation of cytoskeletal maintenance and cell motility.
Collapse
Affiliation(s)
- Yu Luo
- School of Nursing, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Fang Kong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, Fujian 361102, P.R. China
| | - Zhen Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, Fujian 361102, P.R. China
| | - Dahan Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, Fujian 361102, P.R. China
| | - Qiuyan Liu
- School of Biomedical Sciences, Huaqiao University, Quanzhou, Fujian 362021, P.R. China
| | - Tao Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, Fujian 361102, P.R. China
| | - Ruian Xu
- School of Biomedical Sciences, Huaqiao University, Quanzhou, Fujian 362021, P.R. China
| | - Xianyuan Wang
- School of Nursing, The Third Military Medical University, Chongqing 400038, P.R. China
| | - James Y Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
30
|
Guardians of the actin monomer. Eur J Cell Biol 2013; 92:316-32. [DOI: 10.1016/j.ejcb.2013.10.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/03/2013] [Accepted: 10/23/2013] [Indexed: 11/22/2022] Open
|
31
|
Johnston JJ, Wen KK, Keppler-Noreuil K, McKane M, Maiers JL, Greiner A, Sapp JC, NIH Intramural Sequencing Center, DeMali KA, Rubenstein PA, Biesecker LG. Functional analysis of a de novo ACTB mutation in a patient with atypical Baraitser-Winter syndrome. Hum Mutat 2013; 34:1242-9. [PMID: 23649928 PMCID: PMC3745514 DOI: 10.1002/humu.22350] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/30/2013] [Indexed: 11/08/2022]
Abstract
Exome sequence analysis can be instrumental in identifying the genetic etiology behind atypical disease. We report a patient presenting with microcephaly, dysmorphic features, and intellectual disability with a tentative diagnosis of Dubowitz syndrome. Exome analysis was performed on the patient and both parents. A de novo missense variant was identified in ACTB, c.349G>A, p.E117K. Recent work in Baraitser-Winter syndrome has identified ACTB and ACTG1 mutations in a cohort of individuals, and we rediagnosed the patient with atypical Baraitser-Winter syndrome. We performed functional characterization of the variant actin and show that it alters cell adhesion and polymer formation supporting its role in disease. We present the clinical findings in the patient, comparison of this patient to other patients with ACTB/ACTG1 mutations, and results from actin functional studies that demonstrate novel functional attributes of this mutant protein.
Collapse
Affiliation(s)
- Jennifer J. Johnston
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Kim Keppler-Noreuil
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Julie C. Sapp
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Leslie G. Biesecker
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Müller M, Diensthuber RP, Chizhov I, Claus P, Heissler SM, Preller M, Taft MH, Manstein DJ. Distinct functional interactions between actin isoforms and nonsarcomeric myosins. PLoS One 2013; 8:e70636. [PMID: 23923011 PMCID: PMC3724804 DOI: 10.1371/journal.pone.0070636] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/26/2013] [Indexed: 02/07/2023] Open
Abstract
Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.
Collapse
Affiliation(s)
- Mirco Müller
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Peter Claus
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Sarah M. Heissler
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Manuel H. Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
33
|
Blache U, Silván U, Plodinec M, Suetterlin R, Jakob R, Klebba I, Bentires-Alj M, Aebi U, Schoenenberger CA. A tumorigenic actin mutant alters fibroblast morphology and multicellular assembly properties. Cytoskeleton (Hoboken) 2013; 70:635-50. [DOI: 10.1002/cm.21120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/07/2013] [Accepted: 06/17/2013] [Indexed: 01/19/2023]
Affiliation(s)
- Ulrich Blache
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Basel Switzerland
| | - Unai Silván
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Basel Switzerland
| | - Marija Plodinec
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Basel Switzerland
| | - Rosmarie Suetterlin
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Basel Switzerland
| | - Roman Jakob
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Basel Switzerland
| | - Ina Klebba
- Mechanisms of Cancer; Friedrich Miescher Institute for Biomedical Research; Basel Switzerland
| | - Mohamed Bentires-Alj
- Mechanisms of Cancer; Friedrich Miescher Institute for Biomedical Research; Basel Switzerland
| | - Ueli Aebi
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Basel Switzerland
| | - Cora-Ann Schoenenberger
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Basel Switzerland
| |
Collapse
|
34
|
Park G, Gim J, Kim AR, Han KH, Kim HS, Oh SH, Park T, Park WY, Choi BY. Multiphasic analysis of whole exome sequencing data identifies a novel mutation of ACTG1 in a nonsyndromic hearing loss family. BMC Genomics 2013; 14:191. [PMID: 23506231 PMCID: PMC3608096 DOI: 10.1186/1471-2164-14-191] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/04/2013] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The genetic heterogeneity of sensorineural hearing loss is a major hurdle to the efficient discovery of disease-causing genes. We designed a multiphasic analysis of copy number variation (CNV), linkage, and single nucleotide variation (SNV) of whole exome sequencing (WES) data for the efficient discovery of mutations causing nonsyndromic hearing loss (NSHL). RESULTS From WES data, we identified five distinct CNV loci from a NSHL family, but they were not co-segregated among patients. Linkage analysis based on SNVs identified six candidate loci (logarithm of odds [LOD] >1.5). We selected 15 SNVs that co-segregated with NSHL in the family, which were located in six linkage candidate loci. Finally, the novel variant p.M305T in ACTG1 (DFNA20/26) was selected as a disease-causing variant. CONCLUSIONS Here, we present a multiphasic CNV, linkage, and SNV analysis of WES data for the identification of a candidate mutation causing NSHL. Our stepwise, multiphasic approach enabled us to expedite the discovery of disease-causing variants from a large number of patient variants.
Collapse
Affiliation(s)
- Gibeom Park
- Department of Biomedical Sciences, Seoul National University GraduateSchool, Seoul 110-799, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Actin isoforms in neuronal development and function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:157-213. [PMID: 23317819 DOI: 10.1016/b978-0-12-407704-1.00004-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The actin cytoskeleton contributes directly or indirectly to nearly every aspect of neuronal development and function. This diversity of functions is often attributed to actin regulatory proteins, although how the composition of the actin cytoskeleton itself may influence its function is often overlooked. In neurons, the actin cytoskeleton is composed of two distinct isoforms, β- and γ-actin. Functions for β-actin have been investigated in axon guidance, synaptogenesis, and disease. Insight from loss-of-function in vivo studies has also revealed novel roles for β-actin in select brain structures and behaviors. Conversely, very little is known regarding functions of γ-actin in neurons. The dysregulation or mutation of both β- and γ-actin has been implicated in multiple human neurological disorders, however, demonstrating the critical importance of these still poorly understood proteins. This chapter highlights what is currently known regarding potential distinct functions for β- and γ-actin in neurons as well as the significant areas that remain unexplored.
Collapse
|
36
|
Kruth KA, Rubenstein PA. Two deafness-causing (DFNA20/26) actin mutations affect Arp2/3-dependent actin regulation. J Biol Chem 2012; 287:27217-26. [PMID: 22718764 DOI: 10.1074/jbc.m112.377283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hearing requires proper function of the auditory hair cell, which is critically dependent upon its actin-based cytoskeletal structure. Currently, ten point mutations in nonmuscle γ-actin have been identified as causing progressive autosomal dominant nonsyndromic hearing loss (DFNA20/26), highlighting these ten residues as functionally important to actin structure and/or regulation. Two of the mutations, K118M and K118N, are located near the putative binding site for the ubiquitously expressed Arp2/3 complex. We therefore hypothesized that these mutations may affect Arp2/3-dependent regulation of the actin cytoskeleton. Using in vitro bulk polymerization assays, we show that the Lys-118 mutations notably reduce actin + Arp2/3 polymerization rates compared with WT. Further in vitro analysis of the K118M mutant using TIRF microscopy indicates the actual number of branches formed per filament is reduced compared with WT and, surprisingly, branch location is altered such that the majority of K118M branches form near the pointed end of the filament. These results highlight a previously unknown role for the Lys-118 residue in the actin-Arp2/3 interaction and also further suggest that Lys-118 may play a more significant role in intra- and intermonomer interactions than was initially hypothesized.
Collapse
Affiliation(s)
- Karina A Kruth
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242-1109, USA
| | | |
Collapse
|
37
|
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 2012; 92:273-366. [PMID: 22298658 DOI: 10.1152/physrev.00005.2011] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of endocytosis has evolved remarkably in little more than a decade. This is the result not only of advances in our knowledge of its molecular and biological workings, but also of a true paradigm shift in our understanding of what really constitutes endocytosis and of its role in homeostasis. Although endocytosis was initially discovered and studied as a relatively simple process to transport molecules across the plasma membrane, it was subsequently found to be inextricably linked with almost all aspects of cellular signaling. This led to the notion that endocytosis is actually the master organizer of cellular signaling, providing the cell with understandable messages that have been resolved in space and time. In essence, endocytosis provides the communications and supply routes (the logistics) of the cell. Although this may seem revolutionary, it is still likely to be only a small part of the entire story. A wealth of new evidence is uncovering the surprisingly pervasive nature of endocytosis in essentially all aspects of cellular regulation. In addition, many newly discovered functions of endocytic proteins are not immediately interpretable within the classical view of endocytosis. A possible framework, to rationalize all this new knowledge, requires us to "upgrade" our vision of endocytosis. By combining the analysis of biochemical, biological, and evolutionary evidence, we propose herein that endocytosis constitutes one of the major enabling conditions that in the history of life permitted the development of a higher level of organization, leading to the actuation of the eukaryotic cell plan.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Hereditary deafness is genetically heterogeneous such that mutations of many different genes can cause hearing loss. This review focuses on the evidence and implications that several of these deafness genes encode actin-interacting proteins or actin itself. There is a growing appreciation of the contribution of the actin interactome in stereocilia development, maintenance, mechanotransduction and malfunction of the auditory system.
Collapse
|
39
|
Perrin BJ, Sonnemann KJ, Ervasti JM. β-actin and γ-actin are each dispensable for auditory hair cell development but required for Stereocilia maintenance. PLoS Genet 2010; 6:e1001158. [PMID: 20976199 PMCID: PMC2954897 DOI: 10.1371/journal.pgen.1001158] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 09/14/2010] [Indexed: 12/02/2022] Open
Abstract
Hair cell stereocilia structure depends on actin filaments composed of cytoplasmic β-actin and γ-actin isoforms. Mutations in either gene can lead to progressive hearing loss in humans. Since β-actin and γ-actin isoforms are 99% identical at the protein level, it is unclear whether each isoform has distinct cellular roles. Here, we compared the functions of β-actin and γ-actin in stereocilia formation and maintenance by generating mice conditionally knocked out for Actb or Actg1 in hair cells. We found that, although cytoplasmic actin is necessary, neither β-actin nor γ-actin is required for normal stereocilia development or auditory function in young animals. However, aging mice with β-actin- or γ-actin-deficient hair cells develop different patterns of progressive hearing loss and distinct pathogenic changes in stereocilia morphology, despite colocalization of the actin isoforms. These results demonstrate overlapping developmental roles but unique post-developmental functions for β-actin and γ-actin in maintaining hair cell stereocilia.
Collapse
Affiliation(s)
- Benjamin J. Perrin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kevin J. Sonnemann
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - James M. Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
40
|
Haigh SE, Salvi SS, Sevdali M, Stark M, Goulding D, Clayton JD, Bullard B, Sparrow JC, Nongthomba U. Drosophila indirect flight muscle specific Act88F actin mutants as a model system for studying congenital myopathies of the human ACTA1 skeletal muscle actin gene. Neuromuscul Disord 2010; 20:363-74. [DOI: 10.1016/j.nmd.2010.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 02/01/2010] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
|
41
|
Tondeleir D, Vandamme D, Vandekerckhove J, Ampe C, Lambrechts A. Actin isoform expression patterns during mammalian development and in pathology: insights from mouse models. ACTA ACUST UNITED AC 2009; 66:798-815. [PMID: 19296487 DOI: 10.1002/cm.20350] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The dynamic actin cytoskeleton, consisting of six actin isoforms in mammals and a variety of actin binding proteins is essential for all developmental processes and for the viability of the adult organism. Actin isoform specific functions have been proposed for muscle contraction, cell migration, endo- and exocytosis and maintaining cell shape. However, these specific functions for each of the actin isoforms during development are not well understood. Based on transgenic mouse models, we will discuss the expression patterns of the six conventional actin isoforms in mammals during development and adult life. Ablation of actin genes usually leads to lethality and affects expression of other actin isoforms at the cell or tissue level. A good knowledge of their expression and functions will contribute to fully understand severe phenotypes or diseases caused by mutations in actin isoforms.
Collapse
Affiliation(s)
- Davina Tondeleir
- Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), Albert Baertsoenkaai 3, Ghent, Belgium
| | | | | | | | | |
Collapse
|
42
|
Belyantseva IA, Perrin BJ, Sonnemann KJ, Zhu M, Stepanyan R, McGee J, Frolenkov GI, Walsh EJ, Friderici KH, Friedman TB, Ervasti JM. Gamma-actin is required for cytoskeletal maintenance but not development. Proc Natl Acad Sci U S A 2009; 106:9703-8. [PMID: 19497859 PMCID: PMC2701000 DOI: 10.1073/pnas.0900221106] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Indexed: 11/18/2022] Open
Abstract
Beta(cyto)-actin and gamma(cyto)-actin are ubiquitous proteins thought to be essential building blocks of the cytoskeleton in all non-muscle cells. Despite this widely held supposition, we show that gamma(cyto)-actin null mice (Actg1(-/-)) are viable. However, they suffer increased mortality and show progressive hearing loss during adulthood despite compensatory up-regulation of beta(cyto)-actin. The surprising viability and normal hearing of young Actg1(-/-) mice means that beta(cyto)-actin can likely build all essential non-muscle actin-based cytoskeletal structures including mechanosensory stereocilia of hair cells that are necessary for hearing. Although gamma(cyto)-actin-deficient stereocilia form normally, we found that they cannot maintain the integrity of the stereocilia actin core. In the wild-type, gamma(cyto)-actin localizes along the length of stereocilia but re-distributes to sites of F-actin core disruptions resulting from animal exposure to damaging noise. In Actg1(-/-) stereocilia similar disruptions are observed even without noise exposure. We conclude that gamma(cyto)-actin is required for reinforcement and long-term stability of F-actin-based structures but is not an essential building block of the developing cytoskeleton.
Collapse
Affiliation(s)
- Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders/National Institutes of Health, Rockville, MD 20850
| | - Benjamin J. Perrin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Kevin J. Sonnemann
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Mei Zhu
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Ruben Stepanyan
- Department of Physiology, University of Kentucky, Lexington, KY 40536
| | - JoAnn McGee
- Developmental Auditory Physiology Laboratory, Boys Town National Research Hospital, Omaha, NE 68131
| | - Gregory I. Frolenkov
- Department of Physiology, University of Kentucky, Lexington, KY 40536
- Molecular Biology and Genetics Section, National Institute on Deafness and Other Communication Disorders/National Institutes of Health, Rockville, MD 20850; and
| | - Edward J. Walsh
- Developmental Auditory Physiology Laboratory, Boys Town National Research Hospital, Omaha, NE 68131
| | - Karen H. Friderici
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders/National Institutes of Health, Rockville, MD 20850
| | - James M. Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
43
|
Morín M, Bryan KE, Mayo-Merino F, Goodyear R, Mencía A, Modamio-Høybjør S, del Castillo I, Cabalka JM, Richardson G, Moreno F, Rubenstein PA, Moreno-Pelayo MA. In vivo and in vitro effects of two novel gamma-actin (ACTG1) mutations that cause DFNA20/26 hearing impairment. Hum Mol Genet 2009; 18:3075-89. [PMID: 19477959 DOI: 10.1093/hmg/ddp249] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here we report the functional assessment of two novel deafness-associated gamma-actin mutants, K118N and E241K, in a spectrum of different situations with increasing biological complexity by combining biochemical and cell biological analysis in yeast and mammalian cells. Our in vivo experiments showed that while the K118N had a very mild effect on yeast behaviour, the phenotype caused by the E241K mutation was very severe and characterized by a highly compromised ability to grow on glycerol as a carbon source, an aberrant multi-vacuolar pattern and the deposition of thick F-actin bundles randomly in the cell. The latter feature is consistent with the highly unusual spontaneous tendency of the E241K mutant to form bundles in vitro, although this propensity to bundle was neutralized by tropomyosin and the E241K filament bundles were hypersensitive to severing in the presence of cofilin. In transiently transfected NIH3T3 cells both mutant actins were normally incorporated into cytoskeleton structures, although cytoplasmic aggregates were also observed indicating an element of abnormality caused by the mutations in vivo. Interestingly, gene-gun mediated expression of these mutants in cochlear hair cells results in no gross alteration in cytoskeletal structures or the morphology of stereocilia. Our results provide a more complete picture of the biological consequences of deafness-associated gamma-actin mutants and support the hypothesis that the post-lingual and progressive nature of the DFNA20/26 hearing loss is the result of a progressive deterioration of the hair cell cytoskeleton over time.
Collapse
Affiliation(s)
- Matías Morín
- Unidad de Genética Molecular, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bryan KE, Rubenstein PA. Allele-specific effects of human deafness gamma-actin mutations (DFNA20/26) on the actin/cofilin interaction. J Biol Chem 2009; 284:18260-9. [PMID: 19419963 DOI: 10.1074/jbc.m109.015818] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Auditory hair cell function requires proper assembly and regulation of the nonmuscle gamma isoactin-rich cytoskeleton, and six point mutations in this isoactin cause a type of delayed onset autosomal dominant nonsyndromic progressive hearing loss, DFNA20/26. The molecular basis underlying this actin-dependent hearing loss is unknown. To address this problem, the mutations have been introduced into yeast actin, and their effects on actin function were assessed in vivo and in vitro. Because we previously showed that polymerization was unaffected in five of the six mutants, we have focused on proteins that regulate actin, in particular cofilin, which severs F-actin and sequesters actin monomers. The mutations do not affect the interaction of cofilin with G-actin. However, T89I and V370A mutant F-actins are much more susceptible to cofilin disassembly than WT filaments in vitro. Conversely, P332A filaments demonstrate enhanced resistance. Wild type actin solutions containing T89I, K118M, or P332A mutant actins at mole fractions similar to those found in the hair cell respond in vitro toward cofilin in a manner proportional to the level of the mutant present. Finally, depression of cofilin action in vivo by elimination of the cofilin-activating protein, Aip1p, rescues the inability to grow on glycerol caused by K118M, T278I, P332A, and V370A. These results suggest that a filament instability caused by these mutations can be balanced by decreasing a system in vivo that promotes increased filament turnover. Such mutant-dependent filament destabilization could easily result in hair cell malfunction leading to the late-onset hearing loss observed in these patients.
Collapse
Affiliation(s)
- Keith E Bryan
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242-1109, USA
| | | |
Collapse
|
45
|
de Heer AMR, Huygen PLM, Collin RWJ, Oostrik J, Kremer H, Cremers WRJ. Audiometric and Vestibular Features in a Second Dutch DFNA20/26 Family with a Novel Mutation in ACTG1. Ann Otol Rhinol Laryngol 2009; 118:382-90. [DOI: 10.1177/000348940911800511] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives: We analyzed the phenotype in a 5-generation DFNA20/26 family with a novel missense mutation in the ACTG1 gene (c.151G>A) and compared the findings to previous reports on DFNA20/26 families. Methods: Audiometric data were collected from the family members of a Dutch kindred with the novel ACTG1 mutation. Cross-sectional and/or longitudinal analyses were performed on pure tone and speech audiometry data of the mutation carriers. Age-related typical audiograms were constructed. Vestibular examination was performed in all mutation carriers. Results: Overall, high-frequency hearing impairment, most prominent at ages over 30 years, was observed with a progression rate of 1.1 to 2.1 dB/y, increasing with frequency. It ultimately resulted in residual hearing. Speech recognition scores remained good at given pure tone average (1, 2, and 4 kHz) levels, but were slightly poorer than those at similar levels in a group of patients with presbycusis. Vestibular examination did not reveal any consistent, statistically significant abnormalities. Conclusions: The audiometric phenotype of the Dutch DFNA20/26 family with a novel mutation in ACTG1 was largely consistent with previous reports on DFNA20/26. Considerable variations were found in audiogram configurations within the family. This is the first known DFNA20/26 family that has experienced tinnitus.
Collapse
|
46
|
Liu P, Li H, Ren X, Mao H, Zhu Q, Zhu Z, Yang R, Yuan W, Liu J, Wang Q, Liu M. Novel ACTG1 mutation causing autosomal dominant non-syndromic hearing impairment in a Chinese family. J Genet Genomics 2009; 35:553-8. [PMID: 18804074 DOI: 10.1016/s1673-8527(08)60075-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/27/2008] [Accepted: 04/14/2008] [Indexed: 11/28/2022]
Abstract
The gamma-actin (ACTG1) gene is a cytoplasmic nonmuscle actin gene, which encodes a major cytoskeletal protein in the sensory hair cells of the cochlea. Mutations in ACTG1 were found to cause autosomal dominant, progressive, sensorineural hearing loss linked to the DFNA 20/26 locus on chromosome 17q25.3 in European and American families, respectively. In this study, a novel missense mutation (c.364A>G; p.I122V) co-segregated with the affected individuals in the family and did not exist in the unaffected family members and 150 unrelated normal controls. The alteration of residue Ile122 was predicted to damage its interaction with actin-binding proteins, which may cause disruption of hair cell organization and function. These findings strongly suggested that the I122V mutation in ACTG1 caused autosomal dominant non-syndromic hearing impairment in a Chinese family and expanded the spectrum of ACTG1 mutations causing hearing loss.
Collapse
Affiliation(s)
- Ping Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Manor U, Kachar B. Dynamic length regulation of sensory stereocilia. Semin Cell Dev Biol 2008; 19:502-10. [PMID: 18692583 PMCID: PMC2650238 DOI: 10.1016/j.semcdb.2008.07.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 07/15/2008] [Indexed: 01/02/2023]
Abstract
Stereocilia, the mechanosensory organelles of hair cells, are a distinctive class of actin-based cellular protrusions with an unparalleled ability to regulate their lengths over time. Studies on actin turnover in stereocilia, as well as the identification of several deafness-related proteins essential for proper stereocilia structure and function, provide new insights into the mechanisms and molecules involved in stereocilia length regulation and long-term maintenance. Comparisons of ongoing investigations on stereocilia with studies on other actin protrusions offer new opportunities to further understand common principles for length regulation, the diversity of its mechanisms, and how the specific needs of each cell are met.
Collapse
Affiliation(s)
- Uri Manor
- Section on Structural Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, United States
| | | |
Collapse
|
48
|
Sanggaard KM, Kjaer KW, Eiberg H, Nürnberg G, Nürnberg P, Hoffman K, Jensen H, Sørum C, Rendtorff ND, Tranebjaerg L. A novel nonsense mutation in MYO6 is associated with progressive nonsyndromic hearing loss in a Danish DFNA22 family. Am J Med Genet A 2008; 146A:1017-25. [PMID: 18348273 DOI: 10.1002/ajmg.a.32174] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Autosomal dominant inheritance is described in about 20% of all nonsyndromic hearing loss with currently 54 distinct loci (DFNA1-54), and >20 different genes identified. Seven different unconventional myosin genes are involved in ten different types of syndromic and nonsyndromic hearing loss with different patterns of inheritance: MYO7A in DFNA11/DFNB2/USH1B, MYH9 in DFNA17, MYH14 in DFNA4, MYO6 in DFNA22/DFNB37, MYO3A in DFNB30, MYO1A in DFNA48, and MYO15A in DFNB3. Two missense mutations in MYO6 (p.C442Y and p.H246R) have been characterized in families of Italian and American Caucasian extraction with autosomal dominant hearing loss, respectively, and the latter was associated with cardiomyopathy in some patients. Three Pakistani families had homozygosity for three MYO6 mutations (c.36insT, p.R1166X, and p.E216V, respectively), and was in one instance associated with retinal degeneration. In the present study, we linked autosomal dominant hearing loss in a large Danish family to a 38.9 Mb interval overlapping with the DFNA22/DFNB37 locus on chromosome 6q13. A novel nonsense mutation in MYO6 exon 25 (c.2545C > T; p.R849X) was identified in the family. The mutation co-segregated with the disease and the mutant allele is predicted to encode a truncated protein lacking the coiled-coil and globular tail domains. These domains are hypothesized to be essential for targeting myosin VI to its cellular compartments. No other system was involved indicating nonsyndromic loss. In conclusion, a novel nonsense MYO6 mutation causes post-lingual, slowly progressive autosomal dominant nonsyndromic moderate to severe hearing loss in a Danish family.
Collapse
Affiliation(s)
- Kirsten M Sanggaard
- Wilhelm Johannsen Centre for Functional Genome Research, Institute of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Meyer NC, Nishimura CJ, McMordie S, Smith RJH. Audioprofiling identifiesTECTAandGJB2-related deafness segregating in a single extended pedigree. Clin Genet 2007; 72:130-7. [PMID: 17661817 DOI: 10.1111/j.1399-0004.2007.00828.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An audioprofile displays phenotypic data from several audiograms on a single graph that share a common genotype. In this report, we describe the application of audioprofiling to a large family in which a genome-wide screen failed to identify a deafness locus. Analysis of audiograms by audioprofiling suggested that two persons with hearing impairment had a different deafness genotype. On this basis, we reassigned affectation status and identified a p.Cys1837Arg autosomal dominant mutation in alpha-tectorin segregating in all family members except two persons, who segregated autosomal recessive deafness caused by p.Val37Ile and p.Leu90Pro mutations in Connexin 26. One nuclear family in the extended pedigree segregates both dominant and recessive non-syndromic hearing loss.
Collapse
Affiliation(s)
- N C Meyer
- Department of Otolaryngology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|