1
|
Saikia PJ, Pathak L, Mitra S, Das B. The emerging role of oral microbiota in oral cancer initiation, progression and stemness. Front Immunol 2023; 14:1198269. [PMID: 37954619 PMCID: PMC10639169 DOI: 10.3389/fimmu.2023.1198269] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/23/2023] [Indexed: 11/14/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy among the Head and Neck cancer. OSCCs are highly inflammatory, immune-suppressive, and aggressive tumors. Recent sequencing based studies demonstrated the involvement of different oral microbiota in oral cavity diseases leading OSCC carcinogenesis, initiation and progression. Researches showed that oral microbiota can activate different inflammatory pathways and cancer stem cells (CSCs) associated stemness pathways for tumor progression. We speculate that CSCs and their niche cells may interact with the microbiotas to promote tumor progression and stemness. Certain oral microbiotas are reported to be involved in dysbiosis, pre-cancerous lesions, and OSCC development. Identification of these specific microbiota including Human papillomavirus (HPV), Porphyromonas gingivalis (PG), and Fusobacterium nucleatum (FN) provides us with a new opportunity to study the bacteria/stem cell, as well as bacteria/OSCC cells interaction that promote OSCC initiation, progression and stemness. Importantly, these evidences enabled us to develop in-vitro and in-vivo models to study microbiota interaction with stem cell niche defense as well as CSC niche defense. Thus in this review, the role of oral microbiota in OSCC has been explored with a special focus on how oral microbiota induces OSCC initiation and stemness by modulating the oral mucosal stem cell and CSC niche defense.
Collapse
Affiliation(s)
- Partha Jyoti Saikia
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Lekhika Pathak
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Shirsajit Mitra
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Bikul Das
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| |
Collapse
|
2
|
Zaghi M, Banfi F, Massimino L, Volpin M, Bellini E, Brusco S, Merelli I, Barone C, Bruni M, Bossini L, Lamparelli LA, Pintado L, D'Aliberti D, Spinelli S, Mologni L, Colasante G, Ungaro F, Cioni JM, Azzoni E, Piazza R, Montini E, Broccoli V, Sessa A. Balanced SET levels favor the correct enhancer repertoire during cell fate acquisition. Nat Commun 2023; 14:3212. [PMID: 37270547 DOI: 10.1038/s41467-023-39043-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
Within the chromatin, distal elements interact with promoters to regulate specific transcriptional programs. Histone acetylation, interfering with the net charges of the nucleosomes, is a key player in this regulation. Here, we report that the oncoprotein SET is a critical determinant for the levels of histone acetylation within enhancers. We disclose that a condition in which SET is accumulated, the severe Schinzel-Giedion Syndrome (SGS), is characterized by a failure in the usage of the distal regulatory regions typically employed during fate commitment. This is accompanied by the usage of alternative enhancers leading to a massive rewiring of the distal control of the gene transcription. This represents a (mal)adaptive mechanism that, on one side, allows to achieve a certain degree of differentiation, while on the other affects the fine and corrected maturation of the cells. Thus, we propose the differential in cis-regulation as a contributing factor to the pathological basis of SGS and possibly other the SET-related disorders in humans.
Collapse
Affiliation(s)
- Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Federica Banfi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Luca Massimino
- Esperimental Gastroenterology Unit, Division of Immunology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Monica Volpin
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget); IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Edoardo Bellini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Simone Brusco
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Ivan Merelli
- CNR Institute of Biomedical Technologies, 20090, Segrate, Italy
| | - Cristiana Barone
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Michela Bruni
- RNA biology of the Neuron Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Linda Bossini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Luigi Antonio Lamparelli
- Esperimental Gastroenterology Unit, Division of Immunology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Laura Pintado
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Deborah D'Aliberti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Silvia Spinelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Luca Mologni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Federica Ungaro
- Esperimental Gastroenterology Unit, Division of Immunology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Jean-Michel Cioni
- RNA biology of the Neuron Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Rocco Piazza
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget); IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
| |
Collapse
|
3
|
Toh K, Saunders D, Verd B, Steventon B. Zebrafish neuromesodermal progenitors undergo a critical state transition in vivo. iScience 2022; 25:105216. [PMID: 36274939 PMCID: PMC9579027 DOI: 10.1016/j.isci.2022.105216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/05/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
The transition state model of cell differentiation proposes that a transient window of gene expression stochasticity precedes entry into a differentiated state. Here, we assess this theoretical model in zebrafish neuromesodermal progenitors (NMps) in vivo during late somitogenesis stages. We observed an increase in gene expression variability at the 24 somite stage (24ss) before their differentiation into spinal cord and paraxial mesoderm. Analysis of a published 18ss scRNA-seq dataset showed that the NMp population is noisier than its derivatives. By building in silico composite gene expression maps from image data, we assigned an 'NM index' to in silico NMps based on the expression of neural and mesodermal markers and demonstrated that cell population heterogeneity peaked at 24ss. Further examination revealed cells with gene expression profiles incongruent with their prospective fate. Taken together, our work supports the transition state model within an endogenous cell fate decision making event.
Collapse
Affiliation(s)
- Kane Toh
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Dillan Saunders
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Berta Verd
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | | |
Collapse
|
4
|
Freter R, Falletta P, Omrani O, Rasa M, Herbert K, Annunziata F, Minetti A, Krepelova A, Adam L, Käppel S, Rüdiger T, Wang ZQ, Goding CR, Neri F. Establishment of a fluorescent reporter of RNA-polymerase II activity to identify dormant cells. Nat Commun 2021; 12:3318. [PMID: 34083536 PMCID: PMC8175728 DOI: 10.1038/s41467-021-23580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/06/2021] [Indexed: 11/09/2022] Open
Abstract
Dormancy, a reversible quiescent cellular state characterized by greatly reduced metabolic activity, protects from genetic damage, prolongs survival and is crucial for tissue homeostasis and cellular response to injury or transplantation. Dormant cells have been characterized in many tissues, but their identification, isolation and characterization irrespective of tissue of origin remains elusive. Here, we develop a live cell ratiometric fluorescent Optical Stem Cell Activity Reporter (OSCAR) based on the observation that phosphorylation of RNA Polymerase II (RNApII), a hallmark of active mRNA transcription elongation, is largely absent in dormant stem cells from multiple lineages. Using the small intestinal crypt as a model, OSCAR reveals in real time the dynamics of dormancy induction and cellular differentiation in vitro, and allows the identification and isolation of several populations of transcriptionally diverse OSCARhigh and OSCARlow intestinal epithelial cell states in vivo. In particular, this reporter is able to identify a dormant OSCARhigh cell population in the small intestine. OSCAR therefore provides a tool for a better understanding of dormant stem cell biology. The identification and characterisation of dormant cells is currently difficult. Here the authors report Optical Stem Cell Activity Reporter (OSCAR) to assess RNA polymerase II activity and identify dormant cell populations in intestinal epithelial cells in vivo.
Collapse
Affiliation(s)
- Rasmus Freter
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany.,Ludwig Institute for Cancer Research, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK
| | - Paola Falletta
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK
| | - Omid Omrani
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany
| | - Mahdi Rasa
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany
| | - Katharine Herbert
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK
| | - Francesco Annunziata
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany
| | - Alberto Minetti
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany
| | - Anna Krepelova
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany
| | - Lisa Adam
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany
| | - Sandra Käppel
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany
| | - Tina Rüdiger
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany
| | - Zhao-Qi Wang
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany.,Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, 007743, Germany
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Francesco Neri
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany.
| |
Collapse
|
5
|
A Possible Role for Philosophy: Bridging the Conceptual Divide in Cancer Research. Acta Biotheor 2018. [DOI: 10.1007/s10441-018-9326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Marie-Egyptienne DT, Chaudary N, Kalliomäki T, Hedley DW, Hill RP. Cancer initiating-cells are enriched in the CA9 positive fraction of primary cervix cancer xenografts. Oncotarget 2018; 8:1392-1404. [PMID: 27901496 PMCID: PMC5352063 DOI: 10.18632/oncotarget.13625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/07/2016] [Indexed: 12/27/2022] Open
Abstract
Numerous studies have suggested that Cancer Initiating Cells (CIC) can be identified/enriched in cell populations obtained from solid tumors based on the expression of cell surface marker proteins. We used early passage primary cervix cancer xenografts to sort cells based on the expression of the intrinsic hypoxia marker Carbonic Anhydrase 9 (CA9) and tested their cancer initiation potential by limiting dilution assay. We demonstrated that CICs are significantly enriched in the CA9+ fraction in 5/6 models studied. Analyses of the expression of the stem cell markers Oct4, Notch1, Sca-1 & Bmi1 showed a trend toward an increase in the CA9+ populations, albeit not significant. We present evidence that enhanced autophagy does not play a role in the enhanced growth of the CA9+ cells. Our study suggests a direct in vivo functional link between hypoxic cells and CICs in primary cervix cancer xenografts.
Collapse
Affiliation(s)
- Delphine Tamara Marie-Egyptienne
- Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network and Campbell Family Institute for Cancer Research, Toronto, Ontario, M5G2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Naz Chaudary
- Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network and Campbell Family Institute for Cancer Research, Toronto, Ontario, M5G2M9, Canada
| | - Tuula Kalliomäki
- Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network and Campbell Family Institute for Cancer Research, Toronto, Ontario, M5G2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - David William Hedley
- Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network and Campbell Family Institute for Cancer Research, Toronto, Ontario, M5G2M9, Canada.,Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, M5G2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Richard Peter Hill
- Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network and Campbell Family Institute for Cancer Research, Toronto, Ontario, M5G2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Abstract
What is a stem cell? Is stemness an intrinsic or extrinsic property? What role does the microenvironment play in the stemness identity? We distinguish four identities for normal and cancerous stem cells and explore their consequences for therapeutic strategy choice in the oncology setting. Acquisition of genetic and epigenetic alterations during cell transformation and disease progression questions the stability of the stemness property's identity in cancers.
Collapse
Affiliation(s)
- Lucie Laplane
- CNRS U8590 - Institut d'histoire et de philosophie des sciences et des techniques (IHPST), université Paris I Panthéon-Sorbonne, 13, rue du Four, 75006 Paris, France - Inserm U1170, Gustave Roussy, 114, rue Edouard Vaillant, 94800 Villejuif, France
| | - Éric Solary
- Inserm U1170, Gustave Roussy, 114, rue Edouard Vaillant, 94800 Villejuif, France - Faculté de médecine Paris-Sud, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
8
|
Abstract
Most cells in nature are not actively dividing, yet are able to return to the cell cycle given the appropriate environmental signals. There is now ample evidence that quiescent G0 cells are not shut-down but still metabolically and transcriptionally active. Quiescent cells must maintain a basal transcriptional capacity to maintain transcripts and proteins necessary for survival. This implies a tight control over RNA polymerases: RNA pol II for mRNA transcription during G0, but especially RNA pol I and RNA pol III to maintain an appropriate level of structural RNAs, raising the possibility that specific transcriptional control mechanisms evolved in quiescent cells. In accordance with this, we recently discovered that RNA interference is necessary to control RNA polymerase I transcription during G0. While this mini-review focuses on yeast model organisms (Saccharomyces cerevisiae and Schizosaccharomyces pombe), parallels are drawn to other eukaryotes and mammalian systems, in particular stem cells.
Collapse
Affiliation(s)
- Benjamin Roche
- a Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| | - Benoit Arcangioli
- b Genome Dynamics Unit , UMR 3525 CNRS, Institut Pasteur, 25-28 rue du Docteur Roux , Paris , France
| | - Robert Martienssen
- a Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA.,c Howard Hughes Medical Institute-Gordon and Betty Moore Foundation (HHMI-GBM) Investigator , NY , USA
| |
Collapse
|
9
|
EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Mol Cancer 2017; 16:8. [PMID: 28137272 PMCID: PMC5282733 DOI: 10.1186/s12943-016-0579-2] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/25/2016] [Indexed: 12/17/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is associated with metastasis formation as well as with generation and maintenance of cancer stem cells. In this way, EMT contributes to tumor invasion, heterogeneity and chemoresistance. Morphological and functional changes involved in these processes require robust reprogramming of gene expression, which is only partially accomplished at the transcriptional level. Alternative splicing is another essential layer of gene expression regulation that expands the cell proteome. This step in post-transcriptional regulation of gene expression tightly controls cell identity between epithelial and mesenchymal states and during stem cell differentiation. Importantly, dysregulation of splicing factor function and cancer-specific splicing isoform expression frequently occurs in human tumors, suggesting the importance of alternative splicing regulation for cancer biology. In this review, we briefly discuss the role of EMT programs in development, stem cell differentiation and cancer progression. Next, we focus on selected examples of key factors involved in EMT and stem cell differentiation that are regulated post-transcriptionally through alternative splicing mechanisms. Lastly, we describe relevant oncogenic splice-variants that directly orchestrate cancer stem cell biology and tumor EMT, which may be envisioned as novel targets for therapeutic intervention.
Collapse
|
10
|
MacLean AL, Lo Celso C, Stumpf MP. Concise Review: Stem Cell Population Biology: Insights from Hematopoiesis. Stem Cells 2016; 35:80-88. [DOI: 10.1002/stem.2508] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/19/2016] [Accepted: 08/21/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Adam L. MacLean
- Department of Life Sciences; Imperial College London; South Kensington Campus London United Kingdom
| | - Cristina Lo Celso
- Department of Life Sciences; Imperial College London; South Kensington Campus London United Kingdom
| | - Michael P.H. Stumpf
- Department of Life Sciences; Imperial College London; South Kensington Campus London United Kingdom
| |
Collapse
|
11
|
Höfner T, Klein C, Eisen C, Rigo-Watermeier T, Haferkamp A, Trumpp A, Sprick MR. The influence of prostatic anatomy and neurotrophins on basal prostate epithelial progenitor cells. Prostate 2016; 76:114-21. [PMID: 26444457 DOI: 10.1002/pros.23109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/24/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Based on findings of surface marker, protein screens as well as the postulated near-urethral location of the prostate stem cell niche, we were interested whether androgen ablation, distinct anatomic regions within the prostate or neurotrophins have an influence on basal prostate epithelial progenitor cells (PESCs). METHODS Microdissection of the prostate, enzymatic digestion, and preparation of single cells was performed from murine and human prostates. Adult PESC marker expressions were compared between a group of C57BL/6 mice and a separate group of castrated C57BL/6 mice. Surface markers CD13/CD271 on human prostate epithelial progenitor cells were evaluated by FACS analyses in cells cultured under novel stem cell conditions. The effect of neurotrophins NGF, NT3, and BDNF were evaluated with respect to their influence on proliferation and activation of human basal PESCs in vitro. RESULTS We demonstrate the highest percentage of CD49f+ and Trop2+ expressing cells in the urethra near prostatic regions of WT mice (Trop2+ proximal: 10% vs. distal to the urethra: 3%, P < 0.001). While a marked increase of Trop2 expressing cells can be measured both in the proximal and distal prostatic regions after castration, the most prominent increase in Trop2+ cells can be measured in the prostatic tissue distant to the urethra. Furthermore, we demonstrate that the proportion of syndecan-1 expressing cells greatly increases in the regions proximal to the urethra after castration (WT: 5% vs. castrated: 40%). We identified heterogeneous CD13 and nerve growth factor receptor (p75(NGFR), CD271) expression on CD49f(+)/TROP2(high) human basal PESCs. Addition of the neurotrophins NT3, BDNF, and NGF to the stem cell media led to a marked temporary increase in the proliferation of human basal PESCs. CONCLUSIONS Our results in mice support the model, in which the proximal urethral region contains the prostate stem cell niche while a stronger androgen-dependent regulation of adult prostate stem cells can be found in the peripheral prostatic tissue. Neutrophin signaling via nerve growth factor receptor is possibly involved in human prostate stem cell homeostasis.
Collapse
Affiliation(s)
- Thomas Höfner
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Department of Urology, University Hospital Frankfurt, Frankfurt, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Corinna Klein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Christian Eisen
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Teresa Rigo-Watermeier
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Axel Haferkamp
- Department of Urology, University Hospital Frankfurt, Frankfurt, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Martin R Sprick
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| |
Collapse
|
12
|
Adler CE, Sánchez Alvarado A. Types or States? Cellular Dynamics and Regenerative Potential. Trends Cell Biol 2015; 25:687-696. [PMID: 26437587 DOI: 10.1016/j.tcb.2015.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 01/31/2023]
Abstract
Many of our organs can maintain and repair themselves during homeostasis and injury, as a result of the action of tissue-specific, multipotent stem cells. However, recent evidence from mammalian systems suggests that injury stimulates dramatic plasticity, or transient changes in cell potential, in both stem cells and more differentiated cells. Planarian flatworms possess abundant stem cells, making them an exceptional model for understanding the cellular behavior underlying homeostasis and regeneration. Recent discoveries of cell lineages and regeneration-specific events provide an initial framework for unraveling the complex cellular contributions to regeneration. In this review, we discuss the concept of cellular plasticity in the context of planarian regeneration, and consider the possibility that pluripotency may be a transient, probabilistic state exhibited by stem cells.
Collapse
Affiliation(s)
- Carolyn E Adler
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Current address: Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA.
| |
Collapse
|
13
|
Cheedipudi S, Puri D, Saleh A, Gala HP, Rumman M, Pillai MS, Sreenivas P, Arora R, Sellathurai J, Schrøder HD, Mishra RK, Dhawan J. A fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene. Nucleic Acids Res 2015; 43:6236-56. [PMID: 26040698 PMCID: PMC4513853 DOI: 10.1093/nar/gkv567] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 05/19/2015] [Indexed: 12/20/2022] Open
Abstract
Adult stem cell quiescence is critical to ensure regeneration while minimizing tumorigenesis. Epigenetic regulation contributes to cell cycle control and differentiation, but few regulators of the chromatin state in quiescent cells are known. Here we report that the tumor suppressor PRDM2/RIZ, an H3K9 methyltransferase, is enriched in quiescent muscle stem cells invivo and controls reversible quiescence in cultured myoblasts. We find that PRDM2 associates with >4400 promoters in G0 myoblasts, 55% of which are also marked with H3K9me2 and enriched for myogenic, cell cycle and developmental regulators. Knockdown of PRDM2 alters histone methylation at key promoters such as Myogenin and CyclinA2 (CCNA2), and subverts the quiescence program via global de-repression of myogenesis, and hyper-repression of the cell cycle. Further, PRDM2 acts upstream of the repressive PRC2 complex in G0. We identify a novel G0-specific bivalent chromatin domain in the CCNA2 locus. PRDM2 protein interacts with the PRC2 protein EZH2 and regulates its association with the bivalent domain in the CCNA2 gene. Our results suggest that induction of PRDM2 in G0 ensures that two antagonistic programs—myogenesis and the cell cycle—while stalled, are poised for reactivation. Together, these results indicate that epigenetic regulation by PRDM2 preserves key functions of the quiescent state, with implications for stem cell self-renewal.
Collapse
Affiliation(s)
- Sirisha Cheedipudi
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Deepika Puri
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Max Planck Institute of Immunobiology and Epigenetics, Freiburg D-79108, Germany
| | - Amena Saleh
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Manipal University, Manipal 576104 India
| | - Hardik P Gala
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Mohammed Rumman
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Manipal University, Manipal 576104 India
| | - Malini S Pillai
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India
| | - Prethish Sreenivas
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Reety Arora
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India
| | - Jeeva Sellathurai
- Institute of Clinical Research, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense 5000 C, Denmark
| | - Henrik Daa Schrøder
- Institute of Clinical Research, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense 5000 C, Denmark
| | - Rakesh K Mishra
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| |
Collapse
|
14
|
Xiang L, Chan RWS, Ng EHY, Yeung WSB. Nanoparticle labeling identifies slow cycling human endometrial stromal cells. Stem Cell Res Ther 2014; 5:84. [PMID: 24996487 PMCID: PMC4230801 DOI: 10.1186/scrt473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/27/2014] [Indexed: 02/06/2023] Open
Abstract
Introduction Evidence suggests that the human endometrium contains stem or progenitor cells that are responsible for its remarkable regenerative capability. A common property of somatic stem cells is their quiescent state. It remains unclear whether slow-cycling cells exist in the human endometrium. We hypothesized that the human endometrium contains a subset of slow-cycling cells with somatic stem cell properties. Here, we established an in vitro stem cell assay to isolate human endometrial-derived mesenchymal stem-like cells (eMSC). Methods Single-cell stromal cultures were initially labeled with fluorescent nanoparticles and a small population of fluorescent persistent cells (FPC) remained after culture of 21 days. Two populations of stromal cells, namely FPC and non-FPC were sorted. Results Quantitative analysis of functional assays demonstrated that the FPC had higher colony forming ability, underwent more rounds of self-renewal and had greater enrichment of phenotypically defined prospective eMSC markers: CD146+/CD140b+ and W5C5+ than the non-FPC. They also differentiate into multiple mesenchymal lineages and the expression of lineage specific markers was lower than that of non-FPC. The FPC exhibit low proliferation activities. A proliferation dynamics study revealed that more FPC had a prolonged G1 phase. Conclusions With this study we present an efficient method to label and isolate slow-proliferating cells obtained from human endometrial stromal cultures without genetic modifications. The FPC population could be easily maintained in vitro and are of interest for tissue-repair and engineering perspectives. In summary, nanoparticle labeling is a promising tool for the identification of putative somatic stem or progenitor cells when their surface markers are undefined.
Collapse
|
15
|
|
16
|
Galderisi U, Peluso G, Di Bernardo G, Calarco A, D'Apolito M, Petillo O, Cipollaro M, Fusco FR, Melone MAB. Efficient cultivation of neural stem cells with controlled delivery of FGF-2. Stem Cell Res 2013; 10:85-94. [PMID: 23142801 DOI: 10.1016/j.scr.2012.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/22/2012] [Accepted: 09/19/2012] [Indexed: 01/25/2023] Open
Abstract
Neural stem cells (NSCs) raised the hope for cell-based therapies in human neurodevelopmental and neurodegenerative diseases. Current research strategies aim to isolate, enrich, and propagate homogeneous populations of neural stem cells. Unfortunately, several concerns with NSC cultures currently may limit their therapeutic promise. Exhaustion of growth factors and/or their uncontrolled release with burst and fall in their concentration may greatly affect the in vitro behavior of NSCs. In this context, we investigate whether a device containing heparan sulfate (HS), which is a co-factor in growth factor-mediated cell proliferation and differentiation, could potentiate and prolong the delivery of fibroblast growth factor-2 (FGF-2) and thus improve in vitro NSC cultivation. We demonstrated that NSCs cultivated in media with a controlled release of FGF-2 from a polyelectrolyte polymer showed a higher proliferation rate, and reduced apoptosis and senescence. In these experimental conditions NSCs preserve their stemness properties for a longer period of time compared with controls. Also of interest is that cell fate properties are conserved as well. The controlled release of FGF-2 reduced the level of oxidative stress and this is associated with a lower level of damaged DNA. This result may explain the reduced level of senescence and apoptosis in NSCs cultivated in the presence of hydrogel-releasing FGF-2.
Collapse
Affiliation(s)
- U Galderisi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, Naples, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: potential role of hypoxia. Cancer Lett 2012. [PMID: 23200673 DOI: 10.1016/j.canlet.2012.11.019] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Numerous studies have demonstrated the presence of cancer stem cells (CSCs) within solid tumors. Although the precursor of these cells is not clearly established, recent studies suggest that the phenotype of CSCs may be quite plastic and associated with the epithelial-to-mesenchymal transition (EMT). In patients, the presence of EMT and CSCs has been implicated in increased resistance to radiotherapy. Hypoxia, a negative prognostic factor for treatment success, is a potent driver of a multitude of molecular signalling pathways that allow cells to survive and thrive in the hostile tumor microenvironment and can induce EMT. Hypoxia also provides tumor cells with cues for maintenance of a stem-like state and may help to drive the linkage between EMT and CSCs. Understanding the biology of CSCs, the EMT phenotype and their implications in therapeutic relapse may provide crucial new approaches in the development of improved therapeutic strategies.
Collapse
|
18
|
Donnenberg AD, Hicks JB, Wigler M, Donnenberg VS. The cancer stem cell: cell type or cell state? Cytometry A 2012; 83:5-7. [PMID: 23081699 DOI: 10.1002/cyto.a.22208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 02/03/2023]
|
19
|
Abstract
The kidney is widely regarded as an organ without regenerative abilities. However, in recent years this dogma has been challenged on the basis of observations of kidney recovery following acute injury, and the identification of renal populations that demonstrate stem cell characteristics in various species. It is currently speculated that the human kidney can regenerate in some contexts, but the mechanisms of renal regeneration remain poorly understood. Numerous controversies surround the potency, behaviour and origins of the cell types that are proposed to perform kidney regeneration. The present review explores the current understanding of renal stem cells and kidney regeneration events, and examines the future challenges in using these insights to create new clinical treatments for kidney disease.
Collapse
|
20
|
Vukicevic V, Schmid J, Hermann A, Lange S, Qin N, Gebauer L, Chunk KF, Ravens U, Eisenhofer G, Storch A, Ader M, Bornstein SR, Ehrhart-Bornstein M. Differentiation of chromaffin progenitor cells to dopaminergic neurons. Cell Transplant 2012; 21:2471-86. [PMID: 22507143 DOI: 10.3727/096368912x638874] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The differentiation of dopamine-producing neurons from chromaffin progenitors might represent a new valuable source for replacement therapies in Parkinson's disease. However, characterization of their differentiation potential is an important prerequisite for efficient engraftment. Based on our previous studies on isolation and characterization of chromaffin progenitors from adult adrenals, this study investigates their potential to produce dopaminergic neurons and means to enhance their dopaminergic differentiation. Chromaffin progenitors grown in sphere culture showed an increased expression of nestin and Mash1, indicating an increase of the progenitor subset. Proneurogenic culture conditions induced the differentiation into neurons positive for neural markers β-III-tubulin, MAP2, and TH accompanied by a decrease of Mash1 and nestin. Furthermore, Notch2 expression decreased concomitantly with a downregulation of downstream effectors Hes1 and Hes5 responsible for self-renewal and proliferation maintenance of progenitor cells. Chromaffin progenitor-derived neurons secreted dopamine upon stimulation by potassium. Strikingly, treatment of differentiating cells with retinoic and ascorbic acid resulted in a twofold increase of dopamine secretion while norepinephrine and epinephrine were decreased. Initiation of dopamine synthesis and neural maturation is controlled by Pitx3 and Nurr1. Both Pitx3 and Nurr1 were identified in differentiating chromaffin progenitors. Along with the gained dopaminergic function, electrophysiology revealed features of mature neurons, such as sodium channels and the capability to fire multiple action potentials. In summary, this study elucidates the capacity of chromaffin progenitor cells to generate functional dopaminergic neurons, indicating their potential use in cell replacement therapies.
Collapse
Affiliation(s)
- Vladimir Vukicevic
- Molecular Endocrinology, Medical Clinic III, University Clinic Dresden, Dresden University of Technology, Fetscherstrasse 74, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zanichelli F, Capasso S, Cipollaro M, Pagnotta E, Cartenì M, Casale F, Iori R, Galderisi U. Dose-dependent effects of R-sulforaphane isothiocyanate on the biology of human mesenchymal stem cells, at dietary amounts, it promotes cell proliferation and reduces senescence and apoptosis, while at anti-cancer drug doses, it has a cytotoxic effect. AGE (DORDRECHT, NETHERLANDS) 2012; 34:281-293. [PMID: 21465338 PMCID: PMC3312628 DOI: 10.1007/s11357-011-9231-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 03/02/2011] [Indexed: 04/16/2023]
Abstract
Brassica vegetables are attracting a great deal of attention as healthy foods because of the fact that they contain substantial amounts of secondary metabolite glucosinolates that are converted into isothiocyanates, such as sulforaphane [(-)1-isothiocyanato-4R-(methylsulfinyl)-butane] (R-SFN), through the actions of chopping or chewing the vegetables. Several studies have analyzed the biological and molecular mechanisms of the anti-cancer activity of synthetic R,S-sulforaphane, which is thought to be a result of its antioxidant properties and its ability to inhibit histone deacetylase enzymes (HDAC). Few studies have addressed the possible antioxidant effects of R-SFN, which could protect cells from the free radical damage that strongly contribute to aging. Moreover, little is known about the effect of R-SFN on stem cells whose longevity is implicated in human aging. We evaluated the effects of R-SFN on the biology on human mesenchymal stem cells (MSCs), which, in addition to their ability to differentiate into mesenchymal tissues, support hematopoiesis, and contribute to the homeostatic maintenance of many organs and tissues. Our investigation found evidence that low doses of R-SFN promote MSCs proliferation and protect them from apoptosis and senescence, while higher doses have a cytotoxic effect, leading to the induction of cell cycle arrest, programmed cell death and senescence. The beneficial effects of R-SFN may be ascribed to its antioxidant properties, which were observed when MSC cultures were incubated with low doses of R-SFN. Its cytotoxic effects, which were observed after treating MSCs with high doses of R-SFN, could be attributed to its HDAC inhibitory activity. In summary, we found that R-SFN, like many other dietary supplements, exhibits a hormetic behavior; it is able to induce biologically opposite effects at different doses.
Collapse
Affiliation(s)
- Fulvia Zanichelli
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Stefania Capasso
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Eleonora Pagnotta
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (C.R.A.), Industrial Crop Research Centre, Bologna, Italy
| | - Maria Cartenì
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Fiorina Casale
- Department of Pediatrics “F. Fede”, Second University of Naples, Naples, Italy
| | - Renato Iori
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (C.R.A.), Industrial Crop Research Centre, Bologna, Italy
| | - Umberto Galderisi
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA USA
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
- Human Health Foundation, Spoleto, Italy
| |
Collapse
|
22
|
Zhi F, Gong G, Xu Y, Zhu Y, Hu D, Yang Y, Hu Y. Activated β-catenin forces N2A cell-derived neurons back to tumor-like neuroblasts and positively correlates with a risk for human neuroblastoma. Int J Biol Sci 2012; 8:289-97. [PMID: 22298956 PMCID: PMC3269611 DOI: 10.7150/ijbs.3520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 01/16/2012] [Indexed: 01/14/2023] Open
Abstract
Neuroblastoma is an embryonic malignancy arising from neuroblasts. The mechanisms that regulate the origination of neuroblastoma are still not very clear. In this study, we revealed that 6-bromoindirubin 3'-oxime (BIO), a specific GSK-3β inhibitor, promoted N2A cells-derived neurons to become tumor-like neuroblasts. Moreover, constitutively activated β-catenin (S33Y) also promoted this process, whereas, silencing endogenous expression of β-catenin abolished BIO-induced effects. These results implicated the potential relationship between the Wnt/β-catenin signaling and neuroblastoma formation. Indeed, we found that the amount of β-catenin in nucleus, which indicated the activation of Wnt/β-catnin signaling, was accumulated in human neuroblastoma specimens and positively correlated with clinical risk of neuroblastoma. These results give us a new sight into the neuroblastoma initiation and progression, and provide a potential drug target for neuroblastoma treatment.
Collapse
Affiliation(s)
- Feng Zhi
- State Key Laboratories of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Huang S. On the intrinsic inevitability of cancer: from foetal to fatal attraction. Semin Cancer Biol 2011; 21:183-99. [PMID: 21640825 DOI: 10.1016/j.semcancer.2011.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/02/2011] [Accepted: 05/09/2011] [Indexed: 01/07/2023]
Abstract
The cracks in the paradigm of oncogenic mutations and somatic evolution as driving force of tumorigenesis, lucidly exposed by the dynamic heterogeneity of "cancer stem cells" or the diffuse results of cancer genome sequencing projects, indicate the need for a more encompassing theory of cancer that reaches beyond the current proximate explanations based on individual genetic pathways. One such integrative concept, derived from first principles of the dynamics of gene regulatory networks, is that cancerous cell states are attractor states, just like normal cell types are. Here we extend the concept of cancer attractors to illuminate a more profound property of cancer initiation: its inherent inevitability in the light of metazoan evolution. Using Waddington's Epigenetic Landscape as a conceptual aid, for which we present a mathematical and evolutionary foundation, we propose that cancer is intrinsically linked to ontogenesis and phylogenesis. This explanatory rather than enumerating review uses a formal argumentation structure that is atypical in modern experimental biology but may hopefully offer a new coherent perspective to reconcile many conflicts between new findings and the old thinking in the categories of linear oncogenic pathways.
Collapse
Affiliation(s)
- Sui Huang
- Institute for Biocomplexity and Informatics, University of Calgary, Alberta, Canada.
| |
Collapse
|
24
|
Snippert HJ, Clevers H. Tracking adult stem cells. EMBO Rep 2011; 12:113-22. [PMID: 21252944 DOI: 10.1038/embor.2010.216] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/20/2010] [Indexed: 12/17/2022] Open
Abstract
The maintenance of stem-cell-driven tissue homeostasis requires a balance between the generation and loss of cell mass. Adult stem cells have a close relationship with the surrounding tissue--known as their niche--and thus, stem-cell studies should preferably be performed in a physiological context, rather than outside their natural environment. The mouse is an attractive model in which to study adult mammalian stem cells, as numerous experimental systems and genetic tools are available. In this review, we describe strategies commonly used to identify and functionally characterize adult stem cells in mice and discuss their potential, limitations and interpretations, as well as how they have informed our understanding of adult stem-cell biology. An accurate interpretation of physiologically relevant stem-cell assays is crucial to identify adult stem cells and elucidate how they self-renew and give rise to differentiated progeny.
Collapse
Affiliation(s)
- Hugo J Snippert
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
25
|
Wolkenhauer O, Shibata DK, Mesarović MD. A stem cell niche dominance theorem. BMC SYSTEMS BIOLOGY 2011; 5:4. [PMID: 21214945 PMCID: PMC3030540 DOI: 10.1186/1752-0509-5-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/08/2011] [Indexed: 01/23/2023]
Abstract
Background Multilevelness is a defining characteristic of complex systems. For example, in the intestinal tissue the epithelial lining is organized into crypts that are maintained by a niche of stem cells. The behavior of the system 'as a whole' is considered to emerge from the functioning and interactions of its parts. What we are seeking here is a conceptual framework to demonstrate how the "fate" of intestinal crypts is an emergent property that inherently arises from the complex yet robust underlying biology of stem cells. Results We establish a conceptual framework in which to formalize cross-level principles in the context of tissue organization. To this end we provide a definition for stemness, which is the propensity of a cell lineage to contribute to a tissue fate. We do not consider stemness a property of a cell but link it to the process in which a cell lineage contributes towards tissue (mal)function. We furthermore show that the only logically feasible relationship between the stemness of cell lineages and the emergent fate of their tissue, which satisfies the given criteria, is one of dominance from a particular lineage. Conclusions The dominance theorem, conceived and proven in this paper, provides support for the concepts of niche succession and monoclonal conversion in intestinal crypts as bottom-up relations, while crypt fission is postulated to be a top-down principle.
Collapse
Affiliation(s)
- Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.
| | | | | |
Collapse
|
26
|
Alessio N, Squillaro T, Cipollaro M, Bagella L, Giordano A, Galderisi U. The BRG1 ATPase of chromatin remodeling complexes is involved in modulation of mesenchymal stem cell senescence through RB-P53 pathways. Oncogene 2010; 29:5452-5463. [PMID: 20697355 DOI: 10.1038/onc.2010.285] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 05/27/2010] [Accepted: 05/31/2010] [Indexed: 12/22/2022]
Abstract
We focused our attention on brahma-related gene 1 (BRG1), the ATPase subunit of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex, and analyzed its role in mesenchymal stem cell (MSC) biology. We hypothesized that deviation from the correct concentration of these proteins, which act at the highest level of gene regulation, may be deleterious for cells. We wanted to know what would happen if a cell had to cope with altered regulation of gene expression, either by upregulation or downregulation of BRG1. We assumed that cells would try to restore homeostasis or, alternatively, that the event could trigger senescence/apoptosis phenomena. To this end, in MSCs, we silenced BRG1gene. Knockdown of BRG1 expression induced a significant increase in senescent cells and decrease in apoptotic cells. It is interesting that BRG1 downregulation also induced an increase in heterochromatin. At the molecular level, these phenomena were associated with activation of retinoblastoma-like protein 2 (RB2)/P130- and P53-related pathways. Senescence was accompanied by reduced expression of some stemness-related genes. This is consistent with our previous research, which showed that BRG1 upregulation by ectopic expression also induced senescence processes. Together, these data suggest that BRG1 belongs to a class of genes whose expression is tightly regulated; hence, subtle alterations in BRG1 activity seem to negatively affect mechanisms regulating chromatin status and, in turn, impair cellular physiology.
Collapse
Affiliation(s)
- N Alessio
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
27
|
Squillaro T, Alessio N, Cipollaro M, Renieri A, Giordano A, Galderisi U. Partial silencing of methyl cytosine protein binding 2 (MECP2) in mesenchymal stem cells induces senescence with an increase in damaged DNA. FASEB J 2010; 24:1593-1603. [PMID: 20065105 DOI: 10.1096/fj.09-143057] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
DNA methylation is an epigenetic modification that occurs almost exclusively on CpG dinucleotides. MECP2 is a member of a family of proteins that preferentially bind to methylated CpGs. We analyzed the contribution of MECP2 to the physiology of mesenchymal stem cells (MSCs). Partial silencing of MECP2 in human MSCs induced a significant reduction of S-phase cells, along with an increase in G(1) cells. These changes were accompanied by a reduction of apoptosis, the triggering of senescence, a decrease in telomerase activity, and the down-regulation of genes involved in maintaining stem cell properties. Senescence appeared to rely on impairment of DNA damage repair and seemed to occur through RB- and P53-related pathways. The effects of MECP2 silencing could be related to the modification of the DNA methylation status. Our results indicate that the silencing of MECP2 induces an increase in methylated cytosines in the genome. Nevertheless, MECP2 partial silencing did not change the methylation of promoters, whose expression is affected by MECP2 down-regulation.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
28
|
Di Bernardo G, Galderisi U, Fiorito C, Squillaro T, Cito L, Cipollaro M, Giordano A, Napoli C. Dual role of parathyroid hormone in endothelial progenitor cells and marrow stromal mesenchymal stem cells. J Cell Physiol 2010; 222:474-480. [PMID: 19918796 DOI: 10.1002/jcp.21976] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hematopoietic stem cells derive regulatory information also from parathyroid hormone (PTH). To explore the possibility that PTH may have a role in regulation of other stem cells residing in bone marrow, such as mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) we assessed the effect of this hormone on the in vitro behavior of MSCs and EPCs. We evidenced that MSCs were much more responsive to PTH than EPCs. PTH increased the proliferation rate of MSCs with a diminution of senescence and apoptosis. Taken together, our results may suggest a protective effect of PTH on MSCs that reduces stress phenomena and preserve genome integrity. At the opposite, PTH did not modify the fate of EPCs in culture.
Collapse
Affiliation(s)
- Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Jiang K, Zhu T, Diao Z, Huang H, Feldman LJ. The maize root stem cell niche: a partnership between two sister cell populations. PLANTA 2010; 231:411-24. [PMID: 20041334 PMCID: PMC2799627 DOI: 10.1007/s00425-009-1059-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 11/05/2009] [Indexed: 05/19/2023]
Abstract
Using transcript profile analysis, we explored the nature of the stem cell niche in roots of maize (Zea mays). Toward assessing a role for specific genes in the establishment and maintenance of the niche, we perturbed the niche and simultaneously monitored the spatial expression patterns of genes hypothesized as essential. Our results allow us to quantify and localize gene activities to specific portions of the niche: to the quiescent center (QC) or the proximal meristem (PM), or to both. The data point to molecular, biochemical and physiological processes associated with the specification and maintenance of the niche, and include reduced expression of metabolism-, redox- and certain cell cycle-associated transcripts in the QC, enrichment of auxin-associated transcripts within the entire niche, controls for the state of differentiation of QC cells, a role for cytokinins specifically in the PM portion of the niche, processes (repair machinery) for maintaining DNA integrity and a role for gene silencing in niche stabilization. To provide additional support for the hypothesized roles of the above-mentioned and other transcripts in niche specification, we overexpressed, in Arabidopsis, homologs of representative genes (eight) identified as highly enriched or reduced in the maize root QC. We conclude that the coordinated changes in expression of auxin-, redox-, cell cycle- and metabolism-associated genes suggest the linkage of gene networks at the level of transcription, thereby providing additional insights into events likely associated with root stem cell niche establishment and maintenance.
Collapse
Affiliation(s)
- Keni Jiang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Tong Zhu
- Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709 USA
| | - Zhaoyan Diao
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Haiyan Huang
- Department of Statistics, University of California, Berkeley, CA 94720 USA
| | - Lewis J. Feldman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
30
|
Abstract
Tissue and organ regeneration proceed in a coordinated manner to restore proper function after trauma. Vertebrate skeletal muscle has a remarkable ability to regenerate after repeated and complete destruction of the tissue, yet limited information is available on how muscle stem and progenitor cells, and other nonmuscle cells, reestablish homeostasis after the regenerative process. The genetic pathways that regulate the establishment of skeletal muscle in the embryo have been studied extensively, and many of the genes that govern muscle stem cell maintenance and commitment are redeployed during adult homeostasis and regeneration. Therefore, correlates can be made between embryonic muscle development and postnatal regeneration. However, there are some important distinctions between prenatal development and regeneration - in the context of the cells, niche, anatomy and the regulatory genes employed. The similarities and distinctions between these two scenarios are the focus of this review.
Collapse
Affiliation(s)
- S Tajbakhsh
- Stem Cells & Development, Department of Developmental Biology, Pasteur Institute, CNRS URA, Paris, France.
| |
Collapse
|
31
|
Terpstra I, Heidstra R. Stem cells: The root of all cells. Semin Cell Dev Biol 2009; 20:1089-96. [PMID: 19772947 DOI: 10.1016/j.semcdb.2009.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 11/19/2022]
Abstract
The plant basic body plan is laid down during embryogenesis. All post-embryonic development has its origin in the stem cells located in niches in the heart of the shoot and root meristems. Creating the root niche requires auxin dependent patterning cues that provide positional information in combination with parallel inputs to specify and maintain the root stem cell niche from embryogenesis onwards. Once established, the architecture of the root niche differs from that in the shoot but recent findings reveal a conserved module for stem cell control. Important for stem cell maintenance is the balance between cell division and differentiation. Dealing with the environment is the biggest challenge for plants and that includes complete regeneration of stem cell systems upon damage. Here we will address these issues as we follow the formation, function and maintenance of the root stem cell niche during development.
Collapse
Affiliation(s)
- Inez Terpstra
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
32
|
Galderisi U, Helmbold H, Squillaro T, Alessio N, Komm N, Khadang B, Cipollaro M, Bohn W, Giordano A. In vitro senescence of rat mesenchymal stem cells is accompanied by downregulation of stemness-related and DNA damage repair genes. Stem Cells Dev 2009; 18:1033-1042. [PMID: 19099372 DOI: 10.1089/scd.2008.0324] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are of particular interest because they are being tested using cell and gene therapies for a number of human diseases. MSCs represent a rare population in tissues. Therefore, it is essential to grow MSCs in vitro before putting them into therapeutic use. This is compromised by senescence, limiting the proliferative capacity of MSCs. We analyzed the in vitro senescence of rat MSCs, because this animal is a widespread model for preclinical cell therapy studies. After initial expansion, MSCs showed an increased growth doubling time, lost telomerase activity, and expressed senescence-associated beta-galactosidase. Senescence was accompanied by downregulation of several genes involved in stem cell self-renewal. Of interest, several genes involved in DNA repair also showed a significant downregulation. Entry into senescence occurred with characteristic changes in Retinoblastoma (RB) expression patterns. Rb1 and p107 genes expression decreased during in vitro cultivation. In contrast, pRb2/p130 became the prominent RB protein. This suggests that RB2/P130 could be a marker of senescence or that it even plays a role in triggering the process in MSCs.
Collapse
Affiliation(s)
- Umberto Galderisi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Excellence Research Center for Cardiovascular Diseases, Second University of Naples, Via Costantinopoli 16, Naples 80138, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ji L, Liu YX, Yang C, Yue W, Shi SS, Bai CX, Xi JF, Nan X, Pei XT. Self-renewal and pluripotency is maintained in human embryonic stem cells by co-culture with human fetal liver stromal cells expressing hypoxia inducible factor 1alpha. J Cell Physiol 2009; 221:54-66. [PMID: 19492421 DOI: 10.1002/jcp.21826] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Human embryonic stem (hES) cells are typically maintained on mouse embryonic fibroblast (MEF) feeders or with MEF-conditioned medium. However, these xenosupport systems greatly limit the therapeutic applications of hES cells because of the risk of cross-transfer of animal pathogens. The stem cell niche is a unique tissue microenvironment that regulates the self-renewal and differentiation of stem cells. Recent evidence suggests that stem cells are localized in the microenvironment of low oxygen. We hypothesized that hypoxia could maintain the undifferentiated phenotype of embryonic stem cells. We have co-cultured a human embryonic cell line with human fetal liver stromal cells (hFLSCs) feeder cells stably expressing hypoxia-inducible factor-1 alpha (HIF-1alpha), which is known as the key transcription factor in hypoxia. The results suggested HIF-1alpha was critical for preventing differentiation of hES cells in culture. Consistent with this observation, hypoxia upregulated the expression of Nanog and Oct-4, the key factors expressed in undifferentiated stem cells. We further demonstrated that HIF-1alpha could upregulate the expression of some soluble factors including bFGF and SDF-1alpha, which are released into the microenvironment to maintain the undifferentiated status of hES cells. This suggests that the targets of HIF-1alpha are secreted soluble factors rather than a cell-cell contact mechanism, and defines an important mechanism for the inhibition of hESCs differentiation by hypoxia. Our findings developed a transgene feeder co-culture system and will provide a more reliable alternative for future therapeutic applications of hES cells.
Collapse
Affiliation(s)
- Lei Ji
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nomura J, Maruyama M, Katano M, Kato H, Zhang J, Masui S, Mizuno Y, Okazaki Y, Nishimoto M, Okuda A. Differential Requirement for Nucleostemin in Embryonic Stem Cell and Neural Stem Cell Viability. Stem Cells 2009; 27:1066-76. [DOI: 10.1002/stem.44] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Halley JD, Burden FR, Winkler DA. Stem cell decision making and critical-like exploratory networks. Stem Cell Res 2009; 2:165-77. [DOI: 10.1016/j.scr.2009.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/24/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022] Open
|
36
|
Di Bernardo G, Squillaro T, Dell'Aversana C, Miceli M, Cipollaro M, Cascino A, Altucci L, Galderisi U. Histone deacetylase inhibitors promote apoptosis and senescence in human mesenchymal stem cells. Stem Cells Dev 2009; 18:573-581. [PMID: 18694296 DOI: 10.1089/scd.2008.0172] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) have received a great amount of attention for their antitumoral properties. Suberoyl anilide hydroxamic acid (SAHA) and MS-275 are among the more promising HDACi for cancer treatments. Although these HDACi compounds exert low toxicity on normal cells, the therapies based on these molecules can cause side effects that can greatly impair the functions of the bone marrow microenvironment. This is a complex system that contains several types of stem cells, such as mesenchymal stem cells (MSCs). We conducted comparative studies on the effects of SAHA and MS-275 on human MSCs in order to ascertain if these compounds can impair the physiology of MSCs. Both SAHA and MS-275 induced an arrest in the cell cycle along with the induction of apoptotic pathways as evidenced by flow cytometry, annexin assay, detection of activated caspase 9, and molecular analysis of Bax/Bcl-2 expression. The MS-275 treatment induced an increase of senescent cells, whereas in cells treated with SAHA, we detected a reduction of senescent cells compared to the control. We hypothesize that SAHA preferentially transactivates apoptotic genes, thereby inducing a great majority of the damaged cells to die by programmed cell death rather than senescence. Following the HDACi treatment, we observed a decrease in the expression of some genes that are involved in the regulation of stem cell properties. This suggests that SAHA and MS-275 could also be involved in the impairment of the stemness characteristics of MSCs. The phenomena that were induced by HDACi treatment were associated with an upregulation of several cyclin kinase inhibitors. By contrast, the p53-p21 pathway is apparently not involved in these processes.
Collapse
Affiliation(s)
- Giovanni Di Bernardo
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Excellence Research Center for Cardiovascular Diseases, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Papamichos SI, Kotoula V, Tarlatzis BC, Agorastos T, Papazisis K, Lambropoulos AF. OCT4B1 isoform: the novel OCT4 alternative spliced variant as a putative marker of stemness. Mol Hum Reprod 2009; 15:269-70. [DOI: 10.1093/molehr/gap018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Adamo L, Zhang Y, García-Cardeña G. AICAR activates the pluripotency transcriptional network in embryonic stem cells and induces KLF4 and KLF2 expression in fibroblasts. BMC Pharmacol 2009; 9:2. [PMID: 19216758 PMCID: PMC2651871 DOI: 10.1186/1471-2210-9-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 02/12/2009] [Indexed: 12/30/2022] Open
Abstract
Background Pluripotency, the property of a cell to differentiate into all cellular types of a given organism, is central to the development of stem cell-based therapies and regenerative medicine. Stem cell pluripotency is the result of the orchestrated activation of a complex transcriptional network characterized by the expression of a set of transcription factors including the master regulators of pluripotency Nanog and Oct4. Recently, it has been shown that pluripotency can be induced in somatic cells by viral-mediated expression of the transcription factors Oct3/4, Sox2, Klf4, and c-Myc. Results Here we show that 5-Aminoimidazole-4-carboxamide-1-b-riboside (AICAR) is able to activate the molecular circuitry of pluripotency in mouse embryonic stem cells (mESC) and maintain Nanog and Oct4 expression in mESC exposed to the differentiating agent retinoic acid. We also show that AICAR is able to induce Klf4, Klf2 and Myc expression in both mESC and murine fibroblasts. Conclusion AICAR is able to activate the molecular circuitry of pluripotency in mESC and to induce the expression of several key regulators of pluripotency in somatic cells. AICAR is therefore a useful pharmacological entity for studying small molecule mediated induction of pluripotency.
Collapse
Affiliation(s)
- Luigi Adamo
- Department of Pathology, Laboratory for Systems Biology, Center for Excellence in Vascular Biology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| | | | | |
Collapse
|
39
|
Toledo EM, Colombres M, Inestrosa NC. Wnt signaling in neuroprotection and stem cell differentiation. Prog Neurobiol 2008; 86:281-96. [DOI: 10.1016/j.pneurobio.2008.08.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 03/06/2008] [Accepted: 08/13/2008] [Indexed: 11/24/2022]
|
40
|
Doherty JM, Geske MJ, Stappenbeck TS, Mills JC. Diverse adult stem cells share specific higher-order patterns of gene expression. Stem Cells 2008; 26:2124-30. [PMID: 18511597 DOI: 10.1634/stemcells.2008-0380] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adult tissue stem cells (SCs) share functional properties regardless of their tissue of residence. It had been thought that SCs might also share expression of certain "stemness" genes, although early investigations for such genes were unsuccessful. Here, we show that SCs from diverse tissues do preferentially express certain types of genes and that SCs resemble other SCs in terms of global gene expression more than they resemble the differentiated cells (DCs) of the tissues that they supply. Genes associated with nuclear function and RNA binding were over-represented in SCs. In contrast, DCs from diverse tissues shared enrichment in genes associated with extracellular space, signal transduction, and the plasma membrane. Further analysis showed that transit-amplifying cells could be distinguished from both SCs and DCs by heightened expression of cell division and DNA repair genes and decreased expression of apoptosis-related genes. This transit-amplifying cell-specific signature was confirmed by de novo generation of a global expression profile of a cell population highly enriched for transit-amplifying cells: colonic crypt-base columnar cells responding to mucosal injury. Thus, progenitor cells preferentially express intracellular or biosynthetic genes, and differentiation correlates with increased expression of genes for interacting with other cells or the microenvironment. The higher-order, Gene Ontology term-based analysis we use to distinguish SC- and DC-associated gene expression patterns can also be used to identify intermediate differentiation states (e.g., that of transit-amplifying cells) and, potentially, any biological state that is reflected in changes in global gene expression patterns. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Jason M Doherty
- Department of Pathology and Immunology, Washington University School of Medicine, Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
41
|
Squillaro T, Hayek G, Farina E, Cipollaro M, Renieri A, Galderisi U. A case report: bone marrow mesenchymal stem cells from a Rett syndrome patient are prone to senescence and show a lower degree of apoptosis. J Cell Biochem 2008; 103:1877-1885. [PMID: 18059018 DOI: 10.1002/jcb.21582] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rett syndrome (RTT) is one of the most common genetic diseases responsible for a progressive disabling neurodevelopmental disorder. Mutations in the MeCP2 gene were identified in the great majority of RTT patients. MeCP2 protein binds to methylated DNA and produces changes in chromatin structure. This is a key event in regulation of gene expression. It has been suggested that MeCP2 might be important for neuronal development. Moreover, the frequent occurrence of osteoporosis and scoliosis in RTT patients suggests impaired bone formation and/or remodeling. Mesenchymal stem cells (MSCs) can differentiate as mesodermal cells such as bone, cartilage cells, and adipocytes. MSCs have been shown to possess great somatic plasticity; in fact, they can differentiate as neurons and astrocytes. We studied RTT patients' MSCs because they are progenitors of osteocytes, and it has been suggested that RTT patients' osteogenesis could be impaired. Moreover, MSCs might represent a useful model for the study of neurogenesis. MSCs from RTT patient showed precocious signs of senescence in a comparison with the MSCs of healthy-patient control groups. This was in agreement with the reduced gene-expression in the control of stem cell self-renewal and upregulation of lineage specific genes, such as those involved in osteogenesis and neural development. Control groups enabled us to observe a lower degree of apoptosis in RTT patient cells. This means that aberrant stem/progenitor cells, instead of being eliminated, can survive and become senescent. Our research provides a new insight into RTT syndrome. Senescence phenomena could be involved in triggering RTT syndrome-associated diseases.
Collapse
|
42
|
Abstract
New fundamental results on stem cell biology have been obtained in the past 15 years. These results allow us to reinterpret the functioning of the cerebral tissue in health and disease. Proliferating stem cells have been found in the adult brain, which can be involved in postinjury repair and can replace dead cells under specific conditions. Numerous genomic mechanisms controlling stem cell proliferation and differentiation have been identified. The involvement of stem cells in the genesis of malignant tumors has been demonstrated. Neural stem cell tropism toward tumors has been shown. These findings suggest new lines of research on brain functioning and development. Stem cells can be used to develop radically new treatments of neurodegenerative and cancer diseases of the brain.
Collapse
|
43
|
Osorio KM, Lee SE, McDermitt DJ, Waghmare SK, Zhang YV, Woo HN, Tumbar T. Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation. Development 2008; 135:1059-68. [PMID: 18256199 DOI: 10.1242/dev.012799] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aml1/Runx1 controls developmental aspects of several tissues, is a master regulator of blood stem cells, and plays a role in leukemia. However, it is unclear whether it functions in tissue stem cells other than blood. Here, we have investigated the role of Runx1 in mouse hair follicle stem cells by conditional ablation in epithelial cells. Runx1 disruption affects hair follicle stem cell activation, but not their maintenance, proliferation or differentiation potential. Adult mutant mice exhibit impaired de novo production of hair shafts and all temporary hair cell lineages, owing to a prolonged quiescent phase of the first hair cycle. The lag of stem cell activity is reversed by skin injury. Our work suggests a degree of functional overlap in Runx1 regulation of blood and hair follicle stem cells at an equivalent time point in the development of these two tissues.
Collapse
Affiliation(s)
- Karen M Osorio
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Jeong JA, Ko KM, Bae S, Jeon CJ, Koh GY, Kim H. Genome-wide differential gene expression profiling of human bone marrow stromal cells. Stem Cells 2007; 25:994-1002. [PMID: 17420227 DOI: 10.1634/stemcells.2006-0604] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone marrow stromal cells (BMSCs) reside in bone marrow and provide a lifelong source of new cells for various connective tissues. Although human BMSCs are regarded as highly suitable for the development of cell therapeutics and regenerative medicine, the molecular factors and the networks of signaling pathways responsible for their biological properties are as yet unclear. To gain a comprehensive understanding of human BMSCs at the transcriptional level, we have performed DNA microarray-based, genome-wide differential gene expression analysis with the use of peripheral blood-derived mononuclear cells (MNCs) as a baseline. The resulting molecular profile of BMSCs was revealed to share no meaningful overlap with those of other human stem cell types, suggesting that the cells might express a unique set of genes for their stemness. By contrast, the distinct molecular signature, consisting of 92 different genes whose expression strengths are at least 50-fold higher in BMSCs compared with MNCs, was shown to encompass largely a gene subset of umbilical cord blood-derived adherent cells, suggesting that adherent cells derived from bone marrow and umbilical cord blood may be defined by a common set of genes, regardless of their origin. Intriguingly, a large number of these genes, particularly ones for extracellular matrix products, coincide with normal or tumor endothelium-specific markers. Taken together, our results here provide a BMSC-specific genetic catalog that may facilitate future studies on molecular mechanisms governing core properties of these cells.
Collapse
Affiliation(s)
- Ju Ah Jeong
- Biotherapeutic Division, GenExel-Sein Inc., Daejon, Korea
| | | | | | | | | | | |
Collapse
|
45
|
Weisel KC, Fibbe WE, Kanz L. Meeting summary: International Symposium and Workshop on Hematopoietic Stem Cells VI, University of Tübingen, Germany, September 14-16, 2006. Exp Hematol 2007; 35:1005-14. [PMID: 17588469 DOI: 10.1016/j.exphem.2007.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 03/23/2007] [Accepted: 03/26/2007] [Indexed: 11/28/2022]
Affiliation(s)
- Katja C Weisel
- Department of Hematology, Oncology and Immunology, University Medical Center II, Tübingen, Germany
| | | | | |
Collapse
|
46
|
Campbell PA, Perez-Iratxeta C, Andrade-Navarro MA, Rudnicki MA. Oct4 targets regulatory nodes to modulate stem cell function. PLoS One 2007; 2:e553. [PMID: 17579724 PMCID: PMC1891092 DOI: 10.1371/journal.pone.0000553] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 05/24/2007] [Indexed: 11/18/2022] Open
Abstract
Stem cells are characterized by two defining features, the ability to self-renew and to differentiate into highly specialized cell types. The POU homeodomain transcription factor Oct4 (Pou5f1) is an essential mediator of the embryonic stem cell state and has been implicated in lineage specific differentiation, adult stem cell identity, and cancer. Recent description of the regulatory networks which maintain ‘ES’ have highlighted a dual role for Oct4 in the transcriptional activation of genes required to maintain self-renewal and pluripotency while concomitantly repressing genes which facilitate lineage specific differentiation. However, the molecular mechanism by which Oct4 mediates differential activation or repression at these loci to either maintain stem cell identity or facilitate the emergence of alternate transcriptional programs required for the realization of lineage remains to be elucidated. To further investigate Oct4 function, we employed gene expression profiling together with a robust statistical analysis to identify genes highly correlated to Oct4. Gene Ontology analysis to categorize overrepresented genes has led to the identification of themes which may prove essential to stem cell identity, including chromatin structure, nuclear architecture, cell cycle control, DNA repair, and apoptosis. Our experiments have identified previously unappreciated roles for Oct4 for firstly, regulating chromatin structure in a state consistent with self-renewal and pluripotency, and secondly, facilitating the expression of genes that keeps the cell poised to respond to cues that lead to differentiation. Together, these data define the mechanism by which Oct4 orchestrates cellular regulatory pathways to enforce the stem cell state and provides important insight into stem cell function and cancer.
Collapse
Affiliation(s)
- Pearl A. Campbell
- Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Carolina Perez-Iratxeta
- Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - Miguel A. Andrade-Navarro
- Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Michael A. Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Galan-Caridad JM, Harel S, Arenzana TL, Hou ZE, Doetsch FK, Mirny LA, Reizis B. Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell 2007; 129:345-57. [PMID: 17448993 PMCID: PMC1899089 DOI: 10.1016/j.cell.2007.03.014] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 10/21/2006] [Accepted: 03/02/2007] [Indexed: 01/09/2023]
Abstract
Stem cells (SC) exhibit a unique capacity for self-renewal in an undifferentiated state. It is unclear whether the self-renewal of pluripotent embryonic SC (ESC) and of tissue-specific adult SC such as hematopoietic SC (HSC) is controlled by common mechanisms. The deletion of transcription factor Zfx impaired the self-renewal but not the differentiation capacity of murine ESC; conversely, Zfx overexpression facilitated ESC self-renewal by opposing differentiation. Furthermore, Zfx deletion abolished the maintenance of adult HSC but did not affect erythromyeloid progenitors or fetal HSC. Zfx-deficient ESC and HSC showed increased apoptosis and SC-specific upregulation of stress-inducible genes. Zfx directly activated common target genes in ESC and HSC, as well as ESC-specific target genes including ESC self-renewal regulators Tbx3 and Tcl1. These studies identify Zfx as a shared transcriptional regulator of ESC and HSC, suggesting a common genetic basis of self-renewal in embryonic and adult SC.
Collapse
Affiliation(s)
- Jose M. Galan-Caridad
- Department of Microbiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Sivan Harel
- Department of Microbiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Teresita L. Arenzana
- Department of Microbiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Z. Esther Hou
- Department of Microbiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Fiona K. Doetsch
- Department of Pathology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Leonid A. Mirny
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Boris Reizis
- Department of Microbiology, Columbia University Medical Center, New York, NY, 10032, USA
| |
Collapse
|
48
|
Abstract
Pluripotent stem cells, similar to more restricted stem cells, are able to both self-renew and generate differentiated progeny. Although this dual functionality has been much studied, the search for molecular signatures of 'stemness' and pluripotency is only now beginning to gather momentum. While the focus of much of this work has been on the transcriptional features of embryonic stem cells, recent studies have indicated the importance of unique epigenetic profiles that keep key developmental genes 'poised' in a repressed but activatable state. Determining how these epigenetic features relate to the transcriptional signatures of ES cells, and whether they are also important in other types of stem cell, is a key challenge for the future.
Collapse
Affiliation(s)
- Mikhail Spivakov
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | |
Collapse
|
49
|
Glauche I, Cross M, Loeffler M, Roeder I. Lineage specification of hematopoietic stem cells: mathematical modeling and biological implications. Stem Cells 2007; 25:1791-9. [PMID: 17412891 DOI: 10.1634/stemcells.2007-0025] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lineage specification of hematopoietic stem cells is considered a progressive restriction in lineage potential. This view is consistent with observations that differentiation and lineage specification is preceded by a low-level coexpression of lineage specific, potentially antagonistic genes in early progenitor cells. This coexistence, commonly referred to as priming, disappears in the course of differentiation when certain lineage-restricted genes are upregulated while others are downregulated. Based on this phenomenological description, we propose a quantitative model that describes lineage specification as a competition process between different interacting lineage propensities. The competition is governed by environmental stimuli promoting a drift from a multipotent coexpression to the dominance of one lineage. The assumption of a context-dependent intracellular differentiation control is consistently embedded into our previously proposed model of hematopoietic stem cell organization. The extended model, which comprises self-renewal and lineage specification, is verified using available data on the lineage specification potential of primary hematopoietic stem cells and on the differentiation kinetics of the FDCP-mix cell line. The model provides a number of experimentally testable predictions. From our results, we conclude that lineage specification is best described as a flexible and temporally extended process in which lineage commitment emerges as the result of a sequence of small decision steps. The proposed model provides a novel systems biological view on the functioning of lineage specification in adult tissue stem cells and its connections to the self-renewal properties of these cells. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Ingmar Glauche
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.
| | | | | | | |
Collapse
|
50
|
Davey RE, Onishi K, Mahdavi A, Zandstra PW. LIF-mediated control of embryonic stem cell self-renewal emerges due to an autoregulatory loop. FASEB J 2007; 21:2020-32. [PMID: 17356004 DOI: 10.1096/fj.06-7852com] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Stem cells convert graded stimuli into all-or-nothing cell-fate responses. We investigated how embryonic stem cells (ESCs) convert leukemia inhibitory factor (LIF) concentration into an all-or-nothing cell-fate decision (self-renewal). Using a combined experimental/computational approach we demonstrate unexpected switch-like (on/off) signaling in response to LIF. This behavior emerges over time due to a positive feedback loop controlling transcriptional expression of LIF signaling pathway components. The autoregulatory loop maintains robust pathway responsiveness ("on") at sufficient concentrations of exogenous LIF, while autocrine signaling and low concentrations of exogenous LIF cause ESCs to adopt the weakly responsive ("off") state of differentiated cells. We demonstrate that loss of ligand responsiveness is reversible and precedes loss of the ESC transcription factors Oct4 and Nanog, suggesting an early step in the hierarchical control of differentiation. While endogenously produced ligands were insufficient to sustain the "on" state, they buffer it, influencing the timing of differentiation. These results demonstrate a novel switch-like behavior, which establishes the LIF threshold for ESC self-renewal.
Collapse
Affiliation(s)
- Ryan E Davey
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|