1
|
Wu C, Hu L, Liu B, Zeng X, Ma H, Cao Y, Li H, Zhang X. TRAF6-mediated ubiquitination of AKT in the nucleus is a critical event underlying the desensitization of G protein-coupled receptors. Cell Commun Signal 2024; 22:213. [PMID: 38566235 PMCID: PMC10986131 DOI: 10.1186/s12964-024-01592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Desensitization of G protein-coupled receptors (GPCRs) refers to the attenuation of receptor responsiveness by prolonged or intermittent exposure to agonists. The binding of β-arrestin to the cytoplasmic cavity of the phosphorylated receptor, which competes with the G protein, has been widely accepted as an extensive model for explaining GPCRs desensitization. However, studies on various GPCRs, including dopamine D2-like receptors (D2R, D3R, D4R), have suggested the existence of other desensitization mechanisms. The present study employed D2R/D3R variants with different desensitization properties and utilized loss-of-function approaches to uncover the mechanisms underlying GPCRs homologous desensitization, focusing on the signaling cascade that regulates the ubiquitination of AKT. RESULTS AKT undergoes K8/14 ubiquitination by TRAF6, which occurs in the nucleus and promotes its membrane recruitment, phosphorylation and activation under receptor desensitization conditions. The nuclear entry of TRAF6 relies on the presence of the importin complex. Src regulates the nuclear entry of TRAF6 by mediating the interaction between TRAF6 and importin β1. Ubiquitinated AKT translocates to the plasma membrane where it associates with Mdm2 to phosphorylate it at the S166 and S186 residues. Thereafter, phosphorylated Mdm2 is recruited to the nucleus, resulting in the deubiquitination of β-Arr2. The deubiquitinated β-Arr2 then forms a complex with Gβγ, which serves as a biomarker for GPCRs desensitization. Like in D3R, ubiquitination of AKT is also involved in the desensitization of β2 adrenoceptors. CONCLUSION Our study proposed that the property of a receptor that causes a change in the subcellular localization of TRAF6 from the cytoplasm to the nucleus to mediate AKT ubiquitination could initiate the desensitization of GPCRs.
Collapse
Affiliation(s)
- Chengyan Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Li Hu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Bing Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Xingyue Zeng
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Haixiang Ma
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Yongkai Cao
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Huijun Li
- Department of Pharmaceuticals, People's Hospital of Zunyi City Bo Zhou District, Zunyi, 563000, China
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Tharanga EMT, Nadarajapillai K, Sirisena DMKP, Kim G, Jeong T, Wan Q, Lee J. Involvement of tumor necrosis factor receptor-associated factor 6 (TRAF6) in NF-κB activation and antiviral immunity: Molecular and functional characterization of TRAF6 in red-spotted grouper (Epinephelus akaara). FISH & SHELLFISH IMMUNOLOGY 2024; 146:109434. [PMID: 38331055 DOI: 10.1016/j.fsi.2024.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a member of the TRAF family of adaptor proteins involved in the signal transduction pathways of both TNF receptor and interleukin-1 receptor/Toll-like receptor superfamilies. In this study, red-spotted grouper (Epinephelus akaara) TRAF6 (EaTraf6) was identified and characterized. The open reading frame of EaTraf6, 1713 bp in length, encodes a putative protein of 570 amino acids and has a predicted molecular weight and theoretical isoelectric point of 64.11 kDa and 6.07, respectively. EaTraf6 protein contains an N-terminal RING-type zinc finger domain, two TRAF-type zinc finger domains, a coiled-coil region (zf-TRAF), and a conserved C-terminal meprin and TRAF homology (MATH) domain. EaTraf6 shared the highest amino acid sequence identity with its ortholog from Epinephelus coioides, and phylogenetic analysis showed all fish TRAF6s clustered together and apart from other species. qRT-PCR results revealed that EaTraf6 was ubiquitously expressed in all examined tissues, with the highest level detected in the blood. In the immune challenge, EaTraf6 exhibited modulated mRNA expression levels in the blood and spleen. The subcellular localization analysis revealed that the EaTraf6 protein was predominantly present in the cytoplasm; however, it could translocate into the nucleus following poly (I:C) stimulation. The antiviral function of EaTraf6 was confirmed by analyzing the expression of host antiviral genes and viral genomic RNA during viral hemorrhagic septicemia virus infection. Additionally, luciferase reporter assay results indicated that EaTraf6 is involved in the activation of the NF-κB signaling pathway upon poly (I:C) stimulation. Finally, the effect of EaTraf6 on cytokine gene expression and its role in regulating macrophage M1 polarization were demonstrated. Collectively, these findings suggest that EaTraf6 is a crucial immune-related gene that significantly contributes to antiviral functions and regulation of NF-κB activity in the red-spotted grouper.
Collapse
Affiliation(s)
- E M T Tharanga
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - D M K P Sirisena
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
3
|
Li Y, Bao L, Zheng H, Geng M, Chen T, Dai X, Xiao H, Yang L, Mao C, Qiu Y, Xu Y, Wang D, Li MX, Chen Q. E3 ubiquitin ligase TRIM21 targets TIF1γ to regulate β-catenin signaling in glioblastoma. Theranostics 2023; 13:4919-4935. [PMID: 37771771 PMCID: PMC10526654 DOI: 10.7150/thno.85662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023] Open
Abstract
Background: Elucidation of the mechanism of ubiquitation has led to novel ways to treat glioblastoma (GBM). A tripartite motif (TRIM) protein mediates a reversible, stringent ubiquitation which is closely related to glioma malignancy. This study intends to screen the most vital and abnormal regulating component of the tripartite motif protein and to explore its underlying mechanisms. Methods: TRIM21 is identified as an important oncogene that accelerates the progression of glioma cell through database in a multidimensional way and this is confirmed in human samples and cells. Tandem Mass Tags (TMT) and MS analysis are performed to discover the substrates of TRIM21.The underlying mechanisms are further investigated by CO-IP, luciferase reporter assays and gain and loss of function assays. In vivo treatment with siRNA is applied to evaluate the therapeutic significance of TRIM21. Result: We screened a panel of TRIM proteins and identified TRIM21, a E3 ubiquitin-protein ligase and autoantigen, as well as a prognostic biomarker for GBM. Functionally, high expression of wild-type TRIM21 accelerates tumor progression in vitro and in vivo, whereas TRIM21 mutants, including one with a critical RING-finger deletion, do not. Mechanistically, TRIM21 stimulates K63-linked ubiquitination and subcellular translocation of active β-catenin from the cytoplasm to the nucleus. Moreover, TRIM21 forms a complex with the β-catenin upstream regulator, TIF1γ, in the nucleus and accelerated its degradation by inducing K48-linked ubiquitination at K5 site, consequently increasing further nuclear β-catenin presence. Endogenous TRIM21 levels are found to be inversely correlated with TIF1γ but positively correlated with β-catenin in glioma tissue microarray experiments. Furthermore, direct injection of TRIM21 small interfering RNA (siRNA) into U87 cell-derived tumors (in vivo treatment with siRNA) is proved to inhibit tumor growth in nude mice. Conclusion: This work suggests that TRIM21/TIF1γ/β-catenin axis is involved in the progression of human GBM. TRIM21 is a promising therapeutic and prognostic biomarker for glioma with hyperactive β-catenin.
Collapse
Affiliation(s)
- YanLan Li
- Cancer Center of Daping Hospital, Army Medical University, Chongqing 400037, China
- Chongqing University Cancer Hospital, Chongqing, China
| | - Lingbo Bao
- Cancer Center of Daping Hospital, Army Medical University, Chongqing 400037, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Mingying Geng
- Cancer Center of Daping Hospital, Army Medical University, Chongqing 400037, China
| | - TianYi Chen
- Cancer Center of Daping Hospital, Army Medical University, Chongqing 400037, China
| | - Xiaoyan Dai
- Cancer Center of Daping Hospital, Army Medical University, Chongqing 400037, China
| | - He Xiao
- Cancer Center of Daping Hospital, Army Medical University, Chongqing 400037, China
| | - Lujie Yang
- Cancer Center of Daping Hospital, Army Medical University, Chongqing 400037, China
| | - Chengyi Mao
- The Pathology of Daping Hospital Army Medical University, Chongqing 400037, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Yu Xu
- Cancer Center of Daping Hospital, Army Medical University, Chongqing 400037, China
| | - Dong Wang
- Cancer Center of Daping Hospital, Army Medical University, Chongqing 400037, China
| | - Meng Xia Li
- Cancer Center of Daping Hospital, Army Medical University, Chongqing 400037, China
| | - Qian Chen
- Cancer Center of Daping Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
4
|
Sap KA, Geijtenbeek KW, Schipper-Krom S, Guler AT, Reits EA. Ubiquitin-modifying enzymes in Huntington's disease. Front Mol Biosci 2023; 10:1107323. [PMID: 36926679 PMCID: PMC10013475 DOI: 10.3389/fmolb.2023.1107323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the N-terminus of the HTT gene. The CAG repeat expansion translates into a polyglutamine expansion in the mutant HTT (mHTT) protein, resulting in intracellular aggregation and neurotoxicity. Lowering the mHTT protein by reducing synthesis or improving degradation would delay or prevent the onset of HD, and the ubiquitin-proteasome system (UPS) could be an important pathway to clear the mHTT proteins prior to aggregation. The UPS is not impaired in HD, and proteasomes can degrade mHTT entirely when HTT is targeted for degradation. However, the mHTT protein is differently ubiquitinated when compared to wild-type HTT (wtHTT), suggesting that the polyQ expansion affects interaction with (de) ubiquitinating enzymes and subsequent targeting for degradation. The soluble mHTT protein is associated with several ubiquitin-modifying enzymes, and various ubiquitin-modifying enzymes have been identified that are linked to Huntington's disease, either by improving mHTT turnover or affecting overall homeostasis. Here we describe their potential mechanism of action toward improved mHTT targeting towards the proteostasis machinery.
Collapse
Affiliation(s)
- Karen A Sap
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Karlijne W Geijtenbeek
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sabine Schipper-Krom
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Arzu Tugce Guler
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eric A Reits
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Gong Y, Wei X, Sun W, Ren X, Chen J, Aweya JJ, Ma H, Chan KG, Zhang Y, Li S. Exosomal miR-224 contributes to hemolymph microbiota homeostasis during bacterial infection in crustacean. PLoS Pathog 2021; 17:e1009837. [PMID: 34379706 PMCID: PMC8382196 DOI: 10.1371/journal.ppat.1009837] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/23/2021] [Accepted: 07/24/2021] [Indexed: 12/23/2022] Open
Abstract
It is well known that exosomes could serve as anti-microbial immune factors in animals. However, despite growing evidences have shown that the homeostasis of the hemolymph microbiota was vital for immune regulation in crustaceans, the relationship between exosomes and hemolymph microbiota homeostasis during pathogenic bacteria infection has not been addressed. Here, we reported that exosomes released from Vibrio parahaemolyticus-infected mud crabs (Scylla paramamosain) could help to maintain the homeostasis of hemolymph microbiota and have a protective effect on the mortality of the host during the infection process. We further confirmed that miR-224 was densely packaged in these exosomes, resulting in the suppression of HSP70 and disruption of the HSP70-TRAF6 complex, then the released TRAF6 further interacted with Ecsit to regulate the production of mitochondrial ROS (mROS) and the expression of Anti-lipopolysaccharide factors (ALFs) in recipient hemocytes, which eventually affected hemolymph microbiota homeostasis in response to the pathogenic bacteria infection in mud crab. To the best of our knowledge, this is the first document that reports the role of exosome in the hemolymph microbiota homeostasis modulation during pathogen infection, which reveals the crosstalk between exosomal miRNAs and innate immune response in crustaceans. Exosomes are small membrane vesicles of endocytic origin which are widely involved in the regulation of a variety of pathological processes in mammals. Yet, although the antibacterial function of exosomes has been discovered for many years, the relationship between exosomes and hemolymph microbiota homeostasis remains unknown. In the present study, we identified the miRNAs packaged by exosomes that were possibly involved in Vibrio parahaemolyticus infection by modulating hemolymph microbiota homeostasis in crustacean mud crab Scylla paramamosain. Moreover, it was found that miR-224 was densely packaged in exosomes after Vibrio parahaemolyticus challenge, resulting in the suppression of HSP70 and disruption of the HSP70-TRAF6 complex in recipient hemocytes, then the released TRAF6 was further interacted with Ecsit to regulate ROS and ALFs levels, which eventually affected hemolymph microbiota homeostasis to cope with pathogenic bacteria infection. Our finding is the first to reveal the relationship between exosomes and hemolymph microbiota homeostasis in animals, which shows a novel molecular mechanism of invertebrate resistance to pathogenic microbial infection.
Collapse
Affiliation(s)
- Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Xiaoyuan Wei
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Wanwei Sun
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Xin Ren
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Jiao Chen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Jude Juventus Aweya
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Kok-Gan Chan
- Institute of Marine Sciences, Shantou University, Shantou, China
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
- * E-mail: (YZ); (SL)
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
- * E-mail: (YZ); (SL)
| |
Collapse
|
6
|
Franco ML, García-Carpio I, Comaposada-Baró R, Escribano-Saiz JJ, Chávez-Gutiérrez L, Vilar M. TrkA-mediated endocytosis of p75-CTF prevents cholinergic neuron death upon γ-secretase inhibition. Life Sci Alliance 2021; 4:4/4/e202000844. [PMID: 33536237 PMCID: PMC7898468 DOI: 10.26508/lsa.202000844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The findings shed light into the adverse effects of GSIs observed in the Alzheimer’s field and explain, at least in part, the unexpected worsening in cognition observed in the semagacestat Phase 3 trial. γ-secretase inhibitors (GSI) were developed to reduce the generation of Aβ peptide to find new Alzheimer’s disease treatments. Clinical trials on Alzheimer’s disease patients, however, showed several side effects that worsened the cognitive symptoms of the treated patients. The observed side effects were partially attributed to Notch signaling. However, the effect on other γ-secretase substrates, such as the p75 neurotrophin receptor (p75NTR) has not been studied in detail. p75NTR is highly expressed in the basal forebrain cholinergic neurons (BFCNs) during all life. Here, we show that GSI treatment induces the oligomerization of p75CTF leading to the cell death of BFCNs, and that this event is dependent on TrkA activity. The oligomerization of p75CTF requires an intact cholesterol recognition sequence (CRAC) and the constitutive binding of TRAF6, which activates the JNK and p38 pathways. Remarkably, TrkA rescues from cell death by a mechanism involving the endocytosis of p75CTF. These results suggest that the inhibition of γ-secretase activity in aged patients, where the expression of TrkA in the BFCNs is already reduced, could accelerate cholinergic dysfunction and promote neurodegeneration.
Collapse
Affiliation(s)
- María Luisa Franco
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| | - Irmina García-Carpio
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| | - Raquel Comaposada-Baró
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| | - Juan J Escribano-Saiz
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| | - Lucía Chávez-Gutiérrez
- Vlaams Instituut voor Biotechnologie Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease, Leuven, Belgium
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| |
Collapse
|
7
|
Remodeling without destruction: non-proteolytic ubiquitin chains in neural function and brain disorders. Mol Psychiatry 2021; 26:247-264. [PMID: 32709994 PMCID: PMC9229342 DOI: 10.1038/s41380-020-0849-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022]
Abstract
Ubiquitination is a fundamental posttranslational protein modification that regulates diverse biological processes, including those in the CNS. Several topologically and functionally distinct polyubiquitin chains can be assembled on protein substrates, modifying their fates. The classical and most prevalent polyubiquitin chains are those that tag a substrate to the proteasome for degradation, which has been established as a major mechanism driving neural circuit deconstruction and remodeling. In contrast, proteasome-independent non-proteolytic polyubiquitin chains regulate protein scaffolding, signaling complex formation, and kinase activation, and play essential roles in an array of signal transduction processes. Despite being a cornerstone in immune signaling and abundant in the mammalian brain, these non-proteolytic chains are underappreciated in neurons and synapses in the brain. Emerging studies have begun to generate exciting insights about some fundamental roles played by these non-degradative chains in neuronal function and plasticity. In addition, their roles in a number of brain diseases are being recognized. In this article, we discuss recent advances on these nonconventional ubiquitin chains in neural development, function, plasticity, and related pathologies.
Collapse
|
8
|
Li L, Bai J, Fan H, Yan J, Li S, Jiang P. E2 ubiquitin-conjugating enzyme UBE2L6 promotes Senecavirus A proliferation by stabilizing the viral RNA polymerase. PLoS Pathog 2020; 16:e1008970. [PMID: 33104725 PMCID: PMC7588118 DOI: 10.1371/journal.ppat.1008970] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022] Open
Abstract
Senecavirus A (SVA), discovered in 2002, is an emerging pathogen of swine that has since been reported in numerous pork producing countries. To date, the mechanism of SVA replication remains poorly understood. In this study, utilizing iTRAQ analysis we found that UBE2L6, an E2 ubiquitin-conjugating enzyme, is up-regulated in SVA-infected BHK-21 cells, and that its overexpression promotes SVA replication. We determined that UBE2L6 interacts with, and ubiquitinates the RNA-dependent RNA polymerase of SVA, (the 3D protein) and this ubiquitination serves to inhibit the degradation of 3D. UBE2L6-mediated ubiquitination of 3D requires a cystine at residue 86 in UBE2L6, and lysines at residues 169 and 321 in 3D. Virus with mutations in 3D (rK169R and rK321R) exhibited significantly decreased replication compared to wild type SVA and the repaired viruses, rK169R(R) and rK321R(R). These data indicate that UBE2L6, the enzyme, targets the 3D polymerase, the substrate, during SVA infection to facilitate replication. Senecavirus A (SVA) is a newly emerging pathogen causing swine idiopathic vesicular disease and epidemic transient neonatal losses. Infections have been reported in many pork producing countries, yet the mechanism of SVA replication remains poorly understood. In this study, we found that UBE2L6, an E2 ubiquitin-conjugating enzyme, is up-regulated in SVA-infected BHK-21 cells. The viral RNA dependent RNA polymerase (RdRp) 3D is ubiquitinated by UBE2L6, and the lysines at residues 169 and 321 of 3D are the required ubiquitination sites. The level of replication of recombinant viruses harboring ubiquitination-deficient 3D was significantly decreased compared to parental SVA. Our data demonstrate that UBE2L6 ubiquitinates SVA 3D, thereby facilitating SVA infection. These results may make it possible to identify novel targets for disease treatment.
Collapse
Affiliation(s)
- Liang Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (JB); (PJ)
| | - Hui Fan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Junfang Yan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shihai Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (JB); (PJ)
| |
Collapse
|
9
|
Ren L, Zhou T, Wang Y, Wu Y, Xu H, Liu J, Dong X, Yi F, Guo Q, Wang Z, Li X, Bai N, Guo W, Guo M, Jiang B, Wu X, Feng Y, Song X, Zhang S, Zhao Y, Cao L, Han S, Xing C. RNF8 induces β-catenin-mediated c-Myc expression and promotes colon cancer proliferation. Int J Biol Sci 2020; 16:2051-2062. [PMID: 32549753 PMCID: PMC7294952 DOI: 10.7150/ijbs.44119] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/18/2020] [Indexed: 12/24/2022] Open
Abstract
DNA damage signals transducer RING finger protein 8 (RNF8) is involved in maintaining genomic stability by facilitating the repair of DNA double-strand breaks (DSB) via ubiquitin signaling. By analyzing the TCGA database and colon cancer tissue microarrays, we found that the expression level of RNF8 was positively correlated with that of c-Myc in colon cancer, which were closely associated with poor survival of colon cancer patients. Furthermore, overexpressing and knocking down RNF8 increased and decreased the expression of c-Myc in colon cancer cells, respectively. In addition, RNF8 interacted with β-catenin and facilitated its nuclear translocation by conjugating K63 polyubiquitination on it. These observations suggested a de novo role of RNF8 in promoting the progression of colon cancer by inducing β-catenin-mediated c-Myc expression.
Collapse
Affiliation(s)
- Ling Ren
- Department of Anorectal Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, RP China
| | - Tingting Zhou
- Institute of Translational Medicine, College of Basic Medicine, China Medical University, Shenyang 110122, RP China
| | - Yang Wang
- Panjin Liaohe Oilfield Gem FLower Hospital, Panjin 7650036, RP China
| | - Yanmei Wu
- Panjin Liaohe Oilfield Gem FLower Hospital, Panjin 7650036, RP China
| | - Hongde Xu
- Institute of Translational Medicine, College of Basic Medicine, China Medical University, Shenyang 110122, RP China
| | - Jingwei Liu
- Department of Anorectal Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, RP China.,Institute of Translational Medicine, College of Basic Medicine, China Medical University, Shenyang 110122, RP China
| | - Xiang Dong
- Institute of Translational Medicine, College of Basic Medicine, China Medical University, Shenyang 110122, RP China
| | - Fei Yi
- Institute of Translational Medicine, College of Basic Medicine, China Medical University, Shenyang 110122, RP China
| | - Qiqiang Guo
- Institute of Translational Medicine, College of Basic Medicine, China Medical University, Shenyang 110122, RP China
| | - Zhuo Wang
- Institute of Translational Medicine, College of Basic Medicine, China Medical University, Shenyang 110122, RP China
| | - Xiaoman Li
- Institute of Translational Medicine, College of Basic Medicine, China Medical University, Shenyang 110122, RP China
| | - Ning Bai
- Institute of Translational Medicine, College of Basic Medicine, China Medical University, Shenyang 110122, RP China
| | - Wendong Guo
- Institute of Translational Medicine, College of Basic Medicine, China Medical University, Shenyang 110122, RP China
| | - Min Guo
- Institute of Translational Medicine, College of Basic Medicine, China Medical University, Shenyang 110122, RP China
| | - Bo Jiang
- Institute of Translational Medicine, College of Basic Medicine, China Medical University, Shenyang 110122, RP China
| | - Xuan Wu
- Institute of Translational Medicine, College of Basic Medicine, China Medical University, Shenyang 110122, RP China
| | - Yanling Feng
- Institute of Translational Medicine, College of Basic Medicine, China Medical University, Shenyang 110122, RP China
| | - Xiaoyu Song
- Institute of Translational Medicine, College of Basic Medicine, China Medical University, Shenyang 110122, RP China
| | - Siyi Zhang
- Institute of Translational Medicine, College of Basic Medicine, China Medical University, Shenyang 110122, RP China
| | - Yue Zhao
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang 110122, RP China
| | - Liu Cao
- Institute of Translational Medicine, College of Basic Medicine, China Medical University, Shenyang 110122, RP China
| | - Shuai Han
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, RP China
| | - Chengzhong Xing
- Department of Anorectal Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, RP China
| |
Collapse
|
10
|
Meng Y, Liu C, Shen L, Zhou M, Liu W, Kowolik C, Campbell JL, Zheng L, Shen B. TRAF6 mediates human DNA2 polyubiquitination and nuclear localization to maintain nuclear genome integrity. Nucleic Acids Res 2019; 47:7564-7579. [PMID: 31216032 PMCID: PMC6698806 DOI: 10.1093/nar/gkz537] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
The multifunctional human DNA2 (hDNA2) nuclease/helicase is required to process DNA ends for homology-directed recombination repair (HDR) and to counteract replication stress. To participate in these processes, hDNA2 must localize to the nucleus and be recruited to the replication or repair sites. However, because hDNA2 lacks the nuclear localization signal that is found in its yeast homolog, it is unclear how its migration into the nucleus is regulated during replication or in response to DNA damage. Here, we report that the E3 ligase TRAF6 binds to and mediates the K63-linked polyubiquitination of hDNA2, increasing the stability of hDNA2 and promoting its nuclear localization. Inhibiting TRAF6-mediated polyubiquitination abolishes the nuclear localization of hDNA2, consequently impairing DNA end resection and HDR. Thus, the current study reveals a mechanism for the regulation of hDNA2 localization and establishes that TRAF6-mediated hDNA2 ubiquitination activates DNA repair pathways to maintain nuclear genome integrity.
Collapse
Affiliation(s)
- Yuan Meng
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China.,Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Changwei Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Lei Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Mian Zhou
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Wenpeng Liu
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China.,Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Claudia Kowolik
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Judith L Campbell
- Division of Chemistry and Chemical Engineering, Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Escudero CA, Cabeza C, Moya-Alvarado G, Maloney MT, Flores CM, Wu C, Court FA, Mobley WC, Bronfman FC. c-Jun N-terminal kinase (JNK)-dependent internalization and Rab5-dependent endocytic sorting mediate long-distance retrograde neuronal death induced by axonal BDNF-p75 signaling. Sci Rep 2019; 9:6070. [PMID: 30988348 PMCID: PMC6465280 DOI: 10.1038/s41598-019-42420-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 03/25/2019] [Indexed: 02/01/2023] Open
Abstract
During the development of the sympathetic nervous system, signals from tropomyosin-related kinase receptors (Trks) and p75 neurotrophin receptors (p75) compete to regulate survival and connectivity. During this process, nerve growth factor (NGF)- TrkA signaling in axons communicates NGF-mediated trophic responses in signaling endosomes. Whether axonal p75 signaling contributes to neuronal death and how signaling endosomes contribute to p75 signaling has not been established. Using compartmentalized sympathetic neuronal cultures (CSCGs) as a model, we observed that the addition of BDNF to axons increased the transport of p75 and induced death of sympathetic neurons in a dynein-dependent manner. In cell bodies, internalization of p75 required the activity of JNK, a downstream kinase mediating p75 death signaling in neurons. Additionally, the activity of Rab5, the key GTPase regulating early endosomes, was required for p75 death signaling. In axons, JNK and Rab5 were required for retrograde transport and death signaling mediated by axonal BDNF-p75 in CSCGs. JNK was also required for the proper axonal transport of p75-positive endosomes. Thus, our findings provide evidence that the activation of JNK by p75 in cell bodies and axons is required for internalization to a Rab5-positive signaling endosome and the further propagation of p75-dependent neuronal death signals.
Collapse
Affiliation(s)
- C A Escudero
- Center for Aging and Regeneration (CARE UC) and Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Cabeza
- Center for Aging and Regeneration (CARE UC) and Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center of Cellular and Integrative Physiology, Faculty of Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - G Moya-Alvarado
- Center for Aging and Regeneration (CARE UC) and Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M T Maloney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - C M Flores
- Center for Aging and Regeneration (CARE UC) and Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Wu
- Department of Neurosciences, University of California, San Diego, La Jolla, California, 92093, USA
| | - F A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile and FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - W C Mobley
- Department of Neurosciences, University of California, San Diego, La Jolla, California, 92093, USA
| | - F C Bronfman
- Center for Aging and Regeneration (CARE UC) and Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
12
|
Ni X, Kou W, Gu J, Wei P, Wu X, Peng H, Tao J, Yan W, Yang X, Lebid A, Park BV, Chen Z, Tian Y, Fu J, Newman S, Wang X, Shen H, Li B, Blazar BR, Wang X, Barbi J, Pan F, Lu L. TRAF6 directs FOXP3 localization and facilitates regulatory T-cell function through K63-linked ubiquitination. EMBO J 2019; 38:embj.201899766. [PMID: 30886050 PMCID: PMC6484404 DOI: 10.15252/embj.201899766] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 01/25/2019] [Accepted: 02/15/2019] [Indexed: 01/26/2023] Open
Abstract
Regulatory T cells (Tregs) are crucial mediators of immune control. The characteristic gene expression and suppressive functions of Tregs depend considerably on the stable expression and activity of the transcription factor FOXP3. Transcriptional regulation of the Foxp3 gene has been studied in depth, but both the expression and function of this factor are also modulated at the protein level. However, the molecular players involved in posttranslational FOXP3 regulation are just beginning to be elucidated. Here, we found that TRAF6‐deficient Tregs were dysfunctional in vivo; mice with Treg‐restricted deletion of TRAF6 were resistant to implanted tumors and displayed enhanced anti‐tumor immunity. We further determined that FOXP3 undergoes K63‐linked ubiquitination at lysine 262 mediated by the E3 ligase TRAF6. In the absence of TRAF6 activity or upon mutation of the ubiquitination site, FOXP3 displayed aberrant, perinuclear accumulation and disrupted regulatory function. Thus, K63‐linked ubiquitination by TRAF6 ensures proper localization of FOXP3 and facilitates the transcription factor's gene‐regulating activity in Tregs. These results implicate TRAF6 as a key posttranslational, Treg‐stabilizing regulator that may be targeted in novel tolerance‐breaking therapies.
Collapse
Affiliation(s)
- Xuhao Ni
- Translational Medicine Research Center of Affiliated Jiangning Hospital, Liver Transplantation Center of First Affiliated Hospital, and Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wei Kou
- Department of Otolaryngology, Pediatric Research Institute The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Gu
- Translational Medicine Research Center of Affiliated Jiangning Hospital, Liver Transplantation Center of First Affiliated Hospital, and Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Wei
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Otolaryngology, Pediatric Research Institute The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Wu
- Translational Medicine Research Center of Affiliated Jiangning Hospital, Liver Transplantation Center of First Affiliated Hospital, and Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Peng
- Translational Medicine Research Center of Affiliated Jiangning Hospital, Liver Transplantation Center of First Affiliated Hospital, and Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhui Tao
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wei Yan
- Translational Medicine Research Center of Affiliated Jiangning Hospital, Liver Transplantation Center of First Affiliated Hospital, and Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoping Yang
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andriana Lebid
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin V Park
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zuojia Chen
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yizhu Tian
- Translational Medicine Research Center of Affiliated Jiangning Hospital, Liver Transplantation Center of First Affiliated Hospital, and Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Fu
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephanie Newman
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xiaoming Wang
- State Key Laboratory of Reproductive Medicine, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Hongbin Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Xuehao Wang
- Translational Medicine Research Center of Affiliated Jiangning Hospital, Liver Transplantation Center of First Affiliated Hospital, and Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Joseph Barbi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Fan Pan
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ling Lu
- Translational Medicine Research Center of Affiliated Jiangning Hospital, Liver Transplantation Center of First Affiliated Hospital, and Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Yuan W, Ibáñez CF, Lin Z. Death domain of p75 neurotrophin receptor: a structural perspective on an intracellular signalling hub. Biol Rev Camb Philos Soc 2019; 94:1282-1293. [PMID: 30762293 DOI: 10.1111/brv.12502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/19/2022]
Abstract
The death domain (DD) is a globular protein motif with a signature feature of an all-helical Greek-key motif. It is a primary mediator of a variety of biological activities, including apoptosis, cell survival and cytoskeletal changes, which are related to many neurodegenerative diseases, neurotrauma, and cancers. DDs exist in a wide range of signalling proteins including p75 neurotrophin receptor (p75NTR ), a member of the tumour necrosis factor receptor superfamily. The specific signalling mediated by p75NTR in a given cell depends on the type of ligand engaging the extracellular domain and the recruitment of cytosolic interactors to the intracellular domain, especially the DD, of the receptor. In solution, the p75NTR -DDs mainly form a symmetric non-covalent homodimer. In response to extracellular signals, conformational changes in the p75NTR extracellular domain (ECD) propagate to the p75NTR -DD through the disulfide-bonded transmembrane domain (TMD) and destabilize the p75NTR -DD homodimer, leading to protomer separation and exposure of binding sites on the DD surface. In this review, we focus on recent advances in the study of the structural mechanism of p75NTR -DD signalling through recruitment of diverse intracellular interactors for the regulation and control of diverse functional outputs.
Collapse
Affiliation(s)
- Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Carlos F Ibáñez
- Department of Physiology, National University of Singapore, 117456, Singapore.,Life Sciences Institute, National University of Singapore, 117456, Singapore.,Department of Cell & Molecular Biology, Karolinska Institute, 17165, Stockholm, Sweden
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin, 300072, People's Republic of China.,Department of Physiology, National University of Singapore, 117456, Singapore.,Life Sciences Institute, National University of Singapore, 117456, Singapore
| |
Collapse
|
14
|
Whitcomb EA, Tsai YC, Basappa J, Liu K, Le Feuvre AK, Weissman AM, Taylor A. Stabilization of p27 Kip1/CDKN1B by UBCH7/UBE2L3 catalyzed ubiquitinylation: a new paradigm in cell-cycle control. FASEB J 2018; 33:1235-1247. [PMID: 30113882 DOI: 10.1096/fj.201800960r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ubiquitinylation drives many cellular processes by targeting proteins for proteasomal degradation. Ubiquitin conjugation enzymes promote ubiquitinylation and, thus, degradation of protein substrates. Ubiquitinylation is a well-known posttranslational modification controlling cell-cycle transitions and levels or/and activation levels of ubiquitin-conjugating enzymes change during development and cell cycle. Progression through the cell cycle is tightly controlled by CDK inhibitors such as p27Kip1. Here we show that, in contrast to promoting its degradation, the ubiquitin-conjugating enzyme UBCH7/UBE2L3 specifically protects p27Kip1 from degradation. Overexpression of UBCH7/UBE2L3 stabilizes p27Kip1 and delays the G1-to-S transition, while depletion of UBCH7/UBE2L3 increases turnover of p27Kip1. Levels of p21Cip1/Waf1, p57Kip2, cyclin A and cyclin E, all of which are also involved in regulating the G1/S transition are not affected by UBCH7/UBE2L3 depletion. The effect of UBCH7/UBE2L3 on p27Kip1 is not due to alteration of the levels of any of the ubiquitin ligases known to ubiquitinylate p27Kip1. Rather, UBCH7/UBE2L3 catalyzes the conjugation of heterotypic ubiquitin chains on p27Kip1 that are proteolytically incompetent. These data reveal new controls and concepts about the ubiquitin proteasome system in which a ubiquitin-conjugating enzyme selectively inhibits and may even protect, rather than promote degradation of a crucial cell-cycle regulatory molecule.-Whitcomb, E. A., Tsai, Y. C., Basappa, J., Liu, K., Le Feuvre, A. K., Weissman, A. M., Taylor, A. Stabilization of p27Kip1/CDKN1B by UBCH7/UBE2L3 catalyzed ubiquitinylation: a new paradigm in cell-cycle control.
Collapse
Affiliation(s)
- Elizabeth A Whitcomb
- Laboratory for Nutrition and Vision Research Jean Mayer-U.S. Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Johnvesly Basappa
- Laboratory for Nutrition and Vision Research Jean Mayer-U.S. Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Ke Liu
- Laboratory for Nutrition and Vision Research Jean Mayer-U.S. Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Aurélie K Le Feuvre
- Laboratory for Nutrition and Vision Research Jean Mayer-U.S. Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Allan M Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research Jean Mayer-U.S. Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Kisiswa L, Fernández-Suárez D, Sergaki MC, Ibáñez CF. RIP2 Gates TRAF6 Interaction with Death Receptor p75 NTR to Regulate Cerebellar Granule Neuron Survival. Cell Rep 2018; 24:1013-1024. [PMID: 30044969 DOI: 10.1016/j.celrep.2018.06.098] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/01/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023] Open
Abstract
Cerebellar granule neurons (CGNs) undergo programmed cell death during the first postnatal week of mouse development, coincident with sustained expression of the death receptor p75NTR. Although ablation of p75NTR does not affect CGN cell death, deletion of the downstream effector RIP2 significantly increases CGN apoptosis, resulting in reduced adult CGN number and impaired behaviors associated with cerebellar function. Remarkably, CGN death is restored to basal levels when p75NTR is deleted in RIP2-deficient mice. We find that RIP2 gates the signaling output of p75NTR by competing with TRAF6 for binding to the receptor intracellular domain. In CGNs lacking RIP2, more TRAF6 is associated with p75NTR, leading to increased JNK-dependent apoptosis. In agreement with this, pharmacological inhibition or genetic ablation of TRAF6 restores cell death levels in CGNs lacking RIP2. These results reveal an unexpected mechanism controlling CGN number and highlight how competitive interactions govern the logic of death receptor function.
Collapse
Affiliation(s)
- Lilian Kisiswa
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm 17177, Sweden
| | | | | | - Carlos F Ibáñez
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm 17177, Sweden; Department of Physiology, National University of Singapore, Singapore 117597, Singapore; Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
16
|
Park CV, Ivanova IG, Kenneth NS. XIAP upregulates expression of HIF target genes by targeting HIF1α for Lys63-linked polyubiquitination. Nucleic Acids Res 2017; 45:9336-9347. [PMID: 28666324 PMCID: PMC5766203 DOI: 10.1093/nar/gkx549] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/26/2017] [Indexed: 01/25/2023] Open
Abstract
The cellular response to hypoxia is characterised by a switch in the transcriptional program, mediated predominantly by the hypoxia inducible factor family of transcription factors (HIF). Regulation of HIF1 is primarily controlled by post-translational modification of the HIF1α subunit, which can alter its stability and/or activity. This study identifies an unanticipated role for the X-linked inhibitor of apoptosis (XIAP) protein as a regulator of Lys63-linked polyubiquitination of HIF1α. Lys63-linked ubiquitination of HIF1α by XIAP is dependent on the activity of E2 ubiquitin conjugating enzyme Ubc13. We find that XIAP and Ubc13 dependent Lys63-linked polyubiquitination promotes HIF1α nuclear retention leading to an increase in the expression of HIF1 responsive genes. Inhibition of the Lys63-linked polyubiquitination pathway leads to reduced levels of nuclear HIF1α, promoter occupancy, HIF-dependent gene expression and cell viability. Our data reveals an additional and significant level of control of the HIF1 by XIAP, with important implications in understanding the role of HIF1 and XIAP in human disease.
Collapse
Affiliation(s)
- Catherine V Park
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Iglika G Ivanova
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Niall S Kenneth
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
17
|
Liu X, Wang Z, Zhang G, Zhu Q, Zeng H, Wang T, Gao F, Qi Z, Zhang J, Wang R. High TRAF6 Expression Is Associated With Esophageal Carcinoma Recurrence and Prompts Cancer Cell Invasion. Oncol Res 2017; 25:485-493. [PMID: 27697099 PMCID: PMC7841001 DOI: 10.3727/096504016x14749340314441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Esophageal cancer is one of the most common types of cancer, and it has a poor prognosis. The molecular mechanisms of esophageal cancer progression remain largely unknown. In this study, we aimed to investigate the clinical significance and biological function of tumor necrosis factor receptor-associated factor 6 (TRAF6) in esophageal cancer. Expression of TRAF6 in esophageal cancer was examined, and its correlation with clinicopathological factors and patient prognosis was analyzed. A series of functional and mechanism assays were performed to further investigate the function and underlying mechanisms in esophageal cancer. Expression of TRAF6 was highly elevated in esophageal cancer tissues, and patients with high TRAF6 expression have a significantly shorter survival time than those with low TRAF6 expression. Furthermore, loss-of-function experiments showed that knockdown of TRAF6 significantly reduced the migration and invasion abilities of esophageal cancer cells. Moreover, the pro-oncogenic effects of TRAF6 in esophageal cancer were mediated by the upregulation of AEP and MMP2. Altogether, our data suggest that high expression of TRAF6 is significant for esophageal cancer progression, and TRAF6 indicates poor prognosis in esophageal cancer patients, which might be a novel prognostic biomarker or potential therapeutic target in esophageal cancer.
Collapse
Affiliation(s)
- Xinyang Liu
- *Department of Internal Medicine, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Zhichao Wang
- †Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Guoliang Zhang
- ‡Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Hebei, P.R. China
| | - Qikun Zhu
- ‡Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Hebei, P.R. China
| | - Hui Zeng
- ‡Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Hebei, P.R. China
| | - Tao Wang
- ‡Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Hebei, P.R. China
| | - Feng Gao
- ‡Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Hebei, P.R. China
| | - Zhan Qi
- ‡Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Hebei, P.R. China
| | - Jinwen Zhang
- §Department of Medical Affairs, Hebei Chest Hospital, Hebei, P.R. China
| | - Rui Wang
- ‡Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Hebei, P.R. China
| |
Collapse
|
18
|
Elshaer SL, El-Remessy AB. Implication of the neurotrophin receptor p75 NTR in vascular diseases: beyond the eye. EXPERT REVIEW OF OPHTHALMOLOGY 2016; 12:149-158. [PMID: 28979360 DOI: 10.1080/17469899.2017.1269602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The p75 neurotrophin receptor (p75NTR) is a member of TNF-α receptor superfamily that bind all neurotrophins, mainly regulating their pro-apoptotic actions. Ischemia is a common pathology in different cardiovascular diseases affecting multiple organs, however the contribution of p75NTR remains not fully addressed. The aim of this work is to review the current evidence through published literature studying the impact of p75NTR receptor in ischemic vascular diseases. AREAS COVERED In the eye, several ischemic ocular diseases are associated with enhanced p75NTR expression. Ischemic retinopathy including diabetic retinopathy, retinopathy of prematurity and retinal vein occlusion are characterized initially by ischemia followed by excessive neovascularization. Beyond the eye, cerebral ischemia, myocardial infarction and critical limb ischemia are ischemic cardiovascular diseases that are characterized by altered expression of neurotrophins and p75NTR expression. We surveyed both clinical and experimental studies that examined the impact of p75NTR receptor in ischemic diseases of eye, heart, brain and peripheral limbs. EXPERT COMMENTARY p75NTR receptor is a major player in multiple ischemic vascular diseases affecting the eye, brain, heart and peripheral limbs with significant increases in its expression accompanying neuro-vascular injury. This has been addressed in the current review along with the beneficial vascular outcomes of p75NTR inhibition.
Collapse
Affiliation(s)
- Sally L Elshaer
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA.,Research Service, Charlie Norwood VA Medical Center, Augusta, GA
| | - Azza B El-Remessy
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA.,Research Service, Charlie Norwood VA Medical Center, Augusta, GA.,Augusta Biomedical Research Corporation, Augusta, GA, USA
| |
Collapse
|
19
|
Raghawan AK, Sripada A, Gopinath G, Pushpanjali P, Kumar Y, Radha V, Swarup G. A Disease-associated Mutant of NLRC4 Shows Enhanced Interaction with SUG1 Leading to Constitutive FADD-dependent Caspase-8 Activation and Cell Death. J Biol Chem 2016; 292:1218-1230. [PMID: 27974463 DOI: 10.1074/jbc.m116.763979] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/15/2016] [Indexed: 11/06/2022] Open
Abstract
Nod-like receptor family card containing 4 (NLRC4)/Ipaf is involved in recognition of pathogen-associated molecular patterns leading to caspase-1 activation and cytokine release, which mediate protective innate immune response. Point mutations in NLRC4 cause autoinflammatory syndromes. Although all the mutations result in constitutive caspase-1 activation, their phenotypic presentations are different, implying that these mutations cause different alterations in properties of NLRC4. NLRC4 interacts with SUG1 and induces caspase-8-mediated cell death. Here, we show that one of the autoinflammatory syndrome-causing mutants of NLRC4, H443P, but not T337A and V341A, constitutively activates caspase-8 and induces apoptotic cell death in human lung epithelial cells. Compared with wild type NLRC4, the H443P mutant shows stronger interaction with SUG1 and with ubiquitinated cellular proteins. Phosphorylation of NLRC4 at Ser533 plays a crucial role in caspase-8 activation and cell death. However, H443P mutant does not require Ser533 phosphorylation for caspase-8 activation and cell death. Caspase-8 activation by NLRC4 and its H443P mutant are dependent on the adaptor protein FADD. A phosphomimicking mutant of NLRC4, S533D does not require SUG1 activity for inducing cell death. Ubiquitin-tagged NLRC4 could induce cell death and activate caspase-8 independent of Ser533 phosphorylation. Our work suggests that SUG1-mediated signaling results in enhanced ubiquitination and regulates FADD-dependent caspase-8 activation by NLRC4. We show that the autoinflammation-associated H443P mutant is altered in interaction with SUG1 and ubiquitinated proteins, triggering constitutive caspase-8-mediated cell death dependent on FADD but independent of Ser533 phosphorylation.
Collapse
Affiliation(s)
| | - Anand Sripada
- From the CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Gayathri Gopinath
- From the CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Pendyala Pushpanjali
- From the CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Yatender Kumar
- From the CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Vegesna Radha
- From the CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Ghanshyam Swarup
- From the CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| |
Collapse
|
20
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
21
|
Lee HJ, Li CF, Ruan D, Powers S, Thompson PA, Frohman MA, Chan CH. The DNA Damage Transducer RNF8 Facilitates Cancer Chemoresistance and Progression through Twist Activation. Mol Cell 2016; 63:1021-1033. [PMID: 27618486 PMCID: PMC5026628 DOI: 10.1016/j.molcel.2016.08.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/07/2016] [Accepted: 08/04/2016] [Indexed: 02/06/2023]
Abstract
Twist has been shown to cause treatment failure, cancer progression, and cancer-related death. However, strategies that directly target Twist are not yet conceivable. Here we reveal that K63-linked ubiquitination is a crucial regulatory mechanism for Twist activation. Through an E3 ligase screen and biochemical studies, we unexpectedly identified that RNF8 functions as a direct Twist activator by triggering K63-linked ubiquitination of Twist. RNF8-promoted Twist ubiquitination is required for Twist localization to the nucleus for subsequent EMT and CSC functions, thereby conferring chemoresistance. Our histological analyses showed that RNF8 expression is upregulated and correlated with disease progression, EMT features, and poor patient survival in breast cancer. Moreover, RNF8 regulates cancer cell migration and invasion and cancer metastasis, recapitulating the effect of Twist. Together, our findings reveal a previously unrecognized tumor-promoting function of RNF8 and provide evidence that targeting RNF8 is an appealing strategy to tackle tumor aggressiveness and treatment resistance.
Collapse
Affiliation(s)
- Hong-Jen Lee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chien-Feng Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan; Department of Pathology, Chi-Mei Foundational Medical Center, Tainan 710, Taiwan
| | - Diane Ruan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott Powers
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Patricia A Thompson
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael A Frohman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chia-Hsin Chan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
22
|
Kratter IH, Zahed H, Lau A, Tsvetkov AS, Daub AC, Weiberth KF, Gu X, Saudou F, Humbert S, Yang XW, Osmand A, Steffan JS, Masliah E, Finkbeiner S. Serine 421 regulates mutant huntingtin toxicity and clearance in mice. J Clin Invest 2016; 126:3585-97. [PMID: 27525439 PMCID: PMC5004962 DOI: 10.1172/jci80339] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 06/30/2016] [Indexed: 01/17/2023] Open
Abstract
Huntington's disease (HD) is a progressive, adult-onset neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the N-terminal region of the protein huntingtin (HTT). There are no cures or disease-modifying therapies for HD. HTT has a highly conserved Akt phosphorylation site at serine 421, and prior work in HD models found that phosphorylation at S421 (S421-P) diminishes the toxicity of mutant HTT (mHTT) fragments in neuronal cultures. However, whether S421-P affects the toxicity of mHTT in vivo remains unknown. In this work, we used murine models to investigate the role of S421-P in HTT-induced neurodegeneration. Specifically, we mutated the human mHTT gene within a BAC to express either an aspartic acid or an alanine at position 421, mimicking tonic phosphorylation (mHTT-S421D mice) or preventing phosphorylation (mHTT-S421A mice), respectively. Mimicking HTT phosphorylation strongly ameliorated mHTT-induced behavioral dysfunction and striatal neurodegeneration, whereas neuronal dysfunction persisted when S421 phosphorylation was blocked. We found that S421 phosphorylation mitigates neurodegeneration by increasing proteasome-dependent turnover of mHTT and reducing the presence of a toxic mHTT conformer. These data indicate that S421 is a potent modifier of mHTT toxicity and offer in vivo validation for S421 as a therapeutic target in HD.
Collapse
Affiliation(s)
- Ian H. Kratter
- Gladstone Institute of Neurological Disease and the Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, USA
- Biomedical Sciences Graduate Program and
- Medical Scientist Training Program, UCSF, San Francisco, California, USA
| | - Hengameh Zahed
- Gladstone Institute of Neurological Disease and the Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, USA
- Biomedical Sciences Graduate Program and
- Medical Scientist Training Program, UCSF, San Francisco, California, USA
| | - Alice Lau
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California, USA
| | - Andrey S. Tsvetkov
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aaron C. Daub
- Gladstone Institute of Neurological Disease and the Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, USA
- Medical Scientist Training Program, UCSF, San Francisco, California, USA
- Graduate Program in Bioengineering, UCSF, San Francisco, California, USA
| | - Kurt F. Weiberth
- Gladstone Institute of Neurological Disease and the Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, USA
- Biomedical Sciences Graduate Program and
| | - Xiaofeng Gu
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Frédéric Saudou
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
- Inserm, U1216, Grenoble, France
- Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - Sandrine Humbert
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
- Inserm, U1216, Grenoble, France
- Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - X. William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Alex Osmand
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Joan S. Steffan
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California, USA
| | - Eliezer Masliah
- Departments of Neurosciences and Pathology, UCSD, La Jolla, California, USA
| | - Steven Finkbeiner
- Gladstone Institute of Neurological Disease and the Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, USA
- Biomedical Sciences Graduate Program and
- Departments of Neurology and Physiology, UCSF, San Francisco, California, USA
| |
Collapse
|
23
|
Anta B, Martín-Rodríguez C, Gomis-Perez C, Calvo L, López-Benito S, Calderón-García AA, Vicente-García C, Villarroel Á, Arévalo JC. Ubiquitin-specific Protease 36 (USP36) Controls Neuronal Precursor Cell-expressed Developmentally Down-regulated 4-2 (Nedd4-2) Actions over the Neurotrophin Receptor TrkA and Potassium Voltage-gated Channels 7.2/3 (Kv7.2/3). J Biol Chem 2016; 291:19132-45. [PMID: 27445338 DOI: 10.1074/jbc.m116.722637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 11/06/2022] Open
Abstract
Ubiquitination of the TrkA neurotrophin receptor in response to NGF is critical in the regulation of TrkA activation and functions. TrkA is ubiquitinated, among other E3 ubiquitin ligases, by Nedd4-2. To understand mechanistically how TrkA ubiquitination is regulated, we performed a siRNA screening to identify deubiquitinating enzymes and found that USP36 acts as an important regulator of TrkA activation kinetics and ubiquitination. However, USP36 action on TrkA was indirect because it does not deubiquitinate TrkA. Instead, USP36 binds to Nedd4-2 and regulates the association of TrkA and Nedd4-2. In addition, depletion of USP36 increases TrkA·Nedd4-2 complex formation, whereas USP36 expression disrupts the complex, resulting in an enhancement or impairment of Nedd4-2-dependent TrkA ubiquitination, respectively. Moreover, USP36 depletion leads to enhanced total and surface TrkA expression that results in increased NGF-mediated TrkA activation and signaling that augments PC12 cell differentiation. USP36 actions extend beyond TrkA because the presence of USP36 interferes with Nedd4-2-dependent Kv7.2/3 channel regulation. Our results demonstrate that USP36 binds to and regulates the actions of Nedd4-2 over different substrates affecting their expression and functions.
Collapse
Affiliation(s)
- Begoña Anta
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain, the Institute of Biomedical Research of Salamanca, 47195 Salamanca, Spain, and
| | - Carlos Martín-Rodríguez
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain, the Institute of Biomedical Research of Salamanca, 47195 Salamanca, Spain, and
| | - Carolina Gomis-Perez
- the Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Universidad del País Vasco, barrio Sarriena s/n, 48940 Leoia, Spain
| | - Laura Calvo
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain, the Institute of Biomedical Research of Salamanca, 47195 Salamanca, Spain, and
| | - Saray López-Benito
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain, the Institute of Biomedical Research of Salamanca, 47195 Salamanca, Spain, and
| | - Andrés A Calderón-García
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
| | - Cristina Vicente-García
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain, the Institute of Biomedical Research of Salamanca, 47195 Salamanca, Spain, and
| | - Álvaro Villarroel
- the Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Universidad del País Vasco, barrio Sarriena s/n, 48940 Leoia, Spain
| | - Juan C Arévalo
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain, the Institute of Biomedical Research of Salamanca, 47195 Salamanca, Spain, and
| |
Collapse
|
24
|
Liu C, Zhang D, Shen Y, Tao X, Liu L, Zhong Y, Fang S. DPF2 regulates OCT4 protein level and nuclear distribution. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:3279-3293. [PMID: 26417682 DOI: 10.1016/j.bbamcr.2015.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/28/2015] [Accepted: 09/21/2015] [Indexed: 02/05/2023]
Abstract
The amount of transcription factor OCT4 is strictly regulated. A tight regulation of OCT4 levels is crucial for mammalian embryonic development and oncogenesis. However, the mechanisms underlying regulation of OCT4 protein expression and nuclear distribution are largely unknown. Here, we report that DPF2, a plant homeodomain (PHD) finger protein, is upregulated during H9 cell differentiation induced by retinoic acid. Endogenous interaction between DPF2 and OCT4 in P19 cells was revealed by an immunoprecipitation assay. GST-pull down assay proved that OCT4 protein in H9 cells and recombinant OCT4 can precipitate with DPF2 in vitro. In vitro ubiquitination assay demonstrated DPF2 might serve as an E3 ligase. Knock down of dpf2 using siRNA increased OCT4 protein level and stability in P19 cells. DPF2 siRNAs also up-regulates OCT4 but not NANOG in H9 cells. However, RA fails to downregulates OCT4 protein level in cells infected by lenitviruses containing DPF2 siRNA. Moreover, overexpression of both DPF2 and OCT4 in 293 cells proved the DPF2-OCT4 interaction. DPF2 but not PHD2 mutant DPF2 enhanced ubiquitination and degradation of OCT4 in 293 cells co-expressed DPF2 and OCT4. Both wild type DPF2 and PHD2 mutant DPF2 redistributes nuclear OCT4 without affecting DPF2-OCT4 interaction. Further analysis indicated that DPF2 decreases monomeric and mono-ubiquitinated OCT4, assembles poly-ubiquitin chains on OCT4 mainly through Ub-K48 linkage. These findings contribute to an understanding of how OCT4 protein level and nuclear distribution is regulated by its associated protein.
Collapse
Affiliation(s)
- Chao Liu
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032 China; Center for Biomedical Engineering and Technology (BioMET), University of Maryland, Baltimore, MD 21201 USA.
| | - Dijuan Zhang
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032 China
| | - Yuxian Shen
- School of Basic Medical Sciences, Institute of Biopharmaceuticals, Anhui Medical University, Hefei, Anhui 230032 China
| | - Xiaofang Tao
- School of Basic Medical Sciences, Institute of Biopharmaceuticals, Anhui Medical University, Hefei, Anhui 230032 China
| | - Lihua Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yongwang Zhong
- Center for Biomedical Engineering and Technology (BioMET), University of Maryland, Baltimore, MD 21201 USA
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology (BioMET), University of Maryland, Baltimore, MD 21201 USA.
| |
Collapse
|
25
|
Nguyen TVV, Shen L, Vander Griend L, Quach LN, Belichenko NP, Saw N, Yang T, Shamloo M, Wyss-Coray T, Massa SM, Longo FM. Small molecule p75NTR ligands reduce pathological phosphorylation and misfolding of tau, inflammatory changes, cholinergic degeneration, and cognitive deficits in AβPP(L/S) transgenic mice. J Alzheimers Dis 2015; 42:459-83. [PMID: 24898660 DOI: 10.3233/jad-140036] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The p75 neurotrophin receptor (p75NTR) is involved in degenerative mechanisms related to Alzheimer's disease (AD). In addition, p75NTR levels are increased in AD and the receptor is expressed by neurons that are particularly vulnerable in the disease. Therefore, modulating p75NTR function may be a significant disease-modifying treatment approach. Prior studies indicated that the non-peptide, small molecule p75NTR ligands LM11A-31, and chemically unrelated LM11A-24, could block amyloid-β-induced deleterious signaling and neurodegeneration in vitro, and LM11A-31 was found to mitigate neuritic degeneration and behavioral deficits in a mouse model of AD. In this study, we determined whether these in vivo findings represent class effects of p75NTR ligands by examining LM11A-24 effects. In addition, the range of compound effects was further examined by evaluating tau pathology and neuroinflammation. Following oral administration, both ligands reached brain concentrations known to provide neuroprotection in vitro. Compound induction of p75NTR cleavage provided evidence for CNS target engagement. LM11A-31 and LM11A-24 reduced excessive phosphorylation of tau, and LM11A-31 also inhibited its aberrant folding. Both ligands decreased activation of microglia, while LM11A-31 attenuated reactive astrocytes. Along with decreased inflammatory responses, both ligands reduced cholinergic neurite degeneration. In addition to the amelioration of neuropathology in AD model mice, LM11A-31, but not LM11A-24, prevented impairments in water maze performance, while both ligands prevented deficits in fear conditioning. These findings support a role for p75NTR ligands in preventing fundamental tau-related pathologic mechanisms in AD, and further validate the development of these small molecules as a new class of therapeutic compounds.
Collapse
Affiliation(s)
- Thuy-Vi V Nguyen
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Lin Shen
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Lilith Vander Griend
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Lisa N Quach
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Nadia P Belichenko
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Nay Saw
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA Palo Alto Veterans Affairs Health Care System, Palo Alto, CA, USA
| | - Stephen M Massa
- Department of Veterans Affairs Medical Center, San Francisco, CA, USA Department of Neurology, University of California, San Francisco, CA, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
26
|
Shanab AY, Mysona BA, Matragoon S, El-Remessy AB. Silencing p75(NTR) prevents proNGF-induced endothelial cell death and development of acellular capillaries in rat retina. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15013. [PMID: 26029724 PMCID: PMC4445004 DOI: 10.1038/mtm.2015.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 12/12/2022]
Abstract
Accumulation of the nerve growth factor precursor (proNGF) and its receptor p75(NTR) have been associated with several neurodegenerative diseases in both brain and retina. However, whether proNGF contributes to microvascular degeneration remain unexplored. This study seeks to investigate the mechanism by which proNGF/p75(NTR) induce endothelial cell (EC) death and development of acellular capillaries, a surrogate marker of retinal ischemia. Stable overexpression of the cleavage-resistant proNGF and molecular silencing of p75(NTR) were utilized in human retinal EC and rat retinas in vivo. Stable overexpression of proNGF decreased NGF levels and induced retinal vascular cell death evident by 1.9-fold increase in acellular capillaries and activation of JNK and cleaved-PARP that were mitigated by p75(NTR)shRNA. In vitro, overexpression of proNGF did not alter TNF-α level, reduced NGF, however induced EC apoptosis evident by activation of JNK and p38 MAPK, cleaved-PARP. Silencing p75(NTR) using siRNA restored expression of NGF and TrkA activation and prevented EC apoptosis. Treatment of EC with human-mutant proNGF induced apoptosis that coincided with marked protein interaction and nuclear translocation of p75(NTR) and the neurotrophin receptor interacting factor. These effects were abolished by a selective p75(NTR) antagonist. Therefore, targeting p75(NTR) represents a potential therapeutic strategy for diseases associated with aberrant expression of proNGF.
Collapse
Affiliation(s)
- Ahmed Y Shanab
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia , Georgia, USA ; Culver Vision Discovery Institute, Georgia Regents University , Georgia, USA ; Charlie Norwood Veterans Affairs Medical Center , Augusta, Georgia, USA
| | - Barbara A Mysona
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia , Georgia, USA ; Culver Vision Discovery Institute, Georgia Regents University , Georgia, USA ; Charlie Norwood Veterans Affairs Medical Center , Augusta, Georgia, USA
| | - Suraporn Matragoon
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia , Georgia, USA ; Culver Vision Discovery Institute, Georgia Regents University , Georgia, USA ; Charlie Norwood Veterans Affairs Medical Center , Augusta, Georgia, USA
| | - Azza B El-Remessy
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia , Georgia, USA ; Culver Vision Discovery Institute, Georgia Regents University , Georgia, USA ; Charlie Norwood Veterans Affairs Medical Center , Augusta, Georgia, USA
| |
Collapse
|
27
|
Zheng C, Geetha T, Gearing M, Ramesh Babu J. Amyloid β-abrogated TrkA ubiquitination in PC12 cells analogous to Alzheimer's disease. J Neurochem 2015; 133:919-25. [DOI: 10.1111/jnc.13076] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/31/2015] [Accepted: 02/17/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Chen Zheng
- Department of Nutrition, Dietetics and Hospitality Management; Auburn University; Auburn Alabama USA
| | - Thangiah Geetha
- Department of Chemistry; Auburn University at Montgomery; Montgomery Alabama USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta Georgia USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics and Hospitality Management; Auburn University; Auburn Alabama USA
| |
Collapse
|
28
|
Erpapazoglou Z, Walker O, Haguenauer-Tsapis R. Versatile roles of k63-linked ubiquitin chains in trafficking. Cells 2014; 3:1027-88. [PMID: 25396681 PMCID: PMC4276913 DOI: 10.3390/cells3041027] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022] Open
Abstract
Modification by Lys63-linked ubiquitin (UbK63) chains is the second most abundant form of ubiquitylation. In addition to their role in DNA repair or kinase activation, UbK63 chains interfere with multiple steps of intracellular trafficking. UbK63 chains decorate many plasma membrane proteins, providing a signal that is often, but not always, required for their internalization. In yeast, plants, worms and mammals, this same modification appears to be critical for efficient sorting to multivesicular bodies and subsequent lysosomal degradation. UbK63 chains are also one of the modifications involved in various forms of autophagy (mitophagy, xenophagy, or aggrephagy). Here, in the context of trafficking, we report recent structural studies investigating UbK63 chains assembly by various E2/E3 pairs, disassembly by deubiquitylases, and specifically recognition as sorting signals by receptors carrying Ub-binding domains, often acting in tandem. In addition, we address emerging and unanticipated roles of UbK63 chains in various recycling pathways that function by activating nucleators required for actin polymerization, as well as in the transient recruitment of signaling molecules at the plasma or ER membrane. In this review, we describe recent advances that converge to elucidate the mechanisms underlying the wealth of trafficking functions of UbK63 chains.
Collapse
Affiliation(s)
- Zoi Erpapazoglou
- Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| | - Olivier Walker
- Institut des Sciences Analytiques, UMR5280, Université de Lyon/Université Lyon 1, 69100 Villeurbanne, France.
| | - Rosine Haguenauer-Tsapis
- Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| |
Collapse
|
29
|
Isakson P, Lystad AH, Breen K, Koster G, Stenmark H, Simonsen A. TRAF6 mediates ubiquitination of KIF23/MKLP1 and is required for midbody ring degradation by selective autophagy. Autophagy 2014; 9:1955-64. [PMID: 24128730 DOI: 10.4161/auto.26085] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Upon completion of cytokinesis, the midbody ring is transported asymmetrically into one of the two daughter cells where it becomes a midbody ring derivative that is degraded by autophagy. In this study we showed that the ubiquitin-binding autophagy receptor SQSTM1/p62 and the interacting adaptor protein WDFY3/ALFY form a complex with the ubiquitin E3 ligase TRAF6 and that these proteins, as well as NBR1, are important for efficient clearance of midbody ring derivatives by autophagy. The number of ubiquitinated midbody ring derivatives decreases in TRAF6-depleted cells and we showed that TRAF6 mediates ubiquitination of the midbody ring localized protein KIF23/MKLP1. We conclude that TRAF6-mediated ubiquitination of the midbody ring is important for its subsequent recognition by ubiquitin-binding autophagy receptors and degradation by selective autophagy.
Collapse
|
30
|
Liu X, Obianyo O, Chan CB, Huang J, Xue S, Yang JJ, Zeng F, Goodman M, Ye K. Biochemical and biophysical investigation of the brain-derived neurotrophic factor mimetic 7,8-dihydroxyflavone in the binding and activation of the TrkB receptor. J Biol Chem 2014; 289:27571-84. [PMID: 25143381 DOI: 10.1074/jbc.m114.562561] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
7,8-dihydroxyflavone (7,8-DHF), a newly identified small molecular TrkB receptor agonist, rapidly activates TrkB in both primary neurons and the rodent brain and mimics the physiological functions of the cognate ligand BDNF. Accumulating evidence supports that 7,8-DHF exerts neurotrophic effects in a TrkB-dependent manner. Nonetheless, the differences between 7,8-DHF and BDNF in activating TrkB remain incompletely understood. Here we show that 7,8-DHF and BDNF exhibit different TrkB activation kinetics in which TrkB maturation may be implicated. Employing two independent biophysical approaches, we confirm that 7,8-DHF interacts robustly with the TrkB extracellular domain, with a Kd of ∼10 nm. Although BDNF transiently activates TrkB, leading to receptor internalization and ubiquitination/degradation, in contrast, 7,8-DHF-triggered TrkB phosphorylation lasts for hours, and the internalized receptors are not degraded. Notably, primary neuronal maturation may be required for 7,8-DHF but not for BDNF to elicit the full spectrum of TrkB signaling cascades. Hence, 7,8-DHF interacts robustly with the TrkB receptor, and its agonistic effect may be mediated by neuronal development and maturation.
Collapse
Affiliation(s)
- Xia Liu
- From the Departments of Pathology and Laboratory Medicine and
| | | | - Chi Bun Chan
- From the Departments of Pathology and Laboratory Medicine and
| | - Junjian Huang
- From the Departments of Pathology and Laboratory Medicine and
| | - Shenghui Xue
- the Departments of Chemistry and Biology, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, Georgia 30303
| | - Jenny J Yang
- the Departments of Chemistry and Biology, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, Georgia 30303
| | - Fanxing Zeng
- Radiology and Imaging Sciences, Psychiatry, and Hematology and Oncology, Center for Systems Imaging, Wesley Woods Health Centers, Emory University School of Medicine, Atlanta, Georgia 30322 and
| | - Mark Goodman
- Radiology and Imaging Sciences, Psychiatry, and Hematology and Oncology, Center for Systems Imaging, Wesley Woods Health Centers, Emory University School of Medicine, Atlanta, Georgia 30322 and
| | - Keqiang Ye
- From the Departments of Pathology and Laboratory Medicine and
| |
Collapse
|
31
|
Lin Y, Qiu Y, Xu C, Liu Q, Peng B, Kaufmann GF, Chen X, Lan B, Wei C, Lu D, Zhang Y, Guo Y, Lu Z, Jiang B, Edgington TS, Guo F. Functional role of asparaginyl endopeptidase ubiquitination by TRAF6 in tumor invasion and metastasis. J Natl Cancer Inst 2014; 106:dju012. [PMID: 24610907 DOI: 10.1093/jnci/dju012] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Asparaginyl endopeptidase (AEP) has been implicated in human cancer development. However, the molecular mechanisms underlying AEP regulation, including the role of pro-AEP activation, remain elusive. METHODS We investigated the regulation of AEP by TRAF6 and its effects on tumor progression and metastasis in cancer cell lines, murine models, and specimens from patients using biochemical analyses, confocal microscopy, immunoelectron microscopy, and migration-invasion assays. The sera of healthy donors and breast cancer patients were examined by enzyme-linked immunosorbent assay, and a tissue array of 314 breast cancer specimens was assessed for AEP and TRAF6 by immunohistochemistry. Furthermore, the effects of AEP inhibitors or monoclonal antibodies on pulmonary metastasis were evaluated in murine models. The statistical significance between groups was determined using two-tailed Student t tests. RESULTS We demonstrate that TRAF6 ubiquitinates the proform of AEP through K63-linked polyubiquitin, reversible by USP17, and forms a complex with HSP90α to subsequently promote pro-AEP intracellular stability as well as secretion. Disrupting the interaction between pro-AEP and TRAF6 or inhibiting HSP90α reduced pro-AEP secretion and consequently reduced tumor metastasis. Higher circulating AEP levels were detected in the sera of breast cancer patients, and AEP inhibitors or neutralizing antibodies remarkably decreased tumor metastasis in murine models. Notably, TRAF6 and AEP were overexpressed in human breast neoplasms and correlated with poor prognosis. Patients with low AEP/TRAF6 expression survived for a mean of 111 months (95% confidence interval [CI] = 108 to 115 months), whereas those with high AEP/TRAF6 expression survived for a mean of only 61 months (95% CI = 42 to 79 months; P < .001). CONCLUSIONS Our study elucidates a novel mechanism of AEP regulation and an alternative oncogenic pathway for TRAF6 in breast cancer, which suggests that AEP and TRAF6 protein levels may have prognostic implications in breast cancer patients. Thus, AEP may serve as a biomarker as well as new therapeutic target.
Collapse
Affiliation(s)
- Yingying Lin
- Affiliations of authors: Laboratory of Targeted Tumor Therapy, Key Laboratory of Systems Biology, Shanghai Advanced Research Institute (QL, BP, CW, YZ, FG) Institute of Health Sciences (YL, XC, BL, FG) Chinese Academy of Sciences, Shanghai, China; Department of Neurosurgery, Renji Hospital (YQ,YL) Shanghai First People's Hospital (YG) and Department of Radiation Oncology, Ruijin Hospital (CX), School of Medicine, Shanghai Jiao-Tong University, Shanghai, China; Scripps Research Institute, La Jolla, CA (GFK, TSE); Sorrento Thearpeutics, Inc, San Diego, CA (GFK); Department of Neuro-Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX (ZL); Cancer Research Center, Shenzhen University, Shenzhen, China (DL); Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China (BJ)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Forsyth PA, Krishna N, Lawn S, Valadez JG, Qu X, Fenstermacher DA, Fournier M, Potthast L, Chinnaiyan P, Gibney GT, Zeinieh M, Barker PA, Carter BD, Cooper MK, Kenchappa RS. p75 neurotrophin receptor cleavage by α- and γ-secretases is required for neurotrophin-mediated proliferation of brain tumor-initiating cells. J Biol Chem 2014; 289:8067-85. [PMID: 24519935 DOI: 10.1074/jbc.m113.513762] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.
Collapse
Affiliation(s)
- Peter A Forsyth
- From the Department of Neuro-Oncology, Moffitt Cancer Center and Research Institute and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kraemer BR, Yoon SO, Carter BD. The biological functions and signaling mechanisms of the p75 neurotrophin receptor. Handb Exp Pharmacol 2014; 220:121-164. [PMID: 24668472 DOI: 10.1007/978-3-642-45106-5_6] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The p75 neurotrophin receptor (p75(NTR)) regulates a wide range of cellular functions, including programmed cell death, axonal growth and degeneration, cell proliferation, myelination, and synaptic plasticity. The multiplicity of cellular functions governed by the receptor arises from the variety of ligands and co-receptors which associate with p75(NTR) and regulate its signaling. P75(NTR) promotes survival through interactions with Trk receptors, inhibits axonal regeneration via partnerships with Nogo receptor (Nogo-R) and Lingo-1, and promotes apoptosis through association with Sortilin. Signals downstream of these interactions are further modulated through regulated intramembrane proteolysis (RIP) of p75(NTR) and by interactions with numerous cytosolic partners. In this chapter, we discuss the intricate signaling mechanisms of p75(NTR), emphasizing how these signals are differentially regulated to mediate these diverse cellular functions.
Collapse
Affiliation(s)
- B R Kraemer
- Department of Biochemistry, Vanderbilt University School of Medicine, 625 Light Hall, Nashville, TN, 37232, USA
| | | | | |
Collapse
|
34
|
Abstract
Previous studies of differential gene expression in sleep and wake pooled transcripts from all brain cells and showed that several genes expressed at higher levels during sleep are involved in the synthesis/maintenance of membranes in general and of myelin in particular, a surprising finding given the reported slow turnover of many myelin components. Other studies showed that oligodendrocyte precursor cells (OPCs) are responsible for the formation of new myelin in both the injured and the normal adult brain, and that glutamate released from neurons, via neuron-OPC synapses, can inhibit OPC proliferation and affect their differentiation into myelin-forming oligodendrocytes. Because glutamatergic transmission is higher in wake than in sleep, we asked whether sleep and wake can affect oligodendrocytes and OPCs. Using the translating ribosome affinity purification technology combined with microarray analysis in mice, we obtained a genome-wide profiling of oligodendrocytes after sleep, spontaneous wake, and forced wake (acute sleep deprivation). We found that hundreds of transcripts being translated in oligodendrocytes are differentially expressed in sleep and wake: genes involved in phospholipid synthesis and myelination or promoting OPC proliferation are transcribed preferentially during sleep, while genes implicated in apoptosis, cellular stress response, and OPC differentiation are enriched in wake. We then confirmed through BrdU and other experiments that OPC proliferation doubles during sleep and positively correlates with time spent in REM sleep, whereas OPC differentiation is higher during wake. Thus, OPC proliferation and differentiation are not perfectly matched at any given circadian time but preferentially occur during sleep and wake, respectively.
Collapse
|
35
|
Geetha T, Zheng C, McGregor WC, White BD, Diaz-Meco MT, Moscat J, Babu JR. TRAF6 and p62 inhibit amyloid β-induced neuronal death through p75 neurotrophin receptor. Neurochem Int 2012; 61:1289-93. [PMID: 23017601 PMCID: PMC3972807 DOI: 10.1016/j.neuint.2012.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/04/2012] [Accepted: 09/16/2012] [Indexed: 12/18/2022]
Abstract
Amyloid β (Aβ) aggregates are the primary component of senile plaques in Alzheimer disease (AD) patient's brain. Aβ is known to bind p75 neurotrophin receptor (p75(NTR)) and mediates Aβ-induced neuronal death. Recently, we showed that NGF leads to p75(NTR) polyubiquitination, which promotes neuronal cell survival. Here, we demonstrate that Aβ stimulation impaired the p75(NTR) polyubiquitination. TRAF6 and p62 are required for polyubiquitination of p75(NTR) on NGF stimulation. Interestingly, we found that overexpression of TRAF6/p62 restored p75(NTR) polyubiquitination upon Aβ/NGF treatment. Aβ significantly reduced NF-κB activity by attenuating the interaction of p75(NTR) with IKKβ. p75(NTR) increased NF-κB activity by recruiting TRAF6/p62, which thereby mediated cell survival. These findings indicate that TRAF6/p62 abrogated the Aβ-mediated inhibition of p75(NTR) polyubiquitination and restored neuronal cell survival.
Collapse
Affiliation(s)
- Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, United States
| | - Chen Zheng
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, United States
| | - Wade C. McGregor
- Department of Applied Sciences and Mathematics, Arizona State University, Mesa, AZ 85212, United States
| | - B. Douglas White
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, United States
| | - Maria T. Diaz-Meco
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, United States
| | - Jorge Moscat
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, United States
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, United States
| |
Collapse
|
36
|
Sykes AM, Palstra N, Abankwa D, Hill JM, Skeldal S, Matusica D, Venkatraman P, Hancock JF, Coulson EJ. The effects of transmembrane sequence and dimerization on cleavage of the p75 neurotrophin receptor by γ-secretase. J Biol Chem 2012; 287:43810-24. [PMID: 23105112 DOI: 10.1074/jbc.m112.382903] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cleavage of transmembrane receptors by γ-secretase is the final step in the process of regulated intramembrane proteolysis (RIP) and has a significant impact on receptor function. Although relatively little is known about the molecular mechanism of γ-secretase enzymatic activity, it is becoming clear that substrate dimerization and/or the α-helical structure of the substrate can regulate the site and rate of γ-secretase activity. Here we show that the transmembrane domain of the pan-neurotrophin receptor p75(NTR), best known for regulating neuronal death, is sufficient for its homodimerization. Although the p75(NTR) ligands NGF and pro-NGF do not induce homerdimerization or RIP, homodimers of p75(NTR) are γ-secretase substrates. However, dimerization is not a requirement for p75(NTR) cleavage, suggesting that γ-secretase has the ability to recognize and cleave each receptor molecule independently. The transmembrane cysteine 257, which mediates covalent p75(NTR) interactions, is not crucial for homodimerization, but this residue is required for normal rates of γ-secretase cleavage. Similarly, mutation of the residues alanine 262 and glycine 266 of an AXXXG dimerization motif flanking the γ-secretase cleavage site within the p75(NTR) transmembrane domain alters the orientation of the domain and inhibits γ-secretase cleavage of p75(NTR). Nonetheless, heteromer interactions of p75(NTR) with TrkA increase full-length p75(NTR) homodimerization, which in turn potentiates the rate of γ-cleavage following TrkA activation independently of rates of α-cleavage. These results provide support for the idea that the helical structure of the p75(NTR) transmembrane domain, which may be affected by co-receptor interactions, is a key element in γ-secretase-catalyzed cleavage.
Collapse
Affiliation(s)
- Alex M Sykes
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bradshaw JM, Nguyen L, Wallace W, Li C, Sauer JM, Bard F, Bova MP. Monitoring signaling by the p75(NTR) receptor utilizing a caspase-3 activation assay amenable to small-molecule screening. Assay Drug Dev Technol 2012; 10:353-64. [PMID: 22663019 DOI: 10.1089/adt.2011.398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
p75(NTR) is a neurotrophin receptor that can mediate either survival or death of neurons depending on the cell context. Modulation of p75(NTR) is a promising strategy to promote neuronal survival for treatment of cognitive disorders such as Alzheimer's disease. Despite years of investigation into the signaling mechanisms of p75(NTR), no p75(NTR) signaling assay has yet been developed that is compatible with efficient screening of small-molecule modulators. In this work, we developed a homogeneous cell-based assay for screening p75(NTR) modulators and studying p75(NTR) function. Stimulation of p75(NTR)-transfected cells using either nerve growth factor (NGF) or Pro-NGF resulted in an enhanced caspase-3 activity as assessed by cleavage of a fluorescent caspase-3 substrate. Optimization of the assay with respect to time, cell density, NGF and Pro-NGF concentration, and other factors provided a twofold increase in the caspase-3 activity compared to background. Withdrawal of serum during the NGF or Pro-NGF treatment period was found to be essential for p75(NTR)-dependent caspase-3 activation. We validated the method by demonstrating that a signaling-incompetent p75(NTR) mutant could not substitute for wild-type p75(NTR) in mediating caspase-3 activation. A focused library screen identified new inhibitors of p75(NTR) signaling. This method will be useful for identifying small-molecule modulators of p75(NTR) as well as further characterizing downstream signaling events.
Collapse
Affiliation(s)
- J Michael Bradshaw
- Department of Biology, Elan Pharmaceuticals, South San Francisco, California, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Xue J, Lv DD, Jiao S, Zhao W, Li X, Sun H, Yan B, Fan L, Hu RG, Fang J. pVHL mediates K63-linked ubiquitination of nCLU. PLoS One 2012; 7:e35848. [PMID: 22532874 PMCID: PMC3332038 DOI: 10.1371/journal.pone.0035848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 03/23/2012] [Indexed: 11/19/2022] Open
Abstract
pVHL, product of von Hippel-Lindau (VHL) tumor suppressor gene, functions as the substrate recognition component of an E3-ubiquitin ligase that targets proteins for ubiquitination and proteasomal degradation. Hypoxia-inducible factor α (HIFα) is the well-known substrate of pVHL. Besides HIFα, pVHL also binds to many other proteins and has multiple functions. In this manuscript, we report that the nuclear clusterin (nCLU) is a target of pVHL. We found that pVHL had a direct interaction with nCLU. nCLU bound to pVHL at pVHL's β domain, the site for recognition of substrate, indicating that nCLU might be a substrate of pVHL. Interestingly, pVHL bound to nCLU but did not lead to nCLU destruction. Further studies indicated that pVHL mediated K63-linked ubiquitination of nCLU and promoted nCLU nuclear translocation. In summary, our results disclose a novel function of pVHL that mediates K63-linked ubiquitination and identify nCLU as a new target of pVHL.
Collapse
Affiliation(s)
- Jing Xue
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Dan-dan Lv
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Shi Jiao
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Wenting Zhao
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Xuebing Li
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Heng Sun
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Bing Yan
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Li Fan
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Rong-gui Hu
- The Institute of Biochemistry and Cell Biology, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Jing Fang
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
39
|
Geetha T, Zheng C, Unroe B, Sycheva M, Kluess H, Babu JR. Polyubiquitination of the neurotrophin receptor p75 directs neuronal cell survival. Biochem Biophys Res Commun 2012; 421:286-90. [PMID: 22503986 DOI: 10.1016/j.bbrc.2012.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/01/2012] [Indexed: 02/02/2023]
Abstract
Specific binding of nerve growth factor (NGF) to p75 neurotrophin receptor (p75(NTR)) leads to p75(NTR) polyubiquitination and its subsequent interaction with TRAF6 resulting in neuronal cell survival. However, when the binding of NGF to p75(NTR) was blocked with p75 antiserum, p75(NTR) polyubiquitination and neuronal cell survival were impaired. Results showed that tyrosine phosphorylation of p75(NTR) increased the polyubiquitination of p75(NTR) and contributed to the observed apparent neuroprotective effects. Similar to p75(NTR) polyubiquitination, interaction of TRAF6 with p75(NTR) was NGF/tyrosine phosphorylation dependent suggesting that TRAF6 might function as an E3 ubiquitin ligase. In sum, the results show that specific binding of NGF to p75(NTR) mediates neuronal cell survival.
Collapse
Affiliation(s)
- Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | |
Collapse
|
40
|
Ichim G, Tauszig-Delamasure S, Mehlen P. Neurotrophins and cell death. Exp Cell Res 2012; 318:1221-8. [PMID: 22465479 DOI: 10.1016/j.yexcr.2012.03.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/07/2012] [Accepted: 03/10/2012] [Indexed: 11/18/2022]
Abstract
The neurotrophins - NGF, BDNF, NT-3 - are secreted proteins that play a major role in neuron survival, differentiation and axon wiring toward target territories. They do so by interacting with their main tyrosine kinase receptors TrkA, TrkB, TrkC and p75(NTR). Even though there is a general consensus on the view that neurotrophins are survival factors, there are two fundamentally different views on how they achieve this survival activity. One prevailing view is that all neurons and more generally all normal cells are naturally committed to die unless a survival factor blocks this death. This death results from the engagement of a "default" apoptotic cell program. The minority report supports, on the opposite, that neurotrophin withdrawal is associated with an active signal of cell death induced by unbound dependence receptors. We will discuss here how neurotrophins regulate cell death and survival and how this has implications not only during nervous system development but also during cancer progression.
Collapse
Affiliation(s)
- Gabriel Ichim
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée La Ligue, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | | | | |
Collapse
|
41
|
Huang WC, Chen WS, Chen YJ, Wang LY, Hsu SC, Chen CC, Hung MC. Hepatitis B virus X protein induces IKKα nuclear translocation via Akt-dependent phosphorylation to promote the motility of hepatocarcinoma cells. J Cell Physiol 2012; 227:1446-54. [PMID: 21618535 DOI: 10.1002/jcp.22860] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hepatitis B virus (HBV) X protein (HBx) has been implicated in HBV-associated carcinogenesis through activation of IκB kinase (IKK)/nuclear factor kappa B (NF-κB) signaling pathway. Besides activating NF-κB in the cytoplasm, IKKα was found in the nucleus to regulate gene expression epigenetically in response to various stimuli. However, it is unknown whether nuclear IKKα plays a role in HBx-associated tumor progression. Moreover, the molecular mechanism underlying IKKα nuclear transport also remains to be elucidated. Here, we disclosed HBx as a new inducer of IKKα nuclear transport in hepatoma cells. HBx induced IKKα nuclear transport in an Akt-dependent manner. HBx-activated Akt promoted IKKα nuclear translocation via phosphorylating its threonine-23 (Thr23). In addition, IKKα ubiquitination enhanced by HBx and Akt also contributed to the IKKα accumulation in the nucleus, indicating the involvement of ubiquitination in Akt-increased IKKα nuclear transport in response to HBx. Furthermore, inhibition of IKKα nuclear translocation by mutation of its nuclear localization signal and Thr23 diminished IKKα-dependent cell migration. Taken together, our findings shed light on the molecular mechanism of IKKα nuclear translocation and provide a potential role of nuclear IKKα in HBx-mediated hepatocellular carcinoma (HCC) progression.
Collapse
Affiliation(s)
- Wei-Chien Huang
- Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Huang WC, Chen YJ, Hung MC. Implication of nuclear EGFR in the development of resistance to anticancer therapies. Biomedicine (Taipei) 2011. [DOI: 10.1016/j.biomed.2011.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
43
|
Jadhav TS, Wooten MW, Wooten MC. Mining the TRAF6/p62 interactome for a selective ubiquitination motif. BMC Proc 2011; 5 Suppl 2:S4. [PMID: 21554762 PMCID: PMC3090762 DOI: 10.1186/1753-6561-5-s2-s4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A new approach is described here to predict ubiquitinated substrates of the E3 ubiquitin ligase, TRAF6, which takes into account its interaction with the scaffold protein SQSTM1/p62. A novel TRAF6 ubiquitination motif defined as [–(hydrophobic)–k–(hydrophobic)–x–x–(hydrophobic)– (polar)–(hydrophobic)–(polar)–(hydrophobic)] was identified and used to screen the TRAF6/p62 interactome composed of 155 proteins, that were either TRAF6 or p62 interactors, or a negative dataset, composed of 54 proteins with no known association to either TRAF6 or p62. NRIF (K19), TrkA (K485), TrkB (K811), TrkC (K602 and K815), NTRK2 (K828), NTRK3 (K829) and MBP (K169) were found to possess a perfect match for the amino acid consensus motif for TRAF6/p62 ubiquitination. Subsequent analyses revealed that this motif was biased to the C-terminal regions of the protein (nearly 50% the sites), and had preference for loops (~50%) and helices (~37%) over beta-strands (15% or less). In addition, the motif was observed to be in regions that were highly solvent accessible (nearly 90%). Our findings suggest that specific Lysines may be selected for ubiquitination based upon an embedded code defined by a specific amino acid motif with structural determinants. Collectively, our results reveal an unappreciated role for the scaffold protein in targeting ubiquitination. The findings described herein could be used to aid in identification of other E3/scaffold ubiquitination sites.
Collapse
Affiliation(s)
- Trafina S Jadhav
- Program in Cellular and Molecular Biosciences, Department of Biological Sciences, 331 Funchess Hall, Auburn University, Auburn, AL, 36849, USA.
| | | | | |
Collapse
|
44
|
Kenchappa RS, Tep C, Korade Z, Urra S, Bronfman FC, Yoon SO, Carter BD. p75 neurotrophin receptor-mediated apoptosis in sympathetic neurons involves a biphasic activation of JNK and up-regulation of tumor necrosis factor-alpha-converting enzyme/ADAM17. J Biol Chem 2010; 285:20358-68. [PMID: 20421303 PMCID: PMC2888447 DOI: 10.1074/jbc.m109.082834] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 04/13/2010] [Indexed: 02/05/2023] Open
Abstract
During the development of the sympathetic nervous system, the p75 neurotrophin receptor (p75NTR) has a dual function: promoting survival together with TrkA in response to NGF, but inducing cell death upon binding pro or mature brain-derived neurotrophic factor (BDNF). Apoptotic signaling through p75NTR requires activation of the stress kinase, JNK. However, the receptor also undergoes regulated proteolysis, first by a metalloprotease, and then by gamma-secretase, in response to pro-apoptotic ligands and this is necessary for receptor mediated neuronal death (Kenchappa, R. S., Zampieri, N., Chao, M. V., Barker, P. A., Teng, H. K., Hempstead, B. L., and Carter, B. D. (2006) Neuron 50, 219-232). Hence, the relationship between JNK activation and receptor proteolysis remains to be defined. Here, we report that JNK3 activation is necessary for p75NTR cleavage; however, following release of the intracellular domain, there is a secondary activation of JNK3 that is cleavage dependent. Receptor proteolysis and apoptosis were prevented in sympathetic neurons from jnk3(-/-) mice, while activation of JNK by ectopic expression of MEKK1 induced p75NTR cleavage and cell death. Proteolysis of the receptor was not detected until 6 h after BDNF treatment, suggesting that JNK3 promotes cleavage through a transcriptional mechanism. In support of this hypothesis, BDNF up-regulated tumor necrosis factor-alpha-converting enzyme (TACE)/ADAM17 mRNA and protein in wild-type, but not jnk3(-/-) sympathetic neurons. Down-regulation of TACE by RNA interference blocked BDNF-induced p75NTR cleavage and apoptosis, indicating that this metalloprotease is responsible for the initial processing of the receptor. Together, these results demonstrate that p75NTR-mediated activation of JNK3 is required for up-regulation of TACE, which promotes receptor proteolysis, leading to prolonged activation of JNK3 and subsequent apoptosis in sympathetic neurons.
Collapse
Affiliation(s)
- Rajappa S. Kenchappa
- From the Department of Biochemistry and Center for Molecular Neuroscience, Vanderbilt University Medical School, Nashville, Tennessee 37232
| | - Chhavy Tep
- the Center for Molecular Neurobiology and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Zeljka Korade
- From the Department of Biochemistry and Center for Molecular Neuroscience, Vanderbilt University Medical School, Nashville, Tennessee 37232
| | - Soledad Urra
- the Department of Physiology, Neurobiology Unit, Center of Aging and Regeneration, Nucleus Millenium in Regenerative Biology, Faculty of Biological Sciences, Pontificia Universidad Catolica, Alameda 340, Santiago 8320000, Chile
| | - Francisca C. Bronfman
- the Department of Physiology, Neurobiology Unit, Center of Aging and Regeneration, Nucleus Millenium in Regenerative Biology, Faculty of Biological Sciences, Pontificia Universidad Catolica, Alameda 340, Santiago 8320000, Chile
| | - Sung Ok Yoon
- the Center for Molecular Neurobiology and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Bruce D. Carter
- From the Department of Biochemistry and Center for Molecular Neuroscience, Vanderbilt University Medical School, Nashville, Tennessee 37232
| |
Collapse
|
45
|
Interaction with Sug1 enables Ipaf ubiquitination leading to caspase 8 activation and cell death. Biochem J 2010; 427:91-104. [PMID: 20085538 DOI: 10.1042/bj20091349] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activation of initiator caspases is dependent on interacting proteins, and Ipaf [ICE (interleukin-1beta-converting enzyme)-protease activating factor] {NLRC4 [NLR (Nod-like receptor) family CARD (caspase activation and recruitment domain)-containing 4]} an inflammasome component, is involved in caspase 1 activation and apoptosis. Investigating the mechanisms of Ipaf activation, we found that the C-terminal LRR (leucine-rich repeat) domain of Ipaf, through intramolecular interaction, negatively regulates its apoptosis-inducing function. In A549 lung carcinoma cells, expression of Ac-Ipaf (LRR-domain-deleted Ipaf) induced cell death that was dependent on caspase 8, but not on caspase 1. A yeast two-hybrid screen using Ac-Ipaf as bait identified human Sug1 (suppressor of gal 1), a component of the 26S proteasome, as an interacting protein. In mammalian cells Sug1 interacts and co-localizes with Ipaf. Sug1 binds to amino acids 91-253 of Ipaf, which is also the region that the LRR domain binds to. It potentiates cell death induced by Ipaf and Ac-Ipaf, and co-expression of Sug1 and Ipaf induces caspase-8-dependent cell death. Cellular complexes formed by Ipaf and Sug1 contain caspase 8. Expression of Ac-Ipaf or co-expression of Sug1 with Ipaf results in the formation of cytoplasmic aggregates and caspase 8 activation. Sug1 co-expression enabled modification of Ipaf by ubiquitination. Tagging ubiquitin molecules to Ipaf led to aggregate formation, enhanced caspase 8 interaction and activation, resulting in induction of cell death. Using RNAi (RNA interference) and dominant-negative approaches, we have shown that cell death induced by Ac-Ipaf expression or by treatment with TNF-alpha (tumour necrosis factor alpha) or doxorubicin is dependent on Sug1. Our results suggest a role for ubiquitination of Ipaf that is enabled by its interaction with Sug1, leading to caspase 8 activation and cell death.
Collapse
|
46
|
Diarra A, Geetha T, Potter P, Babu JR. Signaling of the neurotrophin receptor p75 in relation to Alzheimer's disease. Biochem Biophys Res Commun 2009; 390:352-6. [PMID: 19818333 DOI: 10.1016/j.bbrc.2009.09.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 09/24/2009] [Indexed: 01/29/2023]
Abstract
The cellular mechanism of neuronal apoptosis in Alzheimer's disease (AD) is poorly understood. Many hypotheses have been put fourth to explain the underlying reason for neuro-degeneration in AD. Here, it is demonstrated that all neurotrophins that activated p75, without co-activation of the relevant Trk co-receptor, mediated apoptosis in hippocampal neurons. Thus, proneurotrophins and amyloid beta peptides (Abeta) can induce p75-mediated apoptosis in hippocampal neurons since they do not bind or activate Trk receptors. Based on the combined effects of aging, proneurotrophins, neurotrophins, and Abeta, a novel model of pathogenesis in AD is proposed. This mini-review explores the ligand and cell type based signaling pathways of the neurotrophin receptor p75 relating to Alzheimer's disease.
Collapse
Affiliation(s)
- Adama Diarra
- Department of Biochemistry, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | | | | | | |
Collapse
|
47
|
|
48
|
Whitcomb EA, Taylor A. Ubiquitin control of S phase: a new role for the ubiquitin conjugating enzyme, UbcH7. Cell Div 2009; 4:17. [PMID: 19664228 PMCID: PMC2734563 DOI: 10.1186/1747-1028-4-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 08/07/2009] [Indexed: 11/17/2022] Open
Abstract
Events within and transitions between the phases of the eukaryotic cell cycle are tightly controlled by transcriptional and post-translational processes. Prominent among them is a profound role for the ubiquitin proteasome proteolytic pathway. The timely degradation of proteins balances the increases in gene products dictated by changes in transcription. Of the dozens of ubiquitin conjugating enzymes, or E2s, functions in control of the cell cycle have been defined for only UbcH10 and Ubc3/Cdc34. Each of these E2s works primarily with one ubiquitin ligase or E3. Here we show that another E2, UbcH7 is a regulator of S phase of the cell cycle. Over-expression of UbcH7 delays entry into S phase whereas depletion of UbcH7 increases the length of S phase and decreases cell proliferation. Additionally, the level of the checkpoint kinase Chk1 increases upon UbcH7 depletion while the level of phosphorylated PTEN decreases. Taken together, these data indicate that the length of S phase is controlled in part by UbcH7 through a PTEN/Akt/Chk1 pathway. Potential mechanisms by which UbcH7 controls Chk1 levels both directly and indirectly, as well as the length of S phase are discussed and additional functions for UbcH7 are reviewed.
Collapse
Affiliation(s)
- Elizabeth A Whitcomb
- Laboratory for Nutrition and Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington St,, Boston MA 02111, USA.
| | | |
Collapse
|
49
|
Jadhav T, Wooten MW. Defining an Embedded Code for Protein Ubiquitination. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2009; 2:316. [PMID: 20148194 PMCID: PMC2818079 DOI: 10.4172/jpb.1000091] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been more than 30 years since the initial report of the discovery of ubiquitin as an 8.5 kDa protein of unknown function expressed universally in living cells. And still, protein modification by covalent conjugation of the ubiquitin molecule is one of the most dynamic posttranslational modifications studied in terms of biochemistry and cell physiology. Ubiquitination plays a central regulatory role in number of eukaryotic cellular processes such as receptor endocytosis, growth-factor signaling, cell-cycle control, transcription, DNA repair, gene silencing, and stress response. Ubiquitin conjugation is a three step concerted action of the E1-E2-E3 enzymes that produces a modified protein. In this review we investigate studies undertaken to identify both ubiquitin and SUMO (small ubiquitin-related modifier) substrates with the goal of understanding how lysine selectivity is achieved. The SUMOylation pathway though distinct from that of ubiquitination, draws many parallels. Based upon the recent findings, we present a model to explain how an individual ubiquitin ligase may target specific lysine residue(s) with the co-operation from a scaffold protein.
Collapse
Affiliation(s)
- Trafina Jadhav
- Program in Cellular and Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | | |
Collapse
|
50
|
Korade Z, Kenchappa RS, Mirnics K, Carter BD. NRIF is a regulator of neuronal cholesterol biosynthesis genes. J Mol Neurosci 2009; 38:152-8. [PMID: 18677445 PMCID: PMC3118441 DOI: 10.1007/s12031-008-9136-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 07/09/2008] [Indexed: 11/30/2022]
Abstract
Cholesterol is a critical component of neuronal membranes, required for normal signal transduction. We showed previously that adult hippocampal neurons co-express high levels of cholesterogenic enzymes, and that their expression is under the control of the p75 neurotrophin receptor (p75NTR). Most of the cellular effects of p75NTR are mediated via interacting proteins, including neurotrophin receptor interacting factor (NRIF). In this study, we tested the hypothesis that p75NTR-dependent regulation of cholesterol and lipid biosynthesis genes is mediated by NRIF. We found that in vitro down regulation of NRIF expression decreased the mRNA for two main cholesterogenic enzymes, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr; EC 2.3.3.10) and 7-dehydrocholesterol reductase (Dhcr7; EC 1.3.1.21). Further analyses revealed that NRIF-dependent and Dhcr7-dependent transcriptional changes show a high degree of overlap, and that NRIF reduction resulted in reduced expression of sterol-sensing domain protein SCAP, followed by a decrease in mRNA levels of SRE-motif containing genes (HMGCR, FASN, SREBP2, S1P, and SQS1). Finally, a reduction in cholesterol biosynthesis-related gene expression was also observed in hippocampal tissue of mice with NRIF deletion. Our combined in vitro and in vivo studies suggest that hippocampal neuronal cholesterol biosynthesis is regulated through the p75NTR interacting factor NRIF.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Biochemistry, Vanderbilt University School of Medicine, 8124A MRB III, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|