1
|
Monteiro FL, Góis A, Direito I, Melo T, Neves B, Alves MI, Batista I, Domingues MDR, Helguero LA. Inhibiting SETD7 methyl-transferase activity impairs differentiation, lipid metabolism and lactogenesis in mammary epithelial cells. FEBS Lett 2023; 597:2656-2671. [PMID: 37723127 DOI: 10.1002/1873-3468.14737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/18/2023] [Accepted: 07/21/2023] [Indexed: 09/20/2023]
Abstract
SETD7 (SET7/9, KMT7) is a lysine methyltransferase that targets master regulators of cell proliferation and differentiation. Here, the impact of inhibiting SETD7 catalytic activity on mammary epithelial cell differentiation was studied by focusing on genes associated with epithelial differentiation, lactogenesis, and lipid metabolism in HC11 and EpH4 cell lines. Setd7 mRNA and protein levels were induced upon lactogenic differentiation in both cell lines. Inhibition of SETD7 activity by the compound (R)-PFI-2 increased cell proliferation and downregulated E-cadherin, beta-catenin, lactoferrin, insulin-like growth factor binding protein 5, and beta-casein levels. In addition, inhibition of SETD7 activity affected the lipid profile and altered the mRNA expression of the phospholipid biosynthesis-related genes choline phosphotransferase 1, and ethanolamine-phosphate cytidylyltransferase. Altogether, the results suggest that inhibiting SETD7 catalytic activity impairs mammary epithelial and lactogenic differentiation.
Collapse
Affiliation(s)
- Fátima Liliana Monteiro
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | - André Góis
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | - Inês Direito
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | - Tânia Melo
- Department of Chemistry, Mass Spectrometry Centre & LAQV-REQUIMTE, University of Aveiro, Portugal
| | - Bruna Neves
- Department of Chemistry, Mass Spectrometry Centre & LAQV-REQUIMTE, University of Aveiro, Portugal
- Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Mariana I Alves
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | - Inês Batista
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | | | - Luisa A Helguero
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| |
Collapse
|
2
|
Cui X, Wang J, Fan C, Jiang H, Li W. Astragalosides inhibit proliferation of fibroblast-like synoviocytes in experimental arthritis by modulating LncRNA S56464.1/miR-152-3p/Wnt1 signaling axis. Int J Rheum Dis 2023; 26:1547-1556. [PMID: 37317788 DOI: 10.1111/1756-185x.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
AIM Astragalus membranaceus (Fisch.) Bunge., the dried root of the plant A. membranaceus, is widely used in the treatment of rheumatoid arthritis (RA) in many Chinese herbal remedies. Astragalosides (AST) is the primary medicinal ingredient of A. membranaceus and has a therapeutic effect on RA, but the specific mechanism of this effect has yet to be elucidated. METHODS In this study, MTT and flow cytometry were used to determine the effects of AST on fibroblast-like synoviocyte (FLS) proliferation and cell cycle progression. Additionally, real-time quantitative polymerase chain reaction and Western blotting were used to determine the effects of AST on the LncRNA S56464.1/miR-152-3p/Wnt1 signaling axis and on critical genes that are essential to the Wnt pathway. RESULTS The data showed that after the administration of AST, FLS proliferation and LncRNA S56464.1, β-catenin, C-myc, Cyclin D1, and p-GSK-3β(Ser9)/GSK-3β expression were significantly reduced, and miR-152 and SFRP4 expression was notably increased. CONCLUSION These results suggest that AST can inhibit FLS proliferation by modulating the LncRNA S56464.1/miR-152-3p/Wnt1 signaling axis and that AST may be a potential therapeutic drug for RA.
Collapse
Affiliation(s)
- Xiaoya Cui
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jing Wang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chang Fan
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hui Jiang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Basic Medical, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, Anhui, China
| | - Weiping Li
- College of Basic Medical, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Cai S, Hu T, Venkatesan M, Allam M, Schneider F, Ramalingam SS, Sun SY, Coskun AF. Multiplexed protein profiling reveals spatial subcellular signaling networks. iScience 2022; 25:104980. [PMID: 36093051 PMCID: PMC9460555 DOI: 10.1016/j.isci.2022.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/25/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Thomas Hu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mythreye Venkatesan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mayar Allam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Frank Schneider
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Suresh S. Ramalingam
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shi-Yong Sun
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ahmet F. Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Corresponding author
| |
Collapse
|
4
|
Zhou Y, Zhang J, Chen W, Li X, Fu K, Sun W, Liang Y, Xu M, Zhang J, Fan G, Yin H, Wang Z. Identification of Hair Growth Promoting Components in the Kernels of Prunus mira Koehne and Their Mechanism of Action. Molecules 2022; 27:5242. [PMID: 36014482 PMCID: PMC9412337 DOI: 10.3390/molecules27165242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The application of the seed oil of Prunus mira Koehne (Tibetan name ཁམབུ།), a plant belonging to the Rosaceae family, for the treatment of alopecia has been recorded in Jingzhu Materia Medica (ཤེལ་གོང་ཤེལ་ཕྲེང་།) (the classic of Tibetan medicine) and Dictionary of Chinese Ethnic Medicine. This study aims to reveal the effective components and mechanism of hair growth promotion in the kernel of Prunus mira Koehne. Network pharmacology was used to predict the mechanism of action and effective components in the treatment of the kernel of Prunus mira Koehne. The contents of amygdalin in 12 batches of the kernel of Prunus mira Koehne were determined by HPLC. An animal model of the depilation of KM mice induced by sodium sulfide was created, and five effective components that promoted hair growth were initially screened. In the study of the effectiveness and mechanism of action, KM and C57BL/6 mice are selected as experimental objects, three screening tests for active components of the kernel of P. mira are performed, and three effective components are screened out from the eight components. HE staining was used to detect the number of hair follicles and the thickness of the dermis. RT-PCR and immunohistochemistry were used to evaluate the influence of the expression of indicators in the Wnt/β-catenin signaling pathway in skin, including β-catenin, GSK-3β, and mRNA and protein expression levels of Cyclin D 1 and LEF 1. The network pharmacology study showed 12 signaling pathways involving 25 targets in the treatment of alopecia by the kernel of Prunus mira Koehne. vitamin E (3.125 mg/cm2/d), β-sitosterol (0.061 mg/cm2/d), and linoleic acid (0.156 mg/cm2/d) in the kernel of Prunus mira Koehne can promote hair growth in mice, and the mechanism of action may be related to the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- You Zhou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingwen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wanyue Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoli Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weijun Sun
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuan Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Min Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Zhang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gang Fan
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongxiang Yin
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
5
|
Euphorbiasteroid Abrogates EGFR and Wnt/β-Catenin Signaling in Non-Small-Cell Lung Cancer Cells to Impart Anticancer Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123824. [PMID: 35744950 PMCID: PMC9227563 DOI: 10.3390/molecules27123824] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/17/2022]
Abstract
EGFR and Wnt/β-catenin signaling pathways play a prominent role in tumor progression in various human cancers including non-small-cell lung carcinoma (NSCLC). Transactivation and crosstalk between the EGFR and Wnt/β-catenin pathways may contribute to the aggressiveness of cancers. Targeting these oncogenic pathways with small molecules is an attractive approach to counteract various types of cancers. In this study, we demonstrate the effect of euphorbiasteroid (EPBS) on the EGFR and Wnt/β-catenin pathways in NSCLC cells. EPBS induced preferential cytotoxicity toward A549 (wildtype EGFR-expressing) cells over PC-9 (mutant EGFR-expressing) cells. EPBS suppressed the expression of EGFR, Wnt3a, β-catenin, and FZD-1, and the reduction in β-catenin levels was found to be mediated through the activation of GSK-3β. EPBS reduced the phosphorylation of GSK-3βS9 with a parallel increase in β-TrCP and phosphorylation of GSK-3βY216. Lithium chloride treatment increased the phosphorylation of GSK-3βS9 and nuclear localization of β-catenin, whereas EPBS reverted these effects. Forced expression or depletion of EGFR in NSCLC cells increased or decreased the levels of Wnt3a, β-catenin, and FZD-1, respectively. Overall, EPBS abrogates EGFR and Wnt/β-catenin pathways to impart its anticancer activity in NSCLC cells.
Collapse
|
6
|
Phase II Trial of CDX-3379 and Cetuximab in Recurrent/Metastatic, HPV-Negative, Cetuximab-Resistant Head and Neck Cancer. Cancers (Basel) 2022; 14:cancers14102355. [PMID: 35625959 PMCID: PMC9139981 DOI: 10.3390/cancers14102355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary This phase II, Simon 2-stage, multicenter study evaluated the efficacy of the combination of CDX-3379 and cetuximab, monoclonal antibodies against ErbB3 and EGFR, respectively, in patients with recurrent/metastatic, HPV-negative, cetuximab-resistant head and neck cancer. The primary endpoint was overall response rate (ORR) in genomically unselected patients. Enhanced response was hypothesized in the FAT1-mutated cohort. The ORR in genomically unselected patients was 2/30 (6.7%), which did not meet criteria for further investigation. The overall response rate was 1/10 (complete response; 10%) in the FAT1-mutated versus 0/17 (0%) in the FAT1-wildtype cohorts. The most common AEs were diarrhea (83%) and acneiform dermatitis (53%), leading to dose modification in 21 patients (70%). The modest ORR coupled to clinically significant and dose-limiting toxicity preclude further development of this combination. Abstract In phase I development, CDX-3379, an anti-ErbB3 monoclonal antibody, showed promising molecular and antitumor activity in head and neck squamous cell carcinoma (HNSCC), alone or in combination with cetuximab. Preliminary biomarker data raised the hypothesis of enhanced response in tumors harboring FAT1 mutations. This phase II, multicenter trial used a Simon 2-stage design to investigate the efficacy of CDX-3379 and cetuximab in 30 patients with recurrent/metastatic, HPV-negative, cetuximab-resistant HNSCC. The primary endpoint was objective response rate (ORR). Secondary endpoints included ORR in patients with somatic FAT1 mutations, progression-free survival (PFS), overall survival (OS), and safety. Thirty patients were enrolled from March 2018 to September 2020. The ORR in genomically unselected patients was 2/30 (6.7%; 95% confidence interval [CI], 0.8–22.1). Median PFS and OS were 2.2 (95% CI: 1.3–3.6) and 6.6 months (95% CI: 2.7–7.5), respectively. Tissue was available in 27 patients including one of two responders. ORR was 1/10 (complete response; 10%; 95% CI 0.30–44.5) in the FAT1-mutated versus 0/17 (0%; 95% CI: 0–19.5) in the FAT1-wildtype cohorts. Sixteen patients (53%) experienced treatment-related adverse events (AEs) ≥ grade 3. The most common AEs were diarrhea (83%) and acneiform dermatitis (53%). Dose modification was required in 21 patients (70%). The modest ORR coupled with excessive, dose-limiting toxicity of this combination precludes further clinical development. Dual ErbB3-EGFR inhibition remains of scientific interest in HPV-negative HNSCC. Should more tolerable combinations be identified, development in an earlier line of therapy and prospective evaluation of the FAT1 hypothesis warrant consideration.
Collapse
|
7
|
Jia Z, An J, Liu Z, Zhang F. Non-Coding RNAs in Colorectal Cancer: Their Functions and Mechanisms. Front Oncol 2022; 12:783079. [PMID: 35186731 PMCID: PMC8847166 DOI: 10.3389/fonc.2022.783079] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality. However, the molecular mechanisms underlying CRC remain unclear. Controversies over the exact functions of non-coding RNAs (ncRNAs) in the progression of CRC have been prevailing for multiple years. Recently, accumulating evidence has demonstrated the regulatory roles of ncRNAs in various human cancers, including CRC. The intracellular signaling pathways by which ncRNAs act on tumor cells have been explored, and in CRC, various studies have identified numerous dysregulated ncRNAs that serve as oncogenes or tumor suppressors in the process of tumorigenesis through diverse mechanisms. In this review, we have summarized the functions and mechanisms of ncRNAs (mainly lncRNAs, miRNAs, and circRNAs) in the tumorigenesis of CRC. We also discuss the potential applications of ncRNAs as diagnostic and prognostic tools, as well as therapeutic targets in CRC. This review details strategies that trigger the recognition of CRC-related ncRNAs, as well as the methodologies and challenges of studying these molecules, and the forthcoming clinical applications of these findings.
Collapse
Affiliation(s)
- Zimo Jia
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Jiaqi An
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Ziyuan Liu
- School of Medicine, Shihezi University, Shihezi, China
| | - Fan Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| |
Collapse
|
8
|
Zou Y, Pan L, Shen Y, Wang X, Huang C, Wang H, Jin X, Yin C, Wang Y, Jia J, Qian J, Zou Y, Gong H, Ge J. Cardiac Wnt5a and Wnt11 promote fibrosis by the crosstalk of FZD5 and EGFR signaling under pressure overload. Cell Death Dis 2021; 12:877. [PMID: 34564708 PMCID: PMC8464604 DOI: 10.1038/s41419-021-04152-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022]
Abstract
Progressive cardiac fibrosis accelerates the development of heart failure. Here, we aimed to explore serum Wnt5a and Wnt11 levels in hypertension patients, the roles of Wnt5a and Wnt11 in cardiac fibrosis and potential mechanisms under pressure overload. The pressure overload mouse model was built by transverse aortic constriction (TAC). Cardiac fibrosis was analyzed by Masson's staining. Serum Wnt5a or Wnt11 was elevated and associated with diastolic dysfunction in hypertension patients. TAC enhanced the expression and secretion of Wnt5a or Wnt11 from cardiomyocytes (CMs), cardiac fibroblasts (CFs), and cardiac microvascular endothelial cells (CMECs). Knockdown of Wnt5a and Wnt11 greatly improved cardiac fibrosis and function at 4 weeks after TAC. In vitro, shWnt5a or shWnt11 lentivirus transfection inhibited pro-fibrotic effects in CFs under mechanical stretch (MS). Similarly, conditional medium from stretched-CMs transfected with shWnt5a or shWnt11 lentivirus significantly suppressed the pro-fibrotic effects induced by conditional medium from stretched-CMs. These data suggested that CMs- or CFs-derived Wnt5a or Wnt11 showed a pro-fibrotic effect under pressure overload. In vitro, exogenous Wnt5a or Wnt11 activated ERK and p38 (fibrotic-related signaling) pathway, promoted the phosphorylation of EGFR, and increased the expression of Frizzled 5 (FZD5) in CFs. Inhibition or knockdown of EGFR greatly attenuated the increased FZD5, p-p38, and p-ERK levels, and the pro-fibrotic effect induced by Wnt5a or Wnt11 in CFs. Si-FZD5 transfection suppressed the increased p-EGFR level, and the fibrotic-related effects in CFs treated with Wnt5a or Wnt11. In conclusion, pressure overload enhances the secretion of Wnt5a or Wnt11 from CMs and CFs which promotes cardiac fibrosis by activation the crosstalk of FZD5 and EGFR. Thus, Wnt5a or Wnt11 may be a novel therapeutic target for the prevention of cardiac fibrosis under pressure overload.
Collapse
Affiliation(s)
- Yan Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Le Pan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yi Shen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiang Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenxing Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hao Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xuejuan Jin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chao Yin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianguo Jia
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Juying Qian
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Hui Gong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Pashirzad M, Sathyapalan T, Sahebkar A. Clinical Importance of Wnt5a in the Pathogenesis of Colorectal Cancer. JOURNAL OF ONCOLOGY 2021; 2021:3136508. [PMID: 34603445 PMCID: PMC8486513 DOI: 10.1155/2021/3136508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022]
Abstract
Wnt5a is one of the potent signaling molecules that initiates responses involved in cancer through activation of both canonical and noncanonical signaling cascades. Wnt5a both directly and indirectly triggers cancer-associated signaling pathways based on the cancer type. In colorectal cancer (CRC), altering Wnt5a expression can influence several cellular processes of tumor cells, including proliferation, differentiation, migration, invasion, and metastasis. This review summarizes the molecular mechanisms and clinical importance of Wnt5a in the pathogenesis of CRC for better understanding the pathogenesis and its potential role as a prognostic marker and as an appropriate therapeutic target in the treatment of this disease in the future.
Collapse
Affiliation(s)
- Mehran Pashirzad
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Effect of Wnt5a on drug resistance in estrogen receptor-positive breast cancer. Breast Cancer 2021; 28:1062-1071. [PMID: 34047951 PMCID: PMC8354951 DOI: 10.1007/s12282-021-01241-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/13/2021] [Indexed: 11/06/2022]
Abstract
Background Previously, we reported that Wnt5a-positive breast cancer can be classified as estrogen receptor (ER)-positive breast cancer; its prognosis is worse than that of Wnt5a-negative breast cancer. This study aimed to investigate the mechanisms underlying the poor prognosis in Wnt5a-positive breast cancer patients. Methods In total, 151 consecutive ER-positive breast cancer patients who underwent resection between January 2011 and February 2014 were enrolled. DNA microarray and pathway analyses were conducted using MCF-7 cells stably expressing Wnt5a [MCF-7/Wnt5a (+)]. Based on the outcomes, cell viability/drug sensitivity assays, and mutation analysis were performed using cell cultures and breast cancer tissues. The relationship between Wnt5a and the PI3K–AKT–mTOR signaling pathway was also examined. Results The relapse-free survival rate in patients with Wnt5a-positive breast cancer was significantly lower than that in patients with Wnt5a-negative breast cancer (P = 0.047). DNA microarray data suggest that only the cytochrome P450 (CYP) pathway was significantly upregulated in MCF-7/Wnt5a (+) cells (P = 0.0440). Additionally, MCF-7/Wnt5a (+) cells displayed reduced sensitivity to the metabolic substrates of CYP, tamoxifen (P < 0.001), paclitaxel (P < 0.001), and cyclophosphamide (P < 0.001). Of note, PIK3CA mutations were not associated with the expression of Wnt5a in breast cancer tissue and culture cells. Conclusions In ER-positive breast cancer, Wnt5a upregulates the CYP metabolic pathway and suppresses tamoxifen, paclitaxel, and cyclophosphamide resistance, all of the three, standard treatment methods for ER-positive breast cancer. Wnt5a is thus potentially involved in the poor prognosis of ER-positive breast cancer independently of the PI3K–AKT–mTOR signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s12282-021-01241-0.
Collapse
|
11
|
Moyano P, García JM, García J, Pelayo A, Muñoz-Calero P, Frejo MT, Anadon MJ, Naval MV, Flores A, Mirat VA, Del Pino J. Chlorpyrifos induces cell proliferation in MCF-7 and MDA-MB-231 cells, through cholinergic and Wnt/β-catenin signaling disruption, AChE-R upregulation and oxidative stress generation after single and repeated treatment. Food Chem Toxicol 2021; 152:112241. [PMID: 33930485 DOI: 10.1016/j.fct.2021.112241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Chlorpyrifos (CPF) biocide, is associated with breast cancer. The processes underlying this association have not been elucidated to date. CPF increases MCF-7 and MDA-MB-231 cell proliferation after acute and long-term treatment, partially through KIAA1363 overexpression and aryl-hydrocarbon receptor activation but also through estrogen receptor-alpha activation after 24 h exposure in MCF-7 cells, suggesting other mechanisms may be involved. CPF induces reactive oxygen species (ROS) generation, acetylcholine accumulation, and overexpression of acetylcholinesterase-R/S (AChE-R/S) variants, while it also alters the Wnt/β-catenin pathway, both in vitro and in vivo, in processes different from cancer. These latter mechanisms are also linked to cell proliferation and could mediate this effect induced by CPF. Our results show that CPF (0.01-100 μM), following one-day and fourteen-days treatment, respectively, induced ROS generation and lipid peroxidation, and acetylcholine accumulation due to AChE inhibition, Wnt/β-catenin up- or downregulation depending on the CPF treatment concentration, and AChE-R and AChE-S overexpression, with the latter being mediated through GSK-3β activity alteration. Finally, CPF promoted cell division through ACh and ROS accumulation, AChE-R overexpression, and Wnt/β-catenin signaling disruption. Our results provide novel information on the effect of CPF on human breast cancer cell lines that may help to explain its involvement in breast cancer.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacology, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | | | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Maria Jose Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Maria Victoria Naval
- Department of Pharmacology, Pharmacognosy and Botany, Pharmacy School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Vega Alejandra Mirat
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
12
|
Tweaking EMT and MDR dynamics to constrain triple-negative breast cancer invasiveness by EGFR and Wnt/β-catenin signaling regulation. Cell Oncol (Dordr) 2021; 44:405-422. [PMID: 33398673 DOI: 10.1007/s13402-020-00576-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Due to a lack of effective targeted therapies, patients with metastatic triple-negative breast cancer (TNBC) have poor clinical outcomes. Epithelial to mesenchymal transition (EMT) is known to contribute to cancer progression, invasiveness and multidrug resistance (MDR). There is a strong correlation between various drug efflux mechanisms, cancer stem cells and tumor microenvironments, which in turn is synchronized by complex signaling crosstalk between EMT and MDR. We hypothesize that combining these regulatory connections with targeted combinatorial therapies may be an effective approach to annihilate the progression/metastasis of TNBC. METHODS AlamarBlue assays were used to depict TNBC cell viability, whereas flow cytometry was used to detect apoptotic cell populations, reactive-oxygen species (ROS) levels as well as mitochondrial depolarization. qRT-PCR, Western blotting and confocal microscopy were used to provide molecular-level information of the genes and proteins involved. RESULTS Our initial analyses showed that targeting EGFR by either erlotinib (EGFR inhibitor) or lapatinib (EGFR/HER-2 inhibitor) alone was ineffective against TNBC. Interestingly, we subsequently found that a low dose of lapatinib did act as a substrate rather than as an inhibitor facilitating EMT and MDR, leading to metastasis. Additional gene expression studies indicated that co-targeting the EGFR and Wnt/β-catenin pathways with lapatinib and XAV939 (a tankyrase inhibitor) promoted mesenchymal to epithelial transition (MET). Application of these inhibitors led to a 5.62-fold increase in the epithelial marker E-cadherin and a 3.33-fold decrease in the stemness marker EpCAM, with concomitant 1.5-fold and 3.22-fold reductions in the ABC transporters ABCB1 and ABCG2, respectively. These co-targeting effects resulted in overcoming EMT and MDR, which in turn was highlighted by reduced levels of pEGFR, pAKT, pMAPK, pSTAT-3, pGSK-3β and β-catenin. CONCLUSIONS Our data indicate that the synergistic action of targeting both the EGFR and Wnt/β-catenin signaling pathways in TNBC cells may open up new avenues for combatting this disease.
Collapse
|
13
|
Stewart TA, Davis FM. A Primary Cell and Organoid Platform for Evaluating Pharmacological Responses in Mammary Epithelial Cells. ACS Pharmacol Transl Sci 2020; 3:63-75. [PMID: 32259089 PMCID: PMC7088941 DOI: 10.1021/acsptsci.9b00090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 12/31/2022]
Abstract
An essential process in predicting the in vivo pharmacological activity of a candidate molecule involves the evaluation of target responses using established model systems. While these models largely comprise immortalized cells, which are often serially passaged as monolayers on uniformly stiff substrates and are modified to overexpress one or more components of the pathway-of-interest, the importance of cell identity, heterogeneity, and three-dimensional (3D) context to target response is gaining increasing attention. Here, we assess intracellular calcium responses in mouse mammary epithelial cells in three distinct model systems: 3D primary organoids, 2D primary epithelial cells, and 2D immortalized cells. Specifically, we assess intracellular calcium responses to a number of extracellular signals implicated in the regulation of basal (or myoepithelial) cell function. These findings provide further insights into cell type and context-specific pharmacological responses in mammary epithelial cells and highlight the opportunities and challenges in the adoption of architecturally complex and heterogeneous in vitro assays in pharmacological research.
Collapse
Affiliation(s)
- Teneale A. Stewart
- Mater
Research-The University of Queensland, Faculty of Medicine, Brisbane, Queensland 4102, Australia
- Translational
Research Institute, Brisbane, Queensland 4102, Australia
| | - Felicity M. Davis
- Mater
Research-The University of Queensland, Faculty of Medicine, Brisbane, Queensland 4102, Australia
- Translational
Research Institute, Brisbane, Queensland 4102, Australia
| |
Collapse
|
14
|
Wang W, Smits R, Hao H, He C. Wnt/β-Catenin Signaling in Liver Cancers. Cancers (Basel) 2019; 11:E926. [PMID: 31269694 PMCID: PMC6679127 DOI: 10.3390/cancers11070926] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is among the leading global healthcare issues associated with high morbidity and mortality. Liver cancer consists of hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), hepatoblastoma (HB), and several other rare tumors. Progression has been witnessed in understanding the interactions between etiological as well as environmental factors and the host in the development of liver cancers. However, the pathogenesis remains poorly understood, hampering the design of rational strategies aiding in preventing liver cancers. Accumulating evidence demonstrates that aberrant activation of the Wnt/β-catenin signaling pathway plays an important role in the initiation and progression of HCC, CCA, and HB. Targeting Wnt/β-catenin signaling potentiates a novel avenue for liver cancer treatment, which may benefit from the development of numerous small-molecule inhibitors and biologic agents in this field. In this review, we discuss the interaction between various etiological factors and components of Wnt/β-catenin signaling early in the precancerous lesion and the acquired mechanisms to further enhance Wnt/β-catenin signaling to promote robust cancer formation at later stages. Additionally, we shed light on current relevant inhibitors tested in liver cancers and provide future perspectives for preclinical and clinical liver cancer studies.
Collapse
Affiliation(s)
- Wenhui Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam 3015 CN, The Netherlands
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China.
| | - Chaoyong He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
15
|
Schrank Z, Chhabra G, Lin L, Iderzorig T, Osude C, Khan N, Kuckovic A, Singh S, Miller RJ, Puri N. Current Molecular-Targeted Therapies in NSCLC and Their Mechanism of Resistance. Cancers (Basel) 2018; 10:E224. [PMID: 29973561 PMCID: PMC6071023 DOI: 10.3390/cancers10070224] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is treated with many conventional therapies, such as surgery, radiation, and chemotherapy. However, these therapies have multiple undesirable side effects. To bypass the side effects elicited by these conventional treatments, molecularly-targeted therapies are currently in use or under development. Current molecularly-targeted therapies effectively target specific biomarkers, which are commonly overexpressed in lung cancers and can cause increased tumorigenicity. Unfortunately, several molecularly-targeted therapies are associated with initial dramatic responses followed by acquired resistance due to spontaneous mutations or activation of signaling pathways. Acquired resistance to molecularly targeted therapies presents a major clinical challenge in the treatment of lung cancer. Therefore, to address this clinical challenge and to improve lung cancer patient prognosis, we need to understand the mechanism of acquired resistance to current therapies and develop additional novel therapies. This review concentrates on various lung cancer biomarkers, including EGFR, ALK, and BRAF, as well as their potential mechanisms of drug resistance.
Collapse
Affiliation(s)
- Zachary Schrank
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Gagan Chhabra
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Leo Lin
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Tsatsral Iderzorig
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Chike Osude
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Nabiha Khan
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Adijan Kuckovic
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Sanjana Singh
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Rachel J Miller
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| |
Collapse
|
16
|
Linde N, Casanova-Acebes M, Sosa MS, Mortha A, Rahman A, Farias E, Harper K, Tardio E, Reyes Torres I, Jones J, Condeelis J, Merad M, Aguirre-Ghiso JA. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat Commun 2018; 9:21. [PMID: 29295986 PMCID: PMC5750231 DOI: 10.1038/s41467-017-02481-5] [Citation(s) in RCA: 317] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/04/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer cell dissemination during very early stages of breast cancer proceeds through poorly understood mechanisms. Here we show, in a mouse model of HER2+ breast cancer, that a previously described sub-population of early-evolved cancer cells requires macrophages for early dissemination. Depletion of macrophages specifically during pre-malignant stages reduces early dissemination and also results in reduced metastatic burden at end stages of cancer progression. Mechanistically, we show that, in pre-malignant lesions, CCL2 produced by cancer cells and myeloid cells attracts CD206+/Tie2+ macrophages and induces Wnt-1 upregulation that in turn downregulates E-cadherin junctions in the HER2+ early cancer cells. We also observe macrophage-containing tumor microenvironments of metastasis structures in the pre-malignant lesions that can operate as portals for intravasation. These data support a causal role for macrophages in early dissemination that affects long-term metastasis development much later in cancer progression. A pilot analysis on human specimens revealed intra-epithelial macrophages and loss of E-cadherin junctions in ductal carcinoma in situ, supporting a potential clinical relevance.
Collapse
Affiliation(s)
- Nina Linde
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Merck KGaA, Frankfurter Str. 250, Postcode: A025/301, Darmstadt, 64293, Germany
| | - Maria Casanova-Acebes
- Department of Oncological Sciences, The Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Maria Soledad Sosa
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arthur Mortha
- Department of Oncological Sciences, The Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, USA
| | - Adeeb Rahman
- Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eduardo Farias
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kathryn Harper
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ethan Tardio
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ivan Reyes Torres
- Department of Oncological Sciences, The Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joan Jones
- Department of Anatomy and Structural Biology, Integrated Imaging Program, Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - John Condeelis
- Department of Anatomy and Structural Biology, Integrated Imaging Program, Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Miriam Merad
- Department of Oncological Sciences, The Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Julio A Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
17
|
Lu Y, Zhao X, Liu Q, Li C, Graves-Deal R, Cao Z, Singh B, Franklin JL, Wang J, Hu H, Wei T, Yang M, Yeatman TJ, Lee E, Saito-Diaz K, Hinger S, Patton JG, Chung CH, Emmrich S, Klusmann JH, Fan D, Coffey RJ. lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling. Nat Med 2017; 23:1331-1341. [PMID: 29035371 PMCID: PMC5961502 DOI: 10.1038/nm.4424] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/08/2017] [Indexed: 12/11/2022]
Abstract
De novo and acquired resistance, which are largely attributed to genetic alterations, are barriers to effective anti-epidermal-growth-factor-receptor (EGFR) therapy. To generate cetuximab-resistant cells, we exposed cetuximab-sensitive colorectal cancer cells to cetuximab in three-dimensional culture. Using whole-exome sequencing and transcriptional profiling, we found that the long non-coding RNA MIR100HG and two embedded microRNAs, miR-100 and miR-125b, were overexpressed in the absence of known genetic events linked to cetuximab resistance. MIR100HG, miR-100 and miR-125b overexpression was also observed in cetuximab-resistant colorectal cancer and head and neck squamous cell cancer cell lines and in tumors from colorectal cancer patients that progressed on cetuximab. miR-100 and miR-125b coordinately repressed five Wnt/β-catenin negative regulators, resulting in increased Wnt signaling, and Wnt inhibition in cetuximab-resistant cells restored cetuximab responsiveness. Our results describe a double-negative feedback loop between MIR100HG and the transcription factor GATA6, whereby GATA6 represses MIR100HG, but this repression is relieved by miR-125b targeting of GATA6. These findings identify a clinically actionable, epigenetic cause of cetuximab resistance.
Collapse
Affiliation(s)
- Yuanyuan Lu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xiaodi Zhao
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Qi Liu
- Department of Biomedical Informatics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cunxi Li
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China, and Molecular Pathology, Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Ramona Graves-Deal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zheng Cao
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffrey L Franklin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jing Wang
- Department of Biomedical Informatics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Huaying Hu
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China, and Molecular Pathology, Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Tianying Wei
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China, and Molecular Pathology, Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Mingli Yang
- Gibbs Cancer Center & Research Institute, Spartanburg, South Carolina, USA
| | - Timothy J Yeatman
- Gibbs Cancer Center & Research Institute, Spartanburg, South Carolina, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology and Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kenyi Saito-Diaz
- Department of Cell and Developmental Biology and Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Scott Hinger
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Stephan Emmrich
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
18
|
Huang LX, Hu CY, Jing L, Wang MC, Xu M, Wang J, Wang Y, Nan KJ, Wang SH. microRNA-219-5p inhibits epithelial-mesenchymal transition and metastasis of colorectal cancer by targeting lymphoid enhancer-binding factor 1. Cancer Sci 2017; 108:1985-1995. [PMID: 28771881 PMCID: PMC5623737 DOI: 10.1111/cas.13338] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/13/2017] [Accepted: 07/30/2017] [Indexed: 12/24/2022] Open
Abstract
Aberrant expression of microRNAs (miRs) has been shown to play a critical role in the pathogenesis and progression of tumors. microRNA‐219‐5p (miR‐219‐5p) has been reported to be abnormally expressed in some types of human tumors. However, the mechanism between miR‐219‐5p and colorectal cancer (CRC) metastasis remains unclear. In the present study, miR‐219‐5p was found to be downregulated in CRC tissue compared with matched normal tissue. Through luciferase reporter assay, we demonstrated lymphoid enhancer‐binding factor 1 (LEF1) as a direct target of miR‐219‐5p. Overexpression of miR‐219‐5p could inhibit motility, migration and invasion of CRC cells, and inhibit epithelial‐mesenchymal transition (EMT). Furthermore, silencing LEF1 phenocopied this metastasis‐suppressive function. The recovery experiment showed that re‐expression of LEF1 rescued this suppressive effect on tumor metastasis and reversed the expression of EMT markers caused by miR‐219‐5p. Additionally, we demonstrated that miR‐219‐5p exerted this tumor‐suppressive function by blocking activation of the AKT and ERK pathways. Finally, a nude mice experiment showed that miR‐219‐5p reduced the lung metastasis ability of CRC cells. Taken together, our findings indicate that miR‐219‐5p inhibits metastasis and EMT of CRC by targeting LEF1 and suppressing the AKT and ERK pathways, which may provide a new antitumor strategy to delay CRC metastasis.
Collapse
Affiliation(s)
- Lan-Xuan Huang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Chun-Yan Hu
- Department of Gynecology, North-western Women's and Children's Hospital, Xi'an, Shaanxi Province, China
| | - Li Jing
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Min-Cong Wang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Meng Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jing Wang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yu Wang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ke-Jun Nan
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Shu-Hong Wang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
19
|
Pashirzad M, Shafiee M, Rahmani F, Behnam-Rassouli R, Hoseinkhani F, Ryzhikov M, Moradi Binabaj M, Parizadeh MR, Avan A, Hassanian SM. Role of Wnt5a in the Pathogenesis of Inflammatory Diseases. J Cell Physiol 2017; 232:1611-1616. [DOI: 10.1002/jcp.25687] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Mehran Pashirzad
- Department of Medical Biochemistry; School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mojtaba Shafiee
- Department of Nutrition; School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Farzad Rahmani
- Department of Medical Biochemistry; School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | | | - Fatemeh Hoseinkhani
- Department of Medical Biochemistry; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Mikhail Ryzhikov
- Department of Biochemistry and Molecular Biology; St. Louis University School of Medicine; Saint Louis Missouri
| | - Maryam Moradi Binabaj
- Department of Medical Biochemistry; School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mohammad Reza Parizadeh
- Department of Medical Biochemistry; School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Amir Avan
- Molecular Medicine Group; Department of Modern Sciences and Technologies; School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
- Departments of Medical Oncology and Neurology; VU University Medical Center; Amsterdam The Netherlands
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry; School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
- Department of Biochemistry and Molecular Biology; St. Louis University School of Medicine; Saint Louis Missouri
- Microanatomy Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Metabolic Syndrome Research Center; School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
20
|
Wang W, Pan Q, Fuhler GM, Smits R, Peppelenbosch MP. Action and function of Wnt/β-catenin signaling in the progression from chronic hepatitis C to hepatocellular carcinoma. J Gastroenterol 2017; 52:419-431. [PMID: 28035485 PMCID: PMC5357489 DOI: 10.1007/s00535-016-1299-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/17/2016] [Indexed: 02/04/2023]
Abstract
Hepatitis C virus (HCV) infection is one of the leading causes of hepatocellular carcinoma (HCC) worldwide but the mechanistic basis as to how chronic HCV infection furthers the HCC process remains only poorly understood. Accumulating evidence indicates that HCV core and nonstructural proteins provoke activation of the Wnt/β-catenin signaling pathway, and the evidence supporting a role of Wnt/β-catenin signaling in the onset and progression of HCC is compelling. Convincing molecular explanations as to how expression of viral effectors translates into increased activity of the Wnt/β-catenin signaling machinery are still largely lacking, hampering the design of rational strategies aimed at preventing HCC. Furthermore, how such increased signaling is especially associated with HCC oncogenesis in the context of HCV infection remains obscure as well. Here we review the body of contemporary biomedical knowledge on the role of the Wnt/β-catenin pathway in the progression from chronic hepatitis C to cirrhosis and HCC and explore potential hypotheses as to the mechanisms involved.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, ’s Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, ’s Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| | - Gwenny M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, ’s Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, ’s Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, ’s Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| |
Collapse
|
21
|
Zeng R, Huang J, Zhong MZ, Li L, Yang G, Liu L, Wu Y, Yao X, Shi J, Wu Z. Multiple Roles of WNT5A in Breast Cancer. Med Sci Monit 2016; 22:5058-5067. [PMID: 28005837 PMCID: PMC5201118 DOI: 10.12659/msm.902022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors of women. Modern combinatorial therapeutic regimens can reduce patient tumor burdens to undetectable levels, yet in many cases these tumors will relapse. Understanding of breast cancer biology, developing more potent therapeutic approaches, and overcoming resistance are of great importance. WNT5A is a non-canonical signaling member of the WNT family. Its role in breast cancer still remains unclear. Most of the evidence shows that WNT5A is a suppressor in breast cancer and loss of its expression is associated with poor prognosis, while some evidence suggests the tumorigenicity of WNT5A. WNT signaling molecules are potent targets for treatment of cancer. Therefore, understanding the role of WNT5A in breast cancer may provide new ideas and methods for breast cancer treatment. We review the evidence concerning WNT5A and breast cancer involving the signaling pathways and the molecular-targeted therapy of WNT5A. Our results show that the role WNT5A plays depends on the availability of key receptors and intercellular interactions among different cell types.
Collapse
Affiliation(s)
- Ruolan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Junhui Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Mei-Zuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Li Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Guorong Yang
- Department of Oncology, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China (mainland)
| | - Li Liu
- 32th Department, Hunan Tumor Hospital, The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Yin Wu
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Xiaoyi Yao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Jing Shi
- Department of Oncology, Xiangya Hospital, Central South University,, Changsha, Hunan, China (mainland)
| | - Zhifu Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
22
|
Su T, Washington MK, Ness RM, Rex DK, Smalley WE, Ulbright TM, Cai Q, Zheng W, Shrubsole MJ. Comparison of biomarker expression between proximal and distal colorectal adenomas: The Tennessee-Indiana Adenoma Recurrence Study. Mol Carcinog 2016; 56:761-773. [PMID: 27479195 DOI: 10.1002/mc.22533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/20/2016] [Accepted: 07/29/2016] [Indexed: 12/22/2022]
Abstract
It is unclear if proximal and distal traditional adenomas present with differences in molecular events which contribute to cancer heterogeneity by tumor anatomical subsite. Participants from a colonoscopy-based study (n = 380) were divided into subgroups based on the location of their most advanced adenoma: proximal, distal, or "equivalent both sides." Eight biomarkers in the most advanced adenomas were evaluated by immunohistochemistry (Ki-67, COX-2, TGFβRII, EGFR, β-catenin, cyclin D1, c-Myc) or TUNEL (apoptosis). After an adjustment for pathological features, there were no significant differences between proximal and distal adenomas for any biomarker. Conversely, expression levels did vary by other features, such as their size, villous component, and synchronousness. Large adenomas had higher expression levels of Ki-67(P < 0.001), TGFβRII (P < 0.0001), c-Myc (P < 0.001), and cyclin D1 (P < 0.001) in comparison to small adenomas, and tubulovillous/villous adenomas also were more likely to have similar higher expression levels in comparison to tubular adenomas. Adenoma location is not a major determinant of the expression of these biomarkers outside of other pathological features. This study suggests similarly important roles of Wnt/β-catenin and TGF-β pathways in carcinogenesis in both the proximal and distal colorectum. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Timothy Su
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.,GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - M Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Reid M Ness
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas K Rex
- Division of Gastroenterology/Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Walter E Smalley
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thomas M Ulbright
- Department of Pathology & Laboratory Medicine, Indiana Pathology Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.,GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.,GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.,GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
23
|
Ramachandra CJA, Mehta A, Lua CH, Chitre A, Ja KPMM, Shim W. ErbB Receptor Tyrosine Kinase: A Molecular Switch Between Cardiac and Neuroectoderm Specification in Human Pluripotent Stem Cells. Stem Cells 2016; 34:2461-2470. [PMID: 27324647 DOI: 10.1002/stem.2420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 04/18/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022]
Abstract
Mechanisms determining intrinsic differentiation bias inherent to human pluripotent stem cells (hPSCs) toward cardiogenic fate remain elusive. We evaluated the interplay between ErbB4 and Epidemal growth factor receptor (EGFR or ErbB1) in determining cardiac differentiation in vitro as these receptor tyrosine kinases are key to heart and brain development in vivo. Our results demonstrate that during cardiac differentiation, cell fate biases exist in hPSCs due to cardiac/neuroectoderm divergence post cardiac mesoderm stage. Stage-specific up-regulation of EGFR in concert with persistent Wnt3a signaling post cardiac mesoderm favors commitment toward neural progenitor cells (NPCs). Inhibition of EGFR abrogates these effects with enhanced (>twofold) cardiac differentiation efficiencies by increasing proliferation of Nkx2-5 expressing cardiac progenitors while reducing proliferation of Sox2 expressing NPCs. Forced overexpression of ErbB4 rescued cardiac commitment by augmenting Wnt11 signaling. Convergence between EGFR/ErbB4 and canonical/noncanonical Wnt signaling determines cardiogenic fate in hPSCs. Stem Cells 2016;34:2461-2470.
Collapse
Affiliation(s)
| | - Ashish Mehta
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore. .,Cardiovascular Academic Clinical Program.
| | - Chong Hui Lua
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Anuja Chitre
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - K P Myu Mai Ja
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Winston Shim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore. .,Cardiovascular and Metabolic Disorders Program, DUKE-NUS Graduate Medical School, Singapore.
| |
Collapse
|
24
|
Meinhardt G, Saleh L, Otti GR, Haider S, Velicky P, Fiala C, Pollheimer J, Knöfler M. Wingless ligand 5a is a critical regulator of placental growth and survival. Sci Rep 2016; 6:28127. [PMID: 27311852 PMCID: PMC4911582 DOI: 10.1038/srep28127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/01/2016] [Indexed: 12/26/2022] Open
Abstract
The maternal uterine environment is likely critical for human placental morphogenesis and development of its different trophoblast subtypes. However, factors controlling growth and differentiation of these cells during early gestation remain poorly elucidated. Herein, we provide evidence that the ligand Wnt5a could be a critical regulator of trophoblast proliferation and survival. Immunofluorescence of tissues and western blot analyses of primary cultures revealed abundant Wnt5a expression and secretion from first trimester decidual and villous stromal cells. The ligand was also detectable in decidual glands, macrophages and NK cells. Wnt5a increased proliferation of villous cytotrophoblasts and cell column trophoblasts, outgrowth on collagen I as well as cyclin A and D1 expression in floating explant cultures, but suppressed camptothecin-induced apoptosis. Similarly, Wnt5a stimulated BrdU incorporation and decreased caspase-cleaved cytokeratin 18 neo-epitope expression in primary cytotrophoblasts. Moreover, Wnt5a promoted activation of the MAPK pathway in the different trophoblast models. Chemical inhibition of p42/44 MAPK abolished cyclin D1 expression and Wnt5a-stimulated proliferation. Compared to controls, MAPK phosphorylation and proliferation of cytotrophoblasts declined upon supplementation of supernatants from Wnt5a gene-silenced decidual or villous stromal cells. In summary, non-canonical Wnt5a signalling could play a role in early human trophoblast development by promoting cell proliferation and survival.
Collapse
Affiliation(s)
- Gudrun Meinhardt
- Department of Obstetrics and Gynecology, Reproductive Biology Unit; Medical University of Vienna, Vienna, Austria
| | - Leila Saleh
- Department of Obstetrics and Gynecology, Reproductive Biology Unit; Medical University of Vienna, Vienna, Austria
| | - Gerlinde R. Otti
- Department of Obstetrics and Gynecology, Reproductive Biology Unit; Medical University of Vienna, Vienna, Austria
| | - Sandra Haider
- Department of Obstetrics and Gynecology, Reproductive Biology Unit; Medical University of Vienna, Vienna, Austria
| | - Philipp Velicky
- Department of Obstetrics and Gynecology, Reproductive Biology Unit; Medical University of Vienna, Vienna, Austria
| | | | - Jürgen Pollheimer
- Department of Obstetrics and Gynecology, Reproductive Biology Unit; Medical University of Vienna, Vienna, Austria
| | - Martin Knöfler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit; Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Schulte G. Frizzleds and WNT/β-catenin signaling--The black box of ligand-receptor selectivity, complex stoichiometry and activation kinetics. Eur J Pharmacol 2015; 763:191-5. [PMID: 26003275 DOI: 10.1016/j.ejphar.2015.05.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
Abstract
The lipoglycoproteins of the mammalian WNT family induce β-catenin-dependent signaling through interaction with members of the Class Frizzled receptors and LDL receptor-related protein 5/6 (LRP5/6) albeit with unknown selectivity. The 10 mammalian Frizzleds (FZDs) are seven transmembrane (7TM) spanning receptors and have recently been classified as G protein-coupled receptors (GPCRs). This review summarizes the current knowledge about WNT/FZD selectivity and functional selectivity, the role of co-receptors for signal specification, the formation of receptor complexes as well as the kinetics and mechanisms of signal initiation with focus on WNT/β-catenin signaling. In order to exploit the true therapeutic potential of WNT/FZD signaling to treat human disease, it is clear that substantial progress in the understanding of receptor complex formation and signal specification has to precede a mechanism-based drug design targeting WNT receptors.
Collapse
Affiliation(s)
- Gunnar Schulte
- Department of Physiology & Pharmacology, Section of Receptor Biology & Signaling, Karolinska Institutet, S-17177 Stockholm, Sweden; Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
26
|
Lindsey S, Langhans SA. Epidermal growth factor signaling in transformed cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:1-41. [PMID: 25619714 DOI: 10.1016/bs.ircmb.2014.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Members of the epidermal growth factor receptor (EGFR/ErbB) family play a critical role in normal cell growth and development. However, many ErbB family members, especially EGFR, are aberrantly expressed or deregulated in tumors and are thought to play crucial roles in cancer development and metastatic progression. In this chapter, we provide an overview of key mechanisms contributing to aberrant EGFR/ErbB signaling in transformed cells, which results in many phenotypic changes associated with the earliest stages of tumor formation, including several hallmarks of epithelial-mesenchymal transition (EMT). These changes often occur through interaction with other major signaling pathways important to tumor progression, causing a multitude of transcriptional changes that ultimately impact cell morphology, proliferation, and adhesion, all of which are crucial for tumor progression. The resulting mesh of signaling networks will need to be taken into account as new regimens are designed for targeting EGFR for therapeutic intervention. As new insights are gained into the molecular mechanisms of cross talk between EGFR signaling and other signaling pathways, including their roles in therapeutic resistance to anti-EGFR therapies, a continual reassessment of clinical therapeutic regimes and strategies will be required. Understanding the consequences and complexity of EGF signaling and how it relates to tumor progression is critical for the development of clinical compounds and establishing clinical protocols for the treatment of cancer.
Collapse
Affiliation(s)
- Stephan Lindsey
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Sigrid A Langhans
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| |
Collapse
|
27
|
Knutson TP, Lange CA. Tracking progesterone receptor-mediated actions in breast cancer. Pharmacol Ther 2014; 142:114-25. [PMID: 24291072 PMCID: PMC3943696 DOI: 10.1016/j.pharmthera.2013.11.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 12/13/2022]
Abstract
Ovarian steroid hormones contribute to breast cancer initiation and progression primarily through the actions of their nuclear transcription factors, the estrogen receptor alpha (ERα) and progesterone receptors (PRs). These receptors are important drivers of the luminal A and B subtypes of breast cancer, where estrogen-blocking drugs have been effective endocrine therapies for patients with these tumors. However, many patients do not respond, or become resistant to treatment. When endocrine therapies fail, the luminal subtypes of breast cancer are more difficult to treat because these subtypes are among the most heterogeneous in terms of mutation diversity and gene expression profiles. Recent evidence suggests that progestin and PR actions may be important drivers of luminal breast cancers. Clinical trial data has demonstrated that hormone replacement therapy with progestins drives invasive breast cancer and results in greater mortality. PR transcriptional activity is dependent upon cross-talk with growth factor signaling pathways that alter PR phosphorylation, acetylation, or SUMOylation as mechanisms for regulating PR target gene selection required for increased cell proliferation and survival. Site-specific PR phosphorylation is the primary driver of gene-selective PR transcriptional activity. However, PR phosphorylation and heightened transcriptional activity is coupled to rapid PR protein degradation; the range of active PR detected in tumors is likely to be dynamic. Thus, PR target gene signatures may provide a more accurate means of tracking PR's contribution to tumor progression rather than standard clinical protein-based (IHC) assays. Further development of antiprogestin therapies should be considered alongside antiestrogens and aromatase inhibitors.
Collapse
Affiliation(s)
- Todd P Knutson
- Departments of Medicine, Division of Hematology, Oncology, and Transplantation and Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carol A Lange
- Departments of Medicine, Division of Hematology, Oncology, and Transplantation and Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
28
|
HER. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
29
|
Fong JT, Jacobs RJ, Moravec DN, Uppada SB, Botting GM, Nlend M, Puri N. Alternative signaling pathways as potential therapeutic targets for overcoming EGFR and c-Met inhibitor resistance in non-small cell lung cancer. PLoS One 2013; 8:e78398. [PMID: 24223799 PMCID: PMC3817236 DOI: 10.1371/journal.pone.0078398] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/11/2013] [Indexed: 01/21/2023] Open
Abstract
The use of tyrosine kinase inhibitors (TKIs) against EGFR/c-Met in non-small cell lung cancer (NSCLC) has been shown to be effective in increasing patient progression free survival (PFS), but their efficacy is limited due to the development of resistance and tumor recurrence. Therefore, understanding the molecular mechanisms underlying development of drug resistance in NSCLC is necessary for developing novel and effective therapeutic approaches to improve patient outcome. This study aims to understand the mechanism of EGFR/c-Met tyrosine kinase inhibitor (TKI) resistance in NSCLC. H2170 and H358 cell lines were made resistant to SU11274, a c-Met inhibitor, and erlotinib, an EGFR inhibitor, through step-wise increases in TKI exposure. The IC50 concentrations of resistant lines exhibited a 4–5 and 11–22-fold increase for SU11274 and erlotinib, respectively, when compared to parental lines. Furthermore, mTOR and Wnt signaling was studied in both cell lines to determine their roles in mediating TKI resistance. We observed a 2–4-fold upregulation of mTOR signaling proteins and a 2- to 8-fold upregulation of Wnt signaling proteins in H2170 erlotinib and SU11274 resistant cells. H2170 and H358 cells were further treated with the mTOR inhibitor everolimus and the Wnt inhibitor XAV939. H358 resistant cells were inhibited by 95% by a triple combination of everolimus, erlotinib and SU11274 in comparison to 34% by a double combination of these drugs. Parental H2170 cells displayed no sensitivity to XAV939, while resistant cells were significantly inhibited (39%) by XAV939 as a single agent, as well as in combination with SU11274 and erlotinib. Similar results were obtained with H358 resistant cells. This study suggests a novel molecular mechanism of drug resistance in lung cancer.
Collapse
Affiliation(s)
- Jason T. Fong
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States
| | - Ryan J. Jacobs
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States
| | - David N. Moravec
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States
| | - Srijayaprakash B. Uppada
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States
| | - Gregory M. Botting
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States
| | - Marie Nlend
- Thermo Fisher Scientific, Rockford, Illinois, United States of America
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States
- * E-mail:
| |
Collapse
|
30
|
Zhang X, Zhu J, Li Y, Lin T, Siclari VA, Chandra A, Candela EM, Koyama E, Enomoto-Iwamoto M, Qin L. Epidermal growth factor receptor (EGFR) signaling regulates epiphyseal cartilage development through β-catenin-dependent and -independent pathways. J Biol Chem 2013; 288:32229-32240. [PMID: 24047892 DOI: 10.1074/jbc.m113.463554] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is an essential player in the development of multiple organs during embryonic and postnatal stages. To understand its role in epiphyseal cartilage development, we generated transgenic mice with conditionally inactivated EGFR in chondrocytes. Postnatally, these mice exhibited a normal initiation of cartilage canals at the perichondrium, but the excavation of these canals into the cartilage was strongly suppressed, resulting in a delay in the formation of the secondary ossification center (SOC). This delay was accompanied by normal chondrocyte hypertrophy but decreased mineralization and apoptosis of hypertrophic chondrocytes and reduced osteoclast number at the border of marrow space. Immunohistochemical analyses demonstrated that inactivation of chondrocyte-specific EGFR signaling reduced the amounts of matrix metalloproteinases (MMP9, -13, and -14) and RANKL (receptor activator of NF-κB ligand) in the hypertrophic chondrocytes close to the marrow space and decreased the cartilage matrix degradation in the SOC. Analyses of EGFR downstream signaling pathways in primary epiphyseal chondrocytes revealed that up-regulation of MMP9 and RANKL by EGFR signaling was partially mediated by the canonical Wnt/β-catenin pathway, whereas EGFR-enhanced MMP13 expression was not. Further biochemical studies suggested that EGFR signaling stimulates the phosphorylation of LRP6, increases active β-catenin level, and induces its nuclear translocation. In line with these in vitro studies, deficiency in chondrocyte-specific EGFR activity reduced β-catenin amount in hypertrophic chondrocytes in vivo. In conclusion, our work demonstrates that chondrocyte-specific EGFR signaling is an important regulator of cartilage matrix degradation during SOC formation and epiphyseal cartilage development and that its actions are partially mediated by activating the β-catenin pathway.
Collapse
Affiliation(s)
- Xianrong Zhang
- From the Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,; the Department of Physiology, School of Basic Medical Science, Wuhan University, Wuhan 430072, Hubei Province, China
| | - Ji Zhu
- From the Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yumei Li
- From the Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,; the Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tiao Lin
- From the Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,; the Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Valerie A Siclari
- From the Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Abhishek Chandra
- From the Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Elena M Candela
- the Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Eiki Koyama
- From the Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,; the Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Motomi Enomoto-Iwamoto
- From the Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,; the Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Ling Qin
- From the Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,.
| |
Collapse
|
31
|
Huang Y, Jiang Y, Lu W, Zhang Y. Nemo-like kinase associated with proliferation and apoptosis by c-Myb degradation in breast cancer. PLoS One 2013; 8:e69148. [PMID: 23935942 PMCID: PMC3720543 DOI: 10.1371/journal.pone.0069148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/11/2013] [Indexed: 01/14/2023] Open
Abstract
Nemo-like kinase (NLK), a mediator of the Wnt signaling pathway, binds directly to c-Myb, leading to its phosphorylation, ubiquitination and proteasome-dependent degradation. NLK was significantly downregulated in the breast cancer tissues compared to corresponding normal tissues. NLK expression was negatively correlated with c-Myb expression. NLK suppressed proliferation, induced apoptosis and mediated c-Myb degradation in MCF-7 cells via a mechanism that seems to involve c-myc and Bcl2. These findings might provide a novel target for therapeutic intervention in patients with breast cancer.
Collapse
Affiliation(s)
- Yeqing Huang
- Department of Tumor Chemotherapy, Affiliated Hospital of Nantong University, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Ying Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- * E-mail:
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Zeller E, Hammer K, Kirschnick M, Braeuning A. Mechanisms of RAS/β-catenin interactions. Arch Toxicol 2013; 87:611-32. [PMID: 23483189 DOI: 10.1007/s00204-013-1035-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/28/2013] [Indexed: 12/20/2022]
Abstract
Signaling through the WNT/β-catenin and the RAS (rat sarcoma)/MAPK (mitogen-activated protein kinase) pathways plays a key role in the regulation of various physiological cellular processes including proliferation, differentiation, and cell death. Aberrant mutational activation of these signaling pathways is closely linked to the development of cancer in many organs, in humans as well as in laboratory animals. Over the past years, more and more evidence for a close linkage of the two oncogenic signaling cascades has accumulated. Using different experimental approaches, model systems, and experimental conditions, a variety of molecular mechanisms have been identified by which signal transduction through WNT/β-catenin and RAS interact, either in a synergistic or an antagonistic manner. Mechanisms of interaction comprise an upstream crosstalk at the level of pathway-activating ligands and their receptors, interrelations of cytosolic kinases involved in either pathways, as well as interaction in the nucleus related to the joint regulation of target gene transcription. Here, we present a comprehensive review of the current knowledge on the interaction of RAS/MAPK- and WNT/β-catenin-driven signal transduction in mammalian cells.
Collapse
Affiliation(s)
- Eva Zeller
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Germany
| | | | | | | |
Collapse
|
33
|
Moghbeli M, Abbaszadegan MR, Farshchian M, Montazer M, Raeisossadati R, Abdollahi A, Forghanifard MM. Association of PYGO2 and EGFR in esophageal squamous cell carcinoma. Med Oncol 2013; 30:516. [PMID: 23456637 DOI: 10.1007/s12032-013-0516-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 02/17/2013] [Indexed: 01/14/2023]
Abstract
Wnt signaling is an important evolutionary conserved pathway that is not only involved in determination of cellular development, self-renewal, and fate, but also has significant roles in tumor development and progression. Deregulation of the Wnt/β-catenin signaling pathway and aberrant expression of its components is commonly observed in solid tumors. Such aberrant regulation of Wnt signaling is commonly related to either malfunction of its components or crosstalk with other cellular processes such as the epidermal growth factor receptor (EGFR) signaling cascade. Therefore, identification of the roles of major involved components may be useful to identify new therapeutic targets for cancer treatment. In this study, we assessed EGFR and PYGO2 mRNA expression in tumors and margin normal tissues from 55 esophageal squamous cell carcinoma (ESCC) patients using real-time qRT-PCR, and evaluated clinicopathology relative to the two genes' expression levels. Significant PYGO2 and EGFR overexpression was observed in 30.9 % (P = 0.017) and 38.2 % (P = 0.006) of tumors, respectively. PYGO2 and EGFR expression were significantly associated not only with each other (P < 0.001), but also with tumor staging and depth (P < 0.001). Furthermore, PYGO2 expression was significantly correlated with the tumor grade (P = 0.043) and size (P = 0.023). We identify PYGO2 as a new molecular marker of invasive tumors, introducing its probable oncogenic role in ESCC progression and aggressiveness. In line with other reports, we also illustrate the oncogenic function of EGFR in the development of ESCC through advance stages. We also observed a significant correlation between PYGO2 and EGFR in ESCC tumors, which reveals a mutual convergent influence of these factors in tumor progression and development. Considering aberrant expression, mutual positive feedback, and the significant clinical relevance of these genes in ESCC, we introduce them as appropriate therapeutic targets in adjuvant therapy of ESCC.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | | | | | |
Collapse
|
34
|
Caverzasio J, Biver E, Thouverey C. Predominant role of PDGF receptor transactivation in Wnt3a-induced osteoblastic cell proliferation. J Bone Miner Res 2013; 28:260-70. [PMID: 22927028 DOI: 10.1002/jbmr.1748] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/02/2012] [Accepted: 08/20/2012] [Indexed: 12/17/2022]
Abstract
Previous studies have shown that Wnt3a enhances the proliferation and inhibits the osteogenic differentiation of human mesenchymal stem cells (hMSCs). In this study, we investigated the signaling pathways involved in Wnt3a-induced osteoblastic cell proliferation. Experiments with DKK1, a natural antagonist of Lrp5/6, indicated that Wnt/β-catenin did not play a major role in Wnt3a-induced osteoblastic cell proliferation. The use of selective inhibitors of known mitogenic pathways implicates Src family kinases (SFKs) and a protein kinase C (PKC) in this cellular response. Time-dependent analysis of signaling molecules activated by Wnt3a in MC3T3-E1 cells revealed parallel activation of the canonical pathway and of several tyrosine kinases, including SFKs and PDGF receptors (PDGF-Rs). Functional analysis with specific inhibitors suggested a major role of PDGF-Rs in mediating Wnt3a-induced cell proliferation. Further investigation with an si-RNA approach confirmed a predominant role of this receptor in this cellular response. The use of soluble decoy PDGF-Rs that can sequester extracellular PDGFs excluding that part of the increased PDGF receptor phosphorylation by Wnt3a was the result of autocrine production of PDGFs. A selective SFK inhibitor blunted the enhanced PDGF-R phosphorylation and cell proliferation induced by Wnt3a. Studies of initial events involved in the regulation of this pathway suggest a role of dishevelled. In conclusion, data presented in this study indicate that cell proliferation induced by Wnt3a in osteoblastic cells is mediated by a dishevelled-dependent and β-catenin-independent pathway, which involves the transactivation of PDGF receptors.
Collapse
Affiliation(s)
- Joseph Caverzasio
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland.
| | | | | |
Collapse
|
35
|
Latasa MU, Salis F, Urtasun R, Garcia-Irigoyen O, Elizalde M, Uriarte I, Santamaria M, Feo F, Pascale RM, Prieto J, Berasain C, Avila MA. Regulation of amphiregulin gene expression by β-catenin signaling in human hepatocellular carcinoma cells: a novel crosstalk between FGF19 and the EGFR system. PLoS One 2012; 7:e52711. [PMID: 23285165 PMCID: PMC3527604 DOI: 10.1371/journal.pone.0052711] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/20/2012] [Indexed: 01/20/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent liver tumor and a deadly disease with limited therapeutic options. Dysregulation of cell signaling pathways is a common denominator in tumorigenesis, including hepatocarcinogenesis. The epidermal growth factor receptor (EGFR) signaling system is commonly activated in HCC, and is currently being evaluated as a therapeutic target in combination therapies. We and others have identified a central role for the EGFR ligand amphiregulin (AR) in the proliferation, survival and drug resistance of HCC cells. AR expression is frequently up-regulated in HCC tissues and cells through mechanisms not completely known. Here we identify the β-catenin signaling pathway as a novel mechanism leading to transcriptional activation of the AR gene in human HCC cells. Activation of β-catenin signaling, or expression of the T41A β-catenin active mutant, led to the induction of AR expression involving three specific β-catenin-Tcf responsive elements in its proximal promoter. We demonstrate that HCC cells expressing the T41A β-catenin active mutant show enhanced proliferation that is dependent in part on AR expression and EGFR signaling. We also demonstrate here a novel cross-talk of the EGFR system with fibroblast growth factor 19 (FGF19). FGF19 is a recently identified driver gene in hepatocarcinogenesis and an activator of β-catenin signaling in HCC and colon cancer cells. We show that FGF19 induced AR gene expression through the β-catenin pathway in human HCC cells. Importantly, AR up-regulation and EGFR signaling participated in the induction of cyclin D1 and cell proliferation elicited by FGF19. Finally, we demonstrate a positive correlation between FGF19 and AR expression in human HCC tissues, therefore supporting in clinical samples our experimental observations. These findings identify the AR/EGFR system as a key mediator of FGF19 responses in HCC cells involving β-catenin signaling, and suggest that combined targeting of FGF19 and AR/EGFR may enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Maria U. Latasa
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Fabiana Salis
- Division of Experimental Pathology and Oncology, Department of Clinical and Experimental Medicine & Oncology, University of Sassari, Sassari, Italy
| | - Raquel Urtasun
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Oihane Garcia-Irigoyen
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Maria Elizalde
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, University Clinic, University of Navarra, Pamplona, Spain
| | - Monica Santamaria
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Francesco Feo
- Division of Experimental Pathology and Oncology, Department of Clinical and Experimental Medicine & Oncology, University of Sassari, Sassari, Italy
| | - Rosa M. Pascale
- Division of Experimental Pathology and Oncology, Department of Clinical and Experimental Medicine & Oncology, University of Sassari, Sassari, Italy
| | - Jesús Prieto
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, University Clinic, University of Navarra, Pamplona, Spain
| | - Carmen Berasain
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, University Clinic, University of Navarra, Pamplona, Spain
- * E-mail: (CB); (MAA)
| | - Matías A. Avila
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, University Clinic, University of Navarra, Pamplona, Spain
- * E-mail: (CB); (MAA)
| |
Collapse
|
36
|
Wu Y, Ginther C, Kim J, Mosher N, Chung S, Slamon D, Vadgama JV. Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Mol Cancer Res 2012; 10:1597-606. [PMID: 23071104 DOI: 10.1158/1541-7786.mcr-12-0155-t] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To understand the mechanisms leading to trastuzumab resistance in HER2-overexpressing breast tumors, we created trastuzumab-insensitive cell lines (SKBR3/100-8 and BT474/100-2). The cell lines maintain HER2 receptor overexpression and show increase in EGF receptor (EGFR). Upon trastuzumab treatment, SKBR3/100-8 and BT474/100-2 cell lines displayed increased growth rate and invasiveness. The trastuzumab resistance in SKBR3/100-8 and BT474/100-2 was accompanied with activation of the Wnt/β-catenin signaling pathway. Further investigation found that Wnt3 overexpression played a key role toward the development of trastuzumab resistance. The expression of Wnt3 in trastuzumab-resistant cells increased nuclear expression of β-catenin and transactivated expression of EGFR. The increased Wnt3 in the trastuzumab-resistant cells also promoted a partial EMT-like transition (epithelial-to-mesenchymal transition); increased N-cadherin, Twist, Slug; and decreased E-cadherin. Knockdown of Wnt3 by siRNA restored cytoplasmic expression of β-catenin and decreased EGFR expression in trastuzumab-resistant cells. Furthermore, the EMT markers were decreased, E-cadherin was increased, and the cell invasiveness was inhibited in response to the Wnt3 downregulation. Conversely, SKBR3 cells which had been stably transfected with full-length Wnt3 exhibited EMT-like transition. The Wnt3 transfectants, SKBR3/Wnt3-7 and SKBR3/Wnt3-9, showed a significant decrease in E-cadherin and increase in N-cadherin, Twist, and Slug. The cells were less sensitive to trastuzumab than parental SKBR3 and vector-transfected cells. In summary, our data suggest that Wnt3 overexpression activates Wnt/β-catenin signaling pathway that leads to transactivation of EGFR and promotes EMT-like transition. This could be an important mechanism leading to trastuzumab resistance in HER2-overexpressing breast cancer cells.
Collapse
Affiliation(s)
- Yanyuan Wu
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Naganuma S, Whelan KA, Natsuizaka M, Kagawa S, Kinugasa H, Chang S, Subramanian H, Rhoades B, Ohashi S, Itoh H, Herlyn M, Diehl JA, Gimotty PA, Klein-Szanto AJ, Nakagawa H. Notch receptor inhibition reveals the importance of cyclin D1 and Wnt signaling in invasive esophageal squamous cell carcinoma. Am J Cancer Res 2012; 2:459-475. [PMID: 22860235 PMCID: PMC3410579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/17/2012] [Indexed: 06/01/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive forms of squamous cell carcinomas. Common genetic lesions in ESCC include p53 mutations and EGFR overexpression, both of which have been implicated in negative regulation of Notch signaling. In addition, cyclin D1 is overexpressed in ESCC and can be activated via EGFR, Notch and Wnt signaling. To elucidate how these genetic lesions may interact during the development and progression of ESCC, we tested a panel of genetically engineered human esophageal cells (keratinocytes) in organotypic 3D culture (OTC), a form of human tissue engineering. Notch signaling was suppressed in culture and mice by dominant negative Mastermind-like1 (DNMAML1), a genetic pan-Notch inhibitor. DNMAML1 mice were subjected to 4-Nitroquinoline 1-oxide-induced oral-esophageal carcinogenesis. Highly invasive characteristics of primary human ESCC were recapitulated in OTC as well as DNMAML1 mice. In OTC, cyclin D1 overexpression induced squamous hyperplasia. Concurrent EGFR overexpression and mutant p53 resulted in transformation and invasive growth. Interestingly, cell proliferation appeared to be regulated differentially between those committed to squamous-cell differentiation and those invading into the stroma. Invasive cells exhibited Notch-independent activation of cyclin D1 and Wnt signaling. Within the oral-esophageal squamous epithelia, Notch signaling regulated squamous-cell differentiation to maintain epithelial integrity, and thus may act as a tumor suppressor by preventing the development of a tumor-promoting inflammatory microenvironment.
Collapse
Affiliation(s)
- Seiji Naganuma
- Gastroenterology Division, Department of Medicine, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
- Division of Tumor Pathology, Department of Pathological Sciences, School of Medicine, Faculty of Medical Sciences, University of FukuiEiheiji, Fukui, Japan
| | - Kelly A Whelan
- Gastroenterology Division, Department of Medicine, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
| | - Mitsuteru Natsuizaka
- Gastroenterology Division, Department of Medicine, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
| | - Shingo Kagawa
- Gastroenterology Division, Department of Medicine, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
| | - Hideaki Kinugasa
- Gastroenterology Division, Department of Medicine, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
| | - Sanders Chang
- Gastroenterology Division, Department of Medicine, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
| | - Harry Subramanian
- Gastroenterology Division, Department of Medicine, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
| | - Ben Rhoades
- Gastroenterology Division, Department of Medicine, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
| | - Shinya Ohashi
- Gastroenterology Division, Department of Medicine, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
- Division of Gastroenterology and Hepatology, Digestive Disease Center, The Tazuke Kofukai Medical Research Institute Kitano HospitalOsaka, Japan
| | - Hiroshi Itoh
- Division of Tumor Pathology, Department of Pathological Sciences, School of Medicine, Faculty of Medical Sciences, University of FukuiEiheiji, Fukui, Japan
| | | | - J Alan Diehl
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
- Department of Cancer Biology, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
| | - Phyllis A Gimotty
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
- Division of Biostatistics, Center for Clinical Epidemiology and Biostatistics, University of PennsylvaniaPhiladelphia, PA, USA
| | | | - Hiroshi Nakagawa
- Gastroenterology Division, Department of Medicine, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Casás-Selves M, Kim J, Zhang Z, Helfrich BA, Gao D, Porter CC, Scarborough HA, Bunn PA, Chan DC, Tan AC, DeGregori J. Tankyrase and the canonical Wnt pathway protect lung cancer cells from EGFR inhibition. Cancer Res 2012; 72:4154-64. [PMID: 22738915 DOI: 10.1158/0008-5472.can-11-2848] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of death worldwide. Adenocarcinomas, the most common histologic subtype of non-small cell lung cancer (NSCLC), are frequently associated with activating mutations in the epidermal growth factor receptor (EGFR) gene. Although these patients often respond clinically to the EGFR tyrosine kinase inhibitors erlotinib and gefitinib, relapse inevitably occurs, suggesting the development of escape mechanisms that promote cell survival. Using a loss-of-function, whole genome short hairpin RNA (shRNA) screen, we identified that the canonical Wnt pathway contributes to the maintenance of NSCLC cells during EGFR inhibition, particularly the poly-ADP-ribosylating enzymes tankyrase 1 and 2 that positively regulate canonical Wnt signaling. Inhibition of tankyrase and various other components of the Wnt pathway with shRNAs or small molecules significantly increased the efficacy of EGFR inhibitors both in vitro and in vivo. Our findings therefore reveal a critical role for tankyrase and the canonical Wnt pathway in maintaining lung cancer cells during EGFR inhibition. Targeting the Wnt-tankyrase-β-catenin pathway together with EGFR inhibition may improve clinical outcome in patients with NSCLC.
Collapse
Affiliation(s)
- Matias Casás-Selves
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Khalil S, Tan GA, Giri DD, Zhou XK, Howe LR. Activation status of Wnt/ß-catenin signaling in normal and neoplastic breast tissues: relationship to HER2/neu expression in human and mouse. PLoS One 2012; 7:e33421. [PMID: 22457761 PMCID: PMC3311643 DOI: 10.1371/journal.pone.0033421] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/14/2012] [Indexed: 11/19/2022] Open
Abstract
Wnt/ß-catenin signaling is strongly implicated in neoplasia, but the role of this pathway in human breast cancer has been controversial. Here, we examined Wnt/ß-catenin pathway activation as a function of breast cancer progression, and tested for a relationship with HER2/neu expression, using a human tissue microarray comprising benign breast tissues, ductal carcinoma in situ (DCIS), and invasive carcinomas. Cores were scored for membranous ß-catenin, a key functional component of adherens junctions, and for nucleocytoplasmic ß-catenin, a hallmark of Wnt/ß-catenin pathway activation. Only 82% of benign samples exhibited membrane-associated ß-catenin, indicating a finite frequency of false-negative staining. The frequency of membrane positivity was similar in DCIS samples, but was significantly reduced in carcinomas (45%, P<0.001), consistent with loss of adherens junctions during acquisition of invasiveness. Negative membrane status in cancers correlated with higher grade (P = 0.04) and estrogen receptor-negative status (P = 0.03), both indices of poor prognosis. Unexpectedly, a substantial frequency of nucleocytoplasmic ß-catenin was observed in benign breast tissues (36%), similar to that in carcinomas (35%). Positive-staining basal nuclei observed in benign breast may identify putative stem cells. An increased frequency of nucleocytoplasmic ß-catenin was observed in DCIS tumors (56%), suggesting that pathway activation may be an early event in human breast neoplasia. A correlation was observed between HER2/neu expression and nucleocytoplasmic ß-catenin in node-positive carcinomas (P = 0.02). Furthermore, cytoplasmic ß-catenin was detected in HER2/neu-induced mouse mammary tumors. The Axin2NLSlacZ mouse strain, a previously validated reporter of mammary Wnt/ß-catenin signaling, was utilized to define in vivo transcriptional consequences of HER2/neu-induced ß-catenin accumulation. Discrete hyperplastic foci observed in mammary glands from bigenic MMTV/neu, Axin2NLSlacZ mice, highlighted by robust ß-catenin/TCF signaling, likely represent the earliest stage of mammary intraepithelial neoplasia in MMTV/neu mice. Our study thus provides provocative evidence for Wnt/ß-catenin signaling as an early, HER2/neu-inducible event in breast neoplasia.
Collapse
Affiliation(s)
- Sara Khalil
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, United States of America
| | - Grace A. Tan
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, United States of America
| | - Dilip D. Giri
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Xi Kathy Zhou
- Division of Biostatistics and Epidemiology, Department of Public Health, Weill Cornell Medical College, New York, New York, United States of America
| | - Louise R. Howe
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
40
|
Polysaccharides from Capsosiphon fulvescens stimulate the growth of gastrointestinal cells. ADVANCES IN FOOD AND NUTRITION RESEARCH 2011. [PMID: 22054946 DOI: 10.1016/b978-0-12-387669-0.00013-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Capsosiphon fulvescens is a green alga that is abundant along the southwest coast of South Korea. Although it is consumed for its purported health-enhancing properties, particularly as a treatment for stomach disorders and hangovers, the health effects of dietary C. fulvescens remain unclear. Polysaccharides extracted from C. fulvescens (Cf-PS) are investigated for their effects on the proliferation of rat small intestinal epithelial IEC-6 cells. Cf-PS stimulated IEC-6 cell proliferation in a dose-dependent manner. Further, Cf-PS treatment induced the translocation of β-catenin, an effector of the Wnt signaling pathway, from the cytosol to the nucleus and increased the expression of cyclinD1 and c-myc. Cf-PS also induced ERK1/2 phosphorylation, which is activated by mitogenic and proliferative stimuli such as growth factors, but the phosphorylation of JNK and p38 was not enhanced. Therefore, this chapter discusses the effect of Cf-PS on the growth of gastrointestinal cells.
Collapse
|
41
|
Go H, Hwang HJ, Nam TJ. Polysaccharides from Capsosiphon fulvescens stimulate the growth of IEC-6 Cells by activating the MAPK signaling pathway. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:433-440. [PMID: 20694826 DOI: 10.1007/s10126-010-9314-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 07/24/2010] [Indexed: 05/29/2023]
Abstract
Seaweed extracts show diverse bioactivities, such as antioxidant and antitumor activity. Capsosiphon fulvescens is a green alga that is abundant along the southwest coast of South Korea. Although it is consumed for its purported health-enhancing properties, particularly as a treatment for stomach disorders and hangovers, the health effects of dietary C. fulvescens remain unclear. We extracted polysaccharides from C. fulvescens (Cf-PS), investigated their effects on the proliferation of rat small intestinal epithelial IEC-6 cells, and determined the signaling cascade involved. We cultured IEC-6 cells in the presence of Cf-PS, which stimulated cell proliferation in a dose-dependent manner, and analyzed the Wnt and MAPK signaling pathways, which are related to cell proliferation. Cf-PS treatment induced the translocation of β-catenin, an effector of the Wnt signaling pathway, from the cytosol to the nucleus and increased the expression of cyclinD1 and c-myc. Cf-PS also induced ERK1/2 phosphorylation, which is activated by mitogenic and proliferative stimuli such as growth factors, but the phosphorylation of JNK and p38 was not enhanced. Our results show that Cf-PS regulates proliferation via stimulating the nuclear translocation of β-catenin and ERK1/2 activation in intestinal epithelial cells.
Collapse
Affiliation(s)
- Hiroe Go
- Food Science and Biotechnology, Pukyong National University, Busan, South Korea
| | | | | |
Collapse
|
42
|
Epidermal Growth Factor Receptor (EGFR) Crosstalks in Liver Cancer. Cancers (Basel) 2011; 3:2444-61. [PMID: 24212818 PMCID: PMC3757426 DOI: 10.3390/cancers3022444] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/06/2011] [Accepted: 05/12/2011] [Indexed: 01/11/2023] Open
Abstract
Hepatocarcinogenesis is a complex multistep process in which many different molecular pathways have been implicated. Hepatocellular carcinoma (HCC) is refractory to conventional chemotherapeutic agents, and the new targeted therapies are meeting with limited success. Interreceptor crosstalk and the positive feedback between different signaling systems are emerging as mechanisms of targeted therapy resistance. The identification of such interactions is therefore of particular relevance to improve therapeutic efficacy. Among the different signaling pathways activated in hepatocarcinogenesis the epidermal growth factor receptor (EGFR) system plays a prominent role, being recognized as a “signaling hub” where different extracellular growth and survival signals converge. EGFR can be transactivated in response to multiple heterologous ligands through the physical interaction with multiple receptors, the activity of intracellular kinases or the shedding of EGFR-ligands. In this article we review the crosstalk between the EGFR and other signaling pathways that could be relevant to liver cancer development and treatment.
Collapse
|
43
|
Hölsken A, Gebhardt M, Buchfelder M, Fahlbusch R, Blümcke I, Buslei R. EGFR Signaling Regulates Tumor Cell Migration in Craniopharyngiomas. Clin Cancer Res 2011; 17:4367-77. [PMID: 21562037 DOI: 10.1158/1078-0432.ccr-10-2811] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Annett Hölsken
- Department of Neuropathology, Hospital of the Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Verkaar F, van der Doelen A, Smits J, Blankesteijn W, Zaman G. Inhibition of Wnt/β-Catenin Signaling by p38 MAP Kinase Inhibitors Is Explained by Cross-Reactivity with Casein Kinase Iδ/ɛ. ACTA ACUST UNITED AC 2011; 18:485-94. [DOI: 10.1016/j.chembiol.2011.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 12/13/2010] [Accepted: 01/26/2011] [Indexed: 12/01/2022]
|
45
|
Yoon S, Choi MH, Chang MS, Baik JH. Wnt5a-dopamine D2 receptor interactions regulate dopamine neuron development via extracellular signal-regulated kinase (ERK) activation. J Biol Chem 2011; 286:15641-51. [PMID: 21454669 DOI: 10.1074/jbc.m110.188078] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dopamine D2 receptor (D2R) plays an important role in mesencephalic dopaminergic neuronal development, particularly coupled with extracellular signal-regulated kinase (ERK) activation. Wnt5a protein is known to regulate the development of dopaminergic neurons. We analyzed the effect of Wnt5a on dopaminergic neuron development in mesencephalic primary cultures from wild-type (WT) and D2R knock-out (D2R(-/-)) mice. Treatment with Wnt5a increased the number and neuritic length of dopamine neurons in primary mesencephalic neuronal cultures from WT mice, but not from D2R(-/-) mice. The effect of Wnt5a was completely blocked by treatment with D2R antagonist or inhibitors of MAPK or EGFR. Wnt5a-mediated ERK activation in mesencephalic neuronal cultures was inhibited by treatment of D2R antagonist and EGFR inhibitors in WT mice. However, these regulations were not observed for D2R(-/-) mice. Co-immunoprecipitation and displacement of [(3)H]spiperone from D2R by Wnt5a demonstrated that Wnt5a could bind with D2R. This interaction was confirmed by GST pulldown assays demonstrating that the domain including transmembrane domain 4, second extracellular loop, and transmembrane domain 5 of D2R binds to Wnt5a. These results suggest that the interaction between D2R and Wnt5a has an important role in dopamine neuron development in association with EGFR and the ERK pathway.
Collapse
Affiliation(s)
- Sehyoun Yoon
- School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | | | | | | |
Collapse
|
46
|
Guo ZY, Hao XH, Tan FF, Pei X, Shang LM, Jiang XL, Yang F. The elements of human cyclin D1 promoter and regulation involved. Clin Epigenetics 2011; 2:63-76. [PMID: 22704330 PMCID: PMC3365593 DOI: 10.1007/s13148-010-0018-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 12/07/2010] [Indexed: 02/07/2023] Open
Abstract
Cyclin D1 is a cell cycle machine, a sensor of extracellular signals and plays an important role in G1-S phase progression. The human cyclin D1 promoter contains multiple transcription factor binding sites such as AP-1, NF-қB, E2F, Oct-1, and so on. The extracellular signals functions through the signal transduction pathways converging at the binding sites to active or inhibit the promoter activity and regulate the cell cycle progression. Different signal transduction pathways regulate the promoter at different time to get the correct cell cycle switch. Disorder regulation or special extracellular stimuli can result in cell cycle out of control through the promoter activity regulation. Epigenetic modifications such as DNA methylation and histone acetylation may involved in cyclin D1 transcriptional regulation.
Collapse
Affiliation(s)
- Zhi-Yi Guo
- Experimental and Research Center, Hebei United University, № 57 JianShe South Road, TangShan, Hebei 063000 People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
47
|
Klemm F, Bleckmann A, Siam L, Chuang H, Rietkötter E, Behme D, Schulz M, Schaffrinski M, Schindler S, Trümper L, Kramer F, Beissbarth T, Stadelmann C, Binder C, Pukrop T. β-catenin-independent WNT signaling in basal-like breast cancer and brain metastasis. Carcinogenesis 2010; 32:434-42. [DOI: 10.1093/carcin/bgq269] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
48
|
Rieger ME, Sims AH, Coats ER, Clarke RB, Briegel KJ. The embryonic transcription cofactor LBH is a direct target of the Wnt signaling pathway in epithelial development and in aggressive basal subtype breast cancers. Mol Cell Biol 2010; 30:4267-79. [PMID: 20606007 PMCID: PMC2937547 DOI: 10.1128/mcb.01418-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/29/2009] [Accepted: 06/22/2010] [Indexed: 12/11/2022] Open
Abstract
Limb-bud and heart (LBH) is a novel key transcriptional regulator of vertebrate development. However, the molecular mechanisms upstream of LBH and its role in adult development are unknown. Here we show that in epithelial development, LBH expression is tightly controlled by Wnt signaling. LBH is transcriptionally induced by the canonical Wnt pathway, as evident by the presence of conserved functional T-cell factor (TCF)/lymphoid enhancer-binding factor (LEF) binding sites in the LBH locus and rapid beta-catenin-dependent upregulation of endogenous LBH by Wnt3a. In contrast, LBH induction by Wnt/beta-catenin signaling is inhibited by Wnt7a, which in limb development signals through a noncanonical pathway involving Lmx1b. Furthermore, we show that LBH is aberrantly overexpressed in mammary tumors of mouse mammary tumor virus (MMTV)-Wnt1-transgenic mice and in aggressive basal subtype human breast cancers that display Wnt/beta-catenin hyperactivation. Deregulation of LBH in human basal breast cancer appears to be Wnt/beta-catenin dependent, as DKK1 and Wnt7a inhibit LBH expression in breast tumor cells. Overexpression studies indicate that LBH suppresses mammary epithelial cell differentiation, an effect that could contribute to Wnt-induced tumorigenesis. Taken together, our findings link LBH for the first time to the Wnt signaling pathway in both development and cancer and highlight LBH as a potential new marker for therapeutically challenging basal-like breast cancers.
Collapse
Affiliation(s)
- Megan E. Rieger
- Department of Biochemistry and Molecular Biology, Braman Family Breast Cancer Institute at the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, Breast Biology Group, Paterson Institute for Cancer Research, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Andrew H. Sims
- Department of Biochemistry and Molecular Biology, Braman Family Breast Cancer Institute at the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, Breast Biology Group, Paterson Institute for Cancer Research, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Ebony R. Coats
- Department of Biochemistry and Molecular Biology, Braman Family Breast Cancer Institute at the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, Breast Biology Group, Paterson Institute for Cancer Research, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Robert B. Clarke
- Department of Biochemistry and Molecular Biology, Braman Family Breast Cancer Institute at the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, Breast Biology Group, Paterson Institute for Cancer Research, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Karoline J. Briegel
- Department of Biochemistry and Molecular Biology, Braman Family Breast Cancer Institute at the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, Breast Biology Group, Paterson Institute for Cancer Research, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4BX, United Kingdom
| |
Collapse
|
49
|
Kumar R, Balasenthil S, Pakala SB, Rayala S, Sahin AA, Ohshiro K. Metastasis-associated protein 1 short form stimulates Wnt1 pathway in mammary epithelial and cancer cells. Cancer Res 2010; 70:6598-608. [PMID: 20710043 PMCID: PMC3617568 DOI: 10.1158/0008-5472.can-10-0907] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although Wnt1 downstream signaling components as well as cytoplasmic level of metastatic tumor antigen 1 short form (MTA1s) are elevated in human breast cancer, it remains unknown whether a regulatory cross-talk exists between these two pathways. Here, we provide evidence of a remarkable correlation between the levels of MTA1s and stimulation of the Wnt1 signaling components, leading to increased stabilization of beta-catenin and stimulation of Wnt1 target genes in the murine mammary epithelial and human breast cancer cells. We found that MTA1s influences Wnt1 pathway through extracellular signal-regulated kinase (ERK) signaling as selective silencing of the endogenous MTA1s or ERK, or its target glycogen synthase kinase 3beta resulted in a substantial decrease in beta-catenin expression, leading to the inhibition of Wnt1 target genes. Furthermore, downregulation of beta-catenin in cells with elevated MTA1s level was accompanied by a corresponding decrease in the expression of Wnt1 target genes, establishing a mechanistic role for the ERK/glycogen synthase kinase 3beta/beta-catenin pathway in the stimulation of the Wnt1 target genes by MTA1s in mammary epithelial cells. In addition, mammary glands from the virgin MTA1s transgenic mice mimicked the phenotypic changes found in the Wnt1 transgenic mice and exhibited an overall hyperactivation of the Wnt1 signaling pathway, leading to increased stabilization and nuclear accumulation of beta-catenin. Mammary glands from the virgin MTA1s-TG mice revealed ductal hyperplasia and ductal carcinoma in situ, and low incidence of palpable tumors. These findings reveal a previously unrecognized role for MTA1s as an important modifier of the Wnt1 signaling in mammary epithelial and cancer cells.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, District of Columbia 20037, USA
- Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Seetharaman Balasenthil
- Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Suresh B. Pakala
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, District of Columbia 20037, USA
| | - Suresh Rayala
- Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Aysegul A. Sahin
- Department of Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kazufumi Ohshiro
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, District of Columbia 20037, USA
| |
Collapse
|
50
|
Deng Y, Yu B, Cheng Q, Jin J, You H, Ke R, Tang N, Shen Q, Shu H, Yao G, Zhang Z, Qin W. Epigenetic silencing of WIF-1 in hepatocellular carcinomas. J Cancer Res Clin Oncol 2010; 136:1161-7. [PMID: 20119713 DOI: 10.1007/s00432-010-0763-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 01/12/2010] [Indexed: 12/13/2022]
Abstract
PURPOSE To examine the expression profile and promoter methylation status of WIF-1 in hepatocellular carcinoma (HCC) and identify the possible relationship between the WIF-1 expression pattern and promoter methylation status. METHODS Quantitative real-time PCR was performed to detect mRNA level of WIF-1 in 4 HCC cell lines, 15 paired HCC clinical samples and 3 normal liver tissues. Methylation-specific PCR and bisulfite DNA sequencing were used in methylation analysis. In vitro assays for HCC cells, colony formation and cell proliferation assay were carried out to observe the effect of WIF-1 on cell growth; TOP-flash luciferase analysis was employed to determine its role in the Wnt pathway. RESULTS Quantitative real-time PCR analysis showed the extensive low expression of WIF-1 mRNA in HCC, and this down-regulation was generally dependent on the degree of methylation at its promoter region. In vitro assays indicated WIF-1 can inhibit cell growth by blocking Wnt signaling in HCC cells. CONCLUSIONS WIF-1 silencing as a result of its promoter hypermethylation may be a frequent event in HCC.
Collapse
Affiliation(s)
- Yun Deng
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|