1
|
Evans MM, Liu S, Krautner JS, Seguin CG, Leung R, Ronald JA. Evaluation of DNA minicircles for delivery of adenine and cytosine base editors using activatable gene on "GO" reporter imaging systems. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102248. [PMID: 39040503 PMCID: PMC11260848 DOI: 10.1016/j.omtn.2024.102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/07/2024] [Indexed: 07/24/2024]
Abstract
Over 30,000 point mutations are associated with debilitating diseases, including many cancer types, underscoring a critical need for targeted genomic solutions. CRISPR base editors, like adenine base editors (ABEs) and cytosine base editors (CBEs), enable precise modifications by converting adenine to guanine and cytosine to thymine, respectively. Challenges in efficiency and safety concerns regarding viral vectors used in delivery limit the scope of base editing. This study introduces non-viral minicircles, bacterial-backbone-free plasmids, as a delivery vehicle for ABEs and CBEs. The research uses cells engineered with the "Gene On" (GO) reporter gene systems for tracking minicircle-delivered ABEs, CBEs, or Cas9 nickase (control), using green fluorescent protein (GFPGO), bioluminescence reporter firefly luciferase (LUCGO), or a highly sensitive Akaluciferase (AkalucGO) designed in this study. The results show that transfection of minicircles expressing CBE or ABE resulted in significantly higher GFP expression and luminescence signals over controls, with minicircles demonstrating the most substantial editing. This study presents minicircles as a new strategy for base editor delivery and develops an enhanced bioluminescence imaging reporter system for tracking ABE activity. Future studies aim to evaluate the use of minicircles in preclinical cancer models, facilitating potential clinical applications.
Collapse
Affiliation(s)
- Melissa M. Evans
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Shirley Liu
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Joshua S. Krautner
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Caroline G. Seguin
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Rajan Leung
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 5C1, Canada
| | - John A. Ronald
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 5C1, Canada
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
2
|
Sinegubova MV, Orlova NA, Vorobiev II. Promoter from Chinese hamster elongation factor-1a gene and Epstein-Barr virus terminal repeats concatemer fragment maintain stable high-level expression of recombinant proteins. PeerJ 2023; 11:e16287. [PMID: 37901457 PMCID: PMC10607201 DOI: 10.7717/peerj.16287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Background The Chinese hamster ovary (CHO) cell line is the main host for the high-titer production of therapeutic and diagnostic proteins in the biopharmaceutical industry. In most cases, plasmids for efficient protein expression in CHO cells are based on the cytomegalovirus (CMV) promoter. The autologous Chinese hamster eukaryotic translation elongation factor 1α (EEF1A1) promoter is a viable alternative to the CMV promoter in industrial applications. The EEF1A1 promoter and its surrounding DNA regions proved to be effective at maintaining high-level and stable expression of recombinant proteins in CHO cells. EEF1A1-based plasmids' large size can lead to low transfection efficiency and hamper target gene amplification. We hypothesized that an efficient EEF1A1-based expression vector with a long terminal repeat fragment from the Epstein-Barr virus (EBVTR) could be truncated without affecting promoter strength or the long-term stability of target gene expression. Methods We made a series of deletions in the downstream flanking region of the EEF1A1 gene, and then in its upstream flanking region. The resulting plasmids, which coded for the enhanced green fluorescent protein (eGFP), were tested for the level of eGFP expression in the populations of stably transfected CHO DG44 cells and the stability of eGFP expression in the long-term culture in the absence of selection agents. Results It was shown that in the presence of the EBVTR fragment, the entire downstream flanking region of the EEF1A1 gene could be excluded from the plasmid vector. Shortening of the upstream flanking region of the EEF1A1 gene to a length of 2.5 kbp also had no significant effect on the level of eGFP expression or long-term stability. The EBVTR fragment significantly increased expression stability for both the CMV and EEF1A1 promoter-based plasmids, and the expression level drop during the two-month culture was more significant for both CMV promoter-based plasmids. Conclusion Target protein expression stability for the truncated plasmid, based on the EEF1A1 gene and EBVTR fragment, is sufficient for common biopharmaceutical applications, making these plasmid vectors a viable alternative to conventional CMV promoter-based vectors.
Collapse
Affiliation(s)
- Maria V. Sinegubova
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda A. Orlova
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan I. Vorobiev
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Li Y, Yu Q, Huang R, Chen H, Ren H, Ma L, He Y, Li W. SARS-CoV-2 SUD2 and Nsp5 Conspire to Boost Apoptosis of Respiratory Epithelial Cells via an Augmented Interaction with the G-Quadruplex of BclII. mBio 2023; 14:e0335922. [PMID: 36853058 PMCID: PMC10127692 DOI: 10.1128/mbio.03359-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
The molecular mechanisms underlying how SUD2 recruits other proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to exert its G-quadruplex (G4)-dependent pathogenic function is unknown. Herein, Nsp5 was singled out as a binding partner of the SUD2-N+M domains (SUD2core) with high affinity, through the surface located crossing these two domains. Biochemical and fluorescent assays demonstrated that this complex also formed in the nucleus of living host cells. Moreover, the SUD2core-Nsp5 complex displayed significantly enhanced selective binding affinity for the G4 structure in the BclII promoter than did SUD2core alone. This increased stability exhibited by the tertiary complex was rationalized by AlphaFold2 and molecular dynamics analysis. In line with these molecular interactions, downregulation of BclII and subsequent augmented apoptosis of respiratory cells were both observed. These results provide novel information and a new avenue to explore therapeutic strategies targeting SARS-CoV-2. IMPORTANCE SUD2, a unique protein domain closely related to the pathogenesis of SARS-CoV-2, has been reported to bind with the G-quadruplex (G4), a special noncanonical DNA structure endowed with important functions in regulating gene expression. However, the interacting partner of SUD2, among other SARS-CoV-2 Nsps, and the resulting functional consequences remain unknown. Here, a stable complex formed between SUD2 and Nsp5 was fully characterized both in vitro and in host cells. Moreover, this complex had a significantly enhanced binding affinity specifically targeting the Bcl2G4 in the promoter region of the antiapoptotic gene BclII, compared with SUD2 alone. In respiratory epithelial cells, the SUD2-Nsp5 complex promoted BclII-mediated apoptosis in a G4-dependent manner. These results reveal fresh information about matched multicomponent interactions, which can be parlayed to develop new therapeutics for future relevant viral disease.
Collapse
Affiliation(s)
- Ying Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Quanwei Yu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ridong Huang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hequan Ren
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lingling Ma
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Rodgers TM, Muzzio N, Valero A, Ahmad I, Lüdtke TU, Moya SE, Romero G. Poly (β-amino Ester) Nanoparticles Modified with a Rabies Virus-derived peptide for the Delivery of ASCL1 Across a 3D In Vitro Model of the Blood Brain Barrier. ACS APPLIED NANO MATERIALS 2023; 6:6299-6311. [PMID: 37274933 PMCID: PMC10234607 DOI: 10.1021/acsanm.3c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gene editing has emerged as a therapeutic approach to manipulate the genome for killing cancer cells, protecting healthy tissues, and improving immune response to a tumor. The gene editing tool achaete-scute family bHLH transcription factor 1 CRISPR guide RNA (ASCL1-gRNA) is known to restore neuronal lineage potential, promote terminal differentiation, and attenuate tumorigenicity in glioblastoma tumors. Here, we fabricated a polymeric nonviral carrier to encapsulate ASCL1-gRNA by electrostatic interactions and deliver it into glioblastoma cells across a 3D in vitro model of the blood-brain barrier (BBB). To mimic rabies virus (RV) neurotropism, gene-loaded poly (β-amino ester) nanoparticles are surface functionalized with a peptide derivative of rabies virus glycoprotein (RVG29). The capability of the obtained NPs, hereinafter referred to as RV-like NPs, to travel across the BBB, internalize into glioblastoma cells and deliver ASCL1-gRNA are investigated in a 3D BBB in vitro model through flow cytometry and CLSM microscopy. The formation of nicotinic acetylcholine receptors in the 3D BBB in vitro model is confirmed by immunochemistry. These receptors are known to bind to RVG29. Unlike Lipofectamine that primarily internalizes and transfects endothelial cells, RV-like NPs are capable to travel across the BBB, preferentially internalize glioblastoma cells and deliver ASCL1-gRNA at an efficiency of 10 % causing non-cytotoxic effects.
Collapse
Affiliation(s)
- Tina M Rodgers
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| | - Andrea Valero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| | - Ikram Ahmad
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| | - Tanja Ursula Lüdtke
- Soft Matter Nanotechnology, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, Donostia/San Sebastian, Gipuzkoa, 20014 Spain
| | - Sergio E Moya
- Soft Matter Nanotechnology, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, Donostia/San Sebastian, Gipuzkoa, 20014 Spain
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| |
Collapse
|
5
|
Moradi P, Hasanzadeh A, Radmanesh F, Rajai Daryasarei S, Hosseini ES, Kiani J, Shahbazi A, Nourizadeh H, Eslami M, Dorgalaleh A, Sahlolbei M, Hamblin MR, Karimi M. Smart arginine-equipped polycationic nanoparticles for p/CRISPR delivery into cells. NANOTECHNOLOGY 2021; 33:075104. [PMID: 34727527 DOI: 10.1088/1361-6528/ac357a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
An efficient and safe delivery system for the transfection of CRISPR plasmid (p/CRISPR) into target cells can open new avenues for the treatment of various diseases. Herein, we design a novel nonvehicle by integrating an arginine-disulfide linker with low-molecular-weight PEI (PEI1.8k) for the delivery of p/CRISPR. These PEI1.8k-Arg nanoparticles facilitate the plasmid release and improve both membrane permeability and nuclear localization, thereby exhibiting higher transfection efficiency compared to native PEI1.8kin the delivery of nanocomplexes composed of PEI1.8k-Arg and p/CRISPR into conventional cells (HEK 293T). This nanovehicle is also able to transfect p/CRISPR in a wide variety of cells, including hard-to-transfect primary cells (HUVECs), cancer cells (HeLa), and neuronal cells (PC-12) with nearly 5-10 times higher efficiency compared to the polymeric gold standard transfection agent. Furthermore, the PEI1.8k-Arg nanoparticles can edit the GFP gene in the HEK 293T-GFP reporter cell line by delivering all possible forms of CRISPR/Cas9 system (e.g. plasmid encoding Cas9 and sgRNA targeting GFP, and Cas9/sgRNA ribonucleoproteins (RNPs) as well as Cas9 expression plasmid andin vitro-prepared sgRNA) into HEK 293T-GFP cells. The successful delivery of p/CRISPR into local brain tissue is also another remarkable capability of these nanoparticles. In view of all the exceptional benefits of this safe nanocarrier, it is expected to break new ground in the field of gene editing, particularly for therapeutic purposes.
Collapse
Affiliation(s)
- Pardis Moradi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Akbar Hasanzadeh
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Radmanesh
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saideh Rajai Daryasarei
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Elaheh Sadat Hosseini
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Helena Nourizadeh
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Eslami
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Applied Biotechnology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Akbar Dorgalaleh
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sahlolbei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Wang X, Alshehri F, Manzanares D, Li Y, He Z, Qiu B, Zeng M, A S, Lara-Sáez I, Wang W. Development of Minicircle Vectors Encoding COL7A1 Gene with Human Promoters for Non-Viral Gene Therapy for Recessive Dystrophic Epidermolysis Bullosa. Int J Mol Sci 2021; 22:ijms222312774. [PMID: 34884578 PMCID: PMC8657908 DOI: 10.3390/ijms222312774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 01/31/2023] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare autosomal inherited skin disorder caused by mutations in the COL7A1 gene that encodes type VII collagen (C7). The development of an efficient gene replacement strategy for RDEB is mainly hindered by the lack of vectors able to encapsulate and transfect the large cDNA size of this gene. To address this problem, our group has opted to use polymeric-based non-viral delivery systems and minicircle DNA. With this approach, safety is improved by avoiding the usage of viruses, the absence of bacterial backbone, and the replacement of the control viral cytomegalovirus (CMV) promoter of the gene with human promoters. All the promoters showed impressive C7 expression in RDEB skin cells, with eukaryotic translation elongation factor 1 α (EF1α) promoter producing higher C7 expression levels than CMV following minicircle induction, and COL7A1 tissue-specific promoter (C7P) generating C7 levels similar to normal human epidermal keratinocytes. The improved system developed here has a high potential for use as a non-viral topical treatment to restore C7 in RDEB patients efficiently and safely, and to be adapted to other genetic conditions.
Collapse
Affiliation(s)
- Xianqing Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (X.W.); (D.M.); (Y.L.); (Z.H.); (B.Q.); (M.Z.); (S.A.)
| | - Fatma Alshehri
- College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Darío Manzanares
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (X.W.); (D.M.); (Y.L.); (Z.H.); (B.Q.); (M.Z.); (S.A.)
| | - Yinghao Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (X.W.); (D.M.); (Y.L.); (Z.H.); (B.Q.); (M.Z.); (S.A.)
| | - Zhonglei He
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (X.W.); (D.M.); (Y.L.); (Z.H.); (B.Q.); (M.Z.); (S.A.)
| | - Bei Qiu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (X.W.); (D.M.); (Y.L.); (Z.H.); (B.Q.); (M.Z.); (S.A.)
| | - Ming Zeng
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (X.W.); (D.M.); (Y.L.); (Z.H.); (B.Q.); (M.Z.); (S.A.)
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (X.W.); (D.M.); (Y.L.); (Z.H.); (B.Q.); (M.Z.); (S.A.)
| | - Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (X.W.); (D.M.); (Y.L.); (Z.H.); (B.Q.); (M.Z.); (S.A.)
- Correspondence: (I.L.-S.); (W.W.)
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (X.W.); (D.M.); (Y.L.); (Z.H.); (B.Q.); (M.Z.); (S.A.)
- Correspondence: (I.L.-S.); (W.W.)
| |
Collapse
|
7
|
Mangion M, Robert MA, Slivac I, Gilbert R, Gaillet B. Production and Use of Gesicles for Nucleic Acid Delivery. Mol Biotechnol 2021; 64:278-292. [PMID: 34596870 DOI: 10.1007/s12033-021-00389-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 09/08/2021] [Indexed: 12/29/2022]
Abstract
Over-expression of the vesicular stomatitis virus glycoprotein (VSVG) in mammalian cells can induce the formation of VSVG-pseudotyped vesicles (named "gesicles") from membrane budding. Its use as a nucleic acid delivery tool is still poorly documented. Naked-plasmid DNA can be delivered in animal cells with gesicles in presence of hexadimethrine bromide (polybrene). However, little is known about gesicle manufacturing process and conditions to obtain successful nucleic acid delivery. In this study, gesicles production process using polyethylenimine (PEI)-transfected HEK293 cells was developed by defining the VSVG-plasmid concentration, the DNA:PEI mass ratio, and the time of gesicle harvest. Furthermore, parameters described in the literature relevant for nucleic acid delivery such as (i) component concentrations in assembly mixture, (ii) component addition order, (iii) incubation time, and (iv) polybrene concentration were tested by assessing the transfection capacity of the gesicles complexed with a green fluorescent protein (GFP)-coding plasmid. Interestingly, freezing/thawing cycles and storage at + 4 °C, - 20 °C, and - 80 °C did not reduce gesicles' ability to transfer plasmid DNA. Transfection efficiency of 55% and 22% was obtained for HeLa cells and for hard-to-transfect cells such as human myoblasts, respectively. For the first time, gesicles were used for delivery of a large plasmid (18-kb) with 42% of efficiency and for enhanced green fluorescent protein (eGFP) gene silencing with siRNA (up to 60%). In conclusion, gesicles represent attractive bioreagents with great potential to deliver nucleic acids in mammalian cells.
Collapse
Affiliation(s)
- Mathias Mangion
- Chemical Engineering Department, Laval University, Pouliot Building, 1065 Avenue de la Médecine, Québec, QC, G1V0A6, Canada.,PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université Laval, Vachon Building, local 3403, 1045 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada.,ThéCell: FRQS Cell and Tissue Therapy Network, LOEX, Aile R, local R-125, Hôpital de l'Enfant-Jésus, 1401 18e rue, Québec, QC, G1J 1Z4, Canada
| | - Marc-André Robert
- Chemical Engineering Department, Laval University, Pouliot Building, 1065 Avenue de la Médecine, Québec, QC, G1V0A6, Canada.,PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université Laval, Vachon Building, local 3403, 1045 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada.,ThéCell: FRQS Cell and Tissue Therapy Network, LOEX, Aile R, local R-125, Hôpital de l'Enfant-Jésus, 1401 18e rue, Québec, QC, G1J 1Z4, Canada.,Human Health Therapeutics Portfolio, National Research Council Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Igor Slivac
- Chemical Engineering Department, Laval University, Pouliot Building, 1065 Avenue de la Médecine, Québec, QC, G1V0A6, Canada.,PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université Laval, Vachon Building, local 3403, 1045 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada.,ThéCell: FRQS Cell and Tissue Therapy Network, LOEX, Aile R, local R-125, Hôpital de l'Enfant-Jésus, 1401 18e rue, Québec, QC, G1J 1Z4, Canada
| | - Rénald Gilbert
- ThéCell: FRQS Cell and Tissue Therapy Network, LOEX, Aile R, local R-125, Hôpital de l'Enfant-Jésus, 1401 18e rue, Québec, QC, G1J 1Z4, Canada.,Human Health Therapeutics Portfolio, National Research Council Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Bruno Gaillet
- Chemical Engineering Department, Laval University, Pouliot Building, 1065 Avenue de la Médecine, Québec, QC, G1V0A6, Canada. .,PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université Laval, Vachon Building, local 3403, 1045 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada. .,ThéCell: FRQS Cell and Tissue Therapy Network, LOEX, Aile R, local R-125, Hôpital de l'Enfant-Jésus, 1401 18e rue, Québec, QC, G1J 1Z4, Canada.
| |
Collapse
|
8
|
Genetic code expansion in mammalian cells: A plasmid system comparison. Bioorg Med Chem 2020; 28:115772. [PMID: 33069552 DOI: 10.1016/j.bmc.2020.115772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022]
Abstract
Genetic code expansion with unnatural amino acids (UAAs) has significantly broadened the chemical repertoire of proteins. Applications of this method in mammalian cells include probing of molecular interactions, conditional control of biological processes, and new strategies for therapeutics and vaccines. A number of methods have been developed for transient UAA mutagenesis in mammalian cells, each with unique features and advantages. All have in common a need to deliver genes encoding additional protein biosynthetic machinery (an orthogonal tRNA/tRNA synthetase pair) and a gene for the protein of interest. In this study, we present a comparative evaluation of select plasmid-based genetic code expansion systems and a detailed analysis of suppression efficiency with different UAAs and in different cell lines.
Collapse
|
9
|
Janich C, Ivanusic D, Giselbrecht J, Janich E, Pinnapireddy SR, Hause G, Bakowsky U, Langner A, Wölk C. Efficient Transfection of Large Plasmids Encoding HIV-1 into Human Cells-A High Potential Transfection System Based on a Peptide Mimicking Cationic Lipid. Pharmaceutics 2020; 12:pharmaceutics12090805. [PMID: 32854383 PMCID: PMC7559901 DOI: 10.3390/pharmaceutics12090805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 11/23/2022] Open
Abstract
One major disadvantage of nucleic acid delivery systems is the low transfection or transduction efficiency of large-sized plasmids into cells. In this communication, we demonstrate the efficient transfection of a 15.5 kb green fluorescent protein (GFP)-fused HIV-1 molecular clone with a nucleic acid delivery system prepared from the highly potent peptide-mimicking cationic lipid OH4 in a mixture with the phospholipid DOPE (co-lipid). For the transfection, liposomes were loaded using a large-sized plasmid (15.5 kb), which encodes a replication-competent HIV type 1 molecular clone that carries a Gag-internal green fluorescent protein (HIV-1 JR-FL Gag-iGFP). The particle size and charge of the generated nanocarriers with 15.5 kb were compared to those of a standardized 4.7 kb plasmid formulation. Stable, small-sized lipoplexes could be generated independently of the length of the used DNA. The transfer of fluorescently labeled pDNA-HIV1-Gag-iGFP in HEK293T cells was monitored using confocal laser scanning microscopy (cLSM). After efficient plasmid delivery, virus particles were detectable as budding structures on the plasma membrane. Moreover, we observed a randomized distribution of fluorescently labeled lipids over the plasma membrane. Obviously, a significant exchange of lipids between the drug delivery system and the cellular membranes occurs, which hints toward a fusion process. The mechanism of membrane fusion for the internalization of lipid-based drug delivery systems into cells is still a frequently discussed topic.
Collapse
Affiliation(s)
- Christopher Janich
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany; (J.G.); or (C.W.)
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (S.R.P.); (U.B.)
- Correspondence: (C.J.); (A.L.); Tel.: +49-3-455-52-5080 (C.J.); +49-3-419-71-1902 (A.L.)
| | - Daniel Ivanusic
- Robert Koch Institute, Division 18: HIV and Other Retroviruses, Nordufer 20, 13353 Berlin, Germany; (D.I.); (E.J.)
| | - Julia Giselbrecht
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany; (J.G.); or (C.W.)
| | - Elena Janich
- Robert Koch Institute, Division 18: HIV and Other Retroviruses, Nordufer 20, 13353 Berlin, Germany; (D.I.); (E.J.)
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (S.R.P.); (U.B.)
| | - Gerd Hause
- Biocenter, MLU Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany;
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (S.R.P.); (U.B.)
| | - Andreas Langner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany; (J.G.); or (C.W.)
- Correspondence: (C.J.); (A.L.); Tel.: +49-3-455-52-5080 (C.J.); +49-3-419-71-1902 (A.L.)
| | - Christian Wölk
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany; (J.G.); or (C.W.)
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, Leipzig University, Eilenburger Strasse 15a, 04317 Leipzig, Germany
| |
Collapse
|
10
|
Abd Elhameed HAH, Ungor D, Igaz N, Gopisetty MK, Kiricsi M, Csapó E, Gyurcsik B. High Molecular Weight Poly(ethylenimine)-Based Water-Soluble Lipopolymer for Transfection of Cancer Cells. Macromol Biosci 2020; 20:e2000040. [PMID: 32449312 DOI: 10.1002/mabi.202000040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/15/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022]
Abstract
Over the past decade, search for novel materials for nucleic acid delivery has prompted a special interest in polymeric nanoparticles (NPs). In this study, the biological applicability of a water-soluble cationic lipopolymer (WSLP) obtained by the modification of high molecular weight branched poly(ethylenimine) (PEI) with cholesteryl chloroformate is characterized and assessed for better cellular membrane permeability. To test the delivery efficiency of the produced lipopolymer, plasmid DNA (pDNA) encoding the enhanced green fluorescent protein and WSLP are mixed at different charge ratios. WSLP and WSLP/pDNA complexes are characterized by dynamic and static light scattering, particle charge detection, scanning electron microscopy, and transmission electron microscopy. The pDNA loading of WSLP is also verified by agarose gel electrophoresis. Cytotoxicity of PEI, WSLP, and of WSLP/pDNA is evaluated on human A549 and HeLa cells. A remarkable dependence of the toxicity on the dose, cholesterylation, and charge ratio is detected. Transfection is monitored by flow cytometry and by fluorescence microscopy. Importantly, cholesterylation decreases the toxicity of the polymer, while promoting high transfection efficiency in both cell lines. This work indicates a possible optimization mode of the high molecular weight PEI-based WSLP rendering it a promising candidate for gene delivery.
Collapse
Affiliation(s)
| | - Ditta Ungor
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology Doctoral School of Biology, University of Szeged, Közép fasor 52, Szeged, H-6726, Hungary
| | - Mohana Krishna Gopisetty
- Department of Biochemistry and Molecular Biology Doctoral School of Biology, University of Szeged, Közép fasor 52, Szeged, H-6726, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology Doctoral School of Biology, University of Szeged, Közép fasor 52, Szeged, H-6726, Hungary
| | - Edit Csapó
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary.,Faculty of Medicine, MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged, H-6720, Hungary
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary
| |
Collapse
|
11
|
Zhang Y, Yin C, Hu L, Chen Z, Zhao F, Li D, Ma J, Ma X, Su P, Qiu W, Yang C, Wang P, Li S, Zhang G, Wang L, Qian A, Xian CJ. MACF1 Overexpression by Transfecting the 21 kbp Large Plasmid PEGFP-C1A-ACF7 Promotes Osteoblast Differentiation and Bone Formation. Hum Gene Ther 2019; 29:259-270. [PMID: 29334773 DOI: 10.1089/hum.2017.153] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microtubule actin crosslinking factor 1 (MACF1) is a large spectraplakin protein known to have crucial roles in regulating cytoskeletal dynamics, cell migration, growth, and differentiation. However, its role and action mechanism in bone remain unclear. The present study investigated optimal conditions for effective transfection of the large plasmid PEGFP-C1A-ACF7 (∼21 kbp) containing full-length human MACF1 cDNA, as well as the potential role of MACF1 in bone formation. To enhance MACF1 expression, the plasmid was transfected into osteogenic cells by electroporation in vitro and into mouse calvaria with nanoparticles. Then, transfection efficiency, osteogenic marker expression, calvarial thickness, and bone formation were analyzed. Notably, MACF1 overexpression triggered a drastic increase in osteogenic gene expression, alkaline phosphatase activity, and matrix mineralization in vitro. Mouse calvarial thickness, mineral apposition rate, and osteogenic marker protein expression were significantly enhanced by local transfection. In addition, MACF1 overexpression promoted β-catenin expression and signaling. In conclusion, MACF1 overexpression by transfecting the large plasmid containing full-length MACF1 cDNA promotes osteoblast differentiation and bone formation via β-catenin signaling. Current data will provide useful experimental parameters for the transfection of large plasmids and a novel strategy based on promoting bone formation for prevention and therapy of bone disorders.
Collapse
Affiliation(s)
- Yan Zhang
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Chong Yin
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Lifang Hu
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Zhihao Chen
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Fan Zhao
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Dijie Li
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Jianhua Ma
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Xiaoli Ma
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Peihong Su
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Wuxia Qiu
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Chaofei Yang
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Pai Wang
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Siyu Li
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Ge Zhang
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Liping Wang
- 4 Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, Australia
| | - Airong Qian
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Cory J Xian
- 4 Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, Australia
| |
Collapse
|
12
|
Boyle WS, Twaroski K, Woska EC, Tolar J, Reineke TM. Molecular Additives Significantly Enhance Glycopolymer-Mediated Transfection of Large Plasmids and Functional CRISPR-Cas9 Transcription Activation Ex Vivo in Primary Human Fibroblasts and Induced Pluripotent Stem Cells. Bioconjug Chem 2018; 30:418-431. [DOI: 10.1021/acs.bioconjchem.8b00760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Givens BE, Naguib YW, Geary SM, Devor EJ, Salem AK. Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics. AAPS J 2018; 20:108. [PMID: 30306365 PMCID: PMC6398936 DOI: 10.1208/s12248-018-0267-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022] Open
Abstract
The recent progress in harnessing the efficient and precise method of DNA editing provided by CRISPR/Cas9 is one of the most promising major advances in the field of gene therapy. However, the development of safe and optimally efficient delivery systems for CRISPR/Cas9 elements capable of achieving specific targeting of gene therapy to the location of interest without off-target effects is a primary challenge for clinical therapeutics. Nanoparticles (NPs) provide a promising means to meet such challenges. In this review, we present the most recent advances in developing innovative NP-based delivery systems that efficiently deliver CRISPR/Cas9 constructs and maximize their effectiveness.
Collapse
Affiliation(s)
- Brittany E Givens
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
- Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Youssef W Naguib
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Sean M Geary
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Eric J Devor
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA.
- Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
14
|
Effective PEI-mediated delivery of CRISPR-Cas9 complex for targeted gene therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2095-2102. [DOI: 10.1016/j.nano.2018.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 11/23/2022]
|
15
|
Kretzmann JA, Evans CW, Norret M, Blancafort P, Swaminathan Iyer K. Non-viral Methodology for Efficient Co-transfection. Methods Mol Biol 2018. [PMID: 29524139 DOI: 10.1007/978-1-4939-7774-1_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The potential impact of CRISPR/Cas9, TALE, and zinc finger technology is immense, both with respect to their use as tools for understanding the roles and functions of the genomic elements and epigenome modifications in an endogenous context and as new methods for treatment of diseases. Application of such technologies has drawn attention, however, to the prevailing lack of effective delivery methods. Promising viral and non-viral methods both currently fall short when the efficient delivery of large plasmids or multiple plasmids is required. Therefore, the use of TALE and CRISPR platforms has been severely limited in applications where selection methods to increase the relative proportion of treated cells are not applicable, and it represents a significant bottleneck in the further application of these tools as therapeutics.The protocol presented here describes the synthesis of a dendronized polymer as a highly efficient and nontoxic transfection agent. Furthermore, the optimization of the polymer as a co-transfection reagent for large and multiple plasmids in cell lines is described, in addition to general considerations for co-transfection experiments. Usage of this method has allowed for significantly improved large plasmid co-transfection efficiency over Lipofectamine 2000 in multiple cell lines, allowing an improved delivery of CRISPR/dCas9 and TALE systems.
Collapse
Affiliation(s)
- Jessica A Kretzmann
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Marck Norret
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
16
|
Encabo-Berzosa MM, Sancho-Albero M, Sebastian V, Irusta S, Arruebo M, Santamaria J, Martín Duque P. Polymer functionalized gold nanoparticles as nonviral gene delivery reagents. J Gene Med 2017. [DOI: 10.1002/jgm.2964] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- M. Mar Encabo-Berzosa
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA); University of Zaragoza; Zaragoza Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN; Madrid Spain
| | - Maria Sancho-Albero
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA); University of Zaragoza; Zaragoza Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN; Madrid Spain
| | - Victor Sebastian
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA); University of Zaragoza; Zaragoza Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN; Madrid Spain
| | - Silvia Irusta
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA); University of Zaragoza; Zaragoza Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN; Madrid Spain
| | - Manuel Arruebo
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA); University of Zaragoza; Zaragoza Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN; Madrid Spain
| | - Jesus Santamaria
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA); University of Zaragoza; Zaragoza Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN; Madrid Spain
| | - Pilar Martín Duque
- Facultad de Ciencias Biosanitarias, Carretera Pozuelo a Majadahonda; Universidad Francisco de Vitoria; Madrid Spain
- Fundación Araid; Zaragoza Spain
| |
Collapse
|
17
|
Kretzmann JA, Ho D, Evans CW, Plani-Lam JHC, Garcia-Bloj B, Mohamed AE, O'Mara ML, Ford E, Tan DEK, Lister R, Blancafort P, Norret M, Iyer KS. Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA. Chem Sci 2017; 8:2923-2930. [PMID: 28451358 PMCID: PMC5376716 DOI: 10.1039/c7sc00097a] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/26/2017] [Indexed: 01/10/2023] Open
Abstract
Tools for editing the genome and epigenome have revolutionised the field of molecular biology and represent a new frontier in targeted therapeutic intervention. Although efficiencies and specificities of genome editing technologies have improved with the development of TALEs and CRISPR platforms, intracellular delivery of these larger constructs still remains a challenge using existing delivery agents. Viral vectors, including lentiviruses and adeno-associated viruses, as well as some non-viral strategies, such as cationic polymers and liposomes, are limited by packaging capacity, poor delivery, toxicity, and immunogenicity. We report a highly controlled synthetic strategy to engineer a flexible dendritic polymer using click chemistry to overcome the aforementioned delivery challenges associated with genome engineering technologies. Using a systematic approach, we demonstrate that high transfection efficiencies and packaging capacity can be achieved using this non-viral delivery methodology to deliver zinc fingers, TALEs and CRISPR/dCas9 platforms.
Collapse
Affiliation(s)
- Jessica A Kretzmann
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia . ;
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
| | - Diwei Ho
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia . ;
| | - Cameron W Evans
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia . ;
| | - Janice H C Plani-Lam
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
| | - Benjamin Garcia-Bloj
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
| | - A Elaaf Mohamed
- Research School of Chemistry , Australian National University , Canberra , ACT 2601 , Australia
| | - Megan L O'Mara
- Research School of Chemistry , Australian National University , Canberra , ACT 2601 , Australia
| | - Ethan Ford
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia . ;
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
- ARC Centre of Excellence in Plant Energy Biology , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia
| | - Dennis E K Tan
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia . ;
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
- ARC Centre of Excellence in Plant Energy Biology , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia
| | - Ryan Lister
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia . ;
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
- ARC Centre of Excellence in Plant Energy Biology , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia
| | - Pilar Blancafort
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
- School of Anatomy, Physiology and Human Biology , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia
| | - Marck Norret
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia . ;
| | - K Swaminathan Iyer
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia . ;
| |
Collapse
|
18
|
Nonviral Vector-Based Gene Transfection of Primary Human Skeletal Myoblasts. Exp Biol Med (Maywood) 2016; 232:1477-87. [DOI: 10.3181/0706-rm-175] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Low-level transgene efficiency is one of the main obstacles in ex vivo nonviral vector–mediated gene transfer into primary human skeletal myoblasts (hSkMs). We optimized the cholesterol:N-[1-(2, 3-dioleoyloxy)propyl]-N, N, N-trimethylammonium methylsulfate liposome (CD liposome) and 22-kDa polyethylenimine (PEI22)– and 25-kDa polyethylenimine (PEI25)–mediated transfection of primary hSkMs for angiogenic gene delivery. We found that transfection efficiency and cell viability of three nonviral vectors were cell passage dependent: early cell passages of hSkMs had higher transfection efficiencies with poor cell viabilities, whereas later cell passages of hSkMs had lower transfection efficiencies with better cell viabilities. Trypsinization improved the transfection efficiency by 20% to 60% compared with adherent hSkMs. Optimum gene transfection efficiency was found with passage 6 trypsinized hSkMs: transfection efficiency with CD lipoplexes was 6.99 ± 0.13%, PEI22 polyplexes was 18.58 ± 1.57%, and PEI25 polyplexes was 13.32 ± 0.88%. When pEGFP (a plasmid encoding the enhanced green fluorescent protein) was replaced with a vector containing human vascular endothelial growth factor 165 (phVEGF165), the optimized gene transfection conditions resulted in hVEGF165 expression up to Day 18 with a peak level at Day 2 after transfection. This study demonstrated that therapeutic angiogenic gene transfer through CD or PEI is feasible and safe after optimization. It could be a potential strategy for treatment of
Collapse
|
19
|
Niakan S, Heidari B, Akbari G, Nikousefat Z. Comparison of Different Electroporation Parameters on Transfection Efficiency of Sheep Testicular Cells. CELL JOURNAL 2016; 18:425-37. [PMID: 27602325 PMCID: PMC5011331 DOI: 10.22074/cellj.2016.4571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/28/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Electroporation can be a highly efficient method for introducing the foreign genetic materials into the targeted cells for transient and/or permanent genetic modification. Considering the application of this technique as a very efficient method for drug, oligonucleotide, antibody and plasmid delivery for clinical applications and production of transgenic animals, the present study aimed to optimize the transfection efficiency of sheep testicular cells including spermatogonial stem cells (SSCs) via electroporation. MATERIALS AND METHODS This study is an experimental research conducted in Biotechnology Research Center (Avicenna Research Institute, Tehran, Iran) from September 2013 to March 2014. Following isolation and propagation of one-month lamb testicular cells (SSCs and somatic testicular cells including; Sertoli, Leydig, and myoid cells), the effect of different electroporation parameters including total voltages (280, 320, and 350 V), burst durations (10, 8, and 5 milliseconds), burst modes (single or double) and addition of dimethyl sulfoxide (DMSO) were evaluated on transfection efficiency, viability rate and mean fluorescent intensity (MFI) of sheep testicular cells. RESULTS The most transfection efficiency was obtained in 320 V/8 milliseconds/single burst group in transduction medium with and without DMSO. There was a significantly inverse correlation between transfection efficiency with application of both following parameters: addition of DMSO and double burst. After transfection, the highest and lowest viability rates of testicular cells were demonstrated in 320 V/8 milliseconds with transduction medium without DMSO and 350 V/5 milliseconds in medium containing DMSO. Ad- dition of DMSO to transduction medium in all groups significantly decreased the viability rate. The comparison of gene expression indicated that Sertoli and SSCs had the most fluorescence intensity in 320 V/double burst/DMSO positive. However, myoid and Leydig cells showed the maximum expression in 320 V/single burst and/or 350 V/double burst/ DMSO positive. CONCLUSION We optimized the electroporation method for transfection of sheep testicular cells and recommended the application of 320 V/8 milliseconds/single pulse/DMSO negative for transduction of plasmid vector into these cells. Among testicular cells, the most external gene expression was demonstrated in SSC population.
Collapse
Affiliation(s)
- Sarah Niakan
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Banafsheh Heidari
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ghasem Akbari
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Nikousefat
- Department of Clinical Science, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| |
Collapse
|
20
|
Munye MM, Tagalakis AD, Barnes JL, Brown RE, McAnulty RJ, Howe SJ, Hart SL. Minicircle DNA Provides Enhanced and Prolonged Transgene Expression Following Airway Gene Transfer. Sci Rep 2016; 6:23125. [PMID: 26975732 PMCID: PMC4792149 DOI: 10.1038/srep23125] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/01/2016] [Indexed: 02/07/2023] Open
Abstract
Gene therapy for cystic fibrosis using non-viral, plasmid-based formulations has been the subject of intensive research for over two decades but a clinically viable product has yet to materialise in large part due to inefficient transgene expression. Minicircle DNA give enhanced and more persistent transgene expression compared to plasmid DNA in a number of organ systems but has not been assessed in the lung. In this study we compared minicircle DNA with plasmid DNA in transfections of airway epithelial cells. In vitro, luciferase gene expression from minicircles was 5–10-fold higher than with plasmid DNA. In eGFP transfections in vitro both the mean fluorescence intensity and percentage of cells transfected was 2–4-fold higher with minicircle DNA. Administration of equimolar amounts of DNA to mouse lungs resulted in a reduced inflammatory response and more persistent transgene expression, with luciferase activity persisting for 2 weeks from minicircle DNA compared to plasmid formulations. Transfection of equal mass amounts of DNA in mouse lungs resulted in a 6-fold increase in transgene expression in addition to more persistent transgene expression. Our findings have clear implications for gene therapy of airway disorders where plasmid DNA transfections have so far proven inefficient in clinical trials.
Collapse
Affiliation(s)
- Mustafa M Munye
- UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | | | - Josephine L Barnes
- UCL Respiratory Centre for Inflammation and Tissue Repair, 5 University Street, London, WC1E 6JF, United Kingdom
| | - Rachel E Brown
- UCL MRC Laboratory for Molecular Cell Biology, Gower Street, London WC1E 6BT, United Kingdom
| | - Robin J McAnulty
- UCL Respiratory Centre for Inflammation and Tissue Repair, 5 University Street, London, WC1E 6JF, United Kingdom
| | - Steven J Howe
- UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Stephen L Hart
- UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| |
Collapse
|
21
|
Establishment and characterization of human engineered cells stably expressing large extracellular matrix proteins. Arch Pharm Res 2013; 37:149-56. [DOI: 10.1007/s12272-013-0294-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/10/2013] [Indexed: 10/26/2022]
|
22
|
Savarala S, Brailoiu E, Wunder SL, Ilies MA. Tuning the self-assembling of pyridinium cationic lipids for efficient gene delivery into neuronal cells. Biomacromolecules 2013; 14:2750-64. [PMID: 23834644 DOI: 10.1021/bm400591d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We are reporting a new set of biocompatible, low-toxicity pyridinium cationic lipids based on a dopamine backbone on which hydrophobic alkyl tails are attached via an ether linkage. Due to their optimized hydrophilic/hydrophobic interface and packing parameter, the new lipids are able to strongly self-assemble either alone or when coformulated with colipids DOPE or cholesterol. The supra-molecular assemblies generated with the novel pyridinium amphiphiles were characterized in bulk and in solution via a combination of techniques including DSC, nanoDSC, SAXS, TOPM, TEM, DLS, zeta potential, and electrophoretic mobility measurements. These cationic bilayers can efficiently condense and deliver DNA to a large variety of cell lines, as proven by our self-assembling/physicochemical/biological correlation study. Using the luciferase reporter gene plasmid, we have also conducted a comprehensive structure-activity relationship study, which identified the best structural parameters and formulations for efficient and nontoxic gene delivery. Several formulations greatly surpassed established transfection systems with proved in vitro and in vivo efficiency, being able to transfect a large variety of malignant cells even in the presence of elevated levels of serum. The most efficient formulation was able to transfect selectively primary rat dopaminergic neurons harvested from nucleus accumbens, and neurons from the frontal cortex, a premise that recommends these synthetic vectors for future in vivo delivery studies for neuronal reprogramming.
Collapse
Affiliation(s)
- Sushma Savarala
- Department of Chemistry, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | | | | | |
Collapse
|
23
|
Pärn K, Viru L, Lehto T, Oskolkov N, Langel Ü, Merits A. Transfection of infectious RNA and DNA/RNA layered vectors of semliki forest virus by the cell-penetrating peptide based reagent PepFect6. PLoS One 2013; 8:e69659. [PMID: 23861978 PMCID: PMC3704629 DOI: 10.1371/journal.pone.0069659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/11/2013] [Indexed: 12/25/2022] Open
Abstract
Viral vectors have a wide variety of applications ranging from fundamental studies of viruses to therapeutics. Recombinant viral vectors are usually constructed using methods of reverse genetics to obtain the genetic material of the viral vector. The physicochemical properties of DNA and RNA make them unable to access cells by themselves, and they require assistance to achieve intracellular delivery. Non-viral delivery vectors can be used for this purpose if they enable efficient intracellular delivery without interfering with the viral life cycle. In this report, we utilize Semliki Forest virus (genus alphavirus) based RNA and DNA vectors to study the transfection efficiency of the non-viral cell-penetrating peptide-based delivery vector PepFect6 in comparison with that of the cationic liposome-based Lipofectamine 2000, and assess their impact on viral replication. The optimal conditions for transfection were determined for both reagents. These results demonstrate, for the first time, the ability of PepFect6 to transport large (13-19 kbp) constructs across the cell membrane. Curiously, DNA molecules delivered using the PepFect6 reagent were found to be transported to the cell nucleus approximately 1.5 hours later than DNA molecules delivered using the Lipofectamine 2000 reagent. Finally, although both PepFect6 and Lipofectamine 2000 reagents can be used for alphavirus research, PepFect6 is preferred because it does not induce changes in the normal cellular phenotype and it does not affect the normal replication-infection cycle of viruses in previously transfected cells.
Collapse
Affiliation(s)
- Kalle Pärn
- Institute of Technology, University of Tartu, Tartu, Estonia
- * E-mail:
| | - Liane Viru
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Taavi Lehto
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Nikita Oskolkov
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ülo Langel
- Institute of Technology, University of Tartu, Tartu, Estonia
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
24
|
Patnaik S, Gupta KC. Novel polyethylenimine-derived nanoparticles for in vivo gene delivery. Expert Opin Drug Deliv 2012; 10:215-28. [PMID: 23252504 DOI: 10.1517/17425247.2013.744964] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Branched and linear polyethylenimines (PEIs) are cationic polymers that have been used to deliver nucleic acids both in vitro and in vivo. Owing to the high cationic charge, the branched polymers exhibit high transfection efficiency, and particularly PEI of molecular weight 25 kDa is considered as a gold standard in gene delivery. These polymers have been extensively studied and modified with different ligands so as to achieve the targeted delivery. AREAS COVERED The application of PEI in vivo promises to take the polymer-based vector to the next level wherein it can undergo clinical trials and subsequently could be used for delivery of therapeutics in humans. This review focuses on the various recent developments that have been made in the field of PEI-based delivery vectors for delivery of therapeutics in vivo. EXPERT OPINION The efficacy of PEI-based delivery vectors in vivo is significantly high and animal studies demonstrate that such systems have a potential in humans. However, we feel that though PEI is a promising vector, further studies involving PEI in animal models are needed so as to get a detailed toxicity profile of these vectors. Also, it is imperative that the vector reaches the specific organ causing little or no undesirable effects to other organs.
Collapse
Affiliation(s)
- Soma Patnaik
- CSIR-Indian Institute of Toxicology Research, M.G. Marg, Lucknow, 226 001, India
| | | |
Collapse
|
25
|
Lin J, Zhu LQ, Qin T, Yu QH, Yang Q. Enhancement of gene transfer efficiency in the Bcap-37 cell line by dimethyl sulphoxide and menthol. Mol Med Rep 2012; 6:1293-300. [PMID: 22992809 DOI: 10.3892/mmr.2012.1084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/18/2012] [Indexed: 11/06/2022] Open
Abstract
Simple and efficient gene transfer into the nucleus would facilitate non-viral gene delivery. One promising method of non-viral gene delivery is to apply penetration enhancers. Chemicals, such as dimethyl sulfoxide (DMSO) and menthol, may have promise as non-toxic vehicles in improving gene transfer efficiency. In this study, the cytotoxic effects of DMSO and menthol were evaluated using MTT assays. Gene delivery efficiency in a human breast cancer cell line (Bcap-37) was investigated by quantitative PCR, fluorescence microscopy and flow cytometry. Non-toxic concentrations of DMSO (2%) and menthol (12.5 µM) enhanced the efficiency of liposome-mediated gene delivery in Bcap-37 cells. Quantitative PCR results showed that growth hormone (GH) mRNA expression in the post-menthol and pre-DMSO treatment groups was 10-fold higher compared to that in the liposome group, while in the pre-menthol and post-DMSO treatment groups, a 30-fold increase in GH mRNA expression was observed. Both DMSO and menthol treatments increased green fluorescent protein (GFP) expression efficiency as shown by fluorescence microscopy experiments. Compared to the liposome group, the number of positive cells in the pre-menthol and post-DMSO treatment groups was significantly increased by 15%. Furthermore, cell cycle analysis demonstrated that there were significant differences among the DMSO-treated group, the menthol-treated group and the normal group, which implied different effects of DMSO and menthol treatments. In conclusion, both non-toxic and harmless DMSO (2%) and menthol (12.5 µM) treatments improve gene transfer efficiency, while post-DMSO treatment may be the most effective protocol in increasing transgene expression efficiency.
Collapse
Affiliation(s)
- Jian Lin
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | | | | | | | | |
Collapse
|
26
|
Gusachenko (Simonova) O, Kravchuk Y, Konevets D, Silnikov V, Vlassov VV, Zenkova MA. Transfection Efficiency of 25-kDa PEI–Cholesterol Conjugates with Different Levels of Modification. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:1091-110. [DOI: 10.1163/156856209x444448] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | - Youlia Kravchuk
- b Institute of Chemical Biology and Fundamental Medicine SB RAS. 8, Lavrentiev av., Novosibirsk 630090, Russia
| | - Dmitriy Konevets
- c Institute of Chemical Biology and Fundamental Medicine SB RAS. 8, Lavrentiev av., Novosibirsk 630090, Russia
| | - Vladimir Silnikov
- d Institute of Chemical Biology and Fundamental Medicine SB RAS. 8, Lavrentiev av., Novosibirsk 630090, Russia
| | - Valentin V. Vlassov
- e Institute of Chemical Biology and Fundamental Medicine SB RAS. 8, Lavrentiev av., Novosibirsk 630090, Russia
| | - Marina A. Zenkova
- f Institute of Chemical Biology and Fundamental Medicine SB RAS. 8, Lavrentiev av., Novosibirsk 630090, Russia
| |
Collapse
|
27
|
SHI Y, LIU XH, LIANG DS, FENG M, WU LQ, YANG JL, LI Z, ZHAO K, PAN Q, LONG ZG, XIA JH. The Transfection Efficiency Improvement of hrDNA Targeting Vectors With NLS Peptide*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2009.00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Balci B, Dinçer P. Efficient transfection of mouse-derived C2C12 myoblasts using a matrigel basement membrane matrix. Biotechnol J 2009; 4:1042-5. [PMID: 19360711 DOI: 10.1002/biot.200800269] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myogenic cell lines have been used widely in the study of myogenic differentiation, muscle regeneration and homeostasis, but, myoblasts and myotubes are difficult to transfect using conventional techniques. We have used liposome-based transfection method to introduce a green fluorescence protein (GFP)-expressing plasmid into Matrigel basement membrane matrix-coated C2C12 mouse myoblast cells. Myoblasts adhered and proliferated more rapidly on a Matrigel; thus, a dramatic increase in transfection efficiency can be obtained compared to Matrigel-untreated cells. Transfection efficiency was determined by counting fluorescent and total cells from six random fields for each condition. This protocol results in efficient (up to 60-70%) transfection of C2C12 myoblasts, high levels of GFP expression and low rate of cell death (10%). This technique is rapid, reliable, uses a lipid-based transfection reagent, and yields high transfection rates in a previously hard-to-transfect cell type.
Collapse
Affiliation(s)
- Burcu Balci
- Hacettepe University, Faculty of Medicine, Department of Medical Biology, Sihhiye, Ankara, Turkey
| | | |
Collapse
|
29
|
Spadaccio C, Chello M, Trombetta M, Rainer A, Toyoda Y, Genovese JA. Drug releasing systems in cardiovascular tissue engineering. J Cell Mol Med 2009; 13:422-39. [PMID: 19379142 PMCID: PMC3822506 DOI: 10.1111/j.1582-4934.2008.00532.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Heart disease and atherosclerosis are the leading causes of morbidity and mortality worldwide. The lack of suitable autologous grafts has produced a need for artificial grafts; however, current artificial grafts carry significant limitations, including thrombosis, infection, limited durability and the inability to grow. Tissue engineering of blood vessels, cardiovascular structures and whole organs is a promising approach for creating replacement tissues to repair congenital defects and/or diseased tissues. In an attempt to surmount the shortcomings of artificial grafts, tissue-engineered cardiovascular graft (TECVG), constructs obtained using cultured autologous vascular cells seeded onto a synthetic biodegradable polymer scaffold, have been developed. Autologous TECVGs have the potential advantages of growth, durability, resistance to infection, and freedom from problems of rejection, thrombogenicity and donor scarcity. Moreover polymers engrafted with growth factors, cytokines, drugs have been developed allowing drug-releasing systems capable of focused and localized delivery of molecules depending on the environmental requirements and the milieu in which the scaffold is placed. A broad range of applications for compound-releasing, tissue-engineered grafts have been suggested ranging from drug delivery to gene therapy. This review will describe advances in the development of drug-delivery systems for cardiovascular applications focusing on the manufacturing techniques and on the compounds delivered by these systems to date.
Collapse
Affiliation(s)
- Cristiano Spadaccio
- Cardiac and Molecular Biology Laboratory, Heart, Lung & Esophageal Surgery Institute University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
30
|
Hyperbranched polysiloxysilane nanoparticles: Surface charge control of nonviral gene delivery vectors and nanoprobes. Int J Pharm 2009; 376:141-52. [DOI: 10.1016/j.ijpharm.2009.04.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 04/01/2009] [Accepted: 04/20/2009] [Indexed: 11/22/2022]
|
31
|
Jones CF, Grainger DW. In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 2009; 61:438-56. [PMID: 19383522 PMCID: PMC2763955 DOI: 10.1016/j.addr.2009.03.005] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 03/30/2009] [Indexed: 02/07/2023]
Abstract
Nanotechnology has grown from a scientific interest to a major industry with both commodity and specialty nanomaterial exposure to global populations and ecosystems. Sub-micron materials are currently used in a wide variety of consumer products and in clinical trials as drug delivery carriers and imaging agents. Due to the expected growth in this field and the increasing public exposure to nanomaterials, both from intentional administration and inadvertent contact, improved characterization and reliable toxicity screening tools are required for new and existing nanomaterials. This review discusses current methodologies used to assess nanomaterial physicochemical properties and their in vitro effects. Current methods lack the desired sensitivity, reliability, correlation and sophistication to provide more than limited, often equivocal, pieces of the overall nanomaterial performance parameter space, particularly in realistic physiological or environmental models containing cells, proteins and solutes. Therefore, improved physicochemical nanomaterial assays are needed to provide accurate exposure risk assessments and genuine predictions of in vivo behavior and therapeutic value. Simpler model nanomaterial systems in buffer do not accurately duplicate this complexity or predict in vivo behavior. A diverse portfolio of complementary material characterization tools and bioassays are required to validate nanomaterial properties in physiology.
Collapse
Affiliation(s)
- Clinton F Jones
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112-5820, USA
| | | |
Collapse
|
32
|
Dormond E, Meneses-Acosta A, Jacob D, Durocher Y, Gilbert R, Perrier M, Kamen A. An efficient and scalable process for helper-dependent adenoviral vector production using polyethylenimine-adenofection. Biotechnol Bioeng 2009; 102:800-10. [DOI: 10.1002/bit.22113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Daum N, Neumeyer A, Wahl B, Bur M, Lehr CM. In vitro systems for studying epithelial transport of macromolecules. Methods Mol Biol 2009; 480:151-164. [PMID: 19085125 DOI: 10.1007/978-1-59745-429-2_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biological barriers, typically, represented by epithelial tissues are the main hindrance against uncontrolled uptake of a variety of substances. However, the delivery across a biological barrier is a crucial factor in the development of drugs. As the permeability of macromolecular drugs is very limited, new delivery strategies have to be developed and further improved. Thereby, nanoparticle carriers offer an enormous potential for the controlled delivery of active substances into the organism. Besides an intensive study for the reason of risk assessment and toxicology, the possible transport enhancement caused by nanoparticles must be quantified. A powerful tool for these studies is in vitro cell culture models imitating the more complex in vivo situation under controlled conditions. We use polyethylenimine as model enhancer mimicking toxicological effects and altered barrier function in the epithelial in vitro model, Calu-3. Cytotoxicity assays based on different mechanisms and transport properties of a low-permeability marker with and without delivery enhancer are described.
Collapse
Affiliation(s)
- Nicole Daum
- Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbruecken, Germany
| | | | | | | | | |
Collapse
|
34
|
Mével M, Yaouanc JJ, Laurent P, Clément JC, Cartier D, Jaffrès PA, Montier T, Delépine P, Le Gall T, Lehn P, Pichon C, Midoux P, Férec C. Cationic Lipids Based on Phosphonate and Phosphoramidate Chemistry: Synthesis and Application to Gene Therapy. PHOSPHORUS SULFUR 2008. [DOI: 10.1080/10426500701761300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mathieu Mével
- a CEMCA, UMR CNRS 6521, Faculté des Sciences et Techniques , Université de Bretagne Occidentale , Brest, France
| | - Jean-Jacques Yaouanc
- a CEMCA, UMR CNRS 6521, Faculté des Sciences et Techniques , Université de Bretagne Occidentale , Brest, France
| | - Pascale Laurent
- a CEMCA, UMR CNRS 6521, Faculté des Sciences et Techniques , Université de Bretagne Occidentale , Brest, France
| | - Jean-Claude Clément
- a CEMCA, UMR CNRS 6521, Faculté des Sciences et Techniques , Université de Bretagne Occidentale , Brest, France
| | - Dominique Cartier
- a CEMCA, UMR CNRS 6521, Faculté des Sciences et Techniques , Université de Bretagne Occidentale , Brest, France
| | - Paul-Alain Jaffrès
- a CEMCA, UMR CNRS 6521, Faculté des Sciences et Techniques , Université de Bretagne Occidentale , Brest, France
| | - Tristan Montier
- b Unité INSERM 613 “Génétique Moléculaire et Epidémiologie Génétique”, Institut de Synergie des Sciences et de la Santé, Faculté de médecine et des sciences de la santé , Université de Bretagne Occidentale , Brest, France
| | - Pascal Delépine
- b Unité INSERM 613 “Génétique Moléculaire et Epidémiologie Génétique”, Institut de Synergie des Sciences et de la Santé, Faculté de médecine et des sciences de la santé , Université de Bretagne Occidentale , Brest, France
| | - Tony Le Gall
- b Unité INSERM 613 “Génétique Moléculaire et Epidémiologie Génétique”, Institut de Synergie des Sciences et de la Santé, Faculté de médecine et des sciences de la santé , Université de Bretagne Occidentale , Brest, France
| | - Pierre Lehn
- b Unité INSERM 613 “Génétique Moléculaire et Epidémiologie Génétique”, Institut de Synergie des Sciences et de la Santé, Faculté de médecine et des sciences de la santé , Université de Bretagne Occidentale , Brest, France
| | | | | | - Claude Férec
- c Centre de Biophysique Moléculaire , Orléans, France
| |
Collapse
|
35
|
Jo JI, Tabata Y. Non-viral gene transfection technologies for genetic engineering of stem cells. Eur J Pharm Biopharm 2008; 68:90-104. [PMID: 17870447 DOI: 10.1016/j.ejpb.2007.04.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/20/2007] [Accepted: 04/20/2007] [Indexed: 10/23/2022]
Abstract
The recent rapid progress of molecular biology together with the steady progress of genome projects has given us some essential and revolutionary information about DNA and RNA to elucidate various biological phenomena at a genetic level. Under these circumstances, the technology and methodology of gene transfection have become more and more important to enhance the efficacy of gene therapy for several diseases. In addition, gene transfection is a fundamental technology indispensable to the further research development of basic biology and medicine regarding stem cells. Stem cells genetically manipulated will enhance the therapeutic efficacy of cell transplantation. In this paper, the carrier and technology of gene delivery are briefly overviewed while the applications to the basic researches of biology and medicine as well as regenerative medical therapy are introduced. A new non-viral carrier and the cell culture system are described to efficiently manipulate stem cells.
Collapse
Affiliation(s)
- Jun-ichiro Jo
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, Japan
| | | |
Collapse
|
36
|
Ye L, Haider HK, Tan R, Toh W, Law PK, Tan W, Su L, Zhang W, Ge R, Zhang Y, Lim Y, Sim EKW. Transplantation of nanoparticle transfected skeletal myoblasts overexpressing vascular endothelial growth factor-165 for cardiac repair. Circulation 2007; 116:I113-20. [PMID: 17846290 DOI: 10.1161/circulationaha.106.680124] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We investigated the feasibility and efficacy of polyethylenimine (PEI) based human vascular endothelial growth factor-165 (hVEGF165) gene transfer into human skeletal myoblasts (HSM) for cell based delivery to the infarcted myocardium. METHODS AND RESULTS Based on optimized transfection procedure using enhanced green fluorescent protein (pEGFP), HSM were transfected with plasmid-hVEGF165 (phVEGF165) carried by PEI (PEI-phVEGF165) nanoparticles. The transfected HSM were characterized for transfection and expression of hVEGF165 in vitro and transplanted into rat heart model of acute myocardial infarction (AMI): group-1=DMEM injection, group-2= HSM transplantation, group-3= PEI-phVEGF165-transfected HSM (PEI-phVEGF165 myoblast) transplantation. A total of 48 rats received cyclosporine injection from 3 days before and until 4 weeks after cell transplantation. Echocardiography was performed to assess the heart function. Animals were sacrificed for molecular and histological studies on the heart tissue at 4 weeks after treatment. Based on optimized transfection conditions, transfected HSM expressed hVEGF165 for 18 days with >90% cell viability in vitro. Apoptotic index was reduced in group-2 and group-3 as compared with group-1. Blood vessel density (x400) by immunostaining for PECAM-1 in group-3 was significantly higher (P=0.043 for both) as compared with group-1 and group-2 at 4 weeks. Regional blood flow (ml/min/g) in the left ventricular anterior wall was higher in group-3 (P=0.043 for both) as compared with group-1 and group-2. Improved ejection fraction was achieved in group-3 (58.44+/-4.92%) as compared with group-1 (P=0.004). CONCLUSION PEI nanoparticle mediated hVEGF165 gene transfer into HSM is feasible and safe. It may serve as a novel and efficient alternative for angiomyogenesis in cardiac repair.
Collapse
Affiliation(s)
- Lei Ye
- National University Medical Institutes, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yang YY, Wang Y, Powell R, Chan P. Reduced sinoatrial cAMP content plays a role in postnatal heart rate slowing in the rabbit. Clin Exp Pharmacol Physiol 2007; 33:557-62. [PMID: 16700894 DOI: 10.1111/j.1440-1681.2006.04408.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Decreasing heart rate during development is known to be the result of parasympathetic nervous system maturation that depresses the pacemaker current (If) by acetylcholine (ACh). However, a direct effect of ACh on If has been ruled out and the involvement of other secondary messengers, such as cAMP, was verified in previous studies. Therefore, we hypothesized that reduced basal cAMP production in sinoatrial (SA) nodal cells may contribute to the slowing of heart rate after birth. 2. The electrocardiogram and heart rate variability (HRV) were documented and measured in vivo and in vitro (in isolated perfused Langendorff preparations) for rabbits aged 2, 4, 6, 8 and 12 weeks. Sinoatrial node action potential (AP) recording and perforated patch-clamp analyses were used to investigate the spontaneous depolarization rate and pacemaker If currents. Concentrations of cAMP in SA nodal tissues were determined by radioimmunoassay. Relative expression of adenylate cyclases (ADCY1, 5) and phosphodiesterases (PDE1A, 4A and 8A) were quantified by real-time reverse transcription-polymerase chain reaction. 3. Significantly reduced heart rate, but unchanged HRV, was observed in perfused hearts in the older age groups, accompanied with a slowed phase 4 spontaneous depolarization rate (90.5 +/- 4.7 vs 49.6 +/- 2.6 mV/s for 2 week vs 4 week hearts, respectively; n = 5; P < 0.05), a negative shift of the If threshold potential (-45.5 +/- 3.0 vs -51.1 +/- 6.0 mV for 2 week vs 4 week hearts, respectively; n = 9; P < 0.05) and decreasing basal levels of SA nodal cAMP (0.31 +/- 0.05 vs 0.025 +/- 0.002 micromol/L for 2 week vs 4 week hearts, respectively; n = 6; P < 0.05). Gene expression levels of PDE1A, 4A and 8A were increased in the 12 week group compared with the 2 week group 1.5-, 2- and 1.8-fold, respectively (P < 0.05), with little change in ADCY1 and 5. 4. These data suggest that, in addition to autonomic innervation, slowing of heart rate during postnatal maturation can be attributed to a negative shift of the If activation caused by diminished baseline cAMP content in SA nodal cells.
Collapse
Affiliation(s)
- Yi-Yan Yang
- Institute of Bioengineering and Nanotechnology, Singapore.
| | | | | | | |
Collapse
|
38
|
Wang Y, Wang LS, Goh SH, Yang YY. Synthesis and Characterization of Cationic Micelles Self-Assembled from a Biodegradable Copolymer for Gene Delivery. Biomacromolecules 2007; 8:1028-37. [PMID: 17298094 DOI: 10.1021/bm061051c] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have recently reported biodegradable cationic micelles self-assembled from an amphiphilic copolymer, poly{(N-methyldietheneamine sebacate)-co-[(cholesteryl oxocarbonylamido ethyl)methyl bis(ethylene)ammonium bromide]sebacate} (P(MDS-co-CES)), which were utilized to deliver a drug and nucleic acid simultaneously, and a synergistic effect was achieved. In this paper, synthesis and characterization of the polymer is presented in details, focusing on micelle formation and DNA binding under various conditions, cytotoxicity, in-vitro degradation, and gene transfection in various cell lines. The polymer was degradable and formed micelles at very low concentrations even in an environment with high salt concentration. These micelles fabricated at pH 4.6 had an average size of less than 82 nm and zeta potential of up to 84 +/- 5 mV, displaying strong DNA binding ability. They induced high gene expression efficiency in various cell lines, which was significantly greater than poly(ethylenimine) (PEI) especially in 4T1 mouse and MDA-MB-231 human breast cancer cell lines, but they were less cytotoxic. These cationic micelles may provide a promising nonviral vector for gene delivery.
Collapse
Affiliation(s)
- Yong Wang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis, The Nanos, #04-01, Singapore 138669
| | | | | | | |
Collapse
|
39
|
Quenneville SP, Chapdelaine P, Skuk D, Paradis M, Goulet M, Rousseau J, Xiao X, Garcia L, Tremblay JP. Autologous Transplantation of Muscle Precursor Cells Modified with a Lentivirus for Muscular Dystrophy: Human Cells and Primate Models. Mol Ther 2007; 15:431-8. [PMID: 17235323 DOI: 10.1038/sj.mt.6300047] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by the absence of dystrophin. We tested the ability of lentiviral vectors to deliver a transgene into myogenic cells before their transplantation. Enhanced green fluorescent protein (eGFP) transgene was efficiently transferred into cells and eGFP-positive fibers were generated following transplantation. An eGFP-micro-dystrophin transgene under the control of a cytomegalovirus promoter was then transferred with the same viral vector but caused some toxicity to the mono-nucleated cells. We then used instead a muscle creatine kinase promoter. Dystrophin expression was observed in the muscle fibers after the transplantation of such genetically modified cells into mdx and severe combined immunodeficient mice. Micro-dystrophin expression was also observed in monkey muscles a month after allogenic or autologous transplantation of genetically modified myoblasts. Therapeutic exon skipping was induced by infecting myoblasts of a DMD patient, deleted for dystrophin exons 49 and 50, with a lentivirus expressing a U7 small nuclear RNA containing antisense sequences against exon 51. The modification led to correct exon skipping and to the expression of a quasi-dystrophin in vitro and in vivo. These results demonstrate the feasibility of lentiviral-based ex vivo gene therapy for DMD.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Line
- Disease Models, Animal
- Dystrophin/genetics
- Dystrophin/metabolism
- Genetic Therapy/methods
- Genetic Vectors/genetics
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Haplorhini
- HeLa Cells
- Humans
- Lentivirus/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, SCID
- Muscle Cells/cytology
- Muscle Cells/transplantation
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/therapy
- Reverse Transcriptase Polymerase Chain Reaction
- Stem Cell Transplantation/methods
Collapse
Affiliation(s)
- Simon P Quenneville
- Unité de Recherche en Génétique Humaine, Centre de recherche du CHUL, CHUQ, Faculté de Médecine, Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kong S, Titchener-Hooker N, Levy MS. Plasmid DNA processing for gene therapy and vaccination: Studies on the membrane sterilisation filtration step. J Memb Sci 2006. [DOI: 10.1016/j.memsci.2006.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Arnold AS, Laporte V, Dumont S, Appert-Collin A, Erbacher P, Coupin G, Levy R, Poindron P, Gies JP. Comparing reagents for efficient transfection of human primary myoblasts: FuGENE 6, Effectene and ExGen 500. Fundam Clin Pharmacol 2006; 20:81-9. [PMID: 16448398 DOI: 10.1111/j.1472-8206.2005.00344.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study compared three different synthetic reagents (FuGENE 6, Effectene and ExGen 500) for the transfection of human primary myoblasts. We examined the efficiency, cytotoxicity and size of the complexes formed in the presence of different amounts of vector and DNA and with variable amounts of serum. Transfection rates were relatively high for primary cells, especially with FuGENE 6 (20%), which appeared to be the best transfection reagent for these cells, even in the presence of 10% serum. Cultured human myoblasts are an interesting tool for studying neuromuscular diseases and are potentially useful for myoblast transfer therapy studies. Moreover, the efficiency of these transfection reagents in a medium containing 10% serum is promising for possible gene therapy protocols for muscle diseases.
Collapse
Affiliation(s)
- Anne-Sophie Arnold
- Laboratoire Commun, LC 001 CNRS, Faculté de Pharmacie, Université Louis Pasteur Strasbourg-I, 74 route du Rhin, BP 60024, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Draviam RA, Wang B, Li J, Xiao X, Watkins SC. Mini-dystrophin efficiently incorporates into the dystrophin protein complex in living cells. J Muscle Res Cell Motil 2006; 27:53-67. [PMID: 16496225 DOI: 10.1007/s10974-006-9055-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 01/03/2006] [Indexed: 11/27/2022]
Abstract
Dystrophin is a critical muscle cell structural protein which when deficient results in Duchenne muscular dystrophy. Recently miniature versions of the dystrophin gene have been constructed that ameliorate the pathology in mouse models. To characterize mini-dystrophin's incorporation into the dystrophin protein complex in living cells, two fusion proteins were constructed where mini-dystrophin is fused to the N- or C-terminus of an enhanced green fluorescent protein reporter gene. Both fusion proteins correctly localize at the plasma membrane in vitro and in vivo. Live cell microscopy establishes that mini-dystrophin translocates directly to the PM of differentiating muscle cells, within 4 h of expression. Latrunculin A treatment, actin and beta-dystroglycan binding domain deletion constructs, and co-immunoprecipitation assays demonstrate that mini-dystrophin is firmly anchored to the sarcolemma primarily through its connections to beta-dystroglycan, mimicking effects seen with wild type dystrophin. Furthermore, point mutations made within the putative beta-dystroglycan anchoring ZZ domain of mini-dystrophin result in an ablation of beta-dystroglycan binding and a nuclear translocation of the protein. These results demonstrate that mini-dystrophin is efficiently bound and incorporated into the dystrophin protein complex, via beta-dystroglycan in living cells, similarly to the full length dystrophin protein.
Collapse
MESH Headings
- Actins/metabolism
- Active Transport, Cell Nucleus/physiology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line
- Cell Membrane/metabolism
- Dystroglycans/metabolism
- Dystrophin/genetics
- Dystrophin/metabolism
- Green Fluorescent Proteins/metabolism
- Humans
- Macromolecular Substances/metabolism
- Molecular Weight
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Protein Binding/physiology
- Protein Structure, Tertiary/physiology
- Protein Transport/physiology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sarcolemma/metabolism
- Thiazolidines/pharmacology
Collapse
Affiliation(s)
- Romesh A Draviam
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. romesh@ pitt.edu
| | | | | | | | | |
Collapse
|
43
|
Dean DA. Nonviral gene transfer to skeletal, smooth, and cardiac muscle in living animals. Am J Physiol Cell Physiol 2005; 289:C233-45. [PMID: 16002623 PMCID: PMC4152902 DOI: 10.1152/ajpcell.00613.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study of muscle physiology has undergone many changes over the past 25 years and has moved from purely physiological studies to those intimately intertwined with molecular and cell biological questions. To ask these questions, it is necessary to be able to transfer genetic reagents to cells both in culture and, ultimately, in living animals. Over the past 10 years, a number of different chemical and physical approaches have been developed to transfect living skeletal, smooth, and cardiac muscle systems with varying success and efficiency. This review provides a survey of these methods and describes some more recent developments in the field of in vivo gene transfer to these various muscle types. Both gene delivery for overexpression of desired gene products and delivery of nucleic acids for downregulation of specific genes and their products are discussed to aid the physiologist, cell biologist, and molecular biologist in their studies on whole animal biology.
Collapse
Affiliation(s)
- David A Dean
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern Univ., 240 E. Huron Ave., McGaw 2336, Chicago, IL 60611, USA.
| |
Collapse
|
44
|
Zhang G, Ludtke JJ, Thioudellet C, Kleinpeter P, Antoniou M, Herweijer H, Braun S, Wolff JA. Intraarterial delivery of naked plasmid DNA expressing full-length mouse dystrophin in the mdx mouse model of duchenne muscular dystrophy. Hum Gene Ther 2005; 15:770-82. [PMID: 15319034 DOI: 10.1089/1043034041648408] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Our previous studies have demonstrated that the intraarterial delivery of naked plasmid DNA leads to high levels of foreign gene expression throughout the muscles of the targeted limb. Although the procedure was first developed in rats and then extended to nonhuman primates, the present study has successfully implemented the procedure in normal mice and the mdx mouse model for Duchenne muscular dystrophy. After intraarterial delivery of plasmid DNA expressing the normal, full-length mouse dystrophin from either the cytomegalovirus promoter or a muscle-specific human desmin gene control region, mdx mouse muscle stably expressed dystrophin in 1-5% of the myofibers of the injected hind limb for at least 6 months. This expression generated an antibody response but no apparent cellular response.
Collapse
Affiliation(s)
- Goufeng Zhang
- Departments of Pediatrics and Medical Genetics, Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Nucleic acid delivery has many applications in basic science, biotechnology, agriculture, and medicine. One of the main applications is DNA or RNA delivery for gene therapy purposes. Gene therapy, an approach for treatment or prevention of diseases associated with defective gene expression, involves the insertion of a therapeutic gene into cells, followed by expression and production of the required proteins. This approach enables replacement of damaged genes or expression inhibition of undesired genes. Following two decades of research, there are two major methods for delivery of genes. The first method, considered the dominant approach, utilizes viral vectors and is generally an efficient tool of transfection. Attempts, however, to resolve drawbacks related with viral vectors (e.g., high risk of mutagenicity, immunogenicity, low production yield, limited gene size, etc.), led to the development of an alternative method, which makes use of non-viral vectors. This review describes non-viral gene delivery vectors, termed "self-assembled" systems, and are based on cationic molecules, which form spontaneous complexes with negatively charged nucleic acids. It introduces the most important cationic polymers used for gene delivery. A transition from in vitro to in vivo gene delivery is also presented, with an emphasis on the obstacles to achieve successful transfection in vivo.
Collapse
Affiliation(s)
- H. Eliyahu
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Jerusalem, Israel
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University – Hadassah Medical School, Jerusalem, Israel
| | - Y. Barenholz
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University – Hadassah Medical School, Jerusalem, Israel
| | - A. J. Domb
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Jerusalem, Israel
| |
Collapse
|
46
|
Montier T, Delépine P, Le Ny K, Fichou Y, Le Bris M, Hardy E, Picquet E, Clément JC, Yaouanc JJ, Férec C. KLN-5: a safe monocationic lipophosphoramide to transfect efficiently haematopoietic cell lines and human CD34+ cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1665:118-33. [PMID: 15471578 DOI: 10.1016/j.bbamem.2004.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 07/19/2004] [Accepted: 07/22/2004] [Indexed: 11/18/2022]
Abstract
The safe and efficient delivery of nucleic acids into haematopoietic stem cells (HSCs) has a wide range of therapeutic applications. Although viruses are being used in most clinical trials owing to their high transfection efficacy, recent results highlight many concerns about their use. Synthetic transfection reagents, in contrast, have the advantage of being safe and easy to manage while their low transfection efficiency remains a hurdle that needs to be addressed before they can be widely used. Using information on transfection mechanisms, a new family of monocationic lipids called lipophosphoramides was synthesized. Their efficiency to transfer genes into haematopoietic cell lines (K562, Jurkat and Daudi) and CD34+ cells was assessed. In this study, we report that one of these new compounds, KLN-5, leads to more efficient transfection activity than one of our previously most efficient reagents (EG-308) and the commercially available monocationic lipids (DC-CHOL and DOTAP/DOPE) (P<0.05). In addition, only a slight toxicity related to the chemical structure of the new compounds is observed. Moreover, we show that KLN-5 can successfully carry the transgene into haematopoietic progenitor cells (CD34+). These results demonstrate that synthetic transfection reagents represent a viable alternative to viruses and could have potential practical utility in a number of applications.
Collapse
Affiliation(s)
- T Montier
- Unité INSERM 613, Institut de Synergie des Sciences et de la Santé, Université de Bretagne Occidentale, avenue Foch, 29609 Brest cedex 2, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yotnda P, Davis AR, Hicks MJ, Templeton NS, Brenner MK, Benner MK. Liposomal enhancement of the antitumor activity of conditionally replication-competent adenoviral plasmids. Mol Ther 2004; 9:489-95. [PMID: 15093179 DOI: 10.1016/j.ymthe.2004.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 01/27/2004] [Indexed: 10/26/2022] Open
Abstract
Many human tumors have a functional deficiency in p53. Numerous studies have taken advantage of this phenomenon to use a conditionally replication-competent adenovirus (Ad dl1520) that will grow in and lyse tumor cells while sparing normal tissues. However, success has been limited, in part due to difficulties in reaching a sufficiently high proportion of tumor cells. Preexisting or developing immune responses directed toward viral proteins further decrease the efficacy of the approach. We have developed a liposome-encapsulated conditionally replication-competent plasmid based on the dl1520 virus. Like the parent virus, this plasmid generates infectious particles following transfection of p53-defective, but not p53-wild-type tumor cells, but unlike the parent virus it is able to infect CAR-negative tumor cells. The antitumor efficacy of this infectious plasmid was demonstrated in mice with xenografted human tumors, in which it was active after both local and intravenous administration for subcutaneous tumors and following intravenous administration for disseminated malignancy. Activity was retained systemically, even in the presence of neutralizing antibody. Such liposomally encapsulated conditionally replication-competent plasmids may complement the use of conventional viral particles, particularly in settings in which liver uptake of adenoviral vector is undesirable or there are problematic inhibitory effects from humoral immune responses.
Collapse
Affiliation(s)
- Patricia Yotnda
- Center for Cell and Gene Therapy, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Quenneville SP, Chapdelaine P, Rousseau J, Beaulieu J, Caron NJ, Skuk D, Mills P, Olivares EC, Calos MP, Tremblay JP. Nucleofection of muscle-derived stem cells and myoblasts with ϕC31 integrase: stable expression of a full-length-dystrophin fusion gene by human myoblasts. Mol Ther 2004; 10:679-87. [PMID: 15451452 DOI: 10.1016/j.ymthe.2004.05.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 05/17/2004] [Indexed: 11/28/2022] Open
Abstract
Ex vivo gene therapy offers a potential treatment for Duchenne muscular dystrophy by transfection of the dystrophin gene into the patient's own myogenic precursor cells, followed by transplantation. We used nucleofection to introduce DNA plasmids coding for enhanced green fluorescent protein (eGFP) or eGFP-dystrophin fusion protein and the phage phiC31 integrase into myogenic cells and to integrate these genes into a limited number of sites in the genome. Using a plasmid expressing eGFP, we transfected 50% of a mouse muscle-derived stem cell line and 60% of normal human myoblasts. Co-nucleofection of a plasmid expressing the phiC31 integrase and an eGFP expression plasmid containing an attB sequence produced 15 times more frequent stable expression, because of site-specific integration of the transgene. Co-nucleofection of the phiC31 integrase plasmid and a large plasmid containing the attB sequence and the gene for an eGFP-full-length dystrophin fusion protein produced fluorescent human myoblasts that were able to form more intensely fluorescent myotubes after 1 month of culture. A nonviral approach combining nucleofection and the phiC31 integrase may eventually permit safe autotransplantation of genetically modified cells to patients.
Collapse
Affiliation(s)
- Simon P Quenneville
- Unité de Recherche en Génétique Humaine, Centre de Recherche du CHUL, CHUQ, Faculté de Médecine, Université Laval, Sainte-Foy, Québec, Canada, G1V 4G2
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cao B, Bruder J, Kovesdi I, Huard J. Muscle stem cells can act as antigen-presenting cells: implication for gene therapy. Gene Ther 2004; 11:1321-30. [PMID: 15175641 DOI: 10.1038/sj.gt.3302293] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Research has shown that the use of a muscle-specific promoter can reduce immune response and improve gene transfer to muscle fibers. We investigated the efficiency of direct and ex vivo gene transfer to the skeletal muscles of 6- to 8-week-old mdx mice by using two adenoviral vectors: adenovirus (AD) encoding the luciferase gene under the cytomegalovirus (CMV) promoter (ADCMV) and AD encoding the same gene under the muscle creatine kinase (MCK) promoter (ADMCK). Direct intramuscular injection of ADMCK triggered a lower immune response that enabled more efficient delivery and more persistent expression of the transgene than did ADCMV injection. Similarly, ex vivo gene transfer using ADCMV-transduced muscle-derived stem cells (MDSCs) induced a stronger immune response and led to shorter transgene expression than did ex vivo gene transfer using ADMCK-transduced MDSCs. This immune response was due to the release of the antigen after MDSC death or to the ADCMV-transduced MDSCs acting as antigen-presenting cells (APCs) by expressing the transgene and rapidly initiating an immune response against subsequent viral inoculation. The use of a muscle-specific promoter that restricts transgene expression to differentiated muscle cells could prevent MDSCs from becoming APCs, and thereby could improve the efficiency of ex vivo gene transfer to skeletal muscle.
Collapse
Affiliation(s)
- B Cao
- Growth and Development Laboratory, Children's Hospital of Pittsburgh and Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
50
|
Ikezawa M, Cao B, Qu Z, Peng H, Xiao X, Pruchnic R, Kimura S, Miike T, Huard J. Dystrophin Delivery in Dystrophin-Deficient DMDmdxSkeletal Muscle by Isogenic Muscle-Derived Stem Cell Transplantation. Hum Gene Ther 2003; 14:1535-46. [PMID: 14577915 DOI: 10.1089/104303403322495043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Duchenne's muscular dystrophy (DMD) is a lethal muscle disease caused by a lack of dystrophin expression at the sarcolemma of muscle fibers. We investigated retroviral vector delivery of dystrophin in dystrophin-deficient DMD(mdx) (hereafter referred to as mdx) mice via an ex vivo approach using mdx muscle-derived stem cells (MDSCs). We generated a retrovirus carrying a functional human mini-dystrophin (RetroDys3999) and used it to stably transduce mdx MDSCs obtained by the preplate technique (MD3999). These MD3999 cells expressed dystrophin and continued to express stem cell markers, including CD34 and Sca-1. MD3999 cells injected into mdx mouse skeletal muscle were able to deliver dystrophin. Though a relatively low number of dystrophin-positive myofibers was generated within the gastrocnemius muscle, these fibers persisted for up to 24 weeks postinjection. The injection of cells from additional MDSC/Dys3999 clones into mdx skeletal muscle resulted in varying numbers of dystrophin-positive myofibers, suggesting a differential regenerating capacity among the clones. At 2 and 4 weeks postinjection, the infiltration of CD4- and CD8-positive lymphocytes and a variety of cytokines was detected within the injected site. These data suggest that the transplantation of retrovirally transduced mdx MDSCs can enable persistent dystrophin restoration in mdx skeletal muscle; however, the differential regenerating capacity observed among the MDSC/Dys3999 clones and the postinjection immune response are potential challenges facing this technology.
Collapse
Affiliation(s)
- Makoto Ikezawa
- Growth and Development Laboratory, Children's Hospital of Pittsburgh, 3460 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|