1
|
Melton AE, Faske TM, Sniezko RA, Thibault T, Williams W, Parchman T, Hamilton JA. Genomics-Driven Monitoring of Fraxinus latifolia (Oregon Ash) to Inform Conservation and EAB-Resistance Breeding. Mol Ecol 2025:e17640. [PMID: 39760274 DOI: 10.1111/mec.17640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/17/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
Understanding the evolutionary processes underlying range-wide genomic variation is critical to designing effective conservation and restoration strategies. Evaluating the influence of connectivity, demographic change and environmental adaptation for threatened species can be invaluable to proactive conservation of evolutionary potential. In this study, we assessed genomic variation across the range of Fraxinus latifolia, a foundational riparian tree native to western North America recently exposed to the invasive emerald ash borer (Agrilus planipennis; EAB). Over 1000 individuals from 61 populations were sequenced using reduced representation (ddRAD-seq) across the species' range. Strong population structure was evident along a latitudinal gradient, with population connectivity largely maintained along central valley river systems, and a centre of genetic diversity coinciding with major river systems central to the species' range. Despite evidence of connectivity, estimates of nucleotide diversity and effective population size were low across all populations, suggesting the patchy distribution of F. latifolia populations may impact its long-term evolutionary potential. Range-wide estimates of genomic offset, which indicate genomic change required to adjust to future climate projections, were greatest in the eastern and lowest in the southern portions of the species' range, suggesting the regional distribution of genomic variation may impact evolutionary potential longer-term. To preserve evolutionary capacity across populations needed for the development of breeding and restoration programmes, prioritising conservation of range-wide genomic diversity will provide a foundation for long-term species management.
Collapse
Affiliation(s)
- Anthony E Melton
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Trevor M Faske
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
- Southwest Biological Science Center, United States Geological Survey, Flagstaff, Arizona, USA
| | - Richard A Sniezko
- Dorena Genetic Resource Center, USDA Forest Service, Cottage Grove, Oregon, USA
| | | | - Wyatt Williams
- Forests Resources Division, Oregon Department of Forestry, Salem, Oregon, USA
| | - Thomas Parchman
- Department of Biology, University of Nevada Reno, Reno, Nevada, USA
| | - Jill A Hamilton
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Zeng ZA, Wolkovich EM. Weak evidence of provenance effects in spring phenology across Europe and North America. THE NEW PHYTOLOGIST 2024. [PMID: 38494441 DOI: 10.1111/nph.19674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
Forecasting the biological impacts of climate change requires understanding how species respond to warmer temperatures through interannual flexible variation vs through adaptation to local conditions. Yet, we often lack this information entirely or find conflicting evidence across studies, which is the case for spring phenology. We synthesized common garden studies across Europe and North America that reported spring event dates for a mix of angiosperm and gymnosperm tree species in the northern hemisphere, capturing data from 384 North American and 101 European provenances (i.e. populations) with observations from 1962 to 2019, alongside autumn event data when provided. Across continents, we found no evidence of provenance effects in spring phenology, but strong clines with latitude and mean annual temperature in autumn. These effects, however, appeared to diverge by continent and species type (gymnosperm vs angiosperm), with particularly pronounced clines in North America in autumn events. Our results suggest flexible, likely plastic responses, in spring phenology with warming, and potential limits - at least in the short term - due to provenance effects for autumn phenology. They also highlight that, after over 250 yr of common garden studies on tree phenology, we still lack a holistic predictive model of clines across species and phenological events.
Collapse
Affiliation(s)
- Ziyun Alina Zeng
- Forest Resources Management, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Elizabeth M Wolkovich
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
3
|
Booker TR, Yeaman S, Whiting JR, Whitlock MC. The WZA: A window-based method for characterizing genotype-environment associations. Mol Ecol Resour 2024; 24:e13768. [PMID: 36785926 DOI: 10.1111/1755-0998.13768] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Genotype-environment association (GEA) studies have the potential to identify the genetic basis of local adaptation in natural populations. Specifically, GEA approaches look for a correlation between allele frequencies and putatively selective features of the environment. Genetic markers with extreme evidence of correlation with the environment are presumed to be tagging the location of alleles that contribute to local adaptation. In this study, we propose a new method for GEA studies called the Weighted-Z Analysis (WZA) that combines information from closely linked sites into analysis windows in a way that was inspired by methods for calculating FST . Performing GEA methods in analysis windows has the advantage that it takes advantage of the increased linkage disequilibrium expected surrounding sites subject to local adaptation. We analyse simulations modelling local adaptation to heterogeneous environments to compare the WZA with existing methods. In the majority of cases we tested, the WZA either outperformed single-SNP (single nucleotide polymorphism)-based approaches or performed similarly. In particular, the WZA outperformed individual SNP approaches when a small number of individuals or demes were sampled. Particularly troubling, we found that some GEA methods exhibit very high false positive rates. We applied the WZA to previously published data from lodgepole pine and identified candidate loci that were identified in the original study alongside numerous loci that were not found in the original study.
Collapse
Affiliation(s)
- Tom R Booker
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - James R Whiting
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Michael C Whitlock
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Kapoor B, Jenkins J, Schmutz J, Zhebentyayeva T, Kuelheim C, Coggeshall M, Heim C, Lasky JR, Leites L, Islam-Faridi N, Romero-Severson J, DeLeo VL, Lucas SM, Lazic D, Gailing O, Carlson J, Staton M. A haplotype-resolved chromosome-scale genome for Quercus rubra L. provides insights into the genetics of adaptive traits for red oak species. G3 (BETHESDA, MD.) 2023; 13:jkad209. [PMID: 37708394 PMCID: PMC10627279 DOI: 10.1093/g3journal/jkad209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Northern red oak (Quercus rubra L.) is an ecologically and economically important forest tree native to North America. We present a chromosome-scale genome of Q. rubra generated by the combination of PacBio sequences and chromatin conformation capture (Hi-C) scaffolding. This is the first reference genome from the red oak clade (section Lobatae). The Q. rubra assembly spans 739 Mb with 95.27% of the genome in 12 chromosomes and 33,333 protein-coding genes. Comparisons to the genomes of Quercus lobata and Quercus mongolica revealed high collinearity, with intrachromosomal structural variants present. Orthologous gene family analysis with other tree species revealed that gene families associated with defense response were expanding and contracting simultaneously across the Q. rubra genome. Quercus rubra had the most CC-NBS-LRR and TIR-NBS-LRR resistance genes out of the 9 species analyzed. Terpene synthase gene family comparisons further reveal tandem gene duplications in TPS-b subfamily, similar to Quercus robur. Phylogenetic analysis also identified 4 subfamilies of the IGT/LAZY gene family in Q. rubra important for plant structure. Single major QTL regions were identified for vegetative bud break and marcescence, which contain candidate genes for further research, including a putative ortholog of the circadian clock constituent cryptochrome (CRY2) and 8 tandemly duplicated genes for serine protease inhibitors, respectively. Genome-environment associations across natural populations identified candidate abiotic stress tolerance genes and predicted performance in a common garden. This high-quality red oak genome represents an essential resource to the oak genomic community, which will expedite comparative genomics and biological studies in Quercus species.
Collapse
Affiliation(s)
- Beant Kapoor
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Tatyana Zhebentyayeva
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, KY 40506, USA
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Carsten Kuelheim
- College of Forest Resources and Environmental Science, Michigan Tech University, Houghton, MI 49931, USA
| | - Mark Coggeshall
- College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Chris Heim
- Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Leites
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Nurul Islam-Faridi
- Forest Tree Molecular Cytogenetics Laboratory, USDA-FS, SRS-4160, Department of Ecology & Conservation Biology, Texas A&M University, College Station, TX 77843, USA
| | | | - Victoria L DeLeo
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sarah M Lucas
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Desanka Lazic
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Lower Saxony 37077, Germany
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Lower Saxony 37077, Germany
| | - John Carlson
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Margaret Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
5
|
Bashalkhanov S, Johnson JS, Rajora OP. Postglacial phylogeography, admixture, and evolution of red spruce ( Picea rubens Sarg.) in Eastern North America. FRONTIERS IN PLANT SCIENCE 2023; 14:1272362. [PMID: 37900752 PMCID: PMC10602686 DOI: 10.3389/fpls.2023.1272362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
Climate change is a major evolutionary force that can affect the structure of forest ecosystems worldwide. Red spruce (Picea rubens Sarg.) has recently faced a considerable decline in the Southern Appalachians due to rapid environmental change, which includes historical land use, and atmospheric pollution. In the northern part of its range, red spruce is sympatric with closely related black spruce (Picea mariana (Mill.) B.S.P.), where introgressive hybridization commonly occurs. We investigated range-wide population genetic diversity and structure and inferred postglacial migration patterns and evolution of red spruce using nuclear microsatellites. Moderate genetic diversity and differentiation were observed in red spruce. Genetic distance, maximum likelihood and Bayesian analyses identified two distinct population clusters: southern glacial populations, and the evolutionarily younger northern populations. Approximate Bayesian computation suggests that patterns of admixture are the result of divergence of red spruce and black spruce from a common ancestor and then introgressive hybridization during post-glacial migration. Genetic diversity, effective population size (Ne) and genetic differentiation were higher in the northern than in the southern populations. Our results along with previously available fossil data suggest that Picea rubens and Picea mariana occupied separate southern refugia during the last glaciation. After initial expansion in the early Holocene, these two species faced a period of recession and formed a secondary coastal refugium, where introgressive hybridization occurred, and then both species migrated northward. As a result, various levels of black spruce alleles are present in the sympatric red spruce populations. Allopatric populations of P. rubens and P. mariana have many species-specific alleles and much fewer alleles from common ancestry. The pure southern red spruce populations may become critically endangered under projected climate change conditions as their ecological niche may disappear.
Collapse
Affiliation(s)
- Stanislav Bashalkhanov
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada
| | - Jeremy S. Johnson
- Department of Forestry, Michigan State University, East Lansing, MI, United States
| | - Om P. Rajora
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
6
|
S Raposo D, A Zufall R, Caruso A, Titelboim D, Abramovich S, Hassenrück C, Kucera M, Morard R. Invasion success of a Lessepsian symbiont-bearing foraminifera linked to high dispersal ability, preadaptation and suppression of sexual reproduction. Sci Rep 2023; 13:12578. [PMID: 37537233 PMCID: PMC10400638 DOI: 10.1038/s41598-023-39652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Among the most successful Lessepsian invaders is the symbiont-bearing benthic foraminifera Amphistegina lobifera. In its newly conquered habitat, this prolific calcifier and ecosystem engineer is exposed to environmental conditions that exceed the range of its native habitat. To disentangle which processes facilitated the invasion success of A. lobifera into the Mediterranean Sea we analyzed a ~ 1400 bp sequence fragment covering the SSU and ITS gene markers to compare the populations from its native regions and along the invasion gradient. The genetic variability was studied at four levels: intra-genomic, population, regional and geographical. We observed that the invasion is not associated with genetic differentiation, but the invasive populations show a distinct suppression of intra-genomic variability among the multiple copies of the rRNA gene. A reduced genetic diversity compared to the Indopacific is observed already in the Red Sea populations and their high dispersal potential into the Mediterranean appears consistent with a bridgehead effect resulting from the postglacial expansion from the Indian Ocean into the Red Sea. We conclude that the genetic structure of the invasive populations reflects two processes: high dispersal ability of the Red Sea source population pre-adapted to Mediterranean conditions and a likely suppression of sexual reproduction in the invader. This discovery provides a new perspective on the cost of invasion in marine protists: The success of the invasive A. lobifera in the Mediterranean Sea comes at the cost of abandonment of sexual reproduction.
Collapse
Affiliation(s)
- Débora S Raposo
- Center for Marine Environmental Sciences, MARUM, Universität Bremen, Bremen, Germany.
| | - Rebecca A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, USA
| | - Antonio Caruso
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - Danna Titelboim
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Sigal Abramovich
- Department of Earth and Environmental Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Christiane Hassenrück
- Center for Marine Environmental Sciences, MARUM, Universität Bremen, Bremen, Germany
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Warnemünde, Germany
| | - Michal Kucera
- Center for Marine Environmental Sciences, MARUM, Universität Bremen, Bremen, Germany
| | - Raphaël Morard
- Center for Marine Environmental Sciences, MARUM, Universität Bremen, Bremen, Germany
| |
Collapse
|
7
|
González-Pérez A, Álvarez-Esteban R, Penas Á, del Río S. Bioclimatic Characterisation of Specific Native Californian Pinales and Their Future Suitability under Climate Change. PLANTS (BASEL, SWITZERLAND) 2023; 12:1966. [PMID: 37653883 PMCID: PMC10224251 DOI: 10.3390/plants12101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023]
Abstract
Rising temperatures and changes in precipitation patterns under climate change scenarios are accelerating the depletion of soil moisture and increasing the risk of drought, disrupting the conditions that many plant species need to survive. This study aims to establish the bioclimatic characterisation, both qualitative and quantitative, of ten native Californian Pinales for the period 1980-2019, and to determine their habitat suitability by 2050. To achieve this, an exhaustive search of the Gbif database for records of ten conifer taxa was carried out. To conduct the bioclimatic characterisation of the studied taxa, we worked with the monthly values of average temperature and precipitation for the period 1980-2019 from 177 meteorological stations. Linear regressions was performed in order to compile the future evolution of California's climate. Suitable areas and optimal areas were defined at the present time (1980-2019) and its future projection (2050). We applied Boolean logic and, in this investigation, the Conditional Logic Operator (CON) was used to determine the possible species presence (one) or absence (zero) for each of the 15 variables analysed. In general, most of the conifers studied here will experience a reduction in their habitat range in California by the year 2050 due to climate change, as well as the displacement of species towards optimal areas. Furthermore, the results have highlighted the applicability of bioclimatology to future conditions under climate change. This will aid conservation managers in implementing strategic measures to ameliorate the detrimental impacts of climate change, thereby ensuring the ecological integrity and sustainability of the affected conifer species.
Collapse
Affiliation(s)
- Alejandro González-Pérez
- Department of Biodiversity and Environmental Management (Botany Area), Faculty of Biological and Environmental Sciences, University of Leon, Campus de Vegazana s/n, 24071 León, Spain
| | - Ramón Álvarez-Esteban
- Department of Economics and Statistics (Statistics and Operations Research Area), Faculty of Economics and Business, University of Leon, Campus de Vegazana s/n, 24071 León, Spain;
| | - Ángel Penas
- Department of Biodiversity and Environmental Management (Botany Area), Faculty of Biological and Environmental Sciences, University of Leon, Mountain Livestock Institute CSIC-UNILEON, Campus de Vegazana s/n, 24071 León, Spain; (Á.P.); (S.d.R.)
| | - Sara del Río
- Department of Biodiversity and Environmental Management (Botany Area), Faculty of Biological and Environmental Sciences, University of Leon, Mountain Livestock Institute CSIC-UNILEON, Campus de Vegazana s/n, 24071 León, Spain; (Á.P.); (S.d.R.)
| |
Collapse
|
8
|
N'Diaye A, Tonessia DC, Le Cunff L, Hamon P, Hamon S. RETRACTED ARTICLE: Evidence of weak genetic differentiation of Striga gesnerioides populations collected in Senegal: possible relationship with traditional cowpea seed management. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1. [PMID: 19484430 DOI: 10.1007/s00122-009-1073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 05/13/2009] [Indexed: 05/27/2023]
Affiliation(s)
- Amidou N'Diaye
- INRA, UMR DIAPC, 2 Place Pierre Viala, 34060, Montpellier Cedex 01, France.
| | | | - Loïc Le Cunff
- INRA, UMR DIAPC, 2 Place Pierre Viala, 34060, Montpellier Cedex 01, France
| | - Perla Hamon
- IRD, UMR DIAPC, 911 Av Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | - Serge Hamon
- IRD, UMR DIAPC, 911 Av Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| |
Collapse
|
9
|
Climate Adaptation, Drought Susceptibility, and Genomic-Informed Predictions of Future Climate Refugia for the Australian Forest Tree Eucalyptus globulus. FORESTS 2022. [DOI: 10.3390/f13040575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding the capacity of forest tree species to adapt to climate change is of increasing importance for managing forest genetic resources. Through a genomics approach, we modelled spatial variation in climate adaptation within the Australian temperate forest tree Eucalyptus globulus, identified putative climate drivers of this genomic variation, and predicted locations of future climate refugia and populations at-risk of future maladaptation. Using 812,158 SNPs across 130 individuals from 30 populations (i.e., localities) spanning the species’ natural range, a gradientForest algorithm found 1177 SNPs associated with locality variation in home-site climate (climate-SNPs), putatively linking them to climate adaptation. Very few climate-SNPs were associated with population-level variation in drought susceptibility, signalling the multi-faceted nature and complexity of climate adaptation. Redundancy analysis (RDA) showed 24% of the climate-SNP variation could be explained by annual precipitation, isothermality, and maximum temperature of the warmest month. Spatial predictions of the RDA climate vectors associated with climate-SNPs allowed mapping of genomically informed climate selective surfaces across the species’ range under contemporary and projected future climates. These surfaces suggest over 50% of the current distribution of E. globulus will be outside the modelled adaptive range by 2070 and at risk of climate maladaptation. Such surfaces present a new integrated approach for natural resource managers to capture adaptive genetic variation and plan translocations in the face of climate change.
Collapse
|
10
|
Development and Validation of a 36K SNP Array for Radiata Pine (Pinus radiata D.Don). FORESTS 2022. [DOI: 10.3390/f13020176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Radiata pine (Pinus radiata D.Don) is one of the world’s most domesticated pines and a key economic species in New Zealand. Thus, the development of genomic resources for radiata pine has been a high priority for both research and commercial breeding. Leveraging off a previously developed exome capture panel, we tested the performance of 438,744 single nucleotide polymorphisms (SNPs) on a screening array (NZPRAD01) and then selected 36,285 SNPs for a final genotyping array (NZPRAD02). These SNPs aligned to 15,372 scaffolds from the Pinus taeda L. v. 1.01e assembly, and 20,039 contigs from the radiata pine transcriptome assembly. The genotyping array was tested on more than 8000 samples, including material from archival progenitors, current breeding trials, nursery material, clonal lines, and material from Australia. Our analyses indicate that the array is performing well, with sample call rates greater than 98% and a sample reproducibility of 99.9%. Genotyping in two linkage mapping families indicated that the SNPs are well distributed across the 12 linkage groups. Using genotypic data from this array, we were also able to differentiate representatives of the five recognized provenances of radiata pine, Año Nuevo, Monterey, Cambria, Cedros and Guadalupe. Furthermore, principal component analysis of genotyped trees revealed clear patterns of population structure, with the primary axis of variation driven by provenance ancestry and the secondary axis reflecting breeding activities. This represents the first commercial use of genomics in a radiata pine breeding program.
Collapse
|
11
|
Cerlini PB, Saraceni M, Orlandi F, Silvestri L, Fornaciari M. Phenological response to temperature variability and orography in Central Italy. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:71-86. [PMID: 34846567 PMCID: PMC8727416 DOI: 10.1007/s00484-021-02190-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 05/25/2023]
Abstract
Even if the sensitivity of vegetation phenology to climate change has been accepted on global and continental scales, the correlation between global warming and phenotypic variability shows a modulated answer depending on altitude, latitude, and the local seasonal thermal trend. To connect global patterns of change with local effects, we investigated the impact of the observed signal of warming found in Central Italy on two different willow species, Salix acutifolia and Salix smithiana, growing in three phenological gardens of the International Phenological Gardens' network (IPG) located in different orographic positions. The time series of temperatures and phenological data for the period 2005-2018 were analysed first to find trends over time in the three gardens and then to correlate the recent local warming and the change in the two species phenology. The results confirmed the correlation between phenological trends and local trend of temperatures. In particular: budburst showed a trend of advancement of 1.4 days/year on average in all three gardens; flowering showed a divergent pattern between the gardens of either advancement of 1.0 days/year on average or delay of 1.1 days/year on average; while senescence showed a delay reaching even 3.3 days/year, although significant in only two gardens for both species. These trends were found to be correlated mainly with the temperatures of the months preceding the occurrence of the phase, with a shift in terms of days of the year (DOY) of the two species. Our conclusion is that the observed warming in Central Italy played a key role in controlling the phenophases occurrences of the two willow species, and that the orographic forcing leads to the different shift in DOY of phenophases (from 5 to 20 days) due to the local thermal forcing of the three phenological gardens.
Collapse
Affiliation(s)
- P B Cerlini
- Centro Interuniversitario di Ricerca sull'Inquinamento e sull'Ambiente Mauro Felli (CIRIAF) - Centro di Ricerca sul Clima e Cambiamenti Climatici (CRC), University of Perugia, Perugia, PG, Italy
| | - M Saraceni
- Dipartimento di Ingegneria Civile e Ambientale (DICA) - Centro di Ricerca sul Clima e Cambiamenti Climatici (CRC), University of Perugia, Perugia, PG, Italy.
| | - F Orlandi
- Dipartimento di Ingegneria Civile e Ambientale (DICA) - Centro di Ricerca sul Clima e Cambiamenti Climatici (CRC), University of Perugia, Perugia, PG, Italy
| | - L Silvestri
- Centro Interuniversitario di Ricerca sull'Inquinamento e sull'Ambiente Mauro Felli (CIRIAF) - Centro di Ricerca sul Clima e Cambiamenti Climatici (CRC), University of Perugia, Perugia, PG, Italy
| | - M Fornaciari
- Dipartimento di Ingegneria Civile e Ambientale (DICA) - Centro di Ricerca sul Clima e Cambiamenti Climatici (CRC), University of Perugia, Perugia, PG, Italy
| |
Collapse
|
12
|
Hurel A, de Miguel M, Dutech C, Desprez‐Loustau M, Plomion C, Rodríguez‐Quilón I, Cyrille A, Guzman T, Alía R, González‐Martínez SC, Budde KB. Genetic basis of growth, spring phenology, and susceptibility to biotic stressors in maritime pine. Evol Appl 2021; 14:2750-2772. [PMID: 34950227 PMCID: PMC8674897 DOI: 10.1111/eva.13309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/03/2021] [Indexed: 11/30/2022] Open
Abstract
Forest ecosystems are increasingly challenged by extreme events, for example, drought, storms, pest attacks, and fungal pathogen outbreaks, causing severe ecological and economic losses. Understanding the genetic basis of adaptive traits in tree species is of key importance to preserve forest ecosystems, as genetic variation in a trait (i.e., heritability) determines its potential for human-mediated or evolutionary change. Maritime pine (Pinus pinaster Aiton), a conifer widely distributed in southwestern Europe and northwestern Africa, grows under contrasted environmental conditions promoting local adaptation. Genetic variation at adaptive phenotypes, including height, spring phenology, and susceptibility to two fungal pathogens (Diplodia sapinea and Armillaria ostoyae) and an insect pest (Thaumetopoea pityocampa), was assessed in a range-wide clonal common garden of maritime pine. Broad-sense heritability was significant for height (0.219), spring phenology (0.165-0.310), and pathogen susceptibility (necrosis length caused by D. sapinea, 0.152; and by A. ostoyae, 0.021, measured on inoculated, excised branches under controlled conditions), but not for pine processionary moth incidence in the common garden. The correlations of trait variation among populations revealed contrasting trends for pathogen susceptibility to D. sapinea and A. ostoyae with respect to height. Taller trees showed longer necrosis length caused by D. sapinea while shorter trees were more affected by A. ostoyae. Moreover, maritime pine populations from areas with high summer temperatures and frequent droughts were less susceptible to D. sapinea but more susceptible to A. ostoyae. Finally, an association study using 4227 genome-wide SNPs revealed several loci significantly associated with each trait (range of 3-26), including a possibly disease-induced translation initiation factor, eIF-5, associated with needle discoloration caused by D. sapinea. This study provides important insights to develop genetic conservation and breeding strategies integrating species responses to biotic stressors.
Collapse
Affiliation(s)
- Agathe Hurel
- BIOGECO, INRAEUniversity of BordeauxCestasFrance
| | - Marina de Miguel
- BIOGECO, INRAEUniversity of BordeauxCestasFrance
- EGFV, INRAEUniversity of BordeauxVillenave‐d'OrnonFrance
| | - Cyril Dutech
- BIOGECO, INRAEUniversity of BordeauxCestasFrance
| | | | | | | | | | | | | | | | - Katharina B. Budde
- BIOGECO, INRAEUniversity of BordeauxCestasFrance
- Büsgen‐InstituteGeorg‐August University GöttingenGöttingenGermany
| |
Collapse
|
13
|
Zacharias M, Pampuch T, Heer K, Avanzi C, Würth DG, Trouillier M, Bog M, Wilmking M, Schnittler M. Population structure and the influence of microenvironment and genetic similarity on individual growth at Alaskan white spruce treelines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149267. [PMID: 34332391 DOI: 10.1016/j.scitotenv.2021.149267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Knowledge on the adaptation of trees to rapid environmental changes is essential to preserve forests and their ecosystem services under climate change. Treeline populations are particularly suitable for studying adaptation processes in trees, as environmental stress together with reduced gene flow can enhance local adaptation. We investigated white spruce (Picea glauca) populations in Alaska on one moisture-limited and two cold-limited treeline sites with a paired plot design of one forest and one treeline population each, resulting in six plots. Additionally, one forest plot in the middle of the distribution range complements the study design. We combined spatial, climatic and dendrochronological data with neutral genetic marker of 2203 trees to investigate population genetic structure and drivers of tree growth. We used several individual-based approaches including random slope mixed-effects models to test the influence of genetic similarity and microenvironment on growth performance. A high degree of genetic diversity was found within each of the seven plots associated with high rates of gene flow. We discovered a low genetic differentiation between the three sites which was better explained by geographic distances than by environmental differences, indicating genetic drift as the main driver of population differentiation. Our findings indicated that microenvironmental features had an overall larger influence on growth performances than genetic similarity among individuals. The effects of climate on growth differed between sites but were smaller than the effect of tree size. Overall, our results suggest that the high genetic diversity of white spruce may result in a wider range of phenotypes which enhances the efficiency of selection when the species is facing rapid climatic changes. In addition, the large intra-individual variability in growth responses may indicate the high phenotypic plasticity of white spruce which can buffer short-term environmental changes and, thus, allow enduring the present changing climate conditions.
Collapse
Affiliation(s)
- Melanie Zacharias
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany.
| | - Timo Pampuch
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany.
| | - Katrin Heer
- Conservation Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany.
| | - Camilla Avanzi
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
| | - David G Würth
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany
| | - Mario Trouillier
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany.
| | - Manuela Bog
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany.
| | - Martin Wilmking
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany.
| | - Martin Schnittler
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany.
| |
Collapse
|
14
|
Stimpson ML, Whalley RDB, McLean L, Sadgrove NJ, Padilla-Gonzalez GF, Van Wyk BE, Clay J, Bruhl JJ. Colour of floral styles in the Banksia spinulosa Sm complex (Proteaceae) relates to the anthocyanin and flavonol profile, not soil pH. PHYTOCHEMISTRY 2021; 192:112931. [PMID: 34478991 DOI: 10.1016/j.phytochem.2021.112931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
The cylindrical conflorescences of the Banksia spinulosa Sm complex have several different colour types, i.e., black, red, maroon, lemon, and yellow. It is unknown if colour variation is due to extrinsic factors, importantly soil pH. Recent morphological observations have indicated that style colour are not contiguous, so follow-up chemical and soil analysis was conducted to further characterize the colour difference with respect to putative taxa and abiotic factors. Conflorescences of all known colours were sampled from across the eastern Australian distribution of B. spinulosa, and the respective soils were sampled and analysed for pH and total nitrogen. Regression analyses of this data demonstrated that pH and nitrogen gave nil and limited predictability for style colour respectively, i.e., only the taxa with black styles demonstrated a correlation, which was to a soil with slightly higher nitrogen content (p < 0.05). Furthermore, differences of pH were more often between taxa with conflorescences of the same colour. For chemical characterisation, the coloured styles were removed from conflorescences, extracted, and analysed by liquid chromatography-mass spectrometry (HPLC-MS/MS-DAD). Ten anthocyanin and twelve flavonol monoglycosides were identified by mass spectral fragmentation patterns (MS1 and MS2) and retention times. The data demonstrates that style colour differences are caused by the concentration of anthocyanins and their specific chemistry. It remains to be determined if the differences of anthocyanin expression are caused by other abiotic factors, or if it is intrinsic to the respective taxon.
Collapse
Affiliation(s)
- Margaret L Stimpson
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Ralph D B Whalley
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Lynette McLean
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Nicholas J Sadgrove
- Plant Biotechnology and Botany, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa; Jodrell Science Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3DS, UK; School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia.
| | | | - Ben-Erik Van Wyk
- Plant Biotechnology and Botany, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Jonathon Clay
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| | - Jeremy J Bruhl
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
15
|
Ettinger AK, Buonaiuto DM, Chamberlain CJ, Morales-Castilla I, Wolkovich EM. Spatial and temporal shifts in photoperiod with climate change. THE NEW PHYTOLOGIST 2021; 230:462-474. [PMID: 33421152 DOI: 10.1111/nph.17172] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/08/2020] [Indexed: 05/28/2023]
Abstract
Climate change causes both temporal (e.g. advancing spring phenology) and geographic (e.g. range expansion poleward) species shifts, which affect the photoperiod experienced at critical developmental stages ('experienced photoperiod'). As photoperiod is a common trigger of seasonal biological responses - affecting woody plant spring phenology in 87% of reviewed studies that manipulated photoperiod - shifts in experienced photoperiod may have important implications for future plant distributions and fitness. However, photoperiod has not been a focus of climate change forecasting to date, especially for early-season ('spring') events, often assumed to be driven by temperature. Synthesizing published studies, we find that impacts on experienced photoperiod from temporal shifts could be orders of magnitude larger than from spatial shifts (1.6 h of change for expected temporal vs 1 min for latitudinal shifts). Incorporating these effects into forecasts is possible by leveraging existing experimental data; we show that results from growth chamber experiments on woody plants often have data relevant for climate change impacts, and suggest that shifts in experienced photoperiod may increasingly constrain responses to additional warming. Further, combining modeling approaches and empirical work on when, where and how much photoperiod affects phenology could rapidly advance our understanding and predictions of future spatio-temporal shifts from climate change.
Collapse
Affiliation(s)
- A K Ettinger
- The Nature Conservancy, Washington Field Office, Seattle, WA, 98121, USA
- Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
| | - D M Buonaiuto
- Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - C J Chamberlain
- Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - I Morales-Castilla
- Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Global Change Ecology and Evolution (GloCEE) Research Group, Department of Life Sciences, University of Alcalá, Alcalá de Henares, MA, 28805, Spain
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, 22030, USA
| | - E M Wolkovich
- Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
16
|
Cruz-Nicolás J, Villarruel-Arroyo A, Gernandt DS, Fonseca RM, Aguirre-Planter E, Eguiarte LE, Jaramillo-Correa JP. Non-adaptive evolutionary processes governed the diversification of a temperate conifer lineage after its migration into the tropics. Mol Phylogenet Evol 2021; 160:107125. [PMID: 33636326 DOI: 10.1016/j.ympev.2021.107125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022]
Abstract
Constructing phylogenetic relationships among closely related species is a recurrent challenge in evolutionary biology, particularly for long-lived taxa with large effective population sizes and uncomplete reproductive isolation, like conifers. Conifers further have slow evolutionary rates, which raises the question of whether adaptive or non/adaptive processes were predominantly involved when they rapidly diversified after migrating from temperate regions into the tropical mountains. Indeed, fine-scale phylogenetic relationships within several conifer genus remain under debate. Here, we studied the phylogenetic relationships of endemic firs (Abies, Pinaceae) discontinuously distributed in the montane forests from the Southwestern United States to Guatemala, and addressed several hypotheses related to adaptive and non-adaptive radiations. We derived over 80 K SNPs from genotyping by sequencing (GBS) for 45 individuals of nine Mesoamerican species to perform phylogenetic analyses. Both Maximum Likelihood and quartets-inference phylogenies resulted in a well-resolved topology, showing a single fir lineage divided in four subgroups that coincided with the main mountain ranges of Mesoamerica; thus having important taxonomic implications. Such subdivision fitted a North-South isolation by distance framework, in which non-adaptive allopatric processes seemed the rule. Interestingly, several reticulations were observed within subgroups, especially in the central-south region, which may explain past difficulties for generating infrageneric phylogenies. Further evidence for non-adaptive processes was obtained from analyses of 21 candidate-gene regions, which exhibited diminishing values of πa/πs and Ka/Ks with latitude, thus indicating reduced efficiency of purifying selection towards the Equator. Our study indicates that non-adaptive allopatric processes may be key generators of species diversity and endemism in the tropics.
Collapse
Affiliation(s)
- Jorge Cruz-Nicolás
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Mexico City CDMX 04510, Mexico
| | - Alfredo Villarruel-Arroyo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Mexico City CDMX 04510, Mexico
| | - David S Gernandt
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, AP 70-233, Mexico City CDMX 04510, Mexico
| | - Rosa María Fonseca
- Laboratorio de Plantas Vasculares, Facultad de Ciencias, Universidad Nacional Autónoma de México, AP 70-282, Mexico City CDMX 04510, Mexico
| | - Erika Aguirre-Planter
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Mexico City CDMX 04510, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Mexico City CDMX 04510, Mexico
| | - Juan P Jaramillo-Correa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Mexico City CDMX 04510, Mexico.
| |
Collapse
|
17
|
Imprints of selection in peripheral and ecologically marginal central-eastern European Scots pine populations. Gene 2021; 779:145509. [PMID: 33600955 DOI: 10.1016/j.gene.2021.145509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/04/2020] [Accepted: 02/05/2021] [Indexed: 11/21/2022]
Abstract
Knowledge of the molecular mechanisms underlying the stress response in plants is essential to understand evolutionary processes that result in long-term persistence of populations. Populations inhabiting marginal ecological conditions at the distribution range periphery may have preserved imprints of natural selection that have shaped functional genetic variation of the species. Our aim was to evaluate the extent of selection processes in the extremely fragmented, peripheral and isolated populations of Scots pine in central-eastern Europe. Autochthonous populations of the Carpathian Mts. and the Pannonian Basin were sampled and drought stress-related candidate genes were re-sequenced. Neutrality tests and outlier detection approaches were applied to infer the effect and direction of selection. Populations retained high genetic diversity by preserving a high number of alleles and haplotypes, many of them being population specific. Neutrality tests and outlier detection highlighted nucleotide positions that are under divergent selection and may be involved in local adaptation. The detected genetic pattern confirms that natural selection has played an important role in shaping modern-day genetic variation in marginal Scots pine populations, allowing for the long-term persistence of populations. Selection detected at functional regions possibly acts to maintain diversity and counteract the effect of genetic erosion.
Collapse
|
18
|
De La Torre AR, Wilhite B, Puiu D, St. Clair JB, Crepeau MW, Salzberg SL, Langley CH, Allen B, Neale DB. Dissecting the Polygenic Basis of Cold Adaptation Using Genome-Wide Association of Traits and Environmental Data in Douglas-fir. Genes (Basel) 2021; 12:110. [PMID: 33477542 PMCID: PMC7831106 DOI: 10.3390/genes12010110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding the genomic and environmental basis of cold adaptation is key to understand how plants survive and adapt to different environmental conditions across their natural range. Univariate and multivariate genome-wide association (GWAS) and genotype-environment association (GEA) analyses were used to test associations among genome-wide SNPs obtained from whole-genome resequencing, measures of growth, phenology, emergence, cold hardiness, and range-wide environmental variation in coastal Douglas-fir (Pseudotsuga menziesii). Results suggest a complex genomic architecture of cold adaptation, in which traits are either highly polygenic or controlled by both large and small effect genes. Newly discovered associations for cold adaptation in Douglas-fir included 130 genes involved in many important biological functions such as primary and secondary metabolism, growth and reproductive development, transcription regulation, stress and signaling, and DNA processes. These genes were related to growth, phenology and cold hardiness and strongly depend on variation in environmental variables such degree days below 0c, precipitation, elevation and distance from the coast. This study is a step forward in our understanding of the complex interconnection between environment and genomics and their role in cold-associated trait variation in boreal tree species, providing a baseline for the species' predictions under climate change.
Collapse
Affiliation(s)
- Amanda R. De La Torre
- School of Forestry, Northern Arizona University, 200 E. Pine Knoll, Flagstaff, AZ 86011, USA;
| | - Benjamin Wilhite
- School of Forestry, Northern Arizona University, 200 E. Pine Knoll, Flagstaff, AZ 86011, USA;
| | - Daniela Puiu
- Center for Computational Biology, Department of Biomedical Engineering, Computer Science and Biostatistics, John Hopkins University, 3100 Wyman Park Dr, Wyman Park Building, Room S220, Baltimore, MD 21211, USA; (D.P.); (S.L.S.)
| | - John Bradley St. Clair
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA;
| | - Marc W. Crepeau
- Department of Evolution and Ecology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; (M.W.C.); (C.H.L.)
| | - Steven L. Salzberg
- Center for Computational Biology, Department of Biomedical Engineering, Computer Science and Biostatistics, John Hopkins University, 3100 Wyman Park Dr, Wyman Park Building, Room S220, Baltimore, MD 21211, USA; (D.P.); (S.L.S.)
| | - Charles H. Langley
- Department of Evolution and Ecology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; (M.W.C.); (C.H.L.)
| | - Brian Allen
- Department of Plant Sciences, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; (B.A.); (D.B.N.)
| | - David B. Neale
- Department of Plant Sciences, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; (B.A.); (D.B.N.)
| |
Collapse
|
19
|
Genomics of Clinal Local Adaptation in Pinus sylvestris Under Continuous Environmental and Spatial Genetic Setting. G3-GENES GENOMES GENETICS 2020; 10:2683-2696. [PMID: 32546502 PMCID: PMC7407466 DOI: 10.1534/g3.120.401285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the consequences of local adaptation at the genomic diversity is a central goal in evolutionary genetics of natural populations. In species with large continuous geographical distributions the phenotypic signal of local adaptation is frequently clear, but the genetic basis often remains elusive. We examined the patterns of genetic diversity in Pinus sylvestris, a keystone species in many Eurasian ecosystems with a huge distribution range and decades of forestry research showing that it is locally adapted to the vast range of environmental conditions. Making P. sylvestris an even more attractive subject of local adaptation study, population structure has been shown to be weak previously and in this study. However, little is known about the molecular genetic basis of adaptation, as the massive size of gymnosperm genomes has prevented large scale genomic surveys. We generated a both geographically and genomically extensive dataset using a targeted sequencing approach. By applying divergence-based and landscape genomics methods we identified several loci contributing to local adaptation, but only few with large allele frequency changes across latitude. We also discovered a very large (ca. 300 Mbp) putative inversion potentially under selection, which to our knowledge is the first such discovery in conifers. Our results call for more detailed analysis of structural variation in relation to genomic basis of local adaptation, emphasize the lack of large effect loci contributing to local adaptation in the coding regions and thus point out the need for more attention toward multi-locus analysis of polygenic adaptation.
Collapse
|
20
|
Tenkanen A, Keski-Saari S, Salojärvi J, Oksanen E, Keinänen M, Kontunen-Soppela S. Differences in growth and gas exchange between southern and northern provenances of silver birch (Betula pendula Roth) in northern Europe. TREE PHYSIOLOGY 2020; 40:198-214. [PMID: 31860709 DOI: 10.1093/treephys/tpz124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/15/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Due to its ubiquity across northern latitudes, silver birch (Betula pendula Roth) is an attractive model species for studying geographical trait variation and acclimation capacity. Six birch provenances from 60 to 67°N across Finland were grown in a common garden and studied for provenance and genotype variation. We looked for differences in height growth, photosynthetic gas exchange and chlorophyll content index (CCI) and compared the gas exchange of early and late leaves on short and long shoots, respectively. The provenances stratified into southern and northern groups. Northern provenances attained less height growth increment and had higher stomatal conductance (gs) and lower intrinsic water-use efficiency (WUE, Anet/gs) than southern provenances, whereas net photosynthesis (Anet) or CCI did not show clear grouping. Short shoot leaves had lower gs and higher WUE than long shoot leaves in all provenances, but there was no difference in Anet between shoot types. The separation of the provenances into two groups according to their physiological responses might reflect the evolutionary history of B. pendula. Latitudinal differences in gas exchange and water use traits can have plausible consequences for global carbon and water fluxes in a warming climate.
Collapse
Affiliation(s)
- Antti Tenkanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, PO Box 111, 80101 Joensuu, Finland
| | - Sarita Keski-Saari
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, PO Box 111, 80101 Joensuu, Finland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1, PO Box 65, 00014 Helsinki, Finland
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Elina Oksanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, PO Box 111, 80101 Joensuu, Finland
| | - Markku Keinänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, PO Box 111, 80101 Joensuu, Finland
| | - Sari Kontunen-Soppela
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
21
|
Klápště J, Meason D, Dungey HS, Telfer EJ, Silcock P, Rapley S. Genotype-by-environment interaction in coast redwood outside natural distribution - search for environmental cues. BMC Genet 2020; 21:15. [PMID: 32041527 PMCID: PMC7011450 DOI: 10.1186/s12863-020-0821-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/31/2020] [Indexed: 11/25/2022] Open
Abstract
Background Effective matching of genotypes and environments is required for the species to reach optimal productivity and act effectively for carbon sequestration. A common garden experiment across five different environments was undertaken to assess genotype x environment interaction (GxE) of coast redwood in order to understand the performance of genotypes across environments. Results The quantitative genetic analysis discovered no GxE between investigated environments for diameter at breast height (DBH). However, no genetic component was detected at one environment possibly due to stressful conditions. The implementation of universal response function allowed for the identification of important environmental factors affecting species productivity. Additionally, this approach enabled us to predict the performance of species across the New Zealand environmental conditions. Conclusions In combination with quantitative genetic analysis which identified genetically superior material, the URF model can directly identify the optimal geographical regions to maximize productivity. However, the finding of ideally uncorrelated climatic variables for species with narrow ecological amplitude is rather challenging, which complicates construction of informative URF model. This, along with a small number of tested environments, tended to overfit a prediction model which resulted in extreme predictions in untested environments.
Collapse
Affiliation(s)
- Jaroslav Klápště
- Scion (New Zealand Forest Research Institute Ltd.), 49 Sala Street, Rotorua, 3010, New Zealand.
| | - Dean Meason
- Scion (New Zealand Forest Research Institute Ltd.), 49 Sala Street, Rotorua, 3010, New Zealand
| | - Heidi S Dungey
- Scion (New Zealand Forest Research Institute Ltd.), 49 Sala Street, Rotorua, 3010, New Zealand
| | - Emily J Telfer
- Scion (New Zealand Forest Research Institute Ltd.), 49 Sala Street, Rotorua, 3010, New Zealand
| | - Paul Silcock
- NZ Forestry Ltd., 701A Pollen Street, Thames, 3500, New Zealand
| | - Simon Rapley
- The New Zealand Redwood Company, P.O. Box 1343, Taupō, 3351, New Zealand
| |
Collapse
|
22
|
Fukasawa Y, Ando Y, Oishi Y, Matsukura K, Okano K, Song Z, Sakuma D. Effects of forest dieback on wood decay, saproxylic communities, and spruce seedling regeneration on coarse woody debris. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Saravesi K, Markkola A, Taulavuori E, Syvänperä I, Suominen O, Suokas M, Saikkonen K, Taulavuori K. Impacts of experimental warming and northern light climate on growth and root fungal communities of Scots pine populations. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Alakärppä E, Taulavuori E, Valledor L, Marttila T, Jokipii-Lukkari S, Karppinen K, Nguyen N, Taulavuori K, Häggman H. Early growth of Scots pine seedlings is affected by seed origin and light quality. JOURNAL OF PLANT PHYSIOLOGY 2019; 237:120-128. [PMID: 31078909 DOI: 10.1016/j.jplph.2019.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Plants have evolved a suite of photoreceptors to perceive information from the surrounding light conditions. The aim of this study was to examine photomorphogenic effects of light quality on the growth of Scots pine (Pinus sylvestris L.) seedlings representing southern (60 °N) and northern (68 °N) origins in Finland. We measured the growth characteristics and the expression of light-responsive genes from seedlings grown under two LED light spectra: (1) Retarder (blue and red wavelengths in ratio 0.7) inducing compact growth, and (2) Booster (moderate in blue, green and far-red wavelengths, and high intensity of red light) promoting shoot elongation. The results show that root elongation, biomass, and branching were reduced under Retarder spectrum in the seedlings representing both origins, while inhibition in seed germination and shoot elongation was mainly detected in the seedlings of northern origin. The expression of ZTL and HY5 was related to Scots pine growth under both light spectra. Moreover, the expression of PHYN correlated with growth when exposed to Retarder, whereas CRY2 expression was associated with growth under Booster. Our data indicates that blue light and the deficiency of far-red light limit the growth of Scots pine seedlings and that northern populations are more sensitive to blue light than southern populations. Furthermore, the data analyses suggest that ZTL and HY5 broadly participate in the light-mediated growth regulation of Scots pine, whereas PHYN responses to direct sunlight and the role of CRY2 is in shade avoidance. Altogether, our study extends the knowledge of light quality and differential gene expression affecting the early growth of Scots pines representing different latitudinal origins.
Collapse
Affiliation(s)
- Emmi Alakärppä
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
| | - Erja Taulavuori
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
| | - Luis Valledor
- Plant Physiology, Faculty of Biology, University of Oviedo, Cat. Rodrígo Uría s/n, E-33071, Oviedo, Spain.
| | - Toni Marttila
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
| | - Soile Jokipii-Lukkari
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, FI-00014, Helsinki, Finland.
| | - Katja Karppinen
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
| | - Nga Nguyen
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
| | - Kari Taulavuori
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
| |
Collapse
|
25
|
Bontrager M, Muir CD, Angert AL. Geographic variation in reproductive assurance of Clarkia pulchella. Oecologia 2019; 190:59-67. [PMID: 30953167 DOI: 10.1007/s00442-019-04390-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 03/19/2019] [Indexed: 02/04/2023]
Abstract
Climate can affect plant populations through direct effects on physiology and fitness, and through indirect effects on their relationships with pollinating mutualists. We therefore expect that geographic variation in climate might lead to variation in plant mating systems. Biogeographic processes, such as range expansion, can also contribute to geographic patterns in mating system traits. We manipulated pollinator access to plants in eight sites spanning the geographic range of Clarkia pulchella to investigate geographic and climatic drivers of fruit production and seed set in the absence of pollinators (reproductive assurance). We examined how reproductive assurance and fruit production varied with the position of sites within the range of the species and with temperature and precipitation. We found that reproductive assurance in C. pulchella was greatest in populations in the northern part of the species' range and was not well explained by any of the climate variables that we considered. In the absence of pollinators, some populations of C. pulchella have the capacity to increase fruit production, perhaps through resource reallocation, but this response is climate dependent. Pollinators are important for reproduction in this species, and recruitment is sensitive to seed input. The degree of autonomous self-pollination that is possible in populations of this mixed-mating species may be shaped by historic biogeographic processes or variation in plant and pollinator community composition rather than variation in climate.
Collapse
Affiliation(s)
- Megan Bontrager
- Department of Botany, University of British Columbia, Vancouver, BC, Canada. .,Department of Evolution and Ecology, University of California, Davis, USA.
| | | | - Amy L Angert
- Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Sajeela KA, Gopalakrishnan A, Basheer VS, Mandal A, Bineesh KK, Grinson G, Gopakumar SD. New insights from nuclear and mitochondrial markers on the genetic diversity and structure of the Indian white shrimp Fenneropenaeus indicus among the marginal seas in the Indian Ocean. Mol Phylogenet Evol 2019; 136:53-64. [PMID: 30954588 DOI: 10.1016/j.ympev.2019.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 03/09/2019] [Accepted: 04/03/2019] [Indexed: 01/03/2023]
Abstract
Genetic variation in wild stocks of a major commercial shrimp, Fenneropenaeus indicus, from the marginal seas in the Indian Ocean was analysed using polymorphic microsatellite loci and mitochondrial COI gene. The average observed heterozygosity (Ho = 0.44 ± 0.02) and the expected heterozygosity (He = 0.73 ± 0.01) were high across loci and populations indicating high microsatellite variation. Pairwise FST and Bayesian clustering indicated the occurrence of four genetically distinct stocks out of the eight sampled populations with implications for specific management approaches. Mantel test for isolation by distance proved that genetic differentiation is not related to geographic distance between populations. Mitochondrial COI sequence analysis showed concordant differentiation pattern as well indicated the relevance of COI in population genetics of shrimps. Pairwise ɸST and phylogenetic and Bayesian analyses revealed four distinct clades, as observed with nuclear markers. Divergence time analysis revealed the origin and initial divergence of F. indicus corresponds to late Miocene and divergence to phylogroups in the Pleistocene. BSP analysis presented a long stable population size with a slight decrease in the late Pleistocene and gradually expanded to the current status. The information here will be useful in commercial shrimp breeding and selection programmes and management of natural stocks of Indian white shrimp.
Collapse
Affiliation(s)
- K A Sajeela
- Central Marine Fisheries Research Institute, Kochi 682 018, Kerala, India.
| | - A Gopalakrishnan
- Central Marine Fisheries Research Institute, Kochi 682 018, Kerala, India
| | - V S Basheer
- Peninsular and Marine Fish Genetic Resources (PMFGR) Centre-NBFGR, CMFRI, Kochi 682 018, Kerala, India
| | - A Mandal
- Rajiv Gandhi Centre for Aquaculture (RGCA), Sirkali 609 113, Nagapattinam, Tamil Nadu, India
| | - K K Bineesh
- Zoological Survey of India, Andaman and Nicobar Regional Centre, Haddo, Port Blair 744 102, India
| | - G Grinson
- Central Marine Fisheries Research Institute, Kochi 682 018, Kerala, India
| | | |
Collapse
|
27
|
De La Torre AR, Li Z, Van de Peer Y, Ingvarsson PK. Contrasting Rates of Molecular Evolution and Patterns of Selection among Gymnosperms and Flowering Plants. Mol Biol Evol 2017; 34:1363-1377. [PMID: 28333233 PMCID: PMC5435085 DOI: 10.1093/molbev/msx069] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The majority of variation in rates of molecular evolution among seed plants remains both unexplored and unexplained. Although some attention has been given to flowering plants, reports of molecular evolutionary rates for their sister plant clade (gymnosperms) are scarce, and to our knowledge differences in molecular evolution among seed plant clades have never been tested in a phylogenetic framework. Angiosperms and gymnosperms differ in a number of features, of which contrasting reproductive biology, life spans, and population sizes are the most prominent. The highly conserved morphology of gymnosperms evidenced by similarity of extant species to fossil records and the high levels of macrosynteny at the genomic level have led scientists to believe that gymnosperms are slow-evolving plants, although some studies have offered contradictory results. Here, we used 31,968 nucleotide sites obtained from orthologous genes across a wide taxonomic sampling that includes representatives of most conifers, cycads, ginkgo, and many angiosperms with a sequenced genome. Our results suggest that angiosperms and gymnosperms differ considerably in their rates of molecular evolution per unit time, with gymnosperm rates being, on average, seven times lower than angiosperm species. Longer generation times and larger genome sizes are some of the factors explaining the slow rates of molecular evolution found in gymnosperms. In contrast to their slow rates of molecular evolution, gymnosperms possess higher substitution rate ratios than angiosperm taxa. Finally, our study suggests stronger and more efficient purifying and diversifying selection in gymnosperm than in angiosperm species, probably in relation to larger effective population sizes.
Collapse
Affiliation(s)
- Amanda R De La Torre
- Department of Plant Sciences, University of California-Davis, Davis, CA.,Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Zhen Li
- Department of Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Genomics Research Institute, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
28
|
Taulavuori K, Taulavuori E, Saravesi K, Jylänki T, Kainulainen A, Pajala J, Markkola A, Suominen O, Saikkonen K. Competitive success of southern populations of Betula pendula and Sorbus aucuparia under simulated southern climate experiment in the subarctic. Ecol Evol 2017. [PMID: 28649360 PMCID: PMC5478116 DOI: 10.1002/ece3.3026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Global warming has been commonly accepted to facilitate species' range shifts across latitudes. Cross-latitudinal transplantations support this; many tree species can well adapt to new geographical areas. However, these studies fail to capture species' adaptations to new light environment because the experiments were not designed to explicitly separate species' responses to light and temperature. Here we tested reaction norms of tree seedlings in reciprocal transplantations 1,000 km apart from each other at two latitudes (60°N and 69°N). In contrast to past studies, we exposed our experimental plants to same temperature in both sites (temperature of 60°N growing site is recorded to adjust temperature of 69°N site in real time via Internet connection) while light environment (photoperiod, light quality) remained ambient. Shoot elongation and autumn coloration were studied in seedlings of two deciduous trees (Betula pendula and Sorbus aucuparia), which were expected to respond differently to day length. Sorbus as a member of Rosaceae family was assumed to be indifferent to photoperiod, while Betula responds strongly to day length. We hypothesized that (1) southern and northern populations of both species perform differently; (2) southern populations perform better in both sites; (3) autumn phenology of southern populations may delay in the northern site; (4) and Sorbus aucuparia is less dependent on light environment. According to the hypotheses, shoot elongation of northern population was inherently low in both species. An evolutionary consequence of this may be a competitive success of southern populations under warming climate. Southern population of B. pendula was delayed in autumn coloration, but not in growth cessation. Sorbus aucuparia was less responsive to light environment. The results suggest that light provides selection pressure in range shifts, but the response is species dependent.
Collapse
Affiliation(s)
- Kari Taulavuori
- Department of Ecology and Genetics University of Oulu Oulu Finland
| | - Erja Taulavuori
- Department of Ecology and Genetics University of Oulu Oulu Finland
| | - Karita Saravesi
- Department of Ecology and Genetics University of Oulu Oulu Finland
| | - Tanja Jylänki
- Department of Ecology and Genetics University of Oulu Oulu Finland
| | - Aila Kainulainen
- Department of Ecology and Genetics University of Oulu Oulu Finland
| | - Jonna Pajala
- Department of Ecology and Genetics University of Oulu Oulu Finland
| | | | - Otso Suominen
- Centre for Environmental Research Kevo Subarctic Research Institute University of Turku Turku Finland
| | | |
Collapse
|
29
|
Salmela MJ, Ewers BE, Weinig C. Natural quantitative genetic variance in plant growth differs in response to ecologically relevant temperature heterogeneity. Ecol Evol 2016; 6:7574-7585. [PMID: 30128112 PMCID: PMC6093144 DOI: 10.1002/ece3.2482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/22/2016] [Accepted: 08/28/2016] [Indexed: 01/06/2023] Open
Abstract
Adaptation to large‐scale spatial heterogeneity in the environment accounts for a major proportion of genetic diversity within species. Theory predicts the erosion of adaptive genetic variation on a within‐population level, but considerable genetic diversity is often found locally. Genetic diversity could be expected to be maintained within populations in temporally or spatially variable conditions if genotypic rank orders vary across contrasting microenvironmental settings. Taking advantage of fine‐resolution environmental data, we tested the hypothesis that temperature heterogeneity among years could be one factor maintaining quantitative genetic diversity within a natural and genetically diverse plant population. We sampled maternal families of Boechera stricta, an Arabidopsis thaliana relative, at one location in the central Rocky Mountains and grew them in three treatments that, based on records from an adjacent weather station, simulated hourly temperature changes at the native site during three summers with differing mean temperatures. Treatment had a significant effect on all traits, with 2–3‐fold increase in above‐ and belowground biomass and the highest allocation to roots observed in the treatment simulating the warmest summer on record at the site. Treatment affected bivariate associations between traits, with the weakest correlation between above‐ and belowground biomass in the warmest treatment. The magnitude of quantitative genetic variation for all traits differed across treatments: Genetic variance of biomass was 0 in the warmest treatment, while highly significant diversity was found in average conditions, resulting in broad‐sense heritability of 0.31. Significant genotype × environment interactions across all treatments were found only in root‐to‐shoot ratio. Therefore, temperature variation among summers appears unlikely to account for the observed levels of local genetic variation in size in this perennial species, but may influence family rank order in growth allocation. Our results indicate that natural environmental fluctuations can have a large impact on the magnitude of within‐population quantitative genetic variance.
Collapse
Affiliation(s)
- Matti J Salmela
- Department of Botany University of Wyoming Laramie WY USA.,Present address: Natural Resources Institute Finland Vantaa Finland
| | - Brent E Ewers
- Department of Botany University of Wyoming Laramie WY USA.,Program in Ecology University of Wyoming Laramie WY USA
| | - Cynthia Weinig
- Department of Botany University of Wyoming Laramie WY USA.,Program in Ecology University of Wyoming Laramie WY USA.,Department of Molecular Biology University of Wyoming Laramie WY USA
| |
Collapse
|
30
|
Pollen dispersal slows geographical range shift and accelerates ecological niche shift under climate change. Proc Natl Acad Sci U S A 2016; 113:E5741-8. [PMID: 27621443 DOI: 10.1073/pnas.1607612113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change.
Collapse
|
31
|
Dodd RS, Douhovnikoff V. Adjusting to Global Change through Clonal Growth and Epigenetic Variation. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00086] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Aitken SN, Bemmels JB. Time to get moving: assisted gene flow of forest trees. Evol Appl 2016; 9:271-90. [PMID: 27087852 PMCID: PMC4780373 DOI: 10.1111/eva.12293] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/22/2015] [Indexed: 12/14/2022] Open
Abstract
Geographic variation in trees has been investigated since the mid-18th century. Similar patterns of clinal variation have been observed along latitudinal and elevational gradients in common garden experiments for many temperate and boreal species. These studies convinced forest managers that a 'local is best' seed source policy was usually safest for reforestation. In recent decades, experimental design, phenotyping methods, climatic data and statistical analyses have improved greatly and refined but not radically changed knowledge of clines. The maintenance of local adaptation despite high gene flow suggests selection for local adaptation to climate is strong. Concerns over maladaptation resulting from climate change have motivated many new genecological and population genomics studies; however, few jurisdictions have implemented assisted gene flow (AGF), the translocation of pre-adapted individuals to facilitate adaptation of planted forests to climate change. Here, we provide evidence that temperate tree species show clines along climatic gradients sufficiently similar for average patterns or climate models to guide AGF in the absence of species-specific knowledge. Composite provenancing of multiple seed sources can be used to increase diversity and buffer against future climate uncertainty. New knowledge will continue to refine and improve AGF as climates warm further.
Collapse
Affiliation(s)
- Sally N. Aitken
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
| | - Jordan B. Bemmels
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
33
|
Porth I, Klápště J, McKown AD, La Mantia J, Guy RD, Ingvarsson PK, Hamelin R, Mansfield SD, Ehlting J, Douglas CJ, El-Kassaby YA. Evolutionary Quantitative Genomics of Populus trichocarpa. PLoS One 2015; 10:e0142864. [PMID: 26599762 PMCID: PMC4658102 DOI: 10.1371/journal.pone.0142864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/27/2015] [Indexed: 11/23/2022] Open
Abstract
Forest trees generally show high levels of local adaptation and efforts focusing on understanding adaptation to climate will be crucial for species survival and management. Here, we address fundamental questions regarding the molecular basis of adaptation in undomesticated forest tree populations to past climatic environments by employing an integrative quantitative genetics and landscape genomics approach. Using this comprehensive approach, we studied the molecular basis of climate adaptation in 433 Populus trichocarpa (black cottonwood) genotypes originating across western North America. Variation in 74 field-assessed traits (growth, ecophysiology, phenology, leaf stomata, wood, and disease resistance) was investigated for signatures of selection (comparing QST -FST) using clustering of individuals by climate of origin (temperature and precipitation). 29,354 SNPs were investigated employing three different outlier detection methods and marker-inferred relatedness was estimated to obtain the narrow-sense estimate of population differentiation in wild populations. In addition, we compared our results with previously assessed selection of candidate SNPs using the 25 topographical units (drainages) across the P. trichocarpa sampling range as population groupings. Narrow-sense QST for 53% of distinct field traits was significantly divergent from expectations of neutrality (indicating adaptive trait variation); 2,855 SNPs showed signals of diversifying selection and of these, 118 SNPs (within 81 genes) were associated with adaptive traits (based on significant QST). Many SNPs were putatively pleiotropic for functionally uncorrelated adaptive traits, such as autumn phenology, height, and disease resistance. Evolutionary quantitative genomics in P. trichocarpa provides an enhanced understanding regarding the molecular basis of climate-driven selection in forest trees and we highlight that important loci underlying adaptive trait variation also show relationship to climate of origin. We consider our approach the most comprehensive, as it uncovers the molecular mechanisms of adaptation using multiple methods and tests. We also provide a detailed outline of the required analyses for studying adaptation to the environment in a population genomics context to better understand the species’ potential adaptive capacity to future climatic scenarios.
Collapse
Affiliation(s)
- Ilga Porth
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Département des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec, QC, G1V 0A6 Canada
| | - Jaroslav Klápště
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Genetics and Physiology of Forest Trees, Czech University of Life Sciences, Prague, 165 21, Czech Republic
| | - Athena D. McKown
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jonathan La Mantia
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Corn, Soybean and Wheat Quality Research Unit, United States Department of Agriculture, Wooster, Ohio, 44691 United States of America
| | - Robert D. Guy
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Pär K. Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, SE-901 87, Sweden
| | - Richard Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shawn D. Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jürgen Ehlting
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Carl J. Douglas
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- * E-mail:
| |
Collapse
|
34
|
Soolanayakanahally RY, Guy RD, Street NR, Robinson KM, Silim SN, Albrectsen BR, Jansson S. Comparative physiology of allopatric Populus species: geographic clines in photosynthesis, height growth, and carbon isotope discrimination in common gardens. FRONTIERS IN PLANT SCIENCE 2015; 6:528. [PMID: 26236324 PMCID: PMC4500902 DOI: 10.3389/fpls.2015.00528] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 06/29/2015] [Indexed: 05/23/2023]
Abstract
Populus species with wide geographic ranges display strong adaptation to local environments. We studied the clinal patterns in phenology and ecophysiology in allopatric Populus species adapted to similar environments on different continents under common garden settings. As a result of climatic adaptation, both Populus tremula L. and Populus balsamifera L. display latitudinal clines in photosynthetic rates (A), whereby high-latitude trees of P. tremula had higher A compared to low-latitude trees and nearly so in P. balsamifera (p = 0.06). Stomatal conductance (g s) and chlorophyll content index (CCI) follow similar latitudinal trends. However, foliar nitrogen was positively correlated with latitude in P. balsamifera and negatively correlated in P. tremula. No significant trends in carbon isotope composition of the leaf tissue (δ(13)C) were observed for both species; but, intrinsic water-use efficiency (WUEi) was negatively correlated with the latitude of origin in P. balsamifera. In spite of intrinsically higher A, high-latitude trees in both common gardens accomplished less height gain as a result of early bud set. Thus, shoot biomass was determined by height elongation duration (HED), which was well approximated by the number of days available for free growth between bud flush and bud set. We highlight the shortcoming of unreplicated outdoor common gardens for tree improvement and the crucial role of photoperiod in limiting height growth, further complicating interpretation of other secondary effects.
Collapse
Affiliation(s)
- Raju Y. Soolanayakanahally
- Agroforestry Development Centre, Agriculture and Agri-Food CanadaIndian Head, SK, Canada
- Department of Forest and Conservation Sciences, University of British ColumbiaVancouver, BC, Canada
| | - Robert D. Guy
- Department of Forest and Conservation Sciences, University of British ColumbiaVancouver, BC, Canada
| | - Nathaniel R. Street
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå UniversityUmeå, Sweden
| | - Kathryn M. Robinson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå UniversityUmeå, Sweden
| | - Salim N. Silim
- Agroforestry Development Centre, Agriculture and Agri-Food CanadaIndian Head, SK, Canada
| | | | - Stefan Jansson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå UniversityUmeå, Sweden
| |
Collapse
|
35
|
Rossi S. Local adaptations and climate change: converging sensitivity of bud break in black spruce provenances. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2015; 59:827-35. [PMID: 25225116 DOI: 10.1007/s00484-014-0900-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/19/2014] [Accepted: 08/28/2014] [Indexed: 05/24/2023]
Abstract
Species with transcontinental distribution or spread over wide geographical regions develop populations with growth traits genetically adapted to the local climate. The aim of this study was to investigate the ecotypic sensitivity of bud break, a strong adaptive trait, to a changing environment. Six phenological phases of bud break were monitored daily on black spruce [Picea mariana (Mill.) BSP] seedlings submitted to different temperatures (12, 16 and 20 °C) and photoperiods (14, 18 and 22 h). Six provenances were tested in growth chambers, produced from seeds collected along the whole latitudinal range of the closed boreal forest in Quebec, Canada. Bud break lasted 13.3 days on average and occurred earlier in seedlings from colder sites. The annual temperature of the sites suitably tracked the clinal variation among ecotypes, providing a clear biological explanation for the environmental signal driving the adaptive divergence of populations to the local climate. Increasing temperature induced an earlier bud break according to a non-linear pattern with greater advancements observed between 12 and 16 °C. Photoperiod was significant, but sensitivity analysis indicated that its effect on bud break was marginal with respect to temperature. No interaction of provenance × treatment was observed, demonstrating an ecotypic convergence of the responses to both factors. Changes in the growing conditions could substantially modify the synchronization between bud phenology and climate, thus exposing the developing meristems of black spruce to frost damage. However, similar advancements of bud break could be expected in the different ecotypes subjected to warmer temperatures or longer day lengths.
Collapse
Affiliation(s)
- Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada,
| |
Collapse
|
36
|
Oubida RW, Gantulga D, Zhang M, Zhou L, Bawa R, Holliday JA. Partitioning of multivariate phenotypes using regression trees reveals complex patterns of adaptation to climate across the range of black cottonwood (Populus trichocarpa). FRONTIERS IN PLANT SCIENCE 2015; 6:181. [PMID: 25870603 PMCID: PMC4375981 DOI: 10.3389/fpls.2015.00181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 03/06/2015] [Indexed: 05/25/2023]
Abstract
Local adaptation to climate in temperate forest trees involves the integration of multiple physiological, morphological, and phenological traits. Latitudinal clines are frequently observed for these traits, but environmental constraints also track longitude and altitude. We combined extensive phenotyping of 12 candidate adaptive traits, multivariate regression trees, quantitative genetics, and a genome-wide panel of SNP markers to better understand the interplay among geography, climate, and adaptation to abiotic factors in Populus trichocarpa. Heritabilities were low to moderate (0.13-0.32) and population differentiation for many traits exceeded the 99th percentile of the genome-wide distribution of FST, suggesting local adaptation. When climate variables were taken as predictors and the 12 traits as response variables in a multivariate regression tree analysis, evapotranspiration (Eref) explained the most variation, with subsequent splits related to mean temperature of the warmest month, frost-free period (FFP), and mean annual precipitation (MAP). These grouping matched relatively well the splits using geographic variables as predictors: the northernmost groups (short FFP and low Eref) had the lowest growth, and lowest cold injury index; the southern British Columbia group (low Eref and intermediate temperatures) had average growth and cold injury index; the group from the coast of California and Oregon (high Eref and FFP) had the highest growth performance and the highest cold injury index; and the southernmost, high-altitude group (with high Eref and low FFP) performed poorly, had high cold injury index, and lower water use efficiency. Taken together, these results suggest variation in both temperature and water availability across the range shape multivariate adaptive traits in poplar.
Collapse
Affiliation(s)
| | | | | | | | | | - Jason A. Holliday
- *Correspondence: Jason A. Holliday, Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, 304 Cheatham Hall, Blacksburg, VA 24061, USA
| |
Collapse
|
37
|
Winwood-Smith HS, Alton LA, Franklin CE, White CR. Does greater thermal plasticity facilitate range expansion of an invasive terrestrial anuran into higher latitudes? CONSERVATION PHYSIOLOGY 2015; 3:cov010. [PMID: 27293695 PMCID: PMC4778455 DOI: 10.1093/conphys/cov010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/04/2015] [Accepted: 02/08/2015] [Indexed: 05/25/2023]
Abstract
Temperature has pervasive effects on physiological processes and is critical in setting species distribution limits. Since invading Australia, cane toads have spread rapidly across low latitudes, but slowly into higher latitudes. Low temperature is the likely factor limiting high-latitude advancement. Several previous attempts have been made to predict future cane toad distributions in Australia, but understanding the potential contribution of phenotypic plasticity and adaptation to future range expansion remains challenging. Previous research demonstrates the considerable thermal metabolic plasticity of the cane toad, but suggests limited thermal plasticity of locomotor performance. Additionally, the oxygen-limited thermal tolerance hypothesis predicts that reduced aerobic scope sets thermal limits for ectotherm performance. Metabolic plasticity, locomotor performance and aerobic scope are therefore predicted targets of natural selection as cane toads invade colder regions. We measured these traits at temperatures of 10, 15, 22.5 and 30°C in low- and high-latitude toads acclimated to 15 and 30°C, to test the hypothesis that cane toads have adapted to cooler temperatures. High-latitude toads show increased metabolic plasticity and higher resting metabolic rates at lower temperatures. Burst locomotor performance was worse for high-latitude toads. Other traits showed no regional differences. We conclude that increased metabolic plasticity may facilitate invasion into higher latitudes by maintaining critical physiological functions at lower temperatures.
Collapse
Affiliation(s)
- Hugh S Winwood-Smith
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lesley A Alton
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Craig E Franklin
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Craig R White
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
38
|
Sedighi E, Rahimmalek M. Evaluation of genetic diversity of Rubus hyrcanus using Inter Simple Sequence Repeat (ISSR) and morphological markers. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Clark JS, Salk C, Melillo J, Mohan J. Tree phenology responses to winter chilling, spring warming, at north and south range limits. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12309] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- James S. Clark
- Nicholas School of the Environment; Duke University; Durham North Carolina 27705 USA
- Department of Statistical Science; Duke University; Durham North Carolina 27705 USA
| | - Carl Salk
- Nicholas School of the Environment; Duke University; Durham North Carolina 27705 USA
- Institute of Behavioral Science; University of Colorado; Boulder Colorado 80309 USA
- International Institute for Applied Systems Analysis; Laxenburg A-2361 Austria
| | - Jerry Melillo
- The Ecosystems Center; Marine Biological Laboratory; Woods Hole Massachusetts 02543 USA
| | - Jacqueline Mohan
- Odum School of Ecology; University of Georgia; 517 BioSciences Bldg Athens Georgia 30602 USA
| |
Collapse
|
40
|
López de Heredia U, López R, Collada C, Emerson BC, Gil L. Signatures of volcanism and aridity in the evolution of an insular pine (Pinus canariensis Chr. Sm. Ex DC in Buch). Heredity (Edinb) 2014; 113:240-9. [PMID: 24619181 DOI: 10.1038/hdy.2014.22] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/21/2014] [Accepted: 02/07/2014] [Indexed: 01/15/2023] Open
Abstract
Oceanic islands of volcanic origin provide useful templates for the study of evolution because they are subjected to recurrent perturbations that generate steep environmental gradients that may promote adaptation. Here we combine population genetic data from nuclear genes with the analysis of environmental variation and phenotypic data from common gardens to disentangle the confounding effects of demography and selection to identify the factors of importance for the evolution of the insular pine P. canariensis. Eight nuclear genes were partially sequenced in a survey covering the entire species range, and phenotypic traits were measured in four common gardens from contrasting environments. The explanatory power of population substrate age and environmental indices were assessed against molecular and phenotypic diversity estimates. In addition, neutral genetic variability (FST) and the genetic differentiation of phenotypic variation (QST) were compared in order to identify the evolutionary forces acting on these traits. Two key factors in the evolution of the species were identified: (1) recurrent volcanic activity has left an imprint in the genetic diversity of the nuclear genes; (2) aridity in southern slopes promotes local adaptation in the driest localities of P. canariensis, despite high levels of gene flow among populations.
Collapse
Affiliation(s)
- U López de Heredia
- Forest Genetics and Physiology Research Group, Technical University of Madrid (UPM), Ciudad Universitaria s/n, Madrid, Spain
| | - R López
- Forest Genetics and Physiology Research Group, Technical University of Madrid (UPM), Ciudad Universitaria s/n, Madrid, Spain
| | - C Collada
- Forest Genetics and Physiology Research Group, Technical University of Madrid (UPM), Ciudad Universitaria s/n, Madrid, Spain
| | - B C Emerson
- Island Ecology and Evolution Research Group, IPNA-CSIC, Tenerife, Canary Islands, Spain
| | - L Gil
- Forest Genetics and Physiology Research Group, Technical University of Madrid (UPM), Ciudad Universitaria s/n, Madrid, Spain
| |
Collapse
|
41
|
Awad L, Fady B, Khater C, Roig A, Cheddadi R. Genetic structure and diversity of the endangered fir tree of Lebanon (Abies cilicica Carr.): implications for conservation. PLoS One 2014; 9:e90086. [PMID: 24587219 PMCID: PMC3937446 DOI: 10.1371/journal.pone.0090086] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 01/29/2014] [Indexed: 12/04/2022] Open
Abstract
The threatened conifer Abies cilicica currently persists in Lebanon in geographically isolated forest patches. The impact of demographic and evolutionary processes on population genetic diversity and structure were assessed using 10 nuclear microsatellite loci. All remnant 15 local populations revealed a low genetic variation but a high recent effective population size. FST-based measures of population genetic differentiation revealed a low spatial genetic structure, but Bayesian analysis of population structure identified a significant Northeast-Southwest population structure. Populations showed significant but weak isolation-by-distance, indicating non-equilibrium conditions between dispersal and genetic drift. Bayesian assignment tests detected an asymmetric Northeast-Southwest migration involving some long-distance dispersal events. We suggest that the persistence and Northeast-Southwest geographic structure of Abies cilicica in Lebanon is the result of at least two demographic processes during its recent evolutionary history: (1) recent migration to currently marginal populations and (2) local persistence through altitudinal shifts along a mountainous topography. These results might help us better understand the mechanisms involved in the species response to expected climate change.
Collapse
Affiliation(s)
- Lara Awad
- University of Montpellier II, Institute of Evolutionary Sciences, CNRS UMR 5554, Montpellier, France
- * E-mail:
| | - Bruno Fady
- INRA, UR629, Ecologie des Forêts Méditerranéennes (URFM), Domaine St Paul, Avignon, France
| | - Carla Khater
- Center for Remote Sensing, National Council for Scientific Research-Lebanon, Bir Hassan, Beirut, Lebanon
| | - Anne Roig
- INRA, UR629, Ecologie des Forêts Méditerranéennes (URFM), Domaine St Paul, Avignon, France
| | - Rachid Cheddadi
- University of Montpellier II, Institute of Evolutionary Sciences, CNRS UMR 5554, Montpellier, France
| |
Collapse
|
42
|
Mosca E, González-Martínez SC, Neale DB. Environmental versus geographical determinants of genetic structure in two subalpine conifers. THE NEW PHYTOLOGIST 2014; 201:180-192. [PMID: 24102203 DOI: 10.1111/nph.12476] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/30/2013] [Indexed: 06/02/2023]
Abstract
Alpine ecosystems are facing rapid human-induced environmental changes, and so more knowledge about tree adaptive potential is needed. This study investigated the relative role of isolation by distance (IBD) versus isolation by adaptation (IBA) in explaining population genetic structure in Abies alba and Larix decidua, based on 231 and 233 single nucleotide polymorphisms (SNPs) sampled across 36 and 22 natural populations, respectively, in the Alps and Apennines. Genetic structure was investigated for both geographical and environmental groups, using analysis of molecular variance (AMOVA). For each species, nine environmental groups were defined using climate variables selected from a multiple factor analysis. Complementary methods were applied to identify outliers based on these groups, and to test for IBD versus IBA. AMOVA showed weak but significant genetic structure for both species, with higher values in L. decidua. Among the potential outliers detected, up to two loci were found for geographical groups and up to seven for environmental groups. A stronger effect of IBD than IBA was found in both species; nevertheless, once spatial effects had been removed, temperature and soil in A. alba, and precipitation in both species, were relevant factors explaining genetic structure. Based on our findings, in the Alpine region, genetic structure seems to be affected by both geographical isolation and environmental gradients, creating opportunities for local adaptation.
Collapse
Affiliation(s)
- Elena Mosca
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, S. Michele all'Adige, 38010, Italy
| | | | - David B Neale
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, S. Michele all'Adige, 38010, Italy
- Department of Plant Sciences, University of California at Davis, Davis, CA, 95616, USA
| |
Collapse
|
43
|
Sexton JP, Hangartner SB, Hoffmann AA. GENETIC ISOLATION BY ENVIRONMENT OR DISTANCE: WHICH PATTERN OF GENE FLOW IS MOST COMMON? Evolution 2013; 68:1-15. [DOI: 10.1111/evo.12258] [Citation(s) in RCA: 467] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 08/19/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Jason P. Sexton
- Bio21 Molecular Science Institute; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Sandra B. Hangartner
- Bio21 Molecular Science Institute; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Ary A. Hoffmann
- Bio21 Molecular Science Institute; The University of Melbourne; Parkville Victoria 3010 Australia
| |
Collapse
|
44
|
Imprints of natural selection along environmental gradients in phenology-related genes of Quercus petraea. Genetics 2013; 195:495-512. [PMID: 23934884 DOI: 10.1534/genetics.113.153783] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We explored single nucleotide polymorphism (SNP) variation in candidate genes for bud burst from Quercus petraea populations sampled along gradients of latitude and altitude in Western Europe. SNP diversity was monitored for 106 candidate genes, in 758 individuals from 32 natural populations. We investigated whether SNP variation reflected the clinal pattern of bud burst observed in common garden experiments. We used different methods to detect imprints of natural selection (FST outlier, clinal variation at allelic frequencies, association tests) and compared the results obtained for the two gradients. FST outlier SNPs were found in 15 genes, 5 of which were common to both gradients. The type of selection differed between the two gradients (directional or balancing) for 3 of these 5. Clinal variations were observed for six SNPs, and one cline was conserved across both gradients. Association tests between the phenotypic or breeding values of trees and SNP genotypes identified 14 significant associations, involving 12 genes. The results of outlier detection on the basis of population differentiation or clinal variation were not very consistent with the results of association tests. The discrepancies between these approaches may reflect the different hierarchical levels of selection considered (inter- and intrapopulation selection). Finally, we obtained evidence for convergent selection (similar for gradients) and clinal variation for a few genes, suggesting that comparisons between parallel gradients could be used to screen for major candidate genes responding to natural selection in trees.
Collapse
|
45
|
Hamilton JA, Aitken SN. Genetic and morphological structure of a spruce hybrid (Picea sitchensis x P. glauca) zone along a climatic gradient. AMERICAN JOURNAL OF BOTANY 2013; 100:1651-1662. [PMID: 23935108 DOI: 10.3732/ajb.1200654] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY Historic colonization and contemporary evolutionary processes contribute to patterns of genetic variation and differentiation among populations. However, separating the respective influences of these processes remains a challenge, particularly for natural hybrid zones, where standing genetic variation may result from evolutionary processes both preceding and following contact, influencing the evolutionary trajectory of hybrid populations. Where adaptation to novel environments may be facilitated by interspecific hybridization, teasing apart these processes will have practical implications for forest management in changing environments. METHODS We evaluated the neutral genetic architecture of the Picea sitchensis (Sitka spruce) × P. glauca (white spruce) hybrid zone along the Nass and Skeena river valleys in northwestern British Columbia using chloroplast, mitochondrial, and nuclear microsatellite markers, in combination with cone morphological traits. KEY RESULTS Sitka spruce mitotype "capture", evidenced by this species dominating the maternal lineage, is consistent with earlier colonization of the region by Sitka spruce. This "capture" differs from the spatial distribution of chloroplast haplotypes, indicating pollen dispersal and its contribution to geographic structure. Genetic ancestry, based on nuclear markers, was strongly influenced by climate and geography. Highly parallel results for replicate transects along environmental gradients provide support for the bounded hybrid superiority model of hybrid zone maintenance. • CONCLUSIONS This broad-scale analysis of neutral genetic structure indicates the importance of historic and contemporary gene flow, environmental selection, and their interaction in shaping neutral genetic variation within this hybrid zone, informative to seed transfer development and reforestation for future climates.
Collapse
Affiliation(s)
- Jill A Hamilton
- Centre for Forest Conservation Genetics and Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia.
| | | |
Collapse
|
46
|
Fageria MS, Rajora OP. Effects of harvesting of increasing intensities on genetic diversity and population structure of white spruce. Evol Appl 2013; 6:778-794. [PMID: 29387165 PMCID: PMC5779121 DOI: 10.1111/eva.12064] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/25/2013] [Indexed: 11/30/2022] Open
Abstract
Forest harvesting of increasing intensities is expected to have intensifying impacts on the genetic diversity and population structure of postharvest naturally regenerated stands by affecting the magnitude of evolutionary processes, such as genetic drift, gene flow, mating system, and selection. We have tested this hypothesis for the first time by employing widely distributed boreal white spruce (Picea glauca) as a model and controlled, replicated experimental harvesting and regeneration experiment at the EMEND project site (http://www.emendproject.org). We used two approaches. First, genetic diversity and population structure of postharvest natural regeneration after five harvesting treatments (green tree retention of 75%, 50%, 20%, and 10%, and clearcut) were assessed and compared with those of the unharvested control (pristine preharvest old-growth) in two replicates each of conifer-dominated (CD) and mixed-wood (MW) forest, using 10 (six EST (expressed sequence tag) and four genomic) microsatellite markers. Second, genetic diversity and population structure of preharvest old-growth were compared with those of postharvest natural regeneration after five harvesting treatments in the same treatment blocks in one replicate each of CD and MW forests. Contrary to our expectations, genetic diversity, inbreeding levels, and population genetic structure were similar between unharvested control or preharvest old-growth and postharvest natural regeneration after five harvesting treatments, with clearcut showing no negative genetic impacts. The potential effects of genetic drift and inbreeding resulting from harvesting bottlenecks were counterbalanced by predominantly outcrossing mating system and high gene flow from the residual and/or surrounding white spruce. CD and MW forests responded similarly to harvesting of increasing intensities. Simulated data for 10, 50, and 100 microsatellite markers showed the same results as obtained empirically from 10 microsatellite markers. Similar patterns of genetic diversity and population structure were observed for EST and genomic microsatellites. In conclusion, harvesting of increasing intensities did not show any significant negative impact on genetic diversity, population structure, and evolutionary potential of white spruce in CD and MW forests. Our first of its kind of study addresses the broad central forest management question how forest harvesting and regeneration practices can best maintain genetic biodiversity and ecosystem integrity.
Collapse
Affiliation(s)
- Manphool S. Fageria
- Faculty of Forestry and Environmental ManagementCanadian, Genomics and Conservation Genetics InstituteUniversity of New BrunswickFrederictonNBCanada
- Present address:
Agriculture and Agri‐Food CanadaFrederictonNBCanada
| | - Om P. Rajora
- Faculty of Forestry and Environmental ManagementCanadian, Genomics and Conservation Genetics InstituteUniversity of New BrunswickFrederictonNBCanada
| |
Collapse
|
47
|
Standing variation boosted by multiple sources of introduction contributes to the success of the introduced species, Lotus corniculatus. Biol Invasions 2013. [DOI: 10.1007/s10530-013-0488-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O. Potential for evolutionary responses to climate change - evidence from tree populations. GLOBAL CHANGE BIOLOGY 2013; 19:1645-61. [PMID: 23505261 PMCID: PMC3664019 DOI: 10.1111/gcb.12181] [Citation(s) in RCA: 404] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 05/18/2023]
Abstract
Evolutionary responses are required for tree populations to be able to track climate change. Results of 250 years of common garden experiments show that most forest trees have evolved local adaptation, as evidenced by the adaptive differentiation of populations in quantitative traits, reflecting environmental conditions of population origins. On the basis of the patterns of quantitative variation for 19 adaptation-related traits studied in 59 tree species (mostly temperate and boreal species from the Northern hemisphere), we found that genetic differentiation between populations and clinal variation along environmental gradients were very common (respectively, 90% and 78% of cases). Thus, responding to climate change will likely require that the quantitative traits of populations again match their environments. We examine what kind of information is needed for evaluating the potential to respond, and what information is already available. We review the genetic models related to selection responses, and what is known currently about the genetic basis of the traits. We address special problems to be found at the range margins, and highlight the need for more modeling to understand specific issues at southern and northern margins. We need new common garden experiments for less known species. For extensively studied species, new experiments are needed outside the current ranges. Improving genomic information will allow better prediction of responses. Competitive and other interactions within species and interactions between species deserve more consideration. Despite the long generation times, the strong background in quantitative genetics and growing genomic resources make forest trees useful species for climate change research. The greatest adaptive response is expected when populations are large, have high genetic variability, selection is strong, and there is ecological opportunity for establishment of better adapted genotypes.
Collapse
Affiliation(s)
- Florian J Alberto
- Department of Biology and Biocenter Oulu, University of OuluFIN-90014, Oulu, Finland
- UMR1202 Biodiversité Gènes et Communautés, INRAF-33610, Cestas, France
- UMR1202 Biodiversité Gènes et Communautés, Université de BordeauxF-33410, Talence, France
| | - Sally N Aitken
- Department of Forest and Conservation Sciences and Centre for Forest Conservation Genetics, University of British ColumbiaVancouver, BC V6T 1Z4, Canada
| | - Ricardo Alía
- Department of Forest Ecology and Genetics, INIA - Forest Research CentreE-28040, Madrid, Spain
| | | | - Heikki Hänninen
- Department of Biosciences, University of HelsinkiFIN-00014, Helsinki, Finland
| | - Antoine Kremer
- UMR1202 Biodiversité Gènes et Communautés, INRAF-33610, Cestas, France
- UMR1202 Biodiversité Gènes et Communautés, Université de BordeauxF-33410, Talence, France
| | - François Lefèvre
- URFM, UR629 Ecologie des Forêts Méditerranéennes, INRAF-84914, Avignon, France
| | - Thomas Lenormand
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de MontpellierUMR 5175, F-34293, Montpellier, France
| | - Sam Yeaman
- Department of Forest and Conservation Sciences and Centre for Forest Conservation Genetics, University of British ColumbiaVancouver, BC V6T 1Z4, Canada
- Institute of Biology, Université de NeuchâtelCH-2000, Neuchâtel, Switzerland
| | - Ross Whetten
- Department of Forestry & Environmental Resources, NC State UniversityRaleigh, NC, 27695-8008, USA
| | - Outi Savolainen
- Department of Biology and Biocenter Oulu, University of OuluFIN-90014, Oulu, Finland
| |
Collapse
|
49
|
Grady KC, Laughlin DC, Ferrier SM, Kolb TE, Hart SC, Allan GJ, Whitham TG. Conservative leaf economic traits correlate with fast growth of genotypes of a foundation riparian species near the thermal maximum extent of its geographic range. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12060] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kevin C. Grady
- School of Forestry and the Merriam‐Powell Center for Environmental Research Northern Arizona University Flagstaff AZ 86011 USA
| | - Daniel C. Laughlin
- Department of Biological Sciences The University of Waikato Hamilton 3240 New Zealand
| | - Sharon M. Ferrier
- Department of Biological Sciences and the Merriam‐Powell Center for Environmental Research Northern Arizona University Flagstaff AZ 86011 USA
| | - Thomas E. Kolb
- School of Forestry and the Merriam‐Powell Center for Environmental Research Northern Arizona University Flagstaff AZ 86011 USA
| | - Stephen C. Hart
- School of Natural Sciences and Sierra Nevada Research Institute University of California Merced CA 95343 USA
| | - Gerard J. Allan
- Department of Biological Sciences and the Merriam‐Powell Center for Environmental Research Northern Arizona University Flagstaff AZ 86011 USA
| | - Thomas G. Whitham
- Department of Biological Sciences and the Merriam‐Powell Center for Environmental Research Northern Arizona University Flagstaff AZ 86011 USA
| |
Collapse
|
50
|
Soolanayakanahally RY, Guy RD, Silim SN, Song M. Timing of photoperiodic competency causes phenological mismatch in balsam poplar (Populus balsamifera L.). PLANT, CELL & ENVIRONMENT 2013; 36:116-127. [PMID: 22702736 DOI: 10.1111/j.1365-3040.2012.02560.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plant phenology is expected to be sensitive to climate warming. In boreal trees, spring flush is primarily temperature driven, whereas height growth cessation and autumn leaf senescence are predominantly controlled by photoperiod. Cuttings of 525 genotypes from the full range of balsam poplar were planted into two common gardens (Vancouver and Indian Head, Canada) at similar latitudes, but with differing winter temperatures and growing seasons. There was clinal variation in spring and, particularly, summer and fall phenology. Bud flush and, despite milder climate, bud set and leaf drop were earlier at Vancouver than at Indian Head by 44, 28 and 7 d, respectively. Although newly flushed growth is insensitive to photoperiod, many genotypes at both sites became competent before the summer solstice. At Vancouver, high-latitude genotypes set dormant terminal buds in mid-spring. Most other genotypes grew until midsummer or set bud temporarily and then experienced a second flush. In both gardens and in a growth chamber experiment, earlier bud set was associated with reduced height growth and higher root/shoot ratios. Shoots attained competency ~5 weeks after flushing, which would normally prevent dormancy induction before the solstice, but may be insufficient if spring advances by more than a few weeks.
Collapse
|