1
|
Zhuo Y, Zeng H, Su C, Lv Q, Cheng T, Lei L. Tailoring biomaterials for vaccine delivery. J Nanobiotechnology 2024; 22:480. [PMID: 39135073 PMCID: PMC11321069 DOI: 10.1186/s12951-024-02758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Biomaterials are substances that can be injected, implanted, or applied to the surface of tissues in biomedical applications and have the ability to interact with biological systems to initiate therapeutic responses. Biomaterial-based vaccine delivery systems possess robust packaging capabilities, enabling sustained and localized drug release at the target site. Throughout the vaccine delivery process, they can contribute to protecting, stabilizing, and guiding the immunogen while also serving as adjuvants to enhance vaccine efficacy. In this article, we provide a comprehensive review of the contributions of biomaterials to the advancement of vaccine development. We begin by categorizing biomaterial types and properties, detailing their reprocessing strategies, and exploring several common delivery systems, such as polymeric nanoparticles, lipid nanoparticles, hydrogels, and microneedles. Additionally, we investigated how the physicochemical properties and delivery routes of biomaterials influence immune responses. Notably, we delve into the design considerations of biomaterials as vaccine adjuvants, showcasing their application in vaccine development for cancer, acquired immunodeficiency syndrome, influenza, corona virus disease 2019 (COVID-19), tuberculosis, malaria, and hepatitis B. Throughout this review, we highlight successful instances where biomaterials have enhanced vaccine efficacy and discuss the limitations and future directions of biomaterials in vaccine delivery and immunotherapy. This review aims to offer researchers a comprehensive understanding of the application of biomaterials in vaccine development and stimulate further progress in related fields.
Collapse
Affiliation(s)
- Yanling Zhuo
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chunyu Su
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Qizhuang Lv
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China.
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, China.
| | - Tianyin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
2
|
Maritan E, Quagliariello A, Frago E, Patarnello T, Martino ME. The role of animal hosts in shaping gut microbiome variation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230071. [PMID: 38497257 PMCID: PMC10945410 DOI: 10.1098/rstb.2023.0071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 03/19/2024] Open
Abstract
Millions of years of co-evolution between animals and their associated microbial communities have shaped and diversified the nature of their relationship. Studies continue to reveal new layers of complexity in host-microbe interactions, the fate of which depends on a variety of different factors, ranging from neutral processes and environmental factors to local dynamics. Research is increasingly integrating ecosystem-based approaches, metagenomics and mathematical modelling to disentangle the individual contribution of ecological factors to microbiome evolution. Within this framework, host factors are known to be among the dominant drivers of microbiome composition in different animal species. However, the extent to which they shape microbiome assembly and evolution remains unclear. In this review, we summarize our understanding of how host factors drive microbial communities and how these dynamics are conserved and vary across taxa. We conclude by outlining key avenues for research and highlight the need for implementation of and key modifications to existing theory to fully capture the dynamics of host-associated microbiomes. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Elisa Maritan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Enric Frago
- CIRAD, UMR CBGP, INRAE, Institut Agro, IRD, Université Montpellier, 34398 Montpellier, France
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| |
Collapse
|
3
|
Chen D, Chen Y, Lu L, Zhu H, Zhang X, Huang X, Li Z, Ouyang P, Zhang X, Li L, Geng Y. Transcriptome Revealed the Macrophages Inflammatory Response Mechanism and NOD-like Receptor Characterization in Siberian Sturgeon ( Acipenser baerii). Int J Mol Sci 2023; 24:ijms24119518. [PMID: 37298469 DOI: 10.3390/ijms24119518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Nucleotide-binding and oligomerization domain-like receptors (NOD-like receptors, NLRs) can regulate the inflammatory response to eliminate pathogens and maintain the host's homeostasis. In this study, the head kidney macrophages of Siberian sturgeon were treated with lipopolysaccharide (LPS) to induce inflammation by evaluating the expression of cytokines. The high-throughput sequencing for macrophages after 12 h treatment showed that 1224 differentially expressed genes (DEGs), including 779 upregulated and 445 downregulated, were identified. DEGs mainly focus on pattern recognition receptors (PRRs) and the adaptor proteins, cytokines, and cell adhesion molecules. In the NOD-like receptor signaling pathway, multiple NOD-like receptor family CARD domains containing 3-like (NLRC3-like) were significantly downregulated, and pro-inflammatory cytokines were upregulated. Based on the transcriptome database, 19 NLRs with NACHT structural domains were mined and named in Siberian sturgeon, including 5 NLR-A, 12 NLR-C, and 2 other NLRs. The NLR-C subfamily had the characteristics of expansion of the teleost NLRC3 family and lacked the B30.2 domain compared with other fish. This study revealed the inflammatory response mechanism and NLRs family characterization in Siberian sturgeon by transcriptome and provided basic data for further research on inflammation in teleost.
Collapse
Affiliation(s)
- Defang Chen
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yinqiu Chen
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Lu
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Zhu
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhang
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoli Huang
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiqiong Li
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Ouyang
- Research Center of Aquatic Animal Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoli Zhang
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu 611130, China
| | - Liangyu Li
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu 611130, China
| | - Yi Geng
- Research Center of Aquatic Animal Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Pan J, Fei CJ, Hu Y, Wu XY, Nie L, Chen J. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zool Res 2023; 44:183-218. [PMID: 36579404 PMCID: PMC9841179 DOI: 10.24272/j.issn.2095-8137.2022.464] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The innate immune system protects the host from external pathogens and internal damage in various ways. The cGAS-STING signaling pathway, comprised of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and downstream signaling adaptors, plays an essential role in protective immune defense against microbial DNA and internal damaged-associated DNA and is responsible for various immune-related diseases. After binding with DNA, cytosolic cGAS undergoes conformational change and DNA-linked liquid-liquid phase separation to produce 2'3'-cGAMP for the activation of endoplasmic reticulum (ER)-localized STING. However, further studies revealed that cGAS is predominantly expressed in the nucleus and strictly tethered to chromatin to prevent binding with nuclear DNA, and functions differently from cytosolic-localized cGAS. Detailed delineation of this pathway, including its structure, signaling, and regulatory mechanisms, is of great significance to fully understand the diversity of cGAS-STING activation and signaling and will be of benefit for the treatment of inflammatory diseases and cancer. Here, we review recent progress on the above-mentioned perspectives of the cGAS-STING signaling pathway and discuss new avenues for further study.
Collapse
Affiliation(s)
- Jing Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Xiang-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
5
|
Yang G, Wan P, Zhang Y, Tan Q, Qudus MS, Yue Z, Luo W, Zhang W, Ouyang J, Li Y, Wu J. Innate Immunity, Inflammation, and Intervention in HBV Infection. Viruses 2022; 14:2275. [PMID: 36298831 PMCID: PMC9609328 DOI: 10.3390/v14102275] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 07/30/2023] Open
Abstract
Hepatitis B virus (HBV) infection is still one of the most dangerous viral illnesses. HBV infects around 257 million individuals worldwide. Hepatitis B in many individuals ultimately develops hepatocellular carcinoma (HCC), which is the sixth most common cancer and the third leading cause of cancer-related deaths worldwide. The innate immunity acts as the first line of defense against HBV infection through activating antiviral genes. Along with the immune responses, pro-inflammatory cytokines are triggered to enhance the antiviral responses, but this may result in acute or chronic liver inflammation, especially when the clearance of virus is unsuccessful. To a degree, the host innate immune and inflammatory responses dominate the HBV infection and liver pathogenesis. Thus, it is crucial to figure out the signaling pathways involved in the activation of antiviral factors and inflammatory cytokines. Here, we review the interplay between HBV and the signal pathways that mediates innate immune responses and inflammation. In addition, we summarize current therapeutic strategies for HBV infection via modulating innate immunity or inflammation. Characterizing the mechanisms that underlie these HBV-host interplays might provide new approaches for the cure of chronic HBV infection.
Collapse
Affiliation(s)
- Ge Yang
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Yaru Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Qiaoru Tan
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhaoyang Yue
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Wei Luo
- Clinical Research Institute, The First People’s Hospital, Foshan 528000, China
| | - Wen Zhang
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Jianhua Ouyang
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Yongkui Li
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Jianguo Wu
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Chang SY, Kambe N, Fan WL, Huang JL, Lee WI, Wu CY. Incomplete penetrance of NOD2 C483W mutation underlining Blau syndrome. Pediatr Rheumatol Online J 2022; 20:86. [PMID: 36192768 PMCID: PMC9531522 DOI: 10.1186/s12969-022-00743-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Blau syndrome (BS) is a rare autoinflammatory disorder with NOD2 gain-of-function mutation and characterized by autoactivation of the NFκB pathway. Classically considered a disease of high penetrance, reports on NOD2 mutations underlining BS with incomplete penetrance is limited. CASE PRESENTATION The proband is a 9-year-old girl presented with brownish annular infiltrative plaques and symmetric boggy polyarthritis over bilateral wrists and ankles. Her skin biopsy revealed noncaseating granulomas inflammation with multinucleated giant cells. A novel C483W NOD2 mutation was identify in the proband and her asymptomatic father. Functional examinations including autoactivation of the NFκB pathway demonstrated by in vitro HEK293T NOD2 overexpression test as well as intracellular staining of phosphorylated-NFκB in patient's CD11b+ cells were consistent with BS. CONCLUSIONS We reported a novel C483W NOD2 mutation underlining BS with incomplete penetrance. Moreover, a phosphorylated-NFκB intracellular staining assay of CD11b+ was proposed to assist functional evaluation of NFκB autoactivation in patient with BS.
Collapse
Affiliation(s)
- Shao-Yu Chang
- grid.145695.a0000 0004 1798 0922College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Naotomo Kambe
- grid.258799.80000 0004 0372 2033Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Wen-Lang Fan
- grid.413801.f0000 0001 0711 0593Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan ,grid.413804.aDepartment of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jing-Long Huang
- grid.145695.a0000 0004 1798 0922College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.413801.f0000 0001 0711 0593Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, No.5 Fu-Hsing St., Taoyuan, Taiwan, R.O.C. ,Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Wen-I Lee
- grid.145695.a0000 0004 1798 0922College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.413801.f0000 0001 0711 0593Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, No.5 Fu-Hsing St., Taoyuan, Taiwan, R.O.C.
| | - Chao-Yi Wu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, No.5 Fu-Hsing St., Taoyuan, Taiwan, R.O.C..
| |
Collapse
|
7
|
McCord JP, Grove TZ. Engineering repeat proteins of the immune system. Biopolymers 2020; 111:e23348. [PMID: 32031681 DOI: 10.1002/bip.23348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022]
Abstract
Limitations associated with immunoglobulins have motivated the search for novel binding scaffolds. Repeat proteins have emerged as one promising class of scaffolds, but often are limited to binding protein and peptide targets. An exception is the repeat proteins of the immune system, which have in recent years served as an inspiration for binding scaffolds which can bind glycans and other classes of biomolecule. Like other repeat proteins, these proteins can be very stable and have a monomeric mode of binding, with elongated and highly variable binding surfaces. The ability to target glycans and glycoproteins fill an important gap in current tools for research and biomedical applications.
Collapse
Affiliation(s)
- Jennifer P McCord
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, U.S.A
| | - Tijana Z Grove
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, U.S.A.,Zarkovic Grove Consulting, LLC, Blacksburg, VA, U.S.A
| |
Collapse
|
8
|
Structural Biology of NOD-Like Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:119-141. [DOI: 10.1007/978-981-13-9367-9_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Abstract
With the coming of the "silver tsunami," expanding the knowledge about how various intrinsic and extrinsic factors affect the immune system in the elderly is timely and of immediate clinical need. The global population is increasing in age. By the year 2030, more than 20% of the population of the United States will be older than 65 years of age. This article focuses on how advanced age alters the immune systems and how this, in turn, modulates the ability of the aging lung to deal with infectious challenges from the outside world and from within the host.
Collapse
Affiliation(s)
- Elizabeth J Kovacs
- Division of GI, Trauma and Endocrine Surgery, Department of Surgery, Mucosal Inflammation Program, GILIIP (GI, Liver and Innate Immunity Program), Graduate Program in Immunology, IMAGE (Investigations in Metabolism, Aging, Gender and Exercise), University of Colorado Denver, Anschutz Medical Campus, 12700 East 19th Avenue, Research Complex 2, Mailstop #8620, Aurora, CO 80045, USA.
| | - Devin M Boe
- Division of GI, Trauma and Endocrine Surgery, Department of Surgery, Mucosal Inflammation Program, Graduate Program in Immunology, University of Colorado Denver, Anschutz Medical Campus, 12700 East 19th Avenue, Research Complex 2, Room 6460, Aurora, CO 80045, USA
| | - Lisbeth A Boule
- Division of GI, Trauma and Endocrine Surgery, Department of Surgery, Mucosal Inflammation Program, IMAGE, University of Colorado Denver, Anschutz Medical Campus, 12700 East 19th Avenue, Research Complex 2, Room 6460, Aurora, CO 80045, USA
| | - Brenda J Curtis
- Division of GI, Trauma and Endocrine Surgery, Department of Surgery, Mucosal Inflammation Program, IMAGE, University of Colorado Denver, Anschutz Medical Campus, 12700 East 19th Avenue, Research Complex 2, Room 6018, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Understanding the molecular differential recognition of muramyl peptide ligands by LRR domains of human NOD receptors. Biochem J 2017; 474:2691-2711. [DOI: 10.1042/bcj20170220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 12/28/2022]
Abstract
Human nucleotide-binding oligomerization domain proteins, hNOD1 and hNOD2, are host intracellular receptors with C-terminal leucine-rich repeat (LRR) domains, which recognize specific bacterial peptidoglycan (PG) fragments as their ligands. The specificity of this recognition is dependent on the third amino acid of the stem peptide of the PG ligand, which is usually meso-diaminopimelic acid (mesoDAP) or l-lysine (l-Lys). Since the LRR domains of hNOD receptors had been experimentally shown to confer the PG ligand-sensing specificity, we developed three-dimensional structures of hNOD1-LRR and the hNOD2-LRR to understand the mechanism of differential recognition of muramyl peptide ligands by hNOD receptors. The hNOD1-LRR and hNOD2-LRR receptor models exhibited right-handed curved solenoid shape. The hot-spot residues experimentally proved to be critical for ligand recognition were located in the concavity of the NOD-LRR and formed the recognition site. Our molecular docking analyses and molecular electrostatic potential mapping studies explain the activation of hNOD-LRRs, in response to effective molecular interactions of PG ligands at the recognition site; and conversely, the inability of certain PG ligands to activate hNOD-LRRs, by deviations from the recognition site. Based on molecular docking studies using PG ligands, we propose few residues — G825, D826 and N850 in hNOD1-LRR and L904, G905, W931, L932 and S933 in hNOD2-LRR, evolutionarily conserved across different host species, which may play a major role in ligand recognition. Thus, our integrated experimental and computational approach elucidates the molecular basis underlying the differential recognition of PG ligands by hNOD receptors.
Collapse
|
11
|
Al-Mohanna F. The Cardiokines. ENDOCRINOLOGY OF THE HEART IN HEALTH AND DISEASE 2017:87-114. [DOI: 10.1016/b978-0-12-803111-7.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Hyun KG, Lee Y, Yoon J, Yi H, Song JJ. Crystal structure of Arabidopsis thaliana SNC1 TIR domain. Biochem Biophys Res Commun 2016; 481:146-152. [DOI: 10.1016/j.bbrc.2016.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 11/01/2016] [Indexed: 11/25/2022]
|
13
|
GR-independent down-modulation on GM-CSF bone marrow-derived dendritic cells by the selective glucocorticoid receptor modulator Compound A. Sci Rep 2016; 6:36646. [PMID: 27857212 PMCID: PMC5114550 DOI: 10.1038/srep36646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/19/2016] [Indexed: 02/08/2023] Open
Abstract
Dendritic cells (DC) initiate the adaptive immune response. Glucocorticoids (GCs) down-modulate the function of DC. Compound A (CpdA, (2-(4-acetoxyphenyl)-2-chloro-N-methyl-ethylammonium chloride) is a plant-derived GR-ligand with marked dissociative properties. We investigated the effects of CpdA on in vitro generated GM-CSF-conditioned bone marrow-derived DC (BMDC). CpdA-exposed BMDC exhibited low expression of cell-surface molecules and diminution of the release of proinflammatory cytokines upon LPS stimulation; processes associated with BMDC maturation and activation. CpdA-treated BMDC were inefficient at Ag capture via mannose receptor-mediated endocytosis and displayed reduced T-cell priming. CpdA prevented the LPS-induced rise in pErk1/2 and pP38, kinases involved in TLR4 signaling. CpdA fully inhibited LPS-induced pAktSer473, a marker associated with the generation of tolerogenic DC. We used pharmacological blockade and selective genetic loss-of-function tools and demonstrated GR-independent inhibitory effects of CpdA in BMDC. Mechanistically, CpdA-mediated inactivation of the NF-κB intracellular signaling pathway was associated with a short-circuiting of pErk1/2 and pP38 upstream signaling. Assessment of the in vivo function of CpdA-treated BMDC pulsed with the hapten trinitrobenzenesulfonic acid showed impaired cell-mediated contact hypersensitivity. Collectively, we provide evidence that CpdA is an effective BMDC modulator that might have a benefit for immune disorders, even when GR is not directly targeted.
Collapse
|
14
|
Raghuraman P, Jesu Jaya Sudan R, Lesitha Jeeva Kumari J, Sudandiradoss C. Casting the critical regions in nucleotide binding oligomerization domain 2 protein: a signature mediated structural dynamics approach. J Biomol Struct Dyn 2016; 35:3297-3315. [PMID: 27790943 DOI: 10.1080/07391102.2016.1254116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleotide binding oligomerization domain 2 (NOD2), a protein involved in the first line defence mechanism has a pivotal role in innate immunity. Impaired function of this protein is implicated in disorders such as Blau syndrome and Crohn's disease. Since an altered function is linked to protein's structure, we framed a systematic strategy to interpret the structure-function relationship of the protein. Initiated with mutation-based pattern prediction and identified a distant ortholog (DO) of NOD2 from which the intra-residue interaction network was elucidated. The network was used to identify hotspots that serve as critical points to maintain the stable architecture of the protein. Structural comparison of NOD2 domains with a DO revealed the minimal number of intra-protein interactions required by the protein to maintain the structural fold. In addition, the conventional molecular dynamics simulation emphasized the conformational transitions at hot spot residues between native NOD2 domains and its respective mutants (G116R, R42W and R54A) structures. The analysis of intra-protein interactions globally and the displacement of residues locally around the mutational site revealed loss of several critical bonds and residues vital for the protein's function. Conclusively we report, about 10 residues in leucine-rich repeat, 13 residues in NOD and 6 residues in CARD domain are required by the NOD2 to maintain its function. This protocol will help the researchers to achieve for more prospective studies to attest druggable site utility in discovering novel drug candidates.
Collapse
Affiliation(s)
- P Raghuraman
- a Department of Biotechnology , School of Bioscience and Technology, VIT University , Vellore 632301 , India
| | - R Jesu Jaya Sudan
- a Department of Biotechnology , School of Bioscience and Technology, VIT University , Vellore 632301 , India
| | - J Lesitha Jeeva Kumari
- a Department of Biotechnology , School of Bioscience and Technology, VIT University , Vellore 632301 , India
| | - C Sudandiradoss
- a Department of Biotechnology , School of Bioscience and Technology, VIT University , Vellore 632301 , India
| |
Collapse
|
15
|
Boe DM, Boule LA, Kovacs EJ. Innate immune responses in the ageing lung. Clin Exp Immunol 2016; 187:16-25. [PMID: 27711979 DOI: 10.1111/cei.12881] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 12/19/2022] Open
Abstract
The world is undergoing an unprecedented shift in demographics, with the number of individuals over the age of 60 years projected to reach 2 billion or more by 2050, representing 22% of the global population. Elderly people are at a higher risk for chronic disease and more susceptible to infection, due in part to age-related dysfunction of the immune system resulting from low-grade chronic inflammation known as 'inflamm-ageing'. The innate immune system of older individuals exhibits a diminished ability to respond to microbial threats and clear infections, resulting in a greater occurrence of many infectious diseases in elderly people. In particular, the incidence of and mortality from lung infections increase sharply with age, with such infections often leading to worse outcomes, prolonged hospital stays and life-threatening complications, such as sepsis or acute respiratory distress syndrome. In this review, we highlight research on bacterial pneumonias and pulmonary viral infections and discuss age-related changes in innate immunity that contribute to the higher rate of these infections in older populations. By understanding more clearly the innate immune defects in elderly individuals, we can design age-specific therapies to address lung infections in such a vulnerable population.
Collapse
Affiliation(s)
- D M Boe
- Division of GI, Endocrine and Tumor Surgery, Department of Surgery, Mucosal Inflammation Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - L A Boule
- Division of GI, Endocrine and Tumor Surgery, Department of Surgery, Mucosal Inflammation Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - E J Kovacs
- Division of GI, Endocrine and Tumor Surgery, Department of Surgery, Mucosal Inflammation Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
16
|
Yang Q, Liao J, Huang J, Li YP, Huang S, Zhou H, Xie Y, Pan J, Li Y, Wang JH, Wang J. Cardiopulmonary Bypass Down-Regulates NOD Signaling and Inflammatory Response in Children with Congenital Heart Disease. PLoS One 2016; 11:e0162179. [PMID: 27622570 PMCID: PMC5021269 DOI: 10.1371/journal.pone.0162179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023] Open
Abstract
In the present study, we aimed to examine the impact of cardiopulmonary bypass (CPB) on expression and function of NOD1 and NOD2 in children with congenital heart disease (CHD), in an attempt to clarify whether NOD1 and NOD2 signaling is involved in the modulation of host innate immunity against postoperative infection in pediatric CHD patients. Peripheral blood samples were collected from pediatric CHD patients at five different time points: before CPB, immediately after CPB, and 1, 3, and 7 days after CPB. Real-time PCR, Western blot, and ELISA were performed to measure the expression of NOD1 and NOD2, their downstream signaling pathways, and inflammatory cytokines at various time points. Proinflammatory cytokine IL-6 and TNF-α levels in response to stimulation with either the NOD1 agonist Tri-DAP or the NOD2 agonist MDP were significantly reduced after CPB compared with those before CPB, which is consistent with a suppressed inflammatory response postoperatively. The expression of phosphorylated RIP2 and activation of the downstream signaling pathways NF-κB p65 and MAPK p38 upon Tri-DAP or MDP stimulation in PBMCs were substantially inhibited after CPB. The mRNA level of NOD1 and protein levels of NOD1 and NOD2 were also markedly decreased after CPB. Our results demonstrated that NOD-mediated signaling pathways were substantially inhibited after CPB, which correlates with the suppressed inflammatory response and may account, at least in part, for the increased risk of postoperative infection in pediatric CHD patients.
Collapse
Affiliation(s)
- Qinghua Yang
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Jianyi Liao
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Jie Huang
- Department of Pediatric Cardiology, Children’s Hospital of Soochow University, Suzhou, China
| | - Yi Ping Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Shungen Huang
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Huiting Zhou
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yi Xie
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yanhong Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jian Wang
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Li J, Chu Q, Xu T. A genome-wide survey of expansive NLR-C subfamily in miiuy croaker and characterization of the NLR-B30.2 genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:116-125. [PMID: 26979266 DOI: 10.1016/j.dci.2016.03.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
NOD-like receptors (NLRs) are essential intracellular pattern-recognition receptors that respond to pathogens and regulate innate immunity. NLRs include three distinct subfamilies: NLR-A, NLR-B and NLR-C, thereinto, NLR-C as a large subfamily is unique to bony fish and little research about it has been done. In the current study, we identified the members of NLR-B and NLR-C subfamilies containing 2 and 48 genes respectively in miiuy croaker. Compared with other teleosts except for zebrafish, NLR-C subfamily genes occurred expansion in miiuy croaker. The gene expansions of NLR-C subfamily may illustrate adaptive genome evolution in response to specific aquatic environments. Structural analysis showed that the N-terminus of NLR-C subfamily receptors has different characteristics of the domains including RING domain, FISNA domain or PYRIN domain. Interestingly, the C-terminus of 18 NLR-C subfamily members contains an extra B30.2 domain (named NLR-B30.2 genes) which plays an important role in antiviral immune recognition. Simultaneously, molecular evolutionary analysis indicated that the positively sites in miiuy croaker are mainly located in NACHT domain which was the vital region for signal transduction in immune response. Significantly, pathogens challenge in spleen and macrophages demonstrated that NLR-B30.2 genes exhibited more sensitive response to virus than bacteria, suggesting these genes play enhanced roles in innate antiviral immunity, which may represent a new family used for antiviral infection.
Collapse
Affiliation(s)
- Jinrui Li
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qing Chu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
18
|
Li J, Kong L, Gao Y, Wu C, Xu T. Characterization of NLR-A subfamily members in miiuy croaker and comparative genomics revealed NLRX1 underwent duplication and lose in actinopterygii. FISH & SHELLFISH IMMUNOLOGY 2015; 47:397-406. [PMID: 26381931 DOI: 10.1016/j.fsi.2015.09.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/05/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
The NOD-like receptors (NLRs, nucleotide-binding domain and leucine-rich repeat containing receptors) are a recently identified family of intracellular pathogen recognition receptors in vertebrates. Several subfamilies of NLRs have been characterized in mammals and implicated in immunity and apoptosis, but studies of NLRs in teleost species have been lacking. Here we analyzed three NLR-A subfamily members from miiuy croaker: NLRC3, NLRC5, and NLRX1. Structural analysis showed that miiuy croaker NLR-A subfamily members own the feature of 5'UTR intron which may influence their role in enhancing translation level. Comparative analysis revealed NLRX1 duplicated into NLRX1a and NLRX1b, then NLRX1a was lost in actinopterygii and NLRX1b formed NLRX1 that now we called. Simultaneously, molecular evolutionary analysis indicated that the ancestral lineages of NLRX1 in tetrapod and actinopterygii under positive selection pressure. The positively sites in actinopterygii are mainly located in NACHT domain which was the critical region for signal transduction, suggesting that the evolution of NLRX1 gene in the ancestor of actinopterygii is beneficial in immune response. Pathogens challenge demonstrated that the expressions of NLRC3 and NLRC5 in miiuy croaker were induced not only by Vibrio anguillarum but also by poly (I:C), whereas NLRX1 exhibited more sensitive response to bacteria than virus.
Collapse
Affiliation(s)
- Jinrui Li
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Lingcong Kong
- College of Animal Science and Veterinary Medicine, Jilin Agriculture University, Changchun, 130118, China
| | - Yunhang Gao
- College of Animal Science and Veterinary Medicine, Jilin Agriculture University, Changchun, 130118, China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
19
|
NOD-Like Receptor Signaling in Cholesteatoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:408169. [PMID: 25922834 PMCID: PMC4398947 DOI: 10.1155/2015/408169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/14/2015] [Indexed: 11/18/2022]
Abstract
Background. Cholesteatoma is a destructive process of the middle ear resulting in erosion of the surrounding bony structures with consequent hearing loss, vestibular dysfunction, facial paralysis, or intracranial complications. The etiopathogenesis of cholesteatoma is controversial but is associated with recurrent ear infections. The role of intracellular innate immune receptors, the NOD-like receptors, and their associated signaling networks was investigated in cholesteatoma, since mutations in NOD-like receptor-related genes have been implicated in other chronic inflammatory disorders. Results. The expression of NOD2 mRNA and protein was significantly induced in cholesteatoma compared to the external auditory canal skin, mainly located in the epithelial layer of cholesteatoma. Microarray analysis showed significant upregulation for NOD2, not for NOD1, TLR2, or TLR4 in cholesteatoma. Moreover, regulation of genes in an interaction network of the NOD-adaptor molecule RIPK2 was detected. In addition to NOD2, NLRC4, and PYCARD, the downstream molecules IRAK1 and antiapoptotic regulator CFLAR showed significant upregulation, whereas SMAD3, a proapoptotic inducer, was significantly downregulated. Finally, altered regulation of inflammatory target genes of NOD signaling was detected. Conclusions. These results indicate that the interaction of innate immune signaling mediated by NLRs and their downstream target molecules is involved in the etiopathogenesis and growth of cholesteatoma.
Collapse
|
20
|
Degnan SM. The surprisingly complex immune gene repertoire of a simple sponge, exemplified by the NLR genes: a capacity for specificity? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:269-74. [PMID: 25058852 DOI: 10.1016/j.dci.2014.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/08/2014] [Accepted: 07/14/2014] [Indexed: 05/20/2023]
Abstract
Most bacteria are not pathogenic to animals, and may instead serve beneficial functions. The requisite need for animals to differentiate between microbial friend and foe is likely borne from a deep evolutionary imperative to recognise self from non-self, a service ably provided by the innate immune system. Recent findings from an ancient lineage of simple animals - marine sponges - have revealed an unexpectedly large and diverse suite of genes belonging to one family of pattern recognition receptors, namely the NLR genes. Because NLRs can recognise a broad spectrum of microbial ligands, they may play a critical role in mediating the animal-bacterial crosstalk needed for sophisticated discrimination between microbes of various relationships. The building blocks for an advanced NLR-based immune specificity encoded in the genome of the coral reef sponge Amphimedon queenslandica may provide a specialisation and diversity of responses that equals, or even exceeds, that of vertebrate NLRs.
Collapse
Affiliation(s)
- Sandie M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, Qld., Australia.
| |
Collapse
|
21
|
Amedei A, Munari F, Bella CD, Niccolai E, Benagiano M, Bencini L, Cianchi F, Farsi M, Emmi G, Zanotti G, de Bernard M, Kundu M, D'Elios MM. Helicobacter pylori secreted peptidyl prolyl cis, trans-isomerase drives Th17 inflammation in gastric adenocarcinoma. Intern Emerg Med 2014; 9:303-309. [PMID: 23054412 DOI: 10.1007/s11739-012-0867-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/22/2012] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is characterized by an inflammatory infiltrate, consisting mainly of neutrophils and T cells. This study was undertaken to evaluate the type of gastric T cell response elicited by the secreted peptidyl prolyl cis, trans-isomerase of H. pylori (HP0175) in patients with distal gastric adenocarcinoma. The cytokine profile and the effector functions of gastric tumor-infiltrating lymphocytes (TILs) specific for HP0175 was investigated in 20 patients with distal gastric adenocarcinoma and H. pylori infection. The helper function of HP0175-specific TILs for monocyte MMP-2, MMP-9, and VEGF production was also investigated. TILs cells from H. pylori infected patients with distal gastric adenocarcinoma produced Interleukin (IL)-17 and IL-21 in response to HP0175. HP0175-specific TILs showed poor cytolytic activity while expressing helper activity for monocyte MMP-2, MMP-9 and VEGF production. These findings indicate that HP0175 is able to drive gastric Th17 response. Thus, HP0175, by promoting pro-inflammatory low cytotoxic TIL response, matrix degradation and pro-angiogenic pathways, may provide a link between H. pylori and gastric cancer.
Collapse
Affiliation(s)
- Amedeo Amedei
- Department of Internal Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sullivan JT, Belloir JA. Activation of an innate immune response in the schistosome-transmitting snail Biomphalaria glabrata by specific bacterial PAMPs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:256-260. [PMID: 24113288 PMCID: PMC3855869 DOI: 10.1016/j.dci.2013.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 06/01/2023]
Abstract
Injection of crude lipopolysaccharide (LPS) from Escherichia coli into the hemocoel of Biomphalaria glabrata stimulates cell proliferation in the amebocyte-producing organ (APO). However, it is not known if mitogenic activity resides in the lipid A or O-polysaccharide component of LPS. Moreover, the possible role of substances that commonly contaminate crude LPS and that are known to stimulate innate immune responses in mammals, e.g., peptidoglycan (PGN), protein, or bacterial DNA, is unclear. Therefore, we tested the effects of the following injected substances on the snail APO: crude LPS, ultrapurified LPS (lacking lipoprotein contamination), two forms of lipid A, (diphosphoryl lipid A and Kdo2-lipid A), O-polysaccharide, Gram negative PGN, both crude and ultrapurified (with and without endotoxin activity, respectively), Gram positive PGN, PGN components Tri-DAP and muramyl dipeptide, and bacterial DNA. Whereas crude LPS, ultrapurified LPS, and crude PGN were mitogenic, ultrapurified PGN was not. Moreover, LPS components, PGN components, and bacterial DNA were inactive. These results suggest that it is the intact LPS molecule which stimulates cell division in the APO.
Collapse
Affiliation(s)
- John T Sullivan
- Department of Biology, University of San Francisco, San Francisco, CA 94117, USA.
| | | |
Collapse
|
23
|
Baranov M, Ter Beest M, Reinieren-Beeren I, Cambi A, Figdor CG, van den Bogaart G. Podosomes of dendritic cells facilitate antigen sampling. J Cell Sci 2014; 127:1052-1064. [PMID: 24424029 DOI: 10.1242/jcs.141226] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here, we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for the podosomes of dendritic cells.
Collapse
Affiliation(s)
- Maksim Baranov
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Inge Reinieren-Beeren
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Alessandra Cambi
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| |
Collapse
|
24
|
Yuen B, Bayes JM, Degnan SM. The characterization of sponge NLRs provides insight into the origin and evolution of this innate immune gene family in animals. Mol Biol Evol 2014; 31:106-20. [PMID: 24092772 PMCID: PMC3879445 DOI: 10.1093/molbev/mst174] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The "Nucleotide-binding domain and Leucine-rich Repeat" (NLR) genes are a family of intracellular pattern recognition receptors (PRR) that are a critical component of the metazoan innate immune system, involved in both defense against pathogenic microorganisms and in beneficial interactions with symbionts. To investigate the origin and evolution of the NLR gene family, we characterized the full NACHT domain-containing gene complement in the genome of the sponge, Amphimedon queenslandica. As sister group to all animals, sponges are ideally placed to inform our understanding of the early evolution of this ancient PRR family. Amphimedon queenslandica has a large NACHT domain-containing gene complement that is dominated by bona fide NLRs (n = 135) with varied phylogenetic histories. Approximately half of these have a tripartite architecture that includes an N-terminal CARD or DEATH domain. The multiplicity of the A. queenslandica NLR genes and the high variability across the N- and C-terminal domains are consistent with involvement in immunity. We also provide new insight into the evolution of NLRs in invertebrates through comparative genomic analysis of multiple metazoan and nonmetazoan taxa. Specifically, we demonstrate that the NLR gene family appears to be a metazoan innovation, characterized by two major gene lineages that may have originated with the last common eumetazoan ancestor. Subsequent lineage-specific gene duplication, gene loss and domain shuffling all have played an important role in the highly dynamic evolutionary history of invertebrate NLRs.
Collapse
Affiliation(s)
- Benedict Yuen
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Joanne M. Bayes
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sandie M. Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Feller L, Altini M, Khammissa R, Chandran R, Bouckaert M, Lemmer J. Oral mucosal immunity. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116:576-83. [DOI: 10.1016/j.oooo.2013.07.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/20/2013] [Accepted: 07/17/2013] [Indexed: 12/15/2022]
|
26
|
Stein M, Ruggiero P, Rappuoli R, Bagnoli F. Helicobacter pylori CagA: From Pathogenic Mechanisms to Its Use as an Anti-Cancer Vaccine. Front Immunol 2013; 4:328. [PMID: 24133496 PMCID: PMC3796731 DOI: 10.3389/fimmu.2013.00328] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/25/2013] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori colonizes the gastric mucosa of more than 50% of the human population, causing chronic inflammation, which however is largely asymptomatic. Nevertheless, H. pylori-infected subjects can develop chronic gastritis, peptic ulcer, gastric mucosa-associated lymphoid tissue lymphoma, and gastric cancer. Chronic exposure to the pathogen and its ability to induce epithelial to mesenchymal transition (EMT) through the injection of cytotoxin-associated gene A into gastric epithelial cells may be key triggers of carcinogenesis. By deregulating cell-cell and cell-matrix interactions as well as DNA methylation, histone modifications, expression of micro RNAs, and resistance to apoptosis, EMT can actively contribute to early stages of the cancer formation. Host response to the infection significantly contributes to disease development and the concomitance of particular genotypes of both pathogen and host may turn into the most severe outcomes. T regulatory cells (Treg) have been recently demonstrated to play an important role in H. pylori-related disease development and at the same time the Treg-induced tolerance has been proposed as a possible mechanism that leads to less severe disease. Efficacy of antibiotic therapies of H. pylori infection has significantly dropped. Unfortunately, no vaccine against H. pylori is currently licensed, and protective immunity mechanisms against H. pylori are only partially understood. In spite of promising results obtained in animal models of infection with a number of vaccine candidates, few clinical trials have been conducted so far and with no satisfactory outcomes. However, prophylactic vaccination may be the only means to efficiently prevent H. pylori-associated cancers.
Collapse
Affiliation(s)
- Markus Stein
- Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | | | | | | |
Collapse
|
27
|
Månsson Kvarnhammar A, Tengroth L, Adner M, Cardell LO. Innate immune receptors in human airway smooth muscle cells: activation by TLR1/2, TLR3, TLR4, TLR7 and NOD1 agonists. PLoS One 2013; 8:e68701. [PMID: 23861935 PMCID: PMC3701658 DOI: 10.1371/journal.pone.0068701] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/02/2013] [Indexed: 12/25/2022] Open
Abstract
Background Pattern-recognition receptors (PRRs), including Toll-like receptors (TLRs), NOD-like receptors (NLRs) and RIG-I-like receptors (RLRs), recognize microbial components and trigger a host defense response. Respiratory tract infections are common causes of asthma exacerbations, suggesting a role for PRRs in this process. The present study aimed to examine the expression and function of PRRs on human airway smooth muscle cells (HASMCs). Methods Expression of TLR, NLR and RLR mRNA and proteins was determined using real-time RT-PCR, flow cytometry and immunocytochemistry. The functional responses to ligand stimulation were investigated in terms of cytokine and chemokine release, cell surface marker expression, proliferation and proteins regulating the contractile state. Results HASMCs expressed functional TLR2, TLR3, TLR4, TLR7 and NOD1. Stimulation with the corresponding agonists Pam3CSK4, poly(I:C), LPS, R-837 and iE-DAP, respectively, induced IL-6, IL-8 and GM-CSF release and up-regulation of ICAM-1 and HLA-DR, while poly(I:C) also affected the release of eotaxin and RANTES. The proliferative response was slightly increased by LPS. Stimulation, most prominently with poly(I:C), down-regulated myosin light chain kinase and cysteinyl leukotriene 1 receptor expression and up-regulated β2-adrenoceptor expression. No effects were seen for agonist to TLR2/6, TLR5, TLR8, TLR9, NOD2 or RIG-I/MDA-5. Conclusion Activation of TLR2, TLR3, TLR4, TLR7 and NOD1 favors a synthetic phenotype, characterized by an increased ability to release inflammatory mediators, acquire immunomodulatory properties by recruiting and interacting with other cells, and reduce the contractile state. The PRRs might therefore be of therapeutic use in the management of asthma and infection-induced disease exacerbations.
Collapse
Affiliation(s)
- Anne Månsson Kvarnhammar
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lotta Tengroth
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Adner
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Olaf Cardell
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
28
|
Amedei A, Munari F, Della Bella C, Niccolai E, Benagiano M, Bencini L, Cianchi F, Silvestri E, D'Elios S, Farsi M, Prisco D, Zanotti G, De Bernard M, Kundu M, D'Elios M. Helicobacter Pylori HP0175 Promotes the Production of IL-23, IL-6, IL-1β and TGF-β. EUR J INFLAMM 2013; 11:261-268. [DOI: 10.1177/1721727x1301100127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2024] Open
Abstract
Helicobacter pylori infection induces a chronic gastric inflammatory infiltrate. This study was undertaken to evaluate the type of the innate immune responses elicited by the secreted peptidyl-prolyl cis-trans isomerase of H. pylori (HP0175). The cytokine production induced by HP0175 in neutrophils, and monocytes was evaluated. HP0175 was able to induce the expression of IL-23 in neutrophils, and monocytes, and IL-6, IL-1beta and TGF-beta in monocytes. These findings indicate that HP0175 is able to promote the activation of innate cells and the production of a cytokine milieu that may favour the development of Th17 response.
Collapse
Affiliation(s)
- A. Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Department of Biomedicine, Institute of Medical Pathology, Florence, Italy
| | - F. Munari
- Venetian Institute of Molecular Medicine, university of Padua, Padua, Italy
| | - C. Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Department of Biomedicine, Institute of Medical Pathology, Florence, Italy
| | - E. Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Department of Biomedicine, Institute of Medical Pathology, Florence, Italy
| | - M. Benagiano
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Department of Biomedicine, Institute of Medical Pathology, Florence, Italy
| | - L. Bencini
- Department of General and Oncologic Surgery, University of Florence, Florence, Italy
| | - F. Cianchi
- Department of Surgery, University of Florence, Florence, Italy
| | - E. Silvestri
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Department of Biomedicine, Institute of Medical Pathology, Florence, Italy
| | - S. D'Elios
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - M. Farsi
- Department of General and Oncologic Surgery, University of Florence, Florence, Italy
| | - D. Prisco
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Department of Biomedicine, Institute of Medical Pathology, Florence, Italy
| | - G. Zanotti
- Venetian Institute of Molecular Medicine, university of Padua, Padua, Italy
| | - M. De Bernard
- Venetian Institute of Molecular Medicine, university of Padua, Padua, Italy
| | - M. Kundu
- Department of Chemistry, Bose Institute, Kolkata, India
| | - M.M. D'Elios
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Department of Biomedicine, Institute of Medical Pathology, Florence, Italy
| |
Collapse
|
29
|
Callewaert L, Van Herreweghe JM, Vanderkelen L, Leysen S, Voet A, Michiels CW. Guards of the great wall: bacterial lysozyme inhibitors. Trends Microbiol 2012; 20:501-10. [DOI: 10.1016/j.tim.2012.06.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 06/22/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
|
30
|
Abstract
The pattern-recognition receptor (PRR) family includes Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD) -like receptors (NLRs), RIG-I-like receptors (RLRs), C-type lectin receptors (CLRs) and the receptor for advanced glycation end products (RAGE). They recognize various microbial signatures or host-derived danger signals and trigger an immune response. Eosinophils are multifunctional leucocytes involved in the pathogenesis of several inflammatory processes, including parasitic helminth infection, allergic diseases, tissue injury and tumour immunity. Human eosinophils express several PRRs, including TLR1-5, TLR7, TLR9, NOD1, NOD2, Dectin-1 and RAGE. Receptor stimulation induces survival, oxidative burst, activation of the adhesion system and release of cytokines (interleukin-1β, interleukin-6, tumour necrosis factor-α and granulocyte-macrophage colony-stimulating factor), chemokines (interleukin-8 and growth-related oncogene-α) and cytotoxic granule proteins (eosinophil cationic protein, eosinophil-derived neurotoxin, eosinophil peroxidase and major basic protein). It is also evident that eosinophils play an immunomodulatory role by interacting with surrounding cells. The presence of a broad range of PRRs in eosinophils indicates that they are not only involved in defence against parasitic helminths, but also against bacteria, viruses and fungi. From a clinical perspective, eosinophilic PRRs seem to be involved in both allergic and malignant diseases by causing exacerbations and affecting tumour growth, respectively.
Collapse
Affiliation(s)
- Anne Månsson Kvarnhammar
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
31
|
Volkova M, Zhang Y, Shaw AC, Lee PJ. The role of Toll-like receptors in age-associated lung diseases. J Gerontol A Biol Sci Med Sci 2012; 67:247-53. [PMID: 22396470 PMCID: PMC3297763 DOI: 10.1093/gerona/glr226] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 11/08/2011] [Indexed: 11/12/2022] Open
Abstract
The aging lung is faced with unique challenges. The lungs are the only internal organ with a direct interface with both the internal and the external environments and as a consequence are constantly sampling diverse, potentially injurious, elements. Therefore, the lungs have evolved a sophisticated, multilayered detection system to distinguish low-level, nonharmful signals from those that are toxic. A family of innate immune receptors, Toll-like receptors (TLRs), appears to serve such a function. Initially described as pattern-recognition receptors that recognize and protect against microbes, TLRs can also respond to diverse, nonmicrobial signals. The role of Toll-like receptors in noninfectious, age-related chronic lung disease is poorly understood. This review presents our current understanding of the biology of age-related lung diseases with a focus on the role of Toll-like receptors in idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and late-onset asthma.
Collapse
Affiliation(s)
- Maria Volkova
- Department of Internal Medicine and Section of Pulmonary and Critical Care Medicine
| | - Yitao Zhang
- Department of Internal Medicine and Section of Pulmonary and Critical Care Medicine
| | - Albert C. Shaw
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut
| | - Patty J. Lee
- Department of Internal Medicine and Section of Pulmonary and Critical Care Medicine
| |
Collapse
|
32
|
Abstract
The gut microbiota consists of trillions of prokaryotes that reside in the intestinal mucosa. This long-established commensalism indicates that these microbes are an integral part of the eukaryotic host. Recent research findings have implicated the dynamics of microbial function in setting thresholds for many physiological parameters. Conversely, it has been convincingly argued that dysbiosis, representing microbial imbalance, may be an important underlying factor that contributes to a variety of diseases, inside and outside the gut. This review discusses the latest findings, including enterotype classification, changes brought on by dysbiosis, gut inflammation, and metabolic mediators in an attempt to underscore the importance of the gut microbiota for human health. A cautiously optimistic idea is taking hold, invoking the gut microbiota as a medium to track, target and treat a plethora of diseases.
Collapse
Affiliation(s)
- Agata Korecka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
33
|
Inflammation and immune surveillance in cancer. Semin Cancer Biol 2011; 22:23-32. [PMID: 22210181 DOI: 10.1016/j.semcancer.2011.12.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/15/2011] [Indexed: 02/07/2023]
Abstract
Chronic inflammation is a risk factor for tumor development. However, understanding the effect of the immune system on tumor development has only been significantly advanced over the past two decades. We now appreciate that the immune system, in addition to tumor-suppressive function by eliminating nascent transformed tumor cells, can also exert selection pressure on tumor cells and facilitate tumor growth by providing a favorable tumor microenvironment. Yet, the distinctions between tumor-promoting inflammation and tumor-suppressive immunity are still not clear due to the dual role of some cytokines and other molecules in the immune system. The danger signal hypothesis has shaped our view of the role of immunity in cancer development, but still little is known about the exact role of danger signal receptors in cancer progression. In this review, we introduce the processes of cancer immunoediting and inflammation-induced cancer and discuss what is currently known about the role of danger signal receptors in cancer development and progression.
Collapse
|
34
|
Kvarnhammar AM, Petterson T, Cardell LO. NOD-like receptors and RIG-I-like receptors in human eosinophils: activation by NOD1 and NOD2 agonists. Immunology 2011; 134:314-25. [PMID: 21978001 PMCID: PMC3209571 DOI: 10.1111/j.1365-2567.2011.03492.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/12/2011] [Accepted: 07/22/2011] [Indexed: 12/30/2022] Open
Abstract
NOD-like receptors (NLRs) and RIG-I-like receptors (RLRs) are newly discovered pattern-recognition receptors. They detect substructures of bacterial peptidoglycan and viral RNA, respectively, thereby initiating an immune response. However, their role in eosinophil activation remains to be explored. The aim of this study was to characterize the expression of a range of NLRs and RLRs in purified human eosinophils and assess their functional importance. Expression of NOD1, NOD2, NLRP3, RIG-I and MDA-5 was investigated using real-time reverse transcription PCR, flow cytometry and immunohistochemistry. The effects of the corresponding agonists iE-DAP (NOD1), MDP (NOD2), alum (NLRP3) and poly(I:C)/LyoVec (RIG-I/MDA-5) were studied in terms of cytokine secretion, degranulation, survival, expression of adhesion molecules and activation markers, and chemotactic migration. Eosinophils expressed NOD1 and NOD2 mRNA and protein. Low levels of RIG-I and MDA-5 were found, whereas expression of NLRP3 was completely absent. In accordance, stimulation with iE-DAP and MDP was found to induce secretion of interleukin-8, up-regulate expression of CD11b, conversely down-regulate CD62 ligand, increase expression of CD69 and induce migration. The MDP also promoted release of eosinophil-derived neurotoxin, whereas iE-DAP failed to do so. No effects were seen upon stimulation with alum or poly(I:C)/LyoVec. Moreover, the NOD1-induced and NOD2-induced activation was mediated via the nuclear factor-κB signalling pathway and augmented by interleukin-5 and granulocyte-macrophage colony-stimulating factor, but not interferon-γ. Taken together, the NLR system represents a novel pathway for eosinophil activation. The responses are enhanced in the presence of cytokines that regulate T helper type 2 immunity, suggesting that the NLRs constitute a link between respiratory infections and exacerbations of allergic disease.
Collapse
Affiliation(s)
- Anne Månsson Kvarnhammar
- Division of ENT Diseases, CLINTEC, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | | | | |
Collapse
|
35
|
Månsson A, Bogefors J, Cervin A, Uddman R, Cardell LO. NOD-like receptors in the human upper airways: a potential role in nasal polyposis. Allergy 2011; 66:621-8. [PMID: 21241317 DOI: 10.1111/j.1398-9995.2010.02527.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are newly discovered cytosolic receptors belonging to the pattern-recognition receptor family. They detect various pathogen-associated molecular patterns, triggering an immune response. The knowledge about these receptors, and their role in health and disease, is limited. The aim of the present study was to characterize the expression of NOD1, NOD2, and NALP3 in the human upper airways. METHODS Surgical samples were obtained from patients with tonsillar disease (n = 151), hypertrophic adenoids (n = 9), and nasal polyposis (n = 24). Nasal biopsies were obtained from healthy volunteers (n = 10). The expression of NOD1, NOD2, and NALP3 was analyzed using real-time PCR and immunohistochemistry. RESULTS Expression of NOD1, NOD2, and NALP3 mRNA and protein were seen in all tissue specimens. The NLR mRNA was found to be higher in nasal polyps than in normal nasal mucosa, and local steroid treatment reduced the NLR expression in polyps. In contrast, tonsillar infection with Streptococcus pyogenes or Haemophilus influenzae did not affect the NLR expression. CONCLUSIONS The present study demonstrates the presence of NLRs in several upper airway tissues and highlights a potential role of NLRs in chronic rhinosinusitis with polyps.
Collapse
Affiliation(s)
- A Månsson
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
36
|
Van den Abbeele P, Van de Wiele T, Verstraete W, Possemiers S. The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept. FEMS Microbiol Rev 2011; 35:681-704. [PMID: 21361997 DOI: 10.1111/j.1574-6976.2011.00270.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Along the human gastrointestinal tract, microorganisms are confronted with multiple barriers. Besides selective physical conditions, the epithelium is regularly replaced and covered with a protective mucus layer trapping immune molecules. Recent insights into host defense strategies show that the host selects the intestinal microbiota, particularly the mucosa-associated microbial community. In this context, humans coevolved with thousands of intestinal microbial species that have adapted to provide host benefits, while avoiding pathogenic behavior that might destabilize their host interaction. While mucosal microorganisms would be crucial for immunological priming, luminal microorganisms would be important for nutrient digestion. Further, we propose that the intestinal microorganisms also coevolved with each other, leading to coherently organized, resilient microbial associations. During disturbances, functionally redundant members become more abundant and are crucial for preserving community functionality. The outside of the mucus layer, where host defense molecules are more diluted, could serve as an environment where microorganisms are protected from disturbances in the lumen and from where they can recolonize the lumen after perturbations. This might explain the remarkable temporal stability of microbial communities. Finally, commensals that become renegade or a decreased exposure to essential coevolved microorganisms may cause particular health problems such as inflammatory bowel diseases, obesity or allergies.
Collapse
|
37
|
Desai SV, Love RM, Rich AM, Seymour GJ. Antigen recognition and presentation in periapical tissues: a role for TLR expressing cells? Int Endod J 2010; 44:87-99. [PMID: 21083574 DOI: 10.1111/j.1365-2591.2010.01817.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacteria are the prime cause of periapical diseases and root canal microbiology is a well-researched area of endodontics. Antigen-presenting cells (APCs) are present in periapical lesions of endodontic origin and play a substantial role in recognizing, processing and presenting pathogenic antigens to the adaptive immune system such as an effective and long-lasting immune response is generated against the specific pathogens. Toll-like receptors (TLRs) are germ-line encoded pathogen recognition receptors (PRR) expressed by various APCs which induce their maturation, lead to gene transcription in the nucleus and the production of several pro- and anti-inflammatory cytokines. Thirteen TLRs have been discovered, 10 of which have been identified in humans so far. Preliminary studies of dental pulp tissue have demonstrated various cell types expressing different TLRs in response to commonly encountered microorganisms. However, there is little information available regarding the expression and function of the various TLRs in human periapical lesions. This review discusses the interactions of various APCs in periapical lesions and the possible roles of different TLRs and APCs in pulp/periapical pathogen recognition and presentation to the adaptive immune system in the initiation and sustaining of periapical diseases.
Collapse
Affiliation(s)
- S V Desai
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
38
|
Petterson T, Jendholm J, Månsson A, Bjartell A, Riesbeck K, Cardell LO. Effects of NOD-like receptors in human B lymphocytes and crosstalk between NOD1/NOD2 and Toll-like receptors. J Leukoc Biol 2010; 89:177-87. [PMID: 20844241 DOI: 10.1189/jlb.0210061] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
NLRs are recently discovered PRRs detecting substructures of peptidoglycans and triggering innate immunity. NLRs are expressed in several cell types, but the presence in human B lymphocytes is still unknown. This study aimed to investigate expression and function of NLRs in human B lymphocytes. B cells were isolated and analyzed for mRNA and protein expression. The functional responsiveness of NOD1 and NOD2 was investigated upon stimulation with the cognate ligands, with or without stimulation via IgM/IgD/CD40 and/or selected TLR agonists. A differential expression of NLRs was demonstrated in blood-derived and tonsillar B cells, whereas no variations were found among naive, germinal center, or memory B cells. Stimulation with the ligands alone did not induce B cell activation. However, upon concomitant BCR triggering, an increase in proliferation was seen, together with an induction of cell surface markers (CD27, CD69, CD71, CD80, CD86, and CD95) and prolonged survival. Peripheral B cells were activated by NOD1 and NOD2 ligands, whereas tonsil-derived B cells responded solely to NOD1. In contrast, costimulation with CD40L failed to induce activation. Additionally, it was found that NLR ligands could enhance TLR-induced proliferation of B cells. The present study demonstrates expression of functional NLRs in human B cells. We show that NOD1 and NOD2 have the ability to augment the BCR-induced activation independently of physical T cell help. Hence, NLRs represent a new pathway for B cell activation and a potentially important host defense system against bacterial infections.
Collapse
|
39
|
Lin YH, Ferguson BJ, Kereszt A, Gresshoff PM. Suppression of hypernodulation in soybean by a leaf-extracted, NARK- and Nod factor-dependent, low molecular mass fraction. THE NEW PHYTOLOGIST 2010; 185:1074-86. [PMID: 20100211 DOI: 10.1111/j.1469-8137.2009.03163.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
*Legumes regulate the number of nodules they form via a process called autoregulation of nodulation (AON). This involves a shoot-derived inhibitor (SDI) molecule that is synthesized in the shoots and is transported down to the roots where it inhibits further nodule development. *To characterize SDI, we developed a novel feeding bioassay. This involved feeding aqueous leaf extracts directly into the petiole of hypernodulating and supernodulating nark mutant plants of Glycine max (soybean). These mutants normally exhibit an increased nodulation phenotype because SDI is not produced and thus AON is nonfunctional. *Feeding wild-type leaf extracts presumed to contain SDI was successful in suppressing the increased nodulation phenotype, whereas feeding with Gmnark leaf extracts did not. Suppression activity was inoculation-dependent, Nod factor-dependent, required GmNARK activity, and was heat-, Proteinase K- and ribonuclease A-resistant. Wild-type extracts maintained suppressive activity even at a ninefold dilution. Sinorhizobium meliloti-inoculated Medicago truncatula leaf extracts from wild-type, but not from supernodulating mutant Mtsunn, suppressed hypernodulation in soybean. *Our results demonstrate that the petiole feeding bioassay is an efficient and effective technique to introduce aqueous extracts into plants. They also demonstrate that SDI is a small compound with an apparent molecular mass of < 1000 Da and is unlikely to be a protein or an RNA molecule.
Collapse
Affiliation(s)
- Yu-Hsiang Lin
- Australian Research Council Centre of Excellence for Integrative Legume Research, The University of Queensland, St Lucia, QLD, Australia
| | | | | | | |
Collapse
|
40
|
Kaparakis M, Turnbull L, Carneiro L, Firth S, Coleman HA, Parkington HC, Le Bourhis L, Karrar A, Viala J, Mak J, Hutton ML, Davies JK, Crack PJ, Hertzog PJ, Philpott DJ, Girardin SE, Whitchurch CB, Ferrero RL. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell Microbiol 2009; 12:372-85. [PMID: 19888989 DOI: 10.1111/j.1462-5822.2009.01404.x] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gram-negative bacterial peptidoglycan is specifically recognized by the host intracellular sensor NOD1, resulting in the generation of innate immune responses. Although epithelial cells are normally refractory to external stimulation with peptidoglycan, these cells have been shown to respond in a NOD1-dependent manner to Gram-negative pathogens that can either invade or secrete factors into host cells. In the present work, we report that Gram-negative bacteria can deliver peptidoglycan to cytosolic NOD1 in host cells via a novel mechanism involving outer membrane vesicles (OMVs). We purified OMVs from the Gram-negative mucosal pathogens: Helicobacter pylori, Pseudomonas aeruginosa and Neisseria gonorrhoea and demonstrated that these peptidoglycan containing OMVs upregulated NF-kappaB and NOD1-dependent responses in vitro. These OMVs entered epithelial cells through lipid rafts thereby inducing NOD1-dependent responses in vitro. Moreover, OMVs delivered intragastrically to mice-induced innate and adaptive immune responses via a NOD1-dependent but TLR-independent mechanism. Collectively, our findings identify OMVs as a generalized mechanism whereby Gram-negative bacteria deliver peptidoglycan to cytosolic NOD1. We propose that OMVs released by bacteria in vivo may promote inflammation and pathology in infected hosts.
Collapse
Affiliation(s)
- Maria Kaparakis
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Helicobacter pylori infects almost half of the population worldwide and represents the major cause of gastroduodenal diseases, such as duodenal and gastric ulcer, gastric adenocarcinoma, autoimmune gastritis, and B-cell lymphoma of mucosa-associated lymphoid tissue. Helicobacter pylori induces the activation of a complex and fascinating cytokine and chemokine network in the gastric mucosa. Different bacterial and environmental factors, other concomitant infections, and host genetics may influence the balance between mucosal tolerance and inflammation in the course of H. pylori infection. An inverse association between H. pylori prevalence and the frequencies of asthma and allergies was demonstrated, and the neutrophil activating protein of H. pylori was shown to inhibit the allergic inflammation of bronchial asthma. During the last year, significant progress was made on the road to the first efficient vaccine for H. pylori that will represent a novel and very important bullet against both infection and gastric cancer.
Collapse
Affiliation(s)
- Mario M D'Elios
- Department of Internal Medicine, University of Florence, Viale Morgagni 85, Florence, Italy.
| | | |
Collapse
|
42
|
Abstract
The mammalian immune system effectively fights infection through the cooperation of two connected systems, innate and adaptive immunity. Germ-line encoded pattern recognition receptors (PRRs) of the innate immune system sense the presence of infection and activate innate immunity. Some PRRs also induce signals that lead to the activation of adaptive immunity. Adaptive immunity is controlled by PRR-induced signals at multiple checkpoints dictating the initiation of a response, the type of response, the magnitude and duration of the response, and the production of long-term memory. PRRs thus instruct the adaptive immune system on when and how to best respond to a particular infection. In this review, we discuss the roles of various PRRs in control of adaptive immunity.
Collapse
Affiliation(s)
- Noah W Palm
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University, School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
43
|
Abstract
The discovery of molecular sensors that enable eukaryotes to recognize microbial pathogens and their products has been a key advance in our understanding of innate immunity. A tripartite sensing apparatus has developed to detect danger signals from infectious agents and damaged tissues, resulting in an immediate but short-lived defense response. This apparatus includes Toll-like receptors, retinoid acid-inducible gene-I-like receptors and other cytosolic nucleic acid sensors, and nucleotide-binding and oligomerization domain-like receptors; adaptors, kinases and other signaling molecules are required to elicit effective responses. Although this sensing is beneficial to the host, excessive activation and/or engagement by self molecules might induce autoimmune and other inflammatory disorders.
Collapse
|
44
|
Watanabe A, Sohail MA, Gomes DA, Hashmi A, Nagata J, Sutterwala FS, Mahmood S, Jhandier MN, Shi Y, Flavell RA, Mehal WZ. Inflammasome-mediated regulation of hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1248-57. [PMID: 19359429 PMCID: PMC2697939 DOI: 10.1152/ajpgi.90223.2008] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The inflammasome is a cytoplasmic multiprotein complex that has recently been identified in immune cells as an important sensor of signals released by cellular injury and death. Analogous to immune cells, hepatic stellate cells (HSC) also respond to cellular injury and death. Our aim was to establish whether inflammasome components were present in HSC and could regulate HSC functionality. Monosodium urate (MSU) crystals (100 microg/ml) were used to experimentally induce inflammasome activation in LX-2 and primary mouse HSC. Twenty-four hours later primary mouse HSC were stained with alpha-smooth muscle actin and visualized by confocal microscopy, and TGF-beta and collagen1 mRNA expression was quantified. LX-2 cells were further cultured with or without MSU crystals for 24 h in a transwell chemotaxis assay with PDGF as the chemoattractant. We also examined inhibition of calcium (Ca(2+)) signaling in LX-2 cells treated with or without MSU crystals using caged inositol 1,4,5-triphosphate (IP(3)). Finally, we confirmed an important role of the inflammasome in experimental liver fibrosis by the injection of carbon tetrachloride (CCl(4)) or thioacetamide (TAA) in wild-type mice and mice lacking components of the inflammasome. Components of the inflammasome are expressed in LX-2 cells and primary HSC. MSU crystals induced upregulation of TGF-beta and collagen1 mRNA and actin reorganization in HSCs from wild-type mice but not mice lacking inflammasome components. MSU crystals inhibited the release of Ca(2+) via IP(3) in LX-2 cells and also inhibited PDGF-induced chemotaxis. Mice lacking the inflammasome-sensing and adaptor molecules, NLRP3 and apoptosis-associated speck-like protein containing CARD, had reduced CCl(4) and TAA-induced liver fibrosis. We concluded that inflammasome components are present in HSC, can regulate a variety of HSC functions, and are required for the development of liver fibrosis.
Collapse
Affiliation(s)
- Azuma Watanabe
- Departments of Digestive Disease and Immunobiology, Yale University, New Haven, Connecticut; Departments of Microbiology & Infectious Diseases and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Muhammad Adnan Sohail
- Departments of Digestive Disease and Immunobiology, Yale University, New Haven, Connecticut; Departments of Microbiology & Infectious Diseases and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Dawidson Assis Gomes
- Departments of Digestive Disease and Immunobiology, Yale University, New Haven, Connecticut; Departments of Microbiology & Infectious Diseases and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ardeshir Hashmi
- Departments of Digestive Disease and Immunobiology, Yale University, New Haven, Connecticut; Departments of Microbiology & Infectious Diseases and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jun Nagata
- Departments of Digestive Disease and Immunobiology, Yale University, New Haven, Connecticut; Departments of Microbiology & Infectious Diseases and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fayyaz Shiraz Sutterwala
- Departments of Digestive Disease and Immunobiology, Yale University, New Haven, Connecticut; Departments of Microbiology & Infectious Diseases and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Shamail Mahmood
- Departments of Digestive Disease and Immunobiology, Yale University, New Haven, Connecticut; Departments of Microbiology & Infectious Diseases and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Muhammad Nauman Jhandier
- Departments of Digestive Disease and Immunobiology, Yale University, New Haven, Connecticut; Departments of Microbiology & Infectious Diseases and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yan Shi
- Departments of Digestive Disease and Immunobiology, Yale University, New Haven, Connecticut; Departments of Microbiology & Infectious Diseases and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Richard Anthony Flavell
- Departments of Digestive Disease and Immunobiology, Yale University, New Haven, Connecticut; Departments of Microbiology & Infectious Diseases and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Wajahat Zafar Mehal
- Departments of Digestive Disease and Immunobiology, Yale University, New Haven, Connecticut; Departments of Microbiology & Infectious Diseases and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
45
|
Different functional role of domain boundaries of Toll-like receptor 4. Biochem Biophys Res Commun 2009; 381:65-9. [PMID: 19351596 DOI: 10.1016/j.bbrc.2009.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 02/05/2009] [Indexed: 11/22/2022]
Abstract
Toll-like receptors (TLRs) recognize molecules representing danger signals via their ectodomain, while signal transduction is provided by the cytosolic TIR domain that recruits adapter proteins upon dimerization. Since in crystal structures both domains dimerize as rigid bodies, any structural adjustment must be provided by the intermediate segments between the domains. We investigated domain coupling by inserting flexible linkers between the structural domains of TLR4. Insertion of linkers between the transmembrane and cytosolic TIR domain did not affect activation, indicating that TIR domain dimerization is triggered by proximity. In contrast, insertion of a linker between the transmembrane and ectodomain or within the ectodomain decreased activation proportionally with the length of the linker. This suggests the requirement for tight coupling of the ectodomain to the membrane, which may facilitate its interaction with ligand, promote dimerization and prevent interaction with the cell-membrane surface. Native linker sizes of TLR4 orthologs support these conclusions.
Collapse
|
46
|
Shah IM, Laaberki MH, Popham DL, Dworkin J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 2008; 135:486-96. [PMID: 18984160 DOI: 10.1016/j.cell.2008.08.039] [Citation(s) in RCA: 361] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 07/08/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
Abstract
Bacteria can respond to adverse environmental conditions by drastically reducing or even ceasing metabolic activity. They must then determine that conditions have improved before exiting dormancy, and one indication of such a change is the growth of other bacteria in the local environment. Growing bacteria release muropeptide fragments of the cell wall into the extracellular milieu, and we report here that these muropeptides are potent germinants of dormant Bacillus subtilis spores. The ability of a muropeptide to act as a germinant is determined by the identity of a single amino acid. A well-conserved, eukaryotic-like Ser/Thr membrane kinase containing an extracellular domain capable of binding peptidoglycan is necessary for this response, and a small molecule that stimulates related eukaryotic kinases is sufficient to induce germination. Another small molecule, staurosporine, that inhibits related eukaryotic kinases blocks muropeptide-dependent germination. Thus, in contrast to traditional antimicrobials that inhibit metabolically active cells, staurosporine acts by blocking germination of dormant spores.
Collapse
Affiliation(s)
- Ishita M Shah
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
47
|
Grange J, Bottasso O, Stanford C, Stanford J. The use of mycobacterial adjuvant-based agents for immunotherapy of cancer. Vaccine 2008; 26:4984-90. [DOI: 10.1016/j.vaccine.2008.06.092] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 05/27/2008] [Accepted: 06/13/2008] [Indexed: 12/17/2022]
|
48
|
Bauler LD, Duckett CS, O'Riordan MXD. XIAP regulates cytosol-specific innate immunity to Listeria infection. PLoS Pathog 2008; 4:e1000142. [PMID: 18769721 PMCID: PMC2516935 DOI: 10.1371/journal.ppat.1000142] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 08/01/2008] [Indexed: 12/27/2022] Open
Abstract
The inhibitor of apoptosis protein (IAP) family has been implicated in immune regulation, but the mechanisms by which IAP proteins contribute to immunity are incompletely understood. We show here that X-linked IAP (XIAP) is required for innate immune control of Listeria monocytogenes infection. Mice deficient in XIAP had a higher bacterial burden 48 h after infection than wild-type littermates, and exhibited substantially decreased survival. XIAP enhanced NF-kappaB activation upon L. monocytogenes infection of activated macrophages, and prolonged phosphorylation of Jun N-terminal kinase (JNK) specifically in response to cytosolic bacteria. Additionally, XIAP promoted maximal production of pro-inflammatory cytokines upon bacterial infection in vitro or in vivo, or in response to combined treatment with NOD2 and TLR2 ligands. Together, our data suggest that XIAP regulates innate immune responses to L. monocytogenes infection by potentiating synergy between Toll-like receptors (TLRs) and Nod-like receptors (NLRs) through activation of JNK- and NF-kappaB-dependent signaling.
Collapse
Affiliation(s)
- Laura D. Bauler
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Colin S. Duckett
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Mary X. D. O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
49
|
Predominant role of host genetics in controlling the composition of gut microbiota. PLoS One 2008; 3:e3064. [PMID: 18725973 PMCID: PMC2516932 DOI: 10.1371/journal.pone.0003064] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 08/03/2008] [Indexed: 02/07/2023] Open
Abstract
Background The human gastrointestinal tract is inhabited by a very diverse symbiotic microbiota, the composition of which depends on host genetics and the environment. Several studies suggested that the host genetics may influence the composition of gut microbiota but no genes involved in host control were proposed. We investigated the effects of the wild type and mutated alleles of the gene, which encodes the protein called pyrin, one of the regulators of innate immunity, on the composition of gut commensal bacteria. Mutations in MEFV lead to the autoinflammatory disorder, familial Mediterranean fever (FMF, MIM249100), which is characterized by recurrent self-resolving attacks of fever and polyserositis, with no clinical signs of disease in remission. Methodology/Principal Findings A total of 19 FMF patients and eight healthy individuals were genotyped for mutations in the MEFV gene and gut bacterial diversity was assessed by sequencing 16S rRNA gene libraries and FISH analysis. These analyses demonstrated significant changes in bacterial community structure in FMF characterized by depletion of total numbers of bacteria, loss of diversity, and major shifts in bacterial populations within the Bacteroidetes, Firmicutes and Proteobacteria phyla in attack. In remission with no clinical signs of disease, bacterial diversity values were comparable with control but still, the bacterial composition was substantially deviant from the norm. Discriminant function analyses of gut bacterial diversity revealed highly specific, well-separated and distinct grouping, which depended on the allele carrier status of the host. Conclusions/Significance This is the first report that clearly establishes the link between the host genotype and the corresponding shifts in the gut microbiota (the latter confirmed by two independent techniques). It suggests that the host genetics is a key factor in host-microbe interaction determining a specific profile of commensal microbiota in the human gut.
Collapse
|
50
|
Mucosal immunology down under: Special Interest Group in Mucosal Immunology workshop, Australasian Society for Immunology, Sydney, Australia, 2 December 2007. Immunol Cell Biol 2008; 86:557-61. [DOI: 10.1038/icb.2008.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|