1
|
Makar GS, Davis W, Udoeyo IF, Grandizio LC, Klena JC. Monkey Bar-Associated Pediatric Fractures: A National Epidemiologic Study of Emergency Department Visits. J Am Acad Orthop Surg 2024; 32:e1111-e1120. [PMID: 38968696 DOI: 10.5435/jaaos-d-23-01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/19/2024] [Indexed: 07/07/2024] Open
Abstract
INTRODUCTION Emergency department (ED) visits because of pediatric fractures are not only burdensome for patients and their families but also result in an increased healthcare expenditure. Almost half of all children experience at least one fracture by the age of 15. Many fractures occur in playgrounds, with monkey bars and other climbing apparatuses noted as frequent mechanisms of injury. Our purpose was to identify the pattern of injury and the population sustaining monkey bar-associated fractures. METHODS We queried the National Electronic Injury Surveillance System database for all monkey bar-associated injuries in patients aged 0 to 18 years from January 1, 2009, to December 31, 2019. We described demographic data, patient disposition from the ED, fracture pattern, and injury setting using unweighted and weighted estimates. Weighted results that more closely reflect national estimates were calculated. RESULTS During the study period, 30,920 (862,595 weighted) monkey bar-associated injuries presented to EDs; 16,410 (53.1%) (weighted injuries: 408,722 [47.4%]) were fracture injuries. The average age of kids sustaining fractures was 6.5 years, with most injuries (66.4%) occurring in kids between 6 and 12 years. A higher percentage of male patients presented to the ED with fractures compared with female patients (53% versus 47%). Upper extremity fractures were most common, 382,672 (94%) with forearm fractures constituting the majority (156,691 [38%]). Most children were treated and released (354,323 [87%]), with only 35,227 children (9%) being admitted for treatment. Places of recreation/sports were the most common setting of fractures (148,039 [36%]), followed by schools (159,784 [39%]). A notable association was observed between year and ethnicity and between month period and injury setting. CONCLUSION Monkey bar-associated injuries are a major cause of upper extremity fractures in children, with most injuries occurring in recreational areas or schools. Young elementary school children are at the highest risk of injury. ED visits because of monkey bar-associated fractures have increased over the study period, and these injuries continue to be a major cause of fractures in children. Additional measures should be installed to decrease these preventable fractures among children, with schools as a potential starting point.
Collapse
Affiliation(s)
- Gabriel S Makar
- From the Department of Orthopaedic Surgery, Geisinger Medical Center, Danville, PA (Makar, Udoeyo, Grandizio, and Klena) and the Department of Surgery, New York Presbyterian-Queens, NY (Davis)
| | | | | | | | | |
Collapse
|
2
|
Choi S, Nahmias J, Dolich M, Lekawa M, Smith BR, Nguyen N, Grigorian A. Obese adolescents have higher risk for femur fracture after motor vehicle collision. Surg Open Sci 2024; 20:205-209. [PMID: 39156489 PMCID: PMC11327607 DOI: 10.1016/j.sopen.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Background Previous reports identified an association between obese adolescents (OAs) and lower extremity (LE) fractures after blunt trauma. However, the type of LE fracture remains unclear. We hypothesized that OAs presenting after motor vehicle collision (MVC) have a higher risk of severe LE fracture and will require a longer length of stay (LOS) and more support services upon discharge, compared to non-OAs. Methods The 2017-2019 Trauma Quality Improvement Program database was queried for adolescents (12-17-years-old) presenting after MVC. The primary outcome was LE fracture. A severe fracture was defined by abbreviated injury scale ≥3. OAs were defined by a body mass index (BMI) ≥30. Results From 22,610 MVCs, 3325 (14.7 %) included OAs. The rate of any LE fracture was higher for OAs (21.6 % vs. 18.8 %, p < 0.001). On subset analysis the only LE fracture at higher risk in OAs was a femur fracture (13 % vs. 9.1 %, p < 0.001). After adjusting for sex and age, the risk for severe LE fracture (OR 1.34, CI 1.18-1.53, p < 0.001) was higher for OAs. OAs with a femur fracture had a longer median LOS (5 vs. 4 days, p = 0.003) and were more likely discharged with additional support services including home-health or inpatient rehabilitation (30.6 % vs. 21.4 %, p < 0.001). Conclusion OAs sustaining MVCs have increased associated risk of femur fractures. OAs are more likely to have a higher-grade LE injury, experience a longer LOS, and require additional support services upon discharge. Future research is needed to determine if early disposition planning with social work assistance can help shorten LOS.
Collapse
Affiliation(s)
- Shaelyn Choi
- University of California, Irvine, Department of Surgery, Division of Trauma, Burns and Surgical Critical Care, Orange, CA, USA
| | - Jeffry Nahmias
- University of California, Irvine, Department of Surgery, Division of Trauma, Burns and Surgical Critical Care, Orange, CA, USA
| | - Matthew Dolich
- University of California, Irvine, Department of Surgery, Division of Trauma, Burns and Surgical Critical Care, Orange, CA, USA
| | - Michael Lekawa
- University of California, Irvine, Department of Surgery, Division of Trauma, Burns and Surgical Critical Care, Orange, CA, USA
| | - Brian R. Smith
- University of California, Irvine, Department of Surgery, Division of Trauma, Burns and Surgical Critical Care, Orange, CA, USA
| | - Ninh Nguyen
- University of California, Irvine, Department of Surgery, Division of Trauma, Burns and Surgical Critical Care, Orange, CA, USA
| | - Areg Grigorian
- University of California, Irvine, Department of Surgery, Division of Trauma, Burns and Surgical Critical Care, Orange, CA, USA
| |
Collapse
|
3
|
Shipley J, Grigorian A, Emigh B, Dilday J, Kuza C, Schubl S, Swentek L, Brown N, Nahmias J. Is Adolescent Obesity Associated With a Higher Risk for Pelvic Fractures in Motor Vehicle Collisions? J Surg Res 2024; 295:261-267. [PMID: 38048749 DOI: 10.1016/j.jss.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/21/2023] [Accepted: 11/08/2023] [Indexed: 12/06/2023]
Abstract
INTRODUCTION The impact of obesity on the incidence of blunt pelvic fractures in adults is unclear, and adolescents may have an increased risk of fracture due to variable bone mineral density and leptin levels. Increased subcutaneous adipose tissue may provide protection, though the association between obesity and pelvic fractures in adolescents has not been studied. This study hypothesized that obese adolescents (OAs) presenting after motor vehicle collision (MVC) have a higher rate of pelvic fractures, and OAs with such fractures have a higher associated risk of complications and mortality compared to non-OAs. METHODS The 2017-2019 Trauma Quality Improvement Program database was queried for adolescents (12-16 y old) presenting after MVC. The primary outcome was a pelvic fracture. Adolescents with a body mass index ≥30 (OA) were compared to adolescents with a body mass index <30 (non-OA). Subgroup analyses for high-risk and low-risk MVCs were performed. Multivariable logistic regression analyses were also performed adjusting for age and sex. RESULTS From 22,610 MVCs, 3325 (14.7%) included OAs. The observed rate of pelvic fracture was similar between all OA and non-OA MVCs (10.2% versus 9.4%, P = 0.16), as well as subanalyses of minor or high-risk MVC (both P > 0.05). OAs presenting with a pelvic fracture after high-risk MVC had a similar risk of complications, pelvic surgery, and mortality compared to non-OAs (all P > 0.05). However, OAs with a pelvic fracture after minor MVC had a higher associated risk of complications (OR 2.27, CI 1.10-4.69, P = 0.03), but a similar risk of requiring pelvic surgery, and mortality (all P > 0.05). CONCLUSIONS This national analysis found a similar observed incidence of pelvic fractures for OAs versus non-OAs involved in an MVC, including subanalyses of minor and high-risk MVC. Furthermore, there was no difference in the associated risk of morbidity and mortality except for OAs involved in a minor MVC had a higher risk of complication.
Collapse
Affiliation(s)
- Jonathan Shipley
- Division of Trauma, Burns and Surgical Critical Care, Department of Surgery, University of California, Irvine, Orange, California
| | - Areg Grigorian
- Division of Trauma, Burns and Surgical Critical Care, Department of Surgery, University of California, Irvine, Orange, California
| | - Brent Emigh
- Department of Surgery, Brown University, Providence, Rhode Island
| | - Joshua Dilday
- Department of Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Catherine Kuza
- Department of Anesthesia, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Sebastian Schubl
- Division of Trauma, Burns and Surgical Critical Care, Department of Surgery, University of California, Irvine, Orange, California
| | - Lourdes Swentek
- Division of Trauma, Burns and Surgical Critical Care, Department of Surgery, University of California, Irvine, Orange, California
| | - Nolan Brown
- Division of Trauma, Burns and Surgical Critical Care, Department of Surgery, University of California, Irvine, Orange, California
| | - Jeffry Nahmias
- Division of Trauma, Burns and Surgical Critical Care, Department of Surgery, University of California, Irvine, Orange, California.
| |
Collapse
|
4
|
ROSSI L, PANUCCIO E, LEIGHEB M. Current concepts on pediatric clavicle, humerus, radius and ulna fractures. Chirurgia (Bucur) 2023; 36. [DOI: 10.23736/s0394-9508.23.05629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
|
5
|
Lee J, Yoon I, Cha H, Kim HJ, Ryu OH. Inverted U-Shaped Relationship between Obesity Parameters and Bone Mineral Density in Korean Adolescents. J Clin Med 2023; 12:5869. [PMID: 37762810 PMCID: PMC10532009 DOI: 10.3390/jcm12185869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
As the association between obesity and bone health remains controversial in children and adolescents, we investigate the effects of obesity parameters on bone mineral density (BMD) in 2060 Korean adolescents who participated in the 2008-2011 Korea National Health and Nutrition Examination Survey (KNHANES). Multiple regression analysis and analysis of covariance (ANCOVA) were conducted to examine both the linear and non-linear associations between total-body-less-head (TBLH) BMD and four obesity parameters: body mass index, waist circumference, waist-to-height ratio, and total-body fat mass (FM). In a multiple linear regression analysis adjusted for age, menarcheal status (in females only), and total-body lean mass, there was no significant linear association between obesity parameters and TBLH BMD, except for total-body FM in males. However, upon adding a second-order polynomial term for each obesity parameter, a significant quadratic relationship between all obesity parameters and TBLH BMD was observed, with the corresponding quadratic term being negative. The results of ANCOVA also revealed an inverted U-shaped relationship between each obesity parameter and TBLH BMD. Our findings suggest the existence of an optimal range of obesity parameters for developing or maintaining optimal bone health in Korean Adolescents. Deviation from this range, in either direction (being underweight or having obesity), may compromise bone health.
Collapse
Affiliation(s)
- Jongseok Lee
- School of Artificial Intelligence Convergence, Hallym University, Chuncheon 24253, Republic of Korea; (I.Y.); (H.C.); (H.-J.K.)
| | - Insang Yoon
- School of Artificial Intelligence Convergence, Hallym University, Chuncheon 24253, Republic of Korea; (I.Y.); (H.C.); (H.-J.K.)
| | - Hwajung Cha
- School of Artificial Intelligence Convergence, Hallym University, Chuncheon 24253, Republic of Korea; (I.Y.); (H.C.); (H.-J.K.)
| | - Ho-Jung Kim
- School of Artificial Intelligence Convergence, Hallym University, Chuncheon 24253, Republic of Korea; (I.Y.); (H.C.); (H.-J.K.)
| | - Ohk-Hyun Ryu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea
| |
Collapse
|
6
|
Lotan R, Thein R, Gordon B, Tenenbaum S, Derazne E, Tzur D, Afek A, Hershkovich O. Is There an Association between BMI, Height, and Gender and Long-Bone Fractures during Childhood and Adolescence? A Large Cross-Sectional Population Study of 911,206 Subjects. CHILDREN (BASEL, SWITZERLAND) 2023; 10:984. [PMID: 37371216 DOI: 10.3390/children10060984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Traumatic long-bone fractures (TLFs) among children and adolescents are relatively common, with morbidity and economic consequences. Obesity has become a significant global concern. Studies have found an association between TLFs and BMI in the past but not in a large cross-sectional population study. Our study objective was to measure the incidence of TLFs in the 17-year-old general population and evaluate its association with BMI, body height, and gender. METHODS Data from a medical database containing all 17-year-old candidates' records before recruitment into mandatory military service were retrieved as BMI, height, gender, and history of TLFs. Logistic regression models assessed the association between BMI and height to TLFs. RESULTS The records of 911,206 subjects (515,339 males) were reviewed. In total, 9.65% had a history of TLFs (12.25% and 6.25% for males/females, respectively). Higher BMI was associated with TLF, with a linear trend in the odds ratio (OR) for having TLFs. The strongest association was found between obese females and TLFs (OR = 1.364, p < 0.0001). Height was an independent factor positively associated with TLFs. The OR for a TLF in the highest height quintile was 1.238 (p < 0.001) for males and 1.411 (p < 0.001) for females compared to the lowest quintile. Although TLFs were more common in males, the OR for TLFs was more prominent in females. CONCLUSIONS There is an association between BMI, body height, and TLFs in healthy adolescents. TLFs are more common in males, but the strongest association between overweight and obesity is evident in females.
Collapse
Affiliation(s)
- Raphael Lotan
- Department of Orthopedic Surgery, Edith Wolfson Medical Center, Affiliated to the Sackler School of Medicine, Holon 5822012, Israel
| | - Ran Thein
- Department of Orthopedic Surgery, Chaim Sheba Medical Center, Affiliated to the Sackler School of Medicine, Tel Aviv 5262000, Israel
| | - Barak Gordon
- Medical Corps, Israeli Defense Forces, Ramat Gan 91120, Israel
- Department of Military Medicine, Faculty of Medicine, Institute for Research in Military Medicine (IRMM), The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Shay Tenenbaum
- Department of Orthopedic Surgery, Chaim Sheba Medical Center, Affiliated to the Sackler School of Medicine, Tel Aviv 5262000, Israel
| | - Estela Derazne
- Medical Corps, Israeli Defense Forces, Ramat Gan 91120, Israel
| | - Dorit Tzur
- Medical Corps, Israeli Defense Forces, Ramat Gan 91120, Israel
| | - Arnon Afek
- Management, Chaim Sheba Medical Center, Affiliated to the Sackler School of Medicine, Tel Aviv 5262000, Israel
| | - Oded Hershkovich
- Department of Orthopedic Surgery, Edith Wolfson Medical Center, Affiliated to the Sackler School of Medicine, Holon 5822012, Israel
- Medical Corps, Israeli Defense Forces, Ramat Gan 91120, Israel
| |
Collapse
|
7
|
Cai F, Yusufu A, Liu K, Chen W, Zhao R, Liu Y, Liu Y. High-fat diet causes undesirable bone regeneration by altering the bone marrow environment in rats. Front Endocrinol (Lausanne) 2023; 14:1088508. [PMID: 37056669 PMCID: PMC10086432 DOI: 10.3389/fendo.2023.1088508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVE Diet structure has changed greatly over the last few decades, and high-calorie diets have become an integral part of people's daily diet, as well as the important cause of obesity in society. Several organ systems, including the skeletal system, are seriously affected by high-fat-diets (HFD) in the world. There is, however, still a lack of knowledge about the effects of HFD on bone regeneration and the possible mechanisms involved. In this study, the difference in bone regeneration between rats under HFD and low-fat-diets (LFD) was evaluated by monitoring the process of bone regeneration in distraction osteogenesis (DO) model animals, as well as the possible mechanisms. METHODS A total of 40 Sprague Dawley (SD) rats (5 weeks old) were randomly divided into HFD group (n=20) and LFD group (n=20). Except for feeding methods, there were no differences between the two groups in terms of treatment conditions. All animals received the DO surgery eight weeks after starting to feed. After a delay of 5 days (latency phase), the active lengthening phase was performed for 10 days (0.25 mm/12 h), and the consolidation phase followed for 42 days. An observational study of bone included radioscopy (once a week), micro-computed tomography (CT), general morphology, biomechanics, histomorphometry, and immunohistochemistry. RESULT The results showed that HFD group had a higher body weight than LFD group after 8, 14, and 16 weeks of feeding. Furthermore, at the final observation, there were statistically significant differences between LFD group and HFD group in terms of total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) levels. Additionally, observations on bone regeneration showed a slower regeneration and a lower biomechanical strength in HFD group than LFD group, based on radiography, micro-CT, general morphology, biomechanics, histomorphometry, and immunohistochemistry. CONCLUSION In this study, HFD resulted in elevated blood lipids, increased adipose differentiation at the bone marrow level, and delayed bone regeneration. The pieces of evidence are beneficial to better understand the association between diet and bone regeneration and to adjust the diet optimally for fracture patients.
Collapse
Affiliation(s)
- Feiyu Cai
- Department of Burns and Plastic Surgery & Wound Repair Surgery, The Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Aihemaitijiang Yusufu
- Department of Trauma and Micro Reconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kai Liu
- Department of Trauma and Micro Reconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenjiao Chen
- Department of Burns and Plastic Surgery & Wound Repair Surgery, The Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ruomei Zhao
- Department of Burns and Plastic Surgery & Wound Repair Surgery, The Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yanshi Liu
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- *Correspondence: Yi Liu, ; Yanshi Liu,
| | - Yi Liu
- Department of Burns and Plastic Surgery & Wound Repair Surgery, The Lanzhou University Second Hospital, Lanzhou, Gansu, China
- *Correspondence: Yi Liu, ; Yanshi Liu,
| |
Collapse
|
8
|
Shawar RS, Puyau M, Shypailo R, Musaad S, Butte NF, Bacha F. Adiposity, Insulin Resistance, Cardiorespiratory Fitness, and Bone Health in Hispanic Children. J Clin Endocrinol Metab 2022; 107:e3797-e3804. [PMID: 35662345 PMCID: PMC9387690 DOI: 10.1210/clinem/dgac344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Childhood obesity disproportionately affects Hispanic youth. The skeletal system appears to be a target organ of the adverse effects of obesity. Yet, the relationship between adiposity and bone health in youth and the modulating factors are not well understood. OBJECTIVE This work aims to examine the relationship between adiposity, insulin resistance (IR), cardiorespiratory fitness (CRF), and bone mass in Hispanic youth. METHODS A total of 951 Hispanic youth (50% male), aged 4 to 19 years, participated in this cross-sectional design study from the Viva La Familia Study at Children's Nutrition Research Center. Bone mineral content (BMC) and density (BMD), lean mass (LM), total body fat mass (FM), truncal FM were obtained using dual-energy x-ray absorptiometry. Fasting glucose and insulin were obtained and the homeostasis model assessment of insulin resistance (HOMA-IR) was calculated. CRF was measured using a treadmill ramp protocol. We applied linear regression models and mediation analyses. RESULTS Adiposity measures were negatively related to BMC and BMD after accounting for LM and sex. IR negatively contributed whereas CRF positively contributed to the variance in BMC and BMD, more notably in the pubertal age group. In mediation analysis, HOMA-IR partially mediated the negative relationship of adiposity to BMC (standardized indirect effect [IE] = -0.0382; 95% CI, -0.0515 to -0.0264) whereas the sequential IE of HOMA-IR and CRF partially attenuated (IE = -0.0026; 95% CI, -0.0053 to -0.0005) this relationship. Similar findings were seen with BMD as the primary outcome. CONCLUSION IR mediates the negative relationship between adiposity and bone mass whereas CRF may partially attenuate it.
Collapse
Affiliation(s)
- Reem S Shawar
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Division of Pediatric Endocrinology and Diabetes, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Maurice Puyau
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Roman Shypailo
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Salma Musaad
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Nancy F Butte
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fida Bacha
- Correspondence: Fida Bacha, MD, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, 1100 Bates S, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Kawai M, Etani Y, Ida S. Subcutaneous adipose tissue is a positive predictor for bone mineral density in prepubertal children with Prader-Willi syndrome independent of lean mass. J Pediatr Endocrinol Metab 2022; 35:603-609. [PMID: 35286052 DOI: 10.1515/jpem-2021-0749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Emerging evidence suggests a fat depot-specific relationship with bone mineral density (BMD) in children, particularly in those who are overweight/obese. However, this has not yet been investigated in detail in children with Prader-Willi syndrome (PWS), a genetic syndrome characterized by a decreased lean mass (LM) and increased fat mass (FM). The objective of this study is to investigate the relationships of LM and FM, particularly fat distribution, with bone mineral parameters. METHODS This is a retrospective and cross-sectional study. Forty-seven prepubertal Japanese children with PWS (22 males, mean age: 6.86 years) were included. No subjects had type 2 diabetes mellitus or osteoporotic medications. LM, FM, and BMD and bone mineral content in the total body less head and the lumbar spine were measured using dual-energy x-ray absorptiometry, in addition to subcutaneous/visceral adipose tissue (SAT/VAT), and the ratio of VAT to SAT (V/S) by computed tomography at the umbilical level. Bone mineral apparent density was calculated to correct for bone size. RESULTS LM positively correlated with bone mineral parameters after controlling for age, sex, growth hormone (GH) treatment, and FM. Although FM did not correlate with bone mineral parameters, compartment-specific analysis revealed that SAT positively and V/S negatively correlated with bone mineral parameters after controlling for age, sex, GH treatment and LM. CONCLUSIONS A compartment-specific effect of FM on bone mineral parameters was noted such that SAT was a positive predictor for BMD independent of LM in prepubertal children with PWS.
Collapse
Affiliation(s)
- Masanobu Kawai
- Department of Gastroenterology, Nutrition, and Endocrinology, Osaka Women's and Children's Hospital, Izumi, Japan.,Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yuri Etani
- Department of Gastroenterology, Nutrition, and Endocrinology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Shinobu Ida
- Department of Gastroenterology, Nutrition, and Endocrinology, Osaka Women's and Children's Hospital, Izumi, Japan.,Department of Clinical Laboratory, Osaka Women's and Children's Hospital, Izumi, Japan
| |
Collapse
|
10
|
Korkmaz HA, Özkan B. Impact of Obesity on Bone Metabolism in Children. J Pediatr Endocrinol Metab 2022; 35:557-565. [PMID: 35393850 DOI: 10.1515/jpem-2021-0714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/28/2022] [Indexed: 11/15/2022]
Abstract
Obesity is an epidemic disease that can increase the incidence of type 2 diabetes, cardiovascular disease, malignancy, hypertension, and other health problems that affect the musculoskeletal system. There is a complex interaction between obesity and bone metabolism. In children with obesity, the peroxisome proliferator-activated receptor gamma pathway causes the differentiation of mesenchymal stem cells into adipocytes via osteoblasts, in which results in low bone mass and osteoporosis. Systemic inflammation in obesity has negative effects on bone metabolism. An increase in the number and size of adipose tissue and adipocytokines secreted from adipocytes affect the bone mass of the whole body with hormonal and biochemical effects. The skeletal effects of obesity are mediated by higher oxidative stress and increased production of proinflammatory cytokines. Osteoporosis due to obesity has increased morbidity and mortality in recent years, resulting in important health problems in developed and developing countries.
Collapse
Affiliation(s)
- Hüseyin Anıl Korkmaz
- Department of Pediatrics, Division of Pediatric Endocrinology, Dr Behcet Uz Child Disease and Surgery Training and Research Hospital, Izmir, Turkey
| | - Behzat Özkan
- Department of Pediatrics, Division of Pediatric Endocrinology, Dr Behcet Uz Child Disease and Surgery Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
11
|
Julian V, Costa D, O'Malley G, Metz L, Fillon A, Miguet M, Cardenoux C, Dutheil F, Boirie Y, Duclos M, Courteix D, Pereira B, Thivel D. Bone Response to High-Intensity Interval Training versus Moderate-Intensity Continuous Training in Adolescents with Obesity. Obes Facts 2022; 15:46-54. [PMID: 34864737 PMCID: PMC8820153 DOI: 10.1159/000519271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Since adolescents with obesity are prone to bone fragility during weight loss, the aim was to compare the impact of high-intensity interval training (HIIT) versus moderate-intensity continuous training (MICT) on bone density, geometry, and strength. METHODS Sixty-one adolescents were randomly assigned to 2 cycling trainings (HIIT and MICT) and a control (CTR, without training) group. Anthropometry, dual-energy X-ray absorptiometry with hip structural analysis and the trabecular bone score (TBS) were assessed before and after the 16-week intervention. RESULTS Body mass index (BMI) and fat mass (FM) percentage decreased at T1 versus T0 in both training groups (p < 0.001 for HIIT, p = 0.01 for MICT), though to a larger extent in HIIT (p < 0.05). Total body bone mineral density (BMD) and bone mineral content (BMC) increased in both training groups (p < 0.001), but to a greater extent in HIIT for BMC (p < 0.05). Lumbar spine BMD and BMC increased in both training groups (p < 0.001 for HIIT, p < 0.01 for MICT), with a time × group interaction between HIIT and CTR (p < 0.05) only. TBS increased in both training groups (p < 0.01 for HIIT, p < 0.05 for MICT). Hip BMD and BMC increased in both HIIT (p < 0.001 and p < 0.01) and MICT (p < 0.01 and p < 0.05). At the narrow neck (NN), endocortical diameter, width (p < 0.01), cross-sectional moment of inertia, and section modulus (Z) (p < 0.05) increased only in the HIIT group, such as BMD and Z (p < 0.05) at the intertrochanteric region (IT) and average cortical thickness (p < 0.001) and width (p < 0.05) at the femoral shaft. At the NN and IT, the buckling ratio decreased only in the HIIT group (p < 0.05), predicting higher resistance to fracture. CONCLUSIONS In addition to inducing greater BMI and FM percentage decreases in comparison to MICT, HIIT improves multisite bone density, geometry, and strength, which heighten the justification for HIIT as part of weight loss interventions in adolescents with obesity.
Collapse
Affiliation(s)
- Valérie Julian
- Department of Sport Medicine and Functional Explorations, University Teaching Hospital of Clermont-Ferrand, Diet and Musculoskeletal Health Team, CRNH, INRA, University of Clermont Auvergne, Clermont-Ferrand, France
- *Valérie Julian,
| | - Daniela Costa
- University of Coimbra, FCDEF, CIDAF, Coimbra, Portugal
- Portuguese Foundation for Science and Technology (SFRH/BD/136193/2018), Lisbon, Portugal
| | - Grace O'Malley
- School of Physiotherapy, RCSI University of Medicine and Health Sciences, Dublin, W82GO Child and Adolescent Weight Management Service, Dublin, Ireland
| | - Lore Metz
- Laboratory AME2P, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Alicia Fillon
- Laboratory AME2P, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Maud Miguet
- Laboratory AME2P, University of Clermont Auvergne, Clermont-Ferrand, France
| | | | - Frédéric Dutheil
- Department of Occupational Medicine, University Teaching Hospital of Clermont-Ferrand, LAPSCO − Laboratory of Social and Cognitive Psychology, Clermont-Ferrand, France
| | - Yves Boirie
- Department of Clinical Nutrition, University Teaching Hospital of Clermont-Ferrand, Diet and Musculoskeletal Health Team, CRNH, INRA, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Martine Duclos
- Department of Sport Medicine and Functional Explorations, University Teaching Hospital of Clermont-Ferrand, Diet and Musculoskeletal Health Team, CRNH, INRA, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Daniel Courteix
- Laboratory AME2P, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Bruno Pereira
- Department of Biostatistics, University Teaching Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - David Thivel
- Laboratory AME2P, University of Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
12
|
Ambrosio MR, Aliberti L, Gagliardi I, Franceschetti P, Zatelli MC. Bone health in adolescence. Minerva Obstet Gynecol 2021; 73:662-677. [PMID: 34905874 DOI: 10.23736/s2724-606x.20.04713-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adolescence is a fundamental period for the formation of the skeleton, because is the stage in which bones grow more in both size and strength, laying a solid foundation for the future health of the skeleton. Any condition interfering with optimal peak bone mass accrual can increase fracture risk later in life. Up to 80% of peak bone mass is genetically determined while the remaining 20% is modulated by environmental factors that, if deleterious, may result in low bone mineral density (BMD) and an increased risk of fracture. The preferred test to assess bone health is dual-energy x-ray absorptiometry (spine or total body less head) using Z scores instead of T scores, even though in short stature or growth delay, should be used the height Z-score. The correction of risk factors is the first treatment for low BMD in children and adolescents. It's necessary having a correct lifestyle for preserving bone health: a proper nutrition, an adequate physical weight-bearing activity and avoidance of alcohol intake and tobacco smoke. Bisphosphonates could be used in children who sustained osteoporotic fractures, impairing quality of life, when spontaneous recovery is low for the persistence of osteoporosis risk factors. This clinical review discusses factors affecting bone health during childhood and adolescence and deals with diagnosis and treatment of low bone mass or osteoporosis in this age group.
Collapse
Affiliation(s)
- Maria R Ambrosio
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy -
| | - Ludovica Aliberti
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Irene Gagliardi
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paola Franceschetti
- Operative Unit of Endocrinology and Metabolic Diseases, Department of Oncology and Specialty Medicine, Ferrara University Hospital, Ferrara, Italy
| | - Maria C Zatelli
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
13
|
Pimentel DV, Suttkus A, Vogel M, Lacher M, Jurkutat A, Poulain T, Ceglarek U, Kratzsch J, Kiess W, Körner A, Mayer S. Effect of physical activity and BMI SDS on bone metabolism in children and adolescents. Bone 2021; 153:116131. [PMID: 34314901 DOI: 10.1016/j.bone.2021.116131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Children with obesity are known to have reduced bone density and are at a higher risk for fractures. This may be caused by decreased physical activity or a metabolic phenomenon. In this study, we evaluated associations of physical activity with bone metabolism in children and adolescents with and without obesity. METHODS Results from 574 visits of 397 subjects, 191 girls and 206 boys aged five to 18 years (mean: 11.7 ± 2.8) representing 180 children with (mean BMI SDS 2.5 ± 0.4) and 217 without obesity (mean BMI SDS 0.2 ± 1.0) from the LIFE Child study, a population-based cohort of children/adolescents with normal weight and with obesity were analyzed for the impact of their daily physical activity (MET/day, SenseWear Accelerometer) on serum SDS levels for bone formation (alkaline phosphatase, osteocalcin, procollagen type I N propeptide [P1NP]), bone resorption (beta-crosslaps), and calcium homeostasis (parathormone, OH-25-vitamin D) by a linear regression model adjusted for gender- and age-based differences. RESULTS For male subjects, BMI SDS significantly influenced the association of physical activity to PTH, vitamin D, and beta-crosslaps SDS levels. A higher physical activity was accompanied by increased PTH but decreased vitamin D SDS levels in children with normal weight. In males with obesity, all levels remained unaltered. In females, BMI SDS significantly impacted the association of physical activity to PTH, vitamin D, P1NP, beta-crosslaps, and osteocalcin SDS levels. In females with obesity, higher physical activity was related to higher SDS levels of vitamin D, P1NP, and beta-crosslaps. In contrast, in normal weight females, only PTH SDS was higher. CONCLUSIONS The effect of daily physical activity on bone metabolic markers and calciotropic hormones depends significantly on gender and BMI SDS. However, higher levels of physical activity were associated with increased bone turnover for female subjects with obesity only. Thus, motivating especially girls with obesity to be physically active may help improve their bone health.
Collapse
Affiliation(s)
| | - Anne Suttkus
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Mandy Vogel
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Anne Jurkutat
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Tanja Poulain
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Uta Ceglarek
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), University of Leipzig, Leipzig, Germany
| | - Jürgen Kratzsch
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), University of Leipzig, Leipzig, Germany
| | - Wieland Kiess
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Medical Faculty, Leipzig, Germany; Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig, Leipzig, Germany
| | - Antje Körner
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Medical Faculty, Leipzig, Germany; Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig, Leipzig, Germany
| | - Steffi Mayer
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
14
|
Julian V, O'Malley G, Metz L, Weghuber D, Courteix D, Fillon A, Boirie Y, Duclos M, Pereira B, Thivel D. Does the severity of obesity influence bone density, geometry and strength in adolescents? Pediatr Obes 2021; 16:e12826. [PMID: 34171175 DOI: 10.1111/ijpo.12826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/12/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Relationships between the severity of obesity and bone health remain underexplored. OBJECTIVES To compare whole-body and localized bone mineral content (BMC) and density (BMD), trabecular bone score (TBS) and hip geometry and strength between adolescents with obesity versus extreme obesity. METHODS This cross-sectional study included 154 adolescents (12-15 years, 62% females) who were classified as having obesity (OG, [95th-99th] percentile) or extreme obesity (EOG, >99th percentile). Fat mass (FM), lean mass (LM), BMC, BMD for total-body-less-head (TBLH), lumbar spine (LS), hip, TBS and geometric and strength indices at the narrow-neck (NN), femoral shaft (FS) and intertrochanteric regions (IT) were assessed by Dual-X-ray Absorptiometry (DXA). RESULTS There was no significant sex-interaction. For both sexes, TBLH BMC and BMD were not different between groups. TBS was lower in EOG compared with OG in both sexes in univariate analysis and after adjustment with maturation and body weight (p < 0.05). Hip BMD was significantly higher in the EOG compared to OG only after adjustment with maturation and fat mass percentage (p < 0.05 for men, p < 0.01 for women). For both sexes, TBLH, LS and hip BMC and BMD positively correlated with weight, BMI, LM and FM. TBS negatively correlated with BMI-percentile in both sexes, with a negative correlation with FM for males alone. Hip BMC and BMD, BMD, ACT and CSA at the three hip sites positively correlated with BMI-percentile in males. CONCLUSIONS Extreme obesity impacts bone health depending on anatomical sites, altering lumbar trabecular bone in both males and females adolescents.
Collapse
Affiliation(s)
- Valérie Julian
- Department of Sport Medicine and Functional Explorations, University Teaching Hospital of Clermont-Ferrand, Diet and Musculoskeletal Health Team, CRNH, INRA, University of Clermont Auvergne, Clermont-Ferrand, France.,Department of Pediatrics, Paracelsus Medical School, Salzburg, Austria
| | - Grace O'Malley
- School of Physiotherapy, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,W82GO Child and Adolescent Weight Management Service, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Lore Metz
- Laboratory AME2P, University of Clermont Auvergne, Aubière, France
| | - Daniel Weghuber
- Department of Pediatrics, Paracelsus Medical School, Salzburg, Austria
| | - Daniel Courteix
- Laboratory AME2P, University of Clermont Auvergne, Aubière, France
| | - Alicia Fillon
- Laboratory AME2P, University of Clermont Auvergne, Aubière, France
| | - Yves Boirie
- Department of Clinical Nutrition, University Teaching Hospital of Clermont-Ferrand, Diet and Musculoskeletal Health Team, CRNH, INRA, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Martine Duclos
- Department of Sport Medicine and Functional Explorations, University Teaching Hospital of Clermont-Ferrand, Diet and Musculoskeletal Health Team, CRNH, INRA, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Bruno Pereira
- Department of Biostatistics, University Teaching Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - David Thivel
- Laboratory AME2P, University of Clermont Auvergne, Aubière, France
| |
Collapse
|
15
|
Huang T, Fu X, Wang N, Yang M, Zhang M, Wang B, Chen T, Majaz S, Wang H, Wong CW, Liu J, Guan M. Andrographolide prevents bone loss via targeting estrogen-related receptor-α-regulated metabolic adaption of osteoclastogenesis. Br J Pharmacol 2021; 178:4352-4367. [PMID: 34233019 DOI: 10.1111/bph.15614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Metabolic adaptation driven by oestrogen-related receptor-α (ERRα/NR3B1) is required to meet the increased energy demand during osteoclast differentiation. Here, we hypothesize that natural product, andrographolide, acts as an ERRα inverse agonist to inhibit osteoclastogenesis. EXPERIMENTAL APPROACH Virtual docking and site-directed mutagenesis analysis were employed to study the binding mode of andrographolide to ERRα. Co-immunoprecipitation, luciferase reporter assay, real-time polymerase chain reaction (PCR) and immunoblot analyses were performed to identify andrographolide as an ERRα inverse agonist. The pharmacological effects of andrographolide in vivo were assessed in mice models of osteopenia induced by either a high-fat diet in male or ovariectomy in female mice. KEY RESULTS ERRα-dependent expression of glutaminase, a rate-limiting enzyme of mitochondrial glutamine anaplerosis, is required for ex vivo bone marrow osteoclast differentiation. Andrographolide inhibited glutaminase expression induced by ERRα and co-activator peroxisome proliferator-activated receptor γ co-activator-1β (PGC-1β), leading to reduction in osteoclastogenesis. Andrographolide acted as an inverse agonist of ERRα by disrupting its interaction with co-activator PGC-1β. Phenylalanine 232, valine 395 and phenylalanine 399 of ERRα ligand-binding domain were confirmed to be essential for this effect. In contrast, glutaminase overexpression restored the impairment triggered by andrographolide. Accordingly, andrographolide suppressed osteoclastic bone resorption and attenuated bone loss in vivo. CONCLUSIONS AND IMPLICATIONS These findings demonstrate that andrographolide acts as an ERRα inverse agonist for perturbation of ERRα/PGC-1β/glutaminase axis-driven metabolic adaption during osteoclast differentiation, implying that andrographolide may be a promising natural compound for preventing physiological and pathological bone loss.
Collapse
Affiliation(s)
- Tongling Huang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuekun Fu
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Na Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Meng Yang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Minyi Zhang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Binxu Wang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tianke Chen
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sidra Majaz
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chi-Wai Wong
- NeuMed Pharmaceuticals Limited, Yuen Long, Hong Kong, China
| | - Jinsong Liu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
16
|
Nazareth A, Schur M, Schroeder AJ, Whitlock PW, Skaggs DL, Goldstein RY. Obesity as a Predictor of Outcomes in Type III and Type IV Supracondylar Humerus Fractures. J Orthop Trauma 2021; 35:e418-e422. [PMID: 33591065 DOI: 10.1097/bot.0000000000002081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To investigate the association of obesity with fracture characteristics and outcomes of operatively treated pediatric supracondylar humerus fractures. DESIGN Retrospective multicenter. SETTING Two Level I pediatric hospitals. PATIENTS Patients (age <18 years) with operatively treated Gartland type III and type IV fractures 2010-2014. INTERVENTION Closed or open reduction and percutaneous pinning of supracondylar humerus fractures. MAIN OUTCOME MEASURE Incidence of Gartland IV fracture, preoperative nerve palsy, open reduction and complication rates. RESULTS Patients in the obese group had a significantly higher likelihood of having a Gartland IV fracture (not obese: 17%; obese: 35%; P = 0.007). There was a significantly higher incidence of nerve palsy on presentation in the obese group (not obese: 20%; obese: 33%; P = 0.03). No significant differences were found between groups regarding incidence of open reduction, compartment syndrome, and rates of reoperation. CONCLUSIONS The present study demonstrates that obese children with a completely displaced supracondylar humerus fractures have an increased risk of Gartland type IV and preoperative nerve palsy compared with normal weight children. LEVEL OF EVIDENCE Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Alexander Nazareth
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Children's Orthopaedic Center, Children's Hospital Los Angeles, Los Angeles, CA; and
| | - Mathew Schur
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Amanda J Schroeder
- Division of Pediatric Orthopaedics, Cincinnati Children's Hospital, Cincinnati, OH
| | - Patrick W Whitlock
- Division of Pediatric Orthopaedics, Cincinnati Children's Hospital, Cincinnati, OH
| | - David L Skaggs
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Children's Orthopaedic Center, Children's Hospital Los Angeles, Los Angeles, CA; and
| | - Rachel Y Goldstein
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Children's Orthopaedic Center, Children's Hospital Los Angeles, Los Angeles, CA; and
| |
Collapse
|
17
|
Hu X, Li B, Wu F, Liu X, Liu M, Wang C, Shi Y, Ye L. GPX7 Facilitates BMSCs Osteoblastogenesis via ER Stress and mTOR Pathway. J Cell Mol Med 2021; 25:10454-10465. [PMID: 34626080 PMCID: PMC8581313 DOI: 10.1111/jcmm.16974] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence indicates extensive oxidative stress is a consequence of obesity which impairs bone formation. Glutathione peroxidase 7 (GPX7) is a conserved endoplasmic reticulum (ER) retention protein, lacking of which causes accumulation of reactive oxygen species (ROS) and promotes adipogenesis. Since the imbalance between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cell (BMSC) leads to severe bone diseases such as osteoporosis, it is critical to investigate the potential protective role of Gpx7 in osteogenesis. Here, we provide evidence that deficiency of Gpx7 reduces osteogenesis, but increases adipogenesis in both human BMSCs (hBMSCs) and mouse mesenchymal stem cell line. Interestingly, further studies indicate this defect can be alleviated by the ER stress antagonist, but not the ROS inhibitor, unveiling an unexpected finding that, unlike adipogenesis, lacking of Gpx7 inhibits osteogenesis mediating by induced ER stress instead of enhanced ROS. Furthermore, the mTOR signalling pathway is found down‐regulation during osteogenic differentiation in Gpx7‐deficient condition, which can be rescued by relief of ER stress. Taken together, for the first time we identify a novel function of Gpx7 in BMSCs’ osteogenic differentiation and indicate that Gpx7 may protect against osteoporotic deficits in humans through ER stress and mTOR pathway interplay.
Collapse
Affiliation(s)
- Xuchen Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boer Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengyu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Wang L, Xu Z, Li N, Meng X, Wang S, Yu C, Leng J, Zhao M, Li W, Deng Y. The association between overweight and obesity on bone mineral density in 12 to 15 years old adolescents in China. Medicine (Baltimore) 2021; 100:e26872. [PMID: 34397903 PMCID: PMC8360441 DOI: 10.1097/md.0000000000026872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023] Open
Abstract
Overweight/obesity can influence bone mineral accretion, but the conclusions are not consistent. We aimed to examine the association between bone mineral density (BMD) levels and body mass index (BMI) in 12 to 15 years old adolescents.We performed a cross-sectional study including 8365 adolescents. BMD was evaluated using a quantitative ultrasound device. Z scores for BMI were evaluated using World Health Organization references. Logistic regression models were performed to evaluate the association between BMD levels and BMI.Totally 1866 (22.3%) adolescents had low /reduced BMD, and boys had a higher rate than girls (72.6% vs 27.4%, P < .001). The rates of thinness, normal weight, overweight, and obesity were 2.8%, 57.1%, 22.3%, and 17.8%, respectively. The multivariable-adjusted (age, sex, systolic blood pressure, and height Z score) ORs (95% CIs) of low/reduced BMD associated with BMI groups (thinness, normal [reference], overweight, and obesity) were 0.59 (0.39-0.89), 1.00, 1.61 (1.41-1.84), and 1.98 (1.69-2.30), respectively (Ptrend < .001). This positive association existed in boys and girls though the differences were not significant between normal weight and thin girls. The multivariable-adjusted ORs for each 1-unit increase in BMI Z score were 1.36 (1.24-1.49) for girls, and 1.23 (1.16-1.30) for boys, and 1.26 (1.20-1.32) for all participants.We observed a positive association between BMI and low/reduced BMD in 12 to 15 years old adolescents. More attention should be paid on overweight and obese adolescents to reduce the risk of low BMD. Further studies are needed to explore the mechanisms of this association.
Collapse
Affiliation(s)
- Leishen Wang
- Tianjin Women and Children's Health Center, No. 96, Guizhou Rd, Heping District, Tianjin, China
| | - Zhongxian Xu
- Health and Family Planning Service Center for Women and Children in Dongli District, No. 7, Xianfeng Rd, Dongli District, Tianjin, China
| | - Nan Li
- Tianjin Women and Children's Health Center, No. 96, Guizhou Rd, Heping District, Tianjin, China
| | - Xuemei Meng
- Health and Family Planning Service Center for Women and Children in Dongli District, No. 7, Xianfeng Rd, Dongli District, Tianjin, China
| | - Shuo Wang
- Tianjin Women and Children's Health Center, No. 96, Guizhou Rd, Heping District, Tianjin, China
| | - Chengshu Yu
- Health and Family Planning Service Center for Women and Children in Dongli District, No. 7, Xianfeng Rd, Dongli District, Tianjin, China
| | - Junhong Leng
- Tianjin Women and Children's Health Center, No. 96, Guizhou Rd, Heping District, Tianjin, China
| | - Ming Zhao
- Health and Family Planning Service Center for Women and Children in Dongli District, No. 7, Xianfeng Rd, Dongli District, Tianjin, China
| | - Weiqin Li
- Tianjin Women and Children's Health Center, No. 96, Guizhou Rd, Heping District, Tianjin, China
| | - Yanmei Deng
- Health and Family Planning Service Center for Women and Children in Dongli District, No. 7, Xianfeng Rd, Dongli District, Tianjin, China
| |
Collapse
|
19
|
Koo HC, Lim GP, Kaur S, Chan KQ, Chan KE, Chung C, Wong M, Danaselvam U. Bone Health and Its Positive Relationships with Body Composition in Malaysian Schoolchildren: Findings from a Cross-Sectional Study. CHILDREN-BASEL 2021; 8:children8070569. [PMID: 34356548 PMCID: PMC8303397 DOI: 10.3390/children8070569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023]
Abstract
Background: Optimal bone health is vital in children to prevent osteoporosis later in life, and body composition plays a crucial role in it. However, the literature reports contradictory results when considering the relationship between body composition and bone health in children. This study aimed to examine the bone health and its relationship with body composition in Malaysian schoolchildren. Methods: In this cross sectional study, body composition data (weight, height, body fat percentage [% fat], fat mass, fat free mass, visceral fat, waist circumference [WC] and body mass index-for-age [BMI z-score]) and bone health data (Z-score and broadband ultrasound attenuation [BUA]) were collected from 415 schoolchildren aged 9–12 years, cluster sampled from randomly selected primary schools in Kuala Lumpur, Malaysia. Results: Girls generally had significantly higher height, body fat percentage, fat mass, visceral fat and Z-score as compared to boys. A steady increase of the mean BUA value was observed with increasing age in both sexes. The mean BUA value of the present study across the population was significantly higher than that of schoolchildren from Nigeria (p < 0.001), Colombia (p < 0.001) and Spain (p = 0.002). Significant positive correlations were found between all the body composition variables and bone outcome variables across the population. Further, BUA was significantly correlated with weight (β = 0.172; p = 0.001), height (β = 0.299; p < 0.001), % fat (β = 0.131; p = 0.007), fat mass (β = 0.130; p = 0.007), fat free mass (β = 0.209; p < 0.001), visceral fat (β = 0.127, p = 0.008), WC (β = 0.165; p = 0.001) and BMI z-score (β = 0.162; p = 0.001), after controlling for sex, age and ethnicity. Similarly, after confounders adjusted, Z-score was significantly predicted by weight (β = 0.160; p = 0.001), height (β = 0.310; p < 0.001), % fat (β = 0.104; p = 0.032), fat mass (β = 0.107; p = 0.026), fat free mass (β = 0.218; p < 0.001), visceral fat (β = 0.107, p = 0.026), WC (β = 0.145; p = 0.002) and BMI z-score (β = 0.150; p = 0.002). Conclusions: Our findings have revealed that body composition variables were positive correlated with bone outcome variables, suggesting that adipose tissue acts to stimulate bone growth. Further clinical and molecular studies in the future is recommended to fully illustrate the complex interactions between adiposity and bone health.
Collapse
Affiliation(s)
- Hui Chin Koo
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur 53300, Malaysia; (G.P.L.); (K.Q.C.); (K.E.C.); (C.C.); (M.W.); (U.D.)
- Correspondence:
| | - Geok Pei Lim
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur 53300, Malaysia; (G.P.L.); (K.Q.C.); (K.E.C.); (C.C.); (M.W.); (U.D.)
| | - Satvinder Kaur
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia;
| | - Kai Quin Chan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur 53300, Malaysia; (G.P.L.); (K.Q.C.); (K.E.C.); (C.C.); (M.W.); (U.D.)
| | - Keh En Chan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur 53300, Malaysia; (G.P.L.); (K.Q.C.); (K.E.C.); (C.C.); (M.W.); (U.D.)
| | - Casey Chung
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur 53300, Malaysia; (G.P.L.); (K.Q.C.); (K.E.C.); (C.C.); (M.W.); (U.D.)
| | - Michelle Wong
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur 53300, Malaysia; (G.P.L.); (K.Q.C.); (K.E.C.); (C.C.); (M.W.); (U.D.)
| | - Ugunesh Danaselvam
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur 53300, Malaysia; (G.P.L.); (K.Q.C.); (K.E.C.); (C.C.); (M.W.); (U.D.)
| |
Collapse
|
20
|
Seo YG, Kim Y, Lim H, Kang MJ, Park KH. Relationship Between Bone Mineral Density and Body Composition According to Obesity Status in Children. Endocr Pract 2021; 27:983-991. [PMID: 34144210 DOI: 10.1016/j.eprac.2021.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To analyze the relationship between body composition, metabolic parameters, and bone mineral density (BMD) according to sex and the degree of obesity in children and adolescents. METHODS A total of 236 subjects with obesity, aged 10 to 15 years (36.9% girls), were enrolled. Obesity was classified into simple (SmOb) and extreme (ExOb) forms. The BMD of the total body, less head, was measured by dual energy x-ray absorptiometry, and the BMD z-score was used to evaluate the relationship of body composition with metabolic parameters. RESULTS BMD z-scores were higher in subjects with ExOb than in those with SmOb. Lean mass index (LMI), body mass index z-score, and vitamin D intake showed positive relationships, whereas percentage of body fat and serum leptin level showed negative relationships with BMD z-scores in boys. In girls, LMI and body mass index z-score showed positive relationships with BMD z-scores. In multivariable linear regressions, serum leptin level showed negative relationships with BMD z-score, only in boys. In addition, positive relationships of LMI and negative relationships of percentage of body fat with BMD z-scores were observed in subjects with SmOb. However, positive relationships of LMI with BMD z-scores were attenuated in subjects with ExOb. CONCLUSION High BMD appears to be positively associated with lean mass in children and adolescents with obesity, which might be a natural protective mechanism to withstand the excess weight. However, excessive body fat appears to be negatively associated with BMD, which might attenuate the positive relationship between lean mass and BMD in subjects with ExOb.
Collapse
Affiliation(s)
- Young-Gyun Seo
- Department of Family Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - YoonMyung Kim
- University College, Yonsei University International Campus, Incheon, Republic of Korea
| | - Hyunjung Lim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
| | - Min Jae Kang
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea.
| | - Kyung Hee Park
- Department of Family Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea.
| |
Collapse
|
21
|
Liu L, Guo J, Chen X, Tong X, Xu J, Zou J. The Role of Irisin in Exercise-Mediated Bone Health. Front Cell Dev Biol 2021; 9:668759. [PMID: 34017836 PMCID: PMC8129548 DOI: 10.3389/fcell.2021.668759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Exercise training promotes physical and bone health, and is the first choice of non-drug strategies that help to improve the prognosis and complications of many chronic diseases. Irisin is a newly discovered peptide hormone that modulates energy metabolism and skeletal muscle mass. Here, we discuss the role of irisin in bone metabolism via exercise-induced mechanical forces regulation. In addition, the role of irisin in pathological bone loss and other chronic diseases is also reviewed. Notably, irisin appears to be a key determinant of bone mineral status and thus may serve as a novel biomarker for bone metabolism. Interestingly, the secretion of irisin appears to be mediated by different forms of exercise and pathological conditions such as diabetes, obesity, and inflammation. Understanding the mechanism by which irisin is regulated and how it regulates skeletal metabolism via osteoclast and osteoblast activities will be an important step toward applying new knowledge of irisin to the treatment and prevention of bone diseases such as osteolysis and other chronic disorders.
Collapse
Affiliation(s)
- Lifei Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation, The People's Hospital of Liaoning Province, Shenyang, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyang Tong
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
22
|
Mosialou I, Shikhel S, Luo N, Petropoulou PI, Panitsas K, Bisikirska B, Rothman NJ, Tenta R, Cariou B, Wargny M, Sornay-Rendu E, Nickolas T, Rubin M, Confavreux CB, Kousteni S. Lipocalin-2 counteracts metabolic dysregulation in obesity and diabetes. J Exp Med 2021; 217:151926. [PMID: 32639539 PMCID: PMC7537391 DOI: 10.1084/jem.20191261] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 03/28/2020] [Accepted: 05/15/2020] [Indexed: 12/30/2022] Open
Abstract
Regulation of food intake is a recently identified endocrine function of bone that is mediated by Lipocalin-2 (LCN2). Osteoblast-secreted LCN2 suppresses appetite and decreases fat mass while improving glucose metabolism. We now show that serum LCN2 levels correlate with insulin levels and β-cell function, indices of healthy glucose metabolism, in obese mice and obese, prediabetic women. However, LCN2 serum levels also correlate with body mass index and insulin resistance in the same individuals and are increased in obese mice. To dissect this apparent discrepancy, we modulated LCN2 levels in mice. Silencing Lcn2 expression worsens metabolic dysfunction in genetic and diet-induced obese mice. Conversely, increasing circulating LCN2 levels improves metabolic parameters and promotes β-cell function in mouse models of β-cell failure acting as a growth factor necessary for β-cell adaptation to higher metabolic load. These results indicate that LCN2 up-regulation is a protective mechanism to counteract obesity-induced glucose intolerance by decreasing food intake and promoting adaptive β-cell proliferation.
Collapse
Affiliation(s)
- Ioanna Mosialou
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY
| | - Steven Shikhel
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY
| | - Na Luo
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY
| | | | - Konstantinos Panitsas
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY
| | - Brygida Bisikirska
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY
| | - Nyanza J Rothman
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY
| | - Roxane Tenta
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY
| | - Bertrand Cariou
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, l'Institut du thorax, Nantes, France
| | - Matthieu Wargny
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, l'Institut du thorax, Nantes, France
| | - Elisabeth Sornay-Rendu
- Institut national de la santé et de la recherche médicale Unités Mixtes de Recherche 1033, Université de Lyon, Hospices Civils de Lyon, Lyon, France
| | - Thomas Nickolas
- Department of Medicine Nephrology, Columbia University Medical Center, New York, NY
| | - Mishaela Rubin
- Department of Medicine Endocrinology, Columbia University Medical Center, New York, NY
| | - Cyrille B Confavreux
- Institut national de la santé et de la recherche médicale Unités Mixtes de Recherche 1033, Université de Lyon, Hospices Civils de Lyon, Lyon, France
| | - Stavroula Kousteni
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY
| |
Collapse
|
23
|
Mohd Ramli ES, Sukalingam K, Kamaruzzaman MA, Soelaiman IN, Pang KL, Chin KY. Direct and Indirect Effect of Honey as a Functional Food Against Metabolic Syndrome and Its Skeletal Complications. Diabetes Metab Syndr Obes 2021; 14:241-256. [PMID: 33500644 PMCID: PMC7822078 DOI: 10.2147/dmso.s291828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome (MetS) refers to the simultaneous presence of hypertension, hyperglycemia, dyslipidemia and/or visceral obesity, which predisposes a person to cardiovascular diseases and diabetes. Evidence suggesting the presence of direct and indirect associations between MetS and osteoporosis is growing. Many studies have reported the beneficial effects of polyphenols in alleviating MetS in in vivo and in vitro models through their antioxidant and anti-inflammation actions. This review aims to summarize the effects of honey (based on unifloral and multi-floral nectar sources) on bone metabolism and each component of MetS. A literature search was performed using the PubMed and Scopus databases using specific search strings. Original studies related to components of MetS and bone, and the effects of honey on components of MetS and bone were included. Honey polyphenols could act synergistically in alleviating MetS by preventing oxidative damage and inflammation. Honey intake is shown to reduce blood glucose levels and prevent excessive weight gain. It also improves lipid metabolism by reducing total cholesterol, triglycerides and low-density lipoprotein, as well as increasing high-density lipoprotein. Honey can prevent bone loss by reducing the adverse effects of MetS on bone homeostasis, apart from its direct action on the skeletal system. In conclusion, honey supplementation could be integrated into the management of MetS and MetS-induced bone loss as a preventive and adjunct therapeutic agent.
Collapse
Affiliation(s)
- Elvy Suhana Mohd Ramli
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Kumeshini Sukalingam
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Amir Kamaruzzaman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Ima Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Josse AR, Ludwa IA, Kouvelioti R, Calleja M, Falk B, Ward WE, Klentrou P. Dairy product intake decreases bone resorption following a 12-week diet and exercise intervention in overweight and obese adolescent girls. Pediatr Res 2020; 88:910-916. [PMID: 32179870 DOI: 10.1038/s41390-020-0834-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND We examined whether increased dairy intake was associated with changes in the levels of bone-related biochemical markers in overweight/obese adolescent girls undergoing a 12-week diet and exercise intervention. METHODS Thirty-five girls were assigned to a low dairy group (LDa; 0-2 servings/day; n = 16) or a higher dairy group (RDa; 4 servings/day; n = 19). Morning, fasted/resting blood samples were collected before and after the intervention and serum concentrations of procollagen-type-1-N-terminal-propeptide (P1NP), β-isomerized-C-terminal-cross-linking-telopeptides (β-CTX), osteocalcin (OC), 25-hydroxyvitamin-D, sclerostin and parathyroid hormone were measured. RESULTS At baseline, there were no significant differences between groups in any bone variable. Changes (∆) over time in β-CTΧ (p = 0.035; interaction) and OC (p = 0.015; interaction) were significantly different between groups characterized by decreases in RDa and increases in LDa. P1NP and P1NP:β-CTX ratio decreased in both groups (main time effects: p = 0.003, p = 0.041, respectively). ∆β-CTX (r = -0.37; p = 0.028) and ∆OC (r = -0.39; p = 0.021) were correlated with average number of dairy servings consumed during the study and with each other (r = 0.45; p = 0.006). ∆OC was not correlated with ∆P1NP (r = 0.19; p = 0.27). CONCLUSIONS Our results suggest that the osteogenic response to a diet and exercise program in this population can be improved with increased dairy intake via a decrease in bone resorption. IMPACT We demonstrated that bone resorption significantly decreased over the intervention period in the group consuming adequate levels of dairy products compared to the group consuming little to no dairy products. Change in bone resorption was negatively correlated with average number of dairy servings consumed during the study. Our results suggest that the osteogenic response to a diet and exercise program in this population can be improved with increased dairy intake via a decrease in bone resorption. This is the first study to date to assess changes in bone marker status following a lifestyle intervention with exercise and different intakes of dairy products in a sample of OW/OB adolescent girls. We provide evidence that increased dairy product intake is associated with beneficial changes in circulating levels of bone-related biochemical markers in these girls undergoing a 12-week lifestyle (nutrition counseling and exercise training) intervention program. The main impact of our work relates particularly to the recent changes to Canada's food guide. Using the old recommendations, we demonstrated that the inclusion of 3-4 servings of mixed dairy foods per day improved bone health (primarily as a decrease in resorption) in OW/OB adolescent girls and that this level of dairy product intake appears appropriate and should still be encouraged for this age group. We also demonstrated that adolescent girls, a group that usually does not sufficiently consume dairy products, also improved their BMI percentile and nutrient intake with the inclusion of dairy products in their diets.
Collapse
Affiliation(s)
- Andrea R Josse
- School of Kinesiology and Health Science, Faculty of Health, York University, 4700 Keele Street, Toronto, ON, Canada. .,Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada.
| | - Izabella A Ludwa
- Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada
| | - Rozalia Kouvelioti
- Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada
| | - Melissa Calleja
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada
| | - Bareket Falk
- Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada.,Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada
| | - Wendy E Ward
- Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada.,Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada
| | - Panagiota Klentrou
- Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada.,Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada
| |
Collapse
|
25
|
Bone response to eccentric versus concentric cycling in adolescents with obesity. Obes Res Clin Pract 2020; 14:554-560. [PMID: 33121896 DOI: 10.1016/j.orcp.2020.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/10/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Because adolescents with obesity are susceptible to bone fragility during weight loss (WL), we evaluated the impact of eccentric (ECC) versus classical concentric (CON) training at the same oxygen consumption (V˙O2) on bone density, geometry and strength. METHODS Thirty five adolescents were included into 2 training (CON and ECC cycling) and a control (CTR, without training) groups. Anthropometry, dual-energy X-ray absorptiometry, hip structural analysis and quantitative bone ultrasound were assessed before and after the 12-week intervention. RESULTS The trainings promoted significant improvements in body mass index, total fat (FM) and lean mass (LM), with better improvements for FM and LM in the ECC group (p < 0.05). Leg LM percentage increased only in the ECC group (p < 0.05). Total body bone mineral content and density increased in both training groups (p < 0.001) with significant time x group interactions only between ECC and CTR (p < 0.05). Buckling ratio at the intertrochanteric region and femoral shaft increased only in CTR and CON groups (p < 0.05). Speeds of sounds at the calcaneum increased only in ECC group (p < 0.01). CONCLUSIONS Bone fragility, from a compromised relationship between density, geometry and strength, might be prevented with the ECC modality.
Collapse
|
26
|
Zhao Y, Ning Y, Zhang F, Ding M, Wen Y, Shi L, Wang K, Lu M, Sun J, Wu M, Cheng B, Ma M, Zhang L, Cheng S, Shen H, Tian Q, Guo X, Deng HW. PCA-based GRS analysis enhances the effectiveness for genetic correlation detection. Brief Bioinform 2020; 20:2291-2298. [PMID: 30169568 DOI: 10.1093/bib/bby075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 01/10/2023] Open
Abstract
Genetic risk score (GRS, also known as polygenic risk score) analysis is an increasingly popular method for exploring genetic architectures and relationships of complex diseases. However, complex diseases are usually measured by multiple correlated phenotypes. Analyzing each disease phenotype individually is likely to reduce statistical power due to multiple testing correction. In order to conquer the disadvantage, we proposed a principal component analysis (PCA)-based GRS analysis approach. Extensive simulation studies were conducted to compare the performance of PCA-based GRS analysis and traditional GRS analysis approach. Simulation results observed significantly improved performance of PCA-based GRS analysis compared to traditional GRS analysis under various scenarios. For the sake of verification, we also applied both PCA-based GRS analysis and traditional GRS analysis to a real Caucasian genome-wide association study (GWAS) data of bone geometry. Real data analysis results further confirmed the improved performance of PCA-based GRS analysis. Given that GWAS have flourished in the past decades, our approach may help researchers to explore the genetic architectures and relationships of complex diseases or traits.
Collapse
Affiliation(s)
- Yan Zhao
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yujie Ning
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.,Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Feng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Miao Ding
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yan Wen
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Liang Shi
- Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Kunpeng Wang
- Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Mengnan Lu
- Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jingyan Sun
- Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Menglu Wu
- Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Bolun Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Mei Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Lu Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Shiqiang Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Hui Shen
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, China
| | - Qing Tian
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, China
| | - Xiong Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, China
| |
Collapse
|
27
|
Lane JC, Butler KL, Poveda-Marina JL, Martinez-Laguna D, Reyes C, de Bont J, Javaid MK, Logue J, Compston JE, Cooper C, Duarte-Salles T, Furniss D, Prieto-Alhambra D. Preschool Obesity Is Associated With an Increased Risk of Childhood Fracture: A Longitudinal Cohort Study of 466,997 Children and Up to 11 Years of Follow-up in Catalonia, Spain. J Bone Miner Res 2020; 35:1022-1030. [PMID: 32266748 PMCID: PMC7116071 DOI: 10.1002/jbmr.3984] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/26/2022]
Abstract
This study aimed to determine if having an overweight or obese range body mass index (BMI) at time of beginning school is associated with increased fracture incidence in childhood. A dynamic cohort was created from children presenting for routine preschool primary care screening, collected in the Information System for Research in Primary Care (SIDIAP) platform in Catalonia, Spain. Data were collected from 296 primary care centers representing 74% of the regional pediatric population. A total of 466,997 children (48.6% female) with a validated weight and height measurement within routine health care screening at age 4 years (±6 months) between 2006 and 2013 were included, and followed up to the age of 15, migration out of region, death, or until December 31, 2016. BMI was calculated at age 4 years and classified using WHO growth tables, and fractures were identified using previously validated ICD10 codes in electronic primary care records, divided by anatomical location. Actuarial lifetables were used to calculate cumulative incidence. Cox regression was used to investigate the association of BMI category and fracture risk with adjustment for socioeconomic status, age, sex, and nationality. Median follow-up was 4.90 years (interquartile range [IQR] 2.50 to 7.61). Cumulative incidence of any fracture during childhood was 9.20% (95% confidence interval [CI] 3.79% to 14.61%) for underweight, 10.06% (9.82% to 10.29%) for normal weight, 11.28% (10.22% to 12.35%) for overweight children, and 13.05% (10.69% to 15.41%) for children with obesity. Compared with children of normal range weight, having an overweight and obese range BMI was associated with an excess risk of lower limb fracture (adjusted hazard ratio [HR] = 1.42 [1.26 to 1.59]; 1.74 [1.46 to 2.06], respectively) and upper limb fracture (adjusted HR = 1.10 [1.03 to 1.17]; 1.19 [1.07 to 1.31]). Overall, preschool children with an overweight or obese range BMI had increased incidence of upper and lower limb fractures in childhood compared with contemporaries of normal weight. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jennifer Ce Lane
- NIHR BRC, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Katherine L Butler
- Department of Trauma and Orthopaedic Surgery, Stoke Mandeville Hospital, Aylesbury, UK
| | - Jose Luis Poveda-Marina
- GREMPAL Research Group, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol) and CIBERFes, Universitat Autonoma de Barcelona and Instituto de Salud Carlos III, Barcelona, Spain
| | - Daniel Martinez-Laguna
- GREMPAL Research Group, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol) and CIBERFes, Universitat Autonoma de Barcelona and Instituto de Salud Carlos III, Barcelona, Spain
| | - Carlen Reyes
- GREMPAL Research Group, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol) and CIBERFes, Universitat Autonoma de Barcelona and Instituto de Salud Carlos III, Barcelona, Spain
| | - Jeroen de Bont
- GREMPAL Research Group, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol) and CIBERFes, Universitat Autonoma de Barcelona and Instituto de Salud Carlos III, Barcelona, Spain
| | - Muhammad Kassim Javaid
- NIHR BRC, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Jennifer Logue
- Department of Metabolic Medicine, Lancaster Medical School, Lancaster University, Lancaster, UK
| | | | - Cyrus Cooper
- NIHR BRC, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.,MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Talita Duarte-Salles
- GREMPAL Research Group, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol) and CIBERFes, Universitat Autonoma de Barcelona and Instituto de Salud Carlos III, Barcelona, Spain
| | - Dominic Furniss
- NIHR BRC, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Daniel Prieto-Alhambra
- NIHR BRC, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.,GREMPAL Research Group, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol) and CIBERFes, Universitat Autonoma de Barcelona and Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
28
|
Long-Term Effects of Vitamin D Supplementation in Obese Children During Integrated Weight-Loss Programme-A Double Blind Randomized Placebo-Controlled Trial. Nutrients 2020; 12:nu12041093. [PMID: 32326621 PMCID: PMC7230345 DOI: 10.3390/nu12041093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Vitamin D was studied in regards to its possible impact on body mass reduction and metabolic changes in adults and children with obesity yet there were no studies assessing the impact of vitamin D supplementation during a weight management program in children and adolescence. The aim of our study was to assess the influence of 26 weeks of vitamin D supplementation in overweight and obese children undergoing an integrated 12–months’ long weight loss program on body mass reduction, body composition and bone mineral density. Methods: A double–blind randomized placebo–controlled trial. Vitamin D deficient patients (<30 ng/ml level of vitamin D) aged 6–14, participating in multidisciplinary weight management program were randomly allocated to receiving vitamin D (1200 IU) or placebo for the first 26 weeks of the intervention. Results: Out of the 152 qualified patients, 109 (72%) completed a full cycle of four visits scheduled in the program. There were no difference in the level of BMI (body mass index) change – both raw BMI and BMI centiles. Although the reduction of BMI centiles was greater in the vitamin D vs. placebo group (−4.28 ± 8.43 vs. −2.53 ± 6.10) the difference was not statistically significant (p = 0.319). Similarly the reduction in fat mass—assessed both using bioimpedance and DEXa was achieved, yet the differences between the groups were not statistically significant. Conclusions: Our study ads substantial results to support the thesis on no effect of vitamin D supplementation on body weight reduction in children and adolescents with vitamin D insufficiency undergoing a weight management program.
Collapse
|
29
|
Mak IL, Cohen TR, Vanstone CA, Weiler HA. Arachidonic acid status negatively associates with forearm bone outcomes and glucose homeostasis in children with an overweight condition or obesity. Appl Physiol Nutr Metab 2020; 45:146-154. [PMID: 31269410 DOI: 10.1139/apnm-2019-0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Long-chain polyunsaturated fatty acids are implicated in musculoskeletal health in adults. This study examined whether fatty acid status relates to bone health outcomes in children with overweight condition or obesity (body mass index z score, 3.1 ± 0.1; age, 9.0 ± 0.2 years; n = 108). Nondominant forearm bone density (distal one-third), geometry (4% site), and soft tissue composition (66%) were assessed using dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. Red blood cell (RBC) fatty acid profile and indices of glucose homeostasis were measured. Differences in outcomes among RBC arachidonic acid (AA, C20:4n-6) tertiles were tested using mixed-model ANOVA. Ultra-, mid-, and total-distal forearm bone mineral content, adjusted for sex, age, percentage body fat, race, and forearm length, were 10% to 13% greater in children in the first AA tertile relative to the third. Children in the second tertile had the highest bone cross-sectional area and estimated strength at the 66% radius. Muscle cross-sectional area was 15% lower in the third tertile compared with the first, along with higher fasting insulin concentrations (27%) and homeostasis model of assessment estimate of insulin resistance (31%). Higher RBC AA status aligns with deficits in forearm bone mass, geometry, and muscle mass in children with excess adiposity and early signs of insulin resistance. Novelty Higher arachidonic acid status is associated with lower forearm bone mass in children with overweight condition or obesity. Children with higher arachidonic acid status had increased fasting insulin concentrations and indices of insulin resistance.
Collapse
Affiliation(s)
- Ivy L Mak
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Tamara R Cohen
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
- PERFORM Centre, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Catherine A Vanstone
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Hope A Weiler
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
30
|
Kondiboyina V, Raine LB, Kramer AF, Khan NA, Hillman CH, Shefelbine SJ. Skeletal Effects of Nine Months of Physical Activity in Obese and Healthy Weight Children. Med Sci Sports Exerc 2020; 52:434-440. [PMID: 31479005 PMCID: PMC6962537 DOI: 10.1249/mss.0000000000002148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Obesity during adolescence has multisystem health consequences. The objective of this work was to determine whether preadolescent overweight/obese children's bones respond to a 9-month physical activity intervention by increasing bone density similar to healthy weight children. METHODS Participants included overweight/obese (BMI > 85%) and healthy weight (15% < BMI < 85%) preadolescents (8-9 yr old). Participants in the physical activity group participated in a 9-month physical activity curriculum every day after school. The wait list control group received no intervention. Both groups had overweight/obese children and healthy weight controls. Whole-body bone mineral content, area, and bone mineral apparent density (BMAD) were assessed using dual x-ray absorptiometry) at the beginning and end of the 9-month trial in the physical activity and control group. RESULTS Overweight/obese preadolescent children had higher BMAD than healthy weight children (P < 0.001 for spine, leg, and whole body). However, the density/weight (BMAD/lean mass) was lower in overweight/obese children than that in healthy weight children, indicating that the density of bones in overweight/obese children may not compensate sufficiently for the excessive load due to weight. The change in BMAD over 9 months was greater in healthy weight children than overweight/obese children in the whole body and leg, but not the lumbar spine. Physical activity caused a site-specific increase in bone density, affecting the legs more than the lumbar spine, but there was no significant difference in the effect of exercise between the healthy weight and the overweight/obese group. CONCLUSIONS The smaller change in BMAD over the 9 months and lower BMAD per unit lean mass in overweight/obese compared with healthy weight children may indicate a slower rate of bone mass accrual, which may have implications for bone health during skeletal growth in obese/overweight children.
Collapse
Affiliation(s)
| | - Lauren B Raine
- Department of Psychology, Northeastern University, Boston, MA
| | | | - Naiman A Khan
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL
| | | | | |
Collapse
|
31
|
Fintini D, Cianfarani S, Cofini M, Andreoletti A, Ubertini GM, Cappa M, Manco M. The Bones of Children With Obesity. Front Endocrinol (Lausanne) 2020; 11:200. [PMID: 32390939 PMCID: PMC7193990 DOI: 10.3389/fendo.2020.00200] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Excess adiposity in childhood may affect bone development, ultimately leading to bone frailty. Previous reports showing an increased rate of extremity fractures in children with obesity support this fear. On the other hand, there is also evidence suggesting that bone mineral content is higher in obese children than in normal weight peers. Both adipocytes and osteoblasts derive from multipotent mesenchymal stem cells (MSCs) and obesity drives the differentiation of MSCs toward adipocytes at the expense of osteoblast differentiation. Furthermore, adipocytes in bone marrow microenvironment release a number of pro-inflammatory and immunomodulatory molecules that up-regulate formation and activation of osteoclasts, thus favoring bone frailty. On the other hand, body adiposity represents a mechanical load, which is beneficial for bone accrual. In this frame, bone quality, and structure result from the balance of inflammatory and mechanical stimuli. Diet, physical activity and the hormonal milieu at puberty play a pivotal role on this balance. In this review, we will address the question whether the bone of obese children and adolescents is unhealthy in comparison with normal-weight peers and discuss mechanisms underlying the differences in bone quality and structure. We anticipate that many biases and confounders affect the clinical studies conducted so far and preclude us from achieving robust conclusions. Sample-size, lack of adequate controls, heterogeneity of study designs are the major drawbacks of the existing reports. Due to the increased body size of children with obesity, dual energy absorptiometry might overestimate bone mineral density in these individuals. Magnetic resonance imaging, peripheral quantitative CT (pQCT) scanning and high-resolution pQCT are promising techniques for the accurate estimate of bone mineral content in obese children. Moreover, no longitudinal study on the risk of incident osteoporosis in early adulthood of children and adolescents with obesity is available. Finally, we will address emerging dietary issues (i.e., the likely benefits for the bone health of polyunsaturated fatty acids and polyphenols) since an healthy diet (i.e., the Mediterranean diet) with balanced intake of certain nutrients associated with physical activity remain the cornerstones for achieving an adequate bone accrual in young individuals regardless of their adiposity degree.
Collapse
Affiliation(s)
- Danilo Fintini
- Endocrinology Unit, Pediatric University Department, Bambino Gesù Children's Hospital, Rome, Italy
- *Correspondence: Danilo Fintini
| | - Stefano Cianfarani
- Diabetes and Growth Disorders Unit, Dipartimento Pediatrico Universitario Ospedaliero Bambino Gesù Children's Hospital, Tor Vergata University, Rome, Italy
- Department of Women's and Children's Health, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Marta Cofini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Angela Andreoletti
- Pediatric Resident, Pediatric Clinic, University of Brescia, Brescia, Italy
| | - Grazia Maria Ubertini
- Endocrinology Unit, Pediatric University Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Marco Cappa
- Endocrinology Unit, Pediatric University Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Melania Manco
- Research Area for Multifactorial Diseases, Bambino Gesù Children's Hospital, Rome, Italy
- Melania Manco
| |
Collapse
|
32
|
Kurgan N, McKee K, Calleja M, Josse AR, Klentrou P. Cytokines, Adipokines, and Bone Markers at Rest and in Response to Plyometric Exercise in Obese vs Normal Weight Adolescent Females. Front Endocrinol (Lausanne) 2020; 11:531926. [PMID: 33362710 PMCID: PMC7759614 DOI: 10.3389/fendo.2020.531926] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In adults, excess adiposity has been associated with low-grade, chronic inflammation and compromised bone health, but less is known about these linkages in children. The purpose of this study was to compare the circulating levels of inflammatory cytokines, adipokines, osteokines, and bone markers at rest and in response to plyometric exercise between obese and normal weight adolescent females. METHODS Ten normal weight (BMI = 21.3 ± 2) and 10 obese (BMI = 32.9 ± 4), postmenarcheal females, aged 13-17 years, performed one bout of plyometric exercise (5 circuits; 120 jumps). Blood samples were taken at rest, 5 min, 1 h, and 24 h post-exercise. Tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), insulin, leptin, osteocalcin, carboxy-terminal telopeptide (CTX), sclerostin, and parathyroid hormone (PTH) were measured in serum. RESULTS Cytokines were not different between groups at rest or over time with IL-6 increasing (+31%; p = 0.04) 5 min post-exercise and TNF-α decreasing (-9%; p = 0.001) 1 h post-exercise. Insulin and leptin were higher in the obese compared to the normal weight females. In both groups, insulin significantly increased 5 min post-exercise but remained elevated 1 h post-exercise only in the obese group. Leptin did not change in response to exercise. Osteocalcin was lower in the obese group across time and increased (+12%; p = 0.02) 24 h post-exercise in both groups. CTX was similar between groups at rest and decreased (-24%; p < 0.001) 1 h post-exercise. Sclerostin was similar between groups at rest, but there was a significant interaction reflecting a significant increase (+29%; p = 0.04) 5 min post-exercise in the obese group and a non-significant decrease (-13%; p = 0.08) in normal weight controls. PTH increased 5 min post-exercise, dropped 1 h post-exercise to lower than pre-exercise, and returned to baseline 24 h post-exercise in both groups. CONCLUSION Obese adolescent females from our study had no evidence of resting inflammation or differences in bone resorption but show blunted bone formation when compared to normal weight controls. The direction and temporal changes in inflammatory cytokines, adipokines, and bone turnover markers to exercise were similar in both groups, reflecting an overall bone anabolic response for most biomarkers, except sclerostin, which increased only in the obese females immediately post-exercise, suggesting a different systemic regulation of sclerostin depending on adiposity.
Collapse
Affiliation(s)
- Nigel Kurgan
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Katherine McKee
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Melissa Calleja
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Andrea R. Josse
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
- *Correspondence: Panagiota Klentrou,
| |
Collapse
|
33
|
Zhao Y, Qin R, Ma X, Qin Z, Yang Z, Hong H, Lv H, Ye K, Wei Y, Zheng W, Qi H, Ni Y, Zhang L, Yan J, Liu G, Wu A. Adiposity is not beneficial to bone mineral density in 0-5 year old Chinese children: The Jiangsu bone health study. Obes Res Clin Pract 2019; 14:39-46. [PMID: 31879074 DOI: 10.1016/j.orcp.2019.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Data on obesity in relation to bone mineral density(BMD) in infants and preschool children were sparse in China. The objective of this study was to examine the associations between body mass index (BMI) and BMD. SUBJECTS AND METHODS This was a large population-based multicenter study in which the representative children aged 0-5 years were recruited from 13 Children's Health Care Centers by a stratified cluster random-sampling method in Jiangsu Province, China. BMD was measured by using quantitative ultrasound. The association of BMD with BMI and obesity were evaluated using multiple linear regression and logistic regression analysis taking into account the effects of confounders. The relations between age, weight, height, BMI and BMD were analyzed by using Pearson's correlation and further tested using partial correlation in the additive model. RESULTS A total of 5,289 children (2786 boys and 2503 girls) were recruited. The BMD was positively linear relation with age, length/height, and was inversely linear relation with BMI (r=0.711, P<0.001; r=0.727, P<0.001; r=-0.318, P<0.001, respectively). The BMD gradually increased when the weight was in the range within 21.2kg, but started to gain slowlyand even decreased when the weight was over 21.2kg. After adjusting for confounders, compared with control group, children with obesityhad higher odds of low BMD (OR 95%CI: 2.73 (1.57, 4.76), P<0.001), the speed of sound (SOS)value in children with obesity was lower 47.45 (β=-47.45, 95%CI=-85.07, -9.83, P=0.013). CONCLUSIONS Adiposity was not advantageous for bone mineral density in 0-5-year-old Chinese children.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Clinical Nutrition, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210036, China
| | - Rui Qin
- Department of Child Health Care, Jiangsu Women and Children Health Hospital, Women and Child Branch Hospital of Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210036, China.
| | - Xianghua Ma
- Department of Clinical Nutrition, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210036, China.
| | - Zhenying Qin
- Department of Child Health Care, Jiangsu Women and Children Health Hospital, Women and Child Branch Hospital of Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210036, China
| | - Zi Yang
- Department of Child Health Care, Jiangsu Women and Children Health Hospital, Women and Child Branch Hospital of Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210036, China
| | - Hong Hong
- Department of Child Health Care, Drum Tower Maternity and Child Health Care Institute, Nanjing, 210009, China
| | - Heyu Lv
- Department of Child Health Care, Jiangning Maternity and Child Health Care Institute, Nanjing, 211100, China
| | - Kan Ye
- Department of Child Health Care, Suzhou Municipal Hospital, Suzhou, 215000, China
| | - Yarong Wei
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214000, China
| | - Wen Zheng
- Department of Child Health Care, Yancheng Maternity and Child Health Care Institute, Yancheng, 224000, China
| | - Hongxia Qi
- Department of Child Health Care, Xuzhou Children's Hospital, Xuzhou, 221000, China
| | - Yufei Ni
- Department of Child Health Care, Nantong Maternity and Child Health Care Hospital, Nantong, 226000, China
| | - Li Zhang
- Department of Child Health Care, Huai'an Maternity and Child Health Care Hospital, Huai'an, 223001, China
| | - Juhua Yan
- Department of Child Health Care, Kunshan Maternity and Child Health Care Institute, Kunshan, 215300, China
| | - Guoqin Liu
- Department of Child Health Care, Dafeng Maternity and Child Health Care Hospital, Dafeng, 224100, China
| | - Aiping Wu
- Department of Child Health Care, Xinghua Maternity and Child Health Care Hospital, Xinghua, 225700, China
| |
Collapse
|
34
|
Nilsen OA, Ahmed LA, Winther A, Christoffersen T, Thrane G, Evensen E, Furberg AS, Grimnes G, Dennison E, Emaus N. Body Weight and Body Mass Index Influence Bone Mineral Density in Late Adolescence in a Two-Year Follow-Up Study. The Tromsø Study: Fit Futures. JBMR Plus 2019; 3:e10195. [PMID: 31667452 PMCID: PMC6808229 DOI: 10.1002/jbm4.10195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/15/2019] [Accepted: 03/02/2019] [Indexed: 01/01/2023] Open
Abstract
Determinants of bone acquisition in late adolescence and early adulthood are not well‐described. This 2‐year follow‐up study explored the associations of body weight (BW), body mass index (BMI), and changes in weight status with adolescent bone accretion in a sample of 651 adolescents (355 girls and 296 boys) between 15 and 19 years of age from The Tromsø Study: Fit Futures. This Norwegian population‐based cohort study was conducted from 2010 to 2011 and was repeated from 2012 to 2013. We measured femoral neck, total hip, and total body bone mineral content and areal bone mineral density (aBMD) by dual‐energy X‐ray absorptiometry. We measured height, BW, calculated BMI (kg/m
2), and collected information on lifestyle at both surveys. Mean BMI (SD) at baseline was 22.17 (3.76) and 22.18 (3.93) in girls and boys, respectively. Through multiple linear regression, baseline BW and BMI were positively associated with ∆aBMD over 2 years of follow‐up at all skeletal sites in boys (
p < 0.05), but not in girls. ∆BW and ∆BMI predicted ∆aBMD and ∆BMC in both sexes, but the strength of the associations was moderate. Individuals who lost weight during follow‐up demonstrated a slowed progression of aBMD accretion compared with those gaining weight, but loss of BW or reduction of BMI during 2 years was not associated with net loss of aBMD. In conclusion, our results confirm that adequate BW for height in late adolescence is important for bone health. Associations between change in weight status and bone accretion during follow‐up were moderate and unlikely to have any clinical implication on adolescents of normal weight. Underweight individuals, particularly boys, are at risk of not reaching optimal peak bone mass and could benefit from an increase in BMI. © 2019 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ole Andreas Nilsen
- Department of Health and Care Sciences The Arctic University of Norway Tromsø Norway
| | - Luai Awad Ahmed
- Department of Health and Care Sciences The Arctic University of Norway Tromsø Norway
| | - Anne Winther
- Division of Neurosciences, Orthopedics and Rehabilitation Services University Hospital of North Norway Tromsø Norway
| | - Tore Christoffersen
- Department of Health and Care Sciences The Arctic University of Norway Tromsø Norway.,Department of Health and Care Sciences Finnmark Hospital Trust, Alta Norway
| | - Gyrd Thrane
- Department of Health and Care Sciences The Arctic University of Norway Tromsø Norway
| | - Elin Evensen
- Department of Clinical Research University Hospital of North Norway, Tromsø, Norway, and Department of Health and Care Sciences, The Arctic University of Norway Tromsø Norway
| | - Anne-Sofie Furberg
- Department of Community Medicine The Arctic University of Norway Tromsø Norway.,Department of Microbiology and Infection Control Division of Internal Medicine University Hospital of North Norway Tromsø Norway
| | - Guri Grimnes
- Division of Internal Medicine University Hospital of North Norway, Tromsø, Norway, and Endocrine Research Group, Department of Clinical Medicine, The Arctic University of Norway Tromsø Norway
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Unit, Southampton UK and Victoria University Wellington New Zealand
| | - Nina Emaus
- Department of Health and Care Sciences The Arctic University of Norway Tromsø Norway
| |
Collapse
|
35
|
Cetin N, Gencler A, Sivrikoz IA. Bone mineral density and vitamin D status in children with remission phase of steroid-sensitive nephrotic syndrome. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2019; 30:853-862. [PMID: 31464242 DOI: 10.4103/1319-2442.265461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Children with idiopathic nephrotic syndrome are primarily treated with glucocorticoids (GCs), but long-term GC use can lead to undesired side effects. We investigated the bone mineral density (BMD) and 25-hydroxyvitamin D (25-OH D) levels in children with the remission phase of steroid-sensitive nephrotic syndrome (SSNS). This study included 32 patients with SSNS who had not received GC treatment in the last 6 months and a control group of 20 healthy children. Serum levels of calcium, phosphate, alkaline phosphatase, 25-(OH)D, and parathyroid hormone (PTH) were measured. BMD was determined in the lumbar spinal region using dual-energy X-ray absorptiometry (DEXA). Serum 25-(OH)D levels were lower in the SSNS patients than in the healthy children (P <0.05), with 22 patients (68.8%) having Z-scores <-1. The Z-scores were positively correlated with 25-(OH)D levels (r = 0.424, P <0.05). PTH levels were higher in patients with osteoporosis than in patients with Z-scores ≥-1 (P <0.05). Bone mineral content and BMD were positively correlated with the age of diagnosis (P <0.01). Receiver-operating characteristic curve analysis showed that the cutoff value of 25-(OH)D levels for predicting low BMD was 14.67 ng/mL with a sensitivity of 90% and a specificity of 64%. The area under the curve (AUC ± standard error) was 0.868 ± 0.064 (95% confidence interval: 0.742-0.994, P = 0.001). Decreased 25-(OH)D levels and the negative effects of long-term GC treatment on BMD persist in SSNS remission phase. Levels of 25-(OH)D <14.67 ng/mL could predict abnormal DEXA scans in children with SSNS remission phase.
Collapse
Affiliation(s)
- Nuran Cetin
- Department of Pediatric Nephrology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Aylin Gencler
- Department of Pediatric Nephrology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ilknur Ak Sivrikoz
- Department of Nuclear Medicine, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
36
|
Meng T, Venn A, Eckstein F, Wirth W, Cicuttini F, March L, Dwyer T, Cross M, Laslett LL, Jones G, Ding C, Antony B. Association of adiposity measures in childhood and adulthood with knee cartilage thickness, volume and bone area in young adults. Int J Obes (Lond) 2019; 43:1411-1421. [PMID: 30349008 DOI: 10.1038/s41366-018-0234-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/01/2018] [Accepted: 09/06/2018] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To describe the associations of childhood and adulthood adiposity measures with knee cartilage thickness, volume and bone area in young adults. METHODS Childhood and adulthood adiposity measures (weight, height, waist circumference and hip circumference) of 186 participants were collected in 1985 (aged 7-15 years) and during 2004-2006 (aged 26-36 years). Knee magnetic resonance imaging was conducted during 2008-2010 (aged 31-41 years) and cartilage thickness, volume and bone area were measured using a quantitative approach (Chondrometrics, Germany). Linear regressions were used to examine the above associations. RESULTS The prevalence of overweight was 7.6% in childhood and 42.1% in adulthood. Childhood weight (β = - 5.57 mm2/kg) and body mass index (BMI) (β = - 11.55 mm2/kg/m2) were negatively associated with adult patellar bone area, whereas adult weight was positively associated with bone area in medial femorotibial compartment (MFTC) (β = 3.37 mm2/kg) and lateral femorotibial compartment (LFTC) (β = 2.08 mm2/kg). Adult waist-hip ratio (WHR) was negatively associated with cartilage thickness (MFTC: β = - 0.011; LFTC: β = - 0.012 mm/0.01 unit), volume (Patella: β = - 20.97; LFTC: β = - 21.71 mm3/0.01 unit) and bone area (Patella: β = - 4.39 mm2/0.01 unit). The change in WHR z-scores from childhood to adulthood was negatively associated with cartilage thickness (MFTC: β = - 0.056 mm), volume (patella: - 89.95; LFTC: - 93.98 mm3), and bone area (patella: - 20.74 mm2). All p-values < 0.05. CONCLUSIONS Childhood weight and BMI were negatively but adult weight was positively associated with adult bone area. Adult WHR and the change in WHR from childhood to adulthood were negatively associated with cartilage thickness, volume, and bone area. These suggest early-life adiposity measures may affect knee structures in young adults.
Collapse
Affiliation(s)
- Tao Meng
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Alison Venn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Felix Eckstein
- Institute of Anatomy, Paracelsus Medical University Salzburg and Nuremberg, Salzburg, Austria
- Chondrometrics GmbH, Ainring, Germany
| | - Wolfgang Wirth
- Institute of Anatomy, Paracelsus Medical University Salzburg and Nuremberg, Salzburg, Austria
- Chondrometrics GmbH, Ainring, Germany
| | - Flavia Cicuttini
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Lyn March
- Institute of Bone and Joint Research, University of Sydney, Sydney, Australia
| | - Terence Dwyer
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- The George Institute for Global Health, Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - Marita Cross
- Institute of Bone and Joint Research, University of Sydney, Sydney, Australia
| | - Laura L Laslett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Changhai Ding
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Benny Antony
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| |
Collapse
|
37
|
White Z, White S, Dalvie T, Kruger MC, Van Zyl A, Becker P. Bone Health, Body Composition, and Vitamin D Status of Black Preadolescent Children in South Africa. Nutrients 2019; 11:nu11061243. [PMID: 31159206 PMCID: PMC6627122 DOI: 10.3390/nu11061243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Optimal bone health is important in children to reduce the risk of osteoporosis later in life. Both body composition and vitamin D play an important role in bone health. This study aimed to describe bone health, body composition, and vitamin D status, and the relationship between these among a group of conveniently sampled black preadolescent South African children (n = 84) using a cross-sectional study. Body composition, bone mineral density (BMD), and bone mineral content (BMC) were assessed using dual x-ray absorptiometry. Levels of 25-hydroxyvitamin D (25(OH)D) (n = 59) were assessed using dried blood spots. A quarter (25%) of children presented with low bone mass density for their chronological age (BMD Z-score < -2) and 7% with low BMC-for-age (BMC Z-score < -2), while only 34% of the children had sufficient vitamin D status (25(OH)D ≥ 30 ng/mL). Lean mass was the greatest body compositional determinant for variances observed in bone health measures. Body composition and bone health parameters were not significantly different across vitamin D status groups (p > 0.05), except for lumbar spine bone mineral apparent density (LS-BMAD) (p < 0.01). No association was found between bone parameters at all sites and levels of 25(OH)D (p > 0.05). Further research, using larger representative samples of South African children including all race groups is needed before any conclusions and subsequent recommendation among this population group can be made.
Collapse
Affiliation(s)
- Zelda White
- Department Human Nutrition, Faculty of Health Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Samantha White
- Department Human Nutrition, Faculty of Health Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Tasneem Dalvie
- Department Human Nutrition, Faculty of Health Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Marlena C Kruger
- School of Health Sciences, Massey University, Private Bag 11029, Palmerston North 4442, New Zealand.
| | - Amanda Van Zyl
- Department Human Nutrition, Faculty of Health Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Piet Becker
- Faculty of Health Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| |
Collapse
|
38
|
Souza Gomes TP, Veloso FLDM, Antunes Filho J, Mourão FC, Nascif NHT, Loures EDA, Labronici PJ, Mendes Júnior AF. Obesidade, Diabetes Mellitus tipo 2 e fragilidade óssea: uma revisão narrativa. HU REVISTA 2019. [DOI: 10.34019/1982-8047.2018.v44.14058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Durante anos a obesidade foi vista como um fator protetor para fraturas e osteoporose. Diversos estudos, no entanto, contestam esta tese, descrevendo que a obesidade na verdade afeta negativamente o sistema esquelético, em especial a homeostase óssea, diminuindo a rigidez do tecido ósseo e aumentando o risco de fraturas. A obesidade e o diabetes estão frequentemente associados no mesmo paciente, e a compreensão da alteração do tecido ósseo nestas duas condições clínicas é fundamental para o melhor cuidado destes pacientes, principalmente devido ao risco aumentado de fraturas, que estão associadas a maior número de complicações no seu tratamento. O presente estudo, em revisão narrativa, descreve a relação entre obesidade e homeostase óssea, a fragilidade óssea nos pacientes obesos, diabéticos ou não, e a relação entre obesidade e fraturas.
Collapse
|
39
|
Dimitri P. The Impact of Childhood Obesity on Skeletal Health and Development. J Obes Metab Syndr 2019; 28:4-17. [PMID: 31089575 PMCID: PMC6484936 DOI: 10.7570/jomes.2019.28.1.4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/24/2019] [Accepted: 02/18/2019] [Indexed: 12/26/2022] Open
Abstract
Increased risk of fracture identified in obese children has led to a focus on the relationship between fat, bone, and the impact of obesity during skeletal development. Early studies have suggested that despite increased fracture risk, obese children have a higher bone mass. However, body size corrections applied to account for wide variations in size between children led to the finding that obese children have a lower total body and regional bone mass relative to their body size. Advances in skeletal imaging have shifted the focus from quantity of bone in obese children to evaluating the changes in bone microarchitecture that result in a change in bone quality and strength. The findings suggest that bone strength in the appendicular skeleton does not appropriately adapt to an increase in body size which results in a mismatch between bone strength and force from falls. Recent evidence points to differing influences of fat compartments on skeletal development-visceral fat may have a negative impact on bone which may be related to the associated adverse metabolic environment, while marrow adipose tissue may have an independent effect on trabecular bone development in obese children. The role of brown fat has received recent attention, demonstrating differences in the influence on bone mass between white and brown adipose tissues. Obesity results in a shift in growth and pubertal hormones as well as influences bone development through the altered release of adipokines. The change in the hormonal milieu provides an important insight into the skeletal changes observed in childhood obesity.
Collapse
Affiliation(s)
- Paul Dimitri
- Academic Unit of Child Health, The University of Sheffield, Sheffield, UK
| |
Collapse
|
40
|
Hussain D, Han SM, Kim TS. Automatic hip geometric feature extraction in DXA imaging using regional random forest. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019; 27:207-236. [PMID: 30594942 DOI: 10.3233/xst-180434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BACKGROUND Hip fracture is considered one of the salient disability factors across the global population. People with hip fractures are prone to become permanently disabled or die from complications. Although currently the premier determiner, bone mineral density has some notable limitations in terms of hip fracture risk assessment. OBJECTIVES To learn more about bone strength, hip geometric features (HGFs) can be collected. However, organizing a hip fracture risk study for a large population using a manual HGFs collection technique would be too arduous to be practical. Thus, an automatic HGFs extraction technique is needed. METHOD This paper presents an automated HGFs extraction technique using regional random forest. Regional random forest localizes landmark points from femur DXA images using local constraints of hip anatomy. The local region constraints make random forest robust to noise and increase its performance because it processes the least number of points and patches. RESULTS The proposed system achieved an overall accuracy of 96.22% and 95.87% on phantom data and real human scanned data respectively. CONCLUSION The proposed technique's ability to measure HGFs could be useful in research on the cause and facts of hip fracture and could help in the development of new guidelines for hip fracture risk assessment in the future. The technique will reduce workload and improve the use of X-ray devices.
Collapse
Affiliation(s)
- Dildar Hussain
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea
| | - Seung-Moo Han
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea
| | - Tae-Seong Kim
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
41
|
Faienza MF, D'Amato G, Chiarito M, Colaianni G, Colucci S, Grano M, Corbo F, Brunetti G. Mechanisms Involved in Childhood Obesity-Related Bone Fragility. Front Endocrinol (Lausanne) 2019; 10:269. [PMID: 31130918 PMCID: PMC6509993 DOI: 10.3389/fendo.2019.00269] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/11/2019] [Indexed: 01/11/2023] Open
Abstract
Childhood obesity is one of the major health problems in western countries. The excessive accumulation of adipose tissue causes inflammation, oxidative stress, apoptosis, and mitochondrial dysfunctions. Thus, obesity leads to the development of severe co-morbidities including type 2 diabetes mellitus, liver steatosis, cardiovascular, and neurodegenerative diseases which can develop early in life. Furthermore, obese children have low bone mineral density and a greater risk of osteoporosis and fractures. The knowledge about the interplay bone tissue and between adipose is still growing, although recent findings suggest that adipose tissue activity on bone can be fat-depot specific. Obesity is associated to a low-grade inflammation that alters the expression of adiponectin, leptin, IL-6, Monocyte Chemotactic Protein 1 (MCP1), TRAIL, LIGHT/TNFSF14, OPG, and TNFα. These molecules can affect bone metabolism, thus resulting in osteoporosis. The purpose of this review was to deepen the cellular mechanisms by which obesity may facilitate osteoporosis and bone fractures.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | | | - Mariangela Chiarito
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Silvia Colucci
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Filomena Corbo
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Giacomina Brunetti
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Giacomina Brunetti
| |
Collapse
|
42
|
Fiscaletti M, Coorey CP, Biggin A, Briody J, Little DG, Schindeler A, Munns CF. Diagnosis of Recurrent Fracture in a Pediatric Cohort. Calcif Tissue Int 2018; 103:529-539. [PMID: 29943187 DOI: 10.1007/s00223-018-0449-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/20/2018] [Indexed: 01/08/2023]
Abstract
Significant fracture history in children is defined as having at least one vertebral fracture, at least 2 fractures by age 10, or at least 3 fractures by age 19. Between September 2011 and December 2014, clinical data were collected on children with a significant fracture history that attended a major Australian children's hospital. Fifty-six patients were identified as having 305 fractures in total, including 44 vertebral fractures. 18% of patients (10/56) were diagnosed with osteogenesis imperfecta (OI) by a bone health expert, molecular testing or both, and they sustained 23% of all fractures (71/305). Analysis of serum bone biochemistry showed all median values to be within a normal range and no clinically significant differences between patients with and without OI. The DXA and pQCT derived bone mineral density (BMD) and bone mineral content (BMC) Z scores were reduced overall. DXA derived total body and lumbar spine areal BMD-for-age and BMC-for-age Z scores were significantly lower in children who had vertebral fractures or who were later diagnosed with OI. Similarly, pQCT performed on radii and tibiae showed Z scores significantly less than zero. pQCT-derived limb muscle cross sectional area Z scores were significantly lower in the OI subgroup. In conclusion, this study describes the bone phenotype of children referred to a tertiary hospital clinic for recurrent fractures and highlights a subset of children with previously undiagnosed OI, but a larger cohort without classic OI. Thus it can be clinically challenging to differentiate between children with OI type 1 (mild phenotype) and non-OI children without bone densitometry and genetic testing. We conclude that recurrent fractures in children should prompt a comprehensive bone and systemic health assessment to eliminate an underlying pathology.
Collapse
Affiliation(s)
- M Fiscaletti
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Westmead, NSW, Australia.
- Department of Endocrinology & Diabetes, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia.
| | - C P Coorey
- Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - A Biggin
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - J Briody
- Department of Nuclear Medicine, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - D G Little
- Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Department of Orthopaedics, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Westmead, Australia
| | - A Schindeler
- Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Westmead, Australia
| | - C F Munns
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
43
|
Hetherington-Rauth M, Bea JW, Blew RM, Funk JL, Hingle MD, Lee VR, Roe DJ, Wheeler MD, Lohman TG, Going SB. Relative contributions of lean and fat mass to bone strength in young Hispanic and non-Hispanic girls. Bone 2018; 113:144-150. [PMID: 29800691 PMCID: PMC6008243 DOI: 10.1016/j.bone.2018.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/16/2018] [Accepted: 05/20/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND With the high prevalence of childhood obesity, especially among Hispanic children, understanding how body weight and its components of lean and fat mass affect bone development is important, given that the amount of bone mineral accrued during childhood can determine osteoporosis risk later in life. The aim of this study was to assess the independent contributions of lean and fat mass on volumetric bone mineral density (vBMD), geometry, and strength in both weight-bearing and non-weight-bearing bones of Hispanic and non-Hispanic girls. METHODS Bone vBMD, geometry, and strength were assessed at the 20% distal femur, the 4% and 66% distal tibia, and the 66% distal radius of the non-dominant limb of 326, 9- to 12-year-old girls using peripheral quantitative computed tomography (pQCT). Total body lean and fat mass were measured by dual-energy x-ray absorptiometry (DXA). Multiple linear regression was used to assess the independent relationships of fat and lean mass with pQCT bone measures while adjusting for relevant confounders. Potential interactions between ethnicity and both fat and lean mass were also tested. RESULTS Lean mass was a significant positive contributor to all bone outcomes (p < 0.05) with the exception of vBMD at diaphyseal sites. Fat mass was a significant contributor to bone strength at weight bearing sites, but did not significantly contribute to bone strength at the non-weight bearing radius and was negatively associated with radius cortical content and thickness. Bone measures did not significantly differ between Hispanic and non-Hispanic girls, although there was a significant interaction between ethnicity and fat mass with total bone area at the femur (p = 0.02) and 66% tibia (p = 0.005) as well as bone strength at the femur (p = 0.03). CONCLUSION Lean mass is the main determinant of bone strength for appendicular skeletal sites. Fat mass contributes to bone strength in the weight-bearing skeleton but does not add to bone strength in non-weight-bearing locations and may potentially be detrimental. Bone vBMD, geometry, and strength did not differ between Hispanic and non-Hispanic girls; fat mass may be a stronger contributor to bone strength in weight-bearing bones of Hispanic girls compared to non-Hispanic.
Collapse
Affiliation(s)
| | - Jennifer W Bea
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA; Department of Medicine, University of Arizona, Tucson, AZ 85721, USA; Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Robert M Blew
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA.
| | - Janet L Funk
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA; Department of Medicine, University of Arizona, Tucson, AZ 85721, USA.
| | - Melanie D Hingle
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA.
| | - Vinson R Lee
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA.
| | - Denise J Roe
- Arizona Cancer Center, Tucson, AZ 85724, USA; Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ 85721, USA.
| | - Mark D Wheeler
- Department of Pediatric Endocrinology, University of Arizona, Tucson, AZ 85724, USA.
| | - Timothy G Lohman
- Department of Physiology, University of Arizona, Tucson, AZ 85721, USA
| | - Scott B Going
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
44
|
Gait Pattern, Impact to the Skeleton and Postural Balance in Overweight and Obese Children: A Review. Sports (Basel) 2018; 6:sports6030075. [PMID: 30065150 PMCID: PMC6162717 DOI: 10.3390/sports6030075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/18/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
The article reviews the biomechanical factors that may cause overweight/obese children to reduce their level of physical activity, while increasing their risk of overuse injuries and exercise-related pain. Recommendations would be to screen those children for any gait or postural impairments before they join any exercise program, and to provide them with specific gait treatments and/or physical exercise programs, in order to decrease their risk for future musculoskeletal injuries and pain.
Collapse
|
45
|
Hetherington-Rauth M, Bea JW, Blew RM, Funk JL, Lee VR, Varadi TC, Roe DJ, Wheeler MD, Going SB. Effect of cardiometabolic risk factors on the relationship between adiposity and bone mass in girls. Int J Obes (Lond) 2018; 42:1185-1194. [PMID: 29892038 PMCID: PMC6195820 DOI: 10.1038/s41366-018-0134-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/07/2018] [Accepted: 05/10/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND/OBJECTIVE Childhood obesity has been separately associated with cardiometabolic risk factors (CMRs) and increased risk of fracture. However, both augmented and compromised bone mass have been reported among overweight/obese children. Metabolic dysfunction, often co-existing with obesity, may explain the discrepancy in previous studies. The aim of this study was to examine whether the relationship between adiposity and dual-energy X-ray absorptiometry (DXA) derived bone mass differed in young girls with and without CMR(s). SUBJECTS/METHODS Whole-body bone and body composition measures by DXA and measures of CMR (fasting glucose, high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), systolic and diastolic blood pressure, waist circumference (WC)) were obtained from 307, 9- to 12-year-old girls. Girls with 1 or ≥ 2 CMR(s) were considered to be at risk (vs. no CMR). Multiple linear regression was used to test the relationship of total fat mass with total body bone mineral content (BMC) after controlling for height, lean mass, CMR risk, and other potential confounders. RESULTS There was a significant interaction between CMR risk and total body fat mass. When girls were stratified by CMR group, all groups had a significant positive relationship between fat mass and BMC (p < 0.05), however, girls with ≥ 2 CMRs had a lower BMC for a given level of body fat. Total body fat was not significantly related to bone mineral density (p > 0.05). CONCLUSION Fat mass has a positive relationship with BMC even after controlling for lean mass. However, the positive relationship of fat mass with BMC may be attenuated if multiple CMRs are present.
Collapse
Affiliation(s)
| | - Jennifer W Bea
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, 85721, USA.,Departments of Medicine, University of Arizona, Tucson, AZ, 85721, USA.,Arizona Cancer Center, Tucson, AZ, 85724, USA
| | - Robert M Blew
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, 85721, USA
| | - Janet L Funk
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, 85721, USA.,Departments of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Vinson R Lee
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, 85721, USA
| | - Tiffany C Varadi
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, 85721, USA
| | - Denise J Roe
- Arizona Cancer Center, Tucson, AZ, 85724, USA.,Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, 85721, USA
| | - Mark D Wheeler
- Department of Pediatric Endocrinology, University of Arizona, Tucson, AZ, 85724, USA
| | - Scott B Going
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
46
|
Evensen E, Skeie G, Wilsgaard T, Christoffersen T, Dennison E, Furberg AS, Grimnes G, Winther A, Emaus N. How Is Adolescent Bone Mass and Density Influenced by Early Life Body Size and Growth? The Tromsø Study: Fit Futures-A Longitudinal Cohort Study From Norway. JBMR Plus 2018; 2:268-280. [PMID: 30283908 PMCID: PMC6139726 DOI: 10.1002/jbm4.10049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 01/21/2023] Open
Abstract
The effect of birth weight and childhood body mass index (BMI) on adolescents’ bone parameters is not established. The aim of this longitudinal, population‐based study was to investigate the association of birth weight, childhood BMI, and growth, with adolescent bone mass and bone density in a sample of 633 adolescents (48% girls) from The Tromsø Study: Fit Futures. This population‐based cohort study was conducted in 2010–2011 and 2012–2013 in Tromsø, Norway. Bone mineral content (BMC) and areal BMD (aBMD) were measured at total hip (TH) and total body (TB) by dual‐energy X‐ray absorptiometry (DXA) and converted to internal Z‐scores. Birth weight and childhood anthropometric measurements were retrospectively obtained from the Medical Birth Registry of Norway and childhood health records. Associations between birth weight, BMI, and growth were evaluated by fitting linear mixed models with repeated measures of BMC and aBMD at ages 15 to 17 and 18 to 20 years as the outcome. In crude analysis, a significant positive association (p < 0.05) with TB BMC was observed per 1 SD score increase in birth weight, observed in both sexes. Higher rate of length growth, conditioned on earlier size, from birth to age 2.5 years, and higher rate of weight gain from ages 6.0 to 16.5 years, conditioned on earlier size and concurrent height growth, revealed stronger associations with bone accrual at ages 15 to 20 years compared with other ages. Compared with being normal weight, overweight/obesity at age 16.5 years was associated with higher aBMD Z‐scores: β coefficient (95% confidence interval [CI]) of 0.78 (0.53, 1.03) and 1.08 (0.85, 1.31) in girls, 0.63 (0.42, 0.85) and 0.74 (0.54, 0.95) in boys at TH and TB, respectively. Similar associations were found for BMC. Being underweight was consistently negatively associated with bone parameters in adolescence. In conclusion, birth weight influences adolescent bone mass but less than later growth and BMI in childhood and adolescence. © 2018 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research
Collapse
Affiliation(s)
- Elin Evensen
- Department of Clinical Research University Hospital of North Norway Tromsø Norway.,Department of Health and Care Sciences Faculty of Health Sciences UiT The Arctic University of Norway Tromsø Norway
| | - Guri Skeie
- Department of Community Medicine Faculty of Health Sciences UiT The Arctic University of Norway Tromsø Norway
| | - Tom Wilsgaard
- Department of Clinical Research University Hospital of North Norway Tromsø Norway.,Department of Community Medicine Faculty of Health Sciences UiT The Arctic University of Norway Tromsø Norway
| | - Tore Christoffersen
- Department of Health and Care Sciences Faculty of Health Sciences UiT The Arctic University of Norway Tromsø Norway.,Finnmark Hospital Trust Alta Norway
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Unit Southampton UK.,Victoria University Wellington New Zealand
| | - Anne-Sofie Furberg
- Department of Community Medicine Faculty of Health Sciences UiT The Arctic University of Norway Tromsø Norway.,Department of Microbiology and Infection Control University Hospital of North Norway Tromsø Norway
| | - Guri Grimnes
- Endocrinology Research Group Institute of Clinical Medicine UiT The Arctic University of Norway Tromsø Norway.,Division of Internal Medicine University Hospital of North Norway Tromsø Norway
| | - Anne Winther
- Division of Neurosciences Orthopedics, and Rehabilitation Services University Hospital of North Norway Tromsø Norway
| | - Nina Emaus
- Department of Health and Care Sciences Faculty of Health Sciences UiT The Arctic University of Norway Tromsø Norway
| |
Collapse
|
47
|
Tencerova M, Figeac F, Ditzel N, Taipaleenmäki H, Nielsen TK, Kassem M. High-Fat Diet-Induced Obesity Promotes Expansion of Bone Marrow Adipose Tissue and Impairs Skeletal Stem Cell Functions in Mice. J Bone Miner Res 2018; 33:1154-1165. [PMID: 29444341 DOI: 10.1002/jbmr.3408] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/11/2022]
Abstract
Obesity represents a risk factor for development of insulin resistance and type 2 diabetes. In addition, it has been associated with increased adipocyte formation in the bone marrow (BM) along with increased risk for bone fragility fractures. However, little is known on the cellular mechanisms that link obesity, BM adiposity, and bone fragility. Thus, in an obesity intervention study in C57BL/6J mice fed with a high-fat diet (HFD) for 12 weeks, we investigated the molecular and cellular phenotype of bone marrow adipose tissue (BMAT), BM progenitor cells, and BM microenvironment in comparison to peripheral adipose tissue (AT). HFD decreased trabecular bone mass by 29%, cortical thickness by 5%, and increased BM adiposity by 184%. In contrast to peripheral AT, BMAT did not exhibit pro-inflammatory phenotype. BM progenitor cells isolated from HFD mice exhibited decreased mRNA levels of inflammatory genes (Tnfα, IL1β, Lcn2) and did not manifest an insulin resistant phenotype evidenced by normal levels of pAKT after insulin stimulation as well as normal levels of insulin signaling genes. In addition, BM progenitor cells manifested enhanced adipocyte differentiation in HFD condition. Thus, our data demonstrate that BMAT expansion in response to HFD exerts a deleterious effect on the skeleton. Continuous recruitment of progenitor cells to adipogenesis leads to progenitor cell exhaustion, decreased recruitment to osteoblastic cells, and decreased bone formation. In addition, the absence of insulin resistance and inflammation in the BM suggest that BMAT buffers extra energy in the form of triglycerides and thus plays a role in whole-body energy homeostasis. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michaela Tencerova
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense C, Denmark.,Danish Diabetes Academy, Odense C, Denmark
| | - Florence Figeac
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense C, Denmark
| | - Nicholas Ditzel
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense C, Denmark
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand, and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tina Kamilla Nielsen
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense C, Denmark
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense C, Denmark.,Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, Copenhagen, Denmark.,Stem Cell Unit, Department of Anatomy, Faculty of Medicine, King Saud University, Kingdom of Saudi Arabia
| |
Collapse
|
48
|
Bone Health Considerations for the Adolescent Female Athlete. CURRENT PEDIATRICS REPORTS 2018. [DOI: 10.1007/s40124-018-0160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Devlin M, Robbins A, Cosman M, Moursi C, Cloutier A, Louis L, Van Vliet M, Conlon C, Bouxsein M. Differential effects of high fat diet and diet-induced obesity on skeletal acquisition in female C57BL/6J vs. FVB/NJ Mice. Bone Rep 2018; 8:204-214. [PMID: 29955639 PMCID: PMC6020275 DOI: 10.1016/j.bonr.2018.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 03/06/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022] Open
Abstract
The effects of obesity on bone metabolism are complex, and may be mediated by consumption of a high fat diet and/or by obesity-induced metabolic dysregulation. To test the hypothesis that both high fat (HF) diet and diet-induced metabolic disease independently decrease skeletal acquisition, we compared effects of HF diet on bone mass and microarchitecture in two mouse strains: diet-induced obesity (DIO)-susceptible C57BL/6J (B6) and DIO-resistant FVB/NJ (FVB). At 3 wks of age we weaned 120 female FVB and B6 mice onto normal (N, 10% Kcal/fat) or HF diet (45% Kcal/fat) and euthanized them at 6, 12 and 20 weeks of age (N = 10/grp). Outcomes included body mass; percent fat and whole-body bone mineral density (WBBMD, g/cm2) via DXA; cortical and trabecular bone architecture at the midshaft and distal femur via μCT; and marrow adiposity via histomorphometry. In FVB HF, body mass, percent body fat, WBBMD and marrow adiposity did not differ vs. N, but trabecular bone mass was lower at 6 wks of age only (p < 0.05), cortical bone geometric properties were lower at 12 wks only, and bone strength was lower at 20 wks of age only in HF vs. N (p < 0.05). In contrast, B6 HF had higher body mass, percent body fat, and leptin vs. N. B6 HF also had higher WBBMD (p < 0.05) at 9 and 12 wks of age but lower distal femur trabecular bone mass at 12 wks of age, and lower body mass-adjusted cortical bone properties at 20 wks of age compared to N (p < 0.05). Marrow adiposity was also markedly higher in B6 HF vs. N. Overall, HF diet negatively affected bone mass in both strains, but was more deleterious to trabecular bone microarchitecture and marrow adiposity in B6 than in FVB mice. These data suggest that in addition to fat consumption itself, the metabolic response to high fat diet independently alters skeletal acquisition in obesity.
Collapse
Affiliation(s)
- M.J. Devlin
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48104, United States
| | - A. Robbins
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48104, United States
| | - M.N. Cosman
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48104, United States
| | - C.A. Moursi
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48104, United States
| | - A.M. Cloutier
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, United States
| | - L. Louis
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, United States
| | - M. Van Vliet
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, United States
| | - C. Conlon
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, United States
| | - M.L. Bouxsein
- Harvard Medical School, Boston, MA 02215, United States
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, United States
| |
Collapse
|
50
|
Dimitri P. Fat and bone in children - where are we now? Ann Pediatr Endocrinol Metab 2018; 23:62-69. [PMID: 29969876 PMCID: PMC6057021 DOI: 10.6065/apem.2018.23.2.62] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022] Open
Abstract
The risk of fracture secondary to low-impact trauma is greater in obese children, suggesting obese children are at risk of skeletal fragility. However, despite this finding, there is a lack of agreement about the impact of excessive adiposity on skeletal development. The combination of poor diet, sedentary lifestyle, greater force generated on impact through falls, and greater propensity to falls may in part explain the increased risk of fracture in obese children. To date, evidence suggests that in early childhood years, obesity confers a structural advantage to the developing skeleton. However, in time, this relationship attenuates and then reverses, such that there is a critical period during skeletal development when obesity has a detrimental effect on skeletal structure and strength. Fat mass may be important to the developing cortical and trabecular bone compartments, provided that gains in fat mass are not excessive. However, when fat accumulation reaches excessive levels, unfavorable metabolic changes may impede skeletal development. Evidence from studies examining bone microstructure suggests skeletal adaption to excessive load fails, and bone strength is relatively diminished in relation to body size in obese children. Mechanisms that may explain these changes include changes in the hormonal environment, particularly in relation to alterations in adipokines and fat distribution. Given the concomitant rise in the prevalence of childhood obesity and fractures, as well as adult osteoporosis, further work is required to understand the relationship between obesity and skeletal development.
Collapse
Affiliation(s)
- Paul Dimitri
- Address for correspondence: Paul Dimitri The Academic Unit of Child Health, Sheffield Children’s NHS Foundation Trust, Western Bank, Sheffield S10 2TH, United Kingdom Tel: +44-271-7118 Fax: +44-275-5364 E-mail:
| |
Collapse
|