1
|
Ma T, Zhang T, Miao F, Liu J, Zhu Q, Chen Z, Tai Z, He Z. Alopecia Areata: Pathogenesis, Diagnosis, and Therapies. MedComm (Beijing) 2025; 6:e70182. [PMID: 40260013 PMCID: PMC12010142 DOI: 10.1002/mco2.70182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/23/2025] Open
Abstract
Alopecia areata (AA) is a complex, chronic inflammatory skin disorder characterized by unpredictable, nonscarring hair loss, affecting millions worldwide. Its pathogenesis remains poorly understood, driven by intricate interactions among immune dysregulation, genetic predisposition, and environmental triggers. Despite significant advances in identifying these contributing factors, substantial gaps persist in our understanding of the full spectrum of AA's molecular mechanisms and in the development of effective therapeutic approaches. This review aims to comprehensively explore the immunological, genetic, epigenetic, and environmental factors underlying AA, with a focus on immune-mediated mechanisms. We also evaluate diagnostic approaches and recent advancements in assessing disease severity. Furthermore, the review discusses evolving therapeutic options, including traditional therapies, biologics, small-molecule agents, and emerging treatments. The academic value of this work lies in its synthesis of current knowledge on the multifaceted nature of AA, providing insights for future research and clinical practice. By elucidating the interconnected factors underlying AA, this review seeks to advance both understanding and management of this prevalent, clinically challenging disorder.
Collapse
Affiliation(s)
- Tianyou Ma
- Department of PharmacyLonghua Hospital of Shanghai University of Traditional Chinese MedicineShanghaiChina
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
- Shanghai Engineering Research Center of External Chinese MedicineShanghaiChina
| | - Tingrui Zhang
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
- Shanghai Engineering Research Center of External Chinese MedicineShanghaiChina
| | - Fengze Miao
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
- Shanghai Engineering Research Center of External Chinese MedicineShanghaiChina
| | - Jun Liu
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
- Shanghai Engineering Research Center of External Chinese MedicineShanghaiChina
| | - Quangang Zhu
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
- Shanghai Engineering Research Center of External Chinese MedicineShanghaiChina
| | - Zhongjian Chen
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
- Shanghai Engineering Research Center of External Chinese MedicineShanghaiChina
| | - Zongguang Tai
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
- Shanghai Engineering Research Center of External Chinese MedicineShanghaiChina
| | - Zhigao He
- Department of PharmacyLonghua Hospital of Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
2
|
Perez SM, AlSalman SA, Nguyen B, Tosti A. Botulinum Toxin in the Treatment of Hair and Scalp Disorders: Current Evidence and Clinical Applications. Toxins (Basel) 2025; 17:163. [PMID: 40278661 PMCID: PMC12031486 DOI: 10.3390/toxins17040163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Botulinum toxin (BoNT) is well-recognized throughout dermatology for its cosmetic indications and growing therapeutic value. Recent studies have trialed BoNT in the treatment of hair and scalp disorders, many of which lack long-term effective treatments and significantly impact quality of life. In this review, we summarize the current clinical literature on this topic to comprehensively evaluate the efficacy, safety, and clinical value of BoNT in treating hair and scalp conditions. A literature search on PubMed/MEDLINE and Scopus identified 40 articles reporting the use of 25-200 units of BoNT-A or B in 689 patients with hair loss (79.5%), scalp seborrheic dermatitis/hyperseborrhea (10%), craniofacial hyperhidrosis (9%), folliculitis decalvans/dissecting folliculitis (0.86%), scalp pain (0.43%), or linear scleroderma (0.29%). Most studies on BoNT therapy for androgenetic alopecia (AGA) reported mild or non-significant hair growth; however, considerable variability in outcome measures complicates the ability to draw definitive conclusions or justify the use of BoNT over established AGA therapies. BoNT-A and B showed consistent efficacy in treating craniofacial hyperhidrosis with minimal side effects. Additional scalp conditions may benefit from BoNT therapy, but the evidence is limited, and larger, controlled studies are needed to better understand BoNT's clinical value in these conditions.
Collapse
Affiliation(s)
- Sofia M. Perez
- Dr Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sarah A. AlSalman
- Dr Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Dermatology, King Abdulaziz Medical City, Riyadh 22490, Saudi Arabia
| | - Betty Nguyen
- Dr Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antonella Tosti
- Dr Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
3
|
Shi Y, Wan S, Song X. Role of neurogenic inflammation in the pathogenesis of alopecia areata. J Dermatol 2024; 51:621-631. [PMID: 38605467 DOI: 10.1111/1346-8138.17227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Alopecia areata refers to an autoimmune illness indicated by persistent inflammation. The key requirement for alopecia areata occurrence is the disruption of immune-privileged regions within the hair follicles. Recent research has indicated that neuropeptides play a role in the damage to hair follicles by triggering neurogenic inflammation, stimulating mast cells ambient the follicles, and promoting apoptotic processes in keratinocytes. However, the exact pathogenesis of alopecia areata requires further investigation. Recently, there has been an increasing focus on understanding the mechanisms of immune diseases resulting from the interplay between the nervous and the immune system. Neurogenic inflammation due to neuroimmune disorders of the skin system may disrupt the inflammatory microenvironment of the hair follicle, which plays a crucial part in the progression of alopecia areata.
Collapse
Affiliation(s)
- Yetan Shi
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Sheng Wan
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Mardelle U, Bretaud N, Daher C, Feuillet V. From pain to tumor immunity: influence of peripheral sensory neurons in cancer. Front Immunol 2024; 15:1335387. [PMID: 38433844 PMCID: PMC10905387 DOI: 10.3389/fimmu.2024.1335387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
The nervous and immune systems are the primary sensory interfaces of the body, allowing it to recognize, process, and respond to various stimuli from both the external and internal environment. These systems work in concert through various mechanisms of neuro-immune crosstalk to detect threats, provide defense against pathogens, and maintain or restore homeostasis, but can also contribute to the development of diseases. Among peripheral sensory neurons (PSNs), nociceptive PSNs are of particular interest. They possess a remarkable capability to detect noxious stimuli in the periphery and transmit this information to the brain, resulting in the perception of pain and the activation of adaptive responses. Pain is an early symptom of cancer, often leading to its diagnosis, but it is also a major source of distress for patients as the disease progresses. In this review, we aim to provide an overview of the mechanisms within tumors that are likely to induce cancer pain, exploring a range of factors from etiological elements to cellular and molecular mediators. In addition to transmitting sensory information to the central nervous system, PSNs are also capable, when activated, to produce and release neuropeptides (e.g., CGRP and SP) from their peripheral terminals. These neuropeptides have been shown to modulate immunity in cases of inflammation, infection, and cancer. PSNs, often found within solid tumors, are likely to play a significant role in the tumor microenvironment, potentially influencing both tumor growth and anti-tumor immune responses. In this review, we discuss the current state of knowledge about the degree of sensory innervation in tumors. We also seek to understand whether and how PSNs may influence the tumor growth and associated anti-tumor immunity in different mouse models of cancer. Finally, we discuss the extent to which the tumor is able to influence the development and functions of the PSNs that innervate it.
Collapse
Affiliation(s)
- Ugo Mardelle
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ninon Bretaud
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clara Daher
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Vincent Feuillet
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
5
|
Liang A, Fang Y, Ye L, Meng J, Wang X, Chen J, Xu X. Signaling pathways in hair aging. Front Cell Dev Biol 2023; 11:1278278. [PMID: 38033857 PMCID: PMC10687558 DOI: 10.3389/fcell.2023.1278278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Hair follicle (HF) homeostasis is regulated by various signaling pathways. Disruption of such homeostasis leads to HF disorders, such as alopecia, pigment loss, and hair aging, which is causing severe health problems and aesthetic concerns. Among these disorders, hair aging is characterized by hair graying, hair loss, hair follicle miniaturization (HFM), and structural changes to the hair shaft. Hair aging occurs under physiological conditions, while premature hair aging is often associated with certain pathological conditions. Numerous investigations have been made to determine the mechanisms and explore treatments to prevent hair aging. The most well-known hypotheses about hair aging include oxidative stress, hormonal disorders, inflammation, as well as DNA damage and repair defects. Ultimately, these factors pose threats to HF cells, especially stem cells such as hair follicle stem cells, melanocyte stem cells, and mesenchymal stem cells, which hamper hair regeneration and pigmentation. Here, we summarize previous studies investigating the above mechanisms and the existing therapeutic methods for hair aging. We also provide insights into hair aging research and discuss the limitations and outlook.
Collapse
Affiliation(s)
- Aishi Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yingshan Fang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Lan Ye
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jianda Meng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jinsong Chen
- Endocrinology Department, First People’s Hospital of Foshan, Foshan, China
| | - Xuejuan Xu
- Endocrinology Department, First People’s Hospital of Foshan, Foshan, China
| |
Collapse
|
6
|
Perinelli DR, Cambriani A, Antognini G, Agostinacchio G, Marliani A, Cespi M, Torregiani E, Bonacucina G. Quantification of Squalene and Lactic Acid in Hair Bulbs with Damaged Sheaths: Are They Metabolic Wastes in Alopecia? Biomedicines 2023; 11:2493. [PMID: 37760935 PMCID: PMC10525989 DOI: 10.3390/biomedicines11092493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Alopecia is a pathological and multifactorial condition characterised by an altered hair growth cycle and ascribed to different pathogenic causes. Cell energetic imbalances in hair follicles occurring in this disorder could lead to the production of some "metabolic wastes", including squalene and lactic acid, which could be involved in the clinically observed sheath damage. The aim of this work was the extraction and analytical quantification of squalene and lactic acid from hair bulbs of subjects with clinical alopecia in comparison with controls, using HPLC-DAD and HPLC-MS techniques. The analytical quantification was performed after a preliminary observation through a polarised optical microscope to assess sheath damage and morphological alterations in the cases group. A significantly larger amount of squalene was quantified only in subjects affected by alopecia (n = 31) and with evident damage to hair sheaths. For lactic acid, no statistically significant differences were found between cases (n = 21) and controls (n = 21) under the experimental conditions used. Therefore, the obtained results suggest that squalene can represent a metabolic and a pathogenic marker for some alopecia conditions.
Collapse
Affiliation(s)
- Diego Romano Perinelli
- Chemistry, Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.R.P.); (A.C.); (G.B.)
| | - Alessandra Cambriani
- Chemistry, Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.R.P.); (A.C.); (G.B.)
| | - Gianluigi Antognini
- S.I.Tri.—Italian Society for Hair Science and Restoration, Via San Domenico 107, 50133 Florence, Italy; (G.A.); (G.A.)
| | - Gaetano Agostinacchio
- S.I.Tri.—Italian Society for Hair Science and Restoration, Via San Domenico 107, 50133 Florence, Italy; (G.A.); (G.A.)
| | - Andrea Marliani
- S.I.Tri.—Italian Society for Hair Science and Restoration, Via San Domenico 107, 50133 Florence, Italy; (G.A.); (G.A.)
| | - Marco Cespi
- Chemistry, Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.R.P.); (A.C.); (G.B.)
| | - Elisabetta Torregiani
- Chemistry, Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.R.P.); (A.C.); (G.B.)
| | - Giulia Bonacucina
- Chemistry, Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.R.P.); (A.C.); (G.B.)
| |
Collapse
|
7
|
Ahn D, Kim H, Lee B, Hahm DH. Psychological Stress-Induced Pathogenesis of Alopecia Areata: Autoimmune and Apoptotic Pathways. Int J Mol Sci 2023; 24:11711. [PMID: 37511468 PMCID: PMC10380371 DOI: 10.3390/ijms241411711] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Alopecia areata (AA) is an autoimmune dermatological disease with multifactorial etiology and is characterized by reversible hair loss in patches. AA may be closely related to emotional stress and influenced by psychological factors as part of its pathophysiology; however, its etiology remains predominantly unknown. This review aimed to elucidate the association between AA occurrence and the neuropeptide substance P (SP) and corticotropin-releasing hormone (CRH), which are secreted during emotional stress, and have been understood to initiate and advance the etiopathogenesis of AA. Therefore, this review aimed to explain how SP and CRH initiate and contribute to the etiopathogenesis of AA. To assess the etiopathogenesis of AA, we conducted a literature search on PubMed and ClinicalTrials.gov. Overall, several authors described interactions between the hair follicles (HFs) and the stress-associated signaling substances, including SP and CRH, in the etiology of AA; this was attributed to the understanding in that AA can occur without the loss of HFs, similar to that observed in hereditary hair loss with age. Most studies demonstrated that the collapse of "immune privilege" plays a crucial role in the development and exacerbation of the AA; nonetheless, a few studies indicated that substances unrelated to autoimmunity may also cause apoptosis in keratocytes, leading to the development of AA. We investigated both the autoimmune and apoptotic pathways within the etiology of AA and assessed the potential interactions between the key substances of both pathways to evaluate potential therapeutic targets for the treatment of AA. Clinical trials of marketed/unreviewed intervention drugs for AA were also reviewed to determine their corresponding target pathways.
Collapse
Affiliation(s)
- Dongkyun Ahn
- Department of Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyungjun Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Bombi Lee
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dae-Hyun Hahm
- Department of Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
8
|
Petak A, Boras J, Bata I, Ilić I, Hohšteter M, Šoštarić-Zuckermann IC. Clinical and histopathological investigation of symmetrical alopecia with associated chronic pruritus in tufted capuchin monkeys (Sapajus apella apella). J Med Primatol 2023. [PMID: 37114717 DOI: 10.1111/jmp.12645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/28/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Symmetrical alopecia is a common symptom of endocrine and autoimmune diseases, which are rarely manifested with pruritus. Increased levels of stress in primates have been presented with increased levels of pruritus and alopecia appearance. METHODS A pruritic and alopecic disease was investigated in a group of tufted capuchin monkeys (N = 12), but due to ethical reasons, four random animals were further investigated by numerous diagnostic methods. The impact of food and enclosure enrichment was assessed and observed over a 2-year period. RESULTS Histopathology of four random tufted capuchin monkeys revealed lymphocytic perifolliculitis, with an appearance of a "swarm of bees" which was suggestive of alopecia areata. Etiological classification of pruritus excluded dermatological, systemic, and neurological causes, making it behavioral. Enclosure and food enrichment had a beneficial impact on pruritus (12/12) and alopecia (10/12). CONCLUSION The findings were suggestive of alopecia areata, while the pruritus was considered behavioral in origin. Alopecia and pruritus improved upon enclosure and food enrichment.
Collapse
Affiliation(s)
- Ana Petak
- Clinic for Small Animals "Buba", Zagreb, Croatia
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | - Ivana Ilić
- Department of Pathology and Cytology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marko Hohšteter
- Department of Veterinary Pathology, Faculty of Veterinary Medicine University of Zagreb, Zagreb, Croatia
| | | |
Collapse
|
9
|
Gleave A, Granville DJ. Granzyme B in Autoimmune Skin Disease. Biomolecules 2023; 13:388. [PMID: 36830757 PMCID: PMC9952967 DOI: 10.3390/biom13020388] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Autoimmune diseases often present with cutaneous symptoms that contribute to dysfunction, disfigurement, and in many cases, reduced quality-of-life. Unfortunately, treatment options for many autoimmune skin diseases are limited. Local and systemic corticosteroids remain the current standard-of-care but are associated with significant adverse effects. Hence, there is an unmet need for novel therapies that block molecular drivers of disease in a local and/or targeted manner. Granzyme B (GzmB) is a serine protease with known cytotoxic activity and emerging extracellular functions, including the cleavage of cell-cell junctions, basement membranes, cell receptors, and other structural proteins. While minimal to absent in healthy skin, GzmB is markedly elevated in alopecia areata, interface dermatitis, pemphigoid disease, psoriasis, systemic sclerosis, and vitiligo. This review will discuss the role of GzmB in immunity, blistering, apoptosis, and barrier dysfunction in the context of autoimmune skin disease. GzmB plays a causal role in the development of pemphigoid disease and carries diagnostic and prognostic significance in cutaneous lupus erythematosus, vitiligo, and alopecia areata. Taken together, these data support GzmB as a promising therapeutic target for autoimmune skin diseases impacted by impaired barrier function, inflammation, and/or blistering.
Collapse
Affiliation(s)
- Anna Gleave
- British Columbia Professional Firefighters’ Burn and Wound Healing Laboratory, International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - David J. Granville
- British Columbia Professional Firefighters’ Burn and Wound Healing Laboratory, International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| |
Collapse
|
10
|
Integrative and Mechanistic Approach to the Hair Growth Cycle and Hair Loss. J Clin Med 2023; 12:jcm12030893. [PMID: 36769541 PMCID: PMC9917549 DOI: 10.3390/jcm12030893] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
The hair cycle is composed of four primary phases: anagen, catagen, telogen, and exogen. Anagen is a highly mitotic phase characterized by the production of a hair shaft from the hair follicle, whereas catagen and telogen describe regression and the resting phase of the follicle, respectively, ultimately resulting in hair shedding. While 9% of hair follicles reside in telogen at any time, a variety of factors promote anagen to telogen transition, including inflammation, hormones, stress, nutritional deficiency, poor sleep quality, and cellular division inhibiting medication. Conversely, increased blood flow, direct stimulation of the hair follicle, and growth factors promote telogen to anagen transition and subsequent hair growth. This review seeks to comprehensively describe the hair cycle, anagen and telogen balance, factors that promote anagen to telogen transition and vice versa, and the clinical utility of a variety of lab testing and evaluations. Ultimately, a variety of factors impact the hair cycle, necessitating a holistic approach to hair loss.
Collapse
|
11
|
Botulinum Toxin Use for Modulating Neuroimmune Cutaneous Activity in Psoriasis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060813. [PMID: 35744076 PMCID: PMC9228985 DOI: 10.3390/medicina58060813] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
Psoriasis is a complex immune-mediated inflammatory disorder that generates enormous interest within the scientific communities worldwide, with new therapeutic targets being constantly identified and tested. Despite the numerous topical and systemic medications available for the treatment of psoriasis, alternative therapies are still needed for the optimal management of some patients who present with localized, resistant lesions. Novel insights into the contribution of cutaneous neurogenic inflammation in the pathogenesis of psoriasis have yielded exciting new potential roles of nerve-targeting treatments, namely botulinum toxin type A (BoNT-A), for the management of this disease. This paper aims to review the existing literature on knowledge regarding the potential role of BoNT-A in psoriasis treatment, with a focus on its ability to interfere with the immunopathogenetic aspects of psoriatic disease. Furthermore, in our paper, we are also including the first report of psoriatic lesions remission following local BoNT-A injections that were administered for treating upper limb spasticity, in a patient that concomitantly suffered from psoriasis and post-stroke spasticity.
Collapse
|
12
|
Watson VE, Faniel ML, Kamili NA, Krueger LD, Zhu C. Immune-mediated alopecias and their mechanobiological aspects. Cells Dev 2022; 170:203793. [PMID: 35649504 PMCID: PMC10681075 DOI: 10.1016/j.cdev.2022.203793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023]
Abstract
Alopecia is a non-specific term for hair loss clinically diagnosed by the hair loss pattern and histological analysis of patient scalp biopsies. The immune-mediated alopecia subtypes, including alopecia areata, lichen planopilaris, frontal fibrosing alopecia, and central centrifugal cicatricial alopecia, are common, significant forms of alopecia subtypes. For example, alopecia areata is the most common autoimmune disease with a lifetime incidence of approximately 2% of the world's population. In this perspective, we discuss major results from studies of immune-mediated alopecia subtypes. These studies suggest the key event in disease onset as the collapse in immune privilege, which alters the hair follicle microenvironment, e.g., upregulation of major histocompatibility complex molecules and increase of cytokine production, and results in immune cell infiltration, inflammatory responses, and damage of hair follicles. We note that previous studies have established that the hair follicle has a complex mechanical microenvironment, which may regulate the function of not only tissue cells but also immune cell infiltrates. This suggests a potential for mechanobiology to contribute to alopecia research by adding new methods, new approaches, and new ways of thinking, which is missing in the existing literature. To fill this a gap in the alopecia research space, we develop a mechanobiological hypothesis that alterations in the hair follicle microenvironment, specifically in the mechanically responsive tissues and cells, partially due to loss of immune privilege, may be contributors to disease pathology. We further focus our discussion on the potential for applying mechanoimmunology to the study of T cell infiltrates in the hair follicle, as they are considered primary contributors to alopecia pathology. To establish the connection between the mechanoimmunological hypothesis and immune-mediated alopecia subtypes, we discuss what is known about the role of T cells in immune-mediated alopecia subtypes, using the most extensively studied AA as our model.
Collapse
Affiliation(s)
- Valencia E Watson
- Wallace H. Coulter Department of Biomedical Engineering, USA; Bioengineering PhD Program, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Makala L Faniel
- Wallace H. Coulter Department of Biomedical Engineering, USA; Bioengineering PhD Program, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Loren D Krueger
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, USA; Bioengineering PhD Program, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
13
|
Lousada MB, Lachnit T, Edelkamp J, Paus R, Bosch TCG. Hydra and the hair follicle - An unconventional comparative biology approach to exploring the human holobiont. Bioessays 2022; 44:e2100233. [PMID: 35261041 DOI: 10.1002/bies.202100233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
The microbiome of human hair follicles (HFs) has emerged as an important player in different HF and skin pathologies, yet awaits in-depth exploration. This raises questions regarding the tightly linked interactions between host environment, nutrient dependency of host-associated microbes, microbial metabolism, microbe-microbe interactions and host immunity. The use of simple model systems facilitates addressing generally important questions and testing overarching, therapeutically relevant principles that likely transcend obvious interspecies differences. Here, we evaluate the potential of the freshwater polyp Hydra, to dissect fundamental principles of microbiome regulation by the host, that is the human HF. In particular, we focus on therapeutically targetable host-microbiome interactions, such as nutrient dependency, microbial interactions and host defence. Offering a new lens into the study of HF - microbiota interactions, we argue that general principles of how Hydra manages its microbiota can inform the development of novel, microbiome-targeting therapeutic interventions in human skin disease.
Collapse
Affiliation(s)
- Marta B Lousada
- Monasterium Laboratory Skin & Hair Research, Münster, Germany.,Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| | - Tim Lachnit
- Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| | - Janin Edelkamp
- Monasterium Laboratory Skin & Hair Research, Münster, Germany
| | - Ralf Paus
- Monasterium Laboratory Skin & Hair Research, Münster, Germany.,Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| |
Collapse
|
14
|
Jung BH, Song SH, Yoon SJ, Koo JH, Yoo KY. The Effect of Botulinum Toxin on Hair Follicle Cell Regeneration Under Continuous Stress Conditions: a Pilot Animal Study. Neurotox Res 2022; 40:103-110. [PMID: 34997456 DOI: 10.1007/s12640-021-00453-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/18/2021] [Accepted: 11/28/2021] [Indexed: 11/28/2022]
Abstract
We analyzed the effect of botulinum toxin (BTX) type A on the regeneration of hair follicle cells under continuous stress conditions. Thirty 6-week-old C57BL/6 mice were used, and hair loss was induced on their backs (10 control (CTL) mice, reared under normal conditions without stress; 10 mice, exposed to continuous stress (STRESS) by fixing in an enclosed space; 10 BTX + STRESS mice, injected subcutaneously with 1 IU of BTX (0.1 cc) where the hair follicles were removed under the same stress conditions). There was less hair growth in the STRESS and BTX + STRESS groups compared to that in the CTL group at 2 weeks. At 3 weeks, the telogen stage was mainly observed in the STRESS group whereas the anagen stage was observed in the CTL and BTX + STRESS groups. A substantial increase in terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells was observed in the STRESS group compared to that in the CTL and BTX + STRESS groups. Substance P (SP) immunoreactivity cell levels increased in the STRESS group at 2 and 3 weeks compared to those in the BTX + STRESS group. SP expression increased at 2 and 3 weeks in the STRESS group compared to that in the CTL and BTX + STRESS groups. A delay in the regeneration cycle of the hair follicle cells occurred when stress was applied, and an almost normal regeneration cycle occurred when BTX was injected subcutaneously. Therefore, BTX may be a positive indicator for hair loss treatment.
Collapse
Affiliation(s)
- Bo Hyun Jung
- Department of Oral Anatomy, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Sun Hong Song
- Department of Rehabilitation Medicine, College of Medicine, Gangneung Asan Hospital, University of Ulsan, Gangneung, Republic of Korea.
| | - Se Jin Yoon
- Danam Rehabilitation Clinics, Seoul, Republic of Korea
| | - Jung Hoi Koo
- Department of Rehabilitation Medicine, College of Medicine, Gangneung Asan Hospital, University of Ulsan, Gangneung, Republic of Korea
| | - Ki Yeon Yoo
- Department of Oral Anatomy, Gangneung-Wonju National University, Gangneung, Republic of Korea
| |
Collapse
|
15
|
Kim C, Shin JM, Kim D, Park S, Hong D, Jung KE, Kim CD, Seo YJ, Lee Y. Role of Substance P in Regulating Micro-Milieu of Inflammation in Alopecia Areata. Ann Dermatol 2022; 34:270-277. [PMID: 35948329 PMCID: PMC9365655 DOI: 10.5021/ad.21.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background Alopecia areata (AA) is an autoimmune disease characterized by chronic inflammation, the pathogenesis of which is unknown. Stress is believed to play a role; however, evidence remains insufficient. A recent study showed that substance P (SP) damaged hair follicles by causing neurogenic inflammation, activating perifollicular mast cells, and inducing keratinocyte apoptosis. Objective We aimed at studying the role of SP in AA pathogenesis. We investigated the SP levels in the lesional scalp tissues and serum. We also studied the effect of SP on the inflammatory response and hair growth in the outer root sheath (ORS) cells. Methods We compared the serum levels of SP in 58 AA patients and 28 healthy subjects. Then, we checked the expression of SP and SP receptor, neurokinin-1 receptor (NK-1R) in the scalps of AA patients and healthy controls using immunohistochemical staining. Finally, we analyzed the mRNA expression of inflammatory cytokines and hair growth-related factors in ORS cells. Results SP and NK-1R expression were markedly higher in the hair follicles and interfollicular epidermis of the scalp lesions of AA patients. However, there was no statistically significant difference in serum SP levels between controls and patients, regardless of the type of alopecia. SP significantly increased the mRNA expression of inflammatory cytokines and decreased hair growth-related growth factors in ORS cells, but the results were not dramatic. Conclusion SP triggered a localized micro-inflammation in lesional hair follicles, provoked an inflammatory response, and inhibited hair growth, thereby confirming the pathogenic role of SP in AA.
Collapse
Affiliation(s)
- Changhyeon Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Jung-Min Shin
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Doyeon Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Sanghyun Park
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Dongkyun Hong
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Kyung Eun Jung
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Joon Seo
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
16
|
Deng C, Zhuo X, Mai J, Chen Z, Lao J. Alopecia totalis treated with electroacupuncture incorporating transverse needle insertion at GB20 and GV16: a case report. Acupunct Med 2021; 40:205-207. [PMID: 34886693 DOI: 10.1177/09645284211055752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Cong Deng
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaolin Zhuo
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianling Mai
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhezi Chen
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinxiong Lao
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Torales J, Castaldelli-Maia JM, Ventriglio A, Almirón-Santacruz J, Barrios I, O'Higgins M, García O, Navarro R, Melgarejo O, Jafferany M. Alopecia areata: A psychodermatological perspective. J Cosmet Dermatol 2021; 21:2318-2323. [PMID: 34449973 DOI: 10.1111/jocd.14416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Alopecia Areata (AA) is an autoimmune dermatological disease that could be influenced by psychological factors as part of the pathophysiology of the illness. AIMS This review article aims to report on psychodermatological and psychopathological aspects involved in the etiopathogenesis and comorbidities of AA, as well as on the psychiatric and psychological management of affected patients. METHODS We conducted a literature search on PubMed and Google Scholar from January 1980 to May 2021 employing the search terms of alopecia areata, psychological factors, psychological impact, psychodermatology, and psychopathology. All lists of references from the identified articles were screened for further relevant studies. The search was limited to English and Spanish language articles and was supplemented with themed books and book chapters. No specific quality criteria were used for the studies selection. RESULTS Several authors have found a high comorbidity rate between AA and mental disorders, concluding that stress and psychological factors are involved in both the development and exacerbation of the illness. More evidences are needed in order to describe the associations between the immune response, stress, and the physiological factors observed in AA patients. CONCLUSION AA is a complex illness characterized by multifactorial etiology. An interaction between genetic, autoimmune, hormonal, neural, and psychological factors is supposed. Psychopathological aspects of illness need to be better described and considered in the clinical setting.
Collapse
Affiliation(s)
- Julio Torales
- Department of Psychiatry, School of Medical Sciences, National University of Asunción, San Lorenzo, Paraguay
| | - João Mauricio Castaldelli-Maia
- Department of Neuroscience, Medical School, Fundação do ABC, Santo André, SP, Brazil.,Department of Psychiatry, Medical School, University of São Paulo, São Paulo, SP, Brazil
| | - Antonio Ventriglio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - José Almirón-Santacruz
- Department of Psychiatry, School of Medical Sciences, National University of Asunción, San Lorenzo, Paraguay
| | - Iván Barrios
- Department of Psychiatry, School of Medical Sciences, National University of Asunción, San Lorenzo, Paraguay
| | - Marcelo O'Higgins
- Department of Psychiatry, School of Medical Sciences, National University of Asunción, San Lorenzo, Paraguay
| | - Oscar García
- Department of Psychiatry, School of Medical Sciences, National University of Asunción, San Lorenzo, Paraguay
| | - Rodrigo Navarro
- Department of Psychiatry, School of Medical Sciences, National University of Asunción, San Lorenzo, Paraguay
| | - Osvaldo Melgarejo
- Department of Psychiatry, School of Medical Sciences, National University of Asunción, San Lorenzo, Paraguay
| | - Mohammad Jafferany
- Department of Psychiatry, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
18
|
Morelli AE, Sumpter TL, Rojas-Canales DM, Bandyopadhyay M, Chen Z, Tkacheva O, Shufesky WJ, Wallace CT, Watkins SC, Berger A, Paige CJ, Falo LD, Larregina AT. Neurokinin-1 Receptor Signaling Is Required for Efficient Ca 2+ Flux in T-Cell-Receptor-Activated T Cells. Cell Rep 2021; 30:3448-3465.e8. [PMID: 32160549 PMCID: PMC7169378 DOI: 10.1016/j.celrep.2020.02.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/08/2019] [Accepted: 02/12/2020] [Indexed: 01/09/2023] Open
Abstract
Efficient Ca2+ flux induced during cognate T cell activation requires signaling the T cell receptor (TCR) and unidentified G-protein-coupled receptors (GPCRs). T cells express the neurokinin-1 receptor (NK1R), a GPCR that mediates Ca2+ flux in excitable and non-excitable cells. However, the role of the NK1R in TCR signaling remains unknown. We show that the NK1R and its agonists, the neuropeptides substance P and hemokinin-1, co-localize within the immune synapse during cognate activation of T cells. Simultaneous TCR and NK1R stimulation is necessary for efficient Ca2+ flux and Ca2+-dependent signaling that sustains the survival of activated T cells and helper 1 (Th1) and Th17 bias. In a model of contact dermatitis, mice with T cells deficient in NK1R or its agonists exhibit impaired cellular immunity, due to high mortality of activated T cells. We demonstrate an effect of the NK1R in T cells that is relevant for immunotherapies based on pro-inflammatory neuropeptides and its receptors. The neurokinin 1 receptor (NK1R) induces Ca2+ flux in excitable cells. Here, Morelli et al. show that NK1R signaling in T cells promotes optimal Ca2+ flux triggered by TCR stimulation, which is necessary to sustain T cell survival and the efficient Th1- and Th17-based immunity that is relevant for immunotherapies based on pro-inflammatory neuropeptides.
Collapse
Affiliation(s)
- Adrian E Morelli
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA
| | - Tina L Sumpter
- Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA; Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | | | - Mohna Bandyopadhyay
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Zhizhao Chen
- Hubei Key Laboratory of Medical Technology on Transplantation, Transplant Center, Institute of Hepatobiliary Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Olga Tkacheva
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - William J Shufesky
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Callen T Wallace
- Department of Cell Biology and Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA
| | - Simon C Watkins
- Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA; Department of Cell Biology and Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA
| | - Alexandra Berger
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, ON, Canada
| | | | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA; The University of Pittsburgh Clinical and Translational Science Institute, Pittsburgh, PA, USA; The UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Adriana T Larregina
- Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA; Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Chien Yin GO, Siong-See JL, Wang ECE. Telogen Effluvium - a review of the science and current obstacles. J Dermatol Sci 2021; 101:156-163. [PMID: 33541773 DOI: 10.1016/j.jdermsci.2021.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/25/2022]
Abstract
Telogen effluvium (TE) is a common cause of diffuse non-scarring hair loss that is usually precipitated by physiological stress such as childbirth or sudden weight loss. Despite its high rate of remission, this phenomenon of sudden excessive hair loss can be very worrisome and upsetting for affected individuals and may significantly impact their quality of life. Due to the multifactorial causes and precipitants of TE, it is often challenging to diagnose and manage. Further, the mechanisms through which physiological stress influences the human hair cycle is unknown, and there are no targeted treatments for the management of TE. This review will describe the approach in making a diagnosis of TE, summarize the latest developments made in understanding the mechanisms of TE, outline the treatments tried, and recommend ways for advancing the study of this dermatological condition.
Collapse
Affiliation(s)
- Ginny Oong Chien Yin
- Newcastle University, Newcastle Upon Tyne, UK; Belfast Health and Social Care Trust, Belfast, UK
| | | | - Etienne C E Wang
- National Skin Centre, Singapore; Skin Research Institute of Singapore, Singapore.
| |
Collapse
|
20
|
Fischer TW, Bergmann A, Kruse N, Kleszczynski K, Skobowiat C, Slominski AT, Paus R. New effects of caffeine on corticotropin-releasing hormone (CRH)-induced stress along the intrafollicular classical hypothalamic-pituitary-adrenal (HPA) axis (CRH-R1/2, IP 3 -R, ACTH, MC-R2) and the neurogenic non-HPA axis (substance P, p75 NTR and TrkA) in ex vivo human male androgenetic scalp hair follicles. Br J Dermatol 2021; 184:96-110. [PMID: 32271938 PMCID: PMC7962141 DOI: 10.1111/bjd.19115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Human hair is highly responsive to stress, and human scalp hair follicles (HFs) contain a peripheral neuroendocrine equivalent of the systemic hypothalamic-pituitary-adrenal (HPA) stress axis. Androgenetic alopecia (AGA) is supposed to be aggravated by stress. We used corticotropin-releasing hormone (CRH), which triggers the HPA axis, to induce a stress response in human ex vivo male AGA HFs. Caffeine is known to reverse testosterone-mediated hair growth inhibition in the same hair organ culture model. OBJECTIVES To investigate whether caffeine would antagonize CRH-mediated stress in these HFs. METHODS HFs from balding vertex area scalp biopsies of men affected by AGA were incubated with CRH (10-7 mol L-1 ) with or without caffeine (0·001% or 0·005%). RESULTS Compared to controls, CRH significantly enhanced the expression of catagen-inducing transforming growth factor-β2 (TGF-β2) (P < 0·001), CRH receptors 1 and 2 (CRH-R1/2) (P < 0·01), adrenocorticotropic hormone (ACTH) (P < 0·001) and melanocortin receptor 2 (MC-R2) (P < 0·001), and additional stress-associated parameters, substance P and p75 neurotrophin receptor (p75NTR ). CRH inhibited matrix keratinocyte proliferation and expression of anagen-promoting insulin-like growth factor-1 (IGF-1) and the pro-proliferative nerve growth factor receptor NGF-tyrosine kinase receptor A (TrkA). Caffeine significantly counteracted all described stress effects and additionally enhanced inositol trisphosphate receptor (IP3 -R), for the first time detected in human HFs. CONCLUSIONS These findings provide the first evidence in ex vivo human AGA HFs that the stress mediator CRH induces not only a complex intrafollicular HPA response, but also a non-HPA-related stress response. Moreover, we show that these effects can be effectively antagonized by caffeine. Thus, these data strongly support the hypothesis that stress can impair human hair physiology and induce hair loss, and that caffeine may effectively counteract stress-induced hair damage and possibly prevent stress-induced hair loss.
Collapse
Affiliation(s)
- T W Fischer
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - A Bergmann
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - N Kruse
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - K Kleszczynski
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - C Skobowiat
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - A T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| | - R Paus
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
- Centre for Dermatology Research, University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester, UK
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
21
|
Gilhar A, Laufer Britva R, Keren A, Paus R. Mouse Models of Alopecia Areata: C3H/HeJ Mice Versus the Humanized AA Mouse Model. J Investig Dermatol Symp Proc 2020; 20:S11-S15. [PMID: 33099377 DOI: 10.1016/j.jisp.2020.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The C3H/HeJ model has long dominated basic alopecia areata (AA) in vivo research and has been used as proof-of-principle that Jak inhibitors are suitable agents for AA management in vivo. However, its histologic features are not typical of human AA, and it is questionable whether it is sufficiently clinically predictive for evaluating the therapeutic effects of candidate AA agents. Instead, the humanized mouse model of AA has been used to functionally demonstrate the role of key immune cells in AA pathogenesis and to discover human-specific pharmacologic targets in AA management. Therefore, we advocate the use of both models in future preclinical AA research.
Collapse
Affiliation(s)
- Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Rimma Laufer Britva
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Centre for Dermatology Research, University of Manchester, and NIHR Biomedical Research Centre, Manchester, United Kingdom; Monasterium Laboratory Skin & Hair Research Solutions GmbH, Muenster, Germany
| |
Collapse
|
22
|
Bertolini M, McElwee K, Gilhar A, Bulfone‐Paus S, Paus R. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol 2020; 29:703-725. [DOI: 10.1111/exd.14155] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Kevin McElwee
- Monasterium Laboratory Münster Germany
- Centre for Skin Sciences University of Bradford Bradford UK
- Department of Dermatology and Skin Science University of British Columbia Vancouver British Columbia Canada
| | - Amos Gilhar
- Laboratory for Skin Research Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Silvia Bulfone‐Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
| | - Ralf Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| |
Collapse
|
23
|
|
24
|
Eichwald T, Talbot S. Neuro-Immunity Controls Obesity-Induced Pain. Front Hum Neurosci 2020; 14:181. [PMID: 32581740 PMCID: PMC7295985 DOI: 10.3389/fnhum.2020.00181] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
The prevalence of obesity skyrocketed over the past decades to become a significant public health problem. Obesity is recognized as a low-grade inflammatory disease and is linked with several comorbidities such as diabetes, circulatory disease, common neurodegenerative diseases, as well as chronic pain. Adipocytes are a major neuroendocrine organ that continually, and systemically, releases pro-inflammatory factors. While the exact mechanisms driving obesity-induced pain remain poorly defined, nociceptor hypersensitivity may result from the systemic state of inflammation characteristic of obesity as well as weight surplus-induced mechanical stress. Obesity and pain also share various genetic mutations, lifestyle risk factors, and metabolic pathways. For instance, fat pads are often found hyper-innervated and rich in immune cell types of multiple origins. These immunocytes release cytokines, amplifying nociceptor function, which, in turn, via locally released neuropeptides, sustain immunocytes' function. Here, we posit that along with mechanical stress stemming from extra weight, the local neuro-immune interplay occurring within the fat pads maintains the state of chronic low-grade inflammation and heightens sensory hypersensitivity. Overall, stopping such harmful neuro-immune crosstalk may constitute a novel pathway to prevent obesity-associated comorbidities, including neuronal hypersensitivity.
Collapse
Affiliation(s)
- Tuany Eichwald
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Sebastien Talbot
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
25
|
Hashimoto T, Kursewicz CD, Fayne RA, Nanda S, Shah SM, Nattkemper L, Yokozeki H, Yosipovitch G. Mechanisms of Itch in Stasis Dermatitis: Significant Role of IL-31 from Macrophages. J Invest Dermatol 2020; 140:850-859.e3. [DOI: 10.1016/j.jid.2019.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022]
|
26
|
Gilhar A, Laufer-Britva R, Keren A, Paus R. Frontiers in alopecia areata pathobiology research. J Allergy Clin Immunol 2019; 144:1478-1489. [PMID: 31606262 DOI: 10.1016/j.jaci.2019.08.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
This current review explores selected and as yet insufficiently investigated frontiers in current alopecia areata (AA) pathobiology research, with an emphasis on potential "new" players in AA pathobiology that deserve more systematic exploration and therapeutic targeting. Indeed, new evidence suggests that CD8+ T cells, which have long been thought to be the central players in AA pathobiology, are not the only drivers of disease. Instead, subsets of natural killer (NK) and so-called "unconventional" T cells (invariant NK T cells, γδ T cells, classic NK cells, and type 1 innate lymphoid cells), all of which can produce large amounts of IFN-γ, might also drive AA pathobiology independent of classical, autoantigen-dependent CD8+ T-cell functions. Another important new frontier is the role of regulatory lymphocyte subsets, such as regulatory T cells, γδ regulatory T cells, NKT10 cells, and perifollicular mast cells, in maintaining physiologic hair follicle immune privilege (IP); the extent to which these functions are defective in patients with AA; and how this IP-protective role could be restored therapeutically in patients with established AA. Broadening our AA research horizon along the lines suggested above promises not only to open the door to innovative and even more effective immunotherapy strategies for AA but will also likely be relevant for other autoimmune disorders in which pathobiology, ectopic MHC class I expression, and IP collapse play an important role.
Collapse
Affiliation(s)
- Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ralf Paus
- Dr Philipp Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Fla; Dermatology Research Centre, University of Manchester and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| |
Collapse
|
27
|
Crosson T, Roversi K, Balood M, Othman R, Ahmadi M, Wang JC, Seadi Pereira PJ, Tabatabaei M, Couture R, Eichwald T, Latini A, Prediger RD, Rangachari M, Seehus CR, Foster SL, Talbot S. Profiling of how nociceptor neurons detect danger - new and old foes. J Intern Med 2019; 286:268-289. [PMID: 31282104 DOI: 10.1111/joim.12957] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The host evolves redundant mechanisms to preserve physiological processing and homeostasis. These functions range from sensing internal and external threats, creating a memory of the insult and generating reflexes, which aim to resolve inflammation. Impairment in such functioning leads to chronic inflammatory diseases. By interacting through a common language of ligands and receptors, the immune and sensory nervous systems work in concert to accomplish such protective functions. Whilst this bidirectional communication helps to protect from danger, it can contribute to disease pathophysiology. Thus, the somatosensory nervous system is anatomically positioned within primary and secondary lymphoid tissues and mucosa to modulate immunity directly. Upstream of this interplay, neurons detect danger, which prompts the release of neuropeptides initiating (i) defensive reflexes (ranging from withdrawal response to coughing) and (ii) chemotaxis, adhesion and local infiltration of immune cells. The resulting outcome of such neuro-immune interplay is still ill-defined, but consensual findings start to emerge and support neuropeptides not only as blockers of TH 1-mediated immunity but also as drivers of TH 2 immune responses. However, the modalities detected by nociceptors revealed broader than mechanical pressure and temperature sensing and include signals as various as cytokines and pathogens to immunoglobulins and even microRNAs. Along these lines, we aggregated various dorsal root ganglion sensory neuron expression profiling datasets supporting such wide-ranging sensing capabilities to help identifying new danger detection modalities of these cells. Thus, revealing unexpected aspects of nociceptor neuron biology might prompt the identification of novel drivers of immunity, means to resolve inflammation and strategies to safeguard homeostasis.
Collapse
Affiliation(s)
- T Crosson
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - K Roversi
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Balood
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Axe Neurosciences, Centre de recherche du CHU, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - R Othman
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - M Ahmadi
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - J-C Wang
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - M Tabatabaei
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - R Couture
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - T Eichwald
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - A Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - R D Prediger
- Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Rangachari
- Axe Neurosciences, Centre de recherche du CHU, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - C R Seehus
- FM Kirby Neurobiology Center, Children's Hospital, Boston, MA, USA
| | - S L Foster
- Depression Clinical Research Program, Massachusetts General Hospital, Boston, MA, USA
| | - S Talbot
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
28
|
Richmond JM, Strassner JP, Essien KI, Harris JE. T-cell positioning by chemokines in autoimmune skin diseases. Immunol Rev 2019; 289:186-204. [PMID: 30977191 PMCID: PMC6553463 DOI: 10.1111/imr.12762] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Autoimmune skin diseases are complex processes in which autoreactive cells must navigate through the skin tissue to find their targets. Regulatory T cells in the skin help to mitigate autoimmune inflammation and may in fact be responsible for the patchy nature of these conditions. In this review, we will discuss chemokines that are important for global recruitment of T cell populations to the skin during disease, as well as signals that fine-tune their localization and function. We will describe prototypical disease responses and chemokine families that mediate these responses. Lastly, we will include an overview of chemokine-targeting drugs that have been tested as new treatment strategies for autoimmune skin diseases.
Collapse
Affiliation(s)
- Jillian M Richmond
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| | - James P Strassner
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| | - Kingsley I Essien
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| | - John E Harris
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| |
Collapse
|
29
|
Lee Y, Lee W. Alopecia areata and itch: a retrospective analysis of 312 cases. J Eur Acad Dermatol Venereol 2019; 33:e317-e319. [DOI: 10.1111/jdv.15591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Y.B. Lee
- Department of Dermatology and Institute of Hair and Cosmetic Medicine Yonsei University Wonju College of Medicine Wonju Korea
| | - W.S. Lee
- Department of Dermatology and Institute of Hair and Cosmetic Medicine Yonsei University Wonju College of Medicine Wonju Korea
| |
Collapse
|
30
|
Juhasz M, Mesinkovska NA. Are Preferred Scalp Locations for Alopecia Areata Patches a Clue to Neuronal Etiology? Skin Appendage Disord 2019; 5:283-287. [PMID: 31559251 DOI: 10.1159/000497392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/30/2019] [Indexed: 11/19/2022] Open
Abstract
Background Alopecia areata (AA) is an autoimmune disease causing hair loss in 2% of the population. Anecdotally, hair specialists report that patches localize to the scalp periphery. Changes in sensory innervation and/or scalp vasculature may play a role in the development and localization of alopecic patches. Objective To evaluate the most common locations of initial alopecic scalp patches. Materials and Methods A retrospective chart review, with comprehensive evaluation of clinical photographs, was conducted from July 2016 to June 2018 to include AA patients (n = 112). Clinical data was collected on gender, age, race, time until presentation at the clinic, and areas of hair loss on initial presentation. Results The most common areas of initial AA patches in both females and males were the occiput (49 vs. 48.5%), parietal (46.9 vs. 21.2%), vertex (26.5 vs. 18.2%), and frontal (24.5 vs. 18.2%) regions; 26.8% of patients present with either alopecia totalis or universalis. Limitations This is a single-center study with underrepresentation of minority races. Conclusion AA patches most commonly present on the occiput of the scalp in both female and male patients. Cervical spine nerves C3 and C2 supply sensory innervation and the occipital artery supplies blood to this area.
Collapse
Affiliation(s)
- Margit Juhasz
- Department of Dermatology, University of California, Irvine, Irvine, California, USA
| | | |
Collapse
|
31
|
Turner CT, Lim D, Granville DJ. Granzyme B in skin inflammation and disease. Matrix Biol 2019; 75-76:126-140. [DOI: 10.1016/j.matbio.2017.12.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/30/2023]
|
32
|
Maeda T, Taniguchi M, Matsuzaki S, Shingaki K, Kanazawa S, Miyata S. Anti-Inflammatory Effect of Electroacupuncture in the C3H/Hej Mouse Model of Alopecia Areata. Acupunct Med 2018; 31:117-9. [DOI: 10.1136/acupmed-2012-010240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tameyasu Maeda
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Manabu Taniguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shinsuke Matsuzaki
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
| | - Kenta Shingaki
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shigeyuki Kanazawa
- Department of Plastic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shingo Miyata
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-sayama, Osaka, Japan
| |
Collapse
|
33
|
David Clark J, Tawfik VL, Tajerian M, Kingery WS. Autoinflammatory and autoimmune contributions to complex regional pain syndrome. Mol Pain 2018; 14:1744806918799127. [PMID: 30124090 PMCID: PMC6125849 DOI: 10.1177/1744806918799127] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Complex regional pain syndrome (CRPS) is a highly enigmatic syndrome typically developing after injury or surgery to a limb. Severe pain and disability are common among those with chronic forms of this condition. Accumulating evidence suggests that CRPS may involve both autoinflammatory and autoimmune components. In this review article, evidence for dysfunction of both the innate and adaptive immune systems in CRPS is presented. Findings from human studies in which cytokines and other inflammatory mediators were measured in the skin of affected limbs are discussed. Additional results from studies of mediator levels in animal models are evaluated in this context. Similarly, the evidence from human, animal, and translational studies of the production of autoantibodies and the potential targets of those antibodies is reviewed. Compelling evidence of autoinflammation in skin and muscle of the affected limb has been collected from CRPS patients and laboratory animals. Cytokines including IL-1β, IL-6, TNFα, and others are reliably identified during the acute phases of the syndrome. More recently, autoimmune contributions have been suggested by the discovery of self-directed pain-promoting IgG and IgM antibodies in CRPS patients and model animals. Both the autoimmune and the autoinflammatory components of CRPS appear to be regulated by neuropeptide-containing peripheral nerve fibers and the sympathetic nervous system. While CRPS displays a complex neuroimmunological pathogenesis, therapeutic interventions could be designed targeting autoinflammation, autoimmunity, or the neural support for these phenomena.
Collapse
Affiliation(s)
- J David Clark
- 1 Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,2 Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vivianne L Tawfik
- 2 Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Maral Tajerian
- 2 Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Wade S Kingery
- 3 Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| |
Collapse
|
34
|
Peters EMJ, Müller Y, Snaga W, Fliege H, Reißhauer A, Schmidt-Rose T, Max H, Schweiger D, Rose M, Kruse J. Hair and stress: A pilot study of hair and cytokine balance alteration in healthy young women under major exam stress. PLoS One 2017; 12:e0175904. [PMID: 28423056 PMCID: PMC5397031 DOI: 10.1371/journal.pone.0175904] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/02/2017] [Indexed: 12/25/2022] Open
Abstract
Mouse models show that experimental stress mimicking prolonged life-stress exposure enhances neurogenic inflammation, induces adaptive immunity cytokine-imbalance characterized by a shift to Type 1 T-helper cell cytokines and increases apoptosis of epithelial cells. This affects hair growth in otherwise healthy animals. In this study, we investigate whether a prolonged naturalistic life-stress exposure affects cytokine balance and hair parameters in healthy humans. 33 (18 exam, 15 comparison) female medical students with comparable sociobiological status were analyzed during a stressful final examination period, at three points in time (T) 12 weeks apart. T1 was before start of the learning period, T2 between the three-day written exam and an oral examination, and T3 after a 12 week rest and recovery from the stress of the examination period. Assessments included: self-reported distress and coping strategies (Perceived Stress Questionnaire [PSQ], Trier Inventory for the Assessment of Chronic Stress [TICS]), COPE), cytokines in supernatants of stimulated peripheral blood mononucleocytes (PBMCs), and trichogram (hair cycle and pigmentation analysis). Comparison between students participating in the final medical exam at T2 and non-exam students, revealed significantly higher stress perception in exam students. Time-wise comparison revealed that stress level, TH1/TH2 cytokine balance and hair parameters changed significantly from T1 to T2 in the exam group, but not the control. However, no group differences were found for cytokine balance or hair parameters at T2. The study concludes that in humans, naturalistic stress, as perceived during participation in a major medical exam, has the potential to shift the immune response to TH1 and transiently hamper hair growth, but these changes stay within a physiological range. Findings are instructive for patients suffering from hair loss in times of high stress. Replication in larger and more diverse sample populations is required, to assess suitability of trichogram analysis as biological outcome for stress studies.
Collapse
Affiliation(s)
- Eva M. J. Peters
- Universitätsmedizin Charité, Center 12 for Internal Medicine and Dermatology, Division for General Internal Medicine, Psychosomatics and Psychotherapy: Psycho-Neuro-Immunology Skin Research Group, Berlin, Germany
- Justus-Liebig-University, Department of Psychosomatics and Psychotherapy, Psychoneuroimmunology Laboratory, Gießen, Germany
- * E-mail:
| | - Yvonne Müller
- Justus-Liebig-University, Department of Psychosomatics and Psychotherapy, Psychoneuroimmunology Laboratory, Gießen, Germany
| | - Wenke Snaga
- Universitätsmedizin Charité, Center 12 for Internal Medicine and Dermatology, Division for General Internal Medicine, Psychosomatics and Psychotherapy: Psycho-Neuro-Immunology Skin Research Group, Berlin, Germany
| | - Herbert Fliege
- Foreign Office, Health Service, Psychosocial Counseling, Auswärtiges Amt, Berlin, Germany
| | - Anett Reißhauer
- Universitätsmedizin Charité, Center 12 for Internal Medicine and Dermatology, Division for Physical Medicine and Rehabilitation, Berlin, Germany
| | | | | | | | - Matthias Rose
- Universitätsmedizin Charité, Center 12 for Internal Medicine and Dermatology, Division for General Internal Medicine, Psychosomatics and Psychotherapy: Psycho-Neuro-Immunology Skin Research Group, Berlin, Germany
| | - Johannes Kruse
- Justus-Liebig-University, Department of Psychosomatics and Psychotherapy, Psychoneuroimmunology Laboratory, Gießen, Germany
| |
Collapse
|
35
|
Bertolini M, Pretzlaff M, Sulk M, Bähr M, Gherardini J, Uchida Y, Reibelt M, Kinori M, Rossi A, Bíró T, Paus R. Vasoactive intestinal peptide, whose receptor-mediated signalling may be defective in alopecia areata, provides protection from hair follicle immune privilege collapse. Br J Dermatol 2016; 175:531-41. [PMID: 27059672 DOI: 10.1111/bjd.14645] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alopecia areata (AA) is an autoimmune disorder whose pathogenesis involves the collapse of the relative immune privilege (IP) of the hair follicle (HF). Given that vasoactive intestinal peptide (VIP) is an immunoinhibitory neuropeptide released by perifollicular sensory nerve fibres, which play a role in IP maintenance, it may modulate human HF-IP and thus be therapeutically relevant for AA. OBJECTIVES To answer the following questions: Do human HFs express VIP receptors, and does their stimulation protect from or restore experimentally induced HF-IP collapse? Is VIP signalling defective in AA HFs? METHODS Firstly, VIP and VIP receptor (VPAC1, VPAC2) expression in human scalp HFs and AA skin was assessed. In HF organ culture, we then explored whether VIP treatment can restore and/or protect from interferon-γ-induced HF-IP collapse, assessing the expression of the key IP markers by quantitative (immuno-)histomorphometry. RESULTS Here we provide the first evidence that VIP receptors are expressed in the epithelium of healthy human HFs at the gene and protein level. Furthermore, VIP receptor protein expression, but not VIP(+) nerve fibres, is significantly downregulated in lesional hair bulbs of patients with AA, suggesting defects in VIP receptor-mediated signalling. Moreover, we show that VIP protects the HF from experimentally induced IP collapse in vitro, but does not fully restore it once collapsed. CONCLUSIONS These pilot data suggest that insufficient VIP receptor-mediated signalling may contribute to impairing HF-IP in patients with AA, and that VIP is a promising candidate 'HF-IP guardian' that may be therapeutically exploited to inhibit the progression of AA lesions.
Collapse
Affiliation(s)
- M Bertolini
- Department of Dermatology, University of Münster, Münster, Germany.
| | - M Pretzlaff
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - M Sulk
- Department of Dermatology, University of Münster, Münster, Germany
| | - M Bähr
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - J Gherardini
- Department of Dermatology, University of Münster, Münster, Germany
| | - Y Uchida
- Department of Dermatology, University of Münster, Münster, Germany.,Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - M Reibelt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - M Kinori
- Department of Ophthalmology, Sheba Medical Center, Tel Hashomer, Israel
| | - A Rossi
- Department of Internal Medicine and Medical Specialties, University 'La Sapienza', Rome, Italy
| | - T Bíró
- DE-MTA 'Lendület' Cellular Physiology Research Group, Departments of Immunology and Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - R Paus
- Department of Dermatology, University of Münster, Münster, Germany.,Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, U.K
| |
Collapse
|
36
|
Salem SA, Asaad MK, Elsayed SB, Sehsah HM. Evaluation of macrophage migration inhibitory factor (MIF) levels in serum and lesional skin of patients with alopecia areata. Int J Dermatol 2016; 55:1357-1361. [DOI: 10.1111/ijd.13344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/06/2016] [Accepted: 03/01/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Samar A. Salem
- Department of Dermatology, Venereology and Andrology; Faculty of Medicine; Ain Shams University; Cairo Egypt
| | - Marwa K. Asaad
- Department of Dermatology, Venereology and Andrology; Faculty of Medicine; Ain Shams University; Cairo Egypt
| | - Sherin B. Elsayed
- Department of Medical Microbiology and Immunology; Faculty of Medicine; Ain Shams University; Cairo Egypt
| | - Hend M. Sehsah
- Department of Dermatology, Venereology and Andrology; Faculty of Medicine; Ain Shams University; Cairo Egypt
| |
Collapse
|
37
|
Gilhar A, Schrum AG, Etzioni A, Waldmann H, Paus R. Alopecia areata: Animal models illuminate autoimmune pathogenesis and novel immunotherapeutic strategies. Autoimmun Rev 2016; 15:726-35. [PMID: 26971464 DOI: 10.1016/j.autrev.2016.03.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/02/2016] [Indexed: 01/13/2023]
Abstract
One of the most common human autoimmune diseases, alopecia areata (AA), is characterized by sudden, often persisting and psychologically devastating hair loss. Animal models have helped greatly to elucidate critical cellular and molecular immune pathways in AA. The two most prominent ones are inbred C3H/HeJ mice which develop an AA-like hair phenotype spontaneously or after experimental induction, and healthy human scalp skin xenotransplanted onto SCID mice, in which a phenocopy of human AA is induced by injecting IL-2-stimulated PBMCs enriched for CD56+/NKG2D+ cells intradermally. The current review critically examines the pros and cons of the available AA animal models and how they have shaped our understanding of AA pathobiology, and the development of new therapeutic strategies. AA is thought to arise when the hair follicle's (HF) natural immune privilege (IP) collapses, inducing ectopic MHC class I expression in the HF epithelium and autoantigen presentation to autoreactive CD8+ T cells. In common with other autoimmune diseases, upregulation of IFN-γ and IL-15 is critically implicated in AA pathogenesis, as are NKG2D and its ligands, MICA, and ULBP3. The C3H/HeJ mouse model was used to identify key immune cell and molecular principles in murine AA, and proof-of-principle that Janus kinase (JAK) inhibitors are suitable agents for AA management in vivo, since both IFN-γ and IL-15 signal via the JAK pathway. Instead, the humanized mouse model of AA has been used to demonstrate the previously hypothesized key role of CD8+ T cells and NKG2D+ cells in AA pathogenesis and to discover human-specific pharmacologic targets like the potassium channel Kv1.3, and to show that the PDE4 inhibitor, apremilast, inhibits AA development in human skin. As such, AA provides a model disease, in which to contemplate general challenges, opportunities, and limitations one faces when selecting appropriate animal models in preclinical research for human autoimmune diseases.
Collapse
Affiliation(s)
- Amos Gilhar
- Skin Research Laboratory, Faculty of Medicine, Technion - Israel Institute of Technology, Flieman Medical Center, PO Box 9649, Haifa, Israel.
| | - Adam G Schrum
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amos Etzioni
- Ruth Children Hospital, Haifa, Israel; Rappaport Medical School, Technion, Haifa, Israel
| | - Herman Waldmann
- Therapeutic Immunology Group, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ralf Paus
- Centre for Dermatology Research, Inst. of Inflammation and Repair, University of Manchester, Manchester, UK; Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
38
|
Kanti V, Nuwayhid R, Lindner J, Hillmann K, Bangemann N, Kleine-Tebbe A, Blume-Peytavi U, Garcia Bartels N. Evaluation of trichodynia (hair pain) during chemotherapy or tamoxifen treatment in breast cancer patients. J Eur Acad Dermatol Venereol 2015; 30:112-8. [DOI: 10.1111/jdv.13396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/24/2015] [Indexed: 12/19/2022]
Affiliation(s)
- V. Kanti
- Department of Dermatology and Allergy; Clinical Research Center for Hair and Skin Science; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - R. Nuwayhid
- Department of Dermatology and Allergy; Clinical Research Center for Hair and Skin Science; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - J. Lindner
- Department of Gynecology and Obstetrics; Ostalb-Hospital; Aalen Germany
| | - K. Hillmann
- Department of Dermatology and Allergy; Clinical Research Center for Hair and Skin Science; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - N. Bangemann
- Interdisciplinary Breast Center; Charité -Universitätsmedizin Berlin; Berlin Germany
| | | | - U. Blume-Peytavi
- Department of Dermatology and Allergy; Clinical Research Center for Hair and Skin Science; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - N. Garcia Bartels
- Department of Dermatology and Allergy; Clinical Research Center for Hair and Skin Science; Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
39
|
Sutherland L, Laschinger M, Syed ZU, Gaspari A. Treatment of Alopecia Areata With Topical Sensitizers. Dermatitis 2015; 26:26-31. [DOI: 10.1097/der.0000000000000094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Abstract
The autonomic nervous system affects glucose metabolism partly through its connection to the pancreatic islet. Since its discovery by Paul Langerhans, the precise innervation patterns of the islet has remained elusive, mainly because of technical limitations. Using 3-dimensional reconstructions of axonal terminal fields, recent studies have determined the innervation patterns of mouse and human islets. In contrast to the mouse islet, endocrine cells within the human islet are sparsely contacted by autonomic axons. Instead, the invading sympathetic axons preferentially innervate smooth muscle cells of blood vessels. This innervation pattern suggests that, rather than acting directly on endocrine cells, sympathetic nerves may control hormone secretion by modulating blood flow in human islets. In addition to autonomic efferent axons, islets also receive sensory innervation. These axons transmit sensory information to the brain but also have the ability to locally release neuroactive substances that have been suggested to promote diabetes pathogenesis. We discuss recent findings on islet innervation, the connections of the islet with the brain, and the role islet innervation plays during the progression of diabetes.
Collapse
Affiliation(s)
- Rayner Rodriguez-Diaz
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Rolf Luft Research Center for Diabetes & Endocrinology, Karolinska Institutet, Stockholm, SE-17177, Sweden; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Alejandro Caicedo
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
41
|
Abstract
Alopecia areata is a complex genetic, immune-mediated disease that targets anagen hair follicles. The disease affects children and adults and is characterized by round or oval patches of hair loss, loss of all scalp hair (alopecia totalis), body hair (alopecia universalis), or ophiasis pattern hair loss. Patients may also present with patchy loss in multiple hair-bearing areas. Commonly associated diseases include asthma, allergic rhinitis, atopic dermatitis, thyroid disease, and automimmune diseases, such as thyroiditis and vitiligo. Nail abnormalities may precede, follow, or occur concurrently with hair loss activity. Alopecia areata has no known age, race, or ethnic preponderance and in contrast to other autoimmune diseases such as thyroiditis or lupus, the hair follicle does not usually sustain permanent injury and maintains its potential to regrow hair. It is estimated that alopecia areata affects between six and seven million individuals in the United States. Genes, the immune and nervous systems have all been implicated in the pathogenesis of alopecia areata. Although many treatments are available, there is still no cure. Bolstered by new scientific and translational opportunities from recently published genome-wide association studies, an ambitious treatment development program has recently been initiated by the National Alopecia Areata Foundation.
Collapse
Affiliation(s)
- Maria K Hordinsky
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
42
|
Monteiro C, Dourado M, Matos M, Duarte I, Lamas S, Galhardo V, Lima D. Critical care and survival of fragile animals: The case of Prrxl1 knockout mice. Appl Anim Behav Sci 2014. [DOI: 10.1016/j.applanim.2014.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Complex changes in the apoptotic and cell differentiation programs during initiation of the hair follicle response to chemotherapy. J Invest Dermatol 2014; 134:2873-2882. [PMID: 24999588 PMCID: PMC4227948 DOI: 10.1038/jid.2014.267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 02/28/2014] [Accepted: 03/07/2014] [Indexed: 12/23/2022]
Abstract
Chemotherapy has severe side-effects for normal rapidly proliferating organs, such as hair follicle, and causes massive apoptosis in hair matrix keratinocytes followed by hair loss. To define the molecular signature of hair follicle response to chemotherapy, human scalp hair follicles cultured ex vivo were treated with doxorubicin and global microarray analysis was performed 3 hours after treatment. Microarray data revealed changes in expression of 504 genes in doxorubicin-treated hair follicles versus the controls. Among these genes, upregulations of several tumor necrosis factor family of apoptotic receptors (FAS, TRAIL receptors 1/2), as well as of a large number of the keratin-associated protein genes were seen after doxorubicin treatment. Hair follicle apoptosis induced by doxorubicin was significantly inhibited by either TRAIL neutralizing antibody or caspase 8 inhibitor, thus suggesting a novel role for TRAIL receptor signaling in mediating doxorubicin-induced hair loss. These data demonstrate that the early phase of the hair follicle response to doxorubicin includes upregulation of apoptosis-associated markers, as well as substantial re-organization of the terminal differentiation programs in hair follicle keratinocytes. These data provide an important platform for further studies towards the design of novel approaches for management of chemotherapy-induced hair loss.
Collapse
|
44
|
Blessing or curse? Proteomics in granzyme research. Proteomics Clin Appl 2014; 8:351-81. [DOI: 10.1002/prca.201300096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/29/2013] [Accepted: 12/21/2013] [Indexed: 01/08/2023]
|
45
|
Mardaryev AN, Gdula MR, Yarker JL, Emelianov VU, Emelianov VN, Poterlowicz K, Sharov AA, Sharova TY, Scarpa JA, Joffe B, Solovei I, Chambon P, Botchkarev VA, Fessing MY. p63 and Brg1 control developmentally regulated higher-order chromatin remodelling at the epidermal differentiation complex locus in epidermal progenitor cells. Development 2014; 141:101-11. [PMID: 24346698 DOI: 10.1242/dev.103200] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chromatin structural states and their remodelling, including higher-order chromatin folding and three-dimensional (3D) genome organisation, play an important role in the control of gene expression. The role of 3D genome organisation in the control and execution of lineage-specific transcription programmes during the development and differentiation of multipotent stem cells into specialised cell types remains poorly understood. Here, we show that substantial remodelling of the higher-order chromatin structure of the epidermal differentiation complex (EDC), a keratinocyte lineage-specific gene locus on mouse chromosome 3, occurs during epidermal morphogenesis. During epidermal development, the locus relocates away from the nuclear periphery towards the nuclear interior into a compartment enriched in SC35-positive nuclear speckles. Relocation of the EDC locus occurs prior to the full activation of EDC genes involved in controlling terminal keratinocyte differentiation and is a lineage-specific, developmentally regulated event controlled by transcription factor p63, a master regulator of epidermal development. We also show that, in epidermal progenitor cells, p63 directly regulates the expression of the ATP-dependent chromatin remodeller Brg1, which binds to distinct domains within the EDC and is required for relocation of the EDC towards the nuclear interior. Furthermore, Brg1 also regulates gene expression within the EDC locus during epidermal morphogenesis. Thus, p63 and its direct target Brg1 play an essential role in remodelling the higher-order chromatin structure of the EDC and in the specific positioning of this locus within the landscape of the 3D nuclear space, as required for the efficient expression of EDC genes in epidermal progenitor cells during skin development.
Collapse
|
46
|
Abstract
Hair loss is a topic of enormous public interest and understanding the pathophysiology and treatment of various alopecias will likely make a large impact on patients' lives. The investigation of alopecias also provides important insight in the basic sciences; for instance, the abundance of stem cell populations and regenerative cycles that characterize a hair follicle render it an excellent model for the study of stem cell biology. This review seeks to provide a concise summary of the major alopecias with regard to presentation and management, and correlate these to recent advances in relevant research on pathogenesis.
Collapse
Affiliation(s)
- Ji Qi
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | | |
Collapse
|
47
|
Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 2014; 94:265-301. [PMID: 24382888 DOI: 10.1152/physrev.00031.2013] [Citation(s) in RCA: 457] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists.
Collapse
|
48
|
Paus R, Bertolini M. The role of hair follicle immune privilege collapse in alopecia areata: status and perspectives. J Investig Dermatol Symp Proc 2013; 16:S25-7. [PMID: 24326544 DOI: 10.1038/jidsymp.2013.7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alopecia areata (AA) may represent a CD8+T cell-mediated, organ-specific autoimmune disease in which as yet elusive autoantigens are recognized, once they become exposed by ectopic major histocompatibility complex class I expression by anagen hair follicles (HFs) that have lost their relative immune privilege (IP). On this basis, AA research is chiefly challenged with identifying the autoreactive CD8+T cells and their cognate autoantigens as well as key inducers of HF-IP collapse and "HF-IP guardians" that prevent and/or can restore IP collapse. However, natural killer group 2D-positive (NKG2D+) cells (incl. NK, NKT, and CD8+T cells) and NKG2D-activating ligands from the MICA (MHC I-related chain A) family may also have a key role in AA pathogenesis, as a massive infiltrate of IFN-γ-secreting NKG2D+ cells alone suffices to induce the AA phenotype. Therefore, we speculate that AA may represent a stereotypic, but distinct HF response pattern to inflammatory insults associated with HF-IP collapse.
Collapse
Affiliation(s)
- Ralf Paus
- 1] Department of Dermatology, University of Lübeck, Lübeck, Germany [2] Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | | |
Collapse
|
49
|
Indications for peripheral and central sensitization in patients with chronic scalp pain (trichodynia). Clin J Pain 2013; 29:417-24. [PMID: 23246999 DOI: 10.1097/ajp.0b013e31825e4437] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The underlying mechanism of trichodynia (scalp/hair pain, is unknown). The aim of this study was to characterize chronic trichodynia and to conduct, for the first time, sensory testing in patients with trichodynia to learn about possible underlying mechanisms. METHODS Participants were 16 trichodynia patients and 19 healthy controls. Participants underwent testing of touch and pressure-pain threshold as well as allodynia in painful and pain-free scalp sites and in the hands (intact remote region). A trichogram (hair test) was conducted on painful and pain-free scalp sites to evaluate hair cycle abnormalities. The chronic pain was characterized as well. RESULTS Painful sites were characterized by decreased thresholds for light touch (P<0.01) and pressure pain (P<0.01) and high rates of static allodynia (94%) compared with adjacent pain-free sites and controls. A significant negative correlation was found between chronic pain intensity and scalp thresholds. Spontaneous and evoked pain existed only in scalp sites with hair cycle abnormalities. In addition, pressure-pain threshold in the hands was significantly lower in trichodynia patients compared with controls. DISCUSSION The cranial hyperalgesia and allodynia, the generalized hyperalgesia, and the correlation between hyperalgesia and chronic pain suggest that trichodynia is related with both peripheral and central sensitization, respectively. The coexistence of hair cycle abnormalities and chronic pain might suggest a common denominator for both phenomena, possibly mediated by proinflammatory agents. Clinical implications are discussed.
Collapse
|
50
|
McElwee KJ, Gilhar A, Tobin DJ, Ramot Y, Sundberg JP, Nakamura M, Bertolini M, Inui S, Tokura Y, Jr LEK, Duque-Estrada B, Tosti A, Keren A, Itami S, Shoenfeld Y, Zlotogorski A, Paus R. What causes alopecia areata? Exp Dermatol 2013; 22:609-26. [PMID: 23947678 PMCID: PMC4094373 DOI: 10.1111/exd.12209] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pathobiology of alopecia areata (AA), one of the most frequent autoimmune diseases and a major unsolved clinical problem, has intrigued dermatologists, hair biologists and immunologists for decades. Simultaneously, both affected patients and the physicians who take care of them are increasingly frustrated that there is still no fully satisfactory treatment. Much of this frustration results from the fact that the pathobiology of AA remains unclear, and no single AA pathogenesis concept can claim to be universally accepted. In fact, some investigators still harbour doubts whether this even is an autoimmune disease, and the relative importance of CD8(+) T cells, CD4(+) T cells and NKGD2(+) NK or NKT cells and the exact role of genetic factors in AA pathogenesis remain bones of contention. Also, is AA one disease, a spectrum of distinct disease entities or only a response pattern of normal hair follicles to immunologically mediated damage? During the past decade, substantial progress has been made in basic AA-related research, in the development of new models for translationally relevant AA research and in the identification of new therapeutic agents and targets for future AA management. This calls for a re-evaluation and public debate of currently prevalent AA pathobiology concepts. The present Controversies feature takes on this challenge, hoping to attract more skin biologists, immunologists and professional autoimmunity experts to this biologically fascinating and clinically important model disease.
Collapse
Affiliation(s)
- K. J. McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - A. Gilhar
- Laboratory for Skin, Research, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel Marta Bertolini
| | - D. J. Tobin
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Y. Ramot
- Department of Dermatology, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | - J. P. Sundberg
- The Jackson Laboratory, Bar Harbor, ME, USA; Division of Dermatology, Skin Disease Research Center, Vanderbilt University, Nashville, TN, USA
| | - M. Nakamura
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan Yoshiki Tokura
| | - M. Bertolini
- Department of Dermatology, University of Lübeck, Germany Yehuda Shoenfeld
| | - S. Inui
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Y. Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - L. E. King Jr
- The Jackson Laboratory, Bar Harbor, ME, USA; Division of Dermatology, Skin Disease Research Center, Vanderbilt University, Nashville, TN, USA
| | - B. Duque-Estrada
- Instituto de Dermatologia Prof. Rubem David Azulay, Rio de Janeiro, Brazil Antonella Tosti
| | - A Tosti
- Department of Dermatology, University of Miami, Miami, FL, USA
| | - A. Keren
- Laboratory for Skin, Research, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel Marta Bertolini
| | - S. Itami
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Y. Shoenfeld
- Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - A. Zlotogorski
- Department of Dermatology, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | - R. Paus
- Department of Dermatology, University of Lübeck, Germany; Institute of Inflammation and Repair, University of Manchester, Manchester, UK ,
| |
Collapse
|