1
|
Krasniqi D, Uka A, Rexhbeqaj E, Beretta G, Petreska Stanoeva J, Qazimi B, Daci A. Vasorelaxant Effects of Ethanolic Extract from Cydonia oblonga Mill . Leaves on Isolated Rat Thoracic Aorta and Potential Mechanism of Action. Nat Prod Commun 2024; 19. [DOI: 10.1177/1934578x241282441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Objective: Cydonia oblonga Mill . leaves ethanolic extract (CydOL-EE) has shown different cardioprotective effects. However, no previous studies investigated its direct effect on the vascular smooth muscle tone. Therefore, the study aimed to test the potential vasodilator activity of CydOL-EE in ex-vivo rat thoracic aorta preparations with an additional investigation of its mechanistic effects. Methods: CydOL-EE phytochemical profile was first investigated by HPLC-DAD-ESI-MS/MS and then tested for the vasorelaxation/vasoreactivity effects in rat aortic rings. The NO synthase inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME) and cyclic guanosine monophosphate inhibitor 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) were used to explore of the involvement of NO-dependent pathways. Results: Chromatographic analysis of CydOL-EE revealed the presence of six flavonols and seven hydroxycinnamic acids. Moreover, CydOL-EE showed a decrease in vasoreactivity caused by dose-dependent phenylephrine (PE) (Control, Emax = 104.29 ± 3.67 vs CydOL-EE, Emax = 70.73 ± 3.67, P < .0001) and a direct relaxing activity to precontraction with PE (Emax = 79.63 ± 3.67%). These responses were abolished during e-NOS inhibition, demonstrating that the mechanism of action was predominately controlled by the participation of an endothelium-dependent system. Conclusion: The results of our study show that CydO-EE demonstrates vasorelaxation and reduction of vasoreactivity through a NO-dependent pathway. These findings provide scientific evidence for further understanding of CydOL-EE use in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Donjeta Krasniqi
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Albina Uka
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Era Rexhbeqaj
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Giangiacomo Beretta
- Department of Environmental Science, Università degli Studi di Milano, Milan, Italy
| | - Jasmina Petreska Stanoeva
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Skopje, R.N. Macedonia
| | - Bujar Qazimi
- Faculty of Pharmacy, UBT-Higher Education Institution, Prishtina, Kosovo
| | - Armond Daci
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| |
Collapse
|
2
|
Abdelnaby EA. Testicular haemodynamics, plasma testosterone and oestradiol concentrations, and serum nitric oxide levels in the Egyptian buffalo bull after a single administration of human chorionic gonadotropin. Reprod Domest Anim 2022; 57:754-760. [PMID: 35352415 DOI: 10.1111/rda.14117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/28/2022] [Indexed: 04/13/2024]
Abstract
This current study aimed for the first time to evaluate the effect of a single intravenous administration of human chorionic gonadotropin hormone (hCG) on the testicular artery haemodynamics measurements (resistance [RI], and pulsatility indices [PI]), plasma steroids (estradiol-17β and testosterone) and nitric oxide (NO) levels in buffalo bulls. Twelve Egyptian buffalo bulls weighted 450 ± 20 kg were randomly divided into the hCG group (n = 6) and injected a single dose with Ovogest (EPIFASI; 5,000 IU, iv), whereas the others (n = 6) were injected with normal saline and served as controls. Doppler evaluation and blood sampling were performed just before the administration (hour 0) and at 1, 2, 4, 6, 8, 10, 24 and 28 hr after administration. Bulls in the control group did not show any alterations in hormonal levels and blood flow parameters (p > .05). In the hCG group, RI was declined (p < .05) in 6 hr post-administration (0.31 ± 0.01 versus 0.45 ± 0.01), while PI was declined (p < .05) later in 10 hr (0.74 ± 0.01 versus 1.23 ± 0.02). Additionally, testicular blood flow was increased (p < .05) 8 hr (42.02 ± 1.02 ml/min/100 g versus 31.34 ± 0.88 ml/min/100 g) after administration. Testosterone and NO levels were (p < .05) increased at 4 and 6 hr post-administration (3.55 ± 0.03 ng/ml versus 2.84 ± 0.01 ng/ml, and 55.32 ± 4.25 µmol/L versus 32.21 ± 1.55 µmol/L), whereas oestradiol levels were elevated (p < .05) in 6 hr (31.25 ± 0.08 pg/ml) only post-administration then declined. In conclusion, the single intravenous administration of hCG triggered many alterations in the supratesticular artery vascularization and hormonal profile that could affect positively on steroidogenesis and testicular function in buffalo bull.
Collapse
Affiliation(s)
- Elshymaa A Abdelnaby
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Li Z, Zhang F, Wang S, Xiao H, Wang J, Li X, Yang H. Endothelium-dependent vasorelaxant effects of praeruptorin a in isolated rat thoracic aorta. Bioengineered 2022; 13:10038-10046. [PMID: 35416124 PMCID: PMC9162007 DOI: 10.1080/21655979.2022.2062979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Praeruptorin A (PA) is a natural coumarin compound from the roots of Radix Peucedani and is commonly used in the treatment of certain respiratory diseases and hypertension. Although previous studies identified relaxant effects of PA on tracheal and arterial preparations, little is known about its vasodilative effects and underlying mechanisms. Here, an organ bath system and tension recording methods were used to prepare and analyze isolated rat thoracic aorta artery rings. Aorta artery rings were pre-contracted with phenylephrine and then incubated with PA, and the possible mechanism of relaxation was investigated by adding inhibitors of nitric oxide synthase (NG-nitro-L-arginine methyl ester, L-NAME), endothelial nitric oxide synthase (L-NG-nitroarginine, L-NNA), cyclooxygenase (indomethacin), guanylyl cyclase (1 H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one, ODQ), and KCa channels (tetraethylammonium, TEA). Our study showed that PA-induced vasodilation was blocked by L-NAME, L-NNA, and ODQ, while CaCl2-induced vasoconstriction was countered by PA. Thus, PA may exert a vasodilatory effect by influencing the amounts of endothelium-derived relaxing factors through endothelial-dependent NO-cGMP and prostacyclin pathways (such as NO and prostacyclin 2). In the rat thoracic aorta, PA reduces vasoconstriction by inhibiting Ca2+ inflow.
Collapse
Affiliation(s)
- Zhenkun Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing Big Brand League Technology Consulting Co., Ltd, Beijing, China
| | - Fengrong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shicong Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Honghe Xiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyi Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Jiang S, Chen G, Yang Z, Wang D, Lu Y, Zhu L, Wang X. Testosterone attenuates hypoxia-induced hypertension by affecting NRF1-mediated transcriptional regulation of ET-1 and ACE. Hypertens Res 2021; 44:1395-1405. [PMID: 34257425 DOI: 10.1038/s41440-021-00703-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/08/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Hypertension induced by hypoxia at high altitude is one of the typical symptoms of high-altitude reactions (HARs). Emerging evidence indicates that endothelial abnormalities, including increases in angiotensin-2 (Ang-2) and endothelin-1 (ET-1), are closely associated with hypertension. Thus, low blood oxygen-induced endothelial dysfunction through acceleration of Ang-2 and ET-1 synthesis may alleviate HARs. In this study, we investigated the effects of hypoxia on rat blood pressure (BP) and endothelial injury. We found that BP increased by 10 mmHg after treatment with 10% O2 (~5500 m above sea level) for 24 h. Consistently, serum Ang-2 and ET-1 levels were increased along with decreases in NO levels. In endothelial cells, angiotensin-1-converting enzyme (ACE) and ET-1 expression levels were upregulated. Interestingly, nuclear respiratory factor 1 (NRF1) levels were also upregulated, consistent with the changes in ACE and ET-1 levels. We further demonstrated that NRF1 transcriptionally activated ACE and ET-1 by directly binding to their promoter regions, suggesting that the endothelial cell dysfunction induced by hypoxia was due to NRF1-dependent upregulation of ACE and ET-1. Surprisingly, testosterone supplementation showed significant protective effects on BP, while castration induced even higher BPs in rats exposed to hypoxia. We further showed that physiological testosterone repressed NRF1 expression in vivo and in vitro and thereby reduced Ang-2 and ET-1 levels, which was dependent on hypoxia. In summary, we have identified that physiological testosterone protects against hypoxia-induced hypertension through inhibition of NRF1, which transcriptionally regulates ACE and ET-1 expression.
Collapse
Affiliation(s)
- Shan Jiang
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, Jiangsu, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Guijuan Chen
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, Jiangsu, China
| | - Zhihui Yang
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, Jiangsu, China
| | - Dan Wang
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, Jiangsu, China
| | - Yapeng Lu
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, Jiangsu, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, Jiangsu, China. .,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019, Jiangsu, China.
| | - Xueting Wang
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
5
|
Abstract
Cardiovascular diseases (CVD) constitute the major cause of death worldwide and show a higher prevalence in the adult population. The human umbilical cord consistsof two arteries and one vein, both composed of three tunics. The tunica intima, lined with endothelial cells, regulates vascular tone through the production/release of vasoregulatory substances. These substances can be vasoactive factors released by endothelial cells (ECs) that cause vasodilation (NO, PGI2, EDHF, and Bradykinin) or vasoconstriction (ET1, TXA2, and Ang II) depending on the cell type (ECs or SMC) that reacts to the stimulus. Vascular studies using ECs are important for the analysis of cardiovascular diseases since endothelial dysfunction is an important CVD risk factor. In this paper, we will address the morphological characteristics of the human umbilical cord and its component vessels. the constitution of the vascular endothelium, and the evolution of human umbilical cord-derived endothelial cells when isolated. Moreover, the role played by the endothelium in the vasomotor tone regulation, and how it may be associated with the existence of CVD, were discussed.
Collapse
|
6
|
Zhang J, Yuan HK, Chen S, Zhang ZR. Detrimental or beneficial: Role of endothelial ENaC in vascular function. J Cell Physiol 2021; 237:29-48. [PMID: 34279047 DOI: 10.1002/jcp.30505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
In the past, it was believed that the expression of the epithelial sodium channel (ENaC) was restricted to epithelial tissues, such as the distal nephron, airway, sweat glands, and colon, where it is critical for sodium homeostasis. Over the past two decades, this paradigm has shifted due to the finding that ENaC is also expressed in various nonepithelial tissues, notably in vascular endothelial cells. In this review, the recent findings of the expression, regulation, and function of the endothelial ENaC (EnNaC) are discussed. The expression of EnNaC subunits is reported in a variety of endothelial cell lines and vasculatures, but this is controversial across different species and vessels and is not a universal finding in all vascular beds. The expression density of EnNaC is very faint compared to ENaC in the epithelium. To date, little is known about the regulatory mechanism of EnNaC. Through it can be regulated by aldosterone, the detailed downstream signaling remains elusive. EnNaC responds to increased extracellular sodium with the feedforward activation mechanism, which is quite different from the Na+ self-inhibition mechanism of ENaC. Functionally, EnNaC was shown to be a determinant of cellular mechanics and vascular tone as it can sense shear stress, and its activation or insertion into plasma membrane causes endothelial stiffness and reduced nitric oxide production. However, in some blood vessels, EnNaC is essential for maintaining the integrity of endothelial barrier function. In this context, we discuss the possible reasons for the distinct role of EnNaC in vasculatures.
Collapse
Affiliation(s)
- Jun Zhang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Kai Yuan
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Chen
- Department of Biopharmaceutical Sciences, School of Pharmacy, Harbin Medical University (Daqing), Daqing, China
| | - Zhi-Ren Zhang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| |
Collapse
|
7
|
Obesity-associated cardiovascular risk in women: hypertension and heart failure. Clin Sci (Lond) 2021; 135:1523-1544. [PMID: 34160010 DOI: 10.1042/cs20210384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
The pathogenesis of obesity-associated cardiovascular diseases begins long prior to the presentation of a cardiovascular event. In both men and women, cardiovascular events, and their associated hospitalizations and mortality, are often clinically predisposed by the presentation of a chronic cardiovascular risk factor. Obesity increases the risk of cardiovascular diseases in both sexes, however, the clinical prevalence of obesity, as well as its contribution to crucial cardiovascular risk factors is dependent on sex. The mechanisms via which obesity leads to cardiovascular risk is also discrepant in women between their premenopausal, pregnancy and postmenopausal phases of life. Emerging data indicate that at all reproductive statuses and ages, the presentation of a cardiovascular event in obese women is strongly associated with hypertension and its subsequent chronic risk factor, heart failure with preserved ejection fraction (HFpEF). In addition, emerging evidence indicates that obesity increases the risk of both hypertension and heart failure in pregnancy. This review will summarize clinical and experimental data on the female-specific prevalence and mechanisms of hypertension and heart failure in women across reproductive stages and highlight the particular risks in pregnancy as well as emerging data in a high-risk ethnicity in women of African ancestry (AA).
Collapse
|
8
|
Faulkner JL, Harwood D, Kennard S, Antonova G, Clere N, Belin de Chantemèle EJ. Dietary sodium restriction sex specifically impairs endothelial function via mineralocorticoid receptor-dependent reduction in NO bioavailability in Balb/C mice. Am J Physiol Heart Circ Physiol 2021; 320:H211-H220. [PMID: 33095056 PMCID: PMC7847080 DOI: 10.1152/ajpheart.00413.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
Recent findings from our group demonstrated that females exhibit higher endothelial mineralocorticoid receptor (MR) expression than males, which predisposes them to aldosterone-mediated endothelial dysfunction in the context of metabolic disorders. However, whether the endothelium of female mice presents a higher propensity to MR-mediated dysfunction than that of males in the absence of comorbidities remains unknown. We therefore sought to investigate whether increasing aldosterone production endogenously with sodium restriction impairs endothelial function in otherwise healthy female mice. We fed male and female Balb/C mice a normal (0.4% NaCl; NSD) or sodium-restricted diet (0.05% NaCl; SRD) for 4 wk. Females exhibited higher baseline endothelial function (relaxation to acetylcholine) and lower vascular contractility (constriction to phenylephrine, serotonin, and KCl). However, SRD impaired endothelial-dependent relaxation and increased vascular contractility in female mice, effectively ablating the baseline sex difference. Female sex also increased baseline adrenal CYP11B2 expression; however, SRD significantly enhanced CYP11B2 expression in male and female mice and ablated the sex difference. Nitric oxide synthase (NOS) inhibition with Nω-nitro-l-arginine methyl ester hydrochloride eliminated both sex as well as diet-induced differences in endothelial dysfunction. In accordance, females demonstrated higher vascular endothelial NOS expression at baseline, which SRD significantly decreased. In addition, SRD diminished vascular NOX4 expression in female mice only. MR blockade with spironolactone-protected female mice from decreases in endothelial-dependent relaxation but not increases in vascular contractility. Utilizing sodium restriction as a method to increase plasma aldosterone levels in healthy female mice, we demonstrated that female mice are more susceptible to vascular damage via MR activation in the vascular endothelium only.NEW & NOTEWORTHY Female sex confers improved endothelial relaxation and vascular constriction responses in female Balb/C mice compared with males under baseline conditions. Sodium restriction impairs endothelial function, which is nitric oxide dependent, and increases vascular contractility in association with reduced vascular endothelial nitric oxide synthase and NOX4 expression in female mice ablating the baseline sex difference. Mineralocorticoid receptor antagonism ablates sodium restriction-induced endothelial dysfunction, but not increased vascular contractility, in female mice.
Collapse
Affiliation(s)
- Jessica L Faulkner
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Daisy Harwood
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Simone Kennard
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Galina Antonova
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Nicolas Clere
- Micro and Nanomédecines Translationelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, Université Bretagne Loire, Angers, France
| | - Eric J Belin de Chantemèle
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Cardiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
9
|
Faulkner JL, Lluch E, Kennard S, Antonova G, Jaffe IZ, Belin de Chantemèle EJ. Selective deletion of endothelial mineralocorticoid receptor protects from vascular dysfunction in sodium-restricted female mice. Biol Sex Differ 2020; 11:64. [PMID: 33228767 PMCID: PMC7685592 DOI: 10.1186/s13293-020-00340-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background Recent evidence by our laboratory demonstrates that women and female mice endogenously express higher endothelial mineralocorticoid receptor (ECMR) than males. Mounting clinical evidence also indicates that aldosterone production is higher in pathological conditions in females compared to males. However, the role for increased activation of ECMR by aldosterone in the absence of a comorbid condition is yet to be explored. The current study hypothesized that increased ECMR activation induced by elevated aldosterone production predisposes healthy female mice to endothelial dysfunction. Method Vascular reactivity was assessed in aortic rings from wild-type (WT) and ECMR KO (KO) mice fed either a normal salt (NSD, 0.4% NaCl) or sodium-restricted diet (SRD, 0.05% NaCl) for 28 days. Results SRD elevated plasma aldosterone levels as well as adrenal CYP11B2 and angiotensin II type 1 receptor (AT1R) expressions in female, but not male, WT mice. In baseline conditions (NSD), endothelial function, assessed by vascular relaxation to acetylcholine, was higher while vascular contractility to phenylephrine, serotonin, and KCl lower in female than male WT mice. SRD impaired endothelial function and increased vascular contractility in female, but not male, WT mice effectively ablating the baseline sex differences. NOS inhibition with LNAME ablated endothelial relaxation to a higher extent in male than female mice on NSD and ablated differences in acetylcholine relaxation responses between NSD- and SRD-fed females, indicating a role for NO in SRD-mediated endothelial function. In association, SRD significantly reduced vascular NOX4 expression in female, but not male, mice. Lastly, selective deletion of ECMR protected female mice from SRD-mediated endothelial dysfunction and increased vascular contractility. Conclusion Collectively, these data indicate that female mice develop aldosterone-induced endothelial dysfunction via endothelial MR-mediated reductions in NO bioavailability. In addition, these data support a role for ECMR to promote vascular contractility in female mice in response to sodium restriction.
Collapse
Affiliation(s)
- Jessica L Faulkner
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912, USA.
| | - Emily Lluch
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Simone Kennard
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Galina Antonova
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Eric J Belin de Chantemèle
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912, USA.,Department of Cardiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
10
|
Shabbir A, Rathod KS, Khambata RS, Ahluwalia A. Sex Differences in the Inflammatory Response: Pharmacological Opportunities for Therapeutics for Coronary Artery Disease. Annu Rev Pharmacol Toxicol 2020; 61:333-359. [PMID: 33035428 DOI: 10.1146/annurev-pharmtox-010919-023229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coordinated molecular responses are key to effective initiation and resolution of both acute and chronic inflammation. Vascular inflammation plays an important role in initiating and perpetuating atherosclerotic disease, specifically at the site of plaque and subsequent fibrous cap rupture. Both men and women succumb to this disease process, and although management strategies have focused on revascularization and pharmacological therapies in the acute situation to reverse vessel closure and prevent thrombogenesis, data now suggest that regulation of host inflammation may improve both morbidity and mortality, thus supporting the notion that prevention is better than cure. There is a clear sex difference in the incidence of vascular disease, and data confirm biological differences in inflammatory initiation and resolution between men and women. This article reviews contemporary opinions describing the sex difference in the initiation and resolution of inflammatory responses, with a view to explore potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Asad Shabbir
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| | - Krishnaraj Sinhji Rathod
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| | - Rayomand Syrus Khambata
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| | - Amrita Ahluwalia
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| |
Collapse
|
11
|
Marchio P, Guerra-Ojeda S, Aldasoro M, Valles SL, Martín-Gonzalez I, Martínez-León JB, Mauricio MD, Vila JM. Relaxant and antiadrenergic effects of ranolazine in human saphenous vein. Eur J Cardiothorac Surg 2020; 58:277-285. [PMID: 32068785 DOI: 10.1093/ejcts/ezaa034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Ranolazine improves vascular function in animal models. We evaluate the effects of ranolazine on vascular function and adrenergic response in human saphenous vein. METHODS Rings from 53 patients undergoing coronary artery bypass grafting were mounted in organ baths. Concentration-response curves to ranolazine were constructed in rings precontracted with phenylephrine, endothelin-1, vasopressin, KCl and the thromboxane A2 analogue U-46619. In rings precontracted with phenylephrine, relaxation to ranolazine was tested in the absence and presence of endothelial factors inhibitors, K+ channel blockers and verapamil. The effects of ranolazine on frequency-response and concentration-response curves to phenylephrine were performed in the absence and presence of endothelial factors inhibitors and K+ channel blockers. Endothelial nitric oxide synthase, α1 adrenergic receptor and large conductance Ca2+-activated K+ channel protein expressions were measured by Western blotting. RESULTS Ranolazine (10-9-10-4 M) produced a concentration-dependent relaxation only in rings precontracted with phenylephrine that was reduced by endothelial denudation, NG-nitro-l-arginine methyl ester (10-4 M), charybdotoxin (10-7 M) and verapamil (10-6 M). Ranolazine diminished adrenergic contractions induced by electrical field stimulation (2-4 Hz) and phenylephrine (10-9-10-5 M) that were prevented by tetraethylammonium (10-3 M) and charybdotoxin (10-7 M). Ranolazine significantly decreased α1 adrenergic receptor and increased large conductance Ca2+-activated K+ channel protein expression in the saphenous vein. CONCLUSIONS Ranolazine diminishes the adrenergic vasoconstriction, acting as α1 antagonist, and by increasing large conductance Ca2+-activated K+ channel involvement. The relaxant effects of ranolazine are partially mediated by endothelial nitric oxide, large conductance Ca2+-activated K+ channels and the blockade of voltage-dependent Ca2+ channels.
Collapse
Affiliation(s)
- Patricia Marchio
- Department of Physiology, School of Medicine, University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Sol Guerra-Ojeda
- Department of Physiology, School of Medicine, University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Martín Aldasoro
- Department of Physiology, School of Medicine, University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Soraya Lilian Valles
- Department of Physiology, School of Medicine, University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Iván Martín-Gonzalez
- Department of Cardiovascular Surgery, University Hospital of Vinalopo, Elche, Spain.,Department of Surgery, School of Medicine, University of Valencia, Valencia, Spain
| | - Juan Bautista Martínez-León
- Department of Surgery, School of Medicine, University of Valencia, Valencia, Spain.,Department of Cardiac Surgery, University General Hospital of Valencia, Valencia, Spain
| | - Maria Dolores Mauricio
- Department of Physiology, School of Medicine, University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Jose Maria Vila
- Department of Physiology, School of Medicine, University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| |
Collapse
|
12
|
Cao LH, Lee HS, Quan ZS, Lee YJ, Jin Y. Vascular Protective Effects of Xanthotoxin and Its Action Mechanism in Rat Aorta and Human Vascular Endothelial Cells. J Vasc Res 2020; 57:313-324. [PMID: 32726786 DOI: 10.1159/000509112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/03/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Xanthotoxin (XAT) is a linear furanocoumarin mainly extracted from the plants Ammi majus L. XAT has been reported the apoptosis of tumor cells, anti-convulsant, neuroprotective effect, antioxidative activity, and vasorelaxant effects. This study aimed to investigate the vascular protective effects and underlying molecular mechanisms of XAT. METHODS XAT's activity was studied in rat thoracic aortas, isolated with aortic rings, and human umbilical vein endothelial cells (HUVECs). RESULTS XAT induced endothelium-dependent vasodilation in a concentration-dependent manner in the isolated rat thoracic aortas. Removal of endothelium or pretreatment of aortic rings with L-NAME, 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one, and wortmannin significantly inhibited XAT-induced relaxation. In addition, treatment with thapsigargin, 2-aminoethyl diphenylborinate, Gd3+, and 4-aminopyridine markedly attenuated the XAT-induced vasorelaxation. XAT increased nitric oxide production and Akt- endothelial NOS (eNOS) phosphorylation in HUVECs. Moreover, XAT attenuated the expression of TNF-α-induced cell adhesion molecules such as intercellular adhesion molecule, vascular cell adhesion molecule-1, and E-selectin. However, this effect was attenuated by the eNOS inhibitors L-NAME and asymmetric dimethylarginine. CONCLUSIONS This study suggests that XAT induces vasorelaxation through the Akt-eNOS-cGMP pathway by activating the KV channel and inhibiting the L-type Ca2+ channel. Furthermore, XAT exerts an inhibitory effect on vascular inflammation, which is correlated with the observed vascular protective effects.
Collapse
Affiliation(s)
- Li-Hua Cao
- Department of Pharmacology, Yanbian University Medical College, Jilin, China
| | - Ho Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea.,College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Zhe-Shan Quan
- College of Pharmacy, Yanbian University, Jilin, China
| | - Yun Jung Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea, .,College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Republic of Korea,
| | - Yu Jin
- Department of Anatomy, Yanbian University Medical College, Jilin, China
| |
Collapse
|
13
|
Lorigo M, Mariana M, Lemos MC, Cairrao E. Vascular mechanisms of testosterone: The non-genomic point of view. J Steroid Biochem Mol Biol 2020; 196:105496. [PMID: 31655180 DOI: 10.1016/j.jsbmb.2019.105496] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 01/19/2023]
Abstract
Testosterone (T) is the predominant endogenous androgen in the bloodstream. At the vascular level, T presents genomic and non-genomic effects, and both effects may overlap. The genomic actions assume that androgens can freely cross the plasma membrane of target cells and bind to nuclear androgen receptors, inducing gene transcription and protein synthesis. The non-genomic effects have a more rapid onset and may be related to the interaction with protein/receptor/ion channels of the plasma membrane. The key T effect at the vascular level is vasorelaxation, which is primarily due to its rapid effect. Thus, the main purpose of this review is to discuss the T non-genomic effects at the vascular level and the molecular pathways involved in its vasodilator effect observed in in vivo and in vitro studies. In this sense, the nuclear receptor activation, the influence of vascular endothelium and the activation or inhibition of ion channels (potassium and calcium channels, respectively) will be reviewed regarding all the data that corroborated or not. Moreover, this review also provides a brief update on the association of T with the risk factors for cardiovascular diseases, namely metabolic syndrome, type 2 diabetes mellitus, obesity, atherosclerosis, dyslipidaemia, and hypertension. In summary, in this paper we consider the non-genomic vascular mode of action of androgen in physiological conditions and the main risk factors for cardiovascular diseases.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Melissa Mariana
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Manuel C Lemos
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Elisa Cairrao
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
14
|
Chronic ethanol consumption enhances inducible endothelium-dependent hyperpolarizing factor-mediated relaxation in the rat artery. Eur J Pharmacol 2019; 865:172759. [PMID: 31676305 DOI: 10.1016/j.ejphar.2019.172759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 02/02/2023]
Abstract
The inducible endothelium-dependent hyperpolarizing factor (iEDHF) pathway is activated as a compensatory response to adverse changes in the body. It causes vasorelaxation and maintains circulatory homeostasis in the organs. Small to moderate quantities of ethanol enhance vascular relaxation. However, its mechanism and the involvement of the iEDHF pathway in this process are unknown. Therefore, we studied iEDHF-mediated, acetylcholine-induced, endothelium-dependent relaxation in the superior mesenteric arteries (SMAs) of rats chronically fed ethanol. Rats were administered a standard diet (S-Control group), Lieber's control diet (L-Control group), or Lieber's ethanol diet (EtOH group). SMA relaxation was assessed by isometric tension measurements. Arachidonate 15-lipoxygenase (ALOX15) and soluble epoxide hydrolase (sEH) were determined by immunoblot. Acetylcholine-induced, endothelium-dependent relaxation was significantly greater in the EtOH than the control groups. These differences persisted after PGI2 and NO blockade. Thus, the increase in acetylcholine-induced relaxation was EDHF-mediated. In the EtOH group, however, it was prevented by iEDHF inhibitors. ALOX15 and sEH protein expression levels were higher in the EtOH than the L-Control group. The increase in acetylcholine-induced relaxation by chronic ethanol consumption was mediated by the iEDHF pathway. This mechanism may compensate for the blood pressure elevation induced by ethanol. This study suggests that iEDHF is induced during proper drinking and may help prevent the onset of cardiovascular conditions.
Collapse
|
15
|
Faulkner JL, Belin de Chantemèle EJ. Mineralocorticoid Receptor and Endothelial Dysfunction in Hypertension. Curr Hypertens Rep 2019; 21:78. [PMID: 31485760 DOI: 10.1007/s11906-019-0981-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW To review the latest reports of the contributions of the endothelial mineralocorticoid receptor to endothelial dysfunction and hypertension to begin to determine the clinical potential for this pathway for hypertension treatment. RECENT FINDINGS Endothelial mineralocorticoid receptor expression is sex-specifically increased in female mice and humans compared with males. Moreover, the expression of endothelial mineralocorticoid receptors is increased by endothelial progesterone receptor activation and naturally occurring fluctuations in progesterone levels (estrous, pregnancy) predict endothelial mineralocorticoid receptor expression levels in female mice. These data follow many previous reports that have indicated that endothelial mineralocorticoid receptor deletion is protective in the development of obesity- and diabetes-associated endothelial dysfunction in female mouse models. These studies have more recently been followed up by reports indicating that both intact endothelial mineralocorticoid receptor and progesterone receptor expression are required for obesity-associated, leptin-mediated endothelial dysfunction in female mice. In addition, the intra-endothelial signaling pathway for endothelial mineralocorticoid receptors to induce dysfunction requires the intact expression of α-epithelial sodium channels (αENaC) in endothelial cells in females. Endothelial mineralocorticoid receptors are sex-specifically upregulated in the vasculature of females, a sex difference which is driven by endothelial progesterone receptor activation, and increased activity of these endothelial mineralocorticoid receptors is a crucial mediator of endothelial dysfunction, and potentially hypertension, in obese female experimental models.
Collapse
Affiliation(s)
- Jessica L Faulkner
- Vascular Biology Center, Department of Medicine (Cardiology), Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - Eric J Belin de Chantemèle
- Vascular Biology Center, Department of Medicine (Cardiology), Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA.
| |
Collapse
|
16
|
Faulkner JL, Kennard S, Huby AC, Antonova G, Lu Q, Jaffe IZ, Patel VS, Fulton DJR, Belin de Chantemèle EJ. Progesterone Predisposes Females to Obesity-Associated Leptin-Mediated Endothelial Dysfunction via Upregulating Endothelial MR (Mineralocorticoid Receptor) Expression. Hypertension 2019; 74:678-686. [PMID: 31327274 DOI: 10.1161/hypertensionaha.119.12802] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Compelling clinical evidence indicates that obesity and its associated metabolic abnormalities supersede the protective effects of female sex-hormones and predisposes premenopausal women to cardiovascular disease. The underlying mechanisms remain poorly defined; however, recent studies have implicated overactivation of the aldosterone-MR (mineralocorticoid receptor) axis as a cause of sex-specific cardiovascular risk in obese females. Experimental evidence indicates that the MR on endothelial cells contributes to obesity-associated, leptin-induced endothelial dysfunction in female experimental models, however, the vascular-specific mechanisms via which females are predisposed to heightened endothelial MR activation remain unknown. Therefore, we hypothesized that endogenous expression of endothelial MR is higher in females than males, which predisposes them to obesity-associated, leptin-mediated endothelial dysfunction. We found that endothelial MR expression is higher in blood vessels from female mice and humans compared with those of males, and further, that PrR (progesterone receptor) activation in endothelial cells is the driving mechanism for sex-dependent increases in endothelial MR expression in females. In addition, we show that genetic deletion of either the endothelial MR or PrR in female mice prevents leptin-induced endothelial dysfunction, providing direct evidence that interaction between the PrR and MR mediates obesity-associated endothelial impairment in females. Collectively, these novel findings suggest that progesterone drives sex-differences in endothelial MR expression and predisposes female mice to leptin-induced endothelial dysfunction, which indicates that MR antagonists may be a promising sex-specific therapy to reduce the risk of cardiovascular diseases in obese premenopausal women.
Collapse
Affiliation(s)
- Jessica L Faulkner
- From the Vascular Biology Center (J.L.F., S.K., A.-C.H., G.A., D.J.R.F., E.J.B.d.C.), Medical College of Georgia, Augusta University, GA
| | - Simone Kennard
- From the Vascular Biology Center (J.L.F., S.K., A.-C.H., G.A., D.J.R.F., E.J.B.d.C.), Medical College of Georgia, Augusta University, GA
| | - Anne-Cecile Huby
- From the Vascular Biology Center (J.L.F., S.K., A.-C.H., G.A., D.J.R.F., E.J.B.d.C.), Medical College of Georgia, Augusta University, GA
| | - Galina Antonova
- From the Vascular Biology Center (J.L.F., S.K., A.-C.H., G.A., D.J.R.F., E.J.B.d.C.), Medical College of Georgia, Augusta University, GA
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (Q.L., I.Z.J.)
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (Q.L., I.Z.J.)
| | - Vijay S Patel
- Department of Surgery, Section of Cardiothoracic Surgery (V.S.P.), Medical College of Georgia, Augusta University, GA
| | - David J R Fulton
- From the Vascular Biology Center (J.L.F., S.K., A.-C.H., G.A., D.J.R.F., E.J.B.d.C.), Medical College of Georgia, Augusta University, GA
| | - Eric J Belin de Chantemèle
- From the Vascular Biology Center (J.L.F., S.K., A.-C.H., G.A., D.J.R.F., E.J.B.d.C.), Medical College of Georgia, Augusta University, GA.,Department of Medicine, Section of Cardiology (E.J.B.d.C.), Medical College of Georgia, Augusta University, GA
| |
Collapse
|
17
|
Badran A, Baydoun E, Samaha A, Pintus G, Mesmar J, Iratni R, Issa K, Eid AH. Marjoram Relaxes Rat Thoracic Aorta Via a PI3-K/eNOS/cGMP Pathway. Biomolecules 2019; 9:biom9060227. [PMID: 31212721 PMCID: PMC6627793 DOI: 10.3390/biom9060227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022] Open
Abstract
Despite pharmacotherapeutic advances, cardiovascular disease (CVD) remains the primary cause of global mortality. Alternative approaches, such as herbal medicine, continue to be sought to reduce this burden. Origanum majorana is recognized for many medicinal values, yet its vasculoprotective effects remain poorly investigated. Here, we subjected rat thoracic aortae to increasing doses of an ethanolic extract of Origanum majorana (OME). OME induced relaxation in a dose-dependent manner in endothelium-intact rings. This relaxation was significantly blunted in denuded rings. N(ω)-nitro-l-arginine methyl ester (L-NAME) or 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ) significantly reduced the OME-induced vasorelaxation. Cyclic guanosine monophosphate (cGMP) levels were also increased by OME. Moreover, wortmannin or LY294002 significantly reduced OME-induced vasorelaxation. Blockers of ATP-sensitive or Ca2+-activated potassium channels such as glibenclamide or tetraethylamonium (TEA), respectively, did not significantly affect OME-induced relaxation. Similarly, verapamil, a Ca2+ channel blocker, indomethacin, a non-selective cyclooxygenase inhibitor, and pyrilamine, a H1 histamine receptor blocker, did not significantly modulate the observed relaxation. Taken together, our results show that OME induces vasorelaxation via an endothelium-dependent mechanism involving the phosphoinositide 3-kinase (PI3-K)/ endothelial nitric oxide (NO) synthase (eNOS)/cGMP pathway. Our findings further support the medicinal value of marjoram and provide a basis for its beneficial intake. Although consuming marjoram may have an antihypertensive effect, further studies are needed to better determine its effects in different vascular beds.
Collapse
Affiliation(s)
- Adnan Badran
- Department of Nutrition, University of Petra, Amman, P.O. Box 961343 Amman 11196, Jordan.
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| | - Ali Samaha
- Department of Biomedical Sciences, Lebanese International University, Beirut, P.O. Box: 146404 Mazraa, Lebanon.
- Faculty of Public Health IV, Lebanese University, Beirut, P.O. Box 6573/14 Badaro, Lebanon.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, Qatar University, Doha, P.O. Box 2713, Qatar.
- Biomedical Research Center, Qatar University, Doha, P.O. Box 2713, Qatar.
| | - Joelle Mesmar
- Department of Biology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| | - Rabah Iratni
- Department of Biology, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates.
| | - Khodr Issa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| |
Collapse
|
18
|
de Carvalho EF, Nunes AF, Silva NCB, da Silva Gomes JP, de Sousa RP, Silva VG, Nunes PHM, Santos RF, Chaves MH, Oliveira AP, Oliveira RCM. Terminalia fagifolia Mart. & Zucc. elicits vasorelaxation of rat thoracic aorta through nitric oxide and K + channels dependent mechanism. Biol Open 2019; 8:bio.035238. [PMID: 30683674 PMCID: PMC6398462 DOI: 10.1242/bio.035238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Terminalia fagifolia Mart. & Zucc. (Combretaceae) is a plant commonly found in the regions of the Brazilian cerrado, popularly used for the treatment of gastrointestinal disorders. There are no reports in the literature on the use of T. fagifolia for the treatment of the cardiovascular system conditions. Nevertheless, plants of the same genus, such as Terminaliaarjuna (Roxb.) Wight & Arn and Terminaliasuperba Engler & Diels, present cardioprotective, hypotensive and vasodilatating effects. In light of this, the aim of the study was to investigate the effect of the ethanolic extract (Tf-EE) and of its aqueous (Tf-AQF), hexanic (Tf-HEXF) and hydroethanolic (Tf-HAF) partition fractions obtained from the stem bark of T.fagifolia Mart. & Zucc. The effects of the extract and partition fractions of T. fagifolia were evaluated on isometric tensions in the thoracic aorta rings of Wistar rats (250–300 g). Tf-EE, Tf-HEXF and Tf-HAF presented a concentration-dependent vasorelaxant effect, and Tf-AQF presented a vasorelaxant effect that was more potent in the presence of endothelium. The relaxation curves of the aorta promoted by the fraction investigated were attenuated in the presence of the following pharmacological tools: L-NAME, ODQ or PTIO. The vasorelaxant effect of the aorta promoted by Tf-AQF was attenuated in the presence of TEA and 4-AP. Tf-EE induced a concentration-dependent and endothelium-independent vasorelaxation. Tf-HAF and Tf-HEXF presented concentration-dependent and vascular-endothelium-independent vasorelaxation, but did not obtain 100% of relaxation. On the other hand, Tf-AQF presented concentration-dependent vasorelaxation that was more potent in aorta rings with vascular endothelium. The relaxant mechanism induced by the Tf-AQF involves the NO/sGC/cGMP pathway and channels Kv. Summary: The investigation of the relaxing effect of extract and fractions of the stem bark partition of Terminalia fagifolia on aortic rings is a pioneering study involving the participation of K+ channels, which demonstrates a potential alternative therapeutic method for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Emanuella F de Carvalho
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Teresina, PI, Brazil
| | - André F Nunes
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Teresina, PI, Brazil
| | - Náiguel C B Silva
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Teresina, PI, Brazil
| | | | - Renato P de Sousa
- Department of Chemistry, Federal University of Piauí, 64049-550 Teresina, PI, Brazil
| | - Valdelânia G Silva
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Teresina, PI, Brazil
| | - Paulo H M Nunes
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Teresina, PI, Brazil.,Department of Biophysics and Physiology, Federal University of Piauí, 64049-550 Teresina, PI, Brazil
| | - Rosimeire F Santos
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Teresina, PI, Brazil
| | - Mariana H Chaves
- Department of Chemistry, Federal University of Piauí, 64049-550 Teresina, PI, Brazil
| | - Aldeidia P Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Teresina, PI, Brazil.,Department of Biophysics and Physiology, Federal University of Piauí, 64049-550 Teresina, PI, Brazil
| | - Rita C M Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Teresina, PI, Brazil .,Department of Biophysics and Physiology, Federal University of Piauí, 64049-550 Teresina, PI, Brazil
| |
Collapse
|
19
|
Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Valles SL, Soler C, Mauricio MD. Chronic exercise impairs nitric oxide pathway in rabbit carotid and femoral arteries. J Physiol 2018; 596:4361-4374. [PMID: 29968308 DOI: 10.1113/jp275611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 06/27/2018] [Indexed: 01/03/2023] Open
Abstract
KEY POINTS Some of the beneficial effects of exercise in preventing vascular related diseases are mediated by the enhancement of endothelial function where the role of nitric oxide (NO) is well documented, although the relevance of calcium activated potassium channels is not fully understood. The impact of oxidative stress induced by training on endothelial function remains to be clarified. By evaluating different endothelial vasodilator pathways on two vascular beds in a rabbit model of chronic exercise, we found a decreased NO bioavailability and endothelial nitric oxide synthase expression in both carotid and femoral arteries. Physical training induced carotid endothelial dysfunction as a result of an increase in oxidative stress and a reduction in superoxide dismutase expression. In the femoral artery, the lower production of NO was counteracted by an increased participation of large conductance calcium activated potassium channels, preventing endothelial dysfunction. ABSTRACT The present study aimed to evaluate the effects of chronic exercise on vasodilator response in two different arteries. Rings of carotid and femoral arteries from control and trained rabbits were suspended in organ baths for isometric recording of tension. Endothelial nitric oxide synthase (eNOS), Cu/Zn and Mn-superoxide dismutase (SOD), and large conductance calcium activated potassium (BKCa) channel protein expression were measured by western blotting. In the carotid artery, training reduced the relaxation to ACh (10-9 to 3 × 10-6 m) that was reversed by N-acetylcysteine (10-3 m). l-NAME (10-4 m) reduced the relaxation to ACh in both groups, although the effect was lower in the trained group (in mean ± SEM, 39 ± 2% vs. 28 ± 3%). Physical training did not modify the relaxation to ACh in femoral arteries, although the response to l-NAME was lower in the trained group (in mean ± SEM, 41 ± 5% vs. 17 ± 2%). Charybdotoxin (10-7 m) plus apamin (10-6 m) further reduced the maximal relaxation to ACh only in the trained group. The remaining relaxation in both carotid and femoral arteries was abolished by KCl (2 × 10-2 m) and BaCl2 (3 × 10-6 m) plus ouabain (10-4 m) in both groups. Physical training decreased eNOS expression in both carotid and femoral arteries and Cu/Zn and Mn-SOD expression only in the carotid artery. BKCa channels were overexpressed in the trained group in the femoral artery. In conclusion, chronic exercise induces endothelial dysfunction in the carotid artery as a result of oxidative stress. In the femoral artery, it modifies the vasodilator pathways, enhancing the participation of BKCa channels, thus compensating for the impairment of NO-mediated vasodilatation.
Collapse
Affiliation(s)
- Patricia Marchio
- Department of Physiology, School of Medicine, Universitat de Valencia, Valencia, Spain
| | - Solanye Guerra-Ojeda
- Department of Physiology, School of Medicine, Universitat de Valencia, Valencia, Spain
| | - José M Vila
- Department of Physiology, School of Medicine, Universitat de Valencia, Valencia, Spain
| | - Martín Aldasoro
- Department of Physiology, School of Medicine, Universitat de Valencia, Valencia, Spain
| | - Soraya L Valles
- Department of Physiology, School of Medicine, Universitat de Valencia, Valencia, Spain
| | - Carlos Soler
- Department of Physiology, School of Medicine, Universitat de Valencia, Valencia, Spain
| | - Maria D Mauricio
- Department of Physiology, School of Medicine, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
20
|
Abstract
Abstract
Background: The rhizomes of Kaempferia parviflora (KP) have been widely used in Thai traditional medicine to treat several diseases such as hypertension. Recent studies have shown that the ethanolic extract of KP (KPE) exerts vasorelaxant effects in the rat aorta. However, the underlying mechanisms of these vascular responses remain unclear. Objectives: Investigate the mechanisms of KPE-induced vasorelaxation in the rat aorta. Methods: Aortic rings from male Wistar rats were precontracted with methoxamine. Changes in tension were measured using an isometric force transducer and recorded on the MacLab recording system. Vasorelaxation to KPE was examined in the presence of 10 μM indomethacin, 300 μM NG-nitro L-arginine methyl ester (L-NAME), 60 mM KCl, 5 mM tetraethylammonium chloride (TEA), 10 μM glibenclamide, 1 mM 4-aminopyridine (4-AP) or 30 μM barium chloride (BaCl2). The effects of KPE on vascular responses to carbachol, sodium nitroprusside, and CaCl2 were evaluated. Results: KPE (0.1-100 μg/mL) caused vasorelaxations, which were reduced with removal of the endothelium. In addition, indomethacin, L-NAME, and indomethacin plus L-NAME reduced KPE-induced vasorelaxation. Raising the extracellular KCl concentration to 60 mM, or pre-treatment with BaCl2, TEA, or glibenclamide reduced relaxant responses to KPE. Contractions to CaCl2 were inhibited after pre-incubation with KPE. Pre-treatment with KPE enhanced endothelium-dependent relaxations to carbachol, but not to sodium nitroprusside. Conclusion: KPE had a vasodilator effect in the rat isolated aortic rings. These effects involved endotheliumderived NO and prostanoids via a COX pathway. In addition, KPE-induced vasorelaxation was due to increasing K+ efflux probably through KCa, KIR and KATP channels. These provide pharmacological evidence for mechanism of KPE-induced vasorelaxation and support the traditional use of KPE as an antihypertensive agent.
Collapse
|
21
|
Lan D, Xu N, Sun J, Li Z, Liao R, Zhang H, Liang X, Yi W. Electroacupuncture mitigates endothelial dysfunction via effects on the PI3K/Akt signalling pathway in high fat diet-induced insulin-resistant rats. Acupunct Med 2018; 36:162-169. [PMID: 29502072 DOI: 10.1136/acupmed-2016-011253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To investigate the effect of electroacupuncture (EA) on endothelial dysfunction related to high fat diet (HFD)-induced insulin resistance through the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signalling pathway. METHODS Twenty-four male Sprague-Dawley rats were fed a regular diet (Control group, n=8) or a HFD (n=16) for 12 weeks to induce an insulin resistance model. HFD-fed rats were divided into two groups that remained untreated (HFD group, n=8) or received electroacupuncture (HFD+EA group, n=8). EA was applied at PC6, ST36, SP6 and BL23. At the end of the experiment, fasting blood glucose (FBG), serum insulin (FINS), serum C-peptide (C-P) and homeostatic model assessment of insulin resistance (HOMA-IR) indices were determined. Pancreatic islet samples were subjected to histopathological examination. The thoracic aorta was immunostained with anti-rat insulin receptor substrate (IRS)-1, Akt and endothelial nitric oxide synthase (eNOS) antibodies. mRNA and protein expression of IRS-1, PI3K, Akt2 and eNOS in the vascular endothelium were determined by real-time PCR and Western blot analysis, respectively. RESULTS The bodyweight increase of the HFD+EA group was smaller than that of the untreated HFD group. Compared with the HFD group, the levels of FBG, FINS, C-P and HOMA-IR in the HFD+EA group decreased significantly (P<0.01). Histopathological evaluation indicated that EA improved pancreatic islet inflammation. The expression of endothelial markers, such as IRS-1, PI3K, Akt2 and eNOS, decreased in the HFD group, while EA treatment appeared to ameliorate the negative impact of diet. CONCLUSION EA may improve insulin resistance and attenuate endothelial dysfunction, and therefore could play a potential role in the prevention or treatment of diabetic complications and cardiovascular disease through the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Danchun Lan
- Department of Acupuncture and Moxibustion, Foshan Hospital of TCM, Foshan, Guangdong, China
| | - Nenggui Xu
- Clinical Medical College of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian Sun
- Department of Acupuncture and Moxibustion, Guangdong Provincial Hospital of TCM, Guangzhou, China
| | - Zhixing Li
- Department of Soft Tissue Traumatology, Shenzhen Hospital of Chinese Medicine, Shenzhen, China
| | - Rongzhen Liao
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongtao Zhang
- Clinical Medical College of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoli Liang
- Clinical Medical College of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Yi
- Clinical Medical College of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
Mudrovcic N, Arefin S, Van Craenenbroeck AH, Kublickiene K. Endothelial maintenance in health and disease: Importance of sex differences. Pharmacol Res 2017; 119:48-60. [PMID: 28108363 DOI: 10.1016/j.phrs.2017.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 02/07/2023]
Abstract
The vascular endothelium has emerged as more than just an inert monolayer of cells lining the vascular bed. It represents the interface between the blood stream and vessel wall, and has a strategic role in regulating vascular homeostasis by the release of vasoactive substances. Endothelial dysfunction contributes to the development and progression of cardiovascular disease. Recognition of sex-specific factors implicated in endothelial cell biology is important for the identification of clinically relevant preventive and/or therapeutic strategies. This review aims to give an overview of the recent advances in understanding the importance of sex specific observations in endothelial maintenance, both in healthy and diseased conditions. The female endothelium is highlighted in the context of polycystic ovary syndrome and pre-eclampsia. Furthermore, sex differences are explored in chronic kidney disease, which is currently appreciated as one of public health priorities. Overall, this review endorses integration of sex analysis in experimental and patient-oriented research in the exciting field of vascular biology.
Collapse
Affiliation(s)
- Neja Mudrovcic
- Department of Clinical Science, Intervention & Technology, Division of Obstetrics & Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Samsul Arefin
- Department of Clinical Science, Intervention & Technology, Division of Obstetrics & Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Amaryllis H Van Craenenbroeck
- Department of Nephrology, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium; Department of Clinical Science, Intervention & Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Department of Clinical Science, Intervention & Technology, Division of Obstetrics & Gynecology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Science, Intervention & Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Gender Medicine, Department of Medicine-Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Chronic periodontitis and the risk of erectile dysfunction: a systematic review and meta-analysis. Int J Impot Res 2016; 29:43-48. [DOI: 10.1038/ijir.2016.43] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/11/2016] [Accepted: 10/02/2016] [Indexed: 01/11/2023]
|
24
|
VAN Dao C, Islam MZ, Sudo K, Shiraishi M, Miyamoto A. MARCKS is involved in methylmercury-induced decrease in cell viability and nitric oxide production in EA.hy926 cells. J Vet Med Sci 2016; 78:1569-1576. [PMID: 27349763 PMCID: PMC5095626 DOI: 10.1292/jvms.16-0249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Methylmercury (MeHg) is a persistent environmental contaminant that has been reported worldwide. MeHg exposure has been reported to lead to increased risk of cardiovascular diseases; however, the mechanisms underlying the toxic effects of MeHg on the cardiovascular system have not been well elucidated. We have previously reported that mice exposed to MeHg had increased blood pressure along with impaired endothelium-dependent vasodilation. In this study, we investigated the toxic effects of MeHg on a human endothelial cell line, EA.hy926. In addition, we have tried to elucidate the role of myristoylated alanine-rich C kinase substrate (MARCKS) in the MeHg toxicity mechanism in EA.hy926 cells. Cells exposed to MeHg (0.1-10 µM) for 24 hr showed decreased cell viability in a dose-dependent manner. Treatment with submaximal concentrations of MeHg decreased cell migration in the wound healing assay, tube formation on Matrigel and spontaneous nitric oxide (NO) production of EA.hy926 cells. MeHg exposure also elicited a decrease in MARCKS expression and an increase in MARCKS phosphorylation. MARCKS knockdown or MARCKS overexpression in EA.hy926 cells altered not only cell functions, such as migration, tube formation and NO production, but also MeHg-induced decrease in cell viability and NO production. These results suggest the broad role played by MARCKS in endothelial cell functions and the involvement of MARCKS in MeHg-induced toxicity.
Collapse
Affiliation(s)
- Cuong VAN Dao
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | |
Collapse
|
25
|
Abstract
Erectile dysfunction (ED) is a common complication of diabetes, affecting up to 75% of all diabetic men. Although the aetiology of diabetic ED is multifactorial, endothelial dysfunction is recognized as a mainstay in the pathophysiology of the disease. Endothelial dysfunction is induced by the detrimental actions of high glucose levels and increased oxidative stress on endothelial cells that make up the vascular lining. Besides directly injuring the endothelium, diabetes might also hamper vascular repair mechanisms of angiogenesis and vasculogenesis. These states exacerbate and maintain endothelial dysfunction, impairing vasorelaxation events and cavernosal blood perfusion, which are crucial for normal erectile function.
Collapse
|
26
|
Bretón-Romero R, Feng B, Holbrook M, Farb MG, Fetterman JL, Linder EA, Berk BD, Masaki N, Weisbrod RM, Inagaki E, Gokce N, Fuster JJ, Walsh K, Hamburg NM. Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling. Arterioscler Thromb Vasc Biol 2016; 36:561-9. [PMID: 26800561 DOI: 10.1161/atvbaha.115.306578] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. APPROACH AND RESULTS We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. CONCLUSIONS Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Rosa Bretón-Romero
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Bihua Feng
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Monika Holbrook
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Melissa G Farb
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Jessica L Fetterman
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Erika A Linder
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Brittany D Berk
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Nobuyuki Masaki
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Robert M Weisbrod
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Elica Inagaki
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Noyan Gokce
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Jose J Fuster
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Kenneth Walsh
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Naomi M Hamburg
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA.
| |
Collapse
|
27
|
Sun L, Hou Y, Zhao T, Zhou S, Wang X, Zhang L, Yu G. A combination of genistein and magnesium enhances the vasodilatory effect via an eNOS pathway and BKCa current amplification. Can J Physiol Pharmacol 2015; 93:215-21. [PMID: 25494655 DOI: 10.1139/cjpp-2014-0306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The phytoestrogen genistein (GST) and magnesium have been independently shown to regulate vascular tone; however, their individual vasodilatory effects are limited. The aim of this study was to examine the combined effects of GST plus magnesium on vascular tone in mesenteric arteries. The effects of pretreatment with GST (0–200 μmol/L), MgCl2 (0–4.8 mmol/L) and GST plus MgCl2 on 10 μmol/L phenylephrine (PE) precontracted mesenteric arteries in rats were assessed by measuring isometric force. BKCa currents were detected by the patch clamp method. GST caused concentration- and partial endothelium-dependent relaxation. Magnesium resulted in dual adjustment of vascular tone. Magnesium-free solution eliminated the vasodilatation of GST in both endothelium-intact and denuded rings. GST (50 μmol/L) plus magnesium (4.8 mmol/L) caused stronger relaxation in both endothelium-intact and denuded rings. Pretreatment with the nitric oxide synthase (NOS) inhibitor l-N-nitroarginine methyl ester (l-NAME, 100 μmol/L) significantly inhibited the effects of GST, high magnesium, and the combination of GST and magnesium. BKCa currents were amplified to a greater extent when GST (50 μmol/L) was combined with 4.8 versus 1.2 mmol/L Mg2+. Our data suggest that GST plus magnesium provides enhanced vasodilatory effects in rat mesenteric arteries compared with that observed when either is used separately, which was related to an eNOS pathway and BKCa current amplification.
Collapse
Affiliation(s)
- Lina Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Post Street, Harbin, Heilongjiang 150001, P.R. China
| | - Yunlong Hou
- Department of Pharmacology, Harbin Medical University, 157 Baojian Street, Harbin, Heilongjiang 150086, P.R. China
| | - Tingting Zhao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Post Street, Harbin, Heilongjiang 150001, P.R. China
| | - Shanshan Zhou
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Post Street, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaoran Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Post Street, Harbin, Heilongjiang 150001, P.R. China
| | - Liming Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Post Street, Harbin, Heilongjiang 150001, P.R. China
| | - Guichun Yu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Post Street, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
28
|
Wang HP, Lu JF, Zhang GL, Li XY, Peng HY, Lu Y, Zhao L, Ye ZG, Bruce IC, Xia Q, Qian LB. Endothelium-dependent and -independent vasorelaxant actions and mechanisms induced by total flavonoids of Elsholtzia splendens in rat aortas. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:453-459. [PMID: 25136778 DOI: 10.1016/j.etap.2014.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/18/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
Elsholtzia splendens (ES) is, rich in flavonoids, used to repair copper contaminated soil in China, which has been reported to benefit cardiovascular systems as folk medicine. However, few direct evidences have been found to clarify the vasorelaxation effect of total flavonoids of ES (TFES). The vasoactive effect of TFES and its underlying mechanisms in rat thoracic aortas were investigated using the organ bath system. TFES (5-200mg/L) caused a concentration-dependent vasorelaxation in endothelium-intact rings, which was not abolished but significantly reduced by the removal of endothelium. The nitric oxide synthase (NOS) inhibitor N(ω)-nitro-l-arginine methyl ester (100μM) and the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,2-α]quinoxalin-1-one (30μM) significantly blocked the endothelium-dependent vasorelaxation of TFES. Meanwhile, NOS activity in endothelium-intact aortas was concentration-dependently elevated by TFES. However, indomethacin (10μM) did not affect TFES-induced vasorelaxation. Endothelium-independent vasorelaxation of TFES was significantly attenuated by KATP channel blocker glibenclamide. The accumulative Ca(2+)-induced contraction in endothelium-denuded aortic rings primed with KCl or phenylephrine was markedly weakened by TFES. These results revealed that the NOS/NO/cGMP pathway is likely involved in the endothelium-dependent vasorelaxation induced by TFES, while activating KATP channel, inhibiting intracellular Ca(2+) release, blocking Ca(2+) channels and decreasing Ca(2+) influx into vascular smooth muscle cells might contribute to the endothelium-independent vasorelaxation conferred by TFES.
Collapse
Affiliation(s)
- Hui-Ping Wang
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Jian-Feng Lu
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Guo-Lin Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xu-Yun Li
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Hong-Yun Peng
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuan Lu
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Liang Zhao
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Zhi-Guo Ye
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Iain C Bruce
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Qiang Xia
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Ling-Bo Qian
- Department of Physiology, Zhejiang Medical College, Hangzhou 310053, PR China.
| |
Collapse
|
29
|
Qu Z, Zhang J, Gao W, Chen H, Guo H, Wang T, Li H, Liu C. Vasorelaxant effects of Cerebralcare Granule® are mediated by NO/cGMP pathway, potassium channel opening and calcium channel blockade in isolated rat thoracic aorta. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:572-579. [PMID: 24924524 DOI: 10.1016/j.jep.2014.05.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 05/26/2014] [Accepted: 05/31/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cerebralcare Granule (CG), one of the famous classical recipes in traditional Chinese medicine, is developed from the "Decoction of Four Drugs". It has been used for treatment of cerebrovascular related diseases, such as hypertension. It is well known that vasodilatation plays a very important role in hypertensive. Despite the popular medicinal use of CG, little data was available to its activity and mechanism involved in vasodilatation. Therefore, we aimed to investigate the vasorelaxant effects of CG on isolated rat thoracic aorta so as to assess some of the possible mechanisms. The present study was performed to examine the vasodilative activity of CG and its mechanisms in isolated rat thoracic aorta. MATERIALS AND METHODS CG was studied on isolated rat thoracic aorta in vitro, including endothelium-intact and endothelium-denuded aortic rings. In present study, specific inhibitors including NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME), cyclooxygenase (COX) inhibitor indomethacin (INDO), non-selective K+ channel inhibitor tetraethylammonium chloride (TEA), Kir channel inhibitor BaCl2, KATP channel inhibitor Glibenclamide (Gli) and cholinergic receptor antagonist atropine were used, they were added 20 min before NE contraction and then added CG-induced vasodilation. RESULTS Removal of endothelium or pretreatment of aortic rings (intact endothelium) with L-NAME (0.1 mM) or INDO (0.01 mM) significantly blocked the CG induced relaxation. Pretreatment with the non-selective K+ channel inhibitor TEA (1 mM), or the Kir channel inhibitor BaCl2 (0.1 mM), neither of them had no influence on the CG-induced response (p>0.05). However, pretreatment with the KATP channel inhibitor Gli (0.01 mM) produced significant inhibition on the CG-induced response (p<0.01). Besides, CG also inhibited the contraction triggered by NE in endothelium-denuded rings in Ca2+-free medium. CG (0.4, 0.8 and 3.2 mg/mL) produced rightward parallel displacement of CaCl2 curves and reduced the maximum contraction induced by 30 mM CaCl2 to 31.1±9.3%, 18.8±6.9% and 9.4±4.5%, respectively. The relaxation, induced by CG on endothelium-intact rat aortic rings pre-contracted with NE, was significantly attenuated in the presence of atropine (EC50=3.7 mg/mL, p<0.01). CONCLUSIONS Our results suggest that CG induces relaxation in rat aortic rings through an endothelium-dependent pathway mediated by NO/cGMP pathway and an endothelium-independent pathway involving blockade of Ca2+ channels, inhibition of Ca2+ mobilization from intracellular stores, opening of KATP channel. In addition, the muscarinic receptor stimulation is also one of the vasorelaxant mechanisms.
Collapse
Affiliation(s)
- Zhuo Qu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingze Zhang
- Department of Pharmacy, Logistics College of Chinese People׳s Armed Police Forces, Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin 300162, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Hong Chen
- Department of Pharmacy, Logistics College of Chinese People׳s Armed Police Forces, Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin 300162, China
| | - Huimin Guo
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Tingting Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Hongfa Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Changxiao Liu
- The State Key Laboratories of Pharmacodynamics and Pharmacokinetics, Tianjin, China
| |
Collapse
|
30
|
Gynura procumbens causes vasodilation by inhibiting angiotensin II and enhancing bradykinin actions. J Cardiovasc Pharmacol 2013; 61:378-84. [PMID: 23328388 DOI: 10.1097/fjc.0b013e31828685b3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies showed that Gynura procumbens reduced blood pressure by blocking calcium channels and inhibiting the angiotensin-converting enzyme activity. The present experiments were to further explore the effects and mechanisms of a purer aqueous fraction (FA-I) of G. procumbens on angiotensin I (Ang I)-induced and angiotensin II (Ang II)-induced contraction of aortic rings and also on the bradykinin (BK) effect on cardiovascular system. Rat aortic rings suspended in organ chambers were used to investigate the vascular reactivity of FA-I. Effect of FA-I on BK was studied by in vitro and in vivo methods. Results show that FA-I significantly (P < 0.05) decreased the contraction evoked by Ang I and Ang II. In the presence of indomethacin (10 µM) or N-nitro-L-arginine methyl ester (0.1 µM), the inhibitory effect of FA-I on Ang II-induced contraction of aortic rings was reduced. Besides, FA-I potentiated the vasorelaxant effect and enhanced the blood pressure-lowering effect of BK. In conclusion, FA-I reduced the contraction evoked by Ang II probably via the endothelium-dependent pathways, which involve activation of the release of nitric oxide and prostaglandins. The inhibition of angiotensin-converting enzyme activity by FA-I may contribute to the potentiation of the effects of BK on cardiovascular system.
Collapse
|
31
|
Moya M, Bautista EG, Velázquez-González A, Vázquez-Gutiérrez F, Tzintzun G, García-Arreola ME, Castillejos M, Hernández A. Potentially-toxic and essential elements profile of AH1N1 patients in Mexico City. Sci Rep 2013; 3:1284. [PMID: 23422930 PMCID: PMC3576630 DOI: 10.1038/srep01284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/25/2013] [Indexed: 01/06/2023] Open
Abstract
During spring of 2009, a new influenza virus AH1N1 spread in the world causing acute respiratory illness and death, resulting in the first influenza pandemic since 1968. Blood levels of potentially-toxic and essential elements of 40 pneumonia and confirmed AH1N1 were evaluated against two different groups of controls, both not infected with the pandemic strain. Significant concentrations of potentially-toxic elements (lead, mercury, cadmium, chromium, arsenic) along with deficiency of selenium or increased Zn/Cu ratios characterized AH1N1 cases under study when evaluated versus controlled cases. Deficiency of selenium is progressively observed from controls I (influenza like illness) through controls II (pneumonia) and finally pneumonia -AH1N1 infected patients. Cases with blood Se levels greater than the recommended for an optimal cut-off to activate glutathione peroxidase (12.5 μg/dL) recovered from illness and survived. Evaluation of this essential element in critical pneumonia patients at the National Institutes is under evaluation as a clinical trial.
Collapse
Affiliation(s)
- Mireya Moya
- National Institute for Respiratory Diseases-Mexico, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang TT, Zhou GH, Kho JH, Sun YY, Wen JF, Kang DG, Lee HS, Cho KW, Jin SN. Vasorelaxant action of an ethylacetate fraction of Euphorbia humifusa involves NO-cGMP pathway and potassium channels. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:655-663. [PMID: 23707330 DOI: 10.1016/j.jep.2013.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/15/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia humifusa Willd. (EH) is an important traditional Chinese medicine that has commonly been used for treating bacillary dysentery and enteritis in many Asian countries for thousands of years. EH has a wide variety of pharmacological actions such as antioxidant, hypotensive, and hypolipidemic effects. However, the mechanisms involved are to be defined. AIM OF THE STUDY The present study was performed to evaluate the cardiovascular effects of EH in rats. MATERIALS AND METHODS Methanol extract of EH (MEH) and ethylacetate fraction of the MEH (EEH) was examined for their vascular relaxant effects in phenylephrine-precontracted aortic rings. Effects of EEH on systolic blood pressure and heart rate were tested in Sprague-Dawley rats. RESULTS MEH and EEH induced vasorelaxation in a concentration-dependent manner. Endothelium-denudation abolished the EEH-induced vasorelaxation. Pretreatment of the endothelium-intact aortic rings with N(G)-nitro-L-arginine methylester (L-NAME) and 1H-[1,2,4]-oxadiazolo-[4,3-α]-quinoxalin-1-one (ODQ) significantly inhibited the EEH-induced vasorelaxation. EEH increased cGMP levels of the aortic rings in a concentration-dependent manner and the effect was blocked by L-NAME or ODQ. Extracellular Ca(2+) depletion and treatments with thapsigargin, Gd(3+), and 2-aminoethyl diphenylborinate significantly attenuated the EEH-induced vasorelaxation. Wortmannin markedly attenuated the EEH-induced vasorelaxation. In addition, tetraethylammonium, iberiotoxin, and charybdotoxin, but not apamin, attenuated the EEH-induced vasorelaxation. Glibenclamide, indomethacin, atropine, and propranolol had no effects on the EEH-induced vasorelaxation. Furthermore, EEH decreased systolic blood pressure and heart rate in a concentration-dependent manner in rats. CONCLUSIONS The present study demonstrates that EEH induces endothelium-dependent vasorelaxation via eNOS-NO-cGMP signaling through the modification of intracellular Ca(2+), Ca(2+) entry, and large- and intermediate-conductance KCa channel homeostasis. The data also suggest that the Akt-eNOS pathway is involved in the EEH-induced vasorelaxation. EEH induces hypotension and bradycardia in vivo.
Collapse
Affiliation(s)
- Ting Ting Wang
- Institute of Materia Medica, Taishan Medical University, Middle of Changcheng Road, Taian, Shandong 271016, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Sandrine Morel
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
34
|
Ren WK, Yin J, Zhu XP, Liu G, Li NZ, Peng YY, Yin YY. Glutamine on Intestinal Inflammation: A Mechanistic Perspective. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100201] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Intestinal inflammation is associated with various pathological diseases, such as gastritis from Helicobacter pylori infection, Crohn's and colitis in inflammatory bowel disease, and colorectal cancer. Thus, treatment with anti-inflammatory substances in these inflammation-associated diseases is critical. Increasingly compelling evidence indicates that glutamine is an anti-inflammatory compound candidate because it can influence the long-term outcome of the inflammatory diseases with in a low-risk way. However, before recommending its use in clinical practice, it is important to elucidate the molecular mechanism by which glutamine exerts its roles in modulating intestinal inflammation. In this study, we review the current knowledge on the detailed regulation pathway used by glutamine in its proinflammatory regulation, with a special emphasis on intestinal inflammation. These regulation pathways include nuclear factor kappa B (NF-κB), signal transducer and activator of transcription (STAT), mitogen-activated protein kinases (MAPK), phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt), activating protein-1 (AP-1), nitric oxide synthases (NOS)-nitric oxide (NO), peroxisome proliferator-activated receptor-Γ (PPARγ), heat shock factor-1 (HSF-1)- heat shock proteins (HSP) and glutathione (GSH) - reactive oxygen species (ROS). Although some regulatory pathways, such as PI3K/PI3K-Akt, GSH-ROS and AP-1, need to be further investigated, this review provides useful information to utilize glutamine as an immunonutritional or pharmaconutritional drug, not only for inflammation-associated diseases in the intestine, but also possibly for other inflammatory-associated diseases, i.e. arthritis, asthma, type 2 diabetes, etc.
Collapse
Affiliation(s)
- W-K. Ren
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
- Laboratory of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - J. Yin
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
| | - X-P. Zhu
- Laboratory of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - G. Liu
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
| | - N-Z. Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Y-Y. Peng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Y-Y. Yin
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
| |
Collapse
|
35
|
Alexander JT, El-Ali AM, Newman JL, Karatela S, Predmore BL, Lefer DJ, Sutliff RL, Roback JD. Red blood cells stored for increasing periods produce progressive impairments in nitric oxide-mediated vasodilation. Transfusion 2013; 53:2619-2628. [PMID: 23480490 DOI: 10.1111/trf.12111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/20/2012] [Accepted: 12/01/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND Clinical outcomes in transfused patients may be affected by the duration of blood storage, possibly due to red blood cell (RBC)-mediated disruption of nitric oxide (NO) signaling, a key regulator of vascular tone and blood flow. STUDY DESIGN AND METHODS AS-1 RBC units stored up to 42 days were sampled at selected storage times. Samples were added to aortic rings ex vivo, a system where NO-mediated vasodilation could be experimentally controlled. RESULTS RBC units showed storage-dependent changes in plasma hemoglobin (Hb), RBC 2,3-diphosphoglycerate acid, and RBC adenosine triphosphate conforming to expected profiles. When freshly collected (Day 0) blood was added to rat aortic rings, methacholine (MCh) stimulated substantial NO-mediated vasodilation. In contrast, MCh produced no vasodilation in the presence of blood stored for 42 days. Surprisingly, the vasoinhibitory effects of stored RBCs were almost totally mediated by RBCs themselves: removal of the supernatant did not attenuate the inhibitory effects, while addition of supernatant alone to the aortic rings only minimally inhibited MCh-stimulated relaxation. Stored RBCs did not inhibit vasodilation by a direct NO donor, demonstrating that the RBC-mediated vasoinhibitory mechanism did not work by NO scavenging. CONCLUSIONS These studies have revealed a previously unrecognized vasoinhibitory activity of stored RBCs, which is more potent than the described effects of free Hb and works through a different mechanism that does not involve NO scavenging but may function by reducing endothelial NO production. Through this novel mechanism, transfusion of small volumes of stored blood may be able to disrupt physiologic vasodilatory responses and thereby possibly cause adverse clinical outcomes.
Collapse
Affiliation(s)
- Jason T Alexander
- Division of Pulmonary Medicine, Department of Medicine, the Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, and the Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Alexander M El-Ali
- Division of Pulmonary Medicine, Department of Medicine, the Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, and the Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - James L Newman
- Division of Pulmonary Medicine, Department of Medicine, the Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, and the Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Sulaiman Karatela
- Division of Pulmonary Medicine, Department of Medicine, the Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, and the Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Benjamin L Predmore
- Division of Pulmonary Medicine, Department of Medicine, the Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, and the Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - David J Lefer
- Division of Pulmonary Medicine, Department of Medicine, the Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, and the Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Roy L Sutliff
- Division of Pulmonary Medicine, Department of Medicine, the Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, and the Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - John D Roback
- Division of Pulmonary Medicine, Department of Medicine, the Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, and the Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| |
Collapse
|
36
|
Alexander JT, El-Ali AM, Newman JL, Karatela S, Predmore BL, Lefer DJ, Sutliff RL, Roback JD. Red blood cells stored for increasing periods produce progressive impairments in nitric oxide-mediated vasodilation. Transfusion 2013. [PMID: 23480490 DOI: 10.1111/trf.1211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Clinical outcomes in transfused patients may be affected by the duration of blood storage, possibly due to red blood cell (RBC)-mediated disruption of nitric oxide (NO) signaling, a key regulator of vascular tone and blood flow. STUDY DESIGN AND METHODS AS-1 RBC units stored up to 42 days were sampled at selected storage times. Samples were added to aortic rings ex vivo, a system where NO-mediated vasodilation could be experimentally controlled. RESULTS RBC units showed storage-dependent changes in plasma hemoglobin (Hb), RBC 2,3-diphosphoglycerate acid, and RBC adenosine triphosphate conforming to expected profiles. When freshly collected (Day 0) blood was added to rat aortic rings, methacholine (MCh) stimulated substantial NO-mediated vasodilation. In contrast, MCh produced no vasodilation in the presence of blood stored for 42 days. Surprisingly, the vasoinhibitory effects of stored RBCs were almost totally mediated by RBCs themselves: removal of the supernatant did not attenuate the inhibitory effects, while addition of supernatant alone to the aortic rings only minimally inhibited MCh-stimulated relaxation. Stored RBCs did not inhibit vasodilation by a direct NO donor, demonstrating that the RBC-mediated vasoinhibitory mechanism did not work by NO scavenging. CONCLUSIONS These studies have revealed a previously unrecognized vasoinhibitory activity of stored RBCs, which is more potent than the described effects of free Hb and works through a different mechanism that does not involve NO scavenging but may function by reducing endothelial NO production. Through this novel mechanism, transfusion of small volumes of stored blood may be able to disrupt physiologic vasodilatory responses and thereby possibly cause adverse clinical outcomes.
Collapse
Affiliation(s)
- Jason T Alexander
- Division of Pulmonary Medicine, Department of Medicine, the Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, and the Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Alexander M El-Ali
- Division of Pulmonary Medicine, Department of Medicine, the Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, and the Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - James L Newman
- Division of Pulmonary Medicine, Department of Medicine, the Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, and the Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Sulaiman Karatela
- Division of Pulmonary Medicine, Department of Medicine, the Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, and the Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Benjamin L Predmore
- Division of Pulmonary Medicine, Department of Medicine, the Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, and the Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - David J Lefer
- Division of Pulmonary Medicine, Department of Medicine, the Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, and the Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Roy L Sutliff
- Division of Pulmonary Medicine, Department of Medicine, the Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, and the Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - John D Roback
- Division of Pulmonary Medicine, Department of Medicine, the Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, and the Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| |
Collapse
|
37
|
Zhou K, Gao Q, Zheng S, Pan S, Li P, Suo K, Simoncini T, Wang T, Fu X. 17β-estradiol induces vasorelaxation by stimulating endothelial hydrogen sulfide release. Mol Hum Reprod 2012; 19:169-76. [PMID: 23041593 DOI: 10.1093/molehr/gas044] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Estrogen exerts vascular protective effects, but the underlying mechanisms remain to be understood fully. In recent years, hydrogen sulfide (H(2)S) has increasingly been recognized as an important signaling molecule in the cardiovascular system. Vascular H(2)S is produced from L-cysteine, catalyzed by cystathionine γ-lyase (CSE). In our study, apolipoprotein E (ApoE)-deficient mice were ovariectomized and implanted with placebo (OVX mice) or 17β-estradiol (E(2)) pellets (OVX + E(2) mice). Compared with OVX mice, OVX + E(2) mice showed increased plasma H(2)S levels (P = 0.012) and decreased aortic lesion area (P = 0.028). These effects were largely reversed when supplementing with the irreversible CSE inhibitor DL-propargylglycine (PPG) in the OVX + E(2) + PPG mice. Meanwhile, the nitric oxide and prostacyclin-resistant responses to cumulative application of acetylcholine (ACh) were studied among all the three groups of femoral arteries. Compared with the arteries in the OVX group, the vasodilator sensitivity of arteries to ACh was increased in the OVX + E(2) group and attenuated in the OVX + E(2) + PPG group. E(2) and estrogen receptor (ER) α agonist 4',4″,4'″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol rapidly increased H(2)S release in human endothelial cells, but not partially selective ERβ agonist 2,3-bis-(4-hydroxyphenyl)-propionitrile. These effects were inhibited by ER antagonist ICI 182780 or by protein kinase G (PKG) inhibitor KT5823. Furthermore, endothelial PKG activity was increased by E(2) (P = 0.003) and E(2)-induced vasodilation was inhibited by KT5823 (P = 0.009). In conclusion, the endothelial CSE/H(2)S pathway is activated by E(2) through PKG, which leads to vasodilation. These actions may be relevant to estrogen's anti-atherogenic effect.
Collapse
Affiliation(s)
- Kewen Zhou
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cherney DZI, Reich HN, Jiang S, Har R, Nasrallah R, Hébert RL, Lai V, Scholey JW, Sochett EB. Hyperfiltration and effect of nitric oxide inhibition on renal and endothelial function in humans with uncomplicated type 1 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol 2012; 303:R710-8. [PMID: 22855276 DOI: 10.1152/ajpregu.00286.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Studies of experimental diabetes mellitus (DM) suggest that increased nitric oxide (NO) bioactivity contributes to renal hyperfiltration. However, the role of NO in mediating hyperfiltration has not been fully elucidated in humans. Our aim was to examine the effect of NO synthase inhibition on renal and peripheral vascular function in normotensive subjects with uncomplicated type 1 DM. Renal function and brachial artery flow-mediated vasodilatation (FMD) were measured before and after an intravenous infusion of the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NMMA) in 21 healthy control and 37 type 1 DM patients. Measurements in DM participants were made under clamped euglycemic conditions. The effect of l-NMMA on circulating and urinary NO metabolites (NO(x)) and cGMP and on urinary prostanoids was also determined. Baseline characteristics were similar in the two groups. For analysis, the DM patients were divided into those with hyperfiltration (DM-H, n = 18) and normal glomerular filtration rate (GFR) levels (DM-N, n = 19). Baseline urine NO(x) and cGMP were highest in DM-H. l-NMMA led to a decline in GFR in DM-H (152 ± 16 to 140 ± 11 ml·min(-1)·1.73 m(-2)) but not DM-N or healthy control participants. The decline in effective renal plasma flow in response to l-NMMA (806 ± 112 to 539 ± 80 ml·min(-1)·1.73 m(-2)) in DM-H was also exaggerated compared with the other groups (repeated measures ANOVA, P < 0.05), along with declines in urinary NO(x) metabolites and cGMP. Baseline FMD was lowest in DM-H compared with the other groups and did not change in response to l-NMMA. l-NMMA reduced FMD and plasma markers of NO bioactivity in the healthy control and DM-N groups. In patients with uncomplicated type 1 DM, renal hyperfiltration is associated with increased NO bioactivity in the kidney and reduced NO bioactivity in the systemic circulation, suggesting a paradoxical state of high renal and low systemic vascular NO bioactivity.
Collapse
|
39
|
Jin SN, Wen JF, Wang TT, Kang DG, Lee HS, Cho KW. Vasodilatory effects of ethanol extract of Radix Paeoniae Rubra and its mechanism of action in the rat aorta. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:188-193. [PMID: 22543176 DOI: 10.1016/j.jep.2012.04.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/02/2012] [Accepted: 04/10/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Paeoniae Rubra (RPR) is an important traditional Chinese medicine (TCM) commonly used in clinic for a long history in China. RPR is the radix of either Paeonia lactiflora Pall. or Paeonia veitchii Lynch. RPR has a wide variety of pharmacological actions such as anti-thrombus, anti-coagulation, and anti-atherosclerotic properties, protecting heart and liver. However, the mechanisms involved are to be defined. AIM OF THE STUDY The aim of the present study was to define the effect of Paeonia lactiflora Pall. extracts on vascular tension and responsible mechanisms in rat thoracic aortic rings. MATERIALS AND METHODS Ethanol extract of Paeonia lactiflora Pall. (EPL) was examined for their vascular relaxant effects in isolated phenylephrine-precontracted rat thoracic aorta. RESULTS EPL induced relaxation of the phenylephrine-precontracted aortic rings in a concentration-dependent manner. Vascular relaxation induced by EPL was significantly inhibited by removal of the endothelium or pretreatment of the rings with N(G)-nitro-L-arginine methylester (L-NAME) or 1H-[1,2,4]-oxadiazolo-[4,3-α]-quinoxalin-1-one (ODQ). Extracellular Ca²⁺ depletion or diltiazem significantly attenuated EPL-induced vasorelaxation. Modulators of the store-operated Ca²⁺ entry (SOCE), thapsigargin, 2-aminoethyl diphenylborinate and Gd³⁺, and an inhibitor of Akt, wortmannin, markedly attenuated the EPL-induced vasorelaxation. Further, the EPL-induced vasorelaxation was significantly attenuated by pretreatment with tetraethylammonium, a non-selective K(Ca) channels blocker, or glibenclamide, an ATP-sensitive K⁺ channels inhibitor, respectively. Inhibition of cyclooxygenases with indomethacin, and adrenergic and muscarinic receptors blockade had no effects on the EPL-induced vasorelaxation. CONCLUSIONS The present study suggests that EPL relaxes vascular smooth muscle via endothelium-dependent and Akt- and SOCE-eNOS-cGMP-mediated pathways through activation of both K(Ca) and K(ATP) channels and inhibition of L-type Ca²⁺ channels.
Collapse
Affiliation(s)
- Song Nan Jin
- Institute of Materia Medica, Taishan Medical University, Taian, Shandong 271016, China.
| | | | | | | | | | | |
Collapse
|
40
|
Chokri A, El Abida K, Zegzouti YF, Ben Cheikh R. Endothelium-dependent vascular relaxation induced by Globularia alypum extract is mediated by EDHF in perfused rat mesenteric arterial bed. Can J Physiol Pharmacol 2012; 90:607-16. [PMID: 22530963 DOI: 10.1139/y2012-035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vasodilatory effect of Globularia alypum L. (GA) extract was evaluated in rat mesenteric arterial bed pre-contracted by continuous infusion of phenylephrine (2-4 ng/mL). Bolus injections of GA elicited dose-response vasodilation, which was abolished after endothelium removal. Addition of a nitric oxide synthase inhibitor, N(G)-nitro-l-arginine methyl ester (100 µmol/L), alone or in the presence of a cyclooxygenase inhibitor, indomethacin (10 µmol/L), did not significantly affect the vasodilation of the mesenteric arterial bed in response to GA extract. These results suggest that GA-induced vasodilation is endothelium dependent but nitric oxide and prostacyclin independent. In the presence of high K(+) (60 mmol/L), the GA vasodilatory effect was completely abolished, suggesting that the vasodilation effect is mediated by hyperpolarization of the vascular cells. Also, pre-treatment with atropine (a muscarinic receptors antagonist) antagonized the GA-induced vasodilation, suggesting that the vasodilatory effect is mainly mediated by the endothelium-derived hyperpolarizing factor through activation of endothelial muscarinic receptors.
Collapse
Affiliation(s)
- Aziz Chokri
- Laboratoire des molécules bioactives, Faculté des sciences et techniques, Université Sidi Mohamed Ben Abdellah, Fès, Morocco
| | | | | | | |
Collapse
|
41
|
Lobato NS, Filgueira FP, Akamine EH, Tostes RC, Carvalho MHC, Fortes ZB. Mechanisms of endothelial dysfunction in obesity-associated hypertension. Braz J Med Biol Res 2012; 45:392-400. [PMID: 22488221 PMCID: PMC3854291 DOI: 10.1590/s0100-879x2012007500058] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 04/02/2012] [Indexed: 02/01/2023] Open
Abstract
Obesity is strongly associated with high blood pressure, dyslipidemia, and type 2 diabetes. These conditions synergistically increase the risk of cardiovascular events. A number of central and peripheral abnormalities can explain the development or maintenance of high blood pressure in obesity. Of great interest is endothelial dysfunction, considered to be a primary risk factor in the development of hypertension. Additional mechanisms also related to endothelial dysfunction have been proposed to mediate the development of hypertension in obese individuals. These include: increase in both peripheral vasoconstriction and renal tubular sodium reabsorption, increased sympathetic activity and overactivation of both the renin-angiotensin system and the endocannabinoid system and insulin resistance. The discovery of new mechanisms regulating metabolic and vascular function and a better understanding of how vascular function can be influenced by these systems would facilitate the development of new therapies for treatment of obesity-associated hypertension.
Collapse
Affiliation(s)
- N S Lobato
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brasil
| | | | | | | | | | | |
Collapse
|
42
|
Bonomini M, Giardinelli A, Morabito C, Di Silvestre S, Di Cesare M, Di Pietro N, Sirolli V, Formoso G, Amoroso L, Mariggiò MA, Pandolfi A. Calcimimetic R-568 and its enantiomer S-568 increase nitric oxide release in human endothelial cells. PLoS One 2012; 7:e30682. [PMID: 22295103 PMCID: PMC3266284 DOI: 10.1371/journal.pone.0030682] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 12/21/2011] [Indexed: 01/10/2023] Open
Abstract
Background Calcimimetics, such as R-568, are thought to activate G protein-linked Ca2+-sensing receptor (CaSR) by allosterically increasing the affinity of the receptor for Ca2+ allowing for efficient control of uremic hyperparathyroidism. Several recent studies suggest they possess additional vascular actions. Although it has been postulated that calcimimetics may have a direct effect on CaSR in the blood vessels, further studies are needed to elucidate their vascular CaSR-dependent versus CaSR-independent effects. Methodology/Principal Findings Focusing on human umbilical vein endothelial cells (HUVECs), we studied the CaSR expression and distribution by Immunofluorescence and Western Blot analysis. CaSR function was evaluated by measuring the potential effect of calcimimetic R-568 and its enantiomer S-568 upon the modulation of intracellular Ca2+ levels (using a single cell approach and FURA-2AM), in the presence or absence of Calhex-231, a negative modulator of CaSR. To address their potential vascular functions, we also evaluated R- and S-568-stimulated enzymatic release of Nitric Oxide (NO) by DAF-2DA, by Nitric Oxide Synthase (NOS) radiometric assay (both in HUVECs and in Human Aortic Endothelial Cells) and by measuring eNOS-ser1177 phosphorylation levels (Immunoblotting). We show that, although the CaSR protein was expressed in HUVECs, it was mainly distributed in cytoplasm while the functional CaSR dimers, usually localized on the plasma membrane, were absent. In addition, regardless of the presence or absence of Calhex-231, both R- and S-568 significantly increased intracellular Ca2+ levels by mobilization of Ca2+ from intracellular stores, which in turn augmented NO release by a time- and Ca2+-dependent increase in eNOS-ser1177 phosphorylation levels. Conclusions/Significance Taken together, these data indicate that in human endothelium there is no stereoselectivity in the responses to calcimimetics and that CaSR is probably not involved in the action of R- and S-568. This suggests an additional mechanism in support of the CaSR-independent role of calcimimetics as vasculotrope agents.
Collapse
Affiliation(s)
- Mario Bonomini
- Institute of Nephrology-Department of Medicine, University “G. d'Annunzio”, Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University “G. d'Annunzio”, Chieti-Pescara, Italy
| | - Annalisa Giardinelli
- Department of Biomedical Sciences, University “G. d'Annunzio”, Chieti-Pescara, Italy
- Aging Research Center, Centro Scienze dell'Invecchiamento (Ce.S.I.), “G. d'Annunzio” University Foundation, Chieti-Pescara, Italy
| | - Caterina Morabito
- Department of Neuroscience and Imaging, University “G. d'Annunzio”, Chieti-Pescara, Italy
- Aging Research Center, Centro Scienze dell'Invecchiamento (Ce.S.I.), “G. d'Annunzio” University Foundation, Chieti-Pescara, Italy
| | - Sara Di Silvestre
- Department of Biomedical Sciences, University “G. d'Annunzio”, Chieti-Pescara, Italy
- Aging Research Center, Centro Scienze dell'Invecchiamento (Ce.S.I.), “G. d'Annunzio” University Foundation, Chieti-Pescara, Italy
| | - Moreno Di Cesare
- Institute of Nephrology-Department of Medicine, University “G. d'Annunzio”, Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University “G. d'Annunzio”, Chieti-Pescara, Italy
| | - Natalia Di Pietro
- Department of Biomedical Sciences, University “G. d'Annunzio”, Chieti-Pescara, Italy
- Aging Research Center, Centro Scienze dell'Invecchiamento (Ce.S.I.), “G. d'Annunzio” University Foundation, Chieti-Pescara, Italy
| | - Vittorio Sirolli
- Institute of Nephrology-Department of Medicine, University “G. d'Annunzio”, Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University “G. d'Annunzio”, Chieti-Pescara, Italy
| | - Gloria Formoso
- Department of Medicine and Aging Sciences, University “G. d'Annunzio”, Chieti-Pescara, Italy
- Aging Research Center, Centro Scienze dell'Invecchiamento (Ce.S.I.), “G. d'Annunzio” University Foundation, Chieti-Pescara, Italy
| | - Luigi Amoroso
- Institute of Nephrology-Department of Medicine, University “G. d'Annunzio”, Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University “G. d'Annunzio”, Chieti-Pescara, Italy
| | - Maria Addolorata Mariggiò
- Department of Neuroscience and Imaging, University “G. d'Annunzio”, Chieti-Pescara, Italy
- Aging Research Center, Centro Scienze dell'Invecchiamento (Ce.S.I.), “G. d'Annunzio” University Foundation, Chieti-Pescara, Italy
| | - Assunta Pandolfi
- Department of Biomedical Sciences, University “G. d'Annunzio”, Chieti-Pescara, Italy
- Aging Research Center, Centro Scienze dell'Invecchiamento (Ce.S.I.), “G. d'Annunzio” University Foundation, Chieti-Pescara, Italy
- * E-mail:
| |
Collapse
|
43
|
Lobato NS, Filgueira FP, Akamine EH, Davel APC, Rossoni LV, Tostes RC, Carvalho MHC, Fortes ZB. Obesity induced by neonatal treatment with monosodium glutamate impairs microvascular reactivity in adult rats: role of NO and prostanoids. Nutr Metab Cardiovasc Dis 2011; 21:808-816. [PMID: 20554176 DOI: 10.1016/j.numecd.2010.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 02/05/2010] [Accepted: 02/08/2010] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND AIM given that obesity is an independent risk factor for the development of cardiovascular diseases we decided to investigate the mechanisms involved in microvascular dysfunction using a monosodium glutamate (MSG)-induced model of obesity, which allows us to work on both normotensive and normoglycemic conditions. METHODS AND RESULTS Male offspring of Wistar rats received MSG from the second to the sixth day after birth. Sixteen-week-old MSG rats displayed higher Lee index, fat accumulation, dyslipidemia and insulin resistance, with no alteration in glycemia and blood pressure. The effect of norepinephrine (NE), which was increased in MSG rats, was potentiated by L-nitro arginine methyl ester (L-NAME) or tetraethylammonium (TEA) and was reversed by indomethacin and NS-398. Sensitivity to acetylcholine (ACh), which was reduced in MSG rats, was further impaired by L-NAME or TEA, and was corrected by indomethacin, NS-398 and tetrahydrobiopterin (BH4). MSG rats displayed increased endothelium-independent relaxation to sodium nitroprusside. A reduced prostacyclin/tromboxane ratio was found in the mesenteric beds of MSG rats. Mesenteric arterioles of MSG rats also displayed reduced nitric oxide (NO) production along with increased reactive oxygen species (ROS) generation; these were corrected by BH4 and either L-NAME or superoxide dismutase, respectively. The protein expression of eNOS and cyclooxygenase (COX)-2 was increased in mesenteric arterioles from MSG rats. CONCLUSION Obesity/insulin resistance has a detrimental impact on vascular function. Reduced NO bioavailability and increased ROS generation from uncoupled eNOS and imbalanced release of COX products from COX-2 play a critical role in the development of these vascular alterations.
Collapse
Affiliation(s)
- N S Lobato
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zuo Z, Jiang J, Jiang R, Chen F, Liu J, Yang H, Cheng Y. Effect of periodontitis on erectile function and its possible mechanism. J Sex Med 2011; 8:2598-605. [PMID: 21699666 DOI: 10.1111/j.1743-6109.2011.02361.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Periodontitis is one of the important risk factors resulting in cardiovascular diseases. Erectile dysfunction (ED) is strongly correlated with cardiovascular diseases. The expression of endothelial nitric oxide synthase (eNOS) in penile tissue has an important role in the mechanism of erection. AIM To investigate the effect of periodontitis on erectile function and the possible mechanism. METHODS After induction of periodontitis in rat, the ratio of maximum intracavernosal pressure/mean arterial pressure (ICPmax /MAP)×100, the expression of eNOS in penile tissue, the level of serum C-reactive protein (CRP) and tumor necrosis factor-α (TNF-α), and the ultrastructural changes of the cavernous tissue were examined and compared between periodontitis rats (group A) and control rats (group B). MAIN OUTCOME MEASURE Periodontitis significantly decrease not only the ICPmax/MAP×100 and the expression of eNOS but also the activity of NOS and the level of cyclic guanosine monophosphate (cGMP) in cavernous tissue of rat. RESULTS After electrostimulation by 3 and 5 voltage, the ratio of ICPmax /MAP×100 in group A was significantly less than that in group B (19.54±6.16 vs. 30.45±3.12; 30.91±5.61 vs. 50.52±9.52, respectively; P<0.05).The level of serum CRP and TNF-α in group A is significantly higher in group B (P<0.05).The quantitative real-time reverse transcription polymerase chain reaction study demonstrated no statistically significant difference in the expression of mRNA of eNOS in cavernous tissue between the two groups (P>0.05). But there was significant decrease in eNOS protein of the cavernous tissue in group A than in group B (P<0.05). Total NOS activity and cGMP level in cavernosal tissue were significantly lower in group A than in group B (P<0.05). There was no significant alternation occurred in the ultrastructures of penile cavernous tissue. CONCLUSIONS The function of penile erection is impaired by periodontitis. The decreased in the expression of eNOS and NOS activity in penile cavernous tissue caused by mild systemic inflammatory status in periodontitis may be one of the important risk factors of ED.
Collapse
Affiliation(s)
- Zili Zuo
- Department of Urology, Affiliated Hospital, Luzhou Medical College, Department of Statistics, Luzhou, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Roback JD, Neuman RB, Quyyumi A, Sutliff R. Insufficient nitric oxide bioavailability: a hypothesis to explain adverse effects of red blood cell transfusion. Transfusion 2011; 51:859-66. [PMID: 21496047 DOI: 10.1111/j.1537-2995.2011.03094.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
While transfusion of red blood cells (RBCs) is effective at preventing morbidity and mortality in anemic patients, studies have indicated that some RBC components have functional defects ("RBC storage lesions") that may actually cause adverse events when transfused. For example, in some studies patients transfused with RBCs stored more than 14 days have had statistically worse outcomes than those receiving "fresher" RBC units. Recipient-specific factors may also contribute to the occurrence of these adverse events. Unfortunately, these events have been difficult to investigate because up to now they have existed primarily as "statistical occurrences" of increased morbidity and mortality in large data sets. There are currently no clinical or laboratory methods to detect or study them in individual transfusion recipients. We propose a unifying hypothesis, centered on insufficient nitric oxide bioavailability (INOBA), to explain the increased morbidity and mortality observed in some patients after RBC transfusion. In this model, variables associated with RBC units (storage time; 2,3-diphosphoglycerate acid concentration) and transfusion recipients (endothelial dysfunction) collectively lead to changes in nitric oxide (NO) levels in vascular beds. Under certain circumstances, these variables are "aligned" such that NO concentrations are markedly reduced, leading to vasoconstriction, decreased local blood flow, and insufficient O(2) delivery to end organs. Under these circumstances, the likelihood of morbidity and mortality escalates. If the key tenets of the INOBA hypothesis are confirmed, it may lead to improved transfusion methods including altered RBC storage and/or processing conditions, novel transfusion recipient screening methods, and improved RBC-recipient matching.
Collapse
Affiliation(s)
- John D Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
46
|
Villar IC, Scotland RS, Khambata RS, Chan M, Duchene J, Sampaio AL, Perretti M, Hobbs AJ, Ahluwalia A. Suppression of endothelial P-selectin expression contributes to reduced cell trafficking in females: an effect independent of NO and prostacyclin. Arterioscler Thromb Vasc Biol 2011; 31:1075-83. [PMID: 21350195 DOI: 10.1161/atvbaha.111.223545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Sex hormones underlie the lower incidence of cardiovascular disease in premenopausal women. Vascular inflammation is involved in the pathogenesis of several cardiovascular diseases and it has been reported that sex hormones modulate inflammatory responses but mechanisms responsible for these effects are not yet fully established. Herein, we assessed whether sex differences in leukocyte recruitment might exist and investigated the underlying mechanisms involved in this response. METHODS AND RESULTS Treatment with interleukin-1β (IL-1β) or tumor necrosis factor-α caused leukocyte rolling, adhesion, and emigration in mesenteric postcapillary venules in vivo that was substantially reduced in female mice compared with male mice; this difference was abolished by ovariectomy and partially restored by estrogen replacement. Deletion of endothelial nitric oxide (NO) synthase or cyclooxygenase-1 alone or in combination did not alter the leukocyte recruitment in IL-1β-treated females but significantly enhanced this response in male mice. Treatment of murine pulmonary endothelial cells with IL-1β increased expression of P-selectin in male but not female cells. CONCLUSIONS We have demonstrated a profound estrogen-dependent and NO and prostacyclin-independent suppression of leukocyte recruitment in females.
Collapse
|
47
|
Roback JD. Vascular effects of the red blood cell storage lesion. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2011; 2011:475-479. [PMID: 22160077 PMCID: PMC4793719 DOI: 10.1182/asheducation-2011.1.475] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transfusion of RBCs is often clinically necessary--and life-saving--for anemic patients. RBCs can be stored for up to 42 days between the time of donation and the time of transfusion. For many years, investigators have studied the biochemical changes that occur in RBCs stored before transfusion (the RBC "storage lesion"). More recently, clinical studies have suggested that RBC units stored for long periods (often described as > 14-21 days) may mediate adverse effects in the recipient, leading to morbidity and mortality. Unfortunately, these effects are difficult to identify and study because there are no agreed-upon mechanisms for these adverse events and few good assays to study them in individual transfusion recipients. We have proposed the hypothesis of insufficient NO bioavailability (INOBA) to explain the adverse events associated with transfusion of older RBC units. INOBA postulates that the combination of impaired NO production and increased NO scavenging by stored RBCs, together with reduced NO synthesis by dysfunctional endothelial cells, collectively reduce NO levels below a critical threshold in vascular beds. In this situation, inappropriate vasoconstriction occurs, leading to reduced blood flow and insufficient O(2) delivery to end organs. If confirmed, the INOBA hypothesis may lead to improved methods for blood storage and collection, as well as new screening and matching tools for blood donors and transfusion recipients.
Collapse
Affiliation(s)
- John D Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
48
|
Witcher D, Sakai N, Williams B, Rahimian R, Anderson L. Gender differences in the effects of streptozotocin-induced diabetes on parasympathetic vasodilatation in the rat submandibular gland. Arch Oral Biol 2010; 55:745-53. [PMID: 20667523 DOI: 10.1016/j.archoralbio.2010.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/03/2010] [Accepted: 06/25/2010] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Submandibular vasodilatory responses are impaired in male streptozotocin-diabetic rats. However, the effects of diabetes on submandibular vascular reactivity in female rats have not been examined. The purpose of this study was to determine whether there are gender differences in the effects of diabetes on parasympathetic vasodilatation in the rat submandibular gland. METHODS Diabetes was induced using streptozotocin, and vascular responses (calculated as the % increase in submandibular vascular conductance) to parasympathetic stimulation (1-10 Hz) were measured using laser-Doppler flowmetry. To estimate the relative contributions of nitric oxide (NO), prostacyclin (PGI2) and endothelium-derived hyperpolarizing factor (EDHF), vascular conductance was measured before and after inhibition of cyclooxygenase (COX) and NO synthase (NOS). RESULTS Frequency-dependent increases in blood flow were observed in both male and female rats, but the contribution of EDHF was greater in females than in males. Further, PGI2 appeared to play a role only in males. Vasodilatory responses were diminished in all diabetic animals, and when compared with their respective controls the degree of impairment was similar in males and females. However, in diabetic males inhibition of COX and NOS had little or no effect, whereas inhibition of NO, but not COX, resulted in a further significant decrease in vascular responses in diabetic females. CONCLUSIONS Parasympathetic vasodilatation in the rat submandibular gland is diminished equally in diabetic males and females. However, in males diabetes predominantly impairs PGI2- and NO-dependent vasodilatation, whereas in females the contribution of EDHF-mediated pathways are affected and NO-dependent vasodilatation is preferentially maintained.
Collapse
Affiliation(s)
- Daniel Witcher
- Department of Physiological Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, 2155 Webster Street, San Francisco, CA 94115, United States
| | | | | | | | | |
Collapse
|
49
|
Estrogen-induced relaxation of the rat tail artery is attenuated in rats with pulmonary hypertension. Pharmacol Rep 2010; 62:95-9. [PMID: 20360619 DOI: 10.1016/s1734-1140(10)70246-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 01/26/2010] [Indexed: 11/24/2022]
Abstract
The mechanisms involved in the effects of estrogen on arterial smooth muscle contractility are very complex and not fully clarified. Therefore, the aim of this paper was to examine the mechanisms of estrogen-induced relaxation of the rat tail artery and, specifically, how pulmonary hypertension affects this action. We used male rats and performed experiments on isolated tail arteries in a control group and a group with pulmonary hypertension (PAH) induced by monocrotaline (60 mg/kg b.w. ip). The pD2 value (-log EC50) of phenylephrine significantly decreased in the presence of 20 microM of 17beta-estradiol (5.4 +/- 0.13 vs. 4.9 +/- 0.12, p < 0.05, n = 6). Estrogen-induced relaxation of a phenylephrine-precontracted tail artery has two components: endothelium-dependent (ED) and endothelium-independent (EI). The estrogen effect was independent of ATP-sensitive K+ channels, vasoactive prostanoids and nitric oxide. PAH augmented the maximal effect of phenylephrine on the tail artery contractility but did not affect estrogen-induced ED-relaxation. However, the EI component of relaxation induced by estrogen was completely abolished in tail arteries obtained from animals with pulmonary hypertension. Pulmonary hypertension affects the sensitivity of the rat tail artery to phenylephrine and estrogen, leading to impairment of EI mechanisms of relaxation. Further experiments are required to elucidate the molecular mechanisms of this phenomenon.
Collapse
|
50
|
Waldkirch ES, Ückert S, Sigl K, Satzger I, Geismar U, Langnäse K, Richter K, Sohn M, Kuczyk MA, Hedlund P. Expression of cyclic AMP-dependent protein kinase isoforms in human cavernous arteries: functional significance and relation to phosphodiesterase type 4. J Sex Med 2010; 7:2104-2111. [PMID: 20487244 DOI: 10.1111/j.1743-6109.2010.01808.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The cyclic adenosine monophosphate-dependent protein kinase (cAK) is considered a key protein in the control of smooth muscle tone in the cardiovascular system. There is evidence that erectile dysfunction might be linked to systemic vascular disorders and arterial insufficiency, subsequently resulting in structural changes in the penile tissue. The expression and significance of cAK in human cavernous arteries (HCA) have not been evaluated. AIMS To evaluate the expression of cAK isoforms in HCA and examine the role of cAK in the cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-mediated control of penile vascular smooth muscle. METHODS The expression and distribution of phosphodiesterase type 4 (PDE4) and cAK isoforms in sections of HCA were investigated by means of immunohistochemistry and Western blot analysis. The effects of the cAK inhibitor Rp-8-CPT-cAMPS on the relaxation of isolated preparations of HCA (diameter > 100 µm) induced by rolipram, sildenafil, tadalafil, and vardenafil were studied using the organ bath technique. MAIN OUTCOME MEASURES Investigate the expression of cAK in relation to α-actin and PDE4 in HCA and evaluate the effects of an inhibition of cAK on the relaxation induced by inhibitors of PDE4 and PDE5 of isolated penile arteries. RESULTS Immunosignals specific for cAKIα, IIα, and IIβ were observed within the wall of HCA. Double stainings revealed colocalization of cAK with α-actin and PDE4. The expression of cAK isoforms was confirmed by Western blot analysis. The reversion of tension induced by inhibitors of PDE4 and PDE5 of isolated penile vascular tissue were attenuated significantly by Rp-8-CPT-cAMPS. CONCLUSIONS Our results demonstrate the expression of cAK isoforms in the smooth musculature of HCA and its colocalization with PDE4. A significant role for cAK in the regulation mediated by cAMP and cGMP of vascular smooth muscle tone in HCA can also be assumed.
Collapse
Affiliation(s)
- Eginhard S Waldkirch
- Hannover Medical School-Division of Surgery, Department of Urology and Urological Oncology, Hannover, Germany
| | - Stefan Ückert
- Hannover Medical School-Division of Surgery, Department of Urology and Urological Oncology, Hannover, Germany.
| | | | - Imke Satzger
- Hannover Medical School-Department of Dermatology and Allergology, Hannover, Germany
| | | | - Kristina Langnäse
- Otto-von-Guericke-University, Faculty of Medicine-Institute for Biochemistry and Cell Biology, Magdeburg, Germany
| | - Karin Richter
- Otto-von-Guericke-University, Faculty of Medicine-Institute for Biochemistry and Cell Biology, Magdeburg, Germany
| | - Michael Sohn
- Frankfurter Diakonie-Kliniken, St. Markus Academic Hospital-Department of Urology, Frankfurt am Main, Germany
| | - Markus A Kuczyk
- Hannover Medical School-Division of Surgery, Department of Urology and Urological Oncology, Hannover, Germany
| | - Petter Hedlund
- University Vita Salute, Faculty of Medicine, San Raffaele Hospital-Department of Urology, Urological Research Institute, Milan, Italy
| |
Collapse
|