1
|
Shankaranarayana AH, Meduri B, Pujar GV, Hariharapura RC, Sethu AK, Singh M, Bidye D. Restoration of p53 functions by suppression of mortalin-p53 sequestration: an emerging target in cancer therapy. Future Med Chem 2023; 15:2087-2112. [PMID: 37877348 DOI: 10.4155/fmc-2023-0061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/30/2023] [Indexed: 10/26/2023] Open
Abstract
Functional inactivation of wild-type p53 is a major trait of cancerous cells. In many cases, such inactivation occurs by either TP53 gene mutations or due to overexpression of p53 binding partners. This review focuses on an overexpressed p53 binding partner called mortalin, a mitochondrial heat shock protein that sequesters both wild-type and mutant p53 in malignant cells due to changes in subcellular localization. Clinical evidence suggests a drastic depletion of the overall survival time of cancer patients with high mortalin expression. Therefore, mortalin-p53 sequestration inhibitors could be game changers in improving overall survival rates. This review explores the consequences of mortalin overexpression and challenges, status and strategies for accelerating drug discovery to suppress mortalin-p53 sequestration.
Collapse
Affiliation(s)
- Akshatha Handattu Shankaranarayana
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Bhagyalalitha Meduri
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Gurubasavaraj Veeranna Pujar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Raghu Chandrashekar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Arun Kumar Sethu
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Manisha Singh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Durgesh Bidye
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| |
Collapse
|
2
|
Nitzsche B, Höpfner M, Biersack B. Synthetic Small Molecule Modulators of Hsp70 and Hsp40 Chaperones as Promising Anticancer Agents. Int J Mol Sci 2023; 24:4083. [PMID: 36835501 PMCID: PMC9964478 DOI: 10.3390/ijms24044083] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
A class of chaperones dubbed heat shock protein 70 (Hsp70) possesses high relevance in cancer diseases due to its cooperative activity with the well-established anticancer target Hsp90. However, Hsp70 is closely connected with a smaller heat shock protein, Hsp40, forming a formidable Hsp70-Hsp40 axis in various cancers, which serves as a suitable target for anticancer drug design. This review summarizes the current state and the recent developments in the field of (semi-)synthetic small molecule inhibitors directed against Hsp70 and Hsp40. The medicinal chemistry and anticancer potential of pertinent inhibitors are discussed. Since Hsp90 inhibitors have entered clinical trials but have exhibited severe adverse effects and drug resistance formation, potent Hsp70 and Hsp40 inhibitors may play a significant role in overcoming the drawbacks of Hsp90 inhibitors and other approved anticancer drugs.
Collapse
Affiliation(s)
- Bianca Nitzsche
- Institute for Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Höpfner
- Institute for Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Bernhard Biersack
- Organische Chemie 1, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
3
|
Meidinna HN, Shefrin S, Sari AN, Zhang H, Dhanjal JK, Kaul SC, Sundar D, Wadhwa R. Identification of a new member of Mortaparib class of inhibitors that target mortalin and PARP1. Front Cell Dev Biol 2022; 10:918970. [PMID: 36172283 PMCID: PMC9510692 DOI: 10.3389/fcell.2022.918970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Mortalin, a heat shock family protein enriched in cancer cells, is known to inactivate tumor suppressor protein p53. Abrogation of mortalin-p53 interaction and reactivation of p53 has been shown to trigger growth arrest/apoptosis in cancer cells and hence, suggested to be useful in cancer therapy. In this premise, we earlier screened a chemical library to identify potential disruptors of mortalin-p53 interaction, and reported two novel synthetic small molecules (5-[1-(4-methoxyphenyl) (1,2,3,4-tetraazol-5-yl)]-4-phenylpyrimidine-2-ylamine) and (4-[(1E)-2-(2-phenylindol-3-yl)-1-azavinyl]-1,2,4-triazole) called Mortaparib and MortaparibPlus, respectively. These compounds were shown to possess anticancer activity that was mediated through targeting mortalin and PARP1 proteins, essential for cancer cell survival and proliferation. Here, we report characterization of the third compound, {4-[(4-amino-5-thiophen-2-yl-1,2,4-triazol-3-yl)sulfanylmethyl]-N-(4-methoxyphenyl)-1,3-thiazol-2-amine}, isolated in the same screening. Extensive computational and molecular analyses suggested that the new compound has the capability to interact with mortalin, p53, and PARP1. We provide evidence that this new compound, although required in high concentration as compared to the earlier two compounds (Mortaparib and MortaparibPlus) and hence called MortaparibMild, also downregulates mortalin and PARP1 expression and functions in multiple ways impeding cancer cell proliferation and migration characteristics. MortaparibMild is a novel candidate anticancer compound that warrants further experimental and clinical attention.
Collapse
Affiliation(s)
- Hazna Noor Meidinna
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Seyad Shefrin
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, India
| | - Anissa Nofita Sari
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Huayue Zhang
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, India
- *Correspondence: Durai Sundar, ; Renu Wadhwa,
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
- *Correspondence: Durai Sundar, ; Renu Wadhwa,
| |
Collapse
|
4
|
Inigo JR, Chandra D. The mitochondrial unfolded protein response (UPR mt): shielding against toxicity to mitochondria in cancer. J Hematol Oncol 2022; 15:98. [PMID: 35864539 PMCID: PMC9306209 DOI: 10.1186/s13045-022-01317-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/11/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are essential for tumor growth and progression. However, the heavy demand for mitochondrial activity in cancer leads to increased production of mitochondrial reactive oxygen species (mtROS), accumulation of mutations in mitochondrial DNA, and development of mitochondrial dysfunction. If left unchecked, excessive mtROS can damage and unfold proteins in the mitochondria to an extent that becomes lethal to the tumor. Cellular systems have evolved to combat mtROS and alleviate mitochondrial stress through a quality control mechanism called the mitochondrial unfolded protein response (UPRmt). The UPRmt system is composed of chaperones and proteases, which promote protein folding or eliminate mitochondrial proteins damaged by mtROS, respectively. UPRmt is conserved and activated in cancer in response to mitochondrial stress to maintain mitochondrial integrity and support tumor growth. In this review, we discuss how mitochondria become dysfunctional in cancer and highlight the tumor-promoting functions of key components of the UPRmt.
Collapse
Affiliation(s)
- Joseph R Inigo
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
5
|
Elwakeel A. Abrogating the Interaction Between p53 and Mortalin (Grp75/HSPA9/mtHsp70) for Cancer Therapy: The Story so far. Front Cell Dev Biol 2022; 10:879632. [PMID: 35493098 PMCID: PMC9047732 DOI: 10.3389/fcell.2022.879632] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
p53 is a transcription factor that activates the expression of a set of genes that serve as a critical barrier to oncogenesis. Inactivation of p53 is the most common characteristic in sporadic human cancers. Mortalin is a differentially sub-cellularly localized member of the heat shock protein 70 family of chaperones that has essential mitochondrial and extra-mitochondrial functions. Elevated mortalin levels in multiple cancerous tissues and tumor-derived cell lines emphasized its key role in oncogenesis. One of mortalin’s major oncogenic roles is the inactivation of p53. Mortalin binds to p53 sequestering it in the cytoplasm. Hence, p53 cannot freely shuttle to the nucleus to perform its tumor suppressor functions as a transcription factor. This protein-protein interaction was reported to be cancer-specific, hence, a selective druggable target for a rationalistic cancer therapeutic strategy. In this review article, the chronological identification of mortalin-p53 interactions is summarized, the challenges and general strategies for targeting protein-protein interactions are briefly discussed, and information about compounds that have been reported to abrogate mortalin-p53 interaction is provided. Finally, the reasons why the disruption of this druggable interaction has not yet been applied clinically are discussed.
Collapse
|
6
|
Shefrin S, Sari AN, Kumar V, Zhang H, Meidinna HN, Kaul SC, Wadhwa R, Sundar D. Comparative computational and experimental analyses of some natural small molecules to restore transcriptional activation function of p53 in cancer cells harbouring wild type and p53Ser46 mutant. Curr Res Struct Biol 2022; 4:320-331. [PMID: 36164647 PMCID: PMC9507986 DOI: 10.1016/j.crstbi.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/17/2022] [Accepted: 09/10/2022] [Indexed: 11/15/2022] Open
Abstract
Genetic mutations in p53 are frequently associated with many types of cancers that affect its stability and activity through multiple ways. The Ser46 residue present in the transactivation domain2 (TAD2) domain of p53 undergoes phosphorylation that blocks its degradation by MDM2 and leads to cell cycle arrest/apoptosis/necrosis upon intrinsic or extrinsic stresses. On the other hand, unphosphorylated p53 mutants escape cell arrest or death triggered by these molecular signaling axes and lead to carcinogenesis. Phosphorylation of Ser in the TAD2 domain of p53 mediates its interactions with transcription factor p62, yielding transcriptional activation of downstream pro-apoptotic genes. The p53 phosphorylation causes string-like elongated conformation that increases its binding affinity with the PH domain of p62. On the other hand, lack of phosphorylation causes helix-like motifs and low binding affinity to p62. We undertook molecular simulation analyses to investigate the potential of some natural small molecules (Withanone (Wi-N) & Withaferin-A (Wi-A) from Ashwagandha; Cucurbitacin-B (Cuc-B) from bitter Cucumber; and Caffeic acid phenethyl ester (CAPE) and Artepillin C (ARC) from honeybee propolis) to interact with p62-binding region of p53 and restore its wild-type activity. We found that Wi-N, Wi-A, and Cuc-B have the potential to restore p53-p62 interaction for phosphorylation-deficient p53 mutants. Wi-N, in particular, caused a reversal of the α-helical structure into an elongated string-like conformation similar to the wild-type p53. These data suggested the use of these natural compounds for the treatment of p53Ser46 mutant harbouring cancers. We also compared the efficiency of Wi-N, Wi-A, Cuc-B, CAPE, and ARC to abrogate Mortalin-p53 binding resulting in nuclear translocation and reactivation of p53 function and provide experimental evidence to the computational analysis. Taken together, the use of these small molecules for reactivation of p53 in cancer cells is suggested. Wild type p53 (p53WT) and its mutant form (p53S46PΔ) are associated with multiple cancers. Natural compounds serve as a potential mediator to restore the function of p53 in wild type and Ser46 phosphor mutant. In-silico analysis suggested that Wi-A, Wi-N, and Cuc-B are stronger inhibitors of p53 -mortalin interaction. These entities could also bind to p53S46PΔ and mimic the phosphorylated conformation, suggesting reactivation of p53WT.
Collapse
Affiliation(s)
- Seyad Shefrin
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT)-Delhi, Hauz Khas, New Delhi, 110-016, India
| | - Anissa Nofita Sari
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Vipul Kumar
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT)-Delhi, Hauz Khas, New Delhi, 110-016, India
| | - Huayue Zhang
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Hazna Noor Meidinna
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
- Corresponding author.
| | - Durai Sundar
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT)-Delhi, Hauz Khas, New Delhi, 110-016, India
- Corresponding author.
| |
Collapse
|
7
|
In Silico Assessment and Molecular Docking Studies of Some Phyto-Triterpenoid for Potential Disruption of Mortalin-p53 Interaction. Processes (Basel) 2021. [DOI: 10.3390/pr9111983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human hepatocellular carcinoma (HCC), the most common type of liver cancer, represents the second most common cause of death from cancer worldwide. The high toxicity and side effects of some cancer chemotherapy drugs increase the demand for new anti-cancer drugs from natural products. Mortalin/mtHsp70, a stress response protein, has been reported to contribute to the process of carcinogenesis in several ways, including the inhibition of the transcriptional activation of p53. This study conducted a molecular docking study of 41 phyto triterpenes originated from Vietnamese plants for potential Mortalin inhibition activity. Nine compounds were considered as promising inhibitors based on the analysis of binding affinity and drug-like and pharmacokinetic properties.
Collapse
|
8
|
Bhargava P, Mahanta D, Kaul A, Ishida Y, Terao K, Wadhwa R, Kaul SC. Experimental Evidence for Therapeutic Potentials of Propolis. Nutrients 2021; 13:2528. [PMID: 34444688 PMCID: PMC8397973 DOI: 10.3390/nu13082528] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Propolis is produced by honeybees from materials collected from plants they visit. It is a resinous material having mixtures of wax and bee enzymes. Propolis is also known as bee glue and used by bees as a building material in their hives, for blocking holes and cracks, repairing the combs and strengthening their thin borders. It has been extensively used since ancient times for different purposes in traditional human healthcare practices. The quality and composition of propolis depend on its geographic location, climatic zone and local flora. The New Zealand and Brazilian green propolis are the two main kinds that have been extensively studied in recent years. Their bioactive components have been found to possess a variety of therapeutic potentials. It was found that Brazilian green propolis improves the cognitive functions of mild cognitive impairments in patients living at high altitude and protects them from neurodegenerative damage through its antioxidant properties. It possesses artepillin C (ARC) as the key component, also known to possess anticancer potential. The New Zealand propolis contains caffeic acid phenethyl ester (CAPE) as the main bioactive with multiple therapeutic potentials. Our lab performed in vitro and in vivo assays on the extracts prepared from New Zealand and Brazilian propolis and their active ingredients. We provided experimental evidence that these extracts possess anticancer, antistress and hypoxia-modulating activities. Furthermore, their conjugation with γCD proved to be more effective. In the present review, we portray the experimental evidence showing that propolis has the potential to be a candidate drug for different ailments and improve the quality of life.
Collapse
Affiliation(s)
- Priyanshu Bhargava
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
| | - Debajit Mahanta
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
- DBT-APSCS&T Centre of Excellence for Bioresources and Sustainable Development, Kimin 791121, India
| | - Ashish Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
| | - Yoshiyuki Ishida
- CycloChem Co., Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan; (Y.I.); (K.T.)
| | - Keiji Terao
- CycloChem Co., Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan; (Y.I.); (K.T.)
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
- Kaul-Tech Co., Ltd., Nagakunidai 3-24, Tsuchiura 300-0810, Japan
| |
Collapse
|
9
|
Sari AN, Elwakeel A, Dhanjal JK, Kumar V, Sundar D, Kaul SC, Wadhwa R. Identification and Characterization of Mortaparib Plus-A Novel Triazole Derivative That Targets Mortalin-p53 Interaction and Inhibits Cancer-Cell Proliferation by Wild-Type p53-Dependent and -Independent Mechanisms. Cancers (Basel) 2021; 13:cancers13040835. [PMID: 33671256 PMCID: PMC7921971 DOI: 10.3390/cancers13040835] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
p53 has an essential role in suppressing the carcinogenesis process by inducing cell cycle arrest/apoptosis/senescence. Mortalin/GRP75 is a member of the Hsp70 protein family that binds to p53 causing its sequestration in the cell cytoplasm. Hence, p53 cannot translocate to the nucleus to execute its canonical tumour suppression function as a transcription factor. Abrogation of mortalin-p53 interaction and subsequent reactivation of p53's tumour suppression function has been anticipated as a possible approach in developing a novel cancer therapeutic drug candidate. A chemical library was screened in a high-content screening system to identify potential mortalin-p53 interaction disruptors. By four rounds of visual assays for mortalin and p53, we identified a novel synthetic small-molecule triazole derivative (4-[(1E)-2-(2-phenylindol-3-yl)-1-azavinyl]-1,2,4-triazole, henceforth named MortaparibPlus). Its activities were validated using multiple bioinformatics and experimental approaches in colorectal cancer cells possessing either wild-type (HCT116) or mutant (DLD-1) p53. Bioinformatics and computational analyses predicted the ability of MortaparibPlus to competitively prevent the interaction of mortalin with p53 as it interacted with the p53 binding site of mortalin. Immunoprecipitation analyses demonstrated the abrogation of mortalin-p53 complex formation in MortaparibPlus-treated cells that showed growth arrest and apoptosis mediated by activation of p21WAF1, or BAX and PUMA signalling, respectively. Furthermore, we demonstrate that MortaparibPlus-induced cytotoxicity to cancer cells is mediated by multiple mechanisms that included the inhibition of PARP1, up-regulation of p73, and also the down-regulation of mortalin and CARF proteins that play critical roles in carcinogenesis. MortaparibPlus is a novel multimodal candidate anticancer drug that warrants further experimental and clinical attention.
Collapse
Affiliation(s)
- Anissa Nofita Sari
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba 305-8565, Japan; (A.N.S.); (A.E.); (J.K.D.)
- School of Integrative & Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Ahmed Elwakeel
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba 305-8565, Japan; (A.N.S.); (A.E.); (J.K.D.)
- School of Integrative & Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Jaspreet Kaur Dhanjal
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba 305-8565, Japan; (A.N.S.); (A.E.); (J.K.D.)
| | - Vipul Kumar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110-016, India; (V.K.); (D.S.)
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110-016, India; (V.K.); (D.S.)
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba 305-8565, Japan; (A.N.S.); (A.E.); (J.K.D.)
- Correspondence: (S.C.K.); (R.W.)
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba 305-8565, Japan; (A.N.S.); (A.E.); (J.K.D.)
- School of Integrative & Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
- Correspondence: (S.C.K.); (R.W.)
| |
Collapse
|
10
|
Srivastava S, Vishwanathan V, Birje A, Sinha D, D'Silva P. Evolving paradigms on the interplay of mitochondrial Hsp70 chaperone system in cell survival and senescence. Crit Rev Biochem Mol Biol 2020; 54:517-536. [PMID: 31997665 DOI: 10.1080/10409238.2020.1718062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of mitochondria within a cell has grown beyond being the prime source of cellular energy to one of the major signaling platforms. Recent evidence provides several insights into the crucial roles of mitochondrial chaperones in regulating the organellar response to external triggers. The mitochondrial Hsp70 (mtHsp70/Mortalin/Grp75) chaperone system plays a critical role in the maintenance of proteostasis balance in the organelle. Defects in mtHsp70 network result in attenuated protein transport and misfolding of polypeptides leading to mitochondrial dysfunction. The functions of Hsp70 are primarily governed by J-protein cochaperones. Although human mitochondria possess a single Hsp70, its multifunctionality is characterized by the presence of multiple specific J-proteins. Several studies have shown a potential association of Hsp70 and J-proteins with diverse pathological states that are not limited to their canonical role as chaperones. The role of mitochondrial Hsp70 and its co-chaperones in disease pathogenesis has not been critically reviewed in recent years. We evaluated some of the cellular interfaces where Hsp70 machinery associated with pathophysiological conditions, particularly in context of tumorigenesis and neurodegeneration. The mitochondrial Hsp70 machinery shows a variable localization and integrates multiple components of the cellular processes with varied phenotypic consequences. Although Hsp70 and J-proteins function synergistically in proteins folding, their precise involvement in pathological conditions is mainly idiosyncratic. This machinery is associated with a heterogeneous set of molecules during the progression of a disorder. However, the precise binding to the substrate for a specific physiological response under a disease subtype is still an undocumented area of analysis.
Collapse
Affiliation(s)
- Shubhi Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Abhijit Birje
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Devanjan Sinha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
11
|
Sundar D, Yu Y, Katiyar SP, Putri JF, Dhanjal JK, Wang J, Sari AN, Kolettas E, Kaul SC, Wadhwa R. Wild type p53 function in p53 Y220C mutant harboring cells by treatment with Ashwagandha derived anticancer withanolides: bioinformatics and experimental evidence. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:103. [PMID: 30808373 PMCID: PMC6390572 DOI: 10.1186/s13046-019-1099-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022]
Abstract
Background Tumor suppressor p53 protein is frequently mutated in a large majority of cancers. These mutations induce local or global changes in protein structure thereby affecting its binding to DNA. The structural differences between the wild type and mutant p53 thus provide an opportunity to selectively target mutated p53 harboring cancer cells. Restoration of wild type p53 activity in mutants using small molecules that can revert the structural changes have been considered for cancer therapeutics. Methods We used bioinformatics and molecular docking tools to investigate the structural changes between the wild type and mutant p53 proteins (p53V143A, p53R249S, p53R273H and p53Y220C) and explored the therapeutic potential of Withaferin A and Withanone for restoration of wild type p53 function in cancer cells. Cancer cells harboring the specific mutant p53 proteins were used for molecular assays to determine the mutant or wild type p53 functions. Results We found that p53V143A mutation does not show any significant structural changes and was also refractory to the binding of withanolides. p53R249S mutation critically disturbed the H-bond network and destabilized the DNA binding site. However, withanolides did not show any selective binding to either this mutant or other similar variants. p53Y220C mutation created a cavity near the site of mutation with local loss of hydrophobicity and water network, leading to functionally inactive conformation. Mutated structure could accommodate withanolides suggesting their conformational selectivity to target p53Y220C mutant. Using human cell lines containing specific p53 mutant proteins, we demonstrated that Withaferin A, Withanone and the extract rich in these withanolides caused restoration of wild type p53 function in mutant p53Y220C cells. This was associated with induction of p21WAF-1-mediated growth arrest/apoptosis. Conclusion The study suggested that withanolides may serve as highly potent anticancer compounds for treatment of cancers harboring a p53Y220C mutation. Electronic supplementary material The online version of this article (10.1186/s13046-019-1099-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Yue Yu
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Shashank P Katiyar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Jayarani F Putri
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Jaspreet Kaur Dhanjal
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Jia Wang
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Anissa Nofita Sari
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, and Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 45110, Ioannina, Greece
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan.
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan.
| |
Collapse
|
12
|
Park SH, Baek KH, Shin I, Shin I. Subcellular Hsp70 Inhibitors Promote Cancer Cell Death via Different Mechanisms. Cell Chem Biol 2018; 25:1242-1254.e8. [DOI: 10.1016/j.chembiol.2018.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/10/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
|
13
|
Kerkhofs M, Giorgi C, Marchi S, Seitaj B, Parys JB, Pinton P, Bultynck G, Bittremieux M. Alterations in Ca 2+ Signalling via ER-Mitochondria Contact Site Remodelling in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:225-254. [PMID: 28815534 DOI: 10.1007/978-981-10-4567-7_17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inter-organellar contact sites establish microdomains for localised Ca2+-signalling events. One of these microdomains is established between the ER and the mitochondria. Importantly, the so-called mitochondria-associated ER membranes (MAMs) contain, besides structural proteins and proteins involved in lipid exchange, several Ca2+-transport systems, mediating efficient Ca2+ transfer from the ER to the mitochondria. These Ca2+ signals critically control several mitochondrial functions, thereby impacting cell metabolism, cell death and survival, proliferation and migration. Hence, the MAMs have emerged as critical signalling hubs in physiology, while their dysregulation is an important factor that drives or at least contributes to oncogenesis and tumour progression. In this book chapter, we will provide an overview of the role of the MAMs in cell function and how alterations in the MAM composition contribute to oncogenic features and behaviours.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Bruno Seitaj
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Jan B Parys
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Geert Bultynck
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium.
| | - Mart Bittremieux
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
14
|
Nagpal N, Goyal S, Dhanjal JK, Ye L, Kaul SC, Wadhwa R, Chaturvedi R, Grover A. Molecular dynamics-based identification of novel natural mortalin-p53 abrogators as anticancer agents. J Recept Signal Transduct Res 2016; 37:8-16. [PMID: 27380217 DOI: 10.3109/10799893.2016.1141952] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Cancer is one of the leading causes of mortality worldwide that requires attention in terms of extensive study and research. Eradication of mortalin-p53 interaction that leads to the inhibition of transcriptional activation or blocking of p53 from functioning as a suppressor and induction of nuclear translocation of p53 can prove to be one of the useful approaches for cancer management. RESULTS In this study, we used structure-based approach to target the p53-binding domain of mortalin in order to prevent mortalin-p53 complex formation. We screened compounds from ZINC database against the modeled mortalin protein using Glide virtual screening. The top two compounds, DTOM (ZINC 28639308) and TTOM (ZINC 38143676) with Glide score of -12.27 and -12.16, respectively, were identified with the potential to abrogate mortalin-p53 interaction. Finally, molecular dynamics simulations were used to analyze the dynamic stability of the ligand-bound complex and it was observed that residues Tyr196, Asn198, Val264 and Thr267 were involved in intermolecular interactions in both the simulated ligand-bound complexes, and thus, these residues may have a paramount role in stabilizing the binding of the ligands with the protein. CONCLUSION These detailed insights can further facilitate the development of potent inhibitors against mortalin-p53 complex.
Collapse
Affiliation(s)
- Neha Nagpal
- a School of Biotechnology, Jawaharlal Nehru University , New Delhi , India and
| | - Sukriti Goyal
- a School of Biotechnology, Jawaharlal Nehru University , New Delhi , India and
| | | | - Liu Ye
- b Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science & Technology (AIST) , Tsukuba , Ibaraki , Japan
| | - Sunil C Kaul
- b Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science & Technology (AIST) , Tsukuba , Ibaraki , Japan
| | - Renu Wadhwa
- b Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science & Technology (AIST) , Tsukuba , Ibaraki , Japan
| | - Rupesh Chaturvedi
- a School of Biotechnology, Jawaharlal Nehru University , New Delhi , India and
| | - Abhinav Grover
- a School of Biotechnology, Jawaharlal Nehru University , New Delhi , India and
| |
Collapse
|
15
|
Sane S, Abdullah A, Nelson ME, Wang H, Chauhan SC, Newton SS, Rezvani K. Structural studies of UBXN2A and mortalin interaction and the putative role of silenced UBXN2A in preventing response to chemotherapy. Cell Stress Chaperones 2016; 21:313-26. [PMID: 26634371 PMCID: PMC4786526 DOI: 10.1007/s12192-015-0661-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/26/2022] Open
Abstract
Overexpression of the oncoprotein mortalin in cancer cells and its protein partners enables mortalin to promote multiple oncogenic signaling pathways and effectively antagonize chemotherapy-induced cell death. A UBX-domain-containing protein, UBXN2A, acts as a potential mortalin inhibitor. This current study determines whether UBXN2A effectively binds to and occupies mortalin's binding pocket, resulting in a direct improvement in the tumor's sensitivity to chemotherapy. Molecular modeling of human mortalin's binding pocket and its binding to the SEP domain of UBXN2A followed by yeast two-hybrid and His-tag pull-down assays revealed that three amino acids (PRO442, ILE558, and LYS555) within the substrate-binding domain of mortalin are crucial for UBXN2A binding to mortalin. As revealed by chase experiments in the presence of cycloheximide, overexpression of UBXN2A seems to interfere with the mortalin-CHIP E3 ubiquitin ligase and consequently suppresses the C-terminus of the HSC70-interacting protein (CHIP)-mediated destabilization of p53, resulting in its stabilization in the cytoplasm and upregulation in the nucleus. Overexpression of UBXN2A causes a significant inhibition of cell proliferation and the migration of colon cancer cells. We silenced UBXN2A in the human osteosarcoma U2OS cell line, an enriched mortalin cancer cell, followed by a clinical dosage of the chemotherapeutic agent 5-fluorouracil (5-FU). The UBXN2A knockout U2OS cells revealed that UBXNA is essential for the cytotoxic effect achieved by 5-FU. UBXN2A overexpression markedly increased the apoptotic response of U2OS cells to the 5-FU. In addition, silencing of UBXN2A protein suppresses apoptosis enhanced by UBXN2A overexpression in U2OS. The knowledge gained from this study provides insights into the mechanistic role of UBXN2A as a potent mortalin inhibitor and as a potential chemotherapy sensitizer for clinical application.
Collapse
Affiliation(s)
- Sanam Sane
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, 57069, USA
| | - Ammara Abdullah
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, 57069, USA
| | - Morgan E Nelson
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, 57069, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, 57069, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, 57069, USA
| | - Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, 57069, USA.
| |
Collapse
|
16
|
Starenki D, Park JI. Selective Mitochondrial Uptake of MKT-077 Can Suppress Medullary Thyroid Carcinoma Cell Survival In Vitro and In Vivo. Endocrinol Metab (Seoul) 2015; 30:593-603. [PMID: 26485469 PMCID: PMC4722416 DOI: 10.3803/enm.2015.30.4.593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/05/2015] [Accepted: 08/03/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor mainly caused by mutations in the rearranged during transfection (RET) proto-oncogene. Not all patients with progressive MTC respond to current therapy inhibiting RET, demanding additional therapeutic strategies. We recently demonstrated that disrupting mitochondrial metabolism using a mitochondria-targeted agent or by depleting a mitochondrial chaperone effectively suppressed human MTC cells in culture and in mouse xenografts by inducing apoptosis and RET downregulation. These observations led us to hypothesize that mitochondria are potential therapeutic targets for MTC. This study further tests this hypothesis using1-ethyl-2-[[3-ethyl-5-(3-methylbenzothiazolin-2-yliden)]-4-oxothiazolidin-2-ylidenemethyl] pyridinium chloride (MKT-077), a water-soluble rhodocyanine dye analogue, which can selectively accumulate in mitochondria. METHODS The effects of MKT-077 on cell proliferation, survival, expression of RET and tumor protein 53 (TP53), and mitochondrial activity were determined in the human MTC lines in culture and in mouse xenografts. RESULTS MKT-077 induced cell cycle arrest in TT and MZ-CRC-1. Intriguingly, MKT-077 also induced RET downregulation and strong cell death responses in TT cells, but not in MZ-CRC-1 cells. This discrepancy was mainly due to the difference between the capacities of these cell lines to retain MKT-077 in mitochondria. The cytotoxicity of MKT-077 in TT cells was mainly attributed to oxidative stress while being independent of TP53. MKT-077 also effectively suppressed tumor growth of TT xenografts. CONCLUSION MKT-077 can suppress cell survival of certain MTC subtypes by accumulating in mitochondria and interfering with mitochondrial activity although it can also suppress cell proliferation via other mechanisms. These results consistently support the hypothesis that mitochondrial targeting has therapeutic potential for MTC.
Collapse
Affiliation(s)
- Dmytro Starenki
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jong In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
17
|
Krysiak K, Tibbitts JF, Shao J, Liu T, Ndonwi M, Walter MJ. Reduced levels of Hspa9 attenuate Stat5 activation in mouse B cells. Exp Hematol 2015; 43:319-30.e10. [PMID: 25550197 PMCID: PMC4375022 DOI: 10.1016/j.exphem.2014.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 11/23/2022]
Abstract
HSPA9 is located on chromosome 5q31.2 in humans, a region that is commonly deleted in patients with myeloid malignancies [del(5q)], including myelodysplastic syndrome (MDS). HSPA9 expression is reduced by 50% in patients with del(5q)-associated MDS, consistent with haploinsufficient levels. Zebrafish mutants and knockdown studies in human and mouse cells have implicated a role for HSPA9 in hematopoiesis. To comprehensively evaluate the effects of Hspa9 haploinsufficiency on hematopoiesis, we generated an Hspa9 knockout mouse model. Although homozygous knockout of Hspa9 is embryonically lethal, mice with heterozygous deletion of Hspa9 (Hspa9(+/-)) are viable and have a 50% reduction in Hspa9 expression. Hspa9(+/-) mice have normal basal hematopoiesis and do not develop MDS. However, Hspa9(+/-) mice have a cell-intrinsic reduction in bone marrow colony-forming unit-PreB colony formation without alterations in the number of B-cell progenitors in vivo, consistent with a functional defect in Hspa9(+/-) B-cell progenitors. We further reduced Hspa9 expression (<50%) using RNA interference and observed reduced B-cell progenitors in vivo, indicating that appropriate levels (≥50%) of Hspa9 are required for normal B lymphopoiesis in vivo. Knockdown of Hspa9 in an interleukin 7 (IL-7)-dependent mouse B-cell line reduced signal transducer and activator of transcription 5 (Stat5) phosphorylation following IL-7 receptor stimulation, supporting a role for Hspa9 in Stat5 signaling in B cells. Collectively, these data imply a role for Hspa9 in B lymphopoiesis and Stat5 activation downstream of IL-7 signaling.
Collapse
Affiliation(s)
- Kilannin Krysiak
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Justin F Tibbitts
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jin Shao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tuoen Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew Ndonwi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew J Walter
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
18
|
Amick J, Schlanger SE, Wachnowsky C, Moseng MA, Emerson CC, Dare M, Luo WI, Ithychanda SS, Nix JC, Cowan JA, Page RC, Misra S. Crystal structure of the nucleotide-binding domain of mortalin, the mitochondrial Hsp70 chaperone. Protein Sci 2014; 23:833-42. [PMID: 24687350 DOI: 10.1002/pro.2466] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 03/18/2014] [Indexed: 01/18/2023]
Abstract
Mortalin, a member of the Hsp70-family of molecular chaperones, functions in a variety of processes including mitochondrial protein import and quality control, Fe-S cluster protein biogenesis, mitochondrial homeostasis, and regulation of p53. Mortalin is implicated in regulation of apoptosis, cell stress response, neurodegeneration, and cancer and is a target of the antitumor compound MKT-077. Like other Hsp70-family members, Mortalin consists of a nucleotide-binding domain (NBD) and a substrate-binding domain. We determined the crystal structure of the NBD of human Mortalin at 2.8 Å resolution. Although the Mortalin nucleotide-binding pocket is highly conserved relative to other Hsp70 family members, we find that its nucleotide affinity is weaker than that of Hsc70. A Parkinson's disease-associated mutation is located on the Mortalin-NBD surface and may contribute to Mortalin aggregation. We present structure-based models for how the Mortalin-NBD may interact with the nucleotide exchange factor GrpEL1, with p53, and with MKT-077. Our structure may contribute to the understanding of disease-associated Mortalin mutations and to improved Mortalin-targeting antitumor compounds.
Collapse
Affiliation(s)
- Joseph Amick
- Department of Molecular Cardiology, The Cleveland Clinic, Cleveland, Ohio, 44195
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sane S, Abdullah A, Boudreau DA, Autenried RK, Gupta BK, Wang X, Wang H, Schlenker EH, Zhang D, Telleria C, Huang L, Chauhan SC, Rezvani K. Ubiquitin-like (UBX)-domain-containing protein, UBXN2A, promotes cell death by interfering with the p53-Mortalin interactions in colon cancer cells. Cell Death Dis 2014; 5:e1118. [PMID: 24625977 PMCID: PMC3973214 DOI: 10.1038/cddis.2014.100] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/02/2014] [Accepted: 02/07/2014] [Indexed: 02/08/2023]
Abstract
Mortalin (mot-2) induces inactivation of the tumor suppressor p53's transcriptional and apoptotic functions by cytoplasmic sequestration of p53 in select cancers. The mot-2-dependent cytoprotective function enables cancer cells to support malignant transformation. Abrogating the p53-mot-2 interaction can control or slow down the growth of cancer cells. In this study, we report the discovery of a ubiquitin-like (UBX)-domain-containing protein, UBXN2A, which binds to mot-2 and consequently inhibits the binding between mot-2 and p53. Genetic analysis showed that UBXN2A binds to mot-2's substrate binding domain, and it partly overlaps p53's binding site indicating UBXN2A and p53 likely bind to mot-2 competitively. By binding to mot-2, UBXN2A releases p53 from cytosolic sequestration, rescuing the tumor suppressor functions of p53. Biochemical analysis and functional assays showed that the overexpression of UBXN2A and the functional consequences of unsequestered p53 trigger p53-dependent apoptosis. Cells expressing shRNA against UBXN2A showed the opposite effect of that seen with UBXN2A overexpression. The expression of UBXN2A and its apoptotic effects were not observed in normal colonic epithelial cells and p53-/- colon cancer cells. Finally, significant reduction in tumor volume in a xenograft mouse model in response to UBXN2A expression was verified in vivo. Our results introduce UBXN2A as a home defense response protein, which can reconstitute inactive p53-dependent apoptotic pathways. Inhibition of mot-2-p53 interaction by UBXN2A is an attractive therapeutic strategy in mot-2-elevated tumors.
Collapse
Affiliation(s)
- S Sane
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - A Abdullah
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - D A Boudreau
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - R K Autenried
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - B K Gupta
- Department of Pharmaceutical Sciences, Cancer Research Center, University of Tennessee Health Science Center, 19S Manassas Avenue, Memphis, TN, USA
| | - X Wang
- Departments of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - H Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - E H Schlenker
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - D Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - C Telleria
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - L Huang
- Departments of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - S C Chauhan
- Department of Pharmaceutical Sciences, Cancer Research Center, University of Tennessee Health Science Center, 19S Manassas Avenue, Memphis, TN, USA
| | - K Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| |
Collapse
|
20
|
Guo W, Yan L, Yang L, Liu X, E Q, Gao P, Ye X, Liu W, Zuo J. Targeting GRP75 improves HSP90 inhibitor efficacy by enhancing p53-mediated apoptosis in hepatocellular carcinoma. PLoS One 2014; 9:e85766. [PMID: 24465691 PMCID: PMC3894982 DOI: 10.1371/journal.pone.0085766] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/05/2013] [Indexed: 02/05/2023] Open
Abstract
Heat shock protein 90 (HSP90) inhibitors are potential drugs for cancer therapy. The inhibition of HSP90 on cancer cell growth largely through degrading client proteins, like Akt and p53, therefore, triggering cancer cell apoptosis. Here, we show that the HSP90 inhibitor 17-AAG can induce the expression of GRP75, a member of heat shock protein 70 (HSP70) family, which, in turn, attenuates the anti-growth effect of HSP90 inhibition on cancer cells. Additionally, 17-AAG enhanced binding of GRP75 and p53, resulting in the retention of p53 in the cytoplasm. Blocking GRP75 with its inhibitor MKT-077 potentiated the anti-tumor effects of 17-AAG by disrupting the formation of GRP75-p53 complexes, thereby facilitating translocation of p53 into the nuclei and leading to the induction of apoptosis-related genes. Finally, dual inhibition of HSP90 and GRP75 was found to significantly inhibit tumor growth in a liver cancer xenograft model. In conclusion, the GRP75 inhibitor MKT-077 enhances 17-AAG-induced apoptosis in HCCs and increases p53-mediated inhibition of tumor growth in vivo. Dual targeting of GRP75 and HSP90 may be a useful strategy for the treatment of HCCs.
Collapse
Affiliation(s)
- Weiwei Guo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lichong Yan
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ling Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoyu Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiukai E
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Peiye Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaofei Ye
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
- * E-mail: (JZ); (WL)
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
- * E-mail: (JZ); (WL)
| |
Collapse
|
21
|
Renaud J, Bournival J, Zottig X, Martinoli MG. Resveratrol protects DAergic PC12 cells from high glucose-induced oxidative stress and apoptosis: effect on p53 and GRP75 localization. Neurotox Res 2013; 25:110-23. [PMID: 24218232 PMCID: PMC3889681 DOI: 10.1007/s12640-013-9439-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 10/16/2013] [Accepted: 10/30/2013] [Indexed: 12/15/2022]
Abstract
Resveratrol (RESV), a polyphenolic natural compound, has long been acknowledged to have cardioprotective and antiinflammatory actions. Evidence suggests that RESV has antioxidant properties that reduce the formation of reactive oxygen species leading to oxidative stress and apoptotic death of dopaminergic (DAergic) neurons in Parkinson’s disease (PD). Recent literature has recognized hyperglycemia as a cause of oxidative stress reported to be harmful for the nervous system. In this context, our study aimed (a) to evaluate the effect of RESV against high glucose (HG)-induced oxidative stress in DAergic neurons, (b) to study the antiapoptotic properties of RESV in HG condition, and c) to analyze RESV’s ability to modulate p53 and GRP75, a p53 inactivator found to be under expressed in postmortem PD brains. Our results suggest that RESV protects DAergic neurons against HG-induced oxidative stress by diminishing cellular levels of superoxide anion. Moreover, RESV significantly reduces HG-induced apoptosis in DAergic cells by modulating DNA fragmentation and the expression of several genes implicated in the apoptotic cascade, such as Bax, Bcl-2, cleaved caspase-3, and cleaved PARP-1. RESV also prevents the pro-apoptotic increase of p53 in the nucleus induced by HG. Such data strengthens the correlation between hyperglycemia and neurodegeneration, while providing new insight on the high occurrence of PD in patients with diabetes. This study enlightens potent neuroprotective roles for RESV that should be considered as a nutritional recommendation for preventive and/or complementary therapies in controlling neurodegenerative complications in diabetes.
Collapse
Affiliation(s)
- Justine Renaud
- Cellular Neurobiology, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | | | | | | |
Collapse
|
22
|
Vaishnavi K, Saxena N, Shah N, Singh R, Manjunath K, Uthayakumar M, Kanaujia SP, Kaul SC, Sekar K, Wadhwa R. Differential activities of the two closely related withanolides, Withaferin A and Withanone: bioinformatics and experimental evidences. PLoS One 2012; 7:e44419. [PMID: 22973447 PMCID: PMC3433425 DOI: 10.1371/journal.pone.0044419] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 08/07/2012] [Indexed: 12/24/2022] Open
Abstract
Background and Purpose Withanolides are naturally occurring chemical compounds. They are secondary metabolites produced via oxidation of steroids and structurally consist of a steroid-backbone bound to a lactone or its derivatives. They are known to protect plants against herbivores and have medicinal value including anti-inflammation, anti-cancer, adaptogenic and anti-oxidant effects. Withaferin A (Wi-A) and Withanone (Wi-N) are two structurally similar withanolides isolated from Withania somnifera, also known as Ashwagandha in Indian Ayurvedic medicine. Ashwagandha alcoholic leaf extract (i-Extract), rich in Wi-N, was shown to kill cancer cells selectively. Furthermore, the two closely related purified phytochemicals, Wi-A and Wi-N, showed differential activity in normal and cancer human cells in vitro and in vivo. We had earlier identified several genes involved in cytotoxicity of i-Extract in human cancer cells by loss-of-function assays using either siRNA or randomized ribozyme library. Methodology/Principal Findings In the present study, we have employed bioinformatics tools on four genes, i.e., mortalin, p53, p21 and Nrf2, identified by loss-of-function screenings. We examined the docking efficacy of Wi-N and Wi-A to each of the four targets and found that the two closely related phytochemicals have differential binding properties to the selected cellular targets that can potentially instigate differential molecular effects. We validated these findings by undertaking parallel experiments on specific gene responses to either Wi-N or Wi-A in human normal and cancer cells. We demonstrate that Wi-A that binds strongly to the selected targets acts as a strong cytotoxic agent both for normal and cancer cells. Wi-N, on the other hand, has a weak binding to the targets; it showed milder cytotoxicity towards cancer cells and was safe for normal cells. The present molecular docking analyses and experimental evidence revealed important insights to the use of Wi-A and Wi-N for cancer treatment and development of new anti-cancer phytochemical cocktails.
Collapse
Affiliation(s)
- Kirti Vaishnavi
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Nishant Saxena
- National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Navjot Shah
- National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Rumani Singh
- National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kavyashree Manjunath
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - M. Uthayakumar
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Shankar P. Kanaujia
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Sunil C. Kaul
- National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Tsukuba, Japan
| | - Kanagaraj Sekar
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
- * E-mail: (KS); (RW)
| | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Tsukuba, Japan
- * E-mail: (KS); (RW)
| |
Collapse
|
23
|
Chunta JL, Vistisen KS, Yazdi Z, Braun RD. Uptake rate of cationic mitochondrial inhibitor MKT-077 determines cellular oxygen consumption change in carcinoma cells. PLoS One 2012; 7:e37471. [PMID: 22616013 PMCID: PMC3355126 DOI: 10.1371/journal.pone.0037471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/22/2012] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Since tumor radiation response is oxygen-dependent, radiosensitivity can be enhanced by increasing tumor oxygenation. Theoretically, inhibiting cellular oxygen consumption is the most efficient way to increase oxygen levels. The cationic, rhodacyanine dye-analog MKT-077 inhibits mitochondrial respiration and could be an effective metabolic inhibitor. However, the relationship between cellular MKT-077 uptake and metabolic inhibition is unknown. We hypothesized that rat and human mammary carcinoma cells would take up MKT-077, causing a decrease in oxygen metabolism related to drug uptake. METHODS R3230Ac rat breast adenocarcinoma cells were exposed to MKT-077. Cellular MKT-077 concentration was quantified using spectroscopy, and oxygen consumption was measured using polarographic electrodes. MKT-077 uptake kinetics were modeled by accounting for uptake due to both the concentration and potential gradients across the plasma and mitochondrial membranes. These kinetic parameters were used to model the relationship between MKT-077 uptake and metabolic inhibition. MKT-077-induced changes in oxygen consumption were also characterized in MDA-MB231 human breast carcinoma cells. RESULTS Cells took up MKT-077 with a time constant of ∼1 hr, and modeling showed that over 90% of intracellular MKT-077 was bound or sequestered, likely by the mitochondria. The uptake resulted in a rapid decrease in oxygen consumption, with a time constant of ∼30 minutes. Surprisingly the change in oxygen consumption was proportional to uptake rate, not cellular concentration. MKT-077 proved a potent metabolic inhibitor, with dose-dependent decreases of 45-73% (p = 0.003). CONCLUSIONS MKT-077 caused an uptake rate-dependent decrease in cellular metabolism, suggesting potential efficacy for increasing tumor oxygen levels and radiosensitivity in vivo.
Collapse
Affiliation(s)
- John L Chunta
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America.
| | | | | | | |
Collapse
|
24
|
Katayama H, Wang J, Treekitkarnmongkol W, Kawai H, Sasai K, Zhang H, Wang H, Adams HP, Jiang S, Chakraborty SN, Suzuki F, Arlinghaus RB, Liu J, Mobley JA, Grizzle WE, Wang H, Sen S. Aurora kinase-A inactivates DNA damage-induced apoptosis and spindle assembly checkpoint response functions of p73. Cancer Cell 2012; 21:196-211. [PMID: 22340593 PMCID: PMC3760020 DOI: 10.1016/j.ccr.2011.12.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 09/21/2011] [Accepted: 12/23/2011] [Indexed: 11/15/2022]
Abstract
Elevated Aurora kinase-A expression is correlated with abrogation of DNA damage-induced apoptotic response and mitotic spindle assembly checkpoint (SAC) override in human tumor cells. We report that Aurora-A phosphorylation of p73 at serine235 abrogates its transactivation function and causes cytoplasmic sequestration in a complex with the chaperon protein mortalin. Aurora-A phosphorylated p73 also facilitates inactivation of SAC through dissociation of the MAD2-CDC20 complex in cells undergoing mitosis. Cells expressing phosphor-mimetic mutant (S235D) of p73 manifest altered growth properties, resistance to cisplatin- induced apoptosis, as well as premature dissociation of the MAD2-CDC20 complex, and accelerated mitotic exit with SAC override in the presence of spindle damage. Elevated cytoplasmic p73 in Aurora-A overexpressing primary human tumors corroborates the experimental findings.
Collapse
Affiliation(s)
- Hiroshi Katayama
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jin Wang
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Warapen Treekitkarnmongkol
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hidehiko Kawai
- Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kaori Sasai
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hui Zhang
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hua Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Henry P. Adams
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shoulei Jiang
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sandip N. Chakraborty
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Fumio Suzuki
- Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ralph B. Arlinghaus
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James A. Mobley
- Department of Surgery and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - William E. Grizzle
- Department of Pathology and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Subrata Sen
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
25
|
Grover A, Priyandoko D, Gao R, Shandilya A, Widodo N, Bisaria VS, Kaul SC, Wadhwa R, Sundar D. Withanone binds to mortalin and abrogates mortalin-p53 complex: computational and experimental evidence. Int J Biochem Cell Biol 2011; 44:496-504. [PMID: 22155302 DOI: 10.1016/j.biocel.2011.11.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 11/26/2022]
Abstract
Mortalin binds to p53 tumor suppressor protein and sequesters it in the cytoplasm. This results in an inhibition of the transcriptional activation and control of centrosome duplication functions of p53, thus contributing to human carcinogenesis. Abrogation of mortalin-p53 interaction and reactivation of p53 function could be a valid proposition for cancer therapy. In the present study, we first investigated in silico the interaction of withanone, a withanolide with anticancer activity, with mortalin. We found that withanone could bind to mortalin in a region, earlier predicted critical for binding to p53. Cationic rhodacyanine dye, MKT-077 has also shown to bind the same region and kill cancer cells selectively. We report the molecular dynamic simulations revealing the thermodynamic and structural stability of the withanone-mortalin complexes. We also demonstrate the experimental evidence of abrogation of mortalin-p53 complex by withanone resulting in nuclear translocation and functional reactivation of p53 in human cancer cells. The present study establishes a molecular interaction basis that could be used for screening and development of anticancer drugs with low toxicity to normal cells. Accurate knowledge of the 3D structure of mortalin would further enhance the potential of such analyses to understand the molecular basis of mortalin biology and mortalin based cancer therapy.
Collapse
Affiliation(s)
- Abhinav Grover
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Knockdown of Hspa9, a del(5q31.2) gene, results in a decrease in hematopoietic progenitors in mice. Blood 2010; 117:1530-9. [PMID: 21123823 DOI: 10.1182/blood-2010-06-293167] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Heterozygous deletions spanning chromosome 5q31.2 occur frequently in the myelodysplastic syndromes (MDS) and are highly associated with progression to acute myeloid leukemia (AML) when p53 is mutated. Mutagenesis screens in zebrafish and mice identified Hspa9 as a del(5q31.2) candidate gene that may contribute to MDS and AML pathogenesis, respectively. To test whether HSPA9 haploinsufficiency recapitulates the features of ineffective hematopoiesis observed in MDS, we knocked down the expression of HSPA9 in primary human hematopoietic cells and in a murine bone marrow-transplantation model using lentivirally mediated gene silencing. Knockdown of HSPA9 in human cells significantly delayed the maturation of erythroid precursors, but not myeloid or megakaryocytic precursors, and suppressed cell growth by 6-fold secondary to an increase in apoptosis and a decrease in the cycling of cells compared with control cells. Erythroid precursors, B lymphocytes, and the bone marrow progenitors c-kit(+)/lineage(-)/Sca-1(+) (KLS) and megakaryocyte/erythrocyte progenitor (MEP) were significantly reduced in a murine Hspa9-knockdown model. These abnormalities suggest that cooperating gene mutations are necessary for del(5q31.2) MDS cells to gain clonal dominance in the bone marrow. Our results demonstrate that Hspa9 haploinsufficiency alters the hematopoietic progenitor pool in mice and contributes to abnormal hematopoiesis.
Collapse
|
27
|
Iosefson O, Azem A. Reconstitution of the mitochondrial Hsp70 (mortalin)-p53 interaction using purified proteins--identification of additional interacting regions. FEBS Lett 2010; 584:1080-4. [PMID: 20153329 DOI: 10.1016/j.febslet.2010.02.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 11/17/2022]
Abstract
Previous studies have shown that the mammalian mitochondrial 70 kDa heat-shock protein (mortalin) can also be detected in the cytosol. Cytosolic mortalin binds p53 and by doing so, prevents translocation of the tumor suppressor into the nucleus. In this study, we developed a novel binding assay, using purified proteins, for tracking the interaction between p53 and mortalin. Our results reveal that: (i) P53 binds to the peptide-binding site of mortalin which enhances the ability of the former to bind DNA. (ii) An additional previously unknown binding site for mortalin exists within the C-terminal domain of p53.
Collapse
Affiliation(s)
- Ohad Iosefson
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
28
|
Gabriele J, Pontoriero GF, Thomas N, Thomson CA, Skoblenick K, Pristupa ZB, Mishra RK. Cloning, characterization, and functional studies of a human 40-kDa catecholamine-regulated protein: implications in central nervous system disorders. Cell Stress Chaperones 2009; 14:555-67. [PMID: 19280369 PMCID: PMC2866950 DOI: 10.1007/s12192-009-0107-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/09/2009] [Accepted: 02/19/2009] [Indexed: 12/14/2022] Open
Abstract
Catecholamine-regulated proteins (CRPs) have been shown to bind dopamine and other structurally related catecholamines; in particular, the 40-kDa CRP (CRP40) protein has been previously cloned and functionally characterized. To determine putative human homologs, BLAST analysis using the bovine CRP40 sequence identified a human established sequence tag (EST) with significant homology (accession #BQ224193). Using this EST, we cloned a recombinant human brain CRP40-like protein, which possessed chaperone activity. Radiolabeled dopamine binding studies with recombinant human CRP40 protein demonstrated the ability of this protein to bind dopamine with low affinity and high capacity. The full-length human CRP40 nucleotide sequence was elucidated (accession #DQ480334) with RNA ligase-mediated rapid amplification of complementary DNA ends polymerase chain reaction, while Northern blot hybridization suggested that human CRP40 is an alternative splice variant of the 70-kDa mitochondrial heat shock protein, mortalin. Human SH-SY5Y neuroblastoma cells treated with the antipsychotic drug, haloperidol, exhibited a significant increase in CRP40 messenger RNA expression compared to untreated control cells, while other dopamine agonists/antagonists also altered CRP40 expression and immunolocalization. In conclusion, these results show that we have cloned a splice variant of mortalin with a novel catecholamine binding function and that this chaperone-like protein may be neuroprotective in dopamine-related central nervous system disorders.
Collapse
Affiliation(s)
- Joseph Gabriele
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
29
|
Conte M, Deri P, Isolani ME, Mannini L, Batistoni R. A mortalin-like gene is crucial for planarian stem cell viability. Dev Biol 2009; 334:109-18. [PMID: 19616535 DOI: 10.1016/j.ydbio.2009.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 12/22/2022]
Abstract
In adult organisms, stem cells are crucial to homeostasis and regeneration of damaged tissues. In planarians, adult stem cells (neoblasts) are endowed with an extraordinary replicative potential that guarantees unlimited replacement of all differentiated cell types and extraordinary regenerative ability. The molecular mechanisms by which neoblasts combine long-term stability and constant proliferative activity, overcoming the impact of time, remain by far unknown. Here we investigate the role of Djmot, a planarian orthologue that encodes a peculiar member of the HSP70 family, named Mortalin, on the dynamics of stem cells of Dugesia japonica. Planarian stem cells and progenitors constitutively express Djmot. Transient Djmot expression in differentiated tissues is only observed after X-ray irradiation. DjmotRNA interference causes inability to regenerate and death of the animals, as a result of permanent growth arrest of stem cells. These results provide the first evidence that an hsp-related gene is essential for neoblast viability and suggest the possibility that high levels of Djmot serve to keep a p53-like protein signaling under control, thus allowing neoblasts to escape cell death programs. Further studies are needed to unravel the molecular pathways involved in these processes.
Collapse
Affiliation(s)
- Maria Conte
- Dipartimento di Biologia, Università di Pisa, I-56017 Ghezzano, Italy
| | | | | | | | | |
Collapse
|
30
|
Kaul SC, Deocaris CC, Wadhwa R. Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol 2006; 42:263-74. [PMID: 17188442 DOI: 10.1016/j.exger.2006.10.020] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/05/2006] [Accepted: 10/24/2006] [Indexed: 11/23/2022]
Abstract
Mortalin was first cloned as a mortality factor that existed in the cytoplasmic fractions of normal, but not in immortal, mouse fibroblasts. A decade of efforts have expanded its persona from a house keeper protein involved in mitochondrial import, energy generation and chaperoning of misfolded proteins, to a guardian of stress that has multiple binding partners and to a killer protein that contributes to carcinogenesis on one hand and to old age disorders on the other. Being proved to be an attractive target for cancer therapy, it also warrants attention from the perspectives of management of old age diseases and healthy aging.
Collapse
Affiliation(s)
- Sunil C Kaul
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan
| | | | | |
Collapse
|
31
|
Shinmura K, Bennett RA, Tarapore P, Fukasawa K. Direct evidence for the role of centrosomally localized p53 in the regulation of centrosome duplication. Oncogene 2006; 26:2939-44. [PMID: 17072342 DOI: 10.1038/sj.onc.1210085] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abnormal amplification of centrosomes is the major cause of mitotic defects and chromosome instability in cancer cells. Centrosomes duplicate once in each cell cycle, and abrogation of the regulatory mechanism underlying centrosome duplication leads to centrosome amplification. p53 tumor suppressor protein is involved in the regulation of centrosome duplication: loss of p53 as well as expression of certain p53 mutants result in deregulated centrosome duplication and centrosome amplification. p53 at least in part depends on its transactivation function to control centrosome duplication, primarily via upregulation of p21 cyclin-dependent kinase (CDK) inhibitor, which prevents untimely activation of CDK2/cyclin E, a key initiator of centrosome duplication. However, numerous studies have shown the presence of p53 at centrosomes, yet the role of the centrosomally localized p53 in the regulation of centrosome duplication had been enigmatic. Here, we comparatively examined wild-type p53 and p53 mutants that are transactivation(+)/centrosome-binding(-), transactivation(-)/centrosome-binding(+) and transactivation(-)/centrosome-binding(-) for their abilities to control centrosome duplication. We found that the transactivation(+)/centrosome-binding(-) and transactivation(-)/centrosome-binding(+) mutants suppress centrosome duplication only partially compared with wild-type p53. Moreover, the transactivation(-)/centrosome-binding(-) mutant almost completely lost the ability to suppress centrosome duplication. These observations provide direct evidence for the centrosomally localized p53 to participate in the regulation of centrosome duplication in a manner independent of its transactivation function in addition to its transactivation-dependent regulation of centrosome duplication.
Collapse
Affiliation(s)
- K Shinmura
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
32
|
Aizu W, Belinsky GS, Flynn C, Noonan EJ, Boes CC, Godman CA, Doshi B, Nambiar PR, Rosenberg DW, Giardina C. Circumvention and reactivation of the p53 oncogene checkpoint in mouse colon tumors. Biochem Pharmacol 2006; 72:981-91. [PMID: 16949053 DOI: 10.1016/j.bcp.2006.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/29/2006] [Accepted: 07/17/2006] [Indexed: 01/25/2023]
Abstract
The p53 tumor suppressor protein is sequence-normal in azoxymethane (AOM)-induced mouse colon tumors, making them a good model for human colon cancers that retain a wild type p53 gene. Cellular localization and co-immunoprecipitation experiments using a cell line derived from an AOM-induced colon tumor (AJ02-NM(0) cells) pointed to constitutively expressed Mdm2 as being an important negative regulator of p53 in these cells. Although the Mdm2 inhibitory protein p19/ARF was expressed in AJ02-NM(0) cells, its level of expression was not sufficient for p53 activation. We tested the response of AJ02-NM(0) cells to the recently developed Mdm2 inhibitor, Nutlin-3. Nutlin-3 was found to activate p53 DNA binding in AJ02-NM(0) cells, to a level comparable to doxorubicin and 5-fluorouracil (5-FU). In addition, Nutlin-3 increased expression of the p53 target genes Bax and PERP to a greater extent than doxorubicin or 5-FU, and triggered a G2/M phase arrest in these cells, compared to a G1 arrest triggered by doxorubicin and 5-FU. The differences in the cellular response may be related to differences in the kinetics of p53 activation and/or its post-translational modification status. In an ex vivo experiment, Nutlin-3 was found to activate p53 target gene expression and apoptosis in AOM-induced tumor tissue, but not in normal adjacent mucosa. Our data indicate that Mdm2 inhibitors may be an effective means of selectively targeting colon cancers that retain a sequence-normal p53 gene while sparing normal tissue and that the AOM model is an appropriate model for the preclinical development of these drugs.
Collapse
Affiliation(s)
- Wataru Aizu
- Department of Molecular & Cell Biology, 91 North Eagleville Road, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wadhwa R, Takano S, Kaur K, Deocaris CC, Pereira-Smith OM, Reddel RR, Kaul SC. Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. Int J Cancer 2006; 118:2973-80. [PMID: 16425258 DOI: 10.1002/ijc.21773] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mortalin, also known as mthsp70/GRP75/PBP74, interacts with the tumor suppressor protein p53 and inactivates its transcriptional activation and apoptotic functions. Here, we examined the level of mortalin expression in a large variety of tumor tissues, tumor-derived and in vitro immortalized human cells. It was elevated in many human tumors, and in all of the tumor-derived and in vitro immortalized cells. In human embryonic fibroblasts immortalized with an expression plasmid for hTERT, the telomerase catalytic subunit, with or without human papillomavirus E6 and E7 genes, we found that subclones with spontaneously increased mortalin expression levels became anchorage-independent and acquired the ability to form tumors in nude mice. Furthermore, overexpression of mortalin was sufficient to increase the malignancy of breast carcinoma cells. The study demonstrates that upregulation of mortalin contributes significantly to tumorigenesis, and thus is a good candidate target for cancer therapy.
Collapse
Affiliation(s)
- Renu Wadhwa
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Ma Z, Izumi H, Kanai M, Kabuyama Y, Ahn NG, Fukasawa K. Mortalin controls centrosome duplication via modulating centrosomal localization of p53. Oncogene 2006; 25:5377-90. [PMID: 16619038 DOI: 10.1038/sj.onc.1209543] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abnormal amplification of centrosomes, commonly found in human cancer, is the major cause of mitotic defects and chromosome instability in cancer cells. Like DNA, centrosomes duplicate once in each cell cycle, hence the defect in the mechanism that ensures centrosome duplication to occur once and only once in each cell cycle results in abnormal amplification of centrosomes and mitotic defects. Centrosomes are non-membranous organelles, and undergo dynamic changes in its constituents during the centrosome duplication cycle. Through a comparative mass spectrometric analysis of unduplicated and duplicated centrosomes, we identified mortalin, a member of heat shock protein family, as a protein that associates preferentially with duplicated centrosomes. Further analysis revealed that mortalin localized to centrosomes in late G1 before centrosome duplication, remained at centrosomes during S and G2, and dissociated from centrosomes during mitosis. Overexpression of mortalin overrides the p53-dependent suppression of centrosome duplication, and mortalin-driven centrosome duplication requires physical interaction between mortalin and p53. Moreover, mortalin promotes dissociation of p53 from centrosomes through physical interaction. The p53 mutant that lacks the ability to bind to mortalin remains at centrosomes, and suppresses centrosome duplication in a transactivation function-independent manner. Thus, our present findings not only identify mortalin as an upstream molecule of p53 but also provide evidence for the involvement of centrosomally localized p53 in the regulation of centrosome duplication.
Collapse
Affiliation(s)
- Z Ma
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | | | | | | | |
Collapse
|
35
|
Kaul SC, Aida S, Yaguchi T, Kaur K, Wadhwa R. Activation of wild type p53 function by its mortalin-binding, cytoplasmically localizing carboxyl terminus peptides. J Biol Chem 2005; 280:39373-9. [PMID: 16176931 DOI: 10.1074/jbc.m500022200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Hsp70 family member mortalin (mot-2/mthsp70/GRP75) binds to a carboxyl terminus region of the tumor suppressor protein p53. By in vivo co-immunoprecipitation of mot-2 with p53 and its deletion mutants, we earlier mapped the mot-2-binding site of p53 to its carboxyl terminus 312-352 amino acid residues. In the present study we attempted to disrupt mot-2-p53 interactions by overexpression of short p53 carboxyl-terminal peptides. We report that p53 carboxyl-terminal peptides (amino acid residues 312-390, 312-352, 323-390, and 323-352) localize in the cytoplasm, whereas 312-322, 337-390, 337-352, and 352-390 locate mostly in the nucleus. Most interestingly, the cytoplasmically localizing p53 peptides harboring the residues 323-337 activated the endogenous p53 function by displacing it from p53-mortalin complexes and relocating it to the nucleus. Such activation of p53 function was sufficient to cause growth arrest of human osteosarcoma and breast carcinoma cells.
Collapse
Affiliation(s)
- Sunil C Kaul
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | | | | | |
Collapse
|
36
|
O'Brate A, Giannakakou P. The importance of p53 location: nuclear or cytoplasmic zip code? Drug Resist Updat 2004; 6:313-22. [PMID: 14744495 DOI: 10.1016/j.drup.2003.10.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The regulation of p53 functions is tightly controlled through several mechanisms including p53 transcription and translation, protein stability, post-translational modifications, and subcellular localization. Despite intensive study of p53, the regulation of p53 subcellular localization although important for its function is still poorly understood. The regulation of p53 localization depends on factors that influence its nuclear import and export, subnuclear localization and cytoplasmic tethering and sequestration. In this review, we will focus on various proteins and modifications that regulate the location and therefore the activity of p53. For example, MDM2 is the most important regulator of p53 nuclear export and degradation. Cytoplasmic p53 associates with the microtubule cytoskeleton and the dynein family of motor proteins; while Parc and mot2 are involved in its cytoplasmic sequestration. Finally, a portion of p53 is localized to the mitochondria as part of the non-transcriptional apoptotic response. In this review we strive to present the most recent data on how the activity of p53 is regulated by its location.
Collapse
Affiliation(s)
- Aurora O'Brate
- Winship Cancer Institute, Emory University, 1365-C Clifton Road, N.E., Room C4078, Atlanta, GA 30322, USA
| | | |
Collapse
|
37
|
Wadhwa R, Ando H, Kawasaki H, Taira K, Kaul SC. Targeting mortalin using conventional and RNA-helicase-coupled hammerhead ribozymes. EMBO Rep 2003; 4:595-601. [PMID: 12776179 PMCID: PMC1319200 DOI: 10.1038/sj.embor.embor855] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Revised: 04/07/2003] [Accepted: 04/15/2003] [Indexed: 11/09/2022] Open
Abstract
Mortalin, also known as mot2/mthsp70/GRP75/PBP74, is a member of the heat-shock protein 70 family that is heat-uninducible. It is differentially distributed in cells that have normal and immortal phenotypes, has been localized to various subcellular sites, and has several binding partners and functions. Here, we describe the construction and use of mortalin-specific conventional and hybrid ribozymes to elucidate its crucial role in cell proliferation. Whereas conventional hammerhead ribozymes did not cause any repression of endogenous mortalin expression, RNA-helicase-linked hybrid ribozymes successfully suppressed the expression of mortalin, which resulted in the growth arrest of transformed human cells. We show that, first, RNA helicase-coupled hybrid ribozymes that have a linked unwinding activity can be used to target genes for which conventional hammerhead ribozymes are ineffective; second, the targeting of mortalin by RNA-helicase-coupled hybrid ribozymes causes growth suppression of transformed human cells and could be used as a treatment for cancer.
Collapse
Affiliation(s)
- Renu Wadhwa
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Chugai Research Institute for Medical Sciences, 153-2 Nagai, Niihari-mura, Ibaraki, 300-4101, Japan
| | - Hiroshi Ando
- Chugai Research Institute for Medical Sciences, 153-2 Nagai, Niihari-mura, Ibaraki, 300-4101, Japan
| | - Hiroaki Kawasaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Hongo, Tokyo, 113-8656, Japan
| | - Kazunari Taira
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Hongo, Tokyo, 113-8656, Japan
| | - Sunil C. Kaul
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Tel: +81 298 61 6713; Fax: +81 298 61 6052;
| |
Collapse
|
38
|
Kaul SC, Yaguchi T, Taira K, Reddel RR, Wadhwa R. Overexpressed mortalin (mot-2)/mthsp70/GRP75 and hTERT cooperate to extend the in vitro lifespan of human fibroblasts. Exp Cell Res 2003; 286:96-101. [PMID: 12729798 DOI: 10.1016/s0014-4827(03)00101-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The lifespan of human foreskin fibroblasts (HFF5), cultured under standard in vitro conditions (including ambient atmospheric oxygen tension), was extended slightly by expression of exogenous mortalin (mot-2)/mthsp70/Grp75, but not by the catalytic subunit of telomerase, hTERT. Together, mot-2 and hTERT permitted bypass of senescence, a substantial extension of lifespan, and possibly immortalization. This is the first demonstration that mot-2 and telomerase can cooperate in the immortalization process.
Collapse
Affiliation(s)
- Sunil C Kaul
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | | | | | |
Collapse
|
39
|
Taurin S, Seyrantepe V, Orlov SN, Tremblay TL, Thibault P, Bennett MR, Hamet P, Pshezhetsky AV. Proteome analysis and functional expression identify mortalin as an antiapoptotic gene induced by elevation of [Na+]i/[K+]i ratio in cultured vascular smooth muscle cells. Circ Res 2002; 91:915-22. [PMID: 12433836 DOI: 10.1161/01.res.0000043020.45534.3e] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apoptosis of vascular smooth muscle cells (VSMCs) plays an important role in remodeling of vessel walls, one of the major determinants of long-term blood pressure elevation and an independent risk factor for cardiovascular morbidity and mortality. Recently, we have found that apoptosis in cultured VSMCs can be inhibited by inversion of the intracellular [Na+]/[K+] ratio after the sustained blockage of the Na+,K+-ATPase by ouabain. To understand the mechanism of ouabain action, we analyzed subsets of hydrophilic and hydrophobic VSMC proteins from control and ouabain-treated cells by 2-dimensional electrophoresis. Ouabain treatment led to overexpression of numerous soluble and hydrophobic cellular proteins. Among proteins that showed the highest level of ouabain-induced expression, we identified mortalin (also known as GRP75 or PBP-74), a member of the heat shock protein 70 (HSP70) superfamily and a marker for cellular mortal and immortal phenotypes. Northern and Western blotting and immunocytochemistry all have confirmed that treatment of VSMCs with ouabain results in potent induction of mortalin expression. Transient transfection of cells with mortalin cDNA led to at least a 6-hour delay in the development of apoptosis after serum deprivation. The expression of tumor suppressor gene, p53, in mortalin-transfected cells was delayed to the same extent, and the expressed protein showed abnormal perinuclear distribution, suggesting that p53 is retained and inactivated by mortalin. Our studies therefore define a new [Na+]i/[K+]i-responsive signaling pathway that may play an important role in the regulation of programmed cell death in VSMCs.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Blotting, Northern
- Cells, Cultured
- Electrophoresis, Gel, Two-Dimensional
- Gene Expression Regulation/physiology
- HSP70 Heat-Shock Proteins/biosynthesis
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Male
- Mass Spectrometry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Ouabain/pharmacology
- Potassium/metabolism
- Proteome/chemistry
- Proteome/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred BN
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Sodium/metabolism
- Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
- Transfection
- Tumor Suppressor Protein p53/antagonists & inhibitors
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Sebastien Taurin
- Centre de Recherche de l'Hôpital Sainte Justine, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Mortalin, also known as mthsp70/PBP74/GRP75, resides in multiple subcellular sites including mitochondria, ER, plasma membrane, cytoplasmic vesicles and cytosol. It is differentially distributed in normal and cancerous cells; the latter, when reverted back to normal phenotype, also show change in mortalin staining pattern similar to normal cells. Depending on its different subcellular niche and binding partner therein, mortalin is expected to perform multiple functions relevant to cell survival, control of proliferation and stress response.
Collapse
Affiliation(s)
- Sunil C Kaul
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | |
Collapse
|
41
|
Abstract
Mortalin/mthsp70/PBP74/Grp75 (called mortalin hereafter), a member of the Hsp70 family of chaperones, was shown to have different subcellular localizations in normal and immortal cells. It has been assigned to multiple subcellular sites and implicated in multiple functions ranging from stress response, intracellular trafficking, antigen processing, control of cell proliferation, differentiation, and tumorigenesis. The present article compiles and reviews information on the multiple sites and functions of mortalin in different organisms. The relevance of its differential distributions and functions in normal and immortal cell phenotypes is discussed.
Collapse
Affiliation(s)
- Renu Wadhwa
- Chugai Research Institute for Medical Sciences, 153-2 Nagai, Niihari, Ibaraki 300-4101, Japan
| | | | | |
Collapse
|
42
|
Yokoyama K, Fukumoto K, Murakami T, Harada SI, Hosono R, Wadhwa R, Mitsui Y, Ohkuma S. Extended longevity of Caenorhabditis elegans by knocking in extra copies of hsp70F, a homolog of mot-2 (mortalin)/mthsp70/Grp75. FEBS Lett 2002; 516:53-7. [PMID: 11959102 DOI: 10.1016/s0014-5793(02)02470-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Caenorhabditis elegans homolog of mortalin/mthsp70/Grp75 (called mot-2 hereafter) was isolated by screening of a nematode cDNA library with mouse mot-2 cDNA. The isolated clone matched to hsp70F of C. elegans. Analysis with two of the antibodies raised against hsp70F revealed that unlike mammalian mot-2, it is heat inducible. Transient induction of hsp70F by heat shock led to a slight (<13%) extension in the C. elegans life span. The transgenic worms that constitutively over-expressed hsp70F predominantly in muscle showed life span extension (approximately 43% for mean and approximately 45% for maximum life span) as compared to the wild-type and green fluorescent protein-transgenic worms. Life span extension of human cells was obtained by over-expression of mot-2 [Kaul et al. (2000) FEBS Lett. 474, 159-164]. Our results show, for the first time, that this member of the hsp70 family governs the longevity of worms and thus there are common pathways that determine mammalian and worm longevity.
Collapse
Affiliation(s)
- Ken Yokoyama
- Laboratory of Biochemistry, Department of Molecular and Cellular Biology, Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi 13-1, Kanazawa, 920-0934, Ishikawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|