1
|
Lian C, Zhang C, Tian P, Tan Q, Wei Y, Wang Z, Zhang Q, Zhang Q, Zhong M, Zhou LQ, Ke X, Zhang H, Zhu Y, Li Z, Cheng J, Wei GH. Epigenetic reader ZMYND11 noncanonical function restricts HNRNPA1-mediated stress granule formation and oncogenic activity. Signal Transduct Target Ther 2024; 9:258. [PMID: 39341825 PMCID: PMC11438962 DOI: 10.1038/s41392-024-01961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Epigenetic readers frequently affect gene regulation, correlate with disease prognosis, and hold significant potential as therapeutic targets for cancer. Zinc finger MYND-type containing 11 (ZMYND11) is notably recognized for reading the epigenetic marker H3.3K36me3; however, its broader functions and mechanisms of action in cancer remain underexplored. Here, we report that ZMYND11 downregulation is prevalent across various cancers and profoundly correlates with poorer outcomes in prostate cancer patients. Depletion of ZMYND11 promotes tumor cell growth, migration, and invasion in vitro, as well as tumor formation and metastasis in vivo. Mechanistically, we discover that ZMYND11 exhibits tumor suppressive roles by recognizing arginine-194-methylated HNRNPA1 dependent on its MYND domain, thereby retaining HNRNPA1 in the nucleus and preventing the formation of stress granules in the cytoplasm. Furthermore, ZMYND11 counteracts the HNRNPA1-driven increase in the PKM2/PKM1 ratio, thus mitigating the aggressive tumor phenotype promoted by PKM2. Remarkably, ZMYND11 recognition of HNRNPA1 can be disrupted by pharmaceutical inhibition of the arginine methyltransferase PRMT5. Tumors with low ZMYND11 expression show sensitivity to PRMT5 inhibitors. Taken together, our findings uncover a previously unexplored noncanonical role of ZMYND11 as a nonhistone methylation reader and underscore the critical importance of arginine methylation in the ZMYND11-HNRNPA1 interaction for restraining tumor progression, thereby proposing novel therapeutic targets and potential biomarkers for cancer treatment.
Collapse
Affiliation(s)
- Cheng Lian
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunyi Zhang
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pan Tian
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qilong Tan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zixian Wang
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qin Zhang
- Disease Networks Research Unit, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Qixiang Zhang
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengjie Zhong
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xisong Ke
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huabing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhenfei Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Gong-Hong Wei
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Wu L, Huang J, Trivedi P, Sun X, Yu H, He Z, Zhang X. Zinc finger myeloid Nervy DEAF-1 type (ZMYND) domain containing proteins exert molecular interactions to implicate in carcinogenesis. Discov Oncol 2022; 13:139. [PMID: 36520265 PMCID: PMC9755447 DOI: 10.1007/s12672-022-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Morphogenesis and organogenesis in the low organisms have been found to be modulated by a number of proteins, and one of such factor, deformed epidermal auto-regulatory factor-1 (DEAF-1) has been initially identified in Drosophila. The mammalian homologue of DEAF-1 and structurally related proteins have been identified, and they formed a family with over 20 members. The factors regulate gene expression through association with co-repressors, recognition of genomic marker, to exert histone modification by catalyze addition of some chemical groups to certain amino acid residues on histone and non-histone proteins, and degradation host proteins, so as to regulate cell cycle progression and execution of cell death. The formation of fused genes during chromosomal translocation, exemplified with myeloid transforming gene on chromosome 8 (MTG8)/eight-to-twenty one translocation (ETO) /ZMYND2, MTG receptor 1 (MTGR1)/ZMYND3, MTG on chromosome 16/MTGR2/ZMYND4 and BS69/ZMYND11 contributes to malignant transformation. Other anomaly like copy number variation (CNV) of BS69/ZMYND11 and promoter hyper methylation of BLU/ZMYND10 has been noted in malignancies. It has been reported that when fusing with Runt-related transcription factor 1 (RUNX1), the binding of MTG8/ZMYND2 with co-repressors is disturbed, and silencing of BLU/ZMYND10 abrogates its ability to inhibition of cell cycle and promotion of apoptotic death. Further characterization of the implication of ZMYND proteins in carcinogenesis would enhance understanding of the mechanisms of occurrence and early diagnosis of tumors, and effective antitumor efficacy.
Collapse
Affiliation(s)
- Longji Wu
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
- Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Huang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | - Xuerong Sun
- Institute of Aging, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hongbing Yu
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| | - Zhiwei He
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Xiangning Zhang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China.
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Zhang J, Li Y, Fan TY, Liu D, Zou WD, Li H, Li YK. Identification of bromodomain-containing proteins prognostic value and expression significance based on a genomic landscape analysis of ovarian serous cystadenocarcinoma. Front Oncol 2022; 12:1021558. [PMID: 36276071 PMCID: PMC9579433 DOI: 10.3389/fonc.2022.1021558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundOvarian serous cystadenocarcinoma (OSC), a common gynecologic tumor, is characterized by high mortality worldwide. Bromodomain (BRD)-containing proteins are a series of evolutionarily conserved proteins that bind to acetylated Lys residues of histones to regulate the transcription of multiple genes. The ectopic expression of BRDs is often observed in multiple cancer types, but the role of BRDs in OSC is still unclear.MethodsWe performed the differential expression, GO enrichment, GSEA, immune infiltration, risk model, subtype classification, stemness feature, DNA alteration, and epigenetic modification analysis for these BRDs based on multiple public databases.ResultsMost BRDs were dysregulated in OSC tissues compared to normal ovary tissues. These BRDs were positively correlated with each other in OSC patients. Gene alteration and epigenetic modification were significant for the dysregulation of BRDs in OSC patients. GO enrichment suggested that BRDs played key roles in histone acetylation, viral carcinogenesis, and transcription coactivator activity. Two molecular subtypes were classified by BRDs for OSC, which were significantly correlated with stemness features, m6A methylation, ferroptosis, drug sensitivity, and immune infiltration. The risk model constructed by LASSO regression with BRDs performed moderately well in prognostic predictions for OSC patients. Moreover, BRPF1 plays a significant role in these BRDs for the development and progression of OSC patients.ConclusionBRDs are potential targets and biomarkers for OSC patients, especially BRPF1.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yan Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Ting-yu Fan
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Wen-da Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
- *Correspondence: Hui Li, ; Yu-kun Li,
| | - Yu-kun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
- *Correspondence: Hui Li, ; Yu-kun Li,
| |
Collapse
|
4
|
Cui J, Yuan Y, Shanmugam MK, Anbalagan D, Tan TZ, Sethi G, Kumar AP, Lim LHK. MicroRNA-196a promotes renal cancer cell migration and invasion by targeting BRAM1 to regulate SMAD and MAPK signaling pathways. Int J Biol Sci 2021; 17:4254-4270. [PMID: 34803496 PMCID: PMC8579441 DOI: 10.7150/ijbs.60805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
Rationale: MicroRNAs (miRNAs) are endogenous ~22nt RNAs that play critical regulatory roles in various biological and pathological processes, including various cancers. Their function in renal cancer has not been fully elucidated. It has been reported that miR-196a can act as oncogenes or as tumor suppressors depending on their target genes. However, the molecular target for miR-196a and the underlying mechanism in miR-196a promoted cell migration and invasion in renal cancer is still not clear. Methods: The expression, survival and correlation between miR-196a and BRAM1 were investigated using TCGA analysis and validated by RT-PCR and western blot. To visualize the effect of Bram1 on tumor metastasis in vivo, NOD-SCID gamma (NSG) mice were intravenously injected with RCC4 cells (106 cells/mouse) or RCC4 overexpressing Bram1. In addition, cell proliferation assays, migration and invasion assays were performed to examine the role of miR-196a in renal cells in vitro. Furthermore, immunoprecipitation was done to explore the binding targets of Bram1. Results: TCGA gene expression data from renal clear cell carcinoma patients showed a lower level of Bram1 expression in patients' specimens compared to adjacent normal tissues. Moreover, Kaplan‑Meier survival data clearly show that high expression of Bram1correlates to poor prognosis in renal carcinoma patients. Our mouse metastasis model confirmed that Bram1 overexpression resulted in an inhibition in tumor metastasis. Target-prediction analysis and dual-luciferase reporter assay demonstrated that Bram1 is a direct target of miR-196a in renal cells. Further, our in vitro functional assays revealed that miR-196a promotes renal cell proliferation, migration, and invasion. Rescue of Bram1 expression reversed miR-196a-induced cell migration. MiR-196a promotes renal cancer cell migration by directly targeting Bram1 and inhibits Smad1/5/8 phosphorylation and MAPK pathways through BMPR1A and EGFR. Conclusions: Our findings thus provide a new mechanism on the oncogenic role of miR-196a and the tumor-suppressive role of Bram1 in renal cancer cells. Dysregulated miR-196a and Bram1 represent potential prognostic biomarkers and may have therapeutic applications in renal cancer.
Collapse
Affiliation(s)
- Jianzhou Cui
- Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.,Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yi Yuan
- Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore
| | - Durkeshwari Anbalagan
- Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Tuan Zea Tan
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore
| | - Alan Prem Kumar
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore.,National University Cancer Institute, Singapore 119074, Singapore
| | - Lina H K Lim
- Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.,Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
5
|
Oates S, Absoud M, Goyal S, Bayley S, Baulcomb J, Sims A, Riddett A, Allis K, Brasch-Andersen C, Balasubramanian M, Bai R, Callewaert B, Hüffmeier U, Le Duc D, Radtke M, Korff C, Kennedy J, Low K, Møller RS, Nielsen JEK, Popp B, Quteineh L, Rønde G, Schönewolf-Greulich B, Shillington A, Taylor MR, Todd E, Torring PM, Tümer Z, Vasileiou G, Yates TM, Zweier C, Rosch R, Basson MA, Pal DK. ZMYND11 variants are a novel cause of centrotemporal and generalised epilepsies with neurodevelopmental disorder. Clin Genet 2021; 100:412-429. [PMID: 34216016 DOI: 10.1111/cge.14023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022]
Abstract
ZMYND11 is the critical gene in chromosome 10p15.3 microdeletion syndrome, a syndromic cause of intellectual disability. The phenotype of ZMYND11 variants has recently been extended to autism and seizures. We expand on the epilepsy phenotype of 20 individuals with pathogenic variants in ZMYND11. We obtained clinical descriptions of 16 new and nine published individuals, plus detailed case history of two children. New individuals were identified through GeneMatcher, ClinVar and the European Network for Therapies in Rare Epilepsy (NETRE). Genetic evaluation was performed using gene panels or exome sequencing; variants were classified using American College of Medical Genetics (ACMG) criteria. Individuals with ZMYND11 associated epilepsy fell into three groups: (i) atypical benign partial epilepsy or idiopathic focal epilepsy (n = 8); (ii) generalised epilepsies/infantile epileptic encephalopathy (n = 4); (iii) unclassified (n = 8). Seizure prognosis ranged from spontaneous remission to drug resistant. Neurodevelopmental deficits were invariable. Dysmorphic features were variable. Variants were distributed across the gene and mostly de novo with no precise genotype-phenotype correlation. ZMYND11 is one of a small group of chromatin reader genes associated in the pathogenesis of epilepsy, and specifically ABPE. More detailed epilepsy descriptions of larger cohorts and functional studies might reveal genotype-phenotype correlation. The epileptogenic mechanism may be linked to interaction with histone H3.3.
Collapse
Affiliation(s)
- Stephanie Oates
- Department of Paediatric Neuroscience, King's College Hospital, London, UK
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Michael Absoud
- Newcomen Children's Neurosciences Centre, Evelina London Children's Hospital, London, UK
- Department of Women and Children's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Sushma Goyal
- Newcomen Children's Neurosciences Centre, Evelina London Children's Hospital, London, UK
| | - Sophie Bayley
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Jennifer Baulcomb
- Newcomen Children's Neurosciences Centre, Evelina London Children's Hospital, London, UK
| | - Annemarie Sims
- Newcomen Children's Neurosciences Centre, Evelina London Children's Hospital, London, UK
| | - Amy Riddett
- Newcomen Children's Neurosciences Centre, Evelina London Children's Hospital, London, UK
| | - Katrina Allis
- Genetic Counselor, Mitochondrial and Metabolic Genetics, GeneDx, Gaithersburg, Maryland, USA
| | - Charlotte Brasch-Andersen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
- Academic Unit of Child Health, Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| | - Renkui Bai
- Genetic Counselor, Mitochondrial and Metabolic Genetics, GeneDx, Gaithersburg, Maryland, USA
| | - Bert Callewaert
- Centre for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ulrike Hüffmeier
- Institute of Human Genetics, Friedrich-Alexander Universitat of Erlangen-Nurnberg, Erlangen, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University of Leipzig Medical Centre, Leipzig, Germany
| | - Maximilian Radtke
- Institute of Human Genetics, University of Leipzig Medical Centre, Leipzig, Germany
| | - Christian Korff
- Pediatric Neurology Unit, University Hospitals, Geneva, Switzerland
| | - Joanna Kennedy
- Department of Genetics, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Karen Low
- Department of Genetics, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Jens Erik Klint Nielsen
- Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Bernt Popp
- Institute of Human Genetics, Friedrich-Alexander Universitat of Erlangen-Nurnberg, Erlangen, Germany
| | - Lina Quteineh
- Pediatric Neurology Unit, University Hospitals, Geneva, Switzerland
- Service of Genetic Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Gitte Rønde
- Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | | | - Matthew Rg Taylor
- University of Colorado Anschutz Medical Campus, Adult Medical Genetics Program, Aurora, Colorado, USA
| | - Emily Todd
- University of Colorado Anschutz Medical Campus, Adult Medical Genetics Program, Aurora, Colorado, USA
| | - Pernille M Torring
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Zeynep Tümer
- Department of Genetics, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Georgia Vasileiou
- Institute of Human Genetics, Friedrich-Alexander Universitat of Erlangen-Nurnberg, Erlangen, Germany
| | - T Michael Yates
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
- Academic Unit of Child Health, Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| | - Christiane Zweier
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard Rosch
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - M Albert Basson
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Deb K Pal
- Department of Paediatric Neuroscience, King's College Hospital, London, UK
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
- Newcomen Children's Neurosciences Centre, Evelina London Children's Hospital, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
6
|
Li J, Galbo PM, Gong W, Storey AJ, Tsai YH, Yu X, Ahn JH, Guo Y, Mackintosh SG, Edmondson RD, Byrum SD, Farrar JE, He S, Cai L, Jin J, Tackett AJ, Zheng D, Wang GG. ZMYND11-MBTD1 induces leukemogenesis through hijacking NuA4/TIP60 acetyltransferase complex and a PWWP-mediated chromatin association mechanism. Nat Commun 2021; 12:1045. [PMID: 33594072 PMCID: PMC7886901 DOI: 10.1038/s41467-021-21357-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/22/2021] [Indexed: 12/26/2022] Open
Abstract
Recurring chromosomal translocation t(10;17)(p15;q21) present in a subset of human acute myeloid leukemia (AML) patients creates an aberrant fusion gene termed ZMYND11-MBTD1 (ZM); however, its function remains undetermined. Here, we show that ZM confers primary murine hematopoietic stem/progenitor cells indefinite self-renewal capability ex vivo and causes AML in vivo. Genomics profilings reveal that ZM directly binds to and maintains high expression of pro-leukemic genes including Hoxa, Meis1, Myb, Myc and Sox4. Mechanistically, ZM recruits the NuA4/Tip60 histone acetyltransferase complex to cis-regulatory elements, sustaining an active chromatin state enriched in histone acetylation and devoid of repressive histone marks. Systematic mutagenesis of ZM demonstrates essential requirements of Tip60 interaction and an H3K36me3-binding PWWP (Pro-Trp-Trp-Pro) domain for oncogenesis. Inhibitor of histone acetylation-'reading' bromodomain proteins, which act downstream of ZM, is efficacious in treating ZM-induced AML. Collectively, this study demonstrates AML-causing effects of ZM, examines its gene-regulatory roles, and reports an attractive mechanism-guided therapeutic strategy.
Collapse
MESH Headings
- Acetylation
- Animals
- Carcinogenesis
- Cell Cycle Proteins/chemistry
- Cell Cycle Proteins/metabolism
- Cell Differentiation
- Cell Proliferation
- Cell Transformation, Neoplastic
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/metabolism
- Co-Repressor Proteins/chemistry
- Co-Repressor Proteins/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Enhancer Elements, Genetic/genetics
- Gene Expression Regulation, Leukemic
- Genome, Human
- HEK293 Cells
- Hematopoietic Stem Cells/metabolism
- Histones/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Lysine Acetyltransferase 5/metabolism
- Mice, Inbred BALB C
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Oncogene Proteins, Fusion/metabolism
- Protein Binding
- Protein Domains
- Transcription Factors/metabolism
- Mice
Collapse
Affiliation(s)
- Jie Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Phillip M Galbo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeong Hyun Ahn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jason E Farrar
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Shenghui He
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Muddassir M, Soni K, Sangani CB, Alarifi A, Afzal M, Abduh NAY, Duan Y, Bhadja P. Bromodomain and BET family proteins as epigenetic targets in cancer therapy: their degradation, present drugs, and possible PROTACs. RSC Adv 2021; 11:612-636. [PMID: 35746919 PMCID: PMC9133982 DOI: 10.1039/d0ra07971e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/28/2020] [Indexed: 12/27/2022] Open
Abstract
Alteration in the pattern of epigenetic marking leads to cancer, neurological disorders, inflammatory problems etc. These changes are due to aberration in histone modification enzymes that function as readers, writers and erasers. Bromodomains (BDs) and BET proteins that recognize acetylation of chromatin regulate gene expression. To block the function of any of these BrDs and/or BET protein can be a controlling agent in disorders such as cancer. BrDs and BET proteins are now emerging as targets for new therapeutic development. Traditional drugs like enzyme inhibitors and protein–protein inhibitors have many limitations. Recently Proteolysis-Targeting Chimeras (PROTACs) have become an advanced tool in therapeutic intervention as they remove disease causing proteins. This review provides an overview of the development and mechanisms of PROTACs for BRD and BET protein regulation in cancer and advanced possibilities of genetic technologies in therapeutics. Alteration in the pattern of epigenetic marking leads to cancer, neurological disorders, inflammatory problems etc.![]()
Collapse
Affiliation(s)
- Mohd. Muddassir
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Kunjal Soni
- Shri Maneklal M. Patel Institute of Sciences and Research
- Kadi Sarva Vishwavidyalaya University
- Gandhinagar
- India
| | - Chetan B. Sangani
- Shri Maneklal M. Patel Institute of Sciences and Research
- Kadi Sarva Vishwavidyalaya University
- Gandhinagar
- India
| | - Abdullah Alarifi
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Mohd. Afzal
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Naaser A. Y. Abduh
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases
- Zhengzhou Children's Hospital
- Zhengzhou University
- Zhengzhou 450018
- China
| | - Poonam Bhadja
- Arthropod Ecology and Biological Control Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Environment and Labour Safety
| |
Collapse
|
8
|
Landry-Voyer AM, Bergeron D, Yague-Sanz C, Baker B, Bachand F. PDCD2 functions as an evolutionarily conserved chaperone dedicated for the 40S ribosomal protein uS5 (RPS2). Nucleic Acids Res 2020; 48:12900-12916. [PMID: 33245768 PMCID: PMC7736825 DOI: 10.1093/nar/gkaa1108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 11/12/2022] Open
Abstract
PDCD2 is an evolutionarily conserved protein with previously characterized homologs in Drosophila (zfrp8) and budding yeast (Tsr4). Although mammalian PDCD2 is essential for cell proliferation and embryonic development, the function of PDCD2 that underlies its fundamental cellular role has remained unclear. Here, we used quantitative proteomics approaches to define the protein-protein interaction network of human PDCD2. Our data revealed that PDCD2 specifically interacts with the 40S ribosomal protein uS5 (RPS2) and that the PDCD2-uS5 complex is assembled co-translationally. Loss of PDCD2 expression leads to defects in the synthesis of the small ribosomal subunit that phenocopy a uS5 deficiency. Notably, we show that PDCD2 is important for the accumulation of soluble uS5 protein as well as its incorporation into 40S ribosomal subunit. Our findings support that the essential molecular function of PDCD2 is to act as a dedicated ribosomal protein chaperone that recognizes uS5 co-translationally in the cytoplasm and accompanies uS5 to ribosome assembly sites in the nucleus. As most dedicated ribosomal protein chaperones have been identified in yeast, our study reveals that similar mechanisms exist in human cells to assist ribosomal proteins coordinate their folding, nuclear import and assembly in pre-ribosomal particles.
Collapse
Affiliation(s)
- Anne-Marie Landry-Voyer
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Danny Bergeron
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Carlo Yague-Sanz
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Breac Baker
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Francois Bachand
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
9
|
Yates TM, Drucker M, Barnicoat A, Low K, Gerkes EH, Fry AE, Parker MJ, O'Driscoll M, Charles P, Cox H, Marey I, Keren B, Rinne T, McEntagart M, Ramachandran V, Drury S, Vansenne F, Sival DA, Herkert JC, Callewaert B, Tan W, Balasubramanian M. ZMYND11
‐related syndromic intellectual disability: 16 patients delineating and expanding the phenotypic spectrum. Hum Mutat 2020; 41:1042-1050. [PMID: 32097528 DOI: 10.1002/humu.24001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/24/2020] [Accepted: 02/15/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Thabo M. Yates
- Sheffield Clinical Genetics ServiceSheffield Children's NHS Foundation TrustSheffield UK
| | - Morgan Drucker
- Department of PediatricsJohns Hopkins UniversityBaltimore Maryland
| | - Angela Barnicoat
- Northeast Thames Regional Genetics ServiceGreat Ormond Street Hospital for ChildrenLondon UK
| | - Karen Low
- Department of Clinical GeneticsSt Michael's HospitalBristol UK
| | - Erica H. Gerkes
- Department of Genetics, University of GroningenUniversity Medical Center GroningenGroningen The Netherlands
| | - Andrew E. Fry
- Institute of Medical GeneticsUniversity Hospital of WalesCardiff UK
| | - Michael J. Parker
- Sheffield Clinical Genetics ServiceSheffield Children's NHS Foundation TrustSheffield UK
| | - Mary O'Driscoll
- West Midlands Regional Clinical Genetics ServiceBirmingham Health Partners Birmingham Women's Hospital NHS Foundation TrustBirmingham UK
| | - Perrine Charles
- Département de GénétiqueAPHP, Hopital La Pitie SalpetriereParis France
| | - Helen Cox
- West Midlands Regional Clinical Genetics ServiceBirmingham Health Partners Birmingham Women's Hospital NHS Foundation TrustBirmingham UK
| | - Isabelle Marey
- Département de GénétiqueAPHP, Hopital La Pitie SalpetriereParis France
| | - Boris Keren
- Département de GénétiqueAPHP, Hopital La Pitie SalpetriereParis France
| | - Tuula Rinne
- Department of GeneticsRadboud University Medical CenterNijmegen The Netherlands
| | - Meriel McEntagart
- South West Thames Regional Genetics Centre, St. George's Healthcare NHS TrustSt. George's, University of LondonLondon UK
| | - Vijaya Ramachandran
- Congenica Limited, Biodata Innovation CentreWellcome Genome CampusCambridge UK
| | - Suzanne Drury
- Congenica Limited, Biodata Innovation CentreWellcome Genome CampusCambridge UK
| | - Fleur Vansenne
- Department of Genetics, University of GroningenUniversity Medical Center GroningenGroningen The Netherlands
| | - Deborah A. Sival
- Department of Pediatrics, Beatrix Children's HospitalUniversity Medical Center GroningenGroningen The Netherlands
| | - Johanna C. Herkert
- Department of Genetics, University of GroningenUniversity Medical Center GroningenGroningen The Netherlands
| | - Bert Callewaert
- Department of Biomolecular Medicine, Ghent University, Ghent University HospitalCenter for Medical GeneticsGhent Belgium
| | - Wen‐Hann Tan
- Division of Genetics and Genomics, Boston Children's HospitalHarvard Medical SchoolBoston Massachusetts
| | - Meena Balasubramanian
- Sheffield Clinical Genetics ServiceSheffield Children's NHS Foundation TrustSheffield UK
- Department of Oncology and Metabolism, Academic Unit of Child HealthUniversity of SheffieldSheffield UK
| |
Collapse
|
10
|
Bechter O, Schöffski P. Make your best BET: The emerging role of BET inhibitor treatment in malignant tumors. Pharmacol Ther 2020; 208:107479. [PMID: 31931101 DOI: 10.1016/j.pharmthera.2020.107479] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022]
Abstract
Bromodomains are protein-protein interaction modules with a great diversity in terms of number of proteins and their function. The bromodomain and extraterminal protein (BET) represents a distinct subclass of bromodomain proteins mainly involved in transcriptional regulation via their interaction with acetylated chromatin. In cancer cells BET proteins are found to be altered in many ways such as overexpression, mutations and fusions of BET proteins or their interference with cancer relevant signaling pathways and transcriptional programs in order to sustain cancer growth and viability. Blocking BET protein function with small molecules is associated with therapeutic activity. Consequently, a variety of small molecules have been developed and a number of phase I clinical trials have explored their tolerability and efficacy in patients with solid tumors and hematological malignancies. We will review the rational for applying BET inhibitors in the clinic and we will discuss the toxicity profile as well as efficacy of this new class of protein inhibitors. We will also highlight the emerging problem of treatment resistance and the potential these drugs might have when combined with other anti-cancer therapies.
Collapse
Affiliation(s)
- Oliver Bechter
- Leuven Cancer Institute, Department of General Medical Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU, Leuven, Belgium.
| | - Patrick Schöffski
- Leuven Cancer Institute, Department of General Medical Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU, Leuven, Belgium.
| |
Collapse
|
11
|
Zhao W, Wu X, Wang Z, Pan B, Liu L, Liu L, Huang X, Tian J. Epigenetic regulation of phosphodiesterase 4d in restrictive cardiomyopathy mice with cTnI mutations. SCIENCE CHINA-LIFE SCIENCES 2019; 63:563-570. [DOI: 10.1007/s11427-018-9463-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/16/2018] [Indexed: 12/13/2022]
|
12
|
The Transcriptional Repressor BS69 is a Conserved Target of the E1A Proteins from Several Human Adenovirus Species. Viruses 2018; 10:v10120662. [PMID: 30469473 PMCID: PMC6315623 DOI: 10.3390/v10120662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/08/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022] Open
Abstract
Early region 1A (E1A) is the first viral protein produced upon human adenovirus (HAdV) infection. This multifunctional protein transcriptionally activates other HAdV early genes and reprograms gene expression in host cells to support productive infection. E1A functions by interacting with key cellular regulatory proteins through short linear motifs (SLiMs). In this study, the molecular determinants of interaction between E1A and BS69, a cellular repressor that negatively regulates E1A transactivation, were systematically defined by mutagenesis experiments. We found that a minimal sequence comprised of MPNLVPEV, which contains a conserved PXLXP motif and spans residues 112–119 in HAdV-C5 E1A, was necessary and sufficient in binding to the myeloid, Nervy, and DEAF-1 (MYND) domain of BS69. Our study also identified residues P113 and L115 as critical for this interaction. Furthermore, the HAdV-C5 and -A12 E1A proteins from species C and A bound BS69, but those of HAdV-B3, -E4, -D9, -F40, and -G52 from species B, E, D, F, and G, respectively, did not. In addition, BS69 functioned as a repressor of E1A-mediated transactivation, but only for HAdV-C5 and HAdV-A12 E1A. Thus, the PXLXP motif present in a subset of HAdV E1A proteins confers interaction with BS69, which serves as a negative regulator of E1A mediated transcriptional activation.
Collapse
|
13
|
Shi L, Wen H, Shi X. The Histone Variant H3.3 in Transcriptional Regulation and Human Disease. J Mol Biol 2017; 429:1934-1945. [PMID: 27894815 PMCID: PMC5446305 DOI: 10.1016/j.jmb.2016.11.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 01/19/2023]
Abstract
Histone proteins wrap around DNA to form nucleosomes, which further compact into the higher-order structure of chromatin. In addition to the canonical histones, there are also variant histones that often have pivotal roles in regulating chromatin dynamics and in the accessibility of the underlying DNA. H3.3 is the most common non-centromeric variant of histone H3 that differs from the canonical H3 by just 4-5 aa. Here, we discuss the current knowledge of H3.3 in transcriptional regulation and the recent discoveries and molecular mechanisms of H3.3 mutations in human cancer.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Wen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Homer, Spikar, and Other Drebrin-Binding Proteins in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:249-268. [PMID: 28865024 DOI: 10.1007/978-4-431-56550-5_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drebrin is a major F-actin-binding protein in the brain. In the past two decades, many drebrin-binding proteins in addition to F-actin have been identified in several research fields including neuroscience, oncology, and immunology. Among the drebrin-binding proteins, there are various kinds of proteins including scaffold proteins, nuclear proteins, phosphatases, microtubule-binding proteins, G-actin-binding proteins, gap junction proteins, chemokine receptors, and cell-adhesion-related proteins. The interaction between drebrin and its binding partners seems to play important roles in higher brain functions, because drebrin is involved in the pathogenesis of some neurological diseases with cognitive defects. In this chapter, we will first review the interaction of Homer and spikar with drebrin, particularly focusing on spine morphogenesis and synaptic function. Homer contributes to spine morphogenesis by cooperating with shank and activated Cdc42 small GTPase, suggesting a novel signaling pathway comprising Homer, drebrin, shank, and Cdc42 for spine morphogenesis. Drebrin sequesters spikar in the cytoplasm and stabilizes it in dendritic spines, leading to spine formation. Finally, we will introduce some other drebrin-binding proteins including end-binding protein 3 (EB3), profilin, progranulin, and phosphatase and tensin homologue (PTEN). These proteins are involved in Alzheimer's disease and cancer. Therefore, further studies on drebrin and its binding proteins will be of great importance to elucidate the pathologies of various diseases and may contribute to their medical treatment and diagnostics development.
Collapse
|
15
|
Stewart MD, Lopez S, Nagandla H, Soibam B, Benham A, Nguyen J, Valenzuela N, Wu HJ, Burns AR, Rasmussen TL, Tucker HO, Schwartz RJ. Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray. Dis Model Mech 2016; 9:347-59. [PMID: 26935107 PMCID: PMC4833328 DOI: 10.1242/dmm.022491] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Smyd1 gene encodes a lysine methyltransferase specifically expressed in striated muscle. Because Smyd1-null mouse embryos die from heart malformation prior to formation of skeletal muscle, we developed a Smyd1 conditional-knockout allele to determine the consequence of SMYD1 loss in mammalian skeletal muscle. Ablation of SMYD1 specifically in skeletal myocytes after myofiber differentiation using Myf6(cre) produced a non-degenerative myopathy. Mutant mice exhibited weakness, myofiber hypotrophy, prevalence of oxidative myofibers, reduction in triad numbers, regional myofibrillar disorganization/breakdown and a high percentage of myofibers with centralized nuclei. Notably, we found broad upregulation of muscle development genes in the absence of regenerating or degenerating myofibers. These data suggest that the afflicted fibers are in a continual state of repair in an attempt to restore damaged myofibrils. Disease severity was greater for males than females. Despite equivalent expression in all fiber types, loss of SMYD1 primarily affected fast-twitch muscle, illustrating fiber-type-specific functions for SMYD1. This work illustrates a crucial role for SMYD1 in skeletal muscle physiology and myofibril integrity.
Collapse
Affiliation(s)
- M David Stewart
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Suhujey Lopez
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Harika Nagandla
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Benjamin Soibam
- Department of Computer Science and Engineering Technology, University of Houston-Downtown, Houston, TX 77002, USA
| | - Ashley Benham
- Stem Cell Engineering Department, Texas Heart Institute at St Luke's Episcopal Hospital, Houston, TX 77030, USA
| | - Jasmine Nguyen
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Nicolas Valenzuela
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Harry J Wu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Tara L Rasmussen
- Department of Molecular Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haley O Tucker
- Department of Molecular Biosciences, Institute for Cellular Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA Stem Cell Engineering Department, Texas Heart Institute at St Luke's Episcopal Hospital, Houston, TX 77030, USA
| |
Collapse
|
16
|
Elengoe A, Hamdan S. In Silico Molecular Modeling and Docking Studies on Novel Mutants (E229V, H225P and D230C) of the Nucleotide-Binding Domain of Homo sapiens Hsp70. Interdiscip Sci 2016; 9:478-498. [PMID: 27517798 DOI: 10.1007/s12539-016-0181-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 07/22/2016] [Accepted: 08/01/2016] [Indexed: 12/25/2022]
Abstract
In this study, we explored the possibility of determining the synergistic interactions between nucleotide-binding domain (NBD) of Homo sapiens heat-shock 70 kDa protein (Hsp70) and E1A 32 kDa of adenovirus serotype 5 motif (PNLVP) in the efficiency of killing of tumor cells in cancer treatment. At present, the protein interaction between NBD and PNLVP motif is still unknown, but believed to enhance the rate of virus replication in tumor cells. Three mutant models (E229V, H225P and D230C) were built and simulated, and their interactions with PNLVP motif were studied. The PNLVP motif showed the binding energy and intermolecular energy values with the novel E229V mutant at -7.32 and -11.2 kcal/mol. The E229V mutant had the highest number of hydrogen bonds (7). Based on the root mean square deviation, root mean square fluctuation, hydrogen bonds, salt bridge, secondary structure, surface-accessible solvent area, potential energy and distance matrices analyses, it was proved that the E229V had the strongest and most stable interaction with the PNLVP motif among all the four protein-ligand complex structures. The knowledge of this protein-ligand complex model would help in designing Hsp70 structure-based drug for cancer therapy.
Collapse
Affiliation(s)
- Asita Elengoe
- Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Salehhuddin Hamdan
- Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
17
|
Harter MR, Liu CD, Shen CL, Gonzalez-Hurtado E, Zhang ZM, Xu M, Martinez E, Peng CW, Song J. BS69/ZMYND11 C-Terminal Domains Bind and Inhibit EBNA2. PLoS Pathog 2016; 12:e1005414. [PMID: 26845565 PMCID: PMC4742278 DOI: 10.1371/journal.ppat.1005414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) plays an important role in driving immortalization of EBV-infected B cells through regulating the expression of many viral and cellular genes. We report a structural study of the tumor suppressor BS69/ZMYND11 C-terminal region, comprised of tandem coiled-coil-MYND domains (BS69CC-MYND), in complex with an EBNA2 peptide containing a PXLXP motif. The coiled-coil domain of BS69 self-associates to bring two separate MYND domains in close proximity, thereby enhancing the BS69 MYND-EBNA2 interaction. ITC analysis of BS69CC-MYND with a C-terminal fragment of EBNA2 further suggests that the BS69CC-MYND homodimer synergistically binds to the two EBNA2 PXLXP motifs that are respectively located in the conserved regions CR7 and CR8. Furthermore, we showed that EBNA2 interacts with BS69 and down-regulates its expression at both mRNA and protein levels in EBV-infected B cells. Ectopic BS69CC-MYND is recruited to viral target promoters through interactions with EBNA2, inhibits EBNA2-mediated transcription activation, and impairs proliferation of lymphoblastoid cell lines (LCLs). Substitution of critical residues in the MYND domain impairs the BS69-EBNA2 interaction and abolishes the BS69 inhibition of the EBNA2-mediated transactivation and LCL proliferation. This study identifies the BS69 C-terminal domains as an inhibitor of EBNA2, which may have important implications in development of novel therapeutic strategies against EBV infection. Since the discovery of Epstein-Barr virus (EBV) 50 years ago, the etiologic links between EBV and a variety of human cancers have gained wide recognition. It is estimated that >90% of the worldwide population carry this virus, which causes over 200,000 cancers across the world every year. One of the key proteins in driving immortalization of EBV-infected B cells is Epstein-Barr virus nuclear antigen 2 (EBNA2), which regulates the expression of many cellular and viral genes. However, the molecular mechanism underlying the interactions between EBNA2 and cellular transcriptional regulators remains enigmatic. Here, we determined the crystal structure of the coiled-coil and MYND tandem domains of BS69/ZMYND11, a candidate tumor suppressor, in complex with an EBNA2 peptide containing a PXLXP motif. We found that the coiled-coil and MYND domains of BS69 cooperate in binding to EBNA2. We also showed that EBNA2 interacts with BS69 and down-regulates its expression at both mRNA and protein levels in EBV-associated B cells. Ectopic BS69 coiled-coil-MYND dual domain is recruited to viral target promoters through interaction with EBNA2, inhibits EBNA2-mediated transcription activation, and impairs proliferation of lymphoblastoid cell lines (LCLs). Together, this study identifies the BS69 C-terminal domains as an inhibitor of EBNA2.
Collapse
Affiliation(s)
- Matthew R. Harter
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
| | - Cheng-Der Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Chih-Lung Shen
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Elsie Gonzalez-Hurtado
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
- MARC U-STAR Program, University of California, Riverside, Riverside, California, United States of America
| | - Zhi-Min Zhang
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
| | - Muyu Xu
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
| | - Ernest Martinez
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
- MARC U-STAR Program, University of California, Riverside, Riverside, California, United States of America
| | - Chih-Wen Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- * E-mail: (CWP); (JS)
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
- * E-mail: (CWP); (JS)
| |
Collapse
|
18
|
Elengoe A, Naser MA, Hamdan S. Molecular dynamics simulation and docking studies on novel mutants (T11V, T12P and D364S) of the nucleotide-binding domain of human heat shock 70 kDa protein. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Xiao K, Yu Z, Shi DT, Lei Z, Chen H, Cao J, Tian W, Chen W, Zhang HT. Inactivation of BLU is associated with methylation of Sp1-binding site of BLU promoter in gastric cancer. Int J Oncol 2015; 47:621-31. [PMID: 26043875 DOI: 10.3892/ijo.2015.3032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/23/2015] [Indexed: 11/06/2022] Open
Abstract
BLU is a candidate tumor suppressor gene, which is epigenetically inactivated in many human malignancies. However, the expression and biological functions of BLU in gastric cancer has not yet been reported. In the present study, we identified a functional BLU promoter which was regulated by the transcription activator Sp1. Bisulfite sequencing and qRT-PCR assays indicated that the silence of BLU expression in gastric cancer was significantly associated with DNA hypermethylation of BLU promoter including -39 CpG site located in the Sp1 transcription element. The expression of BLU was notably restored in AGS and SGC7901 cells following the demethylation-treatment with 5'-Aza-2'-deoxycytidine. Moreover, the results from ChIP, EMSA and luciferase reporter gene showed that -39 CpG methylation could prevent Sp1 from binding to the promoter of BLU and decreased transcription activity of the BLU gene by ~70%. In addition, knockdown of BLU significantly promoted cellular proliferation and colony formation in gastric cancer cells. In conclusion, we identified a novel functional BLU promoter and proved that BLU promoter activity was regulated by Sp1. Furthermore, we found that hypermethylated -39 CpG in BLU proximal promoter directly reduced its binding with Sp1, which may be one of the mechanisms accounting for the inactivation of BLU in gastric cancer.
Collapse
Affiliation(s)
- Kunting Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, P.R. China
| | - Zhuwen Yu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, P.R. China
| | - Dong-Tao Shi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, P.R. China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Hongbing Chen
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Jian Cao
- Department of Gastroenterology, The Affiliated Suzhou Municipal Hospital (Main Campus), Suzhou 215004, P.R. China
| | - Wenyan Tian
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, P.R. China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, P.R. China
| | - Hong-Tao Zhang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
20
|
Rasmussen TL, Ma Y, Park CY, Harriss J, Pierce SA, Dekker JD, Valenzuela N, Srivastava D, Schwartz RJ, Stewart MD, Tucker HO. Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses. PLoS One 2015; 10:e0121765. [PMID: 25803368 PMCID: PMC4372598 DOI: 10.1371/journal.pone.0121765] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 02/18/2015] [Indexed: 12/21/2022] Open
Abstract
Smyd1/Bop is an evolutionary conserved histone methyltransferase previously shown by conventional knockout to be critical for embryonic heart development. To further explore the mechanism(s) in a cell autonomous context, we conditionally ablated Smyd1 in the first and second heart fields of mice using a knock-in (KI) Nkx2.5-cre driver. Robust deletion of floxed-Smyd1 in cardiomyocytes and the outflow tract (OFT) resulted in embryonic lethality at E9.5, truncation of the OFT and right ventricle, and additional defects consistent with impaired expansion and proliferation of the second heart field (SHF). Using a transgenic (Tg) Nkx2.5-cre driver previously shown to not delete in the SHF and OFT, early embryonic lethality was bypassed and both ventricular chambers were formed; however, reduced cardiomyocyte proliferation and other heart defects resulted in later embryonic death at E11.5-12.5. Proliferative impairment prior to both early and mid-gestational lethality was accompanied by dysregulation of transcripts critical for endoplasmic reticulum (ER) stress. Mid-gestational death was also associated with impairment of oxidative stress defense—a phenotype highly similar to the previously characterized knockout of the Smyd1-interacting transcription factor, skNAC. We describe a potential feedback mechanism in which the stress response factor Tribbles3/TRB3, when directly methylated by Smyd1, acts as a co-repressor of Smyd1-mediated transcription. Our findings suggest that Smyd1 is required for maintaining cardiomyocyte proliferation at minimally two different embryonic heart developmental stages, and its loss leads to linked stress responses that signal ensuing lethality.
Collapse
Affiliation(s)
- Tara L. Rasmussen
- Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, United States of America
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Chong Yon Park
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - June Harriss
- Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, United States of America
| | - Stephanie A. Pierce
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Joseph D. Dekker
- Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, United States of America
| | - Nicolas Valenzuela
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Robert J. Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - M. David Stewart
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail: (MDS); (HT)
| | - Haley O. Tucker
- Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, United States of America
- * E-mail: (MDS); (HT)
| |
Collapse
|
21
|
Abstract
The building block of chromatin is nucleosome, which consists of 146 base pairs of DNA wrapped around a histone octamer composed of two copies of histone H2A, H2B, H3, and H4. Significantly, the somatic missense mutations of the histone H3 variant, H3.3, are associated with childhood and young-adult tumors, such as pediatric high-grade astrocytomas, as well as chondroblastoma and giant-cell tumors of the bone. The mechanisms by which these histone mutations cause cancer are by and large unclear. Interestingly, two recent studies identified BS69/ZMYND11, which was proposed to be a candidate tumor suppressor, as a specific reader for a modified form of H3.3 (H3.3K36me3). Importantly, some H3.3 cancer mutations are predicted to abrogate the H3.3K36me3/BS69 interaction, suggesting that this interaction may play an important role in tumor suppression. These new findings also raise the question of whether H3.3 cancer mutations may lead to the disruption and/or gain of interactions of additional cellular factors that contribute to tumorigenesis.
Collapse
|
22
|
Coe BP, Witherspoon K, Rosenfeld JA, van Bon BWM, Vulto-van Silfhout AT, Bosco P, Friend KL, Baker C, Buono S, Vissers LELM, Schuurs-Hoeijmakers JH, Hoischen A, Pfundt R, Krumm N, Carvill GL, Li D, Amaral D, Brown N, Lockhart PJ, Scheffer IE, Alberti A, Shaw M, Pettinato R, Tervo R, de Leeuw N, Reijnders MRF, Torchia BS, Peeters H, O'Roak BJ, Fichera M, Hehir-Kwa JY, Shendure J, Mefford HC, Haan E, Gécz J, de Vries BBA, Romano C, Eichler EE. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet 2014; 46:1063-71. [PMID: 25217958 PMCID: PMC4177294 DOI: 10.1038/ng.3092] [Citation(s) in RCA: 472] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/20/2014] [Indexed: 12/16/2022]
Abstract
Copy number variants (CNVs) are associated with many neurocognitive disorders; however, these events are typically large and the underlying causative gene is unclear. We created an expanded CNV morbidity map from 29,085 children with developmental delay versus 19,584 healthy controls, identifying 70 significant CNVs. We resequenced 26 candidate genes in 4,716 additional cases with developmental delay or autism and 2,193 controls. An integrated analysis of CNV and single-nucleotide variant (SNV) data pinpointed ten genes enriched for putative loss of function. Patient follow-up on a subset identified new clinical subtypes of pediatric disease and the genes responsible for disease-associated CNVs. This includes haploinsufficiency of SETBP1 associated with intellectual disability and loss of expressive language and truncations of ZMYND11 in patients with autism, aggression and complex neuropsychiatric features. This combined CNV and SNV approach facilitates the rapid discovery of new syndromes and neuropsychiatric disease genes despite extensive genetic heterogeneity.
Collapse
Affiliation(s)
- Bradley P Coe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kali Witherspoon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jill A Rosenfeld
- Signature Genomics Laboratories, LLC, PerkinElmer, Inc., Spokane, Washington, USA
| | - Bregje W M van Bon
- 1] Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands. [2] SA Pathology, North Adelaide, South Australia, Australia
| | | | - Paolo Bosco
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Associazione Oasi Maria Santissima, Troina, Italy
| | | | - Carl Baker
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Serafino Buono
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Associazione Oasi Maria Santissima, Troina, Italy
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Alex Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nik Krumm
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Gemma L Carvill
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Deana Li
- Representing the Autism Phenome Project, MIND Institute, University of California, Davis, Sacramento, California, USA
| | - David Amaral
- Representing the Autism Phenome Project, MIND Institute, University of California, Davis, Sacramento, California, USA
| | - Natasha Brown
- 1] Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia. [2] Barwon Child Health Unit, Barwon Health, Geelong, Victoria, Australia
| | - Paul J Lockhart
- 1] Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia. [2] Murdoch Childrens Research Institute, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Ingrid E Scheffer
- Florey Institute, University of Melbourne, Austin Health and Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Antonino Alberti
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Associazione Oasi Maria Santissima, Troina, Italy
| | - Marie Shaw
- SA Pathology, North Adelaide, South Australia, Australia
| | - Rosa Pettinato
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Associazione Oasi Maria Santissima, Troina, Italy
| | - Raymond Tervo
- Division of Developmental and Behavioral Pediatrics, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Margot R F Reijnders
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Beth S Torchia
- Signature Genomics Laboratories, LLC, PerkinElmer, Inc., Spokane, Washington, USA
| | - Hilde Peeters
- 1] Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium. [2] Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Brian J O'Roak
- 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA. [2]
| | - Marco Fichera
- 1] IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Associazione Oasi Maria Santissima, Troina, Italy. [2]
| | - Jayne Y Hehir-Kwa
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jay Shendure
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Heather C Mefford
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Eric Haan
- 1] SA Pathology, North Adelaide, South Australia, Australia. [2] School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Jozef Gécz
- 1] SA Pathology, North Adelaide, South Australia, Australia. [2] Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Corrado Romano
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Associazione Oasi Maria Santissima, Troina, Italy
| | - Evan E Eichler
- 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA. [2] Howard Hughes Medical Institute, Seattle, Washington, USA
| |
Collapse
|
23
|
Cancer-testis antigen HCA587/MAGE-C2 interacts with BS69 and promotes its degradation in the ubiquitin-proteasome pathway. Biochem Biophys Res Commun 2014; 449:386-91. [PMID: 24866244 DOI: 10.1016/j.bbrc.2014.05.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 11/23/2022]
Abstract
HCA587, also known as MAGE-C2, belonging to the MAGE gene family which is characterized by a conserved MAGE Homology Domain, is active in various types of tumors and silent in normal tissues except in male germ-line cells. The biological function of HCA587 is largely unknown. To analyze it, we attempted to identify protein partners of HCA587. We immunopurified HCA587-containing complex from HEK293 cells and identified BS69, a potential tumor suppressor, as an associated protein by mass spectrometry, and the following Immunoprecipitation and GST pull-down assays confirmed HCA587 interaction with BS69. Interestingly, overexpression of HCA587 promoted ubiquitination and the proteasomal degradation of BS69 whereas knockdown of endogenous HCA587 increased the protein level of BS69. Consistent with a functional role for BS69 in negatively regulating LMP1-induced NF-κB activation, overexpression of HCA587 resulted in a significant enhancement of LMP1-induced IL-6 production. These data indicate that HCA587 is a new negative regulator of BS69.
Collapse
|
24
|
Yamazaki H, Kojima N, Kato K, Hirose E, Iwasaki T, Mizui T, Takahashi H, Hanamura K, Roppongi RT, Koibuchi N, Sekino Y, Mori N, Shirao T. Spikar, a novel drebrin-binding protein, regulates the formation and stabilization of dendritic spines. J Neurochem 2013; 128:507-22. [PMID: 24117785 DOI: 10.1111/jnc.12486] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/01/2023]
Abstract
Dendritic spines are small, actin-rich protrusions on dendrites, the development of which is fundamental for the formation of neural circuits. The actin cytoskeleton is central to dendritic spine morphogenesis. Drebrin is an actin-binding protein that is thought to initiate spine formation through a unique drebrin-actin complex at postsynaptic sites. However drebrin overexpression in neurons does not increase the final density of dendritic spines. In this study, we have identified and characterized a novel drebrin-binding protein, spikar. Spikar is localized in cell nuclei and dendritic spines, and accumulation of spikar in dendritic spines directly correlates with spine density. A reporter gene assay demonstrated that spikar acts as a transcriptional co-activator for nuclear receptors. We found that dendritic spine, but not nuclear, localization of spikar requires drebrin. RNA-interference knockdown and overexpression experiments demonstrated that extranuclear spikar regulates dendritic spine density by modulating de novo spine formation and retraction of existing spines. Unlike drebrin, spikar does not affect either the morphology or function of dendritic spines. These findings indicate that drebrin-mediated postsynaptic accumulation of spikar regulates spine density, but is not involved in regulation of spine morphology.
Collapse
Affiliation(s)
- Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
De Braekeleer E, Auffret R, Douet-Guilbert N, Basinko A, Le Bris MJ, Morel F, De Braekeleer M. Recurrent translocation (10;17)(p15;q21) in acute poorly differentiated myeloid leukemia likely results in ZMYND11-MBTD1 fusion. Leuk Lymphoma 2013; 55:1189-90. [PMID: 23915195 DOI: 10.3109/10428194.2013.820292] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Etienne De Braekeleer
- Laboratoire d'Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale , Brest , France
| | | | | | | | | | | | | |
Collapse
|
26
|
Barbieri I, Cannizzaro E, Dawson MA. Bromodomains as therapeutic targets in cancer. Brief Funct Genomics 2013; 12:219-30. [DOI: 10.1093/bfgp/elt007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
27
|
Kateb F, Perrin H, Tripsianes K, Zou P, Spadaccini R, Bottomley M, Franzmann TM, Buchner J, Ansieau S, Sattler M. Structural and functional analysis of the DEAF-1 and BS69 MYND domains. PLoS One 2013; 8:e54715. [PMID: 23372760 PMCID: PMC3555993 DOI: 10.1371/journal.pone.0054715] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/04/2012] [Indexed: 11/18/2022] Open
Abstract
DEAF-1 is an important transcriptional regulator that is required for embryonic development and is linked to clinical depression and suicidal behavior in humans. It comprises various structural domains, including a SAND domain that mediates DNA binding and a MYND domain, a cysteine-rich module organized in a Cys(4)-Cys(2)-His-Cys (C4-C2HC) tandem zinc binding motif. DEAF-1 transcription regulation activity is mediated through interactions with cofactors such as NCoR and SMRT. Despite the important biological role of the DEAF-1 protein, little is known regarding the structure and binding properties of its MYND domain.Here, we report the solution structure, dynamics and ligand binding of the human DEAF-1 MYND domain encompassing residues 501-544 determined by NMR spectroscopy. The structure adopts a ββα fold that exhibits tandem zinc-binding sites with a cross-brace topology, similar to the MYND domains in AML1/ETO and other proteins. We show that the DEAF-1 MYND domain binds to peptides derived from SMRT and NCoR corepressors. The binding surface mapped by NMR titrations is similar to the one previously reported for AML1/ETO. The ligand binding and molecular functions of the related BS69 MYND domain were studied based on a homology model and mutational analysis. Interestingly, the interaction between BS69 and its binding partners (viral and cellular proteins) seems to require distinct charged residues flanking the predicted MYND domain fold, suggesting a different binding mode. Our findings demonstrate that the MYND domain is a conserved zinc binding fold that plays important roles in transcriptional regulation by mediating distinct molecular interactions with viral and cellular proteins.
Collapse
Affiliation(s)
- Fatiha Kateb
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Helene Perrin
- Institut National de la Santé Et de la Recherche Médicale U590, Centre Léon Bérard, Université Claude Bernard Lyon I, Lyon, France
| | - Konstantinos Tripsianes
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Peijian Zou
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Roberta Spadaccini
- Dipartimento di Chimica, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | | | - Titus M. Franzmann
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Stephane Ansieau
- Institut National de la Santé Et de la Recherche Médicale U590, Centre Léon Bérard, Université Claude Bernard Lyon I, Lyon, France
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
28
|
Filippakopoulos P, Knapp S. The bromodomain interaction module. FEBS Lett 2012; 586:2692-704. [DOI: 10.1016/j.febslet.2012.04.045] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 01/05/2023]
|
29
|
Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Müller S, Pawson T, Gingras AC, Arrowsmith C, Knapp S. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012; 149:214-31. [PMID: 22464331 PMCID: PMC3326523 DOI: 10.1016/j.cell.2012.02.013] [Citation(s) in RCA: 1271] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/16/2011] [Accepted: 01/13/2012] [Indexed: 12/18/2022]
Abstract
Bromodomains (BRDs) are protein interaction modules that specifically recognize ε-N-lysine acetylation motifs, a key event in the reading process of epigenetic marks. The 61 BRDs in the human genome cluster into eight families based on structure/sequence similarity. Here, we present 29 high-resolution crystal structures, covering all BRD families. Comprehensive crossfamily structural analysis identifies conserved and family-specific structural features that are necessary for specific acetylation-dependent substrate recognition. Screening of more than 30 representative BRDs against systematic histone-peptide arrays identifies new BRD substrates and reveals a strong influence of flanking posttranslational modifications, such as acetylation and phosphorylation, suggesting that BRDs recognize combinations of marks rather than singly acetylated sequences. We further uncovered a structural mechanism for the simultaneous binding and recognition of diverse diacetyl-containing peptides by BRD4. These data provide a foundation for structure-based drug design of specific inhibitors for this emerging target family.
Collapse
Affiliation(s)
- Panagis Filippakopoulos
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7LD, UK
| | - Sarah Picaud
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7LD, UK
| | - Maria Mangos
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Tracy Keates
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7LD, UK
| | - Jean-Philippe Lambert
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ildiko Felletar
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7LD, UK
| | - Rudolf Volkmer
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany
| | - Susanne Müller
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7LD, UK
| | - Tony Pawson
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Anne-Claude Gingras
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7LD, UK
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7LD, UK
- Department of Biochemistry and Molecular Biology, George Washington University, School of Medicine and Health Sciences, 2300 Eye Street, NW, Suite 530, Washington, DC, 20037, USA
| |
Collapse
|
30
|
Yang H, Zhang C, Zhao X, Wu Q, Fu X, Yu B, Shao Y, Guan M, Zhang W, Wan J, Huang X. Analysis of copy number variations of BS69 in multiple types of hematological malignancies. Ann Hematol 2010; 89:959-64. [DOI: 10.1007/s00277-010-0966-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
|
31
|
Zeng W, Kong Q, Li C, Mao B. Xenopus RCOR2 (REST corepressor 2) interacts with ZMYND8, which is involved in neural differentiation. Biochem Biophys Res Commun 2010; 394:1024-9. [PMID: 20331974 DOI: 10.1016/j.bbrc.2010.03.115] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 03/17/2010] [Indexed: 11/28/2022]
Abstract
Regulation of neuronal gene expression is critical to nervous system development. REST (RE1-silencing transcription factor) regulates neuronal gene expression through interacting with a group of corepressor proteins including REST corepressors (RCOR). Here we show that Xenopus RCOR2 is predominantly expressed in the developing nervous system. Through a yeast two-hybrid screen, we isolated Xenopus ZMYND8 (Zinc finger and MYND domain containing 8) as an XRCOR2 interacting factor. XRCOR2 and XZMYND8 bind each other in co-immunoprecipitation assays and both of them can function as transcriptional repressors. XZMYND8 is co-expressed with XRCOR2 in the nervous system and overexpression of XZMYND8 inhibits neural differentiation in Xenopus embryos. These data reveal a RCOR2/ZMYND8 complex which might be involved in the regulation of neural differentiation.
Collapse
Affiliation(s)
- Wanli Zeng
- CAS-Max Planck Junior Scientist Group on Developmental Biology, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang East Road, Kunming 650223, China
| | | | | | | |
Collapse
|
32
|
Takaki H, Oshiumi H, Sasai M, Kawanishi T, Matsumoto M, Seya T. Oligomerized TICAM-1 (TRIF) in the cytoplasm recruits nuclear BS69 to enhance NF-kappaB activation and type I IFN induction. Eur J Immunol 2010; 39:3469-76. [PMID: 19795416 DOI: 10.1002/eji.200939878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although adenovirus 5 E1A-binding protein (BS69) is a nuclear protein acting as a transcriptional repressor, we found by an yeast two-hybrid and human cell immunoprecipitation another cytoplasmic function for this protein. BS69 bound Toll-interleukin 1 receptor domain (TIR)-containing adaptor molecule-1 (TICAM-1) (also named TRIF), an adaptor protein that couples with TLR3 around the endosome. BS69 translocated from the nucleus to the cytoplasm when cells were stimulated with dsRNA or transfected with TICAM-1. Confocal analysis of cells with over-expressed TICAM-1 or those stimulated with dsRNA revealed the characteristic "TICAM-1 speckle", which reflects signalosome formation necessary for the activation of NF-kappaB and IFN-regulatory factor (IRF)-3. BS69 was involved in the TICAM-1 complex, and the activation of NF-kappaB/IRF-3 followed by cytokine production was augmented in the presence of BS69 overexpression. Knockdown of endogenous BS69 resulted in a decrease of IFN-beta induction, suggesting that BS69 is a positive regulator for the TLR3-TICAM-1 pathway. These results, together with a recent report showing the negative regulatory properties of BS69 in NF-kappaB activation by EBV-derived latent membrane protein 1, suggest that BS69 harbors dual modes of cytoplasmic NF-kappaB regulation, positively in the TICAM-1 pathway and negatively in the latent membrane protein 1 pathway.
Collapse
Affiliation(s)
- Hiromi Takaki
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Yu B, Shao Y, Zhang C, Chen Y, Zhong Q, Zhang J, Yang H, Zhang W, Wan J. BS69 undergoes SUMO modification and plays an inhibitory role in muscle and neuronal differentiation. Exp Cell Res 2009; 315:3543-53. [DOI: 10.1016/j.yexcr.2009.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 09/05/2009] [Accepted: 09/11/2009] [Indexed: 01/08/2023]
|
34
|
Ikeda O, Sekine Y, Mizushima A, Oritani K, Yasui T, Fujimuro M, Muromoto R, Nanbo A, Matsuda T. BS69 negatively regulates the canonical NF-kappaB activation induced by Epstein-Barr virus-derived LMP1. FEBS Lett 2009; 583:1567-74. [PMID: 19379743 DOI: 10.1016/j.febslet.2009.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/02/2009] [Accepted: 04/09/2009] [Indexed: 11/18/2022]
Abstract
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) activates NF-kappaB signaling pathways through the two C-terminal regions, CTAR1 and CTAR2. BS69 has previously been shown to be involved in LMP1-induced c-Jun N-terminal kinase activation through CTAR2 by interacting with tumor necrosis factor (TNFR) receptor-associated factor 6. In the present study, our manipulation of BS69 expression clearly indicates that BS69 negatively regulates LMP1-mediated NF-kappaB activation and up-regulates IL-6 mRNA expression and IkappaB degradation. Our immunoprecipitation experiments suggest that BS69 decreases complex formation between LMP1 and TNFR-associated death domain protein (TRADD).
Collapse
Affiliation(s)
- Osamu Ikeda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku Kita 12 Nishi 6, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hepatoma-derived growth factor represses SET and MYND domain containing 1 gene expression through interaction with C-terminal binding protein. J Mol Biol 2009; 386:938-50. [PMID: 19162039 DOI: 10.1016/j.jmb.2008.12.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 11/28/2008] [Accepted: 12/26/2008] [Indexed: 11/22/2022]
Abstract
Hepatoma-derived growth factor (HDGF) is a nuclear protein with both mitogenic and angiogenic activity that is highly expressed in the developing heart and vasculature. To date, the mechanism underlying the function of HDGF is unknown. Oligonucleotide microarray analysis was used to gain insights into HDGF function. Adenoviral expression of HDGF significantly (> or =2-fold) downregulated a large group (66) of genes, and increased expression of a relatively small number of genes (9). Two groups of target genes that are involved in cardiovascular development and transcriptional regulation, including the skeletal/cardiac muscle specific SET and MYND domain containing 1 (SMYD1) gene, were validated by real time PCR. This suggested that HDGF could function as a transcriptional repressor. In a one-hybrid system, GBD-HDGF significantly repressed reporter gene activity in a dose-dependent manner. This demonstrated that HDGF has transcriptional repressive activity. Moreover, in G-7 myoblast cells, over-expression of a GFP-HDGF fusion specifically downregulated SMYD1 mRNA expression and the activity of the human SMYD1 promoter. HDGF repressed SMYD1 gene transcription through interaction with a transcriptional corepressor C-terminal binding protein (CtBP). Over-expression of CtBP potentiated the trans-repressive activity of HDGF; on the other hand, knocking down CtBP attenuated the trans-repressive effect of HDGF. HDGF binds CtBP through a non-canonical binding motif (PKDLF) within the PWWP domain, as mutation of DL to AS abolished HDGF and CtBP interaction, and diminished the trans-repressive effect of HDGF without affecting DNA binding. Finally, fluorescent microscopy showed that HDGF induced the nuclear accumulation of CtBP, suggesting that HDGF forms a transcriptional complex with CtBP. Taken together, our data demonstrate that HDGF functions as a transcriptional repressor of the SMYD1 gene through interaction with the transcriptional corepressor CtBP. Because of moderate conservation of the CtBP binding motif in HDGF family members, trans-repressive activity mediated by CtBP may be a common function among HDGF proteins.
Collapse
|
36
|
Liu Y, Wang F, Zhang H, He H, Ma L, Deng XW. Functional characterization of the Arabidopsis ubiquitin-specific protease gene family reveals specific role and redundancy of individual members in development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:844-56. [PMID: 18485060 DOI: 10.1111/j.1365-313x.2008.03557.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ubiquitin-specific proteases (UBPs) are a highly conserved family of proteins in eukaryotes, and play critical roles in protein de-ubiquitination. Here we report a systematic genetic and expression profiling analysis of the UBP gene family in the Arabidopsis thaliana genome. Mutation analysis of 25 of the 27 member genes representing 13 of the 14 sub-families of the UBP gene family revealed that single-gene mutants of three genes in two sub-families exhibit visible phenotypes. Two of these three genes belonging to the UBP15 sub-family were selected for further characterization. The ubp15 mutants display narrower, serrated and flat rosette leaves, partially due to a defect in cell proliferation, as well as other phenotypes such as early flowering, weak apical dominance and reduced fertility, while the line over-expressing UBP15 shows opposite phenotypes. We demonstrated that UPB15 has UBP activity in vitro, and that this biochemical activity is essential for its in vivo function. A genetic interaction analysis among members of this sub-family revealed that UBP15 and UBP16, but not UBP17, have functional redundancy. Our data thus suggest that distinct UBPs, even within a closely related sub-family, can function in different developmental pathways. Although there are clearly functional redundancies among related sub-family members, those redundancies cannot be inferred simply based on the amino acid identity of the family members.
Collapse
Affiliation(s)
- Yanfen Liu
- Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | | | | | | | |
Collapse
|
37
|
Zhang W, Chan HM, Gao Y, Poon R, Wu Z. BS69 is involved in cellular senescence through the p53-p21Cip1 pathway. EMBO Rep 2007; 8:952-8. [PMID: 17721438 PMCID: PMC2002549 DOI: 10.1038/sj.embor.7401049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 07/16/2007] [Accepted: 07/16/2007] [Indexed: 11/08/2022] Open
Abstract
The multidomain-containing cellular protein BS69 interacts with adenovirus E1A and several other viral and cellular factors, and acts as a transcription repressor. Here, we show that BS69 is involved in the p53-p21Cip1-mediated senescence pathway. Knockdown of BS69 by RNA interference in human primary fibroblasts results in elevated levels of p21Cip1 and the appearance of several senescent markers, including enhanced senescence-associated beta-galactosidase activity and formation of senescence-associated heterochromatin foci. Importantly, knockdown of either p53 or p21Cip1, but not p16(INK4a) or Rb, allows cells to bypass premature senescence that is induced by BS69 knockdown. Furthermore, we show that BS69 forms complexes with both p53 and p400, and that BS69 associates with the p21Cip1 promoter through p53. Together, our data indicate that BS69 is involved in cellular senescence mainly through the p53-p21Cip1 pathway.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ho Man Chan
- Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA
| | - Yan Gao
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Randy Poon
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhenguo Wu
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Tel: +852 2358 8704; Fax: +852 2358 1552; E-mail:
| |
Collapse
|
38
|
Shen C, Shao Z, Powell-Coffman JA. The Caenorhabditis elegans rhy-1 gene inhibits HIF-1 hypoxia-inducible factor activity in a negative feedback loop that does not include vhl-1. Genetics 2006; 174:1205-14. [PMID: 16980385 PMCID: PMC1667075 DOI: 10.1534/genetics.106.063594] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hypoxia-inducible factor (HIF) transcription factors implement essential changes in gene expression that enable animals to adapt to low oxygen (hypoxia). The stability of the C. elegans HIF-1 protein is controlled by the evolutionarily conserved EGL-9/VHL-1 pathway for oxygen-dependent degradation. Here, we describe vhl-1-independent pathways that attenuate HIF-1 transcriptional activity in C. elegans. First, the expression of HIF-1 target genes is markedly higher in egl-9 mutants than in vhl-1 mutants. We show that HIF-1 protein levels are similar in animals carrying strong loss-of-function mutations in either egl-9 or vhl-1. We conclude that EGL-9 inhibits HIF-1 activity, as well as HIF-1 stability. Second, we identify the rhy-1 gene and show that it acts in a novel negative feedback loop to inhibit expression of HIF-1 target genes. rhy-1 encodes a multi-pass transmembrane protein. Although loss-of-function mutations in rhy-1 cause relatively modest increases in hif-1 mRNA and HIF-1 protein expression, some HIF-1 target genes are expressed at higher levels in rhy-1 mutants than in vhl-1 mutants. Animals lacking both vhl-1 and rhy-1 function have a more severe phenotype than either single mutant. Collectively, these data support models in which RHY-1 and EGL-9 function in VHL-1-independent pathway(s) to repress HIF-1 transcriptional activity.
Collapse
Affiliation(s)
- Chuan Shen
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011-3260, USA
| | | | | |
Collapse
|
39
|
Abstract
The BS69 protein has been commonly described as a co-repressor associated with various transcription factors. However, this hypothesis relied predominantly on overexpression of tagged proteins due to the lack of a reliable BS69 antibody. We present for the first time a complete sequence of BS69 and valuable tools to characterize the endogenous protein. We show that the full-length BS69 protein, as well as minor alternatively spliced isoforms, is ubiquitously expressed, nuclear, and associates with chromatin and mitotic chromosomes. Accordingly, BS69 interacts with a set of chromatin remodeling factors, including ATP-dependent helicases, histone deacetylases, and histone methyltransferases, as well as the E2F6 transcription factor. These data strengthen a role for BS69 in gene repression and link BS69 to chromatin remodeling.
Collapse
Affiliation(s)
- Guillaume Velasco
- INSERM U59O and U412, Centre Léon Berard, Université Claude Bernard Lyon I, 28 rue Laennec, F-69008 Lyon, France
| | | | | |
Collapse
|
40
|
Wan J, Zhang W, Wu L, Bai T, Zhang M, Lo KW, Chui YL, Cui Y, Tao Q, Yamamoto M, Akira S, Wu Z. BS69, a specific adaptor in the latent membrane protein 1-mediated c-Jun N-terminal kinase pathway. Mol Cell Biol 2006; 26:448-56. [PMID: 16382137 PMCID: PMC1346911 DOI: 10.1128/mcb.26.2.448-456.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) potently activates the cellular c-Jun N-terminal kinase (JNK) pathway by sequentially engaging an unknown adaptor, TRAF6, TAB1/TAK1, and JNKKs. We now show that BS69, a MYND domain-containing cellular protein, is the missing adaptor that bridges LMP1 and TRAF6, as the MYND domain and a separate region of BS69 bind to the carboxyl termini of LMP1 and TRAF6, respectively. While LMP1 promotes the interaction between BS69 and TRAF6, the complex formation between LMP1 and TRAF6 is BS69 dependent. A fraction of LMP1 and BS69 is constitutively colocalized in the membrane lipid rafts. Importantly, knockdown of BS69 by small interfering RNAs specifically inhibits JNK activation by LMP1 but not tumor necrosis factor alpha. Although overexpression of either BS69 or a mutant LMP1 without the cytoplasmic carboxyl tail is not sufficient to activate JNK, interestingly, when BS69 is covalently linked to the mutant LMP1, the chimeric protein restores the ability to activate JNK. This indicates that the recruitment and aggregation of BS69 is a prerequisite for JNK activation by LMP1.
Collapse
Affiliation(s)
- Jun Wan
- Department of Biochemistry, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Francke F, Richter D, Bächner D. Immunohistochemical distribution of MIZIP and its co-expression with the Melanin-concentrating hormone receptor 1 in the adult rodent brain. ACTA ACUST UNITED AC 2005; 139:31-41. [PMID: 15950311 DOI: 10.1016/j.molbrainres.2005.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 05/04/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
We have recently identified a Melanin-concentrating hormone receptor 1 interacting zinc-finger protein (MIZIP) from a human brain cDNA library. Here, we report the generation of a specific antibody against MIZIP and its distribution in rodent tissues using immunoblotting and immunohistochemical techniques. MIZIP was detected as a 27 kDa protein in brain, liver, and skeletal muscle, and to a lower extend, in lung, testis, and heart. Subcellular fractionation of adult mouse brain revealed the presence of MIZIP and MCHR1 in the cytoplasmic, membrane, and synaptosomal fraction, but not in a postsynaptic density preparation. In cultured rat, embryonic hippocampal neurons MIZIP is somatodendritically localized. In the adult rodent brain, MIZIP is widely distributed. High levels of expression were detected in brain regions involved in olfaction, feeding behavior, sensorimotor integration, and learning and memory, for example, the olfactory bulb, the olfactory tubercle, the caudate putamen, the thalamus and hypothalamus, the nucleus accumbens, the cerebral cortex, the hippocampus formation, and the cerebellum. Co-expression of MIZIP and MCHR1 was observed, for example, in pyramidal neurons of the cerebral cortex and hippocampus, in neurons of the olivary nucleus, lateral hypothalamus, nucleus accumbens, caudate putamen, pontine, and mesencephalic trigeminal nucleus. However, there are also differences in the expression patterns, for example, high expression of MCHR1 was detected in the lateral habenula, but no expression of MIZIP. These data support the notion that MIZIP might interact with MCHR1 in a cell type specific manner in vivo, suggesting a role in the regulation of MCH signalling in distinct regions of the mammalian brain.
Collapse
Affiliation(s)
- Felix Francke
- Institute for Cell Biochemistry and Clinical Neurobiology, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | | | | |
Collapse
|
42
|
Choi KO, Lee T, Lee N, Kim JH, Yang EG, Yoon JM, Kim JH, Lee TG, Park H. Inhibition of the catalytic activity of hypoxia-inducible factor-1alpha-prolyl-hydroxylase 2 by a MYND-type zinc finger. Mol Pharmacol 2005; 68:1803-9. [PMID: 16155211 DOI: 10.1124/mol.105.015271] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hypoxia-induced gene expression is initiated when the hypoxia-inducible factor-1 (HIF-1) alpha subunit is stabilized in response to a lack of oxygen. An HIF-1alpha-specific prolyl-hydroxylase (PHD) catalyzes hydroxylation of the proline-564 and/or -402 residues of HIF-1alpha by an oxygen molecule. The hydroxyproline then interacts with the ubiquitin E3 ligase von Hippel Lindau protein and is degraded by an ubiquitin-dependent proteasome. PHD2 is the most active of three PHD isoforms in hydroxylating HIF-1alpha. Structural analysis showed that the N-terminal region of PHD2 contains a Myeloid translocation protein 8, Nervy, and DEAF1 (MYND)-type zinc finger domain, whereas the catalytic domain is located in its C-terminal region. We found that deletion of the MYND domain increased the activity of both recombinant PHD2 protein and in vitro-translated PHD2. The zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine augmented the activity of wild-type PHD2-F but not that of PHD2 lacking the MYND domain, confirming that the zinc finger domain is inhibitory. Overexpression of PHD2 lacking the MYND domain caused a greater reduction in the stability and function of HIF-1alpha than did overexpression of wild-type PHD2, indicating that the MYND domain also inhibits the catalytic activity of PHD2 in vivo.
Collapse
Affiliation(s)
- Kyung-Ok Choi
- Department of Life Science, University of Seoul, 90 Cheonnong-dong, Tongdaemun-gu, Seoul 130-743, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Isobe T, Uchida C, Hattori T, Kitagawa K, Oda T, Kitagawa M. Ubiquitin-dependent degradation of adenovirus E1A protein is inhibited by BS69. Biochem Biophys Res Commun 2005; 339:367-74. [PMID: 16300738 DOI: 10.1016/j.bbrc.2005.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Accepted: 11/03/2005] [Indexed: 11/24/2022]
Abstract
Adenovirus E1A protein perturbs the cell cycle and promotes cell transformation. Although E1A is relatively unstable, regulation of E1A stability has not been fully elucidated. Here, we showed that E1A was ubiquitinated and degraded using a proteasome in vivo system. Interestingly, we found that BS69, one of the E1A-binding proteins, inhibited ubiquitination of E1A. BS69 mutants lacking the MYND domain could not bind to E1A and did not inhibit ubiquitination of E1A. Moreover, we demonstrated that overexpression of BS69 stabilized E1A in vivo. These results suggest that BS69 controls E1A stability via inhibition of ubiquitination.
Collapse
Affiliation(s)
- Tomoyasu Isobe
- Department of Biochemistry 1, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Francke F, Buck F, Bächner D. MYND domain specific interaction of the melanin-concentrating hormone receptor 1 interacting zinc-finger protein with alpha- and beta-tubulin. Biochem Biophys Res Commun 2005; 334:1292-8. [PMID: 16039987 DOI: 10.1016/j.bbrc.2005.07.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 07/11/2005] [Indexed: 11/29/2022]
Abstract
MIZIP was originally identified as a highly conserved zinc-finger protein from human brain interacting with the C-terminus of the melanin-concentrating hormone receptor 1. However, the cellular functions of MIZIP are still not known. Here, we focussed on the identification of associated proteins using affinity purification from human cells. This resulted in the identification of alpha- and beta-tubulin. The interaction was confirmed in vitro and in vivo using GST pull-down and immunoprecipitation assays, and was mapped to the MYND zinc-finger of MIZIP and to the N-terminus of tubulin. Immunoprecipitation and immunocytochemistry analyses demonstrate that MIZIP binds to tubulin but not to cellular microtubules in vivo and that ectopic expression of MIZIP does not interfere with the overall structure of the microtubular cytoskeleton. Our results suggest that MIZIP might play an important role in mammalian cells by associating with tubulin and thus might provide a link between MCHR1 and tubulin functions.
Collapse
Affiliation(s)
- Felix Francke
- Institute for Cell Biochemistry and Clinical Neurobiology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | |
Collapse
|
45
|
Epping MT, Wang L, Edel MJ, Carlée L, Hernandez M, Bernards R. The Human Tumor Antigen PRAME Is a Dominant Repressor of Retinoic Acid Receptor Signaling. Cell 2005; 122:835-47. [PMID: 16179254 DOI: 10.1016/j.cell.2005.07.003] [Citation(s) in RCA: 334] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 05/02/2005] [Accepted: 07/01/2005] [Indexed: 01/13/2023]
Abstract
Retinoic acid (RA) induces proliferation arrest, differentiation, and apoptosis, and defects in retinoic acid receptor (RAR) signaling have been implicated in cancer. The human tumor antigen PRAME is overexpressed in a variety of cancers, but its function has remained unclear. We identify here PRAME as a dominant repressor of RAR signaling. PRAME binds to RAR in the presence of RA, preventing ligand-induced receptor activation and target gene transcription through recruitment of Polycomb proteins. PRAME is present at RAR target promoters and inhibits RA-induced differentiation, growth arrest, and apoptosis. Conversely, knockdown of PRAME expression by RNA interference in RA-resistant human melanoma restores RAR signaling and reinstates sensitivity to the antiproliferative effects of RA in vitro and in vivo. Our data suggest that overexpression of PRAME frequently observed in human cancers confers growth or survival advantages by antagonizing RAR signaling.
Collapse
Affiliation(s)
- Mirjam T Epping
- Division of Molecular Carcinogenesis and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Alpatov R, Munguba GC, Caton P, Joo JH, Shi Y, Shi Y, Hunt ME, Sugrue SP. Nuclear speckle-associated protein Pnn/DRS binds to the transcriptional corepressor CtBP and relieves CtBP-mediated repression of the E-cadherin gene. Mol Cell Biol 2005; 24:10223-35. [PMID: 15542832 PMCID: PMC529029 DOI: 10.1128/mcb.24.23.10223-10235.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previously, we have shown that pinin/DRS (Pnn), a 140-kDa nuclear and cell adhesion-related phosphoprotein, is involved in the regulation of cell adhesion and modulation of the activity of multiple tumor suppressor genes. In the nucleus Pnn is concentrated in the "nuclear speckles," zones of accumulation of transcriptional and mRNA splicing factors, where Pnn is involved in mRNA processing. Alternatively, other roles of Pnn in gene regulation have not yet been established. By utilizing in vitro pull-down assays, in vivo interaction studies, and immunofluorescence in combination with overexpression and RNA interference experiments, we present evidence that Pnn interacts with the known transcriptional corepressor CtBP1. As a consequence of this interaction Pnn was capable of relieving the CtBP1-mediated repression of E-cadherin promoter activity. Our results suggest that the interaction of Pnn with the corepressor CtBP1 may modulate repression of transcription by CtBP1. This interaction may reflect the existence of coupling factors involved in CtBP-mediated transcriptional regulation and mRNA processing events.
Collapse
Affiliation(s)
- Roman Alpatov
- Department of Anatomy and Cell Biology, 1600 SW Archer Rd., University of Florida College of Medicine, Gainesville, FL 32610-0235, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lausen J, Cho S, Liu S, Werner MH. The nuclear receptor co-repressor (N-CoR) utilizes repression domains I and III for interaction and co-repression with ETO. J Biol Chem 2004; 279:49281-8. [PMID: 15377655 DOI: 10.1074/jbc.m407239200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acute human leukemias are associated with the presence of chimeric gene products that arise from spontaneous chromosomal translocations. The t(8;21) translocation gene product led to the discovery of the Eight Twenty-One (ETO) gene. When fused to RUNX1, ETO is thought to mediate the formation of a repressive complex at RUNX1-dependent genes. ETO has also been found to act as a co-repressor of the promyelocytic zinc finger and Bcl-6 oncoproteins, suggesting that it may play a common role as a transcriptional co-repressor leading to human disease. An analysis of ETO-mediated repression revealed that one of the key binding partners of ETO is the nuclear receptor co-repressor (N-CoR). It is shown that two highly conserved domains of ETO interact with repression domains I and III of N-CoR. One of the ETO domains displays significant homology to Drosophila TAF(II)110, whereas the other is a predicted zinc binding motif that engages a conserved PPLXP motif in repression domain III of N-CoR. Together, these domains of ETO cooperate in repression with N-CoR and the binding sites in N-CoR overlap with those for other repressive factors. Thus, ETO has the potential to participate in a number of repressive complexes, which can be distinguished by their binding partners and target genes.
Collapse
Affiliation(s)
- Jörn Lausen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
48
|
Bais AJ, Gardner AE, McKenzie OLD, Callen DF, Sutherland GR, Kremmidiotis G. Aberrant CBFA2T3B gene promoter methylation in breast tumors. Mol Cancer 2004; 3:22. [PMID: 15301688 PMCID: PMC516017 DOI: 10.1186/1476-4598-3-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 08/10/2004] [Indexed: 12/31/2022] Open
Abstract
Background The CBFA2T3 locus located on the human chromosome region 16q24.3 is frequently deleted in breast tumors. CBFA2T3 gene expression levels are aberrant in breast tumor cell lines and the CBFA2T3B isoform is a potential tumor suppressor gene. In the absence of identified mutations to further support a role for this gene in tumorigenesis, we explored whether the CBFA2T3B promoter region is aberrantly methylated and whether this correlates with expression. Results Aberrant hypo and hypermethylation of the CBFA2T3B promoter was detected in breast tumor cell lines and primary breast tumor samples relative to methylation index interquartile ranges in normal breast counterpart and normal whole blood samples. A statistically significant inverse correlation between aberrant CBFA2T3B promoter methylation and gene expression was established. Conclusion CBFA2T3B is a potential breast tumor suppressor gene affected by aberrant promoter methylation and gene expression. The methylation levels were quantitated using a second-round real-time methylation-specific PCR assay. The detection of both hypo and hypermethylation is a technicality regarding the methylation methodology.
Collapse
Affiliation(s)
- Anthony J Bais
- Bionomics Limited, Thebarton, Adelaide, SA 5031, Australia
- Department of Haematology and Genetic Pathology, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Alison E Gardner
- Department of Cytogenetics and Molecular Genetics, Women's and Children's Hospital, North Adelaide, Adelaide, SA 5006, Australia
| | - Olivia LD McKenzie
- Department of Cytogenetics and Molecular Genetics, Women's and Children's Hospital, North Adelaide, Adelaide, SA 5006, Australia
| | - David F Callen
- Department of Cytogenetics and Molecular Genetics, Women's and Children's Hospital, North Adelaide, Adelaide, SA 5006, Australia
- Dame Roma Mitchell Cancer Research Labs, Hanson Institute, Adelaide, SA 5000, Australia
| | - Grant R Sutherland
- Department of Cytogenetics and Molecular Genetics, Women's and Children's Hospital, North Adelaide, Adelaide, SA 5006, Australia
- Department of Paediatrics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Gabriel Kremmidiotis
- Bionomics Limited, Thebarton, Adelaide, SA 5031, Australia
- Department of Paediatrics, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
49
|
Hesson L, Bièche I, Krex D, Criniere E, Hoang-Xuan K, Maher ER, Latif F. Frequent epigenetic inactivation of RASSF1A and BLU genes located within the critical 3p21.3 region in gliomas. Oncogene 2004; 23:2408-19. [PMID: 14743209 DOI: 10.1038/sj.onc.1207407] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RASSF1A is a major tumor suppressor gene located at 3p21.3. We investigated the role of aberrant promoter region hypermethylation of RASSF1A in a large series of adult gliomas. RASSF1A was frequently methylated in both primary tumors (36/63; 57%) and tumor cell lines (7/7; 100%). Hypermethylation of RASSF1A in glioma cell lines correlated with loss of expression and treatment with a demethylating agent-reactivated RASSF1A gene expression. Furthermore, re-expression of RASSF1A suppressed the growth of glioma cell line H4 in vitro. Next, we investigated whether other members of the RASSF gene family were also inactivated by methylation. NORE1B and RASSF3 were not methylated in gliomas, while NORE1A and RASSF5/AD037 demonstrated methylation in glioma cell lines but not in primary tumors. We then investigated the methylation status of three other candidate 3p21.3 tumor suppressor genes. CACNA2D2 and SEMA3B were not frequently methylated, but the BLU gene located just centromeric to RASSF1 was frequently methylated in glioma cell lines (7/7) and in 80% (35/44) of glioma tumors. In these tumor cell lines, BLU expression was restored after treatment with a demethylating agent. Loss of BLU gene expression in glioma tumors correlated with BLU methylation. There was no association between RASSF1A and BLU methylation. RASSF1A methylation increased with tumor grade, while BLU methylation was seen at similar frequencies in all grades. Our data implicate RASSF1A and BLU promoter methylation in the pathogenesis of adult gliomas, while other RASSF family members and CACNA2D2 and SEMA3B appear to have only minor roles. In addition, RASSF1A and BLU methylation appear to be independent and specific events and not due to region-wide changes in DNA methylation.
Collapse
Affiliation(s)
- Luke Hesson
- Section of Medical and Molecular Genetics, Division of Reproductive and Child Health, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Nomura T, Tanikawa J, Akimaru H, Kanei-Ishii C, Ichikawa-Iwata E, Khan MM, Ito H, Ishii S. Oncogenic activation of c-Myb correlates with a loss of negative regulation by TIF1beta and Ski. J Biol Chem 2004; 279:16715-26. [PMID: 14761981 DOI: 10.1074/jbc.m313069200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-myb proto-oncogene product (c-Myb) regulates proliferation of hematopoietic cells by inducing the transcription of a group of target genes. Removal or mutations of the negative regulatory domain (NRD) in the C-terminal half of c-Myb leads to increased transactivating capacity and oncogenic activation. Here we report that TIF1beta directly binds to the NRD and negatively regulates the c-Myb-dependent trans-activation. In addition, three corepressors (Ski, N-CoR, and mSin3A) bind to the DNA-binding domain of c-Myb together with TIF1beta and recruit the histone deacetylase complex to c-Myb. Furthermore, the Drosophila TIF1beta homolog, Bonus, negatively regulates Drosophila Myb activity. The Ski corepressor competes with the coactivator CBP for binding to c-Myb, indicating that the selection of coactivators and corepressors is a key event for c-Myb-dependent transcription. Mutations or deletion of the NRD of c-Myb and the mutations found in the DNA-binding domain of v-Myb decrease the interaction with these corepressors and weaken the corepressor-induced negative regulation of Myb activity. These observations have conceptual implications for understanding how the nuclear oncogene is activated.
Collapse
Affiliation(s)
- Teruaki Nomura
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | |
Collapse
|